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Abstract 

Background:  Adults with repaired tetralogy of Fallot (rTOF) die prematurely from ventricular 

tachycardia (VT) and sudden cardiac death.  Inducible VT predicts mortality. Ventricular scar, the 

key substrate for VT, can be non-invasively defined with late gadolinium enhancement (LGE) 

cardiovascular magnetic resonance (CMR) but whether this relates to inducible VT is unknown.  

Methods:  Sixty-nine consecutive rTOF patients (43 male, mean 40±15 years) clinically scheduled 

for invasive programmed VT-stimulation were prospectively recruited for prior 3D LGE CMR. 

Ventricular LGE was segmented and merged with reconstructed cardiac chambers and LGE volume 

measured.  

Results: VT was induced in 22(31%) patients. Univariable predictors of inducible VT included 

increased RV LGE (OR 1.15;p=0.001 per cm3), increased non-apical vent LV LGE (OR 1.09;p=0.008 

per cm3), older age (OR 1.6;p=0.01 per decile), QRS duration ≥180ms (OR 3.5;p=0.02), history of 

non-sustained VT (OR 3.5; p=0.02) and previous clinical sustained VT (OR 12.8;p=0.003); only prior 

sustained VT (OR 8.02;p=0.02) remained independent in bivariable analyses after controlling for RV 

LGE volume (OR 1.14;p=0.003). An RV LGE volume of 25cm3 had 72% sensitivity and 81% specificity 

for predicting inducible VT (AUC 0.81;p<0.001). At the extreme cutoffs for ‘ruling-out’ and ‘ruling-in’ 

inducible VT, RV LGE >10cm3 was 100% sensitive and >36cm3 was 100% specific for predicting 

inducible VT.  

Conclusion: 3D LGE CMR-defined scar burden is independently associated with inducible VT and 

may help refine patient selection for programmed VT-stimulation when applied to an at least 

intermediate clinical risk cohort.  

 

Key words 
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Non-standard Abbreviations and Acronyms 

rTOF repaired tetralogy of Fallot 

PR pulmonary regurgitation 

PVR pulmonary valve replacement 

SCD sudden cardiac death 

VT ventricular tachycardia  

PES programmed electrical stimulation 

LGE late gadolinium enhancement  

CMR cardiovascular magnetic resonance  

bSSFP balance steady state free precession  

CLAWS continuously adaptive windowing strategy 

ECG electrocardiogram 

BNP B-type natriuretic peptide 

CPEX cardiopulmonary exercise testing  

RV right ventricle  

PA pulmonary artery 

LV left ventricle 

LVEDP left ventricular end-diastolic pressure 

EAM electro-anatomical mapping 

ICD implantable cardiac defibrillator 

 

 



            Ghonim, Ernst, Keegan et al., 

 

4 

 

Introduction 

Survival of patients with repaired tetralogy of Fallot (rTOF) has greatly improved over the 

past 60 years. With success comes new challenge. Pulmonary regurgitation (PR) is a common 

haemodynamic lesion associated with ventricular tachycardia (VT)1. Despite proactive and timely 

pulmonary valve replacement (PVR), the risk of VT and sudden cardiac death (SCD) is not 

abolished2,3. Arrhythmia sequelae have become a major issue for the growing number of adults 

with rTOF. Contemporary clinical concerns have moved on from who should a receive a new 

pulmonary valve and when towards addressing the increasing burden of arrhythmia related 

morbidity and mortality.  The combination of previous surgical scar with years of volume and or 

pressure chamber overload and consequent progressive adverse mechano-electrical remodelling, 

can be catastrophic. The risks of VT and SCD rise exponentially in rTOF from the 4th decade of life1.  

Invasive programmed electrical stimulation (PES) was an independent predictor of mortality 

during follow-up of rTOF patients, associated with an approximate 5-fold increased risk of 

subsequent VT/SCD 4. Thus, PES is selectively recommended in current guidelines 5-8 albeit there is 

uncertainty about application, timing, interpretation and frequency of use.  

Three-dimensional (3D) late gadolinium enhanced (LGE) cardiovascular magnetic resonance 

(CMR) enables both high-spatial resolution non-invasive scar definition (more appropriate to the 

thin-walled RV than 2D LGE) and entire contiguous coverage of the heart enabling precise 

volumetric quantification of total LGE burden 9-12. We sought to prospectively examine whether 3D 

LGE extent predicts inducible VT at PES.  
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Methods 

Patients and study design 
Consecutive adult (>16 years old) rTOF patients were prospectively recruited and gave their 

informed consent for 3D LGE CMR preceding clinically scheduled PES from 2008 to 2018 unless LGE 

CMR contraindicated. The study was approved by the local research ethics committee and 

conducted according to the Declaration of Helsinki. Inducible sustained VT was defined as >30 

seconds or causing haemodynamic compromise requiring cardioversion. The data that support the 

findings of this study are available from the corresponding author upon reasonable request. 

