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Partial Diffusion Kalman Filter with Adaptive
Combiners
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Abstract—Adaptive estimation of optimal combination weights
for partial-diffusion Kalman filtering together with its mean con-
vergence and stability analysis is proposed here. The simulations
confirm its superior performance compared with the existing
combiners. Sensor networks with limited accessible power highly
benefit from this design.

Index Terms—Adaptive weights, communication cost, diffusion
strategy, Kalman filtering, state estimation.

I. INTRODUCTION

D ISTRIBUTED Kalman filtering algorithms are effi-
cient and powerful for solving state-space filtering and

smoothing problems over networks [1]–[3]. In these algo-
rithms, a set of agents collaborate to estimate the state of a
linear dynamic system based on their own individual mea-
surements and information exchange with their immediate
neighbors. The distributed Kalman filter has been widely
applied to solve a variety of problems in the area of aerospace
and electronic systems including navigation, wireless local-
ization, and target tracking [4]–[7]. Among these algorithms,
diffusion Kalman filtering (DKF) algorithm can solve the state-
space filtering and smoothing problems in a fully distribued
and adaptive manner [1]. The advantages of diffusion-based
algorithms, however, come at the cost of increased inter-node
communications. This issue may affect their performance,
specially in the networks with limited power and bandwidth
resources. Hence, developing useful schemes that decrease
the communication load, while keeping the advantages of
collaborative processing is of prime importance.

To this end, in [8], the dimensionality reduction is achieved
by the Krylov subspace projection techniques in the set-
theoretic estimation framework. In [9], in order to avoid the
unlimited bandwidth requirement, the parameter estimate is
quantized before the diffusion of information. In the partial dif-
fusion strategies [10]–[13], only a subset of the local estimates
is allowed to share among the neighbors. Vahidpour et al. in
[13] study the effect of channel noise during the exchange of
weight estimates for partial diffusion algorithm. In [14], the
nodes transmit the sign of innovation (SOI) sequence in the
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distributed state estimation framework. In [15], a probabilistic
diffusion protocol is used to limit the communication load in
an adaptive network with dynamic topology. Takahashi et al.
in [16] proposed an algorithm to control the link probabilities
by minimizing the estimation error in order to improve the
estimation performance of [15]. In [17] and [18] every agent
is allowed to select a subset of its neighbors to aggregate the
data based on some extra information that portrays the quality
of the nodes. These approaches require extra communication
to diffuse scalar values to select one node for receiving the
data. In the proposed method in [19] the nodes are allowed to
dynamically update their estimates and diffuse only when they
are updated. In [20] and [21], the communication reduction
is achieved by projecting the parameter vectors onto lower
dimensional spaces before the transmission. The neighbor-
selection diffusion algorithms have been developed in [22] and
[23], where every node is allowed to receive the intermediate
estimates of only a subset of its neighbors.

In this correspondence, our focus is on partial-diffusion
Kalman filtering (PDKF) algorithm [12], in which each node
diffuses a subset of entries of its intermediate state estimate
vector to its neighbors. This algorithm makes a trade-off
between communication cost and estimation performance.
Theoretical findings and the numerical experiments reported in
[12] demonstrate that, performance deterioration acquired by
partial-diffusion depends not only on the probability of entry
transmission for each agent but also on other parameters, such
as combination coefficients. Several combination policies,
such as Metropolis [24] and relative-degree [25] rules, have
been previously proposed that are based solely on the network
topology. Thus, the performance of such policies may degrade
if, for example, the signal-to-noise ratio (SNR) at some agents
significantly is lower than other agents [26]. Therefore, the
design of combination coefficients is crucial in the diffusion
networks.

The main contributions of the paper can be summarized as
follows:

• The problem of optimal combination weight for PDKF
is addressed;

• The problem is formulated as a constrained optimization
problem and its optimum solution is found;

• An adaptive scheme which is also developed which is
useful for real-time implementation;

• The mean convergence analysis is provided;
• Finally, the simulation results verify that the method with

the proposed rule outperforms other existing combiners.
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Fig. 1. A network with N nodes. The neighborhood of node k is denoted
by Nk = {1, 2, l, k} and the degree of node k is ηk = 4. At every time
instant i, node k collects a measurement yk,i.

