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Abstract 

The worldwide prevalence of diabetes has risen to 8.5% among adults, which represents 
a staggering rise in prevalence from 4.7% in 1980. More than 90% of these individuals 
have type 2 diabetes (T2DM), a disease typically characterized by peripheral insulin 
resistance and underpinned by pancreatic β-cell dysfunction. Importantly, more than 80% 
of those with T2DM are either overweight or obese, which results in chronic elevated 
fatty acid and glucose concentrations in these individuals. The ensuing glucolipotoxic 
(GLT) environment drives much of the pathogenesis of T2DM (β-cell dysfunction and 
insulin resistance) and contributes to the development of mitochondrial stress, generation 
of reactive species, proinflammatory cytokines, and altered gene expression. There are 
currently a limited number of options to treat T2DM, and oral and injectable medications 
often become less effective over time. Thus, there is an urgent need to better understand 
the causes of diabetes and to identify new targets for the development of novel treatment 
strategies. Carnosine (β-alanyl-L-histidine) is an endogenously synthesised dipeptide that 
is widely and abundantly distributed in the skeletal muscles. Beneficial actions that have 
been credited to carnosine include, but are not limited to, intracellular buffering, metal-
ion chelation, antioxidant, anti-glycating, and free-radical scavenging. This PhD project is 
focussed on investigating the biological actions and therapeutic potential of carnosine to 
combat T2DM, through targeted action to improve insulin resistance in skeletal muscle 
cells, and to augment insulin secretion from pancreatic β-cells. A diabetic model of 
glucolipotoxicity was generated by incubating pancreatic β-cells or myotubes in standard 
tissue culture media supplemented with 28mM glucose, 200μM palmitic acid, and 200μM 
oleic acid. Intracellular reactive species content was assayed using 2, 7-
dichlorofluorescein diacetate dye (DCFDA), whereas 3-nitrotyrosine (3-NT) and 4-
hydroxynonenal (4-HNE) content, as well as insulin secretion, were assayed and 
quantified using respective ELISA assays. SDS-PAGE in conjunction with immunoblotting 
and semi-quantitative densitometry analysis was employed to determine protein 
expression. Glucose uptake was determined through 2-deoxy glucose-6-phosphate (2-
DG6P) luminescence. Immunoprecipitation-mass spectrometry tandem techniques were 
utilised to study GLT-mediated protein adduction. Seahorse XF Cell Mito Stress Test kit 
was employed to preliminarily investigate the functional capacity of mitochondria in GLT-
exposed skeletal muscle cells. Using carnosine as a starting material and template, both 
synthetic and computational chemistry approaches were utilised to generate carnosine 
mimetics and putative carnosinase inhibitor molecules, respectively. Carnosine 
supplementation resulted in protection of cells against GLT-mediated generation of 
reactive species, and thereby enhanced glucose uptake into skeletal muscle and increased 
insulin secretion from pancreatic β-cells. Further investigation showed that carnosine 
prevented adduction or modification of between 65-90% of protein by 4-HNE or 3-NT in 
GLT-treated pancreatic islets and muscle cells. Analysis using Panther software showed 
that many of these proteins are involved in catalytic and binding activities, with the 
leading cellular function affected being metabolic processes. Importantly, and consistent 
with the aforementioned findings, addition of carnosine to GLT-treated cells significantly 
improved mitochondrial respiration in both mouse C2C12 muscle cells and a human 
skeletal muscle cell-line. By contrast, in human serum donated (with informed consent) 
by individuals who are either obese or type 2 diabetic, and are both diabetic and obese, 
several proteins associated with the immune system were detected to have formed 
adducts with both 3-nitrotyrosine and 4-hydroxynonenal. Screening of carnosine analogs 
identified 5 candidate drugs that were effective at scavenging reactive species whilst 
having no impact on cell viability. Subsequent in vivo experiments, carried out with 
collaborators, showed that one of these molecules reduced obesity in high-fat fed mice, 
whereas one was effective at improving glucose tolerance in these animals. This strategy 
offers potential therapeutic benefit to patients with obesity and diabetes. In summary, 
this body of work provides new insights into the biological actions and therapeutic 
implications of carnosine and associated analogues. 
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1.1 Glucose Homeostasis and Health Implications 

Glucose is the major energy source for many cell types, making it an essential nutrient 

of great importance for the organism. Glucose is a hydrophilic molecule and cannot 

freely cross the plasma membrane, therefore, a carrier-mediated system is required 

to promote entry of glucose into body cells (Yamamoto, et al., 2015). Glucose 

transport into most tissues is achieved by the action of molecules called glucose 

transporters (Leto and Saltiel, 2012). These molecules transport glucose by facilitative 

diffusion down concentration gradients, in contrast to energy-dependent uptake of 

glucose in the gut or kidney. In the basal (unstimulated) state, glucose transport is 

very low and thus most of the glucose transporters are internally sequestered, and 

their movement, or "trafficking," from this intracellular pool to the cell surface and 

back is low (Leto and Saltiel, 2012). However, in the presence of insulin, glucose 

transport is rapidly stimulated through exocytosis of glucose transporter vesicles from 

the intracellular pool (Leto and Saltiel, 2012). Vesicles move and fuse with the plasma 

membrane, exposing glucose transporters to the extracellular substrate and thereby 

effecting glucose transport into the cell. On termination of the insulin stimulus, 

glucose transporters are recycled from the plasma membrane to the intracellular pool 

ready for the next insulin stimulus (Wardzala et al., 1978).  

The regulation of blood glucose level is essential for the human body to ensure that 

energy requirements of vital organs are met, and thereby to facilitate normal body 

functions. This is achieved by a highly complex network of signalling events involving 

hormone and neuropeptide crosstalk between the brain, pancreas, liver, intestine as 

well as adipose and muscle tissues (Han et al., 2016, Roder et al., 2016). Regulation 

of the peptides and hormones involved in the pathways controlling glucose 

homeostasis is therefore of paramount importance, and failure to maintain this may 

lead to metabolic disorders such as type 2 diabetes.   
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1.1.1 Glucose Metabolism in Skeletal Muscle 

Glucose transport activity is instrumental in regulating skeletal muscle glucose 

metabolism, and thus contributes to maintaining whole-body glucose homeostasis. 

Consequently, this is also a potential therapeutic target for reversal or improvement 

of insulin resistance in skeletal muscle (Garvey et al., 1998; Wallberg-Henriksson and 

Zeirath, 2001).  

Skeletal muscle energy utilisation is tightly controlled. This is dependent on energy 

availability and requirements, and skeletal muscle can adapt to utilise different 

substrates to generate ATP. Depending on the metabolic state of an individual, 

skeletal muscles can either utilise glucose (fed state) or fatty acid (fasting state) as 

a source of ATP production (Cahova and Kazdova, 2007). Therefore, switching ability 

between FFA and glucose in the fasted and fed state is very important, otherwise 

metabolic inflexibility could result in impaired metabolism of these substrates and 

potentially lead to development of insulin resistance (DeFronzo, 2009).  

1.1.2 Skeletal Muscle Glucose Transport 

After a meal, glucose is actively transported across the plasma membrane by carrier 

proteins belonging to the glucose transporter (GLUT) family. There are several types 

of glucose transporters located in the plasma membrane, however glucose transport 

into skeletal muscles occurs via GLUT1 and GLUT4 (Klip et al., 1996). GLUT1 is the 

most ubiquitously distributed transporter isoform, it has high affinity to glucose and 

thus is believed to be responsible for constitutive glucose uptake or in regulating 

basal glucose. It is concentrated in endothelial cells of blood-tissue barriers, and 

therefore acts as a vehicle of glucose between blood and organs that have limited 

access to small solutes via passive diffusion (Mueckler, 1994).  
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Whilst GLUT1 is restricted to the cell surface, the more abundant GLUT4 is largely 

located intracellularly in the basal state. However, it can rapidly translocate to the 

plasma membrane in response to insulin stimulation or exercise, which leads to 

increased glucose uptake into the muscle. GLUT4 is primarily expressed in adult 

tissues that exhibit insulin-stimulated glucose transport such as adipose tissue, 

skeletal, and cardiac muscle (Klip et al., 1996; Mueckler, 1994).  

The amino acid sequence of both GLUT1 and GLUT4 are highly conserved, with 95%-

98% identity among the sequences of human, rat, mouse, rabbit, or pig transporters 

(James et al., 1988 in Simmons, 2003). GLUT3 was first isolated from human foetal 

skeletal muscle and is not as highly conserved as that of GLUT1 or GLUT4. Whilst 

GLUT3 can be found in all human tissues, it is most abundant in the brain, kidney, 

and placenta, and is considered the major neuronal glucose transporter (Thorens and 

Mueckler, 2010). The glucose transporter isoform GLUT2 is expressed in the liver, 

intestine, kidney and pancreatic islet β-cells, as well as in the central nervous system, 

neurons, and astrocytes. GLUT2 is required for glucose-stimulated insulin secretion 

and its inactivation in the liver could lead to an impaired glucose-stimulated insulin 

secretion (Thorens, 2015). In addition, GLUT2-dependent glucose sensing controls 

feeding, thermoregulation and pancreatic islet cell mass and function, as well as 

sympathetic and parasympathetic activities (Thorens, 2015). 

1.2 Skeletal Muscle as Target for T2DM Therapy 

Skeletal muscle is the largest (by mass) organ of the human body and is the primary 

site of glucose uptake, disposal, and storage, accounting for approximately 75% of 

the entire body’s glucose uptake under insulin stimulation (Smith and Muscat, 2005). 

During physiological hyperinsulinemia, leg muscle capacity for glucose uptake 

increases linearly with time, reaching a plateau value of around 10 mg/kg leg weight 

per minute after 60 min. By contrast, in type 2 diabetic subjects the onset of insulin 

https://www.sciencedirect.com/topics/medicine-and-dentistry/adipose-tissue
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action is delayed and the ability of insulin to maximally stimulate glucose uptake is 

markedly blunted by almost 50% (DeFronzo et al., 1981). 

Peripheral insulin resistance is the central pathogenesis of major metabolic disorders, 

and thus insulin resistance in skeletal muscle impacts whole-body glucose 

homeostasis (DeFronzo and Tripathy, 2009). It has also been argued that an 

interaction between skeletal muscle and pancreas occurs, and that this crosstalk may 

regulate insulin secretion to coordinate intracellular glucose utilization (Mizgier et al., 

2014; Hartwig et al., 2014). Skeletal muscle also plays a major role in insulin 

sensitivity through interactive crosstalk with hepatic and adipose tissues (Gancheva 

et al., 2018). 

T2DM is increasingly becoming viewed as a disease with an underlying 

autoinflammatory component (Gonzalez et al., 2018). Studies of skeletal muscle 

response to cytokines or other proinflammatory molecules have been useful in this 

regard, as they have helped to elucidate mechanisms and pathways associated with 

insulin sensitivity, glucose metabolism and the role of these molecules on the 

pathophysiology of obesity and diabetes (Jian et al., 2013; Poelkens et al., 2013). 

This also suggests that anti-cytokine biologics might also have beneficial actions in 

T2DM through improved glucose uptake and general muscle health. 

Impairments in insulin action on non-oxidative glucose metabolism in this tissue are 

among the earliest metabolic defects in T2DM (DeFronzo and Tripathy, 2009).  

Proteomic and genomic studies indicate that there are intrinsic differences in the 

profile of proteins involved in energy metabolism, cellular oxidative stress, protein 

dynamics, and gene regulation in myotubes between T2DM patients and individuals 

with normal glucose tolerance [NGT] (Al-Khalili et al., 2014). As the only known 

insulin-responsive glucose transporter, GLUT4 plays a key role in insulin-mediated 
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regulation of glucose metabolism in vivo (Liu et al., 2009). Studies indicated that 

GLUT4 function is reduced in diabetic states and because it has an important role in 

insulin action in vivo, therapeutics that promote insulin-stimulated GLUT4 

translocation could increase postprandial glucose uptake into skeletal muscle, thereby 

consequently improving insulin-sensitivity (Henriksson, 2001). 

These are just a few of the many studies to support the notion that resistance to the 

action of insulin in its metabolic target tissues, and particularly in skeletal muscles, 

occurs in almost all patients with type 2 diabetes. This forms the pathophysiologic 

basis of the visceral obesity-linked metabolic syndrome, and  improving tissue 

sensitivity to insulin is a major clinical goal to help ameliorate not only abnormal 

glucose metabolism, but also some of the complications like cardiovascular that are 

associated with this syndrome. Therefore, skeletal muscle is an essential target tissue 

for therapy of type 2 diabetes. 

1.3 Skeletal Muscle Insulin Resistance 

A major pathological defect in diabetes is insulin resistance, which is characterized by 

the impaired capacity of peripheral tissues to utilize glucose effectively in the face of 

hyperinsulinemia (Lann and LeRoith, 2007). In skeletal muscle, impaired glucose 

homeostasis results from suboptimal insulin signaling that mediates various events 

of glucose metabolism. The underlying pathogenic mechanism can however occur at 

various stages in the signal transduction pathway, including the ligand-receptor 

interaction (Carnagarin et al., 2015).  

It has been reported that in the early stages of development of type 2 diabetes, 

impaired glycogen synthesis in muscle is the primary defect responsible for insulin 

resistance (Krook et al., 2000). In addition, elevated plasma free fatty acid 

concentrations are typically associated with many insulin-resistant states, including 
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obesity and type 2 diabetes (Boden et al., 1994). Indeed, an acute increase in plasma 

FFA via intravenous lipid infusion has been shown to induce skeletal muscle insulin 

resistance in non-diabetic and diabetic subjects, while acute lowering of elevated 

plasma FFA levels lowered insulin resistance in both diabetic and non-diabetic 

patients (Boden, 2011), thereby demonstrating the major role played by skeletal 

muscle in the pathogenesis of insulin resistance.  

Fatty acid metabolites may also have an important role in insulin resistance, with 

diacylglycerol, fatty acyl CoA’s, or ceramides activating a serine/threonine kinase 

cascade (possibly initiated by protein kinase C), that leads to phosphorylation of 

serine/threonine sites on insulin receptor substrates. Serine-phosphorylated forms of 

these proteins fail to associate with or to activate PI3-kinase, resulting in decreased 

activation of glucose transport and other downstream events (Schulman, 2000). 

Insulin stimulation of PI3-kinase activity is also a requisite for the activation of glucose 

transport and glycogen synthesis.  

Using magnetic resonance spectroscopy, a study conducted on the offspring of T2DM 

parents observed lower mitochondrial density in their muscles as compared to control 

subjects (Morino et al., 2005). This was associated with a decreased rate of insulin-

stimulated glucose uptake, increased IRS serine phosphorylation and reduction in Akt 

activation. Thus, reduction in mitochondrial content and/or function might be an early 

defect responsible for impaired insulin signaling and action in muscle (Morino et al., 

2005). This study also supports the hypothesis that reduction in mitochondrial density 

and function could then eventually inhibit intracellular insulin signaling pathways and 

ultimately result in insulin resistance (Abu Bakar et al., 2015). Therefore, by 

elucidating the cellular and molecular mechanisms responsible for insulin resistance, 

potential new targets for the treatment and prevention of type 2 diabetes might be 

identified. 
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1.4 Structure, Function, and Secretion of Insulin 

The discovery of insulin by Banting, Best, and colleagues in 1921 at the University of 

Toronto, Canada was legendary and became one of the most important events in 

both the study and treatment of people with diabetes. The circulating and biologically 

active form of this hormone is composed of 51 amino acid residues in two chains, A 

and B, connected by two disulphide bridges, A7-B7 and A20-B19. This is secreted by 

pancreatic β-cells of the Islets of Langerhans (De Meyts, 2004). 

The hormone insulin is the post-translational product of a single-chain precursor 

called proinsulin, which is itself processed from preproinsulin at the point of insertion 

into the rough endoplasmic reticulum (RER) through signal sequence  cleavage by a 

signal peptidase. In RER, the folded and stable 3D configuration of proinsulin will 

then link the semi helical A domain and the helical B domain through the formation 

of three disulphide bonds. The properly folded proinsulin is subsequently sorted into 

immature secretory granules, following post-translational modifications and transit 

through the Golgi apparatus (Hutton, 1994).  

These granules bud away from the trans-Golgi network, whereupon they acidify. This 

in turn activated the prohormone convertases (PC1/3, and PC2) which cleave the C-

peptide from proinsulin. Carboxypeptidase E removes the C-terminal basic amino 

acids of the resulting peptide chains to yield the mature insulin, with A and B chains 

linked by disulfide bonds (Tokarz et al, 2018). The synthesis of insulin is generally 

rapid and efficient in less than 2 hours, and with only about 2% remaining as 

proinsulin within mature secretory granules. Insulin then forms a hexameric crystal 

with a central zinc ion during granule maturation (Figure 1.1), the zinc having been 

transported into secretory granules through ZnT8 zinc transporters (Tokarz et al, 

2018). 
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After glucose ingestion, insulin secretion is stimulated much more than it is when 

infused intravenously (Perley and Kipniss, 1967). This effect (the incretin effect) plays 

a major role in the regulation of glucose metabolism in healthy subjects and is 

estimated to be responsible for 50 to 70% of the insulin response to glucose (Nauck 

et al., 1986). The incretin effect implies that carbohydrate (glucose) ingestion causes 

the release of gut-derived hormones that enhance insulin secretion beyond the 

release caused by the absorbed glucose itself (McIntyre et al., 1965). The two most 

important candidates responsible for incretin effects are the glucose-dependent 

insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) (Vilsboll and 

Holst, 2004). In patients with type 2 diabetes, however, the incretin effect is lost or 

greatly impaired. It is hypothesized that this loss explains an important part of the 

impaired insulin secretion in patients (Holst and Gromada, 2004). In recent years, 

there has been a great interest in developing effective methods to regulate glucagon-

like peptide-1 secretion (MacDonal et al., 2002; Ellingsgaard et al., 2011; Wang et 

al., 2015). 

Insulin plays a central role in the regulation of glucose homeostasis through 

stimulation of glucose uptake into peripheral cells and tissues, and suppression of 

hepatic gluconeogenesis. Hyperglycemia results however when there is either 

insufficient insulin release, and/or decreased insulin sensitivity, and this then leads to 

the development of type 2 diabetes. Chronic exposure of tissues to the resulting 

elevated glucose concentrations can in turn result in the development of both macro-

and microvascular complications and diseases including cardio-and cerebrovascular, 

retinopathy, nephropathy, and neuropathy (Weiss et al, 2000). 

Multiple defects in insulin secretion can lead to the development of type 2 diabetes.  

These include downregulation (Marshall et al, 2007) and mislocalisation (Somanath 

et al., 2009) of the SNARE machinery that regulates exocytosis in pancreatic β-cells, 
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and the consequent impaired release of insulin in diabetic individuals (Gandasi et al., 

2017). By contrast, impaired vasoactive effects of insulin can occur during insulin 

resistance, including capillary recruitment (de Jong et al,2004). There is also reduced 

sensitivity to insulin in skeletal muscle of obese individuals, which in part explains the 

close association between obesity and T2DM (Broussard et al, 2017). This then results 

in decreased GLUT4 translocation to the muscle membrane in diabetic patients 

(Czech, 2017). In addition, defective kidney function in patients with T2DM may 

further alter insulin bioavailability (Kanasaki et al., 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1.  Insulin biosynthesis and secretion. (A) Preproinsulin mRNA from 

the INS gene is transcribed and translated to preproinsulin peptide and then 

processed to proinsulin in RER and after transit to the Golgi network, proinsulin is 

then sorted into immature secretory granules. Following release from the TGN, 

granules acidify and proinsulin is cleaved to its mature form, then stored as hexameric 

crystals coupled with Zn2+ within mature secretory granules [TGN-Trans-Golgi 

Network]. (B) Glucose sensing leads to a series of metabolic and electrical signals 

that culminate in closure of ATP-dependent K+ channels, membrane depolarisation, 

then entry of Ca2+ through Lc type channels. This then triggers the exocytotic release 

of insulin from the pancreatic β-cells [GK-Glucokinase, VDCC - voltage-dependent 

Ca2+ channels, SNARE-Soluble N–ethylmaleimide sensitive factor (NSF) 

attachment protein receptor, GLUT-Glucose Transporter]. (C) Insulin released from 

the pancreas will be transported to the liver. During the first pass, over 50% of insulin 

is cleared by the hepatocytes in the liver and the rest will exit and proceeds to the 

heart. Through arterial circulation, it can be distributed to the rest of the body for 

metabolic use in the liver and after its final clearance in the liver during the second 
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pass, it exits from the circulation and travels to muscle and fat cells where it exerts 

metabolic actions including GLUT4 translocation and glucose uptake. The remaining 

circulating insulin is delivered to and finally degraded by the kidney (Figure Source: 

Tokarz et al., 2018). 

1.5 Insulin Receptor and Insulin Receptor Substrate-1 (IRS-1) 

 

The insulin receptor (IR) has a key role in the regulation of glucose homeostasis, and 

therefore when its function is impaired this can lead to a range of clinical 

manifestations including diabetes mellitus, cancer and Alzheimer’s disease (Kidmose, 

2016). Insulin mediates its biological effects via the insulin receptor (IR), and like 

type-I insulin-like growth factor receptor (IGF-1R) and the insulin-related receptor 

(IRR), they all belong to the large family of cell surface receptors that possess an 

intrinsic tyrosine kinase activity that is essential for their biological activity and action.  

Homologous with IGF-1R, insulin receptor’s architecture (Figure 1.2) is in 

homodimeric form (α2β2) and is composed of two hormone-binding extracellular α-

subunits (130 kDa each) and two membrane-spanning tyrosine kinase β-subunits (95 

kDa each), wherein each of this αβ protomer is covalently linked by disulfide bond 

(Kidmose et al, 2016, Kahn et al, 2014, and Obberghen et al, 2001). The ectodomain 

monomer of the receptor (α chain) is composed of two leucine-rich repeat (L1 and 

L2) domains with a cysteine-rich region (CR) between them, then two fibronectin 

type III domains (FnIII-1 and 2) where about half of FnIII-2 belongs to the β chain, 

a region designated as insert domain (ID), and finally a C-terminal peptide domain 

(αCT). The β chain also contains an insert domain, FnIII domain (FnIII-3), the 

remaining part of FnIII-2, regulatory regions trans- and juxtamembrane domain (TM 

and JM), a tyrosine kinase (TK) domain where phosphotyrosine-binding sites for 
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signaling molecules are located, and finally a C-terminal domain (Lawrence et al, 

2007; Kidmose et al., 2016; Ye et al., 2017).  

The autophosphorylation sites of the insulin receptor are three tyrosine residues 

(Y1146, Y1150 and Y1151) in the kinase catalytic domain, and one key tyrosine 

residue (Y960) in the juxtamembrane domain. These residues contribute to the 

recognition motif for insulin receptor substrates once phosphorylated, and there are 

two autophosphorylation sites (Y1316 and Y1322) in the C-terminus of the insulin 

receptor (Obberghen et al, 2001). A conformational change results when the ligand, 

insulin, binds to the α-subunits, thereby stimulating the β-subunits intrinsic tyrosine 

kinase activity. This activation process allows the receptor to initiate a cascade of 

phosphorylation events which in turn leads to the activation of enzymes with pivotal 

roles in many aspects of metabolism and growth (Obberghen et al, 2001). 

At the time of insulin binding to the α-subunits of IR, a transphosphorylation occurs 

among β-subunits, which in turn further activates the kinase to recruit insulin receptor 

substrates. There are six (IRS-1 to IRS-6) well-characterised members of the insulin 

receptor substrate (IRS) family of proteins, which act as scaffolds to organize and 

mediate signaling complexes. This utilises the pleckstrin homology (PH) and 

phosphotyrosine binding (PTB) domains in the amino terminus of IRS proteins to 

couple to its receptor and uses its tyrosine phosphorylation sites in the COOH-terminal 

as on-off switches or docking sites for recruiting and regulating several downstream 

src homology-2 (SH2) containing-signalling proteins. These include PI3-kinase 

cascades, of which activation is an important insulin-regulated pathway (Lee and 

White, 2008; Obberghen et al, 2001). 

 

 



14 
 

 

 

 

 

 

 

 

 

 

Figure 1.2. Schematic representation of the insulin receptor. Leucine-rich 

repeat domain (L1 and L2); cysteine-rich region (CR); fibronectin type III domains 

(FnIII-1/2/3); insert domain (ID- α/β); transmembrane and juxtamembrane domains 

(TM/JM); C-terminal domains for alpha chain (αCT); C-terminal domains for beta 

chain (C). Disulphide bonds are depicted as blue dashed lines. (Figure Source: 

Kidmose et al., 2016).  

 

1.6 Insulin Signaling in Healthy and Insulin Resistant Skeletal 

Muscle 

Insulin signaling is complex, and elucidating the molecular mechanisms involved in 

insulin resistance is a major challenge. Insulin is the most potent anabolic hormone 

known and is essential for appropriate tissue development, growth, and maintenance 

of whole-body glucose homeostasis. It regulates glucose homeostasis at many sites, 

reducing hepatic glucose output (via decreased gluconeogenesis and glycogenolysis) 

and increasing the rate of glucose uptake, primarily into striated muscle and adipose 

tissue (Pessin and Saltiel, 2015).  
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The insulin receptor is an α2β2 heterodimeric transmembrane protein that possesses 

intrinsic tyrosine kinase activity. When insulin binds to the receptor, it induces 

conformational changes of the receptor, resulting in autophosphorylation and 

activation of receptor tyrosine kinases, which in turn recruits and stimulates insulin 

receptor substrates (IRS) including IRS1. IRS1 then binds to the regulatory subunit 

of phosphoinositide 3-kinase (PI3-K) via Src homology 2 domains (SH2) which leads 

to activation of PI3-K. PI3-K phosphorylates phosphatidylinositol 4,5-bisphosphate 

(PIP2) (a membrane phospholipid) on the 3′ position. The resulting complex activates 

the 3-phosphoinositide-dependent protein kinases-1 (PDK-1) resulting in activation 

of Akt/ protein kinase B (PKB) and atypical protein kinase C isoforms (aPKC ζ/λ), each 

of which is serine/threonine kinases (Desmukh, 2006). The physiological regulation 

of insulin action is controlled by the balance between phosphorylation and 

dephosphorylation events. For example, a negative effect on insulin-mediated 

glucose metabolism is observed when protein tyrosine phosphatases (PTPs) 

dephosphorylate and thus inactivate IR and when other phosphatases like 

phosphatase and tensin homologue (PTEN) inhibit the PI3K pathways (Desmukh, 

2006; Taniguchi et al., 2006; Vinciguerra and Foti, 2006).  

Once glucose enters the cell, it is phosphorylated by the enzyme hexokinase. Glucose-

6-phosphate is then either utilized in the glycolytic pathway or else incorporated into 

glycogen by glycogen synthase. However, insulin signaling defects that lead to 

impaired GLUT4 translocation are believed to be the major cause of skeletal muscle 

insulin resistance, and thus a major risk factor in developing type 2 diabetes. Studies 

have reported that skeletal muscle GLUT4 expression in type 2 diabetic subjects is 

normal (Pedersen et al., 1990; Kahn et al., 1991). In conclusion, impaired insulin-

stimulated glucose uptake most likely results either from an inability to correctly signal 



16 
 

to or translocate GLUT4 to the plasma membrane, or from impaired function of 

GLUT4.  
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Figure 1.3. Insulin signaling cascade regulating glucose uptake in healthy and insulin resistant skeletal muscle. (Left)Both insulin 

and muscle contraction-mediated signaling pathways to GLUT4 are functional in healthy skeletal muscle. (Right) Insulin signaling leading to 

GLUT4 is impaired in insulin resistant skeletal muscle while muscle contraction-induced signaling pathways are intact. (Adapted from Deshmukh, 

2016)
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1.6.1  Negative and Positive Regulators of Insulin Signalling 

The attenuation of insulin-induced glucose uptake in muscle and fat cells via GLUT4 

and the reduced ability of insulin to suppress glucose production by the liver is 

believed to be the earliest abnormality observed in insulin resistance. The 

hyperglycaemic effect of insulin resistance is initially compensated by pancreatic β-

cell hypersecretion of insulin to maintain euglycemia, however, when this becomes 

chronic, hyperinsulinemia exacerbates insulin resistance which leads to ß-cell failure 

and eventually to the development of clinical overt type 2 diabetes (Gual et al., 2005).   