CMR acquisition, analysis and reconstruction 
CMR was acquired using a standardised protocol as previously described 13,14.  whereby RV 

trabeculations and LV papillary muscles were excluded from the blood pool for the purposes of 

ventricular volume analysis.  A free-breathing whole-heart 3D balanced Steady State Free 

Precession (bSSFP) ‘roadmap’ was acquired9.Approximately 20 minutes after gadolinium 

(0.15mmol/kg) was administered, when the myocardial wash-in and wash-out reached a steady 

state, a free-breathing inversion prepared gradient echo 3D LGE acquisition was performed, the 

inversion time being set to null normal myocardium by meticulous visual inspection of the 

preceding long and short axis 2D LGE images9. Sequence sensitivity to heart rate variations during 

the acquisition were minimised by making real-time changes to the inversion time as the 

acquisition proceeded 10. The 3D LGE images covered the entire heart, typically requiring 64 slices 

at 1.5x1.5x4mm3 voxel resolution which were post processed to 0.75x0.75x2mm3 voxel resolution 

9,10. For both roadmap and 3D LGE acquisitions, the continuously adaptive windowing strategy 

(CLAWS) was used for efficient respiratory gating 9,15. Manual 3D segmentation and fusion of 

cardiac chambers, vessels and ventricular LGE was carried out using dedicated segmentation 

software (Mimics, Materialise, Le). LGE volume (cm3) in each ventricle was recorded. LGE 
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segmentation was performed by 2 experienced operators co-reviewing for consensus and blind to 

the PES. To test intra-observer and inter-observer reproducibility 20 cases were re-segmented by 

the same operators blinded to their previous segmentation as well as each other. 

Routinely acquired clinical data 
Patients routinely underwent 12-lead electrocardiogram (ECG), blood sampling for B-type 

natriuretic peptide (BNP), echocardiography, cardiopulmonary exercise testing (CPEX), and CMR as 

part of their standardised adult congenital heart disease care7. Ambulatory ECG Holter monitoring 

was performed when clinically indicated by symptoms volunteered or for risk stratification. Non-

sustained VT defined as ≥3 consecutive ventricular beats ≥100 bpm for ≤30 seconds duration and 

sustained atrial arrhythmia defined as ≥30 seconds that occurred prior to index CMR were 

recorded. RV restrictive physiology was assessed on echocardiography using diastolic forward flow 

through the pulmonary artery, PA (‘a wave’) throughout the respiratory cycle by a single operator. 

LV restriction as a non-invasive surrogate for a raised LVEDP was assessed using standard 

echographic criteria. CPEX was assumed valid within 1 year from the CMR study.  

PES was performed using a standardised protocol under assisted sedation.  No patients 

were taking amiodarone prior to the procedure.  Electroanatomical mapping (EAM) was performed 

with CARTO (Biosense Webster Inc., CA, CARTO XP RMT, CARTO 3 RMT up to version 7). PES was 

achieved at 2 RV sites (RV apex and outflow tract) at twice the diastolic threshold with ≥2 eight-

beat drive trains (cycle lengths between 440 - 510ms) and with up to 3 extra-stimuli with coupling 

intervals ≥180 ms. If VT was non-inducible, this protocol was repeated with isoprenaline (200mcg in 

500ml normal saline via a peripheral line) until heart rate increased by 20%-50%. RV mapping was 

performed both in sinus rhythm using an endocardial bipolar voltage map or atrial pacing for 

intrinsic ventricular activation mapping.  
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LGE correlation with electroanatomical mapping (EAM) sub-study 
In a sub-study of 22 rTOF patients in whom mapping points were available, correspondence 

of LGE CMR with EAM was investigated.  Registration of 3D LGE CMR segmentation with CARTO 

bipolar voltage maps for each patient was undertaken using MeshLab software. A 2-stage 

registration process was applied to minimise misalignment: first with landmark registration of the 

ascending aorta and second with surface registration of the iterative closest point 16. The surface 

registration error, defined as the distance between points matched on the 3D LGE segmentations 

and EAM was measured. EAM regions with a pre-specified bipolar signal amplitude of <1.5mV were 

identified as scar tissue, as previously reported in several histological validation studies. To quantify 

the correspondence between LGE CMR and low-voltage bipolar signal, we defined LGE CMR 

sensitivity as the proportion of low voltage mapping points within 5mm of LGE-defined scar against 

total mapping points, where 5mm was the allowance made for LGE to mapping point registration 

error. Similarly, we defined LGE CMR specificity as the proportion of normal voltage points ≥25mm 

away from LGE-defined scar against total mapping points.  