The paper is organized as follows. The PDKF is is briefly
introduced in Section II. In Section III the optimal combination
problem is formulated and an adaptive solution is derived. The
performance analysis is provided in Section IV. Simulation
results are presented in Section V and Section VI closes the
paper and points directions for future extensions.

Notation: Small boldface letters are adopted for vectors and
bold capital letters for matrices. Normal font letters denote
scalars. The transposition operator is denoted by superscript
(·)T . We also use ⊗ for Kronecker product and vec {·} for a
vector formed by stacking the columns of its matrix argument.
We further use col {·} to denote a column vector formed by
stacking its arguments on top of each other. The Blkdiag {·}
denotes block-diagonal matrix and � the Hadamard product.
The expected value of a random quantity x is denoted by E[x].

II. BACKGROUND

A. Diffusion Kalman Filter

Consider a network with P nodes as shown in Fig. 1.
Each node k can only cooperate with its immediate neighbors
and spread the information out through the network over a
sequence of Kalman iterations and data aggregations [27]. The
neighborhood of node k is denoted by Nk and the degree of
node k is denoted by ηk = |Nk|. At time instant i, each node k
collects a noisy measurement yk,i ∈ Rm from the state vector
si ∈ Rn, where yk,i and si are related via a linear state-space
model [1]:

si+1 = Fisi + Giwi, (1a)
yk,i = Hk,isi + vk,i (1b)

where Fi, Gi and Hk,i are known matrices with appropriate
dimensions, and wi ∈ Rn and vk,i ∈ Rm are respectively
the state and measurement noises. For the above network, the
following assumptions hold:

Assumption 1.
(i) The state and measurement noises {wi,vk,i} are zero-

mean white noise processes with positive-definite covari-
ance matrices E

[
wiw

T
i

]
= Wi, E

[
vk,iv

T
k,i

]
= Vk,i.

(ii) The state noise and measurement noise {wi,vk,i} are
statistically uncorrelated, i.e., E

[
vk,iw

T
i

]
= 0.

(iii) The initial state s0 is zero-mean with positive-definite
covariance matrix E

[
s0s

T
0

]
= S0.

(iv) The initial state vector s0 is statistically uncorrelated with
both {wi,vk,i} for all i and k.

(v) The parameter matrices, {Fi,Gi,Wi,Vk,i,Hk,i,S0},
are assumed to be known by each node k.

Let ŝk,i|j denote the linear minimum mean-square error
(MMSE) estimate of si that node k computes at time i
using the available information and measurements up to and
including time j. Through the existing DKF algorithm [1] (see
Algorithm 1), the objective for each node k is to obtain a real-
time linear estimate ŝk,i|i of the state vector si. According to
the state-space model, the DKF algorithm is performed in three
steps: measurement-update, diffusion-update, and time-update.

First, in measurement-update, each node k receives time
observation, i.e. {yl,i,Hl,i,Vl,i}, from its direct neighbors at
time instant i to update its intermediate estimate φφφk,i. Sec-
ondly, in the diffusion-update phase, the nodes communicate
with each other to obtain the estimate value ŝk,i|i at time i by
collecting its neighborhood estimate value at sampling time
i − 1 and combine them through a predetermined coefficient
matrix C = [clk (i)]1≤l,k≤P . C is a column-stochastic matrix
and is associated with the graph topology, where the scalars
{clk (i)} are non-negative coefficients and satisfy

CT
1P = 1P (2)

and clk (i) = 0 if l /∈ Nk for k = 1, ..., P

so that for each node k, the weights {clk (i)} are add-up to
unity (each column summing to one). The symbol 1P denotes
all ones vector of size P × 1. Finally, in the time-update
step, the nodes update their current estimate through using the
state model in (1) to predict the next state estimate value, e.g.
ŝk,i+1|i at time i+1 can be predicted by value at time i. The
covariance matrix of the estimation error s̃i|j , si − ŝk,i|j
is denoted by Πk,i|j . The DKF algorithm in its time- and
measurement-update form begins with ŝk,0|−1 = E[s0] and
Πk,0|−1 = S0, where Πk,0|−1 ∈ Rn×n.