There are several ways in which insulin signaling can become defective, including 

reduced concentration and phosphorylation of IRS-1, decreased PI(3)K expression or 

activity, and inhibited translocation of glucose transporters (Saltiel and Kahn, 2001; 

Pessin et al., 2000). Type 2 diabetes is a polygenic disorder, with diabetes 

predisposition polymorphisms in several genes encoding proteins associated with 

insulin signaling or insulin secretion such as hepatocyte nuclear factor-1A (HNF1A) 

and the glucokinase (GCK), Calpain10 (CAPN10), transcription factor 7-like 

2(TCF7L2), peroxisome proliferator-activated receptor gamma (PPARG), insulin 

receptor substrate (IRS) (Ali, 2013; Stern, 2000). In addition, there are insulin 

receptor mutations linked to Donohue syndrome or leprechaunism, Rabson 

Mendenhall Syndrome, and type A syndrome of insulin resistance and although these 

genetic disorders are relatively rare, they represent the most severe forms of insulin 

resistance (Taylor and Arioglu, 1998). 

Obesity increases the risk of developing type 2 diabetes initiated through insulin 

resistance. In this section, relevant obesity-related factors that are causally linked to 

insulin resistance are described briefly. Elevated plasma FFA are often found in obese 

individuals due to increased or enlarged mass of fat or adipose tissue. The increased 

circulating level of FFA is believed to cause insulin resistance because of an altered 
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and impaired insulin signaling through activation of JNK, IKK and PKC. Although the 

mechanism of kinases activation by FFA is unclear, this may include FFA-mediated 

production of reactive oxygen species (ROS), activation of the Toll-like receptor 4 

(TLR4) pathway, or endoplasmic reticulum stress. Alternatively, there may be 

impaired insulin signaling following reduction of tyrosine phosphorylation of the 

insulin receptor substrates and decreased activity within the IRS-PI3 kinase-Akt axis 

– an important pathway which regulates the metabolic action of insulin like glucose 

uptake (Schenk et al., 2008; Shi et al., 2006; Yu et al., 2002; Inoguchi et al., 2000). 

A study conducted in healthy men and women (irrespective of age) showed that 

raising plasma FFA by acutely infusing heparinised lipid emulsion resulted in a 

significant reduction in glucose-uptake and the development of insulin resistance 

within 4-hours of the increase. These changes then reverted back after normalisation 

of FFA levels (Boden and Chen, 1995). Furthermore, it has been demonstrated that 

lowering FFA could reduce insulin resistance in a study of obese (non-diabetic and 

T2DM) individuals, where after 12h normalisation of elevated FFA levels this resulted 

in normalised insulin-stimulated glucose uptake and 25-50% improvement of insulin 

sensitivity. This therefore suggests that high circulating levels of FFA may have been 

the cause of insulin resistance in these subjects. Interestingly, similar findings were 

also reported in individuals who are genetically predisposed to T2DM (Santomauro et 

al., 1999; Cusi et al., 2007).  

The expansion of adipose tissue that results from caloric overload and obesity  results 

in the release of increasing amounts of cytokines and chemokines (collectively 

referred as adipokines) that are associated with inflammation (Gonzalez et al., 2018), 

and these are considered a major causes of obesity-associated insulin resistance 

(Osborn and Olefsky, 2012). For example, the increased generation of the 

proinflammatory cytokines TNF-α, IL-6, and C-reactive protein (CRP) have been 
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demonstrated in insulin-resistant and diabetic subjects (Hotamisligil et al., 1993), and 

normalisation of TNF-α levels in adipose tissue and blood from obese rodents 

improves insulin sensitivity in these animals (Ellies et al., 2007). Similarly, in a high-

fat-fed mouse model of obesity there was also chronic inflammation associated with 

the increased production and secretion of cytokines (Xu et al., 2003).   

FFA-associated secretion of cytokines like TNF-α, IL1-β, IL6 not only activates pro-

inflammatory pathways, but also results in peripheral and hepatic insulin resistance. 

This is associated with phosphorylation of certain IRS serine residues , which then 

prevents its interaction with the insulin receptor (Gual et al., 2005). Thus 

consumption of a high-fat diet is likely to have a negative impact on glucose 

homeostasis, by affecting normal glucose transport as a consequence of 

inflammatory-induced insulin resistance. 

The adipocyte-derived hormones such as leptin and adiponectin have been 

recognised to have major influence on energy balance. Leptin levels has been shown 

to be higher in individuals with higher BMI and higher per cent total body fats 

(Schwartz et al., 1996).  Interestingly, despite leptin’s functions to signal key 

regulatory centres in the brain to inhibit food intake and to regulate body weight and 

energy homeostasis, and even though it increases proportionally with adiposity, the 

increased leptin fails to curtail the progression of obesity (Halaas et al., 1995; 

Widdowson et al., 1997; Levin and Dunn-Meynell, 2002). It is believed that in 

essence, the augmented leptin accompanying obesity contributes to leptin resistance, 

and this leptin ineffectiveness promotes further obesity, leading to a vicious cycle of 

escalating metabolic devastation (Zhang and Scarpace, 2006). It has been recognised 

that the accumulation of fat in obesity has an important role in the altered expression 

of several hormones, growth factors, and adipokines (Nigro et al., 2014). Among the 

adipokines, adiponectin shows protective activity in various processes such as energy 



 

21 
 

metabolism, inflammation, and cell proliferation (Lihn et al., 2005). Adiponectin is an 

adipokine that is specifically and abundantly expressed in adipose tissue and directly 

sensitizes the body to insulin (Kadowaki et al., 2006). Genetic and environmental 

factors causing obesity is believed to lead the occurrence of a condition called 

hypoadiponectinemia which appears to play an important causal role in insulin 

resistance and type 2 diabetes (Kondo et al., 2002). Expression enhancement of 

adiponectin and its receptors may represent as therapeutic approach against obesity 

and obesity-related diseases or could be potentially prevent the establishment and/or 

progression of lethal conditions related to obesity. 

Chronic hyperglycaemia is a hallmark of type 2 diabetes, and glucotoxicity is known 

to reduce the capacity of pancreatic β-cells to secrete insulin (Marshall et al, 2007), 

and to increase the risk of developing insulin resistance (LeRoith, 2002). Similar to 

FFA, glucose infusion has been found to impair insulin sensitivity by reducing skeletal 

muscle glucose uptake by affecting post-receptor signaling cascades, and the 

hyperglycaemia-induced formation of advanced glycation end products and 

hyperglycaemia-mediated PKC activation are known to inhibit insulin-stimulated 

phosphorylation of several proteins along the insulin signaling pathway (Nishikawa, 

2000). In a study where sustained hyperglycaemia was employed in human and rat 

primary skeletal muscle cells, C2C12 muscle cells, L6 muscle cells, and adipocytes, 

impaired insulin signalling was associated with elevated production of diacylglycerols, 

ceramides, and from increased oxidative stress. This resulted in a decreased capacity 

of insulin to activate of Akt/PKB (Tomas et al., 2006), which in turn can lead to 

defective GLUT4 translocation (Van Cromphaut, 2009). Catecholamines, excessive 

glucocorticoids, and growth-hormones have also been reported to induce insulin 

resistance through inhibiting insulin binding to the insulin receptor, impaired GLUT4 

translocation, reduced insulin receptor expression, decreased tyrosine kinase activity, 
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and abolished insulin-induced PI3K activation (Haring et al., 1986; Dimitriadis et al. 

1997; Dominici et al., 1999). 

Nutrient overload can also affect important organelles which regulate energy 

homeostasis (Qiu and Schlegel, 2018). This can result in increased generation of ROS 

by the mitochondria, production of unfolded protein responses (UPRs) by the 

endoplasmic reticulum (ER), and the activation of the mechanistic target of 

rapamycin. The resulting mitochondrial and ER stress are known to negatively affect 

insulin signalling, and thus insulin resistance (Wellen and Thompson, 2010). 

Mitochondrial oxidant production activates JNK which in turn phosphorylates IRS1, 

whereas ER stress affects protein kinase RNA (PKR)-like ER kinase (PERK) and the 

inositol-requiring protein-1 (IRE1). JNK and IKK activation further impairs insulin 

signalling via phosphorylation of Ser-307 (Ozcan et al., 2004; Laybutt et al., 2007). 

In addition, a study by Koh et al., 2013 using C2C12 and mouse skeletal muscles 

demonstrated that overexpression of Tribble 3 protein (TRB3) in this tissue mediates 

endoplasmic reticulum stress and impairs insulin signaling by inhibiting IRS 

phosphorylation and decreasing Akt activation.  

Physical inactivity and nutrient overconsumption are major risk factors for the 

development of insulin resistance and thus type 2 diabetes. The ideal intake of 

calories varies depending on age, metabolism and levels of physical activity, among 

other things (National Health Service UK, 2019). Generally, the recommended daily 

calorie intake is 2000 calories a day for women and 2500 for men (Institute of 

Medicine, 2002). The NHS guidelines on physical activity also recommend at least 

150 minutes of moderate-intensity aerobic activity and muscle-strengthening 

activities per week (National Health Service UK, 2019). A study shown that adults in 

the UK are consuming 50% more than they realised (Office for National Statistics UK, 

2018). In another study, it has shown that 44% of UK adults never do any moderate 
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physical activity and 13% of UK adults are sedentary for longer than 8.5 hours a day 

(British Heart Foundation, 2015). Epidemiological studies have indicated that regular 

or increased physical exercise can reduce the risk of developing type 2 diabetes 

(Helmrich, 1991; Tuomehlito et al., 2001). With this, exercise or muscle contraction 

is believed to be a positive regulator of insulin signalling, which then improves the 

rate of whole-body glucose disposal and glucose uptake (Goodyear and Kahn, 1998; 

Holloszy, 2005).  

Exercise and insulin have an independent signaling route, although both lead to 

translocation of glucose transporter and increased GLUT4 expression. Muscle 

contraction or exercise mediate glucose uptake through activation of signaling 

proteins, including AMP-activated protein kinase (AMPK), calcium-activated protein 

kinase (CAMK), Akt and nitric oxide pathways which are linked to the translocation of 

GLUT4 to the plasma membrane (Fujii et al., 2006; Witczak et al., 2010). The 

observed effects of exercise-mediated improvement of insulin sensitivity were not 

however linked with the IRS1-PI3K-AkT signaling cascade (Wojtaszewski et al., 

1997). Instead a study demonstrated that this effect was mediated most likely at 

more distal signaling component namely the TBC1 Domain Family Member 1 and 4 

(TBC1D1 and TBC1D4) (Pehmoller et al., 2012) which corroborated with an earlier 

observation by Maarbjerg and colleague (Maarbjerg et al., 2011).  

The mammalian target of rapamycin (mTOR) is a highly conserved serine–threonine 

kinase that regulates numerous functions essential for cell homeostasis and 

adaptation in mammalian cells such as the insulin signalling cascade, and has also 

been described as an insulin-independent nutrient sensor that may represent a critical 

mediator in obesity-related impairments of insulin action in skeletal muscle (Rivas et 

al., 2009). Signaling through the mTOR pathway could have both favourable and 

unfavourable consequence in the maintenance of β-cell function and glucose 
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metabolism in response to overnutrition (Jia et al., 2014). When mTOR is chronically 

activated via overnutrition, it increases insulin resistance by inhibiting IRS-1 through 

increased JNK phosphorylation and induces hyperinsulinemia which then could 

eventually lead to a decreased β-cell survival and increased apoptosis (Fraenkel et 

al., 2008). On the other hand, Nutrients, hormonal, and contractile stimuli often 

converge at this protein, suggesting that mTOR is an important modulator of protein 

synthesis (Wang and Proud, 2006). Studies have indicated that a combination of 

nutrients (leucine-enriched essential amino acids in particular) and resistance 

exercise could stimulate human muscle protein synthesis probably through enhanced  

mTOR signalling pathway (Fujita et al., 2007; Drummond et al., 2009; Dickinson et 

al., 2011).  

Long-term caloric restriction (CR) has been proposed as a possible intervention to 

improve the quality of health. For instance, early studies in rats showed augmented 

insulin-stimulated glucose transport via increased plasma membrane GLUT4 after CR 

(Dean et al., 1998; Cartee et al., 1994)  A later study by Argentino et al., 2005 

reported that long-term CR significantly increased the abundance of IRS-1 which 

might be linked to the animals’ adaptation mechanism to enhance insulin sensitivity 

in light of reduced availability of glucose. A study also demonstrated that even a brief 

period (20 days) of CR resulted in an increased whole-body insulin sensitivity due to 

enhanced glucose transport mediated by insulin (Gazdag et al., 1999). CR could also 

improve insulin-stimulated glucose transport through enhanced phosphorylation of 

Akt, as an increase in the ratio of PI3-kinase catalytic to regulatory subunits has been 

observed, which indicates that PI3-K signaling is favoured and thus likely to result in 

greater Akt phosphorylation and consequently improved skeletal muscle insulin 

sensitivity (McGurdy, Davidson and Cartee, 2005).  
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1.7 Structure, Properties, and Functions of Skeletal Muscle 

 

The contractile property of muscle may strongly influence its function and is the basis 

for most skeletal muscle studies on its important functional role particularly in 

response to disease and injury. Skeletal muscle is one of the most dynamic tissues in 

the human body. It is composed of 75% water, 20% protein and 5% other 

substances including inorganic salts, minerals, fats, and carbohydrates. Muscle 

constitutes approximately 40-45% of total body weight and contains 50–75 % of all 

body protein (Frontera and Ochala, 2015). The muscle mass of an individual is directly 

affected by the balance between muscle protein synthesis and degradation, which in 

turn is influenced by several factors including injury and disease, hormonal imbalance, 

physical activity or exercise, and nutritional status (Frontera and Ochala, 2015).  

 
Skeletal muscle is composed of bundles of muscle fibres called fascicles (Figure 1.4), 

which in turn are composed of muscle cells, surrounded by sarcolemma. The 

sarcoplasm in the muscle contains the cellular proteins, the organelles, and the 

myofibrils. The myofibrils contain the contractile apparatus of the muscle, namely the 

thin filament (actin) and the thick filament (myosin) which is organised into repeating 

contractile units called sarcomeres (Rivas and Fielding, 2012). 

 

The size of the whole muscle is primarily determined by the number and size of the 

individual muscle fibres. Each muscle fibre has an approximate diameter and length 

of 100 µm and 1 cm, respectively that is surrounded by a layer of connective tissue 

referred to as the epimysium, and within each muscle fibre are bundles surrounded 

by another layer called perimysium. Between the sarcolemma and the basal lamina 

are adult stem cells of skeletal muscles called satellite cells which have an essential 

role for its regeneration, growth, and repair, wherein upon activation by myogenic 
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factors these will proliferate and differentiate into new muscle fibres (Gopinath and 

Rando, 2008). 

 

The main function of skeletal muscle from a mechanical point of view is to convert 

chemical energy into mechanical energy in order to generate force and power, and 

thereby movement and posture which influence the body to perform physical 

activities and maintain or enhance health (Rivas and Fielding, 2012). The metabolic 

role of skeletal muscle includes contribution to the basal energy metabolism, 

maintenance of body core temperature, and oxygen and fuel consumption during 

physical activity. It also serves as a reservoir for amino acids and carbohydrates, 

which are needed by other tissues including brain, heart, and skin for the synthesis 

of organ-specific proteins (Wolfe, 2006).  

 

Skeletal muscle has recently been identified as an endocrine organ, with cytokines 

and other peptides that are produced, expressed or released from muscles referred 

to as myokines. These have an essential role in metabolism in health and disease 

(Lightfoot and Cooper, 2016, Pedersen and Febbraio, 2008). Importantly, a loss of 

muscle mass and strength reduces the body’s ability to respond to stress, and may 

in turn lead to reduced quality of life, increased morbidity and mortality resulting from  

chronic illnesses that may then develop (Cohen et al, 2014 and Ebner et al, 2015). 
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Figure 1.4 The structure of skeletal muscle. (A) Each skeletal muscle has three 

layers of connective tissue enclosing it and provides the structure to the muscle.  The 

epimysium wrapped each muscle, the bundles of muscle fibres called fascicles are 

covered by the perimysium and the muscle fibres are covered by the endomysium. 

(B) The muscle fibre. Each fibre in the skeletal muscle is surrounded by a plasma 

membrane called the sarcolemma, which contains the cytoplasm of muscle cells 

(sarcoplasm). A muscle fibre is composed of many fibrils, which give the cell its 

striated appearance. (Figure from OpenStax, Anatomy & Physiology) 

 

1.8 Adaptation of Skeletal Muscle  

Skeletal muscles provide elements vital for human mobility and function, and this has 

a crucial role in regulating and preserving global metabolic homeostasis of the body. 

Substrate utilization including carbohydrates, proteins and lipids, contractile activity, 

ageing, and chronic illnesses are some of the processes which determine their ability 

to adapt and affect normal function (Eigan and Zeirath, 2013). 
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1.8.1 Diet and Exercise 

 

Lipids, carbohydrates, and amino acids (AA) are all important fuels for metabolism 

under aerobic conditions, although AA contribution is only minimal at resting energy 

metabolism. The transport of glucose into the cell is the rate-limiting step for 

carbohydrate metabolism which is facilitated via glucose transporters (1-12) during 

postabsorptive and postprandial conditions. In skeletal muscles, this can be 

accomplished through both insulin- and exercise-mediated signaling pathways 

involving glucose transporter 4, which in turn promotes the metabolic actions of 

insulin to utilise plasma glucose for energy use by the cell (Ryder et al, 2001 and 

Rivas and Fielding, 2012). During fasting and strenuous exercise (low-energy status), 

the level of insulin decreases considerably and circulating free-fatty acids (FAs) 

become the predominant fuel at this stage that is readily taken up by the skeletal 

muscle (Horowitz and Klein, 2000). Exercise, either resistance or endurance type, has 

been observed to improve insulin sensitivity and shown to stimulate key signals that 

positively impact major pathways associated with skeletal muscles’ mitochondrial 

biogenesis and growth, fusion and metabolism (Russel et al, 2014).  

Obesity and excess nutrient intake (high-sugar and high-fat diet) are strongly 

associated with the development of insulin resistance. This results in part from the 

inhibition of glucose transport and phosphorylation and is associated with the 

development of T2DM (Yu et al., 2002). The skeletal muscle’s adaptation to the 

metabolic action of insulin is sensitive to the dynamics of circulating nutrients, and 

because this tissue is responsible for the majority of insulin-mediated glucose 

disposal, significant scientific effort has been devoted to understanding the 

mechanisms of diet-induced metabolic dysfunction, particularly by which 

overnutrition leads to impaired insulin signal transduction in skeletal muscle (Rivas et 

al., 2012). 
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1.8.2 Ageing and Chronic Diseases 

 

Skeletal muscle has a reduced ability to incorporate amino acids to synthesise protein 

in response to advancing age, sedentary lifestyle, and obesity. The loss of muscle 

mass usually begins at the age of 50 years and results in diminished muscle function, 

power and strength. This in turn has been linked to several age-related conditions, 

including osteoporosis, diabetes, and arthritis (Descheness, 2004).  

 

As tissues of the muscle change with age, the loss of muscle mass is accompanied 

by increased accumulation of intramuscular fat, and therefore the incidence of 

metabolic disorders such as impaired lipid metabolism and insulin resistance (Volpi et 

al, 2004). Furthermore, the genetic architecture involved in energy metabolism and 

mitochondrial protein synthesis has been shown to be negatively impacted in ageing 

muscle. In addition, a potent antianabolic regulator of muscle mass called myostatin 

was observed to be significantly higher in extremely obese human myotubes, and 

this is postulated to have contributed in the systemic metabolic deterioration of 

skeletal muscles during progression of insulin resistance and type 2 diabetes (Welle 

et al, 2003 and Hittel et al, 2009).  

 

A study has shown that the metabolic profile of peripheral skeletal muscle from 

patients with chronic obstructive pulmonary disease (COPD), and particularly 

uncoupling protein -3 (UCP-3) (which contributes to energy metabolic regulation), 

was found to be decreased (Gosker et al., 2003). UCP-3 is an isoform of uncoupling 

protein that is predominantly expressed in skeletal muscles and adipose tissues of 

rodents and humans (Boss and Lowell, 2000). It is located in the inner mitochondrial 

membrane and believed to play a role in energy expenditure, and in mitochondrial 

fatty acid oxidation (Bugge et al., 2010; Schrauwen et al., 2001). It has been 
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demonstrated that aging skeletal muscles could profoundly modify UCP-3 expression 

and thus affect its energy expenditure and ATP production (Barazzoni and Nair, 

2001). Interestingly, it has been suggested that the primary function of UCP3 is to 

limit the production of reactive oxygen species associated with respiration (Bouillaud, 

2009).  

Skeletal muscle wasting was thought to have a pathogenic role in altered protein 

turnover, and this has been demonstrated in a study amongst critically ill patients  in 

which muscle wasting occurred early and rapidly during the first week of critical illness 

and was more severe among those with multiorgan failure (Lodeserto and Yende, 

2014). Muscle dysfunction is also evident in cancer patients, wherein 50% of these 

patients suffer from progressive atrophy of skeletal muscle and adipose tissue 

(cachexia) that leads to weight loss and reduced survival, partly as a consequence of 

concomitant increased lipolysis by tumour or host products and protein degradation 

in adipose tissues and skeletal muscles, respectively (Tisdale, 2009). 

 

1.9 Activation, Proliferation, and Differentiation of Skeletal 

Muscle 

 

Skeletal muscle is composed of postmitotic multinucleated muscle fibres that contain 

its contractile elements. Skeletal muscle fibres form  in  development  by  migration  

of  muscle  precursor cells (myoblasts) from the somites into the nascent muscles, 

then they fuse to form multinucleated muscle  fibres after morphological, biochemical 

and molecular modifications (Morgan and Partridge, 2003).  

Muscle precursor cells are called satellite cells that are known to be the main, if not 

only, cell type that serves as a reserve population of cells able to expand in number 

repopulating the host muscle with new satellite cells. In response to an injury these 
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cells can extensively proliferate to regenerate compact clusters of myofibers (Collins 

et al, 2005). Initially, satellite cells are mitotically quiescent and have limited capacity 

for gene expression and protein synthesis at this point. However, they can become 

activated in response to stress by trauma or injury. Although this transition is still 

poorly understood, production of sphingosine-1-phosphate, which is intrinsic to these 

cells, is required for the satellite cell to gain entry to the cell cycle, and thus inhibiting 

this process could dramatically abrogate muscle regeneration (Nagata et al, 2006).  

 

Intracellular signals can be influenced by extrinsic mechanical stretch, including nitric 

oxide synthesis (NO) which is thought to release hepatocyte growth factor (HGF) and 

induce expression of the fusigenic-secreted molecule known as follistatin – a process 

that triggers satellite cell activation. The latter molecule is known to antagonise a 

negative regulator of myogenesis such as myostatin and myogenic regulatory factor 

(MyoD), and thus may contribute to the satellite cells’ exit from quiescence (Wozniak 

and Anderson, 2007 and Pisconte et al, 2006).  

 

Microenvironment-secreted growth factors like fibroblast growth factors (FGF) are 

also reported to be another stimulus for satellite cell activation by inducing pro-

myogenic mitogen-activated protein kinase (MAPK) signaling cascades. The p38α/β 

MAPK functions as a molecular switch for satellite cell activation and regulates the 

quiescent state of these cells (Jones et al, 2005). Several reported growth factors are 

implicated in the chemotaxis, proliferation, and differentiation of satellite cells that 

are mitogenic for muscle precursor cells namely, basic-fibroblast growth factor (basic 

FGF), platelet-derived growth factor (PDGF-BB), transferrin, and hepatocyte growth 

factor (HGF). These growth factors, including transforming growth factor beta (TGFβ) 



 

32 
 

beta and insulin-like growth factor (IGF1), also promote chemotaxis of satellite cells 

in tissue culture (Morgan, 2003).  

The myogenic potential of the satellite cells mostly depends on the expression of Pax 

genes (Pax3 and Pax7) and myogenic regulatory factors (MRFs) like MyoD, Myf5, 

myogenin, and MRF4 (Figure 1.5). The activated satellite cells migrate from their 

niche and transfer outside of the basal lamina, initiate to cycle and concomitantly 

express Pax7 and MyoD. The resulting formation of skeletal myoblasts then undergo 

multiple rounds of division, whereupon most of them downregulate Pax7 and express 

myogenin, differentiate to fuse and form the multinucleated myofibre (Kuang and 

Rudnicki, 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. Schematic representation of adult myogenesis. Activated satellite 

cells start to cycle and become skeletal myoblasts expressing paired-box 

transcriptions factors Pax7 and Pax3, as well as the myogenic regulatory factors Myf5 

and MyoD. Once committed to differentiation, myoblasts stop cycling and lose 

expression of Pax7, Pax3, and Myf5. The myogenin-containing myocytes will then 

align and fuse to form multinucleated myofibers.  
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1.10 Diabetes Mellitus (Diagnosis, Classification of the major types and 

Epidemiology) 

 

Diabetes Mellitus (Greek diabetes – siphon; Latin mellitus – honeyed or sweet) is a 

group of metabolic diseases that are categorised by chronic and persistent elevated 

levels of blood glucose, referred to as hyperglycaemia. This hyperglycaemia is a 

consequence of defective insulin secretion, insulin action, or both. This chronic 

dysfunction is associated with long-term complications including failure of different 

organs particularly the eyes, kidneys, nerves, heart, and blood vessels. Several 

pathogenic processes are involved in the development of diabetes. These range from 

autoimmune destruction of the β-cells of the pancreas with consequent insulin 

deficiency, to abnormalities that result in resistance to insulin action.  

The basis of the abnormalities in carbohydrate, fat, and protein metabolism in 

diabetes is deficient action of insulin on target tissues. Deficient insulin action results 

from inadequate insulin secretion and/or diminished tissue responses to insulin at 

one or more points in the complex pathways of hormone action. Impairment of insulin 

secretion and defects in insulin action frequently coexist in the same patient, and it 

is often unclear which abnormality, if either alone, is the primary cause of the 

hyperglycaemia (American Diabetes Association). For decades, the diagnosis of 

diabetes has been based on glucose criteria which include fasting blood glucose ≥ 

126 mg/dL (7 mmol/L), blood glucose level ≥200 mg/dL (11.1 mmol/L) or an 

abnormal glucose test. However, an additional test for diagnosing diabetes is glycated 

haemoglobin, or HbA1c, with a threshold of ≥6.5% (World Health Organisation). 

There are three major types of diabetes (Type 1 diabetes, Type 2 diabetes, and 

gestational diabetes), and the causes and risk factors are different for each type.  

Type 1 diabetes results from a cellular-mediated autoimmune destruction of the β-

cells of the pancreas due to the development of islet autoantibodies and accounts for 
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only 5-10% of those with diabetes. In this form of diabetes, the rate of β-cell 

destruction is variable, being rapid in some infants and children, and slow in others 

mainly adults (Alberti and Zimmet, 1998, Atkinson et al, 2014 and American Diabetes 

Association). 

Type 2 diabetes mellitus (T2DM) accounts for 90-95% of those with diabetes 

making it one of the most common chronic disorders in older adults, and the 

prevalence is growing worldwide (Dardano et al, 2014 and American Diabetes 

Association). Genetic, environmental, influences of poor dietary and exercise habits 

or physical inactivity, are believed to have mutually contributed to the development 

of type 2 diabetes mellitus (Fletcher et al, 2002) which then leads to the gradual 

decline of β-cell function and insulin insensitivity (Stumvol et al, 205). 