Statistical methods  
Continuous data are summarized as mean (±SD) or median (interquartile range) as 

appropriate. Comparisons between groups were made using a Mann-Whitney test, chi-squared test 

or Fishers exact test as appropriate. Correlation between continuous data was assessed using 

Spearman’s test (ρ). Receiver-operating characteristics (ROC) analysis was used to determine the 

discriminative power of RV LGE. The optimum cutoff value with the highest sensitivity and 

specificity in predicting inducible VT was determined using the optimum Youden index (J). In 

addition, RV LGE volume cutoff values achieving 100% sensitivity and 100% specificity were 

measured. The association between RV LGE and other variables with inducible VT was tested using 

logistic regression analysis. Given the relatively small number of patients with inducible VT, it was 
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not appropriate to perform full multi-variable analysis.  Instead, following univariable analysis, RV 

LGE volume (cm3) was combined with other predictive variables in a series of bivariable analyses. 

All tests were 2-sided and a P value of <0.05 was considered significant. Intraobserver and 

interobserver variability was expressed as the coefficient of variation (percent), derived from the 

within-subject SD divided by the mean, multiplied by 100. Intra-class correlation coefficients were 

calculated using absolute agreement, 2-way mixed model. Statistical analysis was performed with 

SPSS (IBM Statistics V.22). 

Results 

Study Patients 
A total of 69 consecutive adult rTOF patients (mean age 40±15 years; male 43, 62%) fulfilled 

inclusion criteria and underwent 3D LGE CMR prior to invasive programmed VT-stimulation. 

Baseline patient demographics and characteristics are summarised in Table 1.  

Of the 69 patients, 22 (31.8%) had inducible VT. All 10 patients who had sustained VT prior 

to PES had VT induced. For those with inducible VT, 18 underwent ablation for sustained 

monomorphic VT (mean total cycle length 259±29ms) and of the remaining 4 severe 

haemodynamically unstable VT was monomorphic in 2 and polymorphic in the remaining 2.  

Haemodynamically unstable VT PES patients had significantly worse LV ejection fraction [median 

51% (42-56) versus 63% (48-67);p=0.03] compared to the remaining  VT ablation patients. 

In most patients 14(78%), a linear ablation connecting the pulmonary valve towards the tricuspid 

annulus (Figure 1) was performed towards the RV free wall reflecting the operator’s preferred 

approach to avoid ablating close to the conal septum in order to both minimise complications with 

the conduction system and make VT non-inducible. In 4 patients (22%) however, an ablation very 

towards the VSD patch was required. All 18 patients were offered an implantable cardiac 
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defibrillator (ICD) following VT ablation (2 have received an appropriate VT shock and 2 an 

inappropriate shock for atrial tachyarrhythmia at median 6.7years follow-up). There were 4 

patients (22%) who declined ICD, one died suddenly (presumed arrhythmic).  

 

LGE-defined scar and clinical correlates 
All patients had RV LGE at the surgical sites (both RVOT patch site and VSD patch site in 69, 

100%). RV LGE was observed in areas apparently remote to surgery (n=32, 45%): RV trabeculations 

in 31 and/or moderator band in 14(Table 2). Patients with this remote type of LGE were older 

(46±14 versus 35±14 years; p<0.001) and had later repairs [repair at 8(4-11.4) versus 3.4(0.5-6.9) 

years;p<0.001]. RV/LV insertion point LGE (typically subtle) was observed in all cases. Given that we 

know this is a non-specific finding in normal hearts and that it is routinely observed in our practice, 

and consistent with our previous study it was excluded from quantification13. 

Apical LV LGE corresponding with site of previous surgical vent insertion was found in 36 

(52%) patients and was not considered relevant for further analyses. Non-apical vent LV LGE 

occurred in 20 (29%) cases. This was inferolateral and transmural in 3 (15%) and in 13(65%) discrete 

foci of LGE occurred in other locations. Four patients (20%) had non-apical vent LV LGE confined to 

papillary muscles only.  

As shown in Table 1, supramedian RV LGE volume (>20 cm3) was associated with older age 

(p<0.001), late repair (p=0.001), increased RVESVi (p=0.04), reduced RV EF (p=0.004), increased 

indexed right atrial area, RAAi (p<0.001), NYHA≥II (p=0.04) and restrictive LV filling pressure 

(p=0.02).  