B. Partial-Diffusion Kalman Filtering

The proposed PDKF algorithm in [12] is summarized in
Algorithm 2. There are mainly two clear differences between
DKF and PDKF algorithms. First, in the DKF algorithm, the
exchange of local information can meet the data processing
requirements. Thus, to reduce the communication burdens,
in the PDKF algorithm, each node does not share its local
information {yl,i,Hl,i,Rl,i}. Consequently, this algorithm
particularly depends on the communication of chosen entries
of φφφk,i. Secondly, in the PDKF algorithm, the objective for
each node k is to estimate the unknown state si ∈ Rn,
recursively, while sharing a fraction of its intermediate state
estimate vector with its neighbors l ∈ Nk. Thus, every node
k at any time instant i is allowed to select and diffuse a
subset, i.e. r out of n, 0 ≤ r ≤ n, entries of its intermediate
state estimate vector. Ignoring local information exchange
and considering such a subset can significantly reduce the
communication and computation cost among the nodes. Thus,
in the PDKF algorithm, the agents are more wiling to have less
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Algorithm 1 Diffusion Kalman filter [1]
Begin with ŝk,0|−1 = E[s0] and Πk,0|−1 = S0.
Repeat at every agent k for i ≥ 0
Step 1: Measurement-update
set auxiliary variables:
φφφk,i ← ŝk,i|i−1
Πk,i ← Πk,i|i−1
for l ∈ Nk do

Re,i ← Vl,i + Hl,iΠk,iH
T
l,i

φφφk,i ← φφφk,i + Πk,iH
T
l,iR

−1
e,i [yl,i −Hl,iφφφk,i] (3)

Πk,i|i ← Πk,i −Πk,iH
T
l,iR

−1
e,iHl,iΠk,i

end for
Step 2: Diffusion-update

ŝk,i|i ←
∑
l∈Nk

clk (i)φφφl,i (4)

Step 3: Time-update

ŝk,i+1|i = Fiŝk,i|i

Πk,i+1|i = FiΠk,i|iF
T
i + GiWiG

T
i

End

communication with their neighbors to save more resources
and bandwidth.

In [12], the selecting and scattering tasks have been realized
by a diagonal selection matrix, Λk,i ∈ Rn×n which has r
ones and n − r zeros on its diagonal. The positions of ones
determine which entries of the intermediate state estimate of
node k are selected to be scattered at time instant i. It is
obvious that multiplication of φφφk,i by Λk,i gives a vector
whose non-selected entries are zero. In the partial diffusion
algorithm, however; at time instant i the nodes need to know
which elements of their neighbors intermediate estimates are
shared. Consequently, the address, i.e., position of ones in the
vector of communicated elements should be transmitted as
well. To bypass the need for addressing, Arablouei et al. in
[11] have proposed two different schemes called coordinated
and uncoordinated schemes, requiring less memory and are
generally easier to implement.
Remark 1. It should be noted that, unlike the original diffusion
Kalman filter [1], in the diffusion update step of PDKF,
only an updated mean is calculated but the covariance matrix
remains unchanged. Such modification deteriorates the steady-
state performance, but the communication cost is reduced. As
shown in [12], such modification does not make the algorithm
unstable. Therefore, PDKF is a suitable solution in practical
applications (such as wireless sensor networks) where the
power consumption is an important issue.

III. ADAPTIVE COMBINERS

In diffusion implementations, the combination weights
{clk (i)} play a crucial role. Some examples of static com-
bination rules are demonstrated in Table I. These rules keep
the combination weights {clk (i)} constant and calculate the
weights based solely on the network topology. Such schemes,
however, are sensitive to the spatial variation of signal and
noise statistics through the network. Generally speaking, high
SNR conditions could deteriorate the accuracy of estimates by

TABLE I
DIFFERENT COMBINATION RULES FOR DIFFUSION NETWORKS

Combination Rule Entries of Combination Matrix C

Uniform [28] clk = 1/ηk if l ∈ Nk

Metropolis [24] clk =

1/max {ηl, ηk} if l 6= k

1−
∑

m∈Nk/{k}
cmk if l = k

Maximum-degree [29] clk =

{
1/P if l 6= k

1− (ηk − 1) /P if l = k

Relative-degree [25] clk = ηl/
∑

m∈Nk
ηm if l ∈ Nk

Non-cooperation clk =

{
0 if l 6= k

1 if l = k

allocating less weights to the estimates from neighbors with
lower SNR conditions. Consequently, static combination rules
are likely to result in performance degradation.