Gestational diabetes mellitus (GDM) is any abnormal glucose tolerance first 

detected during pregnancy which occurs in 3-5% of pregnancies (Spaight et al, 2016 

and Diabetes UK). This observation might be due to the β-cells trying to compensate 

the observed 50-70% decreased in insulin sensitivity that develops during pregnancy 

(Kuhl, 1998). In addition to known risk factors like increased glycaemic load and fat 

consumption, excessive gestational weight gain, a low vitamin D level, psychological 

stress, and negative mood are risk factors for GDM (Radesky et al, 2008 and Spaight 

et al, 2016) and so the risk of this disease is found to be significantly increased among 

overweight, obese, and extremely obese women with varying proportion that is 

associated with ethnicity and racial groups (Cavicchia et al, 2014 and Kim et al, 2010).  

Type 3C diabetes mellitus or pancreatogenic diabetes is a type of diabetes 

that develops when another disease causes damage to the pancreas. The 

conditions related to type 3c are pancreatic cancer, pancreatitis, cystic fibrosis 

or haemochromatosis. This type of diabetes can also happen when the pancreas 

https://www.diabetes.org.uk/diabetes-the-basics/related-conditions/haemochromatosis-diabetes
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stops producing enough insulin for the body (Diabetes UK, 2019). It is a clinically 

relevant condition with a prevalence of 5%-10% among all diabetic subjects in 

Western populations. In nearly 80% of all type 3c diabetes mellitus cases, chronic 

pancreatitis seems to be the underlying disease (Ewaldt and Hardt, 2013). You can 

also develop type 3c if you have part or all of your pancreas removed because 

of other damage. Some of the key features of medical therapy for patients who 

have this type of diabetes include fat-soluble vitamins (Vitamin D) and restoring 

impaired fat hydrolysis (Ewaldt and Hardt, 2013).  

Diabetes is a global pandemic which continues to be a growing problem responsible 

for an escalating human and financial cost annually, and for several life-threatening 

complications. It is predicted that over 1 billion people will be living with or at high 

risk of diabetes in 2045 (Figure 1.6), of which about 80% of these patients will appear 

to be in low-middle income countries, with the majority of them being 45-64 years 

old (Wild et al, 2004, International Diabetes Federation and Harvard T.H. School of 

Public Health). While there is a clear association between advancing age and greater 

prevalence of T2DM, there is also an increasing incidence of obesity that has resulted 

in a dramatic rise of T2DM among children, teenagers and adolescents. This has 

made them at high risk for later health complications, and thus represents a 

significant new public health issue with potentially major personal and societal cost 

(Pulgaron et al, 2014 and Silverstein et al, 2001). 
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Figure 1.6; The 2019 Diabetes Atlas. Indicating the worldwide and regional 

prevalence of diabetes as of 2019 and the projected number of cases in 2045, human 

and financial cost of diabetes with respect to age and corresponding income per 

country or region. (Figure Source: International Diabetes Federation, 2019). 
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1.11 Prediabetes and Type 2 Diabetes (Pathogenesis, Risk Factors, 

Symptoms and Health Implications) 

 

Impaired fasting glucose (IFG – with fasting glucose value of 6.1-6.9 mmol/L ) and 

impaired glucose tolerance (IGT – with 2-hour oral glucose test value of 7.8 – 11.1 

mmol/L ) are the intermediate metabolic states between normal and diabetic glucose 

homeostasis (World Health Organization and International Diabetes Federation, 

2006). These conditions are thought to be the precursors of T2DM, but the 

progression to overt disease is not straight-forward (Santaguida et al., 2005). Both 

β-cell dysfunction and insulin resistance are thought to have also contributed to the 

progression of IGT and IFG to T2DM (Kanat et al., 2015). Therefore, improving insulin 

sensitivity and/or preserving β-cells functions could be a rational way to normalise 

the glucose tolerance and to prevent the conversion of IGT and IFG to T2DM which 

is possibly achievable through pharmacological interventions combined with 

behavioural changes such as diet and exercise. Although not everyone with 

prediabetes would go on to develop diabetes, about 25% of prediabetic individuals 

developed full-blown diabetes over the short term (three to five years) and this 

number would be significantly larger over the long term (Komaroff, 2013). For 

instance, one study has reported that amongst 5450 American subjects who have 

IFG, it took 29-41 months for the 8.1-24.3% of them to have developed T2DM 

(Nichols et al., 2007). 

Type 2 diabetes mellitus is a metabolic disorder that results in hyperglycaemia due 

to the body failing to secrete enough insulin (Figure 1.7). In addition, there is also 

often insulin insensitivity and an inability to metabolise blood glucose. Together this 

can lead to damage the organs of the body over time (Diabetes UK). The prevalence 

of T2DM is increasing dramatically in all age groups, sexes, racial/ethnic group, and 

https://www.diabetes.co.uk/Diabetes-and-Hyperglycaemia.html
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in all education categories, which consequently poses a major health and socio-

economic burden. Much of the increase in the prevalence of T2DM is due to the 

increasing prevalence of obesity, for instance, a study conducted in three and six 

year-periods with American subjects observed a trend that about 85% of people with 

T2DM are obese or overweight (Cnop, 2018, Bhupathiraju, 2016 and Centers for 

Disease Control and Prevention, 2004), and data also suggests that in England about 

90% of adults with T2DM aged 16-54 years are obese or overweight, and 12.4% 

adults aged 18 years or over with obesity were diagnosed with diabetes - five times 

that of people with a healthy weight (Public Health England).  

The prevalence of T2DM is also attributed to some lifestyle factors which include 

physical inactivity, unhealthy diet, cigarette smoking and alcohol consumption, all of 

which are modifiable where preventive measures could be developed on these habits 

to reduce the steadily increasing prevalence of this chronic disease (Deepa et al, 2017 

and Shi et al, 2013). A study showed that first-degree relatives of patients with T2DM 

disease are at high risk of developing this disease and observed to have early 

metabolic defects or impaired glucose metabolism, indicating that this disease has 

also heritable genetic correlation (Eriksson et al, 1989, Shaw et al, 1998 and Wu et 

al, 2014).  

Several susceptibility loci have been shown to be associated with T2DM using 

genome-wide association studies (GWAS) (Wu et al, 2014). There are also data to 

suggest that the gut metagenome is an essential player in the development of T2DM 

where altered gut microbiota is strongly linked to the disease, and that the gut 

bacterial populations of patients with T2DM are different from those who are non-

diabetic. Data indicates various opportunistic pathogens and butyrate-producing 

bacteria being increased and decreased, respectively, suggesting that T2DM patients 

may have a gut environment that is incapable of stimulating protective mechanisms 
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against microbes and oxidative stresses (Larsen et al, 2010, Qin et al, 2012, and Tai 

et al, 2015). 

T2DM often develops over a period of years, and therefore symptoms can also 

develop gradually.  Symptoms of T2DM include excessive thirst (polydipsia) and 

hunger (polyphagia), frequent urination (polyuria), feeling very tired (fatigue), losing 

weight without trying to, regular yeast infection (thrush), blurred vision and cuts or 

wounds taking longer to heal (National Health Service and Diabetes UK). 

T2DM patients have higher susceptibility to various forms of acute and chronic 

complications, both of which could lead to serious damage and other complications. 

These complications may include some of the macrovascular diseases like 

hypertension, hyperlipidaemia, myocardial infarction, coronary artery disease, stroke, 

cerebral vascular disease, and peripheral vascular disease, and microvascular 

diseases namely, retinopathy, nephropathy, and neuropathy (Forbes, 2013, Wu et al, 

2014 and Evans, 2015). Epidemiologic evidence clearly indicates that the risk of 

several types of cancer including colorectal, breast, pancreatic and liver is also 

increased in patients who are diabetic (Gallagher, 2015 and Noto, 2017).  

The cost of diabetes to the NHS is greater than £1.5 million per hour, or 10% of the 

NHS budget. In total, an estimated £14 billion pounds is spent per year treating 

diabetes and its complications, and analysis showed that people with diabetes in 

England has more likely to experience these debilitating complications (e.g. additional 

risk of >50% for heart attack, >70% for Angina and heart failure, >30% for stroke, 

>300 and 200% for minor and major amputations, respectively). Also, a 2016 study 

indicated that the global cost of diabetes has reached 825 billion dollars a year 

(Diabetes UK and Harvard School of Public Health).  
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Figure 1.7 The Pathogenesis and Pathophysiology of Type 2 Diabetes. 

Genetic predisposition, obesity, insulin resistance, and inflammation are factors that 

could affect normal β-cell function. Also, increased fat accumulation in adipocytes will 

lead to increased production of proinflammatory cytokines and lipolysis both of which 

could trigger the liver to produce more glucose. When β-cells are no longer capable 

of increasing insulin output along with the occurrence of insulin resistance, it could 

result to persistently elevated level of glucose concentration circulating which is 

initially manifested as impaired glucose tolerance. Since β-cell failure progresses, 

further elevations of glucose occur and thus preserves the hyperglycaemic 

environment that will ultimately lead to type 2 diabetes.  (Figure from Riddy et al., 

2018 with slight modifications) 

 

1.12 Current Treatment Options for Type 2 Diabetes 

 

The alarming increase in prevalence of type 2 diabetes has led to the development 

of several new approaches (lifestyle modification and pharmacologic agents) to safely 

treat hyperglycaemia.  The basic risk factor in the progression of prediabetes (IGT 

and IFG) to diabetes is obesity along with sedentary lifestyle (Hafner et al., 1990). 
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Consequently, gaining weight could potentially trigger insulin resistance and force the 

capacity of β-cell to secrete insulin (Kanat et al., 2015). On the other hand, weight 

loss by means of lifestyle intervention had been proven to improve whole body insulin 

sensitivity and to preserve β-cell function, and therefore an effective approach in 

preventing IGT or IFG conversion to T2DM (Tuomilheto et al., 2001; Muscelli et al., 

2005). For instance, studies showed that when individuals reduced 5% of their body 

weight, total body insulin sensitivity improved by 30% and decreased in their IGT-

T2DM progression nearly by 58% (Knowler et al., 2002; Kitabchi et al., 2005). 

However, interventions aiming weight loss if not practical in real life, is difficult or 

unsustainable (Wing et al., 2001). In cases where this first line of therapy is 

insufficient and not satisfactory for insulin sensitivity improvement, then 

pharmacological interventions are available alternative ways. 

Pharmacological interventions include therapies either in the form of oral and 

injectable drugs help patients mainly to reduce and maintain their blood level of 

glucose concentrations as close to normal for as long as possible after being 

diagnosed. Consequently, they aim to either prevent or delay the patients from 

developing complications. Despite some of these drugs having been unsuccessful due 

to adverse effects or negligible therapeutic efficacy, several are very well accepted 

and are being used worldwide. Many have different modes of action, partly due to 

the heterogeneous nature of the pathophysiology of T2DM and partly because 

individuals have different responses towards these drugs (Kahn et al, 2014). Some 

of these drugs are described below. 

Biguanides are one of the major classes of antidiabetic drugs, among which 

metformin has been used since the 1950s as the first-line therapy to treat people 

with type 2 diabetes. Metformin has been proven to be effective in lowering blood 

glucose by reducing hepatic glucose output and increasing insulin-stimulated glucose 
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uptake and glycogenesis in skeletal muscle. When used as a monotherapy, it can 

lower HbA1c by around 1.5%. It has also been demonstrated that metformin 

activates hepatic and muscle adenosine monophosphate-activated protein kinase 

(AMPK) which has important roles in regulating of lipid and glucose metabolism. The 

use of metformin, however, is shown to cause lactic acidosis and gastrointestinal (GI) 

effects such as nausea, vomiting, flatulence and diarrhea, the reduction of calorie 

intake, and weight loss (Cheng, 2005 and Holman, 2007).  

Sulfonylureas are also widely used as antidiabetic agents. They act by binding to 

the specific receptor for sulfonylureas on β-pancreatic cells, blocking the inflow of 

potassium (K+) through the ATP-dependent channel. This allows the cell membrane 

to depolarise, thus allowing the diffusion of calcium into the cytosol. The increased 

flow of calcium into β-cells causes the contraction of the filaments of actomyosin 

responsible for the exocytosis of insulin, which is therefore promptly secreted in large 

amounts (Ashcroft and Rorsman, 2013). The higher rate of hypoglycaemia especially 

in older adults with hepatic dysfunction, impaired kidney functions, and alcohol abuse 

are the major acute side effects reported with the use of sulfonylureas and may 

become worse when taken in combination with other drugs such as aspirin, oxidase 

inhibitors, and phenylbutazone. In addition, sulfonylureas can also cause weight gain, 

and may elevate the risk of cardiovascular disease among patients with diabetes 

(Scheen et al, 2005 and Phung et al, 2013). 

Thiazolidinediones (TZDs) are classified as insulin sensitizers. They are referred to 

as peroxisome proliferator-activated receptor γ (PPAR-γ) ligands which exert insulin-

sensitizing effects on the liver, skeletal muscles and adipose tissues (Hevener et al, 

2007). In combination with insulin or metformin, TZDs are effective to improve 

glycemic control in T2DM. However, TZDs exhibit several negative effects in the 

treatment for T2DM, including an increased risk of bladder, liver and colorectal cancer 
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(Chang et al, 2012 and Mamtani et al, 2012). Rosiglitazone and troglitazone are types 

of TZDs that have been withdrawn from the market as they are associated with the 

increased risk of myocardial infarction and idiosyncratic hepatotoxicity, respectively 

(Galasko, 2016 and Bailey, 2011). Another TZD option available is the pioglitazone 

which has been found to reduce the risk of IGT conversion to T2DM by 72% but was 

associated with significant weight gain and edema (DeFronzo et al., 2011), and in 

one study involving high-risk patients with type 2 diabetes and previous myocardial 

infarction (MI), pioglitazone significantly reduced the occurrence of fatal and nonfatal 

MI and acute coronary syndrome (Erdmann et al., 2007). 

α-Glucosidase inhibitors (AGIs): α-glucosidase inhibitors, such as acarbose, 

voglibose, and miglitol, are markedly effective for postprandial hyperglycemia. They 

decrease or delay carbohydrate absorption in the gut by inhibiting the intestinal 

mucosal enzyme (α-glucosidase) which converts complex polysaccharides into 

monosaccharides (Baron, 2012 and van de Laar, 2008). Adverse effects such as 

abdominal bloating, diarrhea and flatulence are often observed after the use of this 

class of drugs, and hence they should be cautiously administered in older adults due 

to gastrointestinal side effects and in patients with significant renal impairment (Kim 

et al, 2012). 

Incretins are hormones that stimulate insulin secretion and suppress postprandial 

glucagon secretion in a glucose-dependent manner. This effect is estimated to be 

responsible for 50-70% of the insulin response to glucose caused by glucose-

dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) that 

are secreted from intestinal endocrine cells (Vilsbol, 2004). Incretin-based drugs are 

now used routinely for T2DM and their use is associated with good efficacy and 

tolerability, and low risk of hypoglycaemia and weight loss (Lovshin, 2009).  
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GLP-1 receptor agonist also called incretin mimetics, are incretin-based medicine 

for the treatment of T2DM. Its actions include potentiation of insulin secretion, 

suppression of glucagon release, delay nutrient absorption, and appetite, thus making 

it effective in the regulation of glucose metabolism (Lund et al, 2014). GLP-1 receptor 

agonists such as exenatide and liraglutide are classified as antidiabetic agents that 

were observed to reduce levels of hemoglobin A1c (HbA1c) by 0.8% to 1.5% 

(Kurukulasuriya, 2010). These GLP-1 receptor agonists can be categorized as either 

short-acting compounds (exenatide and lixisenatide), which offer short-lived receptor 

activation or as long-acting compounds (albiglutide, dulaglutide, and liraglutide), 

which at recommended dose provide continuous GLP-1 receptor activation. The 

pharmacodynamic profiles are different from each other – the former primarily lower 

postprandial blood glucose levels via inhibition of gastric emptying whereas the latter 

compounds have a stronger effect on fasting glucose levels, which is mediated 

predominantly through their insulinotropic and glucagonostatic actions Meier, 2012). 

Dipeptidyl peptidase-4 (DPP-4) inhibitors are agents that block the action of 

DPP-4 enzyme on the endogenous active GLP-1 and GIP, hence they are effective in 

the protection of pancreatic β-cells to potentiate glucose-dependent insulin secretion 

and in the promotion of normal glucagon secretion, thus inhibiting the progression of 

T2DM. DPP-4 inhibitors are able to maintain inhibitory action throughout treatment, 

and thus are observed to prolong GLP-1 half-life. They are also well tolerated and 

have few gastrointestinal adverse effects, exert cardiovascular protection and have 

anti-arteriosclerotic action, and no increase in hypoglycaemic episodes (Duez et al, 

2012). 

Insulin and insulin analogues initiated-therapy are usually required for T2DM 

patients when lifestyle changes and oral antidiabetic agents are insufficient to achieve 

and maintain glycemic control. The mechanism by which this treatment option could 
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regulate level glucose concentrations is observed to be suppressing hepatic glucose 

production, increasing postprandial glucose utilization, and improving abnormal 

lipoprotein composition (Buse, 2001 and Wu et al, 2014). Analogue insulin is available 

in three forms, rapid acting (Humalog, NovoRapid) and long acting (Lantus, Levemir, 

Tresiba) as well as premixed combinations (Humalog Mix 25, Humalog Mix 30 and 

Humalog Mix 50). Rapid acting insulins initiate their effects immediately after injecting 

with peak of action within the 1st hour from injection and has a duration of up to 4 

hours. On the other hand, the long acting version of insulin analogues has no peak 

activity so as to act uniformly after 2 hours from injection and action lasts up to 12 

hours. In the case of a premixed analogue insulins, this is simply a combination of 

rapid acting and long acting insulin. For example, Humalog Mix 25 consists of 25% 

rapid acting and 75% long acting insulin (Diabetes UK, 2019). 

Sodium-glucose co-transporter type 2 (SGLT2) inhibitors are a relatively new 

class of glucose-lowering agents that have been proposed as a novel therapeutic 

strategy for diabetes. Blocking these transporters will elevate renal glucose excretion 

and prevent the reabsorption of glucose from the kidney back into the circulation, 

thus lowering blood glucose levels and potentially reducing weight (Chao and Henry, 

2010).  

T2DM is a progressive condition and so the need for additional agents might be 

essential to tailor patients’ preferences whilst improving glycaemic control. In this 

case, clinicians of all levels of expertise has now practiced a form of combination 

therapy as rational approach in the treatment or management of T2DM (Bailey, 

2013). For instance, GLP-1 receptor agonists are recommended in combination with 

metformin for patients who do not achieve HbA1c goals with metformin alone (Garber 

et al., 2018). For patients with persistent hyperglycaemia and/or those who are trying 

to control their weight, a triple therapy might be required which is a combination of 
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GLP-1 receptor agonists, metformin and a SLGT2 inhibitor (Hinnen, 2017). Another 

combination therapeutic approach that has become important for diabetic patients is 

the use of DPP-4 inhibitors and GLP-1 receptor agonists which could improve their 

glycaemic control whilst reducing bodyweight and blood pressure  with relatively low 

chance of hypoglycaemia (Garber, 2011).   

1.13 Glucolipotoxicity 

Under physiological levels, glucose and lipids are vital requirements for normal cellular 

and tissue functions. However, when levels of these become elevated, pathological 

conditions, damage, and abnormalities within tissues occurs. Thus the term 

glucolipotoxicity has resulted (Poitout et al., 2007). The damaging effects of 

glucolipotoxicity and its role towards the pathogenesis of T2DM (including β-cell 

dysfunction and insulin resistance) can be ascribed from the ability to initiate and 

mediate pathways leading to mitochondrial stress, generation of reactive species, 

proinflammatory cytokines, and altered gene expression (Bagnati et al., 2016; Akash 

et al., 2018).  

1.13.1 Glucotoxicity 

Glucotoxicity is exacerbated by poor control or management of T2DM, with 

hyperglycaemia reducing the capacity of pancreatic β-cells to secrete insulin and 

increasing the risk of developing insulin resistance. This in turn is likely to lead to 

further hyperglycaemia, and this vicious circle eventually results in dysfunctional β-

cells and reduced β-cell mass (LeRoith, 2002). Glucotoxicity is also the main cause of 

diabetic complications which are mostly only manifested several years after the illness 

has begun.  

The molecular signaling mechanisms of how hyperglycaemia activates cellular injury 

involve PKC activation via diacylglycerol, increased hexosamine pathway flux, 
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elevated formation of advanced glycation end product (AGE), and increased polyol 

pathway flux,  pathways which could potentially disrupt normal glucose metabolism. 

The unifying mechanism integrating these pathways is the increased production of 

reactive oxygen species, in particular, superoxide by the mitochondrial electron 

transport chain (ETC) (Nishikawa et al., 2000). This is further exacerbated by the 

activation of PARP that inhibits or inactivates GAPDH, delivering more glycolytic 

intermediates to the mitochondrion that would in turn increase ROS production 

(Reusch, 2003). 

Oxidative stress reduces biosynthesis and secretion of insulin (Sakai et al., 2003), in 

part through decreased DNA binding capacity of pancreatic duodenal homeobox-1 

(PDX-1). This a transcription factor that is a master regulator of gene transcription in 

β-cells, including key metabolic enzymes and the insulin gene (Matsuoka et al., 2001). 

It is thought that due to the extremely weak manifestation of antioxidant defence 

system present in pancreatic islet cells, they are also more susceptible to glucose 

toxicity and thus oxidative stress compared to other tissues and organs (Tiedge et 

al., 1997). A study showed that glucolipotoxic conditions upregulated UCP2 

expression and its increased activity was negatively correlated with insulin secretion 

(Chan et al., 2004). Beta cells express a mitochondrial uncoupling protein, UCP2, 

which is thought to lower the efficiency of oxidative phosphorylation, and thus could 

impair glucose-stimulated insulin secretion (GSIS) (Affourtit et al., 2008). In contrast, 

a study by Produit and colleagues showed that increased UCP2 levels decreased 

cytokine-induced production of reactive oxygen species and indicated that this might 

have a potential protective effect on beta cells (Produit et al., 2007), and similarly 

increased expression of this protein conferred protective effects on  ß-cells against 

glucotoxic conditions via reduction of Cell death and partially preserving the secretory 

response to glucose stimulation (Li et al., 2017). 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/uncoupling-protein
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/ucp2
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/oxidative-phosphorylation
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The negative impact of glucotoxicity does not only affect pancreatic beta cells but is 

also involved in insulin resistance of insulin-sensitive tissues, which include liver, 

skeletal muscle, and adipose tissue. It is thought that before the onset of chronic 

hyperglycaemia insulin resistance is typically present and that glucotoxicity may 

potentially aggravate this defect under diabetic conditions (Figure 1.8). In particular, 

glucotoxicity-driven oxidative stress has been shown to inhibit translocation of GLUT4 

to the plasma membrane, and to have induced insulin resistance in skeletal muscle 

and adipose tissues (Zhao et al., 2004; Dokken et al., 2008).  

The potentially harmful effects of chronic hyperglycemia have also been linked to 

both microvascular complications such as retinopathy, neuropathy or nephropathy 

and macrovascular complications like cardiovascular diseases (Manucci et al., 2013; 

Yamagisi and Imaizumi, 2005).  
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Figure 1.8. Chronic hyperglycaemia in diabetic state induces oxidative 

stress by overproduction of ROS.  Glycation is enhanced in the hyperglycaemic 

state which leads to the generation of ROS from intermediate metabolite known as 

Amadori product which also forms the advanced glycosylation end products. Under 

hyperglycaemic state, oxidative stress is also detected as a result of ROS being 

generated from the electron transfer system in the mitochondrial inner membrane. 

(Figure Adapted from Kawahito et al., 2009) 

 

1.13.2 Lipotoxicity  

Lipotoxicity is a term used to describe the functional impairment and damaging 

effects of excessive fat accumulation or elevated circulating levels of lipids on several 

metabolic pathways, both in adipose tissues and peripheral organs like the liver, 

heart, pancreas, and muscle (Yazici and Sezer, 2017). In response to an increasing 

energy demand where glucose supply is not adequate, lipolysis of fat stored 

(triglycerides) in adipose tissue occurs to release long-chain non-esterified fatty acids 

NEFAs or free fatty acids (FFAs) and glycerol. A study by Moro et al., 2009, showed 

that DAG accumulates in muscle of high-fat-fed rodent animals, and also of obese 

individuals.  This related to a study by Timmers et al., 2008 which reported that DAG 

accumulates after esterification of excess LCFA-CoA, whereby these lipid metabolites 
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have been demonstrated to activate PKC and be linked with inhibition of early steps 

in the insulin signal cascade.  

Elevated levels of NEFA observed in type 2 diabetes has been reported to cause 

severe muscle and liver insulin resistance, and to inhibit insulin secretion. It impairs 

insulin signalling and multiple intracellular steps of glucose metabolism (Figure 1.9) 

through intracellular toxic metabolites of FFA, including diacylglycerol (DAG), 

ceramides and the long-chain fatty acyl CoA (LCFA-CoA) (Kashyap et al., 2003; Belfort 

et al., 2005). Dietary fatty acids can be in the form of saturated or 

mono/polyunsaturated fatty acids, with the former being associated with obesity, 

insulin resistance, and cardiovascular disease. Upon entry to the cell, fatty acids are 

immediately esterified to fatty acyl-CoAs, and upon transfer of this to a glycerol 

backbone can form mono-triacylglycerols that in turn form the basis for ceramide 

biosynthesis upon esterification with sphingosine. These intracellular lipid 

intermediates are thought to be responsible in the pathogenesis of insulin resistance 

(Samuel and Schulman, 2012).  

The oxidation of fatty acid is a mitochondrial aerobic process where it breaks down 

into acetyl-CoA units utilizing nicotinamide adenosine dinucleotide (NAD) and flavin 

adenine dinucleotide (FAD). Once the FFA is activated and converted to a long-chain 

acyl-CoA, it then enters to mitochondria via carnitine-palmitoyl transferase-1 (CPT-1) 

to undergo β-oxidation through a series of enzymatic reactions to yield acetyl-CoA. 

This is then directed to the citric acid cycle for further oxidation – a process that 

provides ATP (Kumari, 2017). At a physiological level, fatty acids entry to the cells via 

CPT-1 for beta-oxidation has no detrimental functional effects, however when glucose 

concentration is elevated, the result would be the formation of metabolites like citrate 

and malonyl-CoA inhibiting CPT-1 which in turn block fatty acid oxidation and 

therefore accumulation of LCFA-CoA that has a negative effect on insulin signaling 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/acetyl-coa
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/citric-acid-cycle
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and beta-cell function. The deleterious effect of lipotoxicity as a consequence of the 

altered lipid partitioning is dependent upon elevated glucose levels and so 

glucotoxicity is a prerequisite for lipotoxicity to occur and the combined damaging 

effects of both is the concept of glucolipotoxicity (Poitout and Robertson, 2008).  

 

Figure 1.9. Possible mechanism of Fatty-induced insulin resistance in 

skeletal muscle. Elevated fatty acid may favour increased formation of 

intramuscular ceramide and diacylglycerol metabolites which in turn could inhibit the 

insulin signaling pathway. Increased FFA promotes proinflammatory events and ROS 

generation which could in turn impair insulin signaling pathways. (Figure Adapted 

from Abu Bakar et al., 2015). 

1.14 Oxidative Stress and Diabetes 

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a dual role 

as both harmful and beneficial species. Overproduction of these species results to 

oxidative stress which is an important mediator of damage to cell structures, including 

lipids and membranes, proteins, and DNA. Persistent elevation of glucose level in an 

organism activates ROS formation from a variety of sources which include oxidative 
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phosphorylation, glucose autooxidation, NAD(P)H oxidase, lipoxygenase, cytochrome 

P450monooxygenases, and nitric oxide synthase (NOS). However, ROS-RNS 

occurring at low to moderate concentrations are beneficial, for example in cellular 

defence systems against infectious agents, and in the induction of a mitogenic 

response (Valko et al., 2006). 

Under diabetic conditions, mitochondria and NAD(P)H oxidases are the most 

important sources of ROS. Hyperglycaemia leads to decreased activity of 

glyceraldehyde-3-phosphate dehydrogenase via increased generation of 

mitochondrial superoxide, with a concomitant increase in hexosamine pathway 

activity (Du et al., 2000). Complex II is the primary source of electrons that contribute 

to superoxide formation under hyperglycaemic conditions (Nishikawa, et al., 2000). 