LGE-defined scar, histological and electroanatomical correlates  
In the substudy of 22 rTOF patients (mean age 44 ±15 years, male 12) in which LGE-defined 

scar was compared with clinically available bipolar voltage mapping points, the mean surface 
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registration error was 5.0mm±1.4mm. In these patients a total of 369 low voltage points (<1.5mV) 

occurred within a 5mm vicinity of the LGE tissue perimeter versus 151 normal voltage points found 

in this area. Conversely, there were 35 low voltage points that were more than 25mm away from 

the LGE tissue perimeter and 141 normal voltage points in that area. LGE CMR was therefore, 71% 

sensitive and 80% specific for its correspondence with low-voltage areas (<1.5mV) on EAM (Figure 

S1).   

In one patient we were able to correlate 3D LGE findings with subsequent surgical excision 

of the same region (Figure 2) and the LGE-defined RV scar was confirmed as fibrosis histologically.  

Predictors of VT inducibility 
Significant univariable predictors of VT inducibility were RV LGE volume (OR 1.15, CI 1.06-

1.25:p=0.001 per cm3), non-apical vent LV LGE volume (OR 1.09, CI 1.02-1.17:p=0.008 per cm3), QRS 

duration ≥180 ms (OR 3.5, CI 1.2-10.7:p=0.02), age (OR 1.6; CI 1.1-2.3:p=0.01 per decile), previous 

non-sustained VT (OR 3.5, CI 1.2-10.1:p=0.01) and clinical sustained VT (OR 12.8, CI 2.4-67:p=0.003). 

Non-apical vent LV LGE was also predictive of VT inducibility (OR 1.09, CI 1.02-1.17:p=0.008) and 

remained predictive even when the 4 patients with only LV papillary muscle LGE were excluded (OR 

1.1, CI 1.03-1.17:p=007, see Table 2) . In bivariable analysis, RV LGE volume (OR 1.14, CI 1.04-

1.24:p=0.003) and clinical sustained VT (OR 8.02, CI 1.26-51.2:p=0.02) were the independent 

predictors of inducible VT (Table 2), whereas QRS duration, age, non-sustained VT and non-apical 

vent LV LGE volume did not stay significant when tested against RV LGE.  

On ROC analysis, RV LGE had a good discriminative power in predicting inducible VT (area 

under the curve, AUC, 0.81, 95% CI 0.7-0.9:p<0.001, see Figure S2). A cutoff volume of 24.7cm3 RV 

LGE had a 72% sensitivity and 81% specificity for predicting inducible VT. This cutoff value had the 

highest Youden index (J=0.53) by ROC analysis.  A 100% sensitivity was achieved at a RV LGE volume 

≥10.2cm3 and 100% specificity was reached at a RV LGE volume ≥36.0cm3 (Figure S2). A RV LGE 
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volume of 10.2cm3 had a negative predictive value of 100% for predicting inducible VT and positive 

predictive value of 37%.   

LGE segmentation reproducibility 
Quantification of LGE volume by manual segmentation was highly reproducible. Intra-

observer and interobserver coefficients of variability were 2.9% and 2.8% respectively.   For 

interobserver variability, the interclass correlation coefficient for LGE volume measurements was 

0.985 (95% CI 0.98-0.99:p<0.001). 

Discussion 

This is the first prospective study to date that examines the association between ventricular 

myocardial scar burden defined by state-of-the-art 3D LGE CMR and VT inducibility in a well-

phenotyped cohort of high-risk adult rTOF patients.  

  Our major and unique finding is that RV LGE burden independently predicts inducible VT 

over and above well-established risk factors, namely, older age and prolonged QRS duration. RV 

LGE also remained independently associated with inducible VT even when tested against sustained 

VT that occurred pre-PES. A small increase in LGE volume is associated with a large increase in risk 

of inducible VT whereby for every 1cm3 of LGE there is a 15% increased risk of inducible VT. We 

found thresholds for RV LGE volume that discriminated between patients with inducible and non-

inducible VT (see Figure 3). These findings may help improve the selection of patients for PES and 

identify those who potentially can avoid needless invasive studies.  

Inducible VT in repaired tetralogy of Fallot 
Inducible VT was a strong independent predictor of clinical sustained VT and SCD during 

follow-up in a multicentre study4, one of very few studies on outcome in adult congenital heart 

disease. This study with its clinically important follow-up endpoints has influenced clinical practice 

and contributed to guidelines 5-8. Therefore, we chose inducible VT as a justifiable endpoint 
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acknowledging it is a surrogate endpoint for sudden death or life-threatening VT.  There are notable 

differences between this previous study and our own. Their patients were younger (mean age 16 

years versus 40 years), more had at least moderate PR (74% versus 20%), more had history of 

clinical sustained VT or syncope (17% versus 14%, 24% versus 16%, respectively) and they included 

patients who already had ICDs at baseline, implying in combination, that PES was being performed 

in an even higher risk rTOF population in this older study than the one we describe here. Since 

then, the approach to managing significant pulmonary regurgitation has also evolved with efforts 

concentrated on proactive pulmonary valve implantation before symptom onset. Our study cohort 

reflects this more contemporary practice. 