To improve the robustness to such cases, we shall design
the combination weights {clk (i)} in the diffusion phase of
Algorithm 1. Doing so, an optimization problem is formulated
that its solution leads to calculation of a set of weights. In
what follows, the optimal combiners are approximated by
a stochastic gradient type algorithm. The algorithm is fully
distributed and runs in real-time where there is no necessity
to access the global information.

A. Problem Formulation

Let accumulate all the intermediate estimates (at the end of
measurement-update) in a row-wise manner as

Φi ,
[
φφφ1,i,φφφ2,i, . . . ,φφφP,i

]
, (n× P )

Here, the selected coefficient weights are defined as

alk (i) , clk (i)Λl,i

Algorithm 2 Partial-Diffusion Kalman filter [12]
Begin with ŝk,0|−1 = E[s0] and Πk,0|−1 = S0.
Repeat at every agent k for i ≥ 0
Step 1: Measurement-update
set auxiliary variables:
φφφk,i ← ŝk,i|i−1
Πk,i ← Πk,i|i−1
compute

Re,i ← Vk,i + Hk,iΠk,iH
T
k,i

φφφk,i ← φφφk,i + Πk,iH
T
k,iR

−1
e,i [yk,i −Hk,iφφφk,i] (5)

Πk,i|i ← Πk,i −Πk,iH
T
k,iR

−1
e,iHk,iΠk,i

Step 2: Diffusion-update

ŝk,i|i ← φφφk,i +
∑

l∈Nk/{k}
clk (i)Λl,i(φφφl,i −φφφk,i) (6)

Step 3: Time-update

ŝk,i+1|i = Fiŝk,i|i

Πk,i+1|i = FiΠk,i|iF
T
i + GiWiG

T
i

End
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Then, the k-th column of diffusion matrix C, denoted by
ck,i ∈ RP , and the k-th column of to be selected coefficient
weights, denoted by ak,i, as

ck,i , col {c1k (i) , c2k (i) , . . . , cPk (i)}
ak,i , col {a1k (i) , a2k (i) , . . . , aPk (i)}

Note that ak,i ∈ RP represents the combination coefficient
vector at agent k and at time instant i to be optimized. For
each node k, our approach is to obtain a set of weights
{alk (i)}l=1,...,P that solve the following optimization problem

argmin
ak,i

E
[∥∥si − ((Φi −φφφk,i1TP )ak,i)

∥∥2] (7)

Subjected to alk (i) = 0 if l /∈ Nk and 1
Tak,i = 1

The constraint 1TPak,i = 1 states that the coefficients add up
to one. The dimension of problem (7) can be lowered from P
to ηk by defining an auxiliary variable, Γk, as

Γk =
[
1k1 , . . . ,1kηk

]
(P × ηk)

where 1l refers to the l-th column of P × P identity matrix
and {k1, . . . , kηk} denote the indexes of the node k neighbors.
Therefore, any vector ak,i ∈ RP that satisfies the constraints
in (7) can be rewritten as

ak,i , Γkbk,i (8)

using some bk,i ∈ Rηk that satisfies 1Tηkbk,i = 1 and contains
non-zero entries of ak,i. Here, 1ηk , Γk1P is all one vectors
of length ηk. Hence, substituting (8) into (7), the optimization
problem (7) is modified as follows:

arg min
bk,i∈Rηk

f (bk,i) , E
[
‖si −∆k,ibk,i‖2

]
(9)

Subjected to bk,i ∈ Vk ,
{
ν ∈ Rηk |1Tηkν = 1

}
where ∆k,i , (Φi − φφφk,i1TP )Γk and the constraint Vk of (9)
refers to a bounded hyperplane [26].