A significant increase in superoxide production has been observed in the blood vessels 

of type 2 diabetic subjects, and this is associated with endothelial dysfunction and 

increased risk of atherosclerosis (Gruzik et al., 2002).  

Glucose autooxidation is another mechanism of ROS production, with glucose able to 

react with hydrogen peroxide in a metal-catalysed process or in the presence of iron 

and copper ions to form hydroxy radicals (Wolff and Dean, 1987). Xanthine oxidases 

(XO) and lipoxygenases are also proposed to be major sources of ROS in diabetes. 

When XO delivers electrons to molecular oxygen it generates superoxide anion (O2
.-

) and hydrogen peroxide (H2O2), and in the presence of iron gives rise to the hydroxy 

radical (HO.) (Batelli et al., 2016).  

In a study (Suzuki et al., 2015) on streptozotocin (STZ)-induced diabetic mice and 

exposure of neonatal cardiomyocytes to high glucose, an increased expression of 

lipoxygenases and monooxygenases was observed. This in turn catalyses the 

conversion of free fatty acids like arachidonic acid to leukotrienes and eicosanoids. 
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This is believed to then drive oxidative stress and inflammation, and to be involved 

in the development of diabetic cardiomyopathy. Hypergylcemia is also linked with 

increased formation of advanced glycation end products which result from the 

reaction between the free amino groups of proteins or lipids and glucose (Ling et al., 

2001). They in turn can damage the functions of DNA, proteins, and lipids, thereby 

triggering cellular responses including activation of inflammatory pathways, which are 

thought to be involved in the pathogenesis of several diabetic complications.  

1.15 Application of Antioxidants to Correct Oxidative Stress  

Oxidants are molecules that can have either unpaired electrons (free-radicals) or 

paired electrons (non-radicals). Both are produced from either an endogenous source 

like those that are of physiologically significance including superoxide anion, hydroxyl, 

and hydrogen peroxide, or from an exogenous source that can be obtained from 

cigarette smoke, ozone exposure, hyperoxia, and ionising radiations (Birben et al., 

2012).  

The formation of oxidative stress (OS), due to increased levels of reactive oxygen 

species and excess activation of free radical species, is known to be involved in the 

pathogenesis of most diseases and thereby could potentially disturb the organism’s 

antioxidant protection system, homeostasis and redox processes (Birben et al., 2012; 

Prokopieva et al., 2016). Under conditions of OS, biomolecules such as proteins, 

lipids, carbohydrates, and nucleic acids are the main target sites susceptible to 

damage, which consequently affects the intrinsic properties of these biomolecules. 

These vital properties include protein cross-linking, enzyme activity, ion transport, 

fluidity and protein synthesis (Sharma et al., 2012). However, under low to moderate 

concentrations, ROS/RNS were shown to have beneficial effects and carry out 

important physiological roles. This included defence against infectious diseases, and 

functioning as messengers in intracellular signaling cascades (Valko et al., 2007).  
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Markers of oxidative stress include nitrosylated and carbonylated proteins, lipid 

peroxidation products like isoprostanes, malondialdehyde, acrolein and 

hydroxynonenals, and other adducts like advanced glycation end products. The 

accumulation of these products was shown to have direct effects on the functions of 

biomolecules (Baraibar et al., 2013; Ho et al., 2007; Ames et al., 1993). Indeed, this 

damage can ultimately result in cell death. Thus, attempts to neutralise these 

deleterious substances could play a significant role in correcting oxidative stress. 

Antioxidants are natural or synthesised molecules that are believed to be effective in 

neutralising ROS. These have been shown to counteract oxidative stress, and 

therefore considered for use in many clinical situations to prevent a patient against 

several diseases induced by these harmful free-radicals or reactive metabolites (Ames 

et al., 1993). The enzymatic scavengers (superoxide dismutase, catalase, glutathione 

peroxidase, thioredoxin, peroxiredoxin, and glutathione transferase) and non-

enzymatic scavengers (Vitamin A, E and C, β-carotene, and glutathione) are two 

categories of antioxidant defence and repair system that the human body could utilize 

to regulate and counterbalance the detrimental effects of oxidants and redox 

modulations (Prokopieva et al., 2016; Valko et al., 2007; Birben et al., 2012).  

Despite the potential and efficiency of these scavengers, the use of antioxidants 

remains a challenge in medicine wherein some reported antioxidants did not always 

show positive results, changed mechanism of actions or may even show prooxidant 

action more likely attributed to its chemical structure, bioavailability, severity of 

oxidative stress or might be due to the improper adherence to the correct dosage or 

the ways these have been administered (Palozza, et al., 2003; Bowry et al., 1992). 

Exploring for molecules with maximum antioxidant action with minimum side effects 

for oxidative-driven diseases remains to be a significant challenge in medicine. The 

antioxidants that exhibit strong protective potential should have nontoxic behaviour, 
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good bioavailability, have no negative effects in case of overdose, would not form 

side products from its reaction with other molecules or reactive species, compatible 

with other medications, natural and show protective actions at a broad range of dose 

(Akbarirad et al., 2016). 

1.16 Mitochondrial Dysfunction in Skeletal Muscle and Insulin 

Resistance 

Skeletal muscles strongly rely upon oxidative phosphorylation in order to produce 

energy and thus perform its intended function. However, insulin-resistant skeletal 

muscle in type 2 diabetic individuals is ineffective in regulating the metabolism of 

both glucose and fatty acids (Kelley et al., 2002). Some manifestations of this 

abnormality include reduced glucose transport and phosphorylation along with 

reduced glycogen synthesis, elevated accumulation of triglycerides and other lipid 

metabolites, and dysregulated oxidation of lipids during fasting and insulin-stimulated 

conditions (Blaak et al., 2000; Schulman et al., 1990).  

Another factor that has the potential to perturb the normal metabolism of substrates 

is dysfunctional mitochondria and impaired functional capacity of mitochondria is 

thought to be an important aspect of the pathogenesis of insulin resistance. For 

instance, in the skeletal muscles of obese and type 2 diabetic individuals, it has been 

found that the activity of marker enzymes involved in oxidative pathways are 

significantly reduced, and fatty acid oxidation is impaired (Simoneau and Kelly, 1997). 

These observations resulted in the accumulation of lipid intermediates and led to 

abnormal glucose metabolism that was correlated with severe insulin-resistant 

glucose metabolism. It has also been postulated that the direct contribution of 

dysfunctional mitochondria to the abnormal glucose metabolism was because of the 

limited availability of ATP for use by hexokinase, along with other reactions where 

phosphorylation is necessary (Gerbitz et al., 1996; Goodpaster and Sparks, 2017).  
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In a study by Kelly et al., 2002, skeletal muscle mitochondria were found to be smaller 

in obese and T2DM, and this is believed to be a hallmark for a disturbed biochemical 

function of the mitochondria. In the same study, the activity of the electron transport 

chain was also reduced, as indicated by an almost 40% decrease in the activity of 

rotenone-sensitive NADH:O2 oxidoreductase. This observation was in line with an 

earlier report indicating an impaired activity of mitochondria tricarboxylic acid cycle 

enzymes in skeletal muscle in type 2 diabetic subjects (Vondra et al., 1997). In a later 

study using cultured cells from T2DM reported that the activity of oxidative enzyme 

citrate synthase form these patients was observed to be defective (Ortenblad et al., 

2005).  

The effects of reduced skeletal mitochondrial functional capacity in insulin resistance 

is an exciting area for future research. In humans and animals, methodologies to 

assess mitochondrial capacity include quantitation of mitochondrial density, analysis 

of enzyme content, and functional evaluation of either isolated or in situ mitochondria 

and the use of magnetic resonance spectrometry to evaluate in vivo mitochondrial 

function (Chow et al., 2010). More recently, technology has been developed that 

employs an analyser to measure oxygen consumption rate and extracellular 

acidification rate of live cells. This allows investigators to interrogate key cellular 

functions like mitochondrial respiration where basal respiration, ATP production and 

maximal respiration capacity of live cells are quantified, which could provide insight 

into the mechanism of mitochondrial dysfunction (Seahorse XF Analyser, www. 

Agilent.com).  

Reduced mitochondrial functional capacity has been demonstrated in the context of 

type 2 diabetic patients, and in obese/insulin resistant individuals who are not 

diabetic. Some reported specific observations (as described earlier) include smaller 

mitochondrial size, lower ATP generation and synthetic rates, decreased level of 
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mitochondrial enzyme activity, reduction of genes involved in oxidative metabolism, 

and reduced rate of TCA cycle flux rates (Asmann et al., 2006; Patti et al., 2003; 

Befroy et al, 2007; Szendroedi et al., 2007) 

Metabolic inflexibility is a phenomenon that is implicated in insulin resistance, and is 

believed to have a causal link to reduced mitochondrial function as a result of an 

organism’s failure to adapt or respond according to changes in metabolic or energy 

demand (Goodpaster and Sparks, 2017). Metabolic flexibility is mediated by cellular 

and organelle processes, most particularly the mitochondria. In a situation of 

metabolic inflexibility, muscle cells have an impaired capacity for substrate switching 

that is from higher rates or predominant fatty acid oxidation during fasting, to greater 

glucose utilization during fed (insulin-stimulated) conditions. As such this could 

contribute to the accumulation of lipid metabolites within the cell that has been 

observed in insulin resistance (Kelly and Mandarino, 2000). On top of the reported 

evidence described above, mitochondrial dysfunction also takes the form of metabolic 

inflexibility as evaluated in both in vivo and in vitro studies has been correlated with 

the degree of insulin insensitivity in healthy subjects and those that are predisposed 

to T2DM (Upropkova et al., 2005 and 2007). 

1.17 Muscle Myokines in Insulin Resistance and Type 2 Diabetes 

Skeletal muscle accounts for about 40% of body mass and for a non-obese individual 

it constitutes the largest organ (by mass). Skeletal muscle is also now recognised as 

being an endocrine organ where proteins expressed by and released from skeletal 

muscle are termed as myokines (Febbraio and Pedersen, 2005). Myokines are 

believed to participate in the communication between skeletal muscle and other 

tissues including gut, adipose tissue, liver and pancreas. Their autocrine, paracrine 

and endocrine effects have been regarded to have roles in metabolic regulation, and 

thereby make this as a relevant focus in understanding their contribution to the 
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impairment, dysregulation and protection in the above tissues, particularly in insulin 

resistance or T2DM-associated conditions. Proteomic approaches have allowed 

researchers to identify hundreds of myokines. Three comprehensive profiling studies 

of the human skeletal muscle secretome led to the identification of more than 300 

potential myokines which are believed to affect muscle physiology, and again might 

exert endocrine effects on other tissues and organs or work locally as paracrine or 

autocrine effects (Norheim et al., 2011; Raschke et al., 2013; Hartwig et al., 2014).  

A study which investigated the impact of type 2 diabetes on myokine secretion of a 

skeletal muscles showed that altered secretion, which is increased expression as 

compared to healthy subjects, of some myokines such as IL6, IL8,IL15, monocyte 

chemotactic protein (MCP) -1, follistatin, TNFα, and growth-related oncogene (GRO) 

is an intrinsic property of a type 2 diabetic skeletal muscles (Ciaraldi et al., 2016). 

Another study profiling human myotubes also revealed an intrinsic proteomic 

signature associated with T2DM. In this study, 47 abundant proteins were found to 

be significantly different in myotubes from T2DM patients as compared to healthy 

donors. Mostly, these proteins are involved in energy metabolism, cellular oxidative 

stress, protein dynamics and gene regulation (Al-Khalili et al., 2014). 

Quantitative determination of the muscle secretome offers the potential to explore 

not only the biology of the muscle itself, but to understand how crosstalk through 

release and secretion of proteins between muscles and other tissues could be utilised 

in the regulation of biological functions and signaling pathways that are relevant in 

different pathological conditions like type 2 diabetes. A study which used  combined 

experimental and bioinformatics workflow identified 1073 putative secreted proteins 

from lipid-induced insulin-resistant C2C12 skeletal muscle cells, and from this list 

about 40% were influenced by insulin-resistant conditions. This included insulin-like 

growth factor 1 (IGF-1), which has an important role in regulating growth and 
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metabolism and is known to have beneficial impact on glucose homeostasis due to 

its glucose-lowering and insulin-sensitizing effects. Additionally, because of its 

glucose-lowering and insulin-sensitizing actions, IGF-1 is down-regulated under 

palmitate-treated insulin-resistant conditions (Deshmukh et al., 2015).  

1.18 Carnosine: Properties, Biological Effects, Metabolism and its 

Therapeutic Potential as a Histidine-containing Dipeptides 

Carnosine and related compounds (anserine, balenine or ophidine, homocarnosine, 

and acetyl carnosine) are collectively referred to as histidine-containing dipeptides 

(HCD). Histidine is among the proteinogenic amino acids which play manifold roles 

due to the reactivity of its imidazole ring that characterizes its side chain. This 

reactivity is mostly ascribable to its amphoteric nature that can be seen as a 

combination of pyridine and pyrrole or acidic and basic in character. The imidazole 

basicity renders it an optimal buffer at physiological pH and several studies showed 

that the buffering capacity in human tissues is mostly related to the histidine 

concentration (Li et al., 2011). 

The total concentrations of HCD content between different mammals varies, although 

it is believed that almost all mammals have carnosine, along with one of the 

methylated carnosine analogs, anserine or ophidine. The exception to this are 

humans, which are the only species that does not have any of the two methylated 

carnosine analogs (Boldyrev et al., 2013). In mammals, the skeletal muscle and the 

olfactory bulb are the two tissues with highest concentration of carnosine, and here 

this can reach up to the millimolar range. Although 99% of carnosine present in an 

organism is found in the skeletal muscle tissue, the brain regions have 10-1000-fold 

lower measurable concentration as compared to the muscles (Kamal et al., 2009).  
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The carnosine content of muscle in humans is variable, ranging from a lowest value 

of 10mmol/kg dry weight and highest to about 40mmol/kg dry weight. This variation 

is linked to individual’s muscle fibre type, sex, age, diet and exercise training (Tallon 

et al., 2005; Harris et al., 2007; Everaert et al., 2010). In addition to Mg2+and ATP, 

L-histidine and β-alanine are two required amino acids for the synthesis of carnosine 

- a reaction catalysed by carnosine synthase (Kalyankar and Mesier, 1959). The 

proton-coupled oligopeptide transporter family are found to shuttle carnosine and its 

methylated analogs across the cellular membrane, this includes particularly the 

mammalian oligopeptide transporter 1 and 2 (PEPT1 and PEPT2) and the 

peptide/histidine transporter 1 and 2 (PHT1 and PHT2) (Yamashita et al., 1997). 

Nutritional supplementation and hormonal stimuli through a complex interaction 

amongst related transporters and enzymes are believed to play an important role in 

the regulation of carnosine dynamics in the muscles (Everaert et al., 2013). For 

instance, increased muscle carnosine through β-alanine supplementation was found 

to be associated with increased expressions of  TauT (taurine transporter – a β-

alanine transporter), CARNS and ABAT (aminobutyrate aminotransferase -  a 

carnosine precursor) in the muscles (Everaert et al., 2013). The hydrolysis of 

carnosine is mainly due to tissue carnosinase or serum carnosinase (Lenny, 1990; 

Jackson et al., 1991). Compared to its natural derivatives such as homocarnosine, N-

acetylcarnosine and carcinine, carnosine hydrolysis by serum and tissue carnosinases 

were found to be 3-4 times higher (Pegova et al., 2000). In addition, modification of 

carnosine through one of many processes such as methylation, acetylation or 

decarboxylation not only changed its biological activity (Boldyrev and Abe, 1999) but 

also observed to decrease the rate of hydrolysis by both forms of carnosinase, an 

observation suggesting that these compounds could have a longer half-life in the 

blood stream (Pegova et al., 2000).  
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The interest in carnosine and other imidazole dipeptides, such as anserine (β-alanyl-

L-3-methyl-histidine), homocarnosine (γ-aminobutyryl-L-histidine) and balenine (-

alanyl-L-3-methylhistidine), has recently increased. A study has reported carnosine 

as an effective antioxidant, intracellular buffer, immune modulator, neurotransmitter, 

metal-ion chelator, and free-radical scavenger (Boldyrev, 2012). It has been proposed 

also that carnosine could act as a naturally occurring scavenger of harmful reactive 

aldehydes or reactive carbonyl species (RCS) from the degradative oxidative pathway 

of endogenous compounds such as sugars, polyunsaturated fatty acids (PUFAs), and 

proteins (Hipkiss et al., 1998). Further, it has been demonstrated that carnosine 

reacts with 4-hydroxy-trans-2,3-nonenal (4-HNE), a toxic aldehyde involved in the 

pathogenesis of a number of diseases such as atherosclerosis, diabetes, and 

neurodegenerative diseases, in biological systems through a sacrificial mechanism 

mimicking the preferred HNE addition sites in proteins. This does not only further 

define the biological role of carnosine but more importantly to carnosine–HNE adducts 

as specific and unequivocal markers of lipid peroxidation in those biological districts 

where carnosine is specifically located at high concentrations, such as cardiac and 

skeletal muscles (Aldini et al., 2002). Recently, carnosine has been reported to be a 

highly effective scavenger of glucolipotoxic free radicals such as reactive oxygen and 

nitrogen species (RONS), resulting in beneficial actions on glucose homeostasis 

through both increased insulin secretion and skeletal muscle glucose uptake (Cripps 

et al., 2017). 

Reactive carbonyl detoxification has been suggested as a new potential therapeutic 

strategy due to its pathogenic role (Shapiro, 1998). The use of antioxidants and/or 

carbonyl trapping agents (nucleophilic compounds) are among the most important 

proposed pharmacological approaches for this purpose and these reagents should 

possess some basic requirements such as high and specific reactivity towards 
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cytotoxic aldehydes, safety, bioavailability, be non-toxic and easily or rapidly 

excreted. Interestingly, the dipeptide carnosine possesses a number of these basic 

requirements, since it is safe, and reacts through an autocatalytic mechanism with 

unsaturated aldehydes such as HNE (Carini et al., 2003). However, the rapid 

hydrolysis of carnosine in blood limits its application as a detoxifying agent towards 

RCS involved in the pathogenic mechanisms of many diseases.  

The positive biological effects of carnosine are not only confined to its scavenging 

action towards reactive species, but might also be attributed to its ability to function 

as a mobile pH buffer (Skulachev, 1992; Parkhouse et al., 1985) not only against 

hydrogen ions but also for mixed-valence metal ions particularly iron, cadmium, 

copper, manganese and cobalt (Hartman and Hartmann, 1992; Brown and Antholine, 

1979). These ions are known to have biological roles in many metabolic processes 

including the pathogenesis of some neurodegenerative and other age-related 

diseases (Sigel et al., 2006), and there are different pathological conditions involving 

critical metabolic processes such as protein misfolding and free radical driven-

oxidative stress that requires the presence of these metal ions (Nishida, 2012) and 

so the ability of carnosine to regulate the level of mixed-valence metal ions is another 

important property of carnosine that supports its antioxidant status. There are some 

reported putative physiological roles of carnosine, particularly in tissues or organs 

where it is more concentrated. For example, it plays an important role in the 

contractile function of skeletal muscles where it acts to offset muscle fatigue as an 

intracellular pH buffer in the acidosis-associated muscular contractile fatigue 

(Pedersen et al., Sale et al., 2013). Given the high concentrations of carnosine in the 

olfactory neurons, it was thought that this dipeptide might be involved in 

neurotransmission, either as a neurotransmitter or neuromodulator. This assumption 

was based on the idea that glutamate as the main excitatory neurotransmitter has 
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been found to be colocalized with carnosine in the synaptic terminals of mouse 

olfactory neurons in an immunohistochemical study (Sassoe-Pognetto et al., 1993). 

The neuroprotective effect of carnosine in certain brain structures has also been 

hypothesized to be mainly through its antioxidant action, and its ability to chelate 

transition metals like copper and zinc that have been identified as modulators in 

neurotransmission (Kawahara, Tanaka and Kato-Negishi, 2018; Boldyrev, 2001).  

Carnosine has also been found to have beneficial effects on cardiovascular function. 

The vasorelaxant effect of carnosine regulates the vascular tone which then helps to 

maintain normal haemodynamics or blood pressure and the mechanism involved was 

proposed to be increased pH buffering capacity and improved calcium handling, as 

carnosine is not only capable of facilitating the release of calcium in the sarcoplasmic 

reticulum it also helps improve tension of the contractile proteins in response to 

calcium (Zaloga et al., 1997; Ririe et al., 2000). The protection afforded by carnosine 

in ischemia and reperfusion tissue damage is associated with its ability to scavenge 

reactive oxygen species. For example, in a study involving a model of permanent 

focal cerebral ischemia in mice, carnosine treatment prior to ischemia significantly 

reduced the neuronal damage and infarct size paralleled with reduction of ROS levels 

in ischemic brains and a sparing effect on the depletion of glutathione (Rajanikant et 

al., 2007). 

Other therapeutic applications of carnosine include neurological disorder like 

Alzheimer’s disease where it has been observed to inhibit β-amyloid polymerization 

and protect the brain from the neurotoxic effect of β-amyloid peptide (Preston et al., 

1998). In ocular diseases, carnosine can modulate the aggregation and 

disaggregation dynamics of α-crystallin – insoluble aggregates that induces lens 

opacity (Seidler et al., 2004). Carnosine has been also applied for faster wound 

healing - where it could promote collagen biosynthesis through its β-alanine 
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component and through improved activity of the fibroblast growth factor leading to 

macrophage recruitment and angiogenesis which is associated to the L-histidine-

regulated histamine synthesis during trauma (Nagai et al., 1986; Numata et al.,2006). 

These observations were confirmed in a study whereby administration of carnosine 

enhances wound healing in db/db mice that might be ascribable to the increased 

expression of growth factors and cytokines involved in wound healing (Ansurudeen 

et al., 2012).   

The beneficial action of carnosine in diabetes was first observed in a study involving 

mice where 4-week oral supplementation of the dipeptide in a dose-dependent 

manner reduced plasma glucose and fibronectin levels, increased insulin levels, and 

reduced oxidative damage (Lee at al., 2005). This observation was also consistent 

with a later study which demonstrated that carnosine treatment (100-200mg/kg) 

reduced hyperglycaemia, and normalised dyslipidaemia in a streptozotocin diabetic-

induced model (Soliman et al., 2007). Carnosine has therefore attracted much 

attention as a naturally occurring antioxidant and thereby considered to be a possible 

therapeutic agent. This versatile antioxidant’s ability in controlling oxidative stress, 

suppressing glycation, and sequestering metal ions, make it as a champion in 

reducing harmful sequelae such as DNA damage, a known causal of many diseases.  

1.19 Carnosine in Foods 

The occurrence of aging had been associated with carnosine decline, and so 

carnosine-rich diets become increasingly relevant for human aging (Stuerenburg, 

2000). The nutritional interest in carnosine and other imidazole dipeptides stemmed 

from the idea that these antioxidant molecules are significantly present in meat 

products for human consumption (Peiretti and Meineri, 2015). In addition to 

endogenous source of carnosine through carnosine synthase, a diet such as a portion 
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of beef, pork or chicken daily could provide approximately 250 mg per day of 

carnosine (Peiretti and Meineri, 2015). Carnosine is not available in plants and so 

practically absent from vegetarian diets (Krajcovicova-Kudlackova et al., 2002). In 

fact, a study showed that the levels of AGEs were found to be higher in the plasma 

of vegetarians than in those of omnivorous people (Krajcovicova-Kudlackova et al., 

2002). Vegetarian diets are of course considered to be very healthy, however, the 

potential protective effects (controlled secondary diabetes complications) of meat 

observed amongst omnivorous diabetic patients as compared to exclusively 

vegetarian patients, (Peiretti and Meineri, 2015) remained to be poorly known among 

public opinion.  

Carnosine may be useful to improve the quality of meat for human consumption most 

likely via preserving it from oxidation, and thus maintaining its colour and taste. The 

level of polyunsaturated fatty acids in meat is a major player in the rate and extent 

of lipid oxidation in muscle tissue (Buckley et al., 1995). Lipid oxidation or the 

deterioration of its nutritional value or quality and affects taste, is caused by a 

substance called thiobarbituric acid (Fernandez et al., 1997). Different antioxidant 

systems such as α-tocopherol, and antioxidant glutathione peroxidase, superoxide 

dismutase, catalase and dipeptides containing histidine such as carnosine are present 

in muscle tissues that could potentially act as defensive mechanism to prevent or 

retard oxidation reactions (Meineri at al., 2013). It has been shown that the oxidative 

stability of skeletal muscle is largely influenced by dipeptides containing histidine, 

such as carnosine and anserine. These dipeptides, which are found in meat, are 

regarded as bioactive food components (Gardner et al., 1991). Imidazole dipeptides 

are also linked to the reduction of some aromatic compounds generated in meat 

which are responsible for its rancidity and colour change (Jimenez-Colmenero et al., 

2010). In addition, carnosine is highly efficient at maintaining an acceptable red 
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colour in ground beef during storage and has therefore been suggested as a useful 

antioxidant in foodstuffs of animal origin (Badr, 2007). Thus, carnosine either as a 

component of meat or as an additive, may be essential in preventing the formation 

of anomalous flavours, in increasing the shelf life of meat and meat products, and 

most importantly in preserving its nutritional quality. 

1.20 Aims and Objectives of the Study 

The global epidemic of diabetes continues to be a huge and growing problem and is 

responsible for an escalating human and financial cost annually. Importantly, existing 

treatments often become less effective over time. The first phase of this thesis details 

mechanistic experiments to investigate the potential of carnosine to scavenge, 

neutralise or detoxify glucolipotoxicity driven generation of reactive oxygen, nitrogen 

and carbonyl species and whether or not this effect could improve insulin signalling 

or glucose uptake of glucolipotoxicty-induced insulin resistant skeletal muscle cells. 

Secondly, this work utilises immunoprecipitation-mass spectrometry tandem 

techniques in order to identify proteins that are adducted by known biomarkers of 

oxidative stress, namely 3-nitrotyrosine and 4-hyroxynonenal, in cells and tissues 

central to the control of glucose homeostasis and that are subject to metabolic stress. 

The extent of adduction protection to these proteins by carnosine is also determined. 

Thirdly, the effectiveness of supplementation by β-alanine and slowly-hydrolysable 

carnosine analogs is assessed, and their potential to induce therapeutic benefit 

through enhanced glucose uptake or increased insulin secretion determined. Through 

these combined approaches, this PhD project aims to establish novel treatment 

strategies that can potentially ameliorate high sugar and high fat-induced insulin 

resistance in skeletal muscle cells, and thereby provide more effective treatment or 

prevention of type 2 diabetes. 



 

67 
 

 

Chapter 2: 

Materials 

and Methods 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

68 
 

2.1 Reagents and Solutions 

2.1.1 Materials 

Unless otherwise stated, all chemicals or reagents were purchased from Sigma Aldrich 

(Dorset, UK) and all plasticwares from VWR International Ltd (Lutterworth, UK). The 

luminescence-based glucose uptake kits were purchased from Promega 

(Southampton, UK). Antibodies were purchased from Abcam (Cambridge, UK) unless 

otherwise stated. 
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2.1.2 Solutions and Buffers 

The following table indicates the list of prepared solutions commonly used in one or 

more of the experiments conducted in this project. 

Table 2.1; List of Solutions and Buffers with its Corresponding 
Components. 