In our centre, patients who were deemed clinically to be of at least ‘intermediate-risk’ were 

individually selected for PES after multidisciplinary input. Albeit clinical judgement may be more 

nuanced than a sum of factors17, typically, selected patients would have 2 or more of the following: 

QRS duration ≥180ms, mild LV impairment, moderate RV impairment or cardiac syncope. Given the 

high negative predictive value of inducible VT in rTOF patients4, it is often speculated that a 

negative PES given its negative predictive value is more useful as a ‘rule-out’ test to reassure 

patients that a primary prevention ICD is not required. Conversely, an inducible VT compared with a 

sustained clinical VT is not highly specific and hence testing is avoided in those with low pretest 

probability.  

3D LGE predicts inducible VT  
We found that 3D LGE extent was strongly associated with inducible VT and was stronger 

than established predictors, including age, QRS duration>180ms 1,18and non-sustained VT19 which 

did not remain significant when tested in combination with RV LGE in bivariable analyses. Even 

when combined with clinical sustained VT which, as expected, was independently predictive of VT 

inducibility in univariable analysis, RV LGE burden remained still an independent predictor in 
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bivariable analysis. In recent large cohort studies other non-invasive risk factors of adverse 

outcome have been reported in rTOF including sustained atrial arrhythmia, RV ejection fraction, LV 

ejection fraction2, maximal right atrial area, RV outflow tract akinetic region length14, BNP20 and 

peak VO2 
21. These were not found to be predictors of inducible VT outcome in this smaller cohort.  

RV LGE volume had a high negative predictive value of 100% vs lower positive predictive value of 

37% (at RV LGE 10cm3 cutoff).  This suggests that RV LGE volume may have a role as a ‘rule out’ test 

to reassure patients, potentially sparing lower risk patients from having an invasive test in future or 

perhaps be a “rule in” test for those in whom VT ablation is considered an option. In our study, 10 

of the 49 patients (20%) with non-inducible VT had an RV LGE volume below the ‘rule-out’ cutoff of 

10cm3. LGE volume is a continuous variable hence the cutoffs we show are illustrative rather than 

highly specific thresholds prescribed for local clinical practice. These first study results beg the 

question as to whether 3D LGE to guide management can allow avoidance of invasive PES in 

selected patients.  

3D LGE-defined anatomical substrates of arrhythmia 
We previously reported the association of 2D LGE-defined scar with adverse clinical features 

most importantly history of arrhythmia, in a cross-sectional study13. Whilst 2D LGE CMR application 

in the RV is feasible it requires expertise as it is susceptible to false positive results secondary to 

partial volume effects from sternal wires, pericardial fat and the thin RV wall of only a few 

millimetres. It is also susceptible to false negative results due to, for example, inexperience in 

setting acquisition parameters and/or suboptimal timing of the acquisition following contrast agent 

administration including finishing inversion recovery acquisitions too early after contrast given. 

Furthermore, 2D RV LGE quantification remains challenging to translate from highly expert research 

settings to the real world. Personalised virtual whole heart models that include myocardial scar can 

now allow better clinical visualisation and robust quantification of the arrhythmia substrate in the 
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RV (Figures 1-3) with the potential for deeper mechanistic insight and integration into invasive 

procedures.  

Differences between electrically and anatomically defined scars are well described6,22.  

These may be due to inherent limitations with endocardial EAM not being able to assess intramural 

and epicardial scar and its dependence on good catheter contact whereas 3D LGE may be more 

comprehensive. Though it was not the primary intention of our study we demonstrated RV LGE-

defined scar corresponded to histological RV fibrosis (Figure 2) and show a good albeit imperfect 

geographical match between LGE and low-voltage mapping points. Integration of LGE and EAM is 

challenging due to differences in (1) the co-ordinate systems, (2) spatial resolutions, (3) timings of 

the acquisitions within the cardiac and respiratory cycles and (4) the patient condition. These are 

the most likely reasons why a more exact match was not seen. It is also possible and remains 

unclear if the small area of disagreement may be attributed to the heterogeneity within the scar 

regions and at the perimeter of the scar or ‘gray’ zone. High resolution mapping studies with 

smaller electrodes will most likely give better insight into this problem. 