Remark 2. The computational complexity of the PDKF al-
gorithms without and with adaptive combiner is similar to
that of the original DKF algorithm given by Algorithm 1.
Comparing (4) and (6) reveals that both expressions require
|Nk|n multiplications and (|Nk| − 1)n additions per iteration
per node.

B. Steepest-Descent Solution

We can solve (9) by employing a Lagrange multiplier
argument and consider the extended cost function below

J (bk, λk) = E
[
sTi si

]
− 2θTk,tbk,i

+ bTk,iΘk,ibk,i + 2λk
(
1
T
ηk

bk,i − 1
)

(10)

in terms of λk
(
1
T
ηk

bk,i − 1
)
, where θk,i = E

[
∆T
k,isi

]
and

Θk,i = E
[
∆T
k,i∆k,i

]
. Setting the individual gradients of

J (bk, λk) with respect to bk,i assuming that θk,i is positive-
definite, we obtain

bok = Θ−1k,i [θk,i − λ
o
k1ηk ] (11)

Differentiating (10) with respect to λk, setting the result to
zero gives and employing the constraint 1Tηkbk = 1, we have

λok =
1
T
ηk

Θ−1k,iθk,i − 1

1Tηk
Θ−1k,t1ηk

(12)

Therefore, the solution of (7) can be obtained from (8) as
aok,i , Γkb

o
k,i. In order to apply the standard steepest-descent

method to (9) it is required to eliminate the constraint Vk.
Doing so, we apply a similar technique proposed in [30]. Let
PVk denote the metric projection from Rηk onto Vk. In light
of appendix in [26], PVk is defined and given by

PVk (ν) =

(
Iηk −

1ηk1
T
ηk

ηk

)
ν +

1ηk

ηk
∀ν ∈ Rηk (13)

The transformation PVk : Rηk → Vk maps any vector ν ∈ Rηk
into a vector bk,i ∈ Vk satisfying 1

T
ηk

bk,i = 1, i.e.

ak,i = PVk (bk,i) (14)

Thus, substituting (14) into (7), we arrive at the following
unconstrained problem

min
bk,i

E
[
‖si −∆k,iPVk (bk,i)‖

2
]

(15)

Consequently, we suggest minimizing (15) employing a
gradient-descent algorithm as

bk,i+1 = bk,i + µk,iVk [bk,i −Θk,iPVk (bk,i)] (16)

where µk,i ≥ 0 is a step-size parameter and Vk is defined as

Vk , Iηk −
1ηk1

T
ηk

ηk

Since ak,i ∈ Vk is equivalent to PVk (ak,i) = ak,i, our
recursion is simplified as follows

bk,i+1 = bk,i + µk,iVk [θk,i −Θk,ibk,i] (17)

where ak,0 must satisfy 1
T
ηk

ak,0 = 1. Remember that the
desired coefficients ak,i can be obtained through ak,i+1 =
Γkbk,i+1.

C. Adaptive Solution

In order to derive an adaptive version of recursion (17),
we replace the quantities Θk,i and qk,i by their instantaneous
approximations

θk,i = E
[
∆T
k,isi

]
≈∆T

k,i−1ŝk,i−1|i

Θk,i = E
[
∆T
k,i∆k,i

]
≈∆T

k,i−1∆k,i−1

Substituting these approximations in (17), the adaptive weights
algorithm, which is summarized in Algorithm 3, is obtained.

As we will see in the next step, the PDKF algorithm is stable
in mean sense if the combination weights for {alk (i)}l∈Nk
is convex. Since the constraint 1TPak,i = 1 is enforced by
Algorithm 3, if alk (i) ≥ 0 for all l ∈ {1, . . . , P} the weight
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Algorithm 3 Adaptive weights for PDKF
For every agent k, start with bk,0 ∈ Rηk , such that 1Tηkbk,0 = 1.
Then, for every time instant i ≥ 0, repeat{

bk,i+1 = bk,i + µk,iVkΘT
k,i−1

(
ŝk,i−1|i −Θk,i−1ak,i

)
ak,i+1 = Γkbk,i+1

(18)

vectors ak,i become convex combination. One possible choice
for µk,i that guarantees alk(i) ≥ 0 is the following

µk,i+1 = max {0, {bk,i+1(j) | 1 ≤ j ≤ ηk}}

ak,i+1 =
1

1Tηk
µk,i+1

Γkµk,i+1

for all k and i, where bk,i+1(j) is the j-th component of
bk,i+1.