SOLUTION COMPOSITION 

Krebs-Ringer Buffer Solution (KREBS) 

125 mM NaCl, 1.2 mM KH2PO4, 5 mM KCl, 
2 mM Mg SO4, 1 mM CaCl2, 1.67 mM 
glucose, 0.1% Bovine Serum Albumin 
(BSA), 25 mM HEPES, pH7.4  

PBS (Phosphate buffered saline) 10X  137 mM NaCl, 2.7 mM KCl, 10 mM 
Na2HPO4, 2mM KH2PO4, pH7.4  

Sample Buffer  

 

4X Laemmli sample buffer (BioRad):2-
mercaptoethanol (9:1) 

Running Buffer  25 mM Tris base, 190 mM glycine, 0.1% 
SDS, pH 8.3  

Transfer buffer  20% 5X Trans-Blot Transfer buffer 
(BioRad), 60% distilled H2O, 20% of pure 
Ethanol  

TBS (Tris Buffered Saline)  50mM Tris-Cl, 150mM NaCl pH7.6  

TBST  TBS + 0.1% TWEEN20  

RIPA Buffer  150mM NaCl, 0.5% Deoxycholate, 0.1% 
SDS, 50mM Tris Base, 1% Triton 100, 1x 
protease inhibitor tablet pH=8.0  
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Paraformaldehyde  1 % PFA in PBS with 2-3 drops of 1N 
NaOH, pH= 7.4 

Immunoprecipitation Lysis/Wash Buffer 25mM Tris, 150mM NaCl, 1mM EDTA, 1% 
NP40, 5% glycerol. pH=7.40 

Coupling Buffer 10mM sodium phosphate, 150mM NaCl, 
pH=7.20 

2.2 Cell Culture 

2.2.1 Cell Line and Primary Cells Used 

Table 2.2; List of Different Cell Types Used in this Project. 

Cell Types and Species  Characteristics or Description 

 

 

 

 

 

 

C2C12 - Mouse 

The C2C12 (ECACC 91031101) used in 

this project was purchased from Public 

Health England and as supplied by the 

European Collection of Authenticated 

Cell Cultures (ECACC). This is a sub-

clone from myoblast line established 

from normal adult C3H mouse leg 

muscle. It proliferates readily in high 

serum and differentiates rapidly at low 

serum and produces extensive 

contracting myotubes expressing 

characteristic muscle proteins. C2C12 

cells express GLUT 4 transporters that 

are translocated and activated in 
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response to insulin stimulation 

resulting in glucose uptake (Yaffe and 

Saxel 1977; Fisher and Williams, 

2011).  

 

 

 

 

 

 

Human Skeletal Muscle Myoblasts 

(HSkM) 

Cells were purchased from Lonza 

Bioscience, Switzerland in the second 

passage. CloneticsTM Human Skeletal 

Muscle Myoblasts (HSkM) are isolated 

from the upper arm or leg muscle tissue 

of a healthy donor (20-year old, 

Caucasian male, BMI = 21, non-

smoker). Using the conditions described 

below, HSkMs can be differentiated to 

form multinucleated myotubes in 

culture. The use of this cell in this project 

involved population doublings not more 

than 10. As provided in its certificate of 

analysis, this cell is negative for 

mycoplasma, bacteria, yeast, and fungi 

and HIV-1, hepatitis B and hepatitis C 

are not detected for this cell lot.  

 

 

 

         Primary Mouse Muscle Cells 

Five, young, male, 19-21g five male 

mice (CD-1 IGS strain, source: Charles 

River) were purchased and maintained 

by staff in the Biological Services Unit, 

NTU. The muscle isolation was 
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conducted by Dr. Craig Doig (NTU) using 

the cell culture conditions and protocol 

detailed below. In contrast to the use of 

immortalised myogenic cell lines, 

primary myoblasts have been suggested 

and highly recommended as the most 

physiologically relevant in vitro model of 

myogenesis because they are devoid of 

some degree of variability observed in 

cell lines associated with the origin of the 

cells, culture conditions and passage 

number (Hindi et al., 2017).  

 

 

 

 

Primary Adipocytes - Human 

In collaboration with Prof McTernan’s 

group in NTU, these adipocytes obtained 

as passage 1 from a female healthy 

donor (age -37, BMI- 23.5) were 

provided and cultured until passage 3 

through the assistance of Dr. Alice 

Murphy and Dr. Adaikala Antonysunil. 

Along with other human samples used in 

this project, including serum and fat 

from different human patients, these 

were obtained with informed consent 

and local Ethical Approval ((IRAS No. 

81368). 
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INS-1 - Rat 

INS-1 is one of the most widely used 

insulin-secreting cell lines and was 

derived from a rat insulinoma induced by 

X-ray irradiation. These cells exhibit 

several relevant characteristics of 

primary pancreatic beta cells, including 

high insulin content and responsiveness 

to glucose within the physiological 

range, thus making them a suitable β-

cell model. These cells do however 

require 2-mercaptoethanol in their 

culture media and without this 

component, the cells cannot be 

propagated and lose many important 

functional characteristics (Asfari et al., 

1992; Skelin et al., 2010).  

 

2.2.2 Media Components and Preparation 

Table 2.3; Media Components for Different Cell Types Used in this Project. 

Cell and Media Type Components 

 

For C2C12: 

- Growth Media 

DMEM-high glucose (Dulbecco’s 

Modified Eagle Medium; 

41966029,ThermoFisher Scientific, UK), 

10% hi Fetal Bovine Serum (FBS; F9665, 



 

74 
 

Sigma, UK), 10% Newborn Calf Serum 

(NCS; 26010074, ThermoFisher 

Scientific, UK), 1% penicillin-

streptomycin (Pen-Strep; 15140122, 

ThermoFisher Scientific, UK), 1%L-

glutamine(25030024; ThermoFisher 

Scientific, UK). Aliquoted and stored in 

40C up to not more than 8 weeks. 

- Differentiation Media DMEM-high glucose (Dulbecco’s 

Modified Eagle Medium; 41966029, 

ThermoFisher Scientific, UK), 2% hi 

Horse Serum (HS; 26050088, 

ThermoFisher Scientific, UK), 1%L-

glutamine(25030024; ThermoFisher 

Scientific, UK), 1% penicillin-

streptomycin (Pen-Strep; 15140122, 

ThermoFisher Scientific, UK). Aliquoted 

and stored in 40C up to not more than 8 

weeks.  

 

For HSkM: 

- Growth Media 

Ready to use Human Skeletal Muscle 

Growth Media (C-23060; PromoCell, 

Germany) with supplement pack 

containing fetal calf serum, fetuin 

(bovine), dexamethasone, and 

epidermal growth factor, insulin, basic 

fibroblast growth factor (recombinant 

human). After adding the supplements 

to the medium, this was then aliquoted 

and stored in 40C up to not more than 6 

weeks.   

 DMEM-F12, HEPES (11330032; 

ThermoFisher Scientific, UK), 2% hi 
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- Differentiation Media Horse Serum (HS; 26050088, 

ThermoFisher Scientific, UK), 1% 

penicillin-streptomycin (Pen-Strep; 

15140122, ThermoFisher Scientific, UK). 

Aliquoted and stored in 40C up to not 

more than 6 weeks. 

For Primary Mouse Muscle Cells: 

 

 

- Satellite Cell Culture Media 

DMEM-high glucose (Dulbecco’s 

Modified Eagle Medium; 41966029, 

ThermoFisher Scientific, UK), 30% FBS 

F9665, Sigma, UK), 10% not hi HS 

(16050-122, ThermoFisher Scientific, 

UK), 1% Chick Embryo Extract (C3999-

USB, Stratech, UK), 2% L-glutamine, 

1% Penicillin-Streptomycin, 10 ng/mL 

recombinant murine fibroblast growth 

factor-basic (450-33, Peprotech, UK). 

Freshly prepared and to be used on the 

day of the muscle isolation.  

- Proliferation Media DMEM-high glucose, 10% horse serum, 

0.50% Chick Embryo Extract, 2% L-

glutamine, 1% Penicillin-streptomycin. 

Prepared as required and stored at 40C. 

- Differentiation Media DMEM-high glucose, 2% horse serum, 

2% L-glutamine, 1% Penicillin-

streptomycin. Prepared as required and 

stored at 40C. 

For Primary Adipocytes: 

- Growth Media 

DMEM/Ham’s F-12 no phenol red 

(11039047, ThermoFisher Scientific, 

UK), 1% Penicillin-Streptomycin, 10% 

FBS (F9665, Sigma, UK),  5 ng/mL FGF-

basic recombinant human (VXPHG0026, 

Fisher Scientific, UK), 5 µg/mL 

Transferrin, human (VX0030124SA , 

Fisher Scientific, UK). Aliquoted and 
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stored in 40C up to not more than 6 

weeks.  

 

- Differentiation Media 

DMEM/Ham’s F-12 no phenol red 

(11039047, ThermoFisher Scientific, 

UK), 3% FBS (F9665, Sigma, UK), 

Preadipocyte Supplement Mix (C39436, 

PromoCell, Germany). Aliquoted and 

stored in 40C up to not more than 6 

weeks. 

- Nutrition Media DMEM/Ham’s F-12 no phenol red 

(11039047, ThermoFisher Scientific, 

UK), Adipocyte Nutrition Supplement 

Mix (C39439, PromoCell, Germany). 

For INS-1 β-cells: 

- Growth Media 

Pre-prepared 10.30g of RPMI powder 

(11Mm glucose) (ThermoFisher, UK) in 

1L distilled H2O, 26mM NaHCO3, 10mM 

HEPES, 50µM mercaptoethanol, 10% 

FBS (Life Technologies, UK), 1% sodium 

pyruvate, 1% penicillin-streptomycin. 

Sterile-filtered, pH adjusted to 7.4. 

Stored at 40C.  

 

2.2.3 Cell Culture, Propagation and Differentiation 

C2C12 and HSkM. Mouse C2C12 and human skeletal myoblasts were maintained in 

their growth media specified in Table 2.2 in a humidified atmosphere with 5% CO2 at 

37oC. At ~ 80% confluency, cells were washed twice with PBS and thereafter, the 

medium was then switched to differentiation medium to facilitate the myocytic 

differentiation prior to performing the relevant assay and was replaced after 2, 4, and 

6 days of culture.  
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Primary Mouse Skeletal Muscles. Briefly, isolated muscles placed in DMEM-1% 

penicillin-streptomycin and glutamine were disaggregated in 0.2% 

collagenase/DMEM in an incubator at 37ºC for 90-120 mins with gentle agitation. 

After trituration of the muscles to liberate the myofibres, these were then serially 

transferred to 6-well plates coated with 1/40 Matrigel in DMEM (354234; Corning, 

UK) containing the satellite culture media and stored in the incubator at 37C with 

5% CO2 for the next 96 hours. After this time, adhered fibres were gently removed 

from the surface of the well leaving satellite cell-derived myoblasts. When about 30-

50% confluency was reached, the media were then changed to Proliferation media 

as detailed in the table above. When wells became about 90% confluent, the media 

were replaced with Differentiation medium and maintained media replacement every 

48 hours for the next 5-6 days prior to any use for assay. 

 

Primary Adipocytes. Isolated primary human preadipocytes were cultured in T75 

flasks using its growth media described above and changing this every 48 hours and 

once 80-90% confluent was reached, cells were further incubated in its growth media 

for 2 days, then initiated (day 0)  the differentiation by incubating these in 

differentiation media. During day 0 to day 6 of adipogenesis, media were maintained 

and replaced every 48 hours and placed in nutrition media from day 6 to day 14. 

2.2.4 Cell Passage and Amplification 

Cells were passaged or split once the desired confluency (e.g. 80-90% for C2C12 

cells, or 70% for HSkM) was reached. Growth media was aspirated and cells washed 

three times with pre-warmed sterile phosphate-buffered saline (PBS), and then 

incubated in 5mL (for T75 flask) Trypsin-EDTA (Life Technologies, UK) for 5 minutes 

at 37°C and with moderate tapping of the flask thereafter, this allows cells to be 
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completely detached. The dislodged cells were then added an equal volume of growth 

media and centrifuged at 1300 RPM for 5 minutes at room temperature to form a 

pellet of cells. Cell pellets were then resuspended in an appropriate volume of 

complete growth media at desired seeding density in new tissue culture treated flasks 

of plates. 

2.2.5 Cell Counting and Plate Seeding 

All types of cells used in this project were initially grown in T75 culture flasks and 

after existing media was aspirated, cells were washed three times with pre-warmed 

sterile phosphate-buffered saline (PBS) and were detached by incubating in 4ml of 

Trypsin EDTA (Life Technologies). Trypsin was then neutralised with an equal volume 

of complete growth media and the cell suspension collected and centrifuged at 1300 

RPM for 5 minutes. The supernatant was discarded, and the resulting cell pellet was 

resuspended in 6-8ml of complete growth media. Cells were either counted manually 

using haemocytometer or automated cell counter Lumina II (Vita Scientific, USA ). 

For manual counting, a 10μl of cell suspension (1:1 mixture of cell suspension and 

0.4% Trypan Blue) was loaded into a Neubauer chamber then the number of cells 

was determined from four big squares (counting clockwise and Top-Left) highlighted 

in Figure 2.1 to quantify the estimated cell concentration using the following formula: 

𝑪𝒆𝒍𝒍 𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏 (
𝒄𝒆𝒍𝒍𝒔

𝒎𝑳
) =

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒆𝒍𝒍𝒔 

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒒𝒖𝒂𝒓𝒆𝒔
 𝒙 𝟏𝟎𝟎𝟎𝟎 𝒙 𝑫𝒊𝒍𝒖𝒕𝒊𝒐𝒏 𝑭𝒂𝒄𝒕𝒐𝒓 

 
For experiments using C2C12, ~20000 cells in 1mL media or ~40000 cells in 2mL 

media grow to ~80% confluency in 2 days when grown in 6-well and 12-well plates, 

respectively. At the same density, HSkM take a day or two more to reach the same 

confluency. After each desired confluency, cells were differentiated for 5-6 days prior 

to any particular treatment for further experimental assay. 
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Figure 2.1; Haemocytometer gridlines and counting chamber for cell 

counting. A 10µL cell suspension is introduced to a space of known depth 

(0.1mm) beneath a coverslip and counted within a grid of area 1mm2. This 

gives the number of cells per 0.1mm3 (or 0.1µL). Multiplying by 10 gives the 

number of cells per µL and multiplying by 10,000 gives the number of cells 

per mL. 

2.2.6 Cell Cryopreservation and Recovery of Frozen Cells 

Cells grown in T75 culture flasks were collected when 80-90% confluent. The growth 

medium was then aspirated, and cells were washed thrice in sterile PBS and then 

incubated in 5 ml Trypsin-EDTA (Life Technologies, UK) for 3-5 minutes at 37°C to 

allow dispersal of cells. Cells were then harvested using an appropriate volume of 

complete growth media and gently mix before being collected by centrifugation at 

1300 rpm for 5 minutes at room temperature. Cell pellets were then resuspended at 

1 mL per cryovial in freezing media called Synth-a-Freeze (A1254201; ThermoFisher 

Scientific, UK), a liquid cryopreservation medium containing 10% dimethylsulfoxide 

(DMSO). These cells were then stored at -80°C using a cell freezing container 

(BCS405; Biocision, USA) with standardized controlled-rate -1o C/minute cell freezing 

in a -80oC freezer without alcohol or any fluids and uses a thermo-conductive alloy 

core and highly-insulative outer material to control the rate of heat removal and 
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provide reproducible cell cryopreservation.  After 24 hrs – 2 months cells were then 

transferred to liquid nitrogen facility for long-term storage.  

Cells recovered from long term storage were defrosted then added gently with 3-5 

mL of complete growth media, centrifuged for 5 minutes, the supernatant removed 

then washed twice with growth media. Thereafter, cells were then resuspended in 3-

5 mL of growth media and seeded appropriately in a T75 culture flask and incubated 

at 37°C in a 5% CO2 atmosphere. 

2.2.7 Mycoplasma Screening 

The Bioscience department of NTU and/or the Turner laboratory group conducts 

biannually (or when necessary) screening for mycoplasma infection for all cells used. 

The screening utilised a highly sensitive and specific polymerase chain reaction (PCR)-

based assay mycoplasma detection kit (K10210; Geneflow Ltd., UK). The system 

excludes the amplification of DNA originating from other sources, such as tissue 

samples or bacteria, which affect the detection result. Instead, the primer sets used 

enhance not only the sensitivity but also the specificity of detection which is the 

amplification of the 16S rRNA gene region of mycoplasma and produces a PCR 

reaction product of 270bp band when run on an agarose gel. About 1mL of cell culture 

supernatant from cultured cells growing for a minimum of 24 hours was used for this 

analysis, which is processed for PCR amplification and then analysed the amplified 

products by gel electrophoresis.  

In order to prevent mycoplasma contaminations, aside from observation of proper 

laboratory practice in cell culture ( e.g. always wearing proper protective equipment 

in the cell culture lab and using proper sterile techniques), the Turner group also 

utilises  non-toxic pharmacidal spray (K10335; Geneflow, UK), as part of keeping the 
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laboratory regularly tidy, containing quaternary benzyl ammonium compounds as 

active ingredients for disinfecting benchtops and incubators to protect against 

multiple types of contaminants including bacteria, fungi, virus and mycoplasma.   

2.3 Preparation of Healthy Control and Glucolipotoxicity 

Media 

For C2C12 and primary mouse muscle cells, the media for the control or normal 

condition (“healthy”) are composed of  DMEM (11mM of glucose) with 2% heat-

inactivated horse serum whilst for HSkM healthy control is DMEM-F12 (5mM glucose 

media) with 2% horse serum and for primary adipocytes this is DMEM-F12 Nutrition 

media (5mM glucose). Each prepared healthy control media was then sterilely filtered 

using a 0.20 µm syringe filter. On the other hand, to mimic diabetic extracellular 

glucolipotoxic conditions or GLT (high glucose and high fatty acids) in vitro, cells were 

incubated for 5-days in similar media components as healthy except that glucose 

concentration is 28mM for mouse muscle cells, 17mM for HSkM and all were 

supplemented with 200μM palmitic acid and 200μM oleic acid in combination. Stock 

solutions (100mM) of oleic acid in 50% ethanol-H2O and palmitic acid in absolute 

ethanol were previously prepared, and appropriate volume to obtain each a final 

concentration of 200 µM was then added to the GLT media containing 2% of fatty-

acid free BSA and placed this mixture in 370C for a minimum of 1 hour to allow the 

fatty-acid and BSA conjugation and thereafter this was then sterilely-filtered using 

0.20 µm syringe filter (UY02915-60; Cole Parmer, UK). All experimental condition 

media were freshly prepared as required and were used only within the treatment 

period. 

Table 2.4; Volume of Experimental Media (Control or GLT) Added for Cell 

Treatment 
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Cell Culture Plates or Flasks Volume of Control or GLT Media, 
mL 

(replacement on Day 3) 

12-Well 1 

6-Well 2 

T25 5 

T75 13 

 

2.4 Protein Expression Analysis 

2.4.1 Protein Sample Preparation 

Cells were cultured under the desired conditions, then washed thrice with PBS 

and subsequently added with an appropriate amount (1mL/T75 flask or 0.25 mL for 

6-well plates) ice-cold RIPA buffer containing 1X protease and phosphatase inhibitors 

tablets (Roche Applied Science, Switzerland). Scrapers were used to detach the cells 

from the plates and destroy cellular integrity. Lysates were collected in 1.5 ml tubes, 

placed in an ice bath for 30 minutes with regular vortexing to disaggregate protein 

from cell debris and then centrifuged 13000 x g at 40C for 12 minutes. The 

supernatants were transferred into a clean 1.5 ml tube and protein concentration was 

quantified using the Pierce™ BCA Protein Assay Kit (Pierce Biotechnology Inc., 

ThermoFisher Scientific, UK) ready for analysis. For later use, lysates are stored in 

either -200C or -800C whilst avoiding multiple freeze/thaw cycles as much as possible. 

2.4.2 Protein Quantification (BCA Assay) 

The quantification of total protein was via colorimetric detection based on 

bicinchoninic acid using Pierce™ BCA Protein Assay Kit. The principle of this method 
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entails the well-known reduction of Cu (II) to Cu (I) by the proteins in the sample in 

an alkaline medium using a unique reagent containing bicinchoninic acid. The purple-

coloured reaction product of this assay is formed by the chelation of two molecules 

of BCA with one cuprous ion. This water-soluble complex exhibits a strong absorbance 

at 562nm that is nearly linear with increasing protein concentrations over a broad 

working range (20-2000μg/mL). Accordingly, protein concentrations were 

determined and reported with reference to standards of a common protein which in 

this analysis used bovine serum albumin (BSA). A series of dilutions of known 

concentration are prepared from the protein standards and assayed alongside the 

sample solutions and hence determined the concentration of each sample based on 

the standard curve using the concentration of standards as the x-axis and the 

absorbance as y-axis. 

The required volume of Working Reagent (WR) was prepared following the 

manufacturer’s instructions that is using the (50:1, Reagent A:B) mixing ratio. A 200-

µL of WR is required for each 10-µL of samples and standards. After about 30 seconds 

of thorough mixing on an orbital shaker, the microplate was covered and incubated 

at 37°C for 30 minutes then absorbance was read at 595 nm using the iMarkTM 

microplate absorbance reader (BioRad, UK). Table 2.5 indicates the serial dilution 

steps for the preparation of different standard concentrations of BSA. 
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Table 2.5; BSA Standards Preparation 
 

Solution BSA Source, µL 

Diluent 
(RIPA + 

Inhibitors), 
uL 

BSA Standard 
Concentration, 

µg/mL 

A 300 of Stock 0 2000 

B 375 of Stock 125 1500 

C 325 of Stock 325 1000 

D 175 of B dilution 175 750 

E 325 of C dilution 325 500 

F 325 of E dilution 325 250 

G 325 of F dilution 325 125 

H 100 of G dilution 400 25 

I 0 400 0 = blank 

2.4.3 Western Blotting 

2.4.3.1 SDS Gel Preparation 

BioRad Mini-PROTEAN® tetra hand-cast systems were used.  Preparation of a 10.0% 

polyacrylamide resolving gel mixture and a 4% stacking gel mixture is shown in Table 

2.6 mixed in the order indicated. This was then poured between one short and one 

spacer plate assembled in a casting stand up to a level about 2cm below the comb 

for the stacking gel, and aside from ensuring gel has an equal level or set, bubbles 

should be removed and this was achieved by layering the top of the gel with 100% 

ethanol. After the gel has completely polymerised for about 30-45 minutes, the 

ethanol was completely removed by washing out the traces with distilled water or 

with a use of filter paper carefully dipped into it, and thereafter a stacking gel is 

poured on top of the resolving gel then a comb was inserted to make wells and then 

allowed to set for about 30 minutes. 
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Table 2.6; SDS-PAGE Gel Recipe 

Gel Composition 
Resolving Gel 
(10%), 10mL 

Stacking Gel 
(4%), 5mL 

Distilled Water 4.0 mL 3.1mL 

30% Acrylamide/Bis-acrylamide 3.3 mL 0.65mL 

Tris Buffer (1.5M, pH=8.8) 2.5 mL - 

Tris Buffer (0.5M, pH=6.8) - 1.25mL 

10% SDS 100 µL 100 µL 

N,N,N′,N′-tetramethylethylene-diamine 

(TEMED) 

15 µL 10 µL 

10% Ammonium Persulfate (APS) 50 µL 100 µL 

2.4.3.2 Sample Loading, Separation, and Transfer 

From the previously determined concentration of each cell lysate by BCA assay, for 

example each 20μg equivalent amount of protein is diluted to 30μL using RIPA buffer 

and added with 5μL of 4X Laemmli sample buffer (90μL 4X Laemmli:10μl β-

mercaptoethanol) (BioRad, UK). This mixture was then placed in a heating block at 

95°C for 5 minutes. After gels have been placed in an assembled electrophoretic 

chamber containing an adequate volume of running buffer, an equal amount of 

samples alongside a molecular weight marker (5-10 µL) were then carefully and 

gently loaded using gel loading tips into the wells of the gel ensuring samples to 

settle evenly on the bottom of the well. Gels were then run at 50V for ~20 minutes 
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and afterward the voltage was then increased to 120V and separation is judged 

complete until the sample front approached the bottom of the gel.  

After complete separation, the Cassette protein were then transferred to 

nitrocellulose membrane (immersed and equilibrated 2-3 minutes in Trans-Blot Turbo 

Transfer Buffer) (BioRad, UK) by having the gel placed on top of the membrane and 

sandwiched this between transfer packs previously saturated in same transfer buffer 

and ensuring that no bubbles are trapped in the sandwich. Finally, the transfer was 

carried using a pre-programmed transfer protocol (e.g. mixed molecular weight; 

1.3A, 25V, 7minutes) of the Trans-Blot TurboTM Transfer system (BioRad, UK).  

 

 

 

   

 

Figure 2.2; Example of protein transfer and the proper layering of the 

assembled transfer pack. Separated protein samples were efficiently transferred 

to nitrocellulose membrane using Trans-Blot TurboTM (right) with preprogrammed 

setting for mixed molecular weights; 25 volts constant for 7 minutes and the dual-

color Precision Plus Protein Standards (BioRad, UK). Successful transfer was 

confirmed using Ponceau S solution (left) before immunoblotting. Briefly, the 

membrane was incubated in 5 ml of Ponceau solution for one minute with gentle 

rocking until bands were visible, then solution was decanted and the remaining 

adhered stain were washed with TBST. 
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2.4.3.3 Antibody Incubation and Chemiluminescent 

Detection 

In order to check the transfer quality as shown in Figure 2.2, the blot was briefly 

rinsed first in distilled water then was stained in Ponceau solution (Sigma, UK). 

Afterwards, the Ponceau S stain was rinsed off with three or more washes with TBST, 

then the membrane was blocked in 5% (w/v) milk (Marvel Original dried skimmed 

milk powder) or 3% BSA in TBST for 1-2 hours. Subsequently, the membrane was 

incubated with gentle agitation overnight with a primary antibody against the target 

protein (e.g. iNOS, GLUT4, ATPGD-1, CNDP2) diluted according to the manufacturer’s 

recommended ratio in 5% (w/v) milk or 3% BSA in TBST at 4°C. The membrane was 

rinsed 3-5 times with TBST for 5 minutes before incubation in appropriate horse 

radish peroxidase (HRP)-conjugated secondary antibody (anti-rabbit or mouse IgG) 

diluted in 5% milk in TBST for ~1 hour at room temperature. Similarly, the membrane 

was washed three times in TBST for 5 minutes each before being developed for 

imaging and data analysis using ECL plus mix solution (GE Healthcare, UK) and the 

chemiluminescence sensitive Image reader LAS4000 (GE Healthcare, UK).  

Densitometric analysis was performed using gel electrophoresis image analysis 

software GelAnalyzer where the ratio between the band intensity of protein of interest 

to its corresponding housekeeping protein is calculated and the data is represented 

as fold change between conditions in comparison to control. 

2.5 Cellular Function Analysis  

2.5.1 Cell Viability 

Cell viability was assessed using the Calcein-Acetoxymethyl ester kit (ThermoFisher, 

UK). Calcein AM is a non-fluorescent, hydrophobic compound that easily permeates 
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intact, live cells. The hydrolysis of Calcein AM by intracellular esterases of viable 

eukaryotic cells produces calcein, a hydrophilic, strongly fluorescent compound that 

is well-retained in the cell cytoplasm.  In the assay, conditioned media of cells that 

were previously incubated in either control or experimental conditioned growth media 

for 5-days were removed and cells were then washed 3 times in KREBS to ensure 

that carry-over media were completely removed. Afterwards, the cells were then 

incubated for 1 hour at 370C under 5% CO2 with 5μM of Calcein AM cell viability dye 

solution freshly prepared using KREBS. Cell viability was measured via fluorescence, 

with excitation and emission at 490nm and 520nm respectively and viability results 

are presented as percentage change compared to standard control conditions. 

 

 

 

 

 

 

 

 

 

Figure 2.3; Principle of Calcein-AM Cell Viability Assay 

2.5.2 Reactive Species Detection Assay 

The level of intracellular reactive species were estimated using 2’,7’-

Dichlorofluorescin diacetate (DCFDA), a non-fluorescent cell-permeable probe that is 

deacetylated by cellular esterases to a non-fluorescent compound, which is later 

oxidized by ROS into 2’, 7’ –dichlorofluorescein (DCF) – a highly fluorescent 

compound.  The DCFDA is not only applicable for the measurement of reactive oxygen 



 

89 
 

species, however, this can also be used to assess ROS activity mediated by other 

free-radicals or oxidizing reactive nitrogen or carbonyl species too.  