Agreement between 3D LGE CMR and EAM paves the way for the use of 3D LGE CMR in 

planning anatomical substrate guided electrophysiology procedures, in rTOF patients likely to 

require VT ablation. A substrate-based approach facilitated by whole heart 3D LGE CMR can be 

particularly advantageous for patients who cannot haemodynamically tolerate VT, for those with 

biventricular systolic dysfunction (all 4 haemodynamically unstable inducible VT patients in our 

study), for patients with complex scar substrate and for those with atypical substrates that are 

unexpectedly remote from usual surgical scar sites but may cause VT.  

Future directions  
Machine learning and computational modelling based on 3D RV scar features may further 

help differentiate patients for example targeting the large overlap in scar extent in patients 
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inducible and non-inducible for VT. T1 mapping which is a CMR technique to document interstitial 

fibrosis, an entity which is also associated with arrhythmia may also have a future role in further 

differentiation23,24. To date, concerns remain as to its robustness for addressing the thinner RV. 

Others have used very detailed EAMs to define the anatomical isthmuses (typically “isthmus 

2” and “3”) known to underlie the mechanism of macro re-entry VT in rTOF 25,26 to individually risk 

stratify and treat culprit VT substrates.  In future, LGE-augmented electrophysiology study could be 

used to facilitate mapping approaches as it is done in the left heart 27,28 by incorporating rTOF 

patient specific 3D LGE CMR reconstructions of scar in to the invasive procedure. Given atrial 

arrhythmia is more prevalent in adults with rTOF the opportunity to extend image integration and 

ablation guidance to right atrial scar substrate is the next frontier. Experience from adult congenital 

heart disease with diverse and extensive scar substrates and most challenging arrhythmia to treat 

may in turn help to manage more common, acquired heart diseases. 

Limitations 
We recognise that VT inducibility as a primary outcome in this study is not a direct indicator 

of mortality but rather a surrogate marker for it. Equally, we considered this to be the most robust 

secondary marker of mortality available as we wanted to avoid using soft endpoints, like frequent 

ectopy, which may have driven the arrhythmic endpoint in other fibrosis rTOF studies12.  We 

studied only patients at intermediate or more risk as clinically judged, so we cannot comment on 

the relationship of 3D LGE CMR and inducible VT in larger low risk cohorts. A large prospective and 

inclusive follow-up rTOF cohort may inform us of the prognostic value of 3D LGE CMR with respect 

to mortality. We did not perform multivariable analysis to avoid over fitting of the model.  3D LGE 

acquisition requires a learning curve to achieve robust high-quality 3D RV LGE reliably at every 

attendance. The quantity of ventricular fibrosis may be underestimated in several patients in whom 

there is absence of signal in the region of sternal wire artefact for example as shown in Figure 1.   
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Conclusion 

RV LGE-defined scar burden is a strong and independent predictor of inducible VT in adult 

patients with rTOF and may help to refine patient selection for PES when applied to an at least 

intermediate clinical risk rTOF cohort. Not only can 3D LGE help predict which of these patients are 

most likely to need to proceed to VT ablation and or ICD but it can also help avoid needless invasive 

procedures. 
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Table 1 Patient characteristics 

Variable All patients 
(n=69) 

Inframedian RV LGE 
<20cm3  (n=35) 

Supramedian RV LGE  
≥20cm3 (n=34) 

P Value Correlation with LGE (cm3) 
r coefficient (p) ** 

Age at scan, y 40 ±15 32 ± 13 48±13 <0.001 0.57 (P<0.001) 
Age at surgery, y 5.8 (1.4-9.3) 2.7 (0.7-5.9) 7.5 (5.6-13) 0.002 0.5 (P<0.001) 
Male sex, n  43 23 20 0.6  
Palliative shunt*, n 29 14 15 0.8  
Transannular patch, n 23 9 14 0.3  
RVOT patch, n  17 9 8 0.7  
RV-PA conduit, n 11 7 4 0.4  
Redo-PVR†, n  41 18 23 0.5  
NYHA class ≥ II, n  26 11 15 0.3  
Syncope, n 11 4 7 0.5  
Sustained atrial arrhythmia‡, n 23 9 14 0.2  
Non-sustained VT‡, n  24 12 12 0.5  
Sustained VT, n  10 3 7 0.2  
BNP§, ng/L  59 (28-106) 51 (17-100) 69 (8-130) 0.3 0.3 (P=0.02) 
QRS duration||, ms  162 (145-178) 162 (151-177) 180(161-185) 0.01 0.29 (P=0.01) 
QRS duration ≥ 180 ms 19 7 12 0.1  
Peak V02,