IV. MEAN PERFORMANCE

As the proposed algorithm is an iterative estimator to solve
the estimation problem, its stability and statistical bias should
be investigated. Thus, in this section the mean analysis of
PDKF algorithm with any adaptive combiners, including the
proposed combiner is examined. We consider both coordinated
and uncoordinated partial-diffusion schemes. To begin with, let
us derive the network update equation in the following section.

A. Network Update Equation

Returning to the recursion equation (5), as the predicted
estimate of si obtained by node k, ŝk,i|i−1 is a better estimate
for si than φφφk,i, we obtain

φφφk,i = ŝk,i|i−1 + Πk,iH
T
k,iR

−1
e,i [yk,i −Hk,iŝk,i|i−1] (19)

Let define the following weight errors:

φ̃φφk,i , si −φφφk,i, s̃k,i|i−1 , si − ŝk,i|i−1

where φ̃φφk,i and s̃k,i|i−1 represent the estimation errors at the
end of measurement-and diffusion-update, respectively. Then,
subtracting (19) from si and using state-space model (1) gives

φ̃φφk,i = s̃k,i|i−1 −Πk,iH
T
k,iR

−1
e,i (Hk,is̃k,i|i−1 + vk,i)

= (In −Πk,iH
T
k,iR

−1
e,iHk,i)s̃k,i|i−1 −Πk,iH

T
k,iR

−1
e,ivk,i

(20)

Employing the matrix inversion lemma, we obtain
Πk,iH

T
k,iV

−1
k,i = Πk,iH

T
k,iR

−1
e,i (see appendix A in [13]) and

conclude

φ̃φφk,i = (In −Πk,iΩk,i)s̃k,i|i−1 −Πk,iH
T
k,iV

−1
k,ivk,i (21)

where Ωk,i , HT
k,iV

−1
k,iHk,i. Using (1) we have

s̃k,i|i−1 = Fi−1s̃k,i−1|i−1 + Gi−1wi−1 (22)

Substituting (22) into (21) gives

φ̃φφk,i = (In −Πk,iΩk,i)Fi−1s̃k,i−1|i−1

+ (In −Πk,iΩk,i)Gi−1wi−1 −Πk,iH
T
k,iV

−1
k,ivk,i

(23)

To derive the network update equation in terms of the global
quantities, we introduce the following global quantities:

s̃i|i , col
{
s̃1,i|i, s̃2,i|i, . . . , s̃P,i|i

}
φ̃φφi , col

{
φ̃φφ1,i, φ̃φφ2,i, . . . , φ̃φφP,i

}
vi , col {v1,i, . . . ,vP,i}
Vi , Blkdiag {V1,i,V2,i, . . . ,VP,i}
Hi , Blkdiag {H1,i,H2,i, . . . ,HP,i}
Πi , Blkdiag {Π1,i,Π2,i, . . . ,ΠP,i}
Ωi , Blkdiag {Ω1,i,Ω2,i, . . . ,ΩP,i}

Ki =

K1,1,i · · · K1,P,i

...
. . .

...
KP,1,i · · · KP,P,i

 .
where

Kp,q,i =


In −

∑
l∈Np/{p}

clp (i)Λl,i if p = q

cqp (i)Λq,i if q ∈ Np\ {p}
On otherwise

Using the above definitions, the following state-space model
for PDKF algorithm with adaptive combiner is obtained:

s̃i|i = Kiφ̃φφi (24)

φ̃φφi = F is̃i−1|i−1 + Gi (1⊗ ni−1)−Divi (25)

where

F i = (InP −ΠiΩi) (IP ⊗ Fi−1)

Gi = (InP −ΠiΩi) (IP ⊗Gi−1)

Di = ΠiH
T
i V−1i

Substituting (25) into (24) reveals that the global error s̃i|i
evolves according to the following recursion:

s̃i|i = KiF is̃i−1|i−1 +KiGi (1⊗wi−1)−KiDivi (26)

Note that (26) shows how the network weight error vector
s̃i|i evolves in time. In the sequel, we shall use this recursive
equation to investigate the mean behavior of PDKF algorithm
with adaptive combiner.