In the assay, old media of cells that have been previously incubated in either control 

or experimental conditioned growth media for the desired period of time were 

removed and cells were then washed 3 times in KREBS to ensure that carry-over 

media were completely removed. Afterwards, the cells were then incubated for 1 

hour at 370C under 5% CO2 with 20μM of light-protected DCFDA solution freshly 

prepared using KREBS. The intracellular reactive species or reactive oxygen and 

nitrogen species (RONS) activity was then measured via fluorescence, with excitation 

and emission at 490nm and 530nm respectively and quantifications are presented as 

percentage change compared to standard control conditions. 

 

 

 

 

 

 

Figure 2.4; Principle of Reactive Species Detection assay using DCFDA 

2.5.3 3-Nitrotyrosine (3-NT) Detection Assay 

A 3-nitrotyrosine Enzyme-Linked Immunosorbent Assay (ELISA) (Abcam, UK) was 

used for the quantitative measurement of 3-nitrotyrosine. The assay employs an 

antibody specific for 3-nitrotyrosine coated on a 96-well plate. Briefly, after sample 

preparation from cell lysates of previously treated cells (control, carnosine, glt, and 
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glt + carnosine), 50-µL of each standard or sample solution were added to each well 

and incubated at room temperature for 2-hours with shaking at 300 rpm. After two 

washes with 300-µL of 1X Wash Buffer, a 50- µL of 1X Detector antibody was added 

to each well and incubated for another 1 hour, then washed again before adding 50-

µL of 1X HRP-labelled secondary antibody followed by another 1-hour incubation at 

room temperature. After this, 100-µL of HRP Development Solution to each empty 

well was added, the reaction was stopped by adding 1 N HCl and immediately record 

the absorbance at 450 nm. The cellular protein content of the sample that was 

previously quantified using BCA protein assay (PierceTM BCA Protein Assay Kit – 

ThermoFisher Scientific, UK) was then used to normalise 3-NT data. 

2.5.4 4-Hydroxynonenal (4-HNE) Detection Assay 

The 4-HNE ELISA kit (Universal Biologicals, UK) was used for the quantitative 

measurement of 4-HNE. The microtiter plate provided in this kit has been pre-coated 

with 4-HNE. During the reaction, 4-HNE in the sample or standard competes with a 

fixed amount of 4-HNE on the solid phase supporter for sites on the Biotinylated 

Detection Antibody specific to 4-HNE. Briefly, after sample preparation from cell 

lysates of previously treated cells (control, carnosine, glt, and glt + carnosine), 50-

µL of each standard or sample solution were added to each well with 50-µL of Biotin-

detection antibody working solution and then incubated at 370C for 1 hour. After 

three washes, 100-µL of HRP-Streptavidin Conjugate (SABC) Working Solution was 

added and the plate was then incubated for 30 minutes at 370C. After another round 

of washing, 90-µL of 3,3,5,5-tetramethybenzidine (TMB) Substrate was added to 

each well incubated for about 20 minutes then this reaction was stopped using 

sulfuric acid-containing Stop Solution in the kit and thereafter obtained the 

absorbance reading at 450 nm. The cellular protein content of the sample that was 
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previously quantified using BCA protein assay (PierceTM BCA Protein Assay Kit – 

ThermoFisher Scientific, UK) was then used to normalise 4-HNE data. 

2.5.5 Glucose-Uptake Assay 

A non-radioactive bioluminescent Glucose Uptake-Glo™ Assay (Promega, UK) 

was employed to measure the glucose transport in cells. This assay is based on the 

uptake of 2-deoxyglucose (2-DG) and the enzymatic detection of 2-deoxyglucose-6-

phosphate (2-DG6P) that accumulates. Following the desired treatment, cells (in 12-

well format) were serum-starved overnight in DMEM supplemented with 5 mM 

glucose, the media were then removed and washed twice with DPBS before 

incubating this for 1 hour at 370C under 5% CO2 in glucose-free DMEM +/− 100 nM 

insulin to stimulate GLUT4 translocation. Immediately after, the medium was then 

replaced with PBS + 2-deoxy glucose (2-DG) and allowed for the uptake reactions to 

take place for 30 min at 370C under 5% CO2. Afterwards, the reaction was then 

terminated by addition of Stop Buffer provided in the kit containing 0.4 M HCl + 2% 

dodecyl trimethyl ammonium bromide, and added with the Neutralisation Buffer (1M 

Trizma, pH>10). A 100µL mixture (2:1:1, sample: stop buffer: neutralisation buffer) 

of the above in a white 96-well plate was added with 100µL of 2-DG6P Detection 

Reagent (prepared and equilibrated for 1 hour before use) was loaded and after 1 

hour reaction, luminescence data were then acquired using a CLARIOStar 

luminometer (BMG Labtech, Ortenberg, Germany) with user-defined parameters or 

with Infinite® 200 Pro multimode plate reader (Tecan Life Sciences, Switzerland). 
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Figure 2.5. Principle of Bioluminescent Glucose Uptake Assay. [2-

deoxyglucose(2DG), 2-deoxyglucosephosphate (2DG6P), 6-phosphodeoxygluconate 

(6PDG), glucose-6-phosphate dehydrogenase (G6PDH), nicotinamide adenine 

dinucleotide phosphate (NADPH). 

 

2.5.6 GLUT-4 Translocation Assay 

The GLUT4 translocation assay was conducted following the protocol of Koshy et al., 

with modifications. Following the desired treatment, cells were serum-starved 

overnight in DMEM supplemented with 5 mM glucose. The media were then removed, 

and cells washed twice with DPBS. Each well containing the cells (24-well format) 

was added with 0.50 mL of glucose-free DMEM +/−100nM insulin and with 6µL of 

antibody mix (prepared by mixing 5µL of primary anti-GLUT4 antibody (Abcam, UK) 

and 1µL of secondary antibody conjugated to AlexaFluor 488 (Abcam, UK), and was 

previously incubated for 10 minutes at room temperature) and incubated back for 30 

minutes in the dark (370C, 5% CO2). The cells were then fixed by adding 0.50mL of 

1% paraformaldehyde in PBS and incubated for 20 minutes at room temperature in 

the dark. Using a cell scraper or cell lifter, cells (1 mL total) were then transferred to 

a flow cytometer tube and centrifuged to pellet the cells, washed twice with 1mL PBS 

and resuspended in 0.4mL of 1% PFA in PBS. The cells were wrapped in foil and 

immediately taken to the Flow cytometer for data acquisition. Data acquired with the 
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help of Dr. Gemma Foulds of NTU using the Beckman Coulter Gallios™ flow cytometer 

and analyzed using Beckman Coulter Kaluza™ software. 

2.6 Antigen Immunoprecipitation and Mass Spectrometry 

The following samples were used for this analysis: 

• Mouse C2C12 muscle cells 

• Human skeletal muscle cell-line (HSkM) 

• Mouse primary muscles 

• Mouse primary β-islet cells  

• Human primary adipocytes 

• Human serum samples 

• Human adipose tissues (abdominal subcutaneous) 

The antigen immunoprecipitation process for this analysis employed the Pierce 

Crosslink Magnetic IP/Co-IP Kit (88805; ThermoFisher Scientific, UK) with 

DynaMagTM-2 magnet (12321D; Life Technologies, UK). For all immunoprecipitation 

steps, there were two primary antibodies used namely: 3-nitrotyrosine and 4-

hydroxynonenal.  

2.6.1 Sample Preparation 

Following desired treatment of the cell samples mentioned above (excluding human 

serum and adipose tissues) in either control or GLT ± carnosine for 5 days, cell lysates 

of C2C12, human skeletal muscle, and mouse muscle cells were obtained from each 

of these sample conditions using the IP Lysis buffer (25mM Tris, 150mM NaCl, 1mM 

EDTA, 1% NP40, 5% glycerol + protease inhibitor, pH=7.40) provided in the kit. The 

protein concentration for each of this sample was then quantified by BCA assay for 

further use in the subsequent steps of the analysis. 
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Human serum and adipose tissues are obtained with informed consent and local 

Ethical Approval (IRAS No. 81368) and this work is in collaboration with Prof. 

McTernan’s group in NTU. Samples used from this are from lean, obese, and diabetic 

patients ages 25-60 years old (Females) with BMI ranging from 17-54. Cell lysates of 

both adipose and primary adipocytes were initially subjected to clean-up steps, prior 

to its use in the subsequent steps of the analysis, following the protocol and using 

the ReadyPrepTM 2-D Cleanup Kit (BioRad, UK in order to wash away substances in 

these samples particularly lipids that would interfere and not ideal for the efficiency 

of mass spectrometer column.  

For primary mouse islets, these samples were isolated and provided by Paul Caton of 

King’s College London. Briefly, pancreata were inflated with 1mg/ml collagenase 

solution (Sigma-Aldrich, Poole, U.K.) followed by density gradient separation 

(Histopaque-1077; Sigma-Aldrich). Islets were re-suspended in RPMI media (10% 

FBS, 1% P/S, 1% L-Glutamate) and, after recovery at 37°C, were handpicked and 

placed in fresh medium. After incubating at 370C overnight, islets were treated with 

either RPMI media, 10mM carnosine in RPMI media, glucolipotoxicity (GLT) 

conditions, and both 10mM carnosine and GLT conditions. For GLT 100mM palmitate 

was made up by dissolving palmitate in sterile water and incubating at 700C and 

vortexing until completely dissolved. 100mM palmitate was further diluted to 5mM in 

serum-free DMEM and 5% NEFA free BSA and incubated for 1 hour at 400C and 

shaking at 140RPM, 28mM glucose was added. After 5 days incubation at 37 degrees 

in each condition islets were picked and spun at 500RCF for 3 mins. Any remaining 

media was removed, and islets were placed in 20 ul PBS and were snap-frozen into 

liquid nitrogen and stored at -800C.  
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Following quantification of protein content and depending on the amount available 

about 0.4mg – 1.0 mg of samples with a similar amount for each batch was then 

used later for antigen immunoprecipitation as described below. 

2.6.2 Binding of Antibody to Protein A/G Magnetic Beads 

The beads (supplied as 10 mg/mL in water containing 0.05% NaN3) were initially 

vortexed to obtain homogenous suspension and 25µL in a microcentrifuge tube was 

used for each reaction and placed on a magnetic stand to collect the beads. Each of 

these bead-containing tubes were then washed twice with 500µL of previously 

prepared 1X Modified Coupling Buffer (10mM Na3PO4, 150mM NaCl; pH=7.20). 100µL 

containing 5µg of antibody (3-nitrotyrosine or 4-hydroxynonenal) solution previously 

prepared in 1:20 20X coupling buffer and 1:20 lysis/wash buffer was added to the 

beads and allowed to mix gently using a revolver tube rotator (Lightlabs, USA) for 1 

hour at room temperature and with gentle agitation every 10 minutes. Afterwards, 

the beads were then collected by discarding the supernatant using the magnetic 

stand and washed twice with 300µL of the 1X coupling buffer and beads collected for 

the next step in 2.6.3. 

2.6.3 Crosslinking the Bound Antibody 

Conventional IP can be performed by omitting crosslinking, however, if this is omitted, 

the bound antibody during the elution steps will co-elute with the antigen. 

Crosslinking of the bound antibody was done using disuccinimidyl suberate (DSS). 

For each IP reaction, a mixture of previously prepared 4.0µL of 0.25mM DSS in DMSO, 

2.5µL of 20X Coupling Buffer, and 43.5µL of ultrapure water were then added to the 

beads. The crosslinking reaction was incubated at room temperature for 1 hour with 

gentle mixing using a revolver tube rotator. After collecting the beads with a magnetic 
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stand, 100µL of elution buffer was then added and mixed gently for 5 minutes at 

room temperature, and liquid removed before two serial washes with 200µL of cold 

IP wash buffer. The beads with the crosslinked antibody were then collected for 

antigen immunoprecipitation described in the next step. 

2.6.4 Antigen Immunoprecipitation 

Equal initial protein amount was used among the different batches of samples 

processed. Each sample lysate was diluted up to 1mL using IP lysis/wash buffer, then 

this solution was then added to the tube containing crosslinked magnetic beads and 

incubated overnight at 40C using a revolver tube rotator. Afterwards, the beads were 

collected and then washed with IP wash buffer, then supernatant discarded. 

2.6.5 On-bead Reduction, Alkylation, and Tryptic Digestion 

The beads collected in 2.6.4 steps were washed thrice with 50mM triethylammonium 

bicarbonate buffer (TEAB). Then 92µL of TEAB with 1µL of 0.50M dithiothreitol (DTT) 

was added onto the beads, incubated for 20 minutes at 560C with constant shaking. 

To this solution, was added 2.7µL of 0.55M iodoacetamide (IAA), incubated at room 

temperature in the dark for 15 minutes before adding 4µL of 1mg/mL proteomics 

grade trypsin. This was then incubated at 370C overnight with constant shaking. 

Afterwards, the solution was then collected and transferred to a new tube, added 

with trifluoroacetic acetic acid (TFA) to inactivate the trypsin, and incubated at room 

temperature for 5 minutes. The solution was then vacuumed dry as soon as possible 

and forwarded to the Mass Spectrometry facility of NTU for MS analysis. 
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2.6.6 Mass Spectrometry (MS) Analysis 

Samples that had been previously vacuum concentrated to dryness were transferred 

to NTU John Van Geest Research Center for MS analysis and subsequently 

resuspended with appropriate amount of 5% (v/v) acetonitrile/0.1% (v/v) formic 

acid. The analyses were conducted by Dr. Amanda Miles and Dr. Clare Coveney and 

employed the reverse-phase high-performance liquid chromatography-electrospray 

ionization tandem mass spectrometry (RP-HPLC-ESI-MS) using TripleTOF 6600+ 

mass spectrometer coupled to Eksigent ekspert nano LC 425a pump system and 

autosampler (SCIEX, Canada). Data were acquired via two tools namely data-

dependent acquisition (DDA) of sample pools to initially generate a spectral library 

and then the data independent acquisition (DIA) to measure the relative quantity of 

each protein within each individual sample. The two mobile phases used were A 

[0.1% (v/v) formic acid in LC/MS grade water] and B [LC/MS grade acetonitrile 

containing 0.1% (v/v) formic acid]. The two stationary phases used were firstly a 5 

x 0.3μm YMC Triart C18 trap column followed by a YMC Triart-C18 analytical column 

15 cm, 3μm, 300 um i.d at 5 μL/min. The samples were injected into the column 

above using an increasing linear of solvent B. The instrument was also routinely auto-

calibrated every 2 samples using PepCal mix supplied directly from SCIEX. 

2.7 Preparation of Carnosine-Related Compounds 

Dr. Christopher Garner and his team in the NTU Chemistry department utilised both 

synthetic organic chemistry and computational chemistry approaches for the design, 

synthesis, and screening of prospective drug candidates against diabetes. In 

collaboration with this group, one major aim of this project is to design and screen 

potential carnosine related compounds that are most likely resistant to hydrolysis by 

carnosinase. 
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2.7.1 Putative Carnosinase Inhibitors 

Briefly, a library of carnosine-based molecules (~50000) from Maybridge 

(www.maybridge.com) were screened to identify top 500 hits with shape, 

stereochemical and physical properties similar with that of carnosine. The selected 

hit compounds were then docked with the binding site of carnosinase-2 (CN2) 

particularly in the region involved in the hydrolysis using the software GOLD 

(https://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold). Employing 

the Tanimoto scoring function, the resulting docking scores obtained above were 

used as basis for selecting 50 candidate molecules for further bioactivity screening. 

The top 50 hits were re-docked to the active site of CN1 and CN2 with increased 

search efficiency in order to determine which of these have the most similar shape 

to carnosine. The molecule bestatin, an analogue of carnosine, was used as an 

internal control to validate and to identify any malfunction and error of the method. 

Carnosine binding to the active site of the enzyme gave a ChemPLP score of 87 and 

based from this measurement, 14 of these molecules labelled as M4, M8, M14, M17, 

M21, M28, M36, M37, M38, M43, M44, M47, M48, M49, were purchased and initially 

evaluated for biological assays relevant to glucose homeostasis, namely insulin 

secretion and glucose uptake assays. 

2.7.2 Carnosine Esters (Carnosine Mimetics) 

Different ester derivatives, namely methyl-, ethyl- and isopropyl-, were prepared at 

the Organic Synthesis Chemistry laboratory in NTU under the supervision of Dr. 

Christopher Garner and Prof. John Wallis. Briefly, a mixture of 10mL alcohol 

(methanol, ethanol, and isopropanol for methyl, ethyl and isopropyl ester, 

respectively) with 0.5mL trimethylsilyl chloride was allowed to react for 20 minutes, 

then 0.20g of L-carnosine was added after which the resulting solution was refluxed 

http://www.maybridge.com/
https://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold


 

99 
 

at 95oC overnight to yield about 0.30g of the desired product. The purity of the 

compound was validated using magnetic resonance spectroscopy at the NMR facility 

of NTU. 

2.8 Cytosolic Non-specific Dipeptidase-2 (CNDP2) Activity 

Assay 

For each reaction, 10ng/µL of recombinant human CNDP2 in Assay Buffer (50mM 

Tris, 0.10mM MnCl2, pH=9.00) was used. In a 2mM substrate (carnosine or carnosine 

mimetics) dissolved in assay buffer, the above rhCNDP2 was added and incubated 

for 1 hour at room temperature and protected from light. This project used and 

evaluated some selected carnosine-shaped compounds designed and aimed to inhibit 

CNDP2 enzyme and as resistant to hydrolysis, and so in the presence of inhibitor 

(carnosine analogue), rhCNDP2 was allowed to react first with this compound for 30 

minutes prior to addition of the substrate. This resulting mixture was then added with 

a 1% aqueous solution of trichloroacetic acid (TCA) to stop the reaction. In the case 

of a blank sample containing only rhCNDP2, the substrate was added after the TCA. 

All sample solutions were then centrifuged at 13000 rpm for 10 minutes, afterwards 

180µL of supernatant was transferred to a new tube with 60µL of 5mg/mL of ortho-

pthaldialdehyde (o-PA) in 2M NaOH, vortexed and incubated at room temperature for 

30 minutes, protected from light. Then finally, 200µL of the reaction mixture including 

the standards (0-1000pmol L-Histidine) was loaded to a black 96-well plate and 

obtained fluorescence reading at 360 nm (excitation) and 460 nm (emission), top 

read and in endpoint mode using the Infinite® 200 Pro multimode plate reader (Tecan 

Life Sciences, Switzerland). 
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2.9 Seahorse XF Cell Mito Stress Test  

In order to investigate the functional capacity of mitochondria in GLT-exposed 

skeletal muscle cells, and to assess what impact GLT has upon the activity of 

the mitochondrial electron transport chain, the  Seahorse XF Cell Mito Stress 

Test Kit (Agilent Technologies, USA) which uses different bioenergetic 

modulators (Oligomycin, FCCP and Rotenone/Antimycin A) was used. A day 

prior to the assay, the sensor cartridge (XFe24 Flux Assay Kit) was hydrated 

by filling each well with Seahorse XF calibrant solution and placed in a non-

CO2 incubator at 370C overnight. 

 

 

 

 

 

 

Figure 2.6; Cartridge hydration procedure. This was performed 1 day prior to 

the Assay.  Sensor cartridge is an essential component in the assay platform, and for 

the sensors to function correctly, they must be thoroughly hydrated and placed in the 

correct manner. The Hydro Booster and Cartridge Lid should be removed prior to 

placing the sensor cartridge and utility plate in the XFe24 Analyzer. 
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For C2C12 and mouse muscle cells, prior to the day of the assay cells that have been 

previously treated either with control or GLT ± carnosine for 5 days were harvested 

from T75 culture flasks. Cells were then seeded at 30,000 per well in a 24-well Agilent 

Seahorse XF24 Cell Culture microplate in its corresponding media and were incubated 

into 37oC humidified incubator with 5% CO2 to allow the cells to adhere. On the other 

hand, human skeletal myotubes were treated for 3 days directly in 24-well Seahorse 

plate. On the day of the assay, the following conducted steps are briefly described as 

follows: Previously used media were removed and cells were washed twice with the 

300µL Seahorse media (Seahorse XF-DMEM based medium supplemented with 1mM 

Pyruvate, 10mM glucose, and 2mM glutamine) before finally replacing it with 500µL 

of the same media. This was then incubated in a non-CO2 incubator at 370C for 1 

hour. During this incubation period, previously hydrated sensor cartridge was then 

taken out to have the different bioenergetic modulators (103105-100; Agilent, USA) 

namely Oligomycin, FCCP and Rotenone/Antimycin-A (freshly prepared on the day of 

the assay) loaded into its ports with its final concentration indicated in Table 2.8. 

Afterwards, cartridge (with lid and hydro booster removed) was then loaded to the 

Seahorse XFe24 Analyzer for calibration and equilibration that would take 20-25 

minutes. Then, the utility plate was replaced with the seahorse plate containing the 

cells and was run for Mito Stress test using the pre-programmed or pre-prepared 

template, and the calculated results from the Wave data obtained from the Seahorse 

XF Mito Stress Test Report Generator were used for data analysis.  

The tables below described the preparation of stock solutions of the different 

compounds as modulators of mitochondrial respiration, and its preparation for loading 

to the sensor cartridges port.  
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Table2.7; Preparation of Stock Solutions 

Compound 
Quantity per 

tube, 
(nmol) 

Volume of 
Assay 

Medium, (µL) 

Stock 
Concentration, 

(µM) 

Oligomycin 
63 630 100 

FCCP 
72 720 100 

Rotenone/Antimycin-
A 

27 540 50 

 

 

Table2.8; Preparation of compounds for loading to XFe24 sensor 

cartridges. 

Compound Port Stock 

Solution 

Volume 

(µL) 

Assay 

Media 

Volume 

(µL) 

Volume 

Added to 

Port 

(µL) 

Final 

Well 

(µM) 

Oligomycin A 300 2700 56 1.0 

FCCP B 300 

720 

(HSkM) 

2700 

2280 

 

 

62 

100 

1.0 

4.0 

Rotenone/Antimycin-A C 300 2700 69 0.5 

 

 

Each well in a cell plate has a starting 500µL of assay medium. The location and 

numbering of injection ports on sensor cartridges are indicated in the figure below.  
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2.10 Statistical Analysis 

 
Depending on the objective, one may show error bars in the form of confidence 

intervals, standard errors, standard deviations, or other quantities. Different types of 

error bars give quite different information (Cumming et al., 2007). All error bars 

associated in each figure (where applicable) here are shown as SEM from 3 or 4 

independent experiments, and by purpose, this is also indicated in its respective 

figure legend. In addition, SEM was used in all of the bar charts in order to draw 

inference from the data obtained such as to evaluate whether a treatment (GLT or 

carnosine) could have a significant effect when compared with a particular control 

group.  

 

For analysis which involved only two independent conditions, a two-tailed unpaired 

T-test was carried out using Microsoft Excel – for instance to determine whether GLT 

treatment could significantly affect cell viability from both directions (either to 

increase or decrease) when being compared to its healthy control counterpart. On 

the other hand, where analysis involved more than two conditions, first an ordinary 

Analysis of Variance (ANOVA) was carried out using Excel or GraphPad Prism Software 

Version 9.0.0 (Trial Subscription), and when result turned to be significant (P<0.05), 

an appropriate post hoc test (Tukey’s test or Dunnett’s test both using critical values 

at α = 0.05) was then performed where P<0.05 values are considered as significant.  

 

The ANOVA test could tell if results are significant overall, but it won’t indicate exactly 

where those differences lie. For instance, Tukey’s test was used to find out which 

specific group’s means (compared with each other) are different. This test compares 

all possible pairs of means.  

https://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/anova/
https://www.statisticshowto.com/what-is-statistical-significance/
https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/mean-median-mode/
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Another multiple comparison test employed was Dunnett’s test. This is particularly 

useful when comparing means from several experimental groups against a fixed 

control group mean (e.g Figures 5.17 and 5.20) to see if there is a difference. Again, 

this can only be performed when ANOVA has shown (P<0.05) result.  

The above version of GraphPad Prism Software was also used for normality test 

(Shapiro-Wilk test, with P > 0.05 (α=0.05) passed for normality test). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/mean-median-mode/
https://www.statisticshowto.com/experimental-group/
https://www.statisticshowto.com/control-group/
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3.1 Introduction  

 

Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterised by an elevated 

level of blood glucose due to impaired insulin secretion and/or increased cellular 

insulin resistance (Eid et al., 2015). T2DM is often associated with individuals who 

are either overweight or obese, and is often, although by no means always, 

characterised by over-nutrition and lack of exercise, set against a background of 

genetic pre-disposing factors (Chellan et al., 2012 and Balasubramanian et al., 2014). 

Glucose uptake by peripheral tissues, such as the skeletal muscles, has an important 

role in the maintenance of glucose homeostasis. When this tissue is no longer 

responsive to the action of insulin (insulin resistance) then insulin-stimulated glucose 

uptake is severely impaired. Initially the pancreas compensates by increasing insulin 

secretion, but over time this compensatory hypersecretion fails, resulting in 

hyperglycaemia. Skeletal muscle is considered to be the primary site of insulin 

resistance during the development of T2DM, as over 80% of glucose disposal occurs 

in this tissue, plus its mass is >40% of total body mass. As such, this tissue is crucial 

in controlling the level of blood glucose and in treating T2DM (Aguer and Harper, 

2012).  

The insulin receptor and its substrates, the phosphatidylinositol 3-kinase (PI3K) and 

the AMP-activated kinase (AMPK) are amongst the components of the insulin 

signalling pathways involved in glucose transport and uptake systems that are well-

studied and reported to be potential molecular targets in the development of drugs 

for T2DM treatment (Lee et al.,  2010; Schultze et al., 2012; Mor et al., 2011). 

Importantly, increased levels of plasma free fatty acids (FFA) has been shown to 

impair insulin action and, thus, play a central role in the pathophysiology of skeletal 
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muscle insulin resistance (Ragheb et al., 2009; Silveira et al., 2008; Samuel et al., 

2010).  

The activation of protein phosphatase 2A (PP2A) and various serine/threonine kinases 

such as protein kinase C (PKCs) isoenzymes, nuclear factor kappa B (NF-κB) kinase, 

inhibitory- κB kinase β (IKK β), c-Jun N-terminal kinase, and p38 mitogen-activated 

protein kinase (p38 MAPK) by the presence of elevated fatty acid levels are proposed 

to inhibit insulin signalling. When activated, these enzymes catalyse phosphorylation 

of serine residues in IRS-1, which in turn, could lead to a reduction in the 

phosphorylation of tyrosine residues of IRS-1, and in the activity of downstream 

signaling pathways activated by insulin (Li et al., 2015; Sears and Perry, 2015; Haasch 

et al., 2006).  

Another factor that has gained recognition in causing a reduction of insulin sensitivity 

of skeletal muscle is sustained hyperglycaemia, also referred to as glucotoxicity. The 

possible mechanisms by which hyperglycaemia causes insulin resistance include 

impaired glycogen synthesis, enhanced apoptosis, and increased level of ceramides 

that could potentially inhibit several proteins along the insulin signalling cascade to 

glucose transport (Tomas et al., 2002).  

Glucose-induced insulin resistance is also linked to other mechanisms including tissue 

damage implicated in diabetes micro-and macrovascular complications caused by the 

irreversible formation of advanced glycation end (AGE) products (Riboulet-Chavey et 

al., 2006). Overproduction of reactive oxygen species (ROS), which could be 

important mediators of damage to cellular components such as lipids, proteins, or 

DNA, is also directly linked to chronic hyperglycaemia. This indicates that oxidative 

stress is an important process in the development and progression of T2DM and its 

associated complications (Kawahito et al., 2009; Pittoco et al., 2003).  
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Metabolic reactions continuously produce reactive oxygen species (ROS), including 

superoxides (O2
-), hydroxyl radicals (OH-), peroxyl radicals (ROO-) or nitric oxide, all 

of which can be either deleterious or beneficial to living systems (Valko et al., 2006). 

Some beneficial effects of ROS at low-moderate concentrations include defence 

against infectious agents and induction of a mitogenic response (Valko et al., 2006). 