 #
 mL/kg/min  24.7 (20.6-30) 25.1 (20-31.6) 22.1 (20-30) 0.5 -0.2 (P=0.3) 

% predicted V02  71 (45 -85) 80.3 (61-95) 75 (57-85) 0.3 -0.2 (P=0.3) 
VE/VCO2 slope 30 (26-34) 28 (24-31.4) 32 (28.5-36) 0.1 0.47 (P=0.02) 

RV LGE volume, cm3 20 (12.6-27)     

LV LGE volume (non-apical vent), cm3 3.7 (0.5-9.7) 2.8 (0.1-14) 4.4 (1.5-8.5) 0.4 0.45 (P<0.001)  

Akinetic length of RVOT, mm 38 (28-50) 30(22-42) 43 (35-57) 0.003 0.4 (P=0.001) 
RVEDVi, mL/m2 125 (99-147) 113 (97-147) 133(105-155) 0.2 0.1 (P=0.35) 
RVESVi, mL/m2 65 (47-89) 62 (44-75) 76 (53-92) 0.04 0.29 (P=0.01) 
RVEF, % 47 (42-55) 52 (44-59) 43(40-51) 0.004 -0.46 (P=<0.001) 
RV:LV volume ratio  1.4 (1.1-1.8) 1.4 (1.1-1.9) 1.4 (1.2-1.9) 0.3 0.05 (P=0.7) 
RV mass/volume, g/m2 0.4(0.32-0.47) 0.39 (0.31-0.47) 0.42(0.32-0.49) 0.4 0.07 (P=0.56) 
RAAi, cm2/m2  15 (12-17) 13 (12-15) 17 (13-19) 0.005 0.3 (P=0.008) 
LVEDVi, mL/m2 85 (73-101) 84 (75-99) 84 (69-110) 0.9 0.04 (P=0.8) 
LVESVi, mL/m2 33 (28043) 33(27-43) 34 (28-48) 0.6 0.1 (P=0.4) 
LVEF, % 60 (50-66) 58 (54-67) 55 (49-65) 0.3 -0.2 (P=0.08) 
LAAi, cm2/m2 10 (9-12) 10 (9-11) 11 (9-13) 0.7 0.07 (P=0.5) 
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Pulmonary regurgitation, % 14 (2-32) 21 (4-48) 13 (1-45) 0.3 -0.2 (P=0.2) 

Restrictive LV filling**, n 12 2 10 0.01  

Restrictive RV physiology**, n 11 7 4 0.7  

* A total of 29 palliative shunts where used: Blalock-Taussig shunt n=19, central shunt n=7, Brock procedure n=3 † 5 cases had percutaneous pulmonary valve 

implantation with Melody valve. ‡ Holter monitors were available in 54 (78%), §BNP was available in 55 (80%).   || 12-lead ECG was available in 69 (100%), # 

CPEX was available in 50 (72%), ** echo data on LV and RV restriction was available in 66 (96%) and 55(80%) respectively Spearman’s coefficient of 

correlation.
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Table 2 Univariable and bivariable predictors of inducible VT 

Univariable predictors inducible VT OR (95% CI) P value 

Age at CMR, per decile 1.6 (1.1-2.3) 0.01 
Age of repair, y 1.03 (0.97-1.01) 0.2 
Palliative shunt 0.9 (0.3-2.6) 0.9 
NYHA>II 1.6(0.57-4.5) 0.4 
Syncope 0.78(0.18-3.2) 0.7 
Clinical sustained atrial arrhythmia ≥30s  0.48 (1.15-1.56) 0.2 
Non-sustained VT 3.5 (1.2-10.1) 0.02 
Clinical sustained VT ≥30s 12.8 (2.4-67) 0.003 
BNP, per 10ng/L   1.02(0.96-1.08) 0.59 
QRS> 180ms 3.5 (1.16-10.7) 0.02 
Peak VO2, mL/kg/min 1.05 (0.9-1.1) 0.55 
VE/VCO2 slope 1.1 (0.97-1.2) 0.14 
RV LGE volume, cm3 1.15 (1.06-1.25) 0.001 
Supramedian RV LGE volume, cm3 3.4 (1.2-9.7) 0.02 
LV LGE volume (non-apical vent), cm3 1.09(1.02-1.17) 0.008 
Remote to surgical sites RV LGE volume, cm3 1.62 (0.58-4.5) 0.35 
Akinetic length of RVOT, mm 1.03(0.99-1.06) 0.07 
RVEDVi, mL/m2 1 (0.99-1.01) 0.6 
RVESVi, mL/m2 1 (0.98-1.02) 0.4 
RVEF, % 0.98(0.92-1.04) 0.1 
RAAi, cm2/m2 1.02 (0.9-1.13) 0.6 
RAAi ≥ 16cm2/m2 1.81 (0.63-5.2) 0.27 
LVEDVi, mL/m2 1.02 (0.98-1.05) 0.1 
LVESVi, mL/m2 1.02 (0.97-1.05) 0.2 
LVEF, % 0.99 (0.94-1.05) 0.6 
LAAi, cm2/m2 1.06 (0.89-1.3) 0.5 
Pulmonary regurgitation % 1 (0.97-1.03) 0.8 
Restrictive LV filling pressure 2 (0.5-7.4) 0.3 
Restrictive RV physiology  0.4 (0.1-2.03) 0.3 