Here, in order to analyze the steady-state performance of
PDKF, we assume the following throughout our analysis:

Assumption 2.

(i) The matrices {F,G,H,V,W} described in steady-state
model (1) are time invariant.

(ii) The matrix F is stable.
(iii) The pair {F,Hk} is detectable for all k, and {F,GW

1
2 }

is reachable [12].

Under Assumption 2, Πk,i|i converges to the matrix Πk, for
all k. Moreover, F i, Gi and Di also converge in steady-state,
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and their steady-state values are given by

Π , lim
i→∞

Πi = Blkdiag {Π1, . . . ,ΠN}

F , lim
i→∞

F i = (InP −ΠΩ) (IP ⊗ F)

G , lim
i→∞

Gi = (InP −ΠΩ) (IP ⊗G)

D , lim
i→∞

Di = ΠHTV−1

Since Ωi and Hi are now time-invariant, Ω and H are
used instead of them. Proposition 1 summarizes the mean
performance of the PDKF algorithm over a network with
adaptive combiner.

Proposition 1. Under Assumptions (1) and (2) the PDKF
algorithm with adaptive combiner is convergent in the mean
sense and asymptotically unbiased.

Proof: See Appendix A.

V. SIMULATION RESULTS

We apply the PDKF with adaptive combiner to the problem
of estimating and tracking the position of a moving target by
an adaptive network. Doing so, a network topology, randomly
generated, with N = 20 nodes, in which each node is, on
average, connected to two other nodes is considered. The size
of system parameter is n = 4. The target state vector is

denoted by si =
[
di, ḋi, υi, υ̇i

]T
, where (di, υi) and

(
ḋi, υ̇i

)
are the position and velocity components at time instant
i, respectively. Therefore, the state equation is modeled as
follows:

si =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 1 0

 si−1 + wi−1

where T is the sampling time which is taken as T = 1.
The process noise wi−1 is zero-mean white Gaussian with
covariance matrix as

W = 0.04


T 4/4 T 3/2 0 0
T 3/2 T 2 0 0
0 0 T 4/4 T 3/2
0 0 T 3/2 T 2


We presume that each node measures the position of the
unknown object in the two, i.e., x and y dimensions. So, we
have Hk,i as the following matrix

Hk,i =

[
1 0 0 0
0 1 0 0

]
,

So, the measurement at node k at time i is

yk,i = Hk,isi + vk,i

The measurement noise covariance matrix at agent k is,
Vk,i = σ2

k,iI3, where the noise variance σ2
k,i across the agents

is selected randomly in the range [0 0.5]. In the simulations,
the initial target state is given by s0 = [10, 1.5, 10, 1.2].
The initial estimate is taken as a combination of the true
state and a bias drawn from a Gaussian distribution with
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Fig. 2. State noise variances (left), and trace of observation noise covariances
at all nodes (right).

mean [0.5, 0.5, 0.5, 0.5]
T . The initial covariance is set to be

Πk,0|0 = diag {100, 10, 100, 10}. The initial conditions are
the same for all nodes. Moreover, the experimental results are
obtained by taking the ensemble-average over 200 independent
trials and the steady-state values are calculated by averaging
over 1000 steady-state iterations.

For Algorithm 2, to draw a comparison with we our adaptive
combiner alk (i), we used the Metropolis rule to select matrix
C (see Table I). The state noise variances and trace of
observation noise covariances at every node are generated
randomly and shown in Fig. 2. The performance is measured in
terms of the network Mean-Square Deviation (MSD), defined
for node k at time i as:

MSDk,i = E
[∥∥si − ŝk,i|i

∥∥2]
The network MSD is defined as the average over all nodes.