On the other hand, a harmful effect causing potential biological damage occurs when 

there is either overproduction of ROS or a deficiency of antioxidant systems, resulting 

in inhibition of normal cellular function, which is, in turn, implicated in inflammation, 

carcinogenesis, ageing, and atherosclerosis (Kawahito et al., 2009; Birben et al., 

2012). 

T2DM is the most common form of diabetes. Pathophysiology is associated not only 

with the skeletal muscle and pancreas, but also with other organs including the 

kidney, liver, adipose tissue, brain, and gastrointestinal tract. Whilst there are several 

oral agents (e.g., metformin, sulfonylurea, meglitinides, sodium-glucose co-

transporter 2 (SGLT-2) inhibitors) and injectable agents (e.g., various analogs of 

insulin and glucagon-like peptide 1 (GLP-1) receptor agonists (Cornell, 2015)), their 

effectiveness decreases over time. Therefore, it is imperative not only to understand 

the underlying mechanism of how glucolipotoxicity contributes to the development of 

diabetes, but also to develop new treatment strategies aimed at increasing insulin 

sensitivity or enhancing insulin secretion. This could be accomplished with drugs that 

can be administered either alone or in combination with available pharmacotherapies 

for improving comorbidities and disease outcomes.  

Carnosine is a naturally occurring histidine-containing dipeptide (HCD) that is formed 

by bonding of the two amino acids β-alanine and L-histidine. Carnosine is found in 

several tissues, although most notably in skeletal muscle (Quinn et al., 1992). Many 

claims have been made of the therapeutic actions of carnosine, for instance, a review 
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(Artioli, Sale and Jones, 2019), reported that carnosine was observed to have 

renoprotective and nephroprotective effects, as well as being used as a treatment for 

neurologic and mental disorders, wound healing and cardiovascular disease. These 

different diseases all have oxidative stress in their respective pathophysiology, so the 

benefit of carnosine could extend beyond just the treatment for type 2 diabetes. 

This PhD project initially focuses on the impairment of glucose uptake by muscle cells 

in response to a glucolipotoxicity cellular model of type 2 diabetes. This Chapter 

investigates whether carnosine supplementation in C2C12, human skeletal myoblasts, 

and primary muscle cells, could protect these cells against the oxidative stress driven 

by the reactive species generated from chronic exposure to high glucose and free 

fatty acid concentrations and thus to identify whether this protection could elicit 

insulin-sensitising effects or an enhancement of insulin-dependent glucose uptake, 

using a combination of different spectrophotometric-based techniques including 

luminescence, fluorescence, and absorbance. This chapter will also address the 

beneficial action of carnosine upon insulin secretion using INS-1 β-cells. 
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3.2 Results 

 

3.2.1 Myogenin Expression in Myotubes 

 

Myogenesis or formation of the skeletal muscles involves the proliferation of precursor 

cells or myoblasts then after morphological, biochemical and molecular modifications 

they fuse to form multinucleated myotubes, and at this point, these myotubes have 

then enough capacity to express genes or synthesise proteins. So in all experiments, 

unless stated otherwise, experimental activities were conducted on myotubes. In 

order to induce myoblast differentiation, all muscle cells (C2C12, HSkM, and primary 

mouse) used in this study were cultured in their corresponding differentiation medium 

(detailed in Chapter 2) containing 2% horse serum for a period of 6 days. As shown 

in Figure 3.1 A, C, and D, it can be seen that the cells morphologically changed in 

terms of the alignment, elongation, and fusion of mononucleated myoblasts into 

multinucleated myotubes. In addition to these morphological changes, a 

representative experiment with C2C12 by western blotting analysis showed a 

significantly increased expression of myogenin, a specific differentiation marker (Lee 

et al., 2011). With this, a 6-day differentiation period for C2C12 and HSkM was chosen 

in this study to induce the formation of myotubes.  
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Figure 3.1 
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Figure 3.1 (Continuation); 6-day incubation in low-serum media induces 

the formation of myotubes. (A) C2C12 myoblasts were incubated with 2% horse 

serum media for 6 days to induce myotube differentiation, and representative 

photographs are shown. (B) Cell lysates from myoblasts and myotubes were 

subjected to western blot analysis using antibodies against myogenin. *p < 0.05 from 

3 independent experiments. (C) HSkM myoblasts and myotubes. (D) Primary mouse 

satellite cell-derived myoblasts and myotubes 



 

113 
 

INS-1 cells and muscle cells used in this PhD work were incubated in its respective 

standard growth media in the absence or presence of 10mM carnosine for 5 days. 

The choice of this concentration was based on the initial finding in the Turner 

laboratory group which indicated that between 1 and 10 mM concentrations, the 

latter was found to be the optimum and more effective amount enough to significantly 

increase, and more importantly reversed GLT-inhibited insulin secretion. In addition, 

this value is within the physiological range of carnosine level in the skeletal muscles 

of many vertebrates (Begum et al., 2005). For instance, in wet human skeletal 

muscles it could reach up to 20 mM (Hipkiss, 2002), and about 2.25 mmol/kg dm for 

rat muscles (Naderi et al., 2017). 

3.2.2 Effect of Carnosine on Skeletal Muscle Cells 

 

The following data indicated here present the protective effects and beneficial 

actions of carnosine upon glucose uptake and insulin secretion in skeletal muscle 

myotubes and pancreatic β-cells, respectively. 

3.2.2.1 Scavenging Activity of Carnosine towards 

Glucolipotoxicity-Mediated Reactive Oxygen, Nitrogen 

and Carbonyl Species on C2C12 and on Human Skeletal 

Myotubes 

 

Carnosine has been shown to be effective quencher of reactive and cytotoxic carbonyl 

compounds (RCS), such as the lipid peroxidation by-product 4-hydroxy-2-nonenal (4-

HNE), and this endogenous compound has been used for oxidative stress reduction 

in different pathologies (Aldini et al., 2012; Bellia et al., 2012; Prokopieva et al., 

2015). Therefore, this study sought to investigate the scavenging potential of 

carnosine towards intracellular reactive oxygen and nitrogen species (RONS), which 

are postulated to contribute to muscle tissue dysfunction and are, therefore, linked 

to the negative regulation of the insulin signalling pathway.  
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In order to determine the level of cellular reactive species generated from each 

treatment condition, a fluorescence-based assay was employed using a cell-permeant 

fluorogenic dye called 2’7’-dichlorofluorescein diacetate (DCFDA) which will be 

deacetylated by cellular esterases and upon the presence of oxidizing species, is 

converted into 2’, 7’ –dichlorofluorescein (DCF) – a highly fluorescent compound, 

which can be detected by fluorescence spectroscopy. Briefly, differentiated myoblasts 

of C2C12 and HSkM were further incubated in control or GLT media (DMEM 

supplemented to 28 mM glucose, 200μM Palmitic acid, and 200μM Oleic acid) for 5 

days with media replaced on the 3rd day, then a final incubation for 1h with or without 

10mM carnosine supplemented to fresh experimental condition media. To each 

condition, 20 μM of DCFDA was then added for 1h; the results are shown in Figure 

3.2. GLT media increased the reactive species significantly by 169.6 ± 23.9% 

compared to control, and importantly this was reduced significantly by 147.5 ± 37.1% 

with the addition of 10mM carnosine. Also, a 1h dose of 10mM carnosine significantly 

reduced reactive species in control conditions. A similar quantification procedure was 

also conducted using human skeletal muscle cell-line (HSkM). As indicated in Figure 

3.3, incubation of cells in GLT media also showed a significantly increased level of 

reactive species to 179.25± 6.88%. Supplementation with 10mM carnosine 

significantly reduced this level to 123.13 ± 7.44%, with there being no significant 

difference in the level of cellular reactive species between control conditions with 

carnosine added.  

In this DCFDA assay, the detection of ROS activity or cellular reactive species 

detection was not normalised to either cell number or protein content, and so it was 

necessary to investigate the effect of GLT on cell number and viability to ensure that 

the response shown in GLT was not an artefact of either glucolipotoxic-driven cell 

death or glucose-driven cell proliferation. Using a cell-permeant dye called Calcein 
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AM, which can only fluoresce upon the action of intracellular esterases through 

acetoxymethyl ester hydrolysis, it is possible to determine the cell viability of most 

eukaryotic cells. All viable eukaryotic cells will have the esterases necessary to drive 

the hydrolysis reaction forward and the use of Calcein AM is thus an accepted model 

for cell viability and number measurement (Bratosin et al., 2005). Since there was a 

non-statistically significant change observed in the cell viability and number of cells 

exposed to GLT in 5 days with respect to control (Figure 3.4.), it can be inferred that 

the significant changed detected in the level of reactive species in chronic exposure 

of GLT conditions were not due to muscle cell viability. 

 

Figure 3.2; Carnosine effectively scavenges reactive species in C2C12 

skeletal muscle cells.  C2C12 myotubes were cultured in control or GLT media for 

5 days. Corresponding media were then replaced supplemented ± 10mM carnosine 

for 1h. A 20μM DCFDA was loaded in KREBS buffer for 1h and reactive species 

detected via fluorescence with excitation and emission of 495nm and 530nm. 

Reactive species are expressed as a percentage change in comparison to control from 

4 independent experiments ± SEM. (**p<0.01 vs Control, #p<0.05 vs GLT; Tukey’s 

test) 
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Figure 3.3; Carnosine effectively scavenges reactive species in human 

skeletal muscle cells (HSkM).  HSkM myotubes were cultured in control or GLT 

media for 5 days. Corresponding media were then replaced supplemented ± 10mM 

carnosine for 1h. A 20μM DCFDA was loaded in KREBS buffer for 1h and reactive 

species detected via fluorescence with excitation and emission of 495nm and 530nm. 

Reactive species are expressed as a percentage change in comparison to control from 

4 independent experiments ± SEM. (** versus control p<0.01; ## p<0.01 versus GLT; 

Tukey’s test) 

 

 

 

 

 

 

 

 

Figure 3.4; GLT treatment does not significantly affect cell viability.  (A) 

C2C12 and (B) HSkM myotubes were cultured in control or GLT media for 5 days. 

After 1h incubation with 5μM solution of Calcein AM, fluorescence intensity was 

measured using excitation and emission of 490nm and 520nm. Results shown are 

expressed as percentage change compared to control from 4 independent 

experiments ± SEM. (p>0.05; t-test) 
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Increased expression of inducible nitrogen oxide synthase (iNOS) has been implicated 

in the pathophysiology of inflammatory diseases, including a potential role in insulin 

resistance. Upregulation of this enzyme can also be inferred with an increased level 

of reactive nitrogen species (RNS), due to its role in the production of nitric oxide 

(NO) from the oxidation of L-arginine by using oxygen NADPH electrons (Lowenstein 

and Padalko, 2004; Soskic, 2011). Therefore, in order to determine whether exposure 

of C2C12 cells to GLT media could lead to an overexpression of iNOS, and to 

determine whether carnosine could influence this formation, myotubes were 

incubated in control or GLT media for 5 days supplemented ±10mM carnosine before 

lysates were collected from this, and protein contents were then separated by sodium 

dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Proteins were 

subsequently transferred to nitrocellulose membrane and immunoblotted with an 

anti-inducible nitric oxide synthase (iNOS) antibody.  

 

Figure 3.5 is an image of the immunoblot analysis to indicate the iNOS band intensity 

quantified by densitometry and 5-day incubation with GLT shown to cause a 1.97 ± 

0.30 fold upregulation in iNOS expression, and that the addition of 10mM carnosine 

to GLT media showed carnosine is also able to supress the GLT-mediated formation 

of RNS thus inhibiting the GLT upregulation of iNOS by 78%. From this data, 

carnosine demonstrates protective effects against the formation of a key enzyme 

like iNOS which participates in the production of deleterious reactive species.  
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Figure 3.5; Inducible nitric oxide synthase (iNOS) is upregulated in GLT- 

exposed cells. (a) C2C12 myotubes were incubated in control or GLT media 

supplemented with or without 10mM carnosine for 5 days. Cells were then lysed to 

extract proteins and then separated via SDS-PAGE, transferred to nitrocellulose and 

detected using anti-iNOS or anti-actin antibody. Data expressed as mean ± SEM from 

3 independent experiments. (* versus control p<0.05; #p<0.05 versus GLT; Tukey’s 

test) 

 

A simultaneous flux of nitric oxide and superoxide anion overproduction leads to the 

formation of a potent oxidant in the biological system called peroxynitrite, which has 

been implicated in several important diseases, including but not limited to, cancer, 

neurodegeneration, stroke, inflammatory conditions, cardiovascular problems, and 

diabetes mellitus (Reiter et al., 2000; Stadler, 2011). The oxidative reaction through 
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nitration of key functional parts in active sites of enzymes, receptors and other 

proteins by peroxynitrite produces 3-nitrotyrosine. This 3-nitrotyrosine is an 

established biomarker of cell, tissue, and systemic nitroxidative stress that again 

resulted from incorporating the nitro group into the tyrosine residue of the protein 

which caused to modify its functional and structural properties and thus contribute to 

altered cell and tissue homeostasis (Radi, 2012). This product is indicative of the level 

of peroxynitrite that is present in the cell and can also be used to assess the degree 

of reactive nitrogen species generated; the formation of 3-nitrotyrosine can be 

quantified using ELISA.  

 

In order to determine the level of this marker of cell damage and inflammation, C2C12 

and HSkM myotubes were incubated in control or GLT media supplemented with or 

without 10mM carnosine for 5 days. The sample lysates were then obtained using 

the extraction buffer supplied in the kit, and the extracts were then analysed 

according to the protocol. As shown in Figure 3.6, a 5-day treatment of GLT media 

resulted in a significant increase of 3-NT species formation (40.91 ± 7.73% and 30.34 

± 4.64%) in C2C12 and HSkM cells compared to their respective controls. 

Importantly, carnosine was able to prevent this 3-NT adduct formation and for C2C12 

and HSkM, respectively.  
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Figure 3.6; Carnosine is an effective antioxidant against nitroxidative 

stress markers. (A) C2C12 and (B) HSkM myotubes were incubated in control or 

GLT media supplemented ± 10mM carnosine for 5 days. Cells lysates were then 

determined for 3-NT using ELISA with absorbance measured at 450nm.  

Concentrations detected were normalised to protein content. Results are expressed 

as fold change compared to control from 3 independent experiments ± SEM. 

(*p<0.05 **p<0.01 vs Control, # p< 0.05 ##p<0.01 vs GLT; Tukey’s test). 
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A consequence of established oxidative stress is formation of reactive carbonyl 

species or aldehydes, including 4-hydroxynonenal (4-HNE), which is formed through 

enhanced ROS-induced lipid peroxidation (Yang et al., 2003). Excessive levels of 4-

HNE are believed to induce insulin resistance and desensitisation of insulin signaling 

pathways, and has been associated with metabolic defects present in obesity (Pillon 

et al., 2007; Ingram et al., 2012). Similarly, the present study then sought to 

determine the effect of GLT exposure of muscle myotubes on 4-HNE species 

generation. After C2C12 and HSkM myotubes were incubated in control or GLT 

media in the presence or absence of 10mM carnosine treatment, sample lysates 

were collected using RIPA buffer and immediately assayed for 4-HNE using ELISA 

kits. Indicated in Figure 3.7, an increase of (50.77 ± 17.02%) and (38.56 ± 6.38%) 

in 4-HNE were detected in GLT-treated cells of C2C12 and HSkM, respectively as 

compared to their control. However, in the presence of carnosine supplementation at 

10mM concentration, a significant amount of this generated oxidant molecule was 

being significantly neutralised by this dipeptide in both types of myotubes used. 
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Figure 3.7; Carnosine is effective in sequestering reactive aldehyde (4-

HNE) generated in GLT-exposed muscle cells. (A) C2C12 and (B) HSkM 

myotubes were incubated in control or GLT media supplemented ± 10mM carnosine 

for 5 days. Cell lysates were then determined for 4-HNE using ELISA.  Concentrations 

detected were normalised to protein content. Results are expressed as fold change 

compared to control from 3 independent experiments ± SEM. (* versus control 

p<0.05; # p<0.05 versus GLT; Tukey’s test) 
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3.2.2.2 Carnosine Improves Glucose-Uptake in 

Glucolipotoxicity-induced insulin-resistant C2C12 

Myotubes, Primary Mouse and Human Skeletal Myotubes 

 

As shown earlier, carnosine has a protective effect on muscle cells against GLT-

mediated reactive species. Therefore, it was next sought to determine whether this, 

as a result, could have a beneficial action upon glucose uptake.  In order to answer 

this, a luminescence-based glucose uptake assay was conducted. C2C12 myotubes 

were incubated either in control or GLT media for 5 days. After cells were serum-

starved overnight with low-glucose DMEM, cells were then incubated for 1-hr in 

glucose-free DMEM ±100 nM insulin. Medium was then replaced with PBS + 2-

deoxyglucose (2-DG), followed by an uptake reaction for 30-minutes. Glucose uptake 

was then measured based on 2-deoxyglucose-6-phosphate using a luminometer.  

As shown in Figure 3.8, GLT- exposed cells have reduced capacity to uptake  glucose 

both in basal and in insulin-stimulated conditions. For instance, GLT significantly 

reduced uptake by 36.89 ± 5.91% and 74.19 ± 7.37% as compared to control basal 

and insulin-stimulated glucose uptake, respectively. Importantly, carnosine 

scavenging the glucolipotoxic reactive species resulted in a significant enhancement 

of glucose uptake by 44.14 ± 12.79% in the stimulated condition. This finding is not 

due to significantly altered C2C12 cell viability, as in C2C12 myotubes treated with 

GLT media for 5 days, cell viability was found to be 93.67+/−3.61%. Therefore, 

carnosine scavenging is likely to exert a beneficial action on glucose homeostasis 

through enhanced skeletal muscle glucose uptake. 

In order to validate the findings obtained through C2C12 in vitro experiments, it was 

essential to conduct similar studies using primary mouse muscle cells (isolated by Dr. 

Craig Doig, NTU), and a human skeletal muscle cell line (with passage not later than 

6), employing the same treatment conditions and methodology. Results obtained in 
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these experiments (Figure 3.9) showed a similar response as found previously with 

C2C12. When comparing all values to control basal, a significant reduction of glucose 

uptake was shown from 170.30% to 102.20% under insulin- stimulated conditions, 

and importantly was enhanced when supplemented with 10mM carnosine by about 

57%. In the case of using primary muscle cells from mouse as shown in Figure 3.10, 

only 20.72 ± 7.16 % of glucose uptake compared to control basal was observed in 

GLT-treated cells under insulin-stimulated conditions. In the presence of 10mM 

carnosine, this resulted to 77.93%.  

 

Figure 3.8; Carnosine enhances glucose uptake in GLT-exposed C2C12 

muscle cells. C2C12 myotubes were cultured in DMEM media, or DMEM GLT 

media for 5 days ± 10mM Carnosine.  Cells were serum-starved overnight in DMEM 

supplemented with 5 mM glucose, then incubated for 1 h in glucose-free 

DMEM +/−100nM insulin. Medium was replaced with PBS + 0.125 mM 2-deoxy 

glucose (2-DG). Glucose uptake reactions were conducted for 30 min. 2DG6P was 

detected using a luminometer. Data are expressed as means ± SEM of 3 or more 

independent experiments. (*p < 0.05,**p<0.005,***p<0.001 vs Control with 

insulin stimulation; #p<0.05 vs GLT with stimulation, ƚp<0.01 vs GLT without 

stimulation; Tukey’s test) 
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Figure 3.9; Carnosine enhances glucose uptake in GLT-exposed human 

skeletal muscle cells. Human skeletal myotubes (HSkM) were cultured in DMEM-

F12 media, or DMEM-F12 GLT media (17mM glucose, 200 μM Palmitic acid, 200 

μM Oleic acid) for 5 days ± 10mM Carnosine.  Cells were serum-starved overnight 

in DMEM supplemented with 5 mM glucose, then incubated for 1 h in glucose-free 

DMEM +/− 1μM insulin. Medium was replaced with PBS + 0.150 mM 2-deoxy 

glucose (2-DG). Glucose uptake reactions were conducted for 30 min. 2DG6P was 

detected using a luminometer. Data are expressed as means ± SEM of 3 

independent experiments. (*p < 0.05,**p<0.005, vs Control with insulin 

stimulation; #p<0.05 vs GLT with stimulation, ƚp<0.01 vs GLT without stimulation; 

Tukey’s test) 

 

Figure 3.10; Carnosine improves glucose uptake in GLT-treated muscle 

cells isolated from mice. Primary mouse myotubes were cultured in DMEM 

media, or DMEM GLT media (28mM glucose, 200 μM Palmitic acid, 200 μM Oleic 

acid) for 5 days ± 10mM Carnosine.  Cells were serum-starved overnight in DMEM 

supplemented with 5 mM glucose, then incubated for 1 h in glucose-free 
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DMEM +/− 100nM insulin. Medium was replaced with PBS + 0.150 mM 2-deoxy 

glucose (2-DG). Glucose uptake reactions were conducted for 30 min. 2DG6P was 

detected using a luminometer. Data are expressed as means ± SEM of 3 

independent experiments (*p < 0.05,***p<0.005, **** p<0.0001 vs Control with 

insulin stimulation; #p<0.05 vs GLT with stimulation, ƚp<0.05 vs GLT without 

stimulation; Tukey’s test) 

 

3.2.3 Effects of Glucolipotoxicty and Carnosine on GLUT4 

Translocation in C2C12 myotubes 

 

Glucose is an important fuel for the body and therefore normal regulation of its 

concentration in the blood is vital for the health. Insulin released by the pancreas 

stimulates uptake of glucose by insulin-sensitive tissues such as skeletal muscle, and 

so T2DM and/or obese patients who often develop insulin resistance are unable to 

control their glucose homeostasis (Koshy et al., 2010). In the body, there are 13 

known members of glucose transporters (GLUT) that are distributed in different 

tissues, and glucose transporter type 4 (GLUT4) is the major transporter in skeletal 

muscles that upon its translocation from intracellular storage depots to the plasma 

membrane, facilitates the diffusion of glucose entry into the cell (Zao and Keating, 

2007; Richter et al., 2013). Reduced glucose transport activity is believed to be one 

of the causes of insulin resistance in type 2 diabetes (Graham et al., 2007).  

Pedersen et al., (1990) and Garvey et al. (1998) reported that the levels of GLUT4 in 

the skeletal muscles of obese, type 2 diabetic patients, individuals with gestational 

diabetes, individuals with impaired glucose tolerance, and those with insulin-resistant 

states were normal. Although both studies above have established data for this, this 

Ph.D. work also sought to determine whether the GLT model of T2DM would have 

influenced the level of GLUT4. In order to do this, immunoblot analysis on GLUT4 

expression was conducted on C2C12 myotubes incubated in control or GLT media. 
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As shown in Figure 3.11, there was no significant difference in GLUT4 levels between 

control and GLT conditions.  

 

 

 

 

 

 

 

 

Figure 3.11; Level of glucose transporter (GLUT4) expression between 

normal and GLT-treated muscle cells shows no significant difference. C2C12 

myotubes were incubated in control or GLT media supplemented with or without 

10mM carnosine for 5 days. Cells were then lysed to extract proteins, and then 

separated via SDS-PAGE, transferred to nitrocellulose and detected using anti-iNOS 

or anti-actin antibody. Data expressed as mean ± SEM from 4 independent 

experiments. (p>0.05; t-test) 

 

In order to determine whether glucolipotoxicity could lead to defective GLUT4 

translocation, and, if so, to investigate whether or not carnosine could provide a 

protective effect against this. In collaboration with Dr. Gemma Foulds (NTU), GLUT4 

translocation was quantified using flow cytometry. This utilised a primary anti-GLUT4 

antibody directed to an external epitope of the transporter that binds to it as soon as 

it is exposed after being translocated and a corresponding secondary antibody 

conjugated to AlexaFluor 488. Although GLUT4 is endocytosed due to it only being 



 

128 
 

transiently expressed at the plasma membrane of the cell, the fluorescence signal 

measured still accounts for the total amount of GLUT4 exposed at the surface of the 

cell in the presence of insulin at particular incubation time because the bound 

antibodies have remained to be attached to the GLUT4 even during the endocytosis 

(Koshy et al., 2007). 

Figure 3.12 indicates that under the normal condition there is a significant increase 

of translocation upon insulin stimulation (100nM) relative to its basal. However, the 

transport activity of GLUT4 was found to be significantly reduced by 3.27 ±0.67 fold 

upon exposure of cells to glucolipotoxicity, indicating the potential negative regulation 

of GLT upon insulin signalling. Importantly, supplementation of 10mM carnosine of 

this GLT-treated cells showed a significant improvement of GLUT4 translocation by 

2.15 ±0.80 fold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

129 
 

 

 

 

 

Figure 3.12; Translocation of GLUT4 is impaired in GLT-treated C2C12 

muscle cells and enhanced by carnosine supplementation. (A) Representative 

typical dot plots of side scatter intensity (SC INT) versus forward scatter intensity (FS 

INT) with a gate around the live cells. (B) Representative images for cells staining 

intensity with the antibody against GLUT4. (C) Average fluorescence intensity of each 

indicated condition normalised to control unstimulated. Myotubes were incubated in 

control or GLT media supplemented ± 10mM carnosine for 5 days. Cells were serum-

starved overnight in DMEM supplemented with 5 mM glucose, then simultaneously 

stimulated with insulin and stained using the prepared antibody mix (primary anti-

GLUT4 antibody and Goat Anti-Rabbit IgG H&L conjugated to Alexa Fluor 488) for 

30 minutes, fixed in 1% PFA for 20 minutes and data acquisition using flow 

cytometry. Data are expressed as means ± SEM of 3 independent experiments. 

(*p < 0.05,**p<0.01, vs Control with insulin stimulation; #p<0.05 vs GLT with 

stimulation, ƚp<0.05 vs GLT without stimulation; Tukey’s test) 
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3.2.4 Effects of Carnosine on Pancreatic β-cells 

 

Pancreatic β-cells are also very important in regulating glucose concentrations in the 

blood and altered function and viability of these insulin-producing cells underlies type 

2 diabetes pathophysiology. Oxidative stress is believed to be a major cause of 

pancreatic islet death, and compared to other tissues, β-cells have low levels of 

antioxidant enzymes. Due to their lack of a robust antioxidant system, beta cells are 

therefore more susceptible to oxidative damage (Miceli et al., 2018; Harmon et al., 

2010). In collaboration with a colleague in the Turner laboratory (Michael Cripps), a 

parallel activity was thus conducted in β-cells in order to determine the effect of 

glucolipotoxicity on cell viability, generation of intracellular reactive oxygen and 

nitrogen species, and finally on insulin secretion. At the same time, we also 

determined the potential protective effects of carnosine against GLT-driven oxidative 

stress.  

INS-1 cells were incubated in control or GLT media for 5 days, then replaced with 

fresh experimental condition media supplemented with or without 10mM carnosine 

for 1 hour. Similarly, the amount of intracellular reactive species was determined 

using DCFDA. As shown in Appendix 1, (obtained and produced by Cripps), GLT- 

exposed cells were shown to have significantly increased reactive species to 180.4 ± 

8.2% normalised to control, whilst addition for 1h with 10mM carnosine did reverse 

the upregulation back to within control limits (77.5 ± 19.7%). Again, the observed 

increase in reactive species by chronic GLT exposure conditions were not associated 

with the glucolipotoxic changes in β-cell viability as INS-1 cells treated for 5 days in 

GLT media showed only a small and non-statistically significant increase in viability 

(data not shown).  
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Carnosine significantly protected β-cells from deleterious adduction resulting from 

GLT-mediated generation of reactive nitrogen and carbonyl species - namely iNOS, 

3-nitrotyrosine, and 4-hydroxynenal. The data for these have been published in our 

paper (Cripps et al., 2017) and reported in Michael Cripps’ PhD thesis.  