Bivariable predictors inducible VT   

RV LGE volume cm3 

Age at scan (per decile) 
1.12 (1.03-1.23) 

1.4 (0.85-2.3) 
0.007 

0.2 
 

  
RV LGE volume cm3 
QRS duration >180ms 

1.14 (1.05-1.24) 
1.9 (0.48-7.8) 

0.002 
0.35 

   
RV LGE volume cm3 
Non-sustained VT 

1.14 (1.1-1.24) 
3.2 (0.8-12.3) 

0.001 
0.1 

   
RV LGE volume cm3 
Clinical sustained VT ≥30s 

1.14(1.04-1.24) 
8.02(1.26-51.2) 

0.003 
0.02 

   
RV LGE volume cm3 
LV LGE volume cm3 

1.14(1.04-1.24) 
1.1(0.9701.23) 

0.004 
0.12 
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Figure 1: 3D LGE-defined scar correlation with invasive bipolar voltage mapping and activation mapping 
preceding induction of VT 
 

Personalised virtual model of the RV and 
pulmonary artery (PA) segmented from 3D LGE 
and 3D bSSFP CMR (A) with scar (grey) and 
healthy tissue (purple). There is CMR drop out 
of signal related to metallic artefact from a 
previous Mosaic pulmonary valve in the region 
marked with green asterisks. 
 

LGE scar compares well with bipolar voltage 
mapping using CARTO 3 version 7 (B) in which 
low-voltage scar in the RVOT (yellow dotted 
arrow) and RV septum (yellow arrow) is colour 
coded as red/yellow/green (0.5mv- 1.5mv) and 
healthy myocardium as purple. 
A good match with LGE-defined scar was 
similarly seen with activation mapping where 
brown areas showed slow or no conduction 
(SNO zone) in the RVOT free wall and septal 
surface (C) A re-entry mechanism was induced 
through an ‘anatomical isthmus’ between two 
RV scars; one in continuity with the tricuspid 
annulus and one in continuity with the 
pulmonary valve, with clockwise activation 
seen. Critical activation across the isthmus (red 
circle) induced a well-tolerated monomorphic 
VT (TCL 280ms) at this site.  
 

This patient proceeded to VT ablation and 
repeat mapping post-ablation showed 
complete block (D; red circle) through the 
isthmus with the course of activation changed 
to going inferiorly around the tricuspid annulus 
(TA) and anterior RV wall. Subsequently the 
latest activation occurred adjacent to the 
applied ablation line at study end. 
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Figure 2 

 
3D LGE-defined scar in VT patient correlated with surgical specimen and fibrosis histology 
ECG from a thirty-year-old patient with repair including RVOT patch and subsequent significant pulmonary 
regurgitation who presented with sustained RVOT morphology VT (A). 3D LGE CMR (B) demonstrated scar (grey) in 
the VSD surgical site (yellow arrow), RVOT patch site (dotted yellow arrows) with endocardial native RVOT scar 
(curved yellow arrow). The patient underwent ablation of VT that originated from the RVOT scar prior to surgical 
pulmonary valve replacement where scarred RVOT patch (dotted yellow arrows) and native RVOT were confirmed 
(C) and these regions excised as part of the procedure; surgical images courtesy of Professor Darryl Shore. The native 
RVOT tissue (inset; curved yellow arrow) was histologically assessed with Masson’s Trichrome stain (magnification 
x20) where fibrosis appears blue and myocytes red. The endocardium is to the left of the stained tissue and it is the 
RVOT endocardial surface that is arrowed.  
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Figure 3 

 

Clinical application of 3D RV LGE cutoffs  
Dot graph (centre) illustrating that all rTOF patients with RV LGE volumes ≤10cm3 (n=10; below the green line) were non-inducible for VT and 
all patients who had ≥36cm3 of RV LGE (n=3; above the red line) were inducible for VT. A CMR 3D LGE slice (left panel) and 3D reconstruction 
(right panel) including scar volume is shown for the patient with the most scar volume (red boxes) and the patient with the least scar volume 
(green boxes) to show example images.   