MSDnet =
1

P

P∑
k=1

MSDk,i

Fig. 3 demonstrates the transient MSD curves of PDKF
algorithm with some static and dynamic combiners and draw
a comparison between adaptive combiner and some other
combiners. The steady-sate values for each individual node
is also presented in Fig. 3. We observe that the proposed
PDKF with adaptive weights considerably outperforms the
non-adaptive PDKF. Fig. 4 shows the result of the nodes
cooperating together to track the position of an projectile
object. We can see that partial-update has a certain effect on
accuracy. It also has a good performance on trajectory tracking
using adaptive combiner.

It is worth mentioning that the proposed combination rule
can be applied to any connected network. To show this, we
apply the PDKF algorithm with the proposed combination rule
to networks with different topologies. To generate different
topologies, we assume N = 20 and for each network, set the
number of neighbors for each individual node to 2, 4, 6, · · · 20.
Fig. 5 shows the network MSD values in terms of different
number of neighbors. Clearly, the PDKF algorithm with the
proposed combination rule provides accurate estimates of the
state vector for different network topologies.

VI. CONCLUSION

In the PDKF algorithm every node is permitted to share
only a subset of its intermediate estimate vectors at each
iteration among its neighbors, which reduces the amount of
inter-node communications. Here, the optimal choices for the
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combination weights in PDKF have been discussed and an
adaptive variant that can be computed in real-time has been
proposed. The proposed algorithm outperforms the existing
techniques. More importantly, simulation findings reveal that
the proposed combination coefficients can greatly improve the
performance of diffusion adaptation. The presented algorithm
may be used in e.g. wireless sensor networks to perform
detection/estimation of localized events [31], [32].

APPENDIX A
PROOF OF PROPOSITION 1

Tacking the expectation on both sides of (26) and employing
Assumptions 1 and 2, we find that the mean error vector
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-51

Fig. 5. Network MSD for different values of the number of neighbors.

evolves according to the following recursion:

E
[
s̃i|i
]
= KF iE

[
s̃i−1|i−1

]
(A.1)

where K = E[Ki]. The convergence of equation (A.1) is
guaranteed, if matrix KF i is stable. In the light of Lemma
1, K is right-stochastic. The Perron-Frobenius theorem [33]
ensures that all eigenvalues of K lie inside the unit disc.
Consequently, as i → ∞, the mean stability and asymptotic
unbiasedness of the algorithm is achieved if matrix F is stable.
Therefore, we have

lim
i→∞

E
[
s̃i|i
]
= OnP

where OnP ∈ RMN denotes zero vector. This means that the
PDKF algorithm with adaptive combiner is convergent in the
mean sense and is asymptotically unbiased.

Lemma 1. Ki is a right-stochastic matrix.

Proof: Note that can Ki be expressed in a compact-form
as

Ki = Ci �Λi + (InP −ΛiCi)� InP (B.1)

where

Ci = Ci ⊗ In, Λi = 1P ⊗ [Λ1,i, . . . ,ΛP,i]

Since the probability of to be transmitted entries is equal for
all the nodes, we can write

E[Λi] = 1P ⊗ E[Λ1,i, . . . ,ΛP,i]

= 1P ⊗ 1TP ⊗ ρIn = ρJP ⊗ In, (A.2)

E[Λi]C = ρ (JP ⊗ In) (C⊗ In)

= ρJPC⊗ In = ρJP ⊗ In (A.3)

and

CT � E[Λi] = ρCT � (JP ⊗ In) = ρCT (A.4)
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where ρ denotes the probability of transmission for each entry
at any node k and JP is an all one matrix of size P × P .
Note that C = E[Ci]. Therefore, we have

K = E[Ki] = C � E[Λi] + (InP − E[Λi]C)� InP

= ρCT + (InP − ρJP ⊗ In)� InP

= ρCT + (1− ρ) InP (A.5)

Using the definition of Ki and Kp,q,i, we have

P∑
q=1

Kp,q,i = In −
∑

l∈Np/{p}

clpΛl,i +
∑

q∈Nq/{q}

cqpΛq,i

= In, p = {1, . . . , P}

Ki1nP =


∑

q=1,...,P

K1,q,i1n

...∑
q=1,...,P

KP,q,i1n

 = 1nP
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