As carnosine has been shown to be effective at scavenging these reactive species 

and can inhibit potentially harmful adduct formations, it was also determined whether 

chronic treatment with carnosine could lead to an improved β-cell function particularly 

on insulin secretion. INS-1 cells were incubated in standard growth media in the 

absence or presence of 10mM carnosine for 5 days. After a 5-day period of incubation 

in each condition, cells were washed and incubated in either KREBS or a secretagogue 

cocktail (containing 1mM Tolbutamide, 10mM Leucine, 10mM Glutamine, 1mM 3-

isobutyl-1-methylxanthine (IBMX), 1μM phorbol 12-myristate 13-acetate (PMA) and 

10mM glucose) for 2h. The amount of insulin produced in each treatment condition 

was quantified using an ELISA and values were normalised to protein content. As 

shown in Appendix 2, GLT significantly reduced insulin stimulated secretion by 63.1 

± 0.4%. The addition of 10mM carnosine fully reversed the GLT-mediated loss of 

insulin production. Data obtained by the Turner group indicates that carnosine is not 

only able to enhance insulin secretion, but it can reverse and inhibit the damaging 

effects to beta cells that have resulted from high-sugar and high-fatty acid exposure. 
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3.3 Discussion 

 

There is growing evidence to indicate that oxidative stress (OS) is a common 

denominator for the pathogenesis of several diseases, including cancer, diabetes, 

obesity, neurodegenerative disorders, among others (Son, 2012; Devi, 2015; Reuter, 

2010). OS dysregulates cell metabolism and cell-cell homeostasis and plays an 

important role in the pathogenesis of the two most relevant aspects of T2DM, namely 

insulin resistance and β-cell dysfunction (Pitocco et al., 2013; Poitout et al., 2008). 

OS ensues when oxidant production in the living system exceeds that of the cell’s 

antioxidant machinery, in other words, a disease results when there is an imbalance 

of the redox system of the cell.  

When production of both ROS and RNS are carefully regulated, they participate and 

have functional effects in normal physiology such as hormone action, immune 

response, cell growth, and cell adhesion. By contrast, ROS and RNS can also become 

toxic agents and thereby participate in pathophysiological processes, causing 

irreversible modifications via inducing damage to cellular components (lipids, DNA, 

carbohydrates) and thereby altering their normal function (Chiarugi et al., 2003; Yang 

et al., 2013; Sisein, 2014).  

There are two specific reactive species focused on this study, namely 3-nitrotyrosine 

(3-NT) and 4-hydroxynonenal (4-HNE). The former is a useful biomarker of 

peroxynitrite-driven OS and has been implicated in diabetic neuropathy and 

nephropathy (Thuraisingham, 2000; El-Remessy et al., 2003). Data presented in this 

work showed that glucolipotoxicity mediated the excessive generation of reactive 

oxygen and nitrogen species which in turn generated 3-NT protein adducts. The 

presence of 3-NT suggests that peroxynitrite is just one of the reactive species in 

GLT-exposed cells. On the other hand, 4-HNE, an α-β-unsaturated alkenal, is a 
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reactive carbonyl specie that could easily react with the nucleophilic sites of proteins 

such as Lys, His, and Cys, and DNA, thereby causing cellular dysfunction, is the 

reactive carbonyl species (RCS). HNE is a product of oxidative stress and is most likely 

produced following peroxidation of intracellular lipids. This work has also shown that 

GLT leads to damaging 4-HNE adduct formation.  

HNE is the most intensively investigated and quantitatively most important product 

of lipid peroxidation due to its highly cytotoxic role in inhibiting gene expression. It 

also enhances the development and progression of several pathological states, 

including diabetes, Alzheimer’s diseases, cancer, cardiovascular diseases, liver 

diseases, and Parkinson’s disease (Ayala, Muńoz and Arguelles, 2014).  

There are three HNE metabolising enzymes namely, glutathione-S-transferase (GST), 

alcohol dehydrogenases (ADH) and aldehyde dehydrogenases (ALDH), (Castro, et al., 

2017) however these antioxidant defence systems are reduced in liver microsomes 

and mitochondria in diabetic conditions. Therefore, it has been suggested that 

hyperglycaemia and excessive ROS generation could lead to HNE accumulation, or 

deficiency of its removal, and thus produce a cycle amplifying the damage (Traverso 

et al., 2002). As such, this lipid peroxidation product is very important in tackling 

T2DM, particularly in those organs involved in glucose homeostasis, because for 

instance pancreatic islets have one of the least antioxidant defence systems and are 

hence very susceptible to oxidative damage. At the same time intracellular 

glutathione pools in insulin-resistant states are depleted, with negative effects on the 

skeletal muscle insulin sensitivity and decreased insulin-induced glucose uptake 

(Pillon et al., 2012).  

Nitric oxide synthases (NOS) are enzymes involved in reactions generating reactive 

oxygen or nitrogen species called nitric oxide (NO). The most important isoform of 
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NOS is the inducible nitric oxide synthase (iNOS) which has an important role in the 

regulation of insulin resistance (Soskic et al., 2011). iNOS was reported to have a link 

with insulin resistance, and upregulation of this was also observed with several 

inducers of insulin resistance (IR) including obesity, hyperglycemia, oxidative stress, 

and tumor necrosis factor-α. It is also elevated in skeletal muscles of type 2 diabetic 

patients (Ceriello et al., 2002; Tannous et al., 1995; Torres et al, 2004). The Turner 

group previously reported that INS-1 β-cells incubated in GLT media for 5 days have 

significant fold upregulation in iNOS expression (Cripps et al., 2017), and together 

with what has been indicated earlier (Figure 3.5), this clearly shows the potential role 

of GLT-driven increased expression on T2DM. 

The damaging effects of glucolipotoxicity and its role towards the pathogenesis of 

T2DM (β-cell dysfunction and insulin resistance) can be ascribed from the ability to 

initiate and mediate pathways leading to mitochondrial stress, generation of reactive 

species, proinflammatory cytokines, and altered gene expression (Bagnati et al., 

2016; Akash et al., 2018; Van Raalte et al., 2011). These pathways are most likely 

responsible for the defective glucose regulatory mechanism (insulin secretion and 

insulin resistance) observed in T2DM individuals. The Turner group initially generated 

data to indicate that the cellular model condition employed in this project could both 

initiate islet cell inflammation and pancreatic β-cell death (Bagnati et al., 2016), as 

well as inhibit insulin secretion  (Marshall et al, 2007) and glucose uptake (Cripps et 

al., 2017). The GLT condition employed in this project uses a combined high-glucose, 

palmitic acid, and oleic acid supplementation to the cell culture media. The choice of 

these fatty acids and the corresponding concentrations are based on consultation and 

collaboration with diabetologists. In addition, these two fatty acids were also found 

to be most abundant in the human diet (Orsavova et al., 2015). 
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In this work it has been demonstrated that excessive production of reactive species 

mediated by glucolipotoxicity has deleterious effects on the pancreas and skeletal 

muscle cells. For instance, in the skeletal muscles, the GLT-induced OS might have 

contributed to the impairment of the main signalling pathways involved in insulin 

action such as the IR-IRS-PI3K-Akt axis. As a consequence, these pathways could 

not collectively function properly to translate the signal generated from the interaction 

between insulin and its receptor into relevant physiological actions, including 

stimulation of GLUT4 for glucose transport and utilization this for other biologically 

important macromolecules in target tissues. As mentioned somewhere in this thesis, 

β-cells have low level of antioxidant enzyme expression. With this, it is tempting to 

speculate that these cells are at greater risk for oxidative damage or are easy target 

for ROS.  Exposure of β-cells to GLT, might have inhibited the ATP-dependent cascade 

of events responsible for insulin secretion, release, and action probably through 

altered mitochondrial shape, volume, and function. Other possible reason for the 

decreased in insulin secretion by GLT is that there should be activated 

proinflammatory pathways (e.g. JNK) that might have suppressed insulin gene 

expression. Therefore, the ability of oxidative stress to damage mitochondria and 

markedly blunt insulin secretion is not surprising. 

Given the implication of oxidative stress in the onset of the disease, it is possible that 

antioxidant strategies would be effective in the prevention or treatment of diabetes 

– as these are molecules that have the ability to scavenge, quench or even neutralise 

these excess reactive species, thereby preventing cellular damage and preserving 

function. This work has shown that a natural dipeptide, carnosine, has the ability to 

offset the negative effects these reactive species have upon β-cells and muscle cells, 

and by so doing offered significant improvement respectively on insulin secretion and 

glucose uptake by these cells exposed to glucolipotoxic conditions. 



 

136 
 

The antioxidant and scavenging action of carnosine towards radicals and reactive 

species could potentially be attributed to multiple possible actions. One is its buffering 

capacity not only for protons but also for regulating the level of mixed-valence metal 

ions (copper, cobalt, manganese, iron, and cadmium) that take an active part in many 

metabolic processes activating free-radical processes. Another one is its antiglycation 

or anti-crosslinking properties which could block oxidative damage of biomolecules 

(Prokopieva et al., 2015). In the case of RNS and ROS, carnosine could form a charge-

transfer complex (e.g. superoxide radical and hydroxyl radical). This reaction yields 

a stable intermediate or unreactive molecule (Boldyrev et al., 2013). In the case of 

RCS like 4-HNE, the imidazole ring of L-histidine and the amino group of β-alanyl in 

carnosine act through a synergistic way in trapping this cytotoxic aldehyde. In other 

words, carnosine has been suggested to react with HNE in biological systems through 

a sacrificial mechanism in lieu of the target substrate by acting like the preferable site 

of addition by HNE (Liu, Xu and Sayre, 2003). The functional properties of carnosine 

are associated to its L-histidine component particularly through its imidazole moiety, 

however histidine-containing dipeptide like carnosine still offers more advantages 

compared to free L-histidine. For instance, it has been observed that  that carnosine 

could sequester HNE 10 times more and could react two- to fourfold faster with ROS 

than free L-histidine whilst β-alanine was totally inactive (Boldyrev et al., 2013; Aldini 

et al, 2002).  

Based on the findings above, the next step being sought was to investigate the role 

of reactive species further by identifying specific proteins that form adducts with 4-

HNE and 3-NT, and to evaluate the extent to which carnosine intervention could offer 

prevention from GLT-mediated adduction. In addition, it was also necessary to 

investigate what impact glucolipotoxicity has upon muscle mitochondrial 

bioenergetics, and to identify whether carnosine could offer protective effects on 
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mitochondrial function. These research questions formed the basis for work in 

Chapter 4.  

In conclusion, data presented here indicate that exposure of muscle cells and β-cells 

to persistently elevated levels of glucose and fatty acids will have negative effects on 

glucose homeostasis by dysregulating pathways associated with insulin signalling, as 

evidenced by impaired translocation of glucose transporter (GLUT4) and decreased 

glucose uptake, and decreased secretion of insulin. Importantly, treatment with 

carnosine showed protective effects against GLT-mediated induction of reactive 

species (RNS, ROS, RCS) that are believed to be responsible for impaired cellular 

function. The scavenging action and the use of carnosine as a blocking agent against 

those deleterious species could therefore potentially offer a novel treatment and 

therapeutic perspectives for T2DM patients.  

Figure 3.13; A schematic representation of how carnosine is beneficial against the 

oxidative stress cascade mediated by glucolipotoxicity in two key tissues involved in 

glucose homeostasis, and hence protective by directly quenching these reactive 

species.  
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Carnosine prevents 
damaging protein 

adduction and preserves 
mitochondrial function in 

cells under metabolic 
stress 
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4.1 Introduction 

 

The accumulation of excess ROS as a result of oxidant production, when higher than 

the available antioxidant defences in the cell, can induce damage to biological 

molecules, such as unsaturated fatty acids in membranes, thiol groups in proteins 

and nucleic acids in DNA (Valko et al., 2007). Therefore, oxidative stress may lead to 

the development and progression of various chronic diseases. One particular group 

of compounds that have a crucial role in the progression of metabolic disorders, such 

as diabetes, are the reactive carbonyl species – products that result from the 

oxidation of polyunsaturated fatty acids and sugars (Hwang et al., 2016). The 

electrophilic nature of these carbonyl compounds allows them to favourably react 

with the nucleophilic regions of amino acids, such as lysine, histidine, and cysteine. 

This, in turn, leads to the formation of protein adducts that can cause irreversible 

cellular dysfunction (Dalle-Donne et al., 2006).  

The focus of this chapter includes one of the most abundant and toxic reactive 

carbonyl species, 4-hydroxynonenal (4-HNE). 4-HNE is believed to be an indicator of 

oxidative stress and  could easily form covalent adducts with nucleophilic side chains 

of proteins such as the thiol group of cysteine, the lysine ε-amino group, and the 

imidazole ring of histidine. When this happens, this could potentially cause the protein 

to undergo a conformational change, thereby generating a distorted catalytic site and 

impaired function. Consequently, 4-HNE is a leading contributory agent to the 

development of several diseases, including diabetes (Carini et al., 2004). As part of 

this PhD project, it was therefore sought to identify those proteins that both interact 

and form adducts with 4-HNE in cells, tissue and serum samples under metabolic 

stress.  
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In addition to 4-HNE, another biomarker of oxidative stress that is also capable of 

forming damaging adducts with protein is 3-nitrotyrosine. A combination of 

superoxide radical anion (O2
.-) and nitrogen monoxide (NO.) drives the formation of 

3-nitrotyrosine through generation of the intermediate, peroxynitrite. In addition to 

this, the peroxidase enzyme-catalysed reaction using hydrogen peroxide and nitrite 

is another possible route for the formation of 3-NT (Radi, 2013). L-tyrosine and 

protein-bound tyrosine are prone for attack by reactive nitrogen species (RNS), 

including peroxynitrite, and form either free or protein-3-NT adducts. Thus, the 

formation of nitrotyrosine and the detection of this molecule in proteins may not only 

signify RNS-mediated protein modifications, but could also be an important indicator 

of endogenous peroxynitrite activity, which can lead to the development of diverse 

pathologic conditions (Stadler, 2011).  Elevated circulating levels of 3-nitrotyrosine 

and other cellular oxidative stress markers are shown in patients with metabolic 

syndrome (Ruiz-Ojeda et al., 2018) and diabetes (Pop-Busui, 2007). As with 4-HNE, 

it was also aimed to identify those proteins that are adducted by 3-nitrotyrosine.  

Data presented in Chapter 3 demonstrated that the naturally occurring dipeptide, 

carnosine, could sequester the aforementioned reactive species. This PhD research 

next sought to determine the extent to which carnosine could prevent these individual 

damaging adduction events. By so doing, an accurate picture of the effectiveness of 

carnosine as a scavenging agent can be constructed, and its potential as a future 

therapeutic agent further interrogated. 
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4.2  Results 

4.2.1  Impact of Obesity and Diabetes on Serum Protein Adduction  

In order to test the validity of our experimental procedures to human obesity and 

diabetes, this PhD also determined the extent to which serum proteins form adducts 

with 4-hydroxynonenal and 3-nitrotyrosine as a consequence of metabolic stress. 

Following a 10 hour overnight fast, blood was collected from lean controls, obese 

non-diabetic, obese gestational diabetic, and obese type 2 diabetic non-menopausal 

women with informed consent. Serum samples were immunoprecipitated using either 

4-HNE or 3-NT primary antibodies and a Pierce crosslink magnetic 

immunoprecipitation kit. Mass-spectrometry analysis was conducted using a SCIEX 

TripleTOF 6600 mass spectrometer, with data acquisition processed using PEAKS 

studio 8.5 software in conjunction with the SwissProt database. 

Table 4.1. Characteristics of Study Patients (provided by Dr. Alice Murphy, 

Bioscience Department, NTU). 

Obese-Non-Diabetic Patients (All Female) [ W-white, B-black] 

Patient 

ID 

Age Ethnicity BMI 

(kg/m2) 

HbA1c 

(%) 

Surgery Date Smoking Status 

AT179 29 W 37 * 24.07.12 2-3 per day 

AT281 38 W 37.1 * 25.02.13 3 per day 

AT185 26 W 37.7 * 16.08.12 15 per day 

AT294 28 W 43 * 25.03.13 Non-smoker 

AT277 43 B 47.7 * 20.02.13 Non-smoker 

AT242 33  47 *   

• (* No data - diabetic status was taken from their medical records) 
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Obese-Type 2 Diabetic Patients (All Female)[ W-white] 

Patient ID Age Ethnicity BMI 

(kg/m2) 

HbA1c 

(%) 

Surgery Date Smoking Status 

AT025 59 W 37.7 8.1 14.01.11 Smoker 

AT036 60 W 50 10.4 24.02.11 Non-smoker 

AT028 54 W 57.3 9.4 27.01.11 Non-smoker 

AT405 59 W 44.3 ** 13.01.15 Non-smoker 

AT407 67 W 37.8 ** 09.04.15 Non-smoker 

** No data - diabetic status was taken from their medical records 

 

***Obese-Gestational Diabetic Patients [ W-white,B-black, A-Asian] 

Patient 

ID 

Age Ethnicity BMI 

kg/m2 

 Surgery Date Smoking Status 

AT270 36 W 38.6  08.02.13 Non-smoker 

AT335 24 W 39  18.07.13 Non-smoker 

AT263 38 A 40.9  08.01.13 Non-smoker 

AT245 31 W 42.5  30.11.12 Non-smoker 

AT303 34 W 46  16.04.13 Non-smoker 

AT317 37 B 52.9  23.05.13 Non-smoker 

*** diagnosed by an oral glucose tolerance test 

 

As can be seen from the Tables below, there is increased damaging serum protein 

adduction associated with both 4-HNE and 3-NT species in each of the metabolic 
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conditions tested (relative to healthy control individuals). However, there is more 

adducted protein (>60%) in the serum of obese-type 2 diabetic individuals than in 

the other serum samples (~30%).  

Table 4.2. 4-Hydroxynonenal-Associated Proteins Identified in Different 
Clinical Serum Samples.  
 

Obese-nondiabetic Serum (BMI=41.60±4.99; Age = 32.80±6.50) 

Apolipoprotein(a)  Histone H2B type 1 
Immunoglobulin lambda-like 
polypeptide 5  

Extracellular matrix protein 1  Histone H2B type 2 Myeloperoxidase  

Fibrinogen beta chain  Histone H2B type 3 
Pregnancy-specific beta-1-
glycoprotein 3  

Galectin-3-binding protein  Histone H3 
Putative pregnancy-specific 
beta-1-glycoprotein 7  

Histone H2A type 1  Histone H4  
Putative transmembrane 
protein encoded by LINC00477  

Histone H2A type 2 
Immunoglobulin heavy 
variables  Putative trypsin-6  

Histone H2A type 3  
Immunoglobulin kappa 
variables  

Sushi, von Willebrand factor 
type A, EGF and pentraxin 
domain-containing protein 1  

Histone H2A.V  
Immunoglobulin lambda 
variables Trypsin-2  

Obese – Type 2 Diabetes (BMI=45.42±8.38; Age = 59.80±4.65) 

BPI fold-containing family A 
member 1  

Immunoglobulin heavy 
variables  piRNA biogenesis protein EXD1  

BTB/POZ domain-containing 
protein 9 

Immunoglobulin heavy variable 
3-30-5  

Putative transmembrane 
protein encoded by LINC00477  

Dermcidin  
Immunoglobulin kappa 
variables Putative trypsin-6  

Extracellular matrix protein 1  
Immunoglobulin lambda 
constant 6  Statherin  

Fibrinogen beta chain  
Immunoglobulin lambda 
variables Sulfate anion transporter 1  

Fibrinogen gamma chain  
Immunoglobulin lambda-like 
polypeptide 5  Trypsin-2  

Immunoglobulins heavy 
constant alpha 2  Keratin, type I cytoskeletal 9   

Obese – Gestational Diabetes (BMI=43.31±5.41; Age = 33.33±5.20) 

Histone H2A type 1  
Immunoglobulin heavy 
variables Putative trypsin-6  

Histone H2A type 2 
Immunoglobulin kappa 
variables  

Ribonucleoside-diphosphate 
reductase large subunit  

Histone H2A type 3  
Immunoglobulin lambda 
variables 

Serine/threonine-protein 
phosphatase 2A 65 kDa 
regulatory subunit A alpha 
isoform  

Histone H2A 
Immunoglobulin lambda-like 
polypeptide 5  Trypsin-2  

Histone H2A.Z  
Lethal(3)malignant brain 
tumor-like protein 1  Urea transporter 2  

Histone H2AX  Protein HID1   
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Table 4.3 3-Nitrotyrosine-Associated Proteins Identified in Different 
Clinical Serum Samples. 
 

Obese-nondiabetic Serum (BMI=41.60±4.99; Age = 32.80±6.50) 

Afamin  Fibrinogen beta chain  
Immunoglobulin mu heavy 
chain  

Apolipoprotein Haptoglobin-related protein  Keratin 

Apolipoprotein A-II  Hemoglobin subunit 
Leucine-rich alpha-2-
glycoprotein  

C4b-binding protein beta chain  Histidine-rich glycoprotein  Plasminogen  

Coagulation factor XII  Histone H3 
Polymeric immunoglobulin 
receptor  

Complement component C8 
gamma chain  

Immunoglobulin heavy 
variables Pregnancy zone protein  

Complement factor H-related 

protein 5  

Immunoglobulin kappa 

variables  

Putative uncharacterized 

protein RUSC1-AS1  

Complement factor I  
Immunoglobulin lambda 
constant  

REVERSED SHC-transforming 
protein 1  

Dermcidin  
Immunoglobulin lambda 
variables 

Vascular endothelial growth 
factor C  

Dermokine  
Immunoglobulin lambda-like 
polypeptide 1  Vitamin K-dependent protein S  

 Zinc-alpha-2-glycoprotein   

 

 

Obese – Type 2 Diabetes (BMI=45.42±8.38; Age = 59.80±4.65) 

Abnormal spindle-like 
microcephaly-associated 
protein  Dermcidin  

Insulin-like growth factor-
binding protein complex acid 
labile subunit  

Afamin  
DNA polymerase zeta catalytic 
subunit  

Inter-alpha-trypsin inhibitor 
heavy chain H3  

Alpha-1-antichymotrypsin  
E3 ubiquitin-protein ligase 
MYCBP2  Kallistatin  

Apical junction component 1 
homolog  

Ecotropic viral integration site 
5 protein homolog  Keratin 

Apolipoprotein A-II  Extracellular matrix protein 1  
Keratinocyte proline-rich 
protein  

Apolipoprotein A-IV  Fanconi-associated nuclease 1  Kinesin-like protein KIF1B  

Apolipoprotein C-I  Fibrinogen beta chain  
Leucine-rich alpha-2-
glycoprotein  

Apolipoprotein C-II  Fibrinogen gamma chain  Lumican  

Apolipoprotein C-III  Gelsolin  
N-acetylmuramoyl-L-alanine 
amidase  

Apolipoprotein D  Granulins  
pdb|1FNI_A| A Chain A, Crystal 
Structure  

Apolipoprotein L1  Haptoglobin-related protein  

Phosphatidylinositol-glycan-

specific phospholipase D  

Apolipoprotein(a)  
HEAT repeat-containing 
protein 1  

Pigment epithelium-derived 
factor  

Brefeldin A-inhibited guanine 
nucleotide-exchange protein 2  Hemoglobin subunit alpha  Plasma kallikrein  

Carboxypeptidase B2  Hemoglobin subunit beta  Plasminogen  

Carboxypeptidase N subunit 2  Heparin cofactor 2  Platelet basic protein  

Coagulation factor IX  Histidine-rich glycoprotein  Pregnancy zone protein  
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Coagulation factor XII  Histone H4  
pre-rRNA processing protein 
FTSJ3  

Coagulation factor XIII A chain  Homeobox protein Mohawk  
Putative transmembrane 
protein encoded by LINC00477  

Cohesin subunit SA-3  Hornerin  Retinol-binding protein 4  

Complement component C6  
Immunoglobulin heavy 
variables  

REVERSED Serine/threonine-
protein kinase PRP4 homolog  

Complement component C7  
Immunoglobulin kappa 
variables  REVERSED Supervillin  

Complement component C8 
gamma chain  

Immunoglobulin lambda 
constant 1  RuvB-like 1  

Complement factor I  
Immunoglobulin lambda 
variables  Ryanodine receptor 2  

Corticosteroid-binding globulin  
Immunoglobulin lambda-like 
polypeptide 5  Ryanodine receptor 3  

C-reactive protein  
Immunoglobulin mu heavy 
chain  Serum amyloid A-1 protein  

Serum amyloid A-4 protein  
Structural maintenance of 
chromosomes protein 5  Thyroxine-binding globulin  

Serum amyloid P-component  Thrombospondin-1  Vitamin K-dependent protein S  

Serum 
paraoxonase/arylesterase 1   Zinc-alpha-2-glycoprotein  

Obese – Gestational Diabetes (BMI=43.31±5.41; Age = 33.33±5.20) 

Alpha-1-acid glycoproteins Haptoglobin  
Immunoglobulin lambda 
variables 

Alpha-1-antichymotrypsin  Haptoglobin-related protein  
Immunoglobulin lambda-1 light 
chain  

Alpha-1-antitrypsin  Hemopexin  
Immunoglobulin lambda-like 
polypeptide 5  

Alpha-2-macroglobulin  
Immunoglobulin heavy 
constants 

Immunoglobulin mu heavy 
chain  

Apolipoprotein A and B 
Immunoglobulin kappa 
constants 

Inter-alpha-trypsin inhibitor 
heavy chains  

Complement C1q 
Immunoglobulin kappa 
variables  

Inter-alpha-trypsin inhibitor 
heavy chain H2  

Complement C4-A and B 
Immunoglobulin lambda 
constants 

Inter-alpha-trypsin inhibitor 
heavy chain H4  

Keratin  Vitamin D-binding protein  

 

Protein adduction data were then analysed using PANTHER software 

(www.pantherdb.org). This facilitates classification of uploaded protein data from the 

Uniprot Knowledgebase (UniprotKB) via several available parameters. Figures 4.1-4.2 

show the relative proportion of biological functions affected by protein adduction from 

4-HNE and 3-NT in each condition. 

 

 

http://www.pantherdb.org/
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Figure 4.1. Biological process classification of proteins identified and 

associated with 4-hydroxynonenal in (A) obese (B) obese – type 2 diabetes 

and (C) obese-gestational diabetes serum samples.  Generated using the 

Panther Classification System. 
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Figure 4.2. Biological process classification of proteins identified and are 

adducted with 3-nitrotyrosine in (A) obese (B) obese – type 2 diabetes and 

(C) obese-gestational diabetes serum samples. Generated using the Panther 

Classification System.  
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Consistent with the hypothesis that obesity and diabetes drive metabolic stress 

(Evans et al, 2002), data here indicated that there are increased levels of serum 

protein adduction in all of the investigated metabolic conditions relative to healthy 

lean controls. Having established the veracity of our approach, the next aim was to 

determine how protein adduction, which is driven by high levels of glucose and fatty 

acids, might affect function in cells and tissues central to the regulation of glucose 

homeostasis, namely pancreatic islets and skeletal muscle cells. Importantly, the 

extent to which this damage could be prevented by carnosine was also determined. 

4.2.2 4-hydroxynonenal (4-HNE) and 3-nitrotyrosine (3-NT) Protein 

Adduction in C2C12 Myotubes 

In order to identify those proteins that form adducts with 4-HNE and 3-NT as a 

consequence of exposure to metabolic stress, cells were incubated in DMEM media, 

or DMEM media supplemented to 28mM glucose and 200µM palmitic acid and 200µM 

oleic acid (GLT media) for 5-days ± 10mM carnosine. Cells were lysed and protein 

concentration quantified using a BCA assay. Lysates were immunoprecipitated against 

either 4-HNE or 3-NT using appropriate primary antibodies (detailed methodology in 

Chapter 2). Mass-spectrometry analysis was then conducted with assistance from 

collaborators (John van Geest Cancer Research Center, NTU) using the mass 

spectrometer SCIEX TripleTOF 6600, and data acquisition processed using PEAKS 

studio 8.5 software along with the SwissProt database.  

Tables 4.4 and 4.5 indicate proteins that were adducted in diabetic GLT conditions, 

but not in healthy control conditions. In all cases, proteins shown in green are those 

where adduct formation was prevented by carnosine supplementation. By contrast, 

carnosine supplementation did not prevent adduction of those proteins shown in 

black. Data are generated from three independent experiments.  
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In this analysis, it was found out that carnosine prevented 90% (4-HNE) and 65% 

(3-NT) of protein adduction in C2C12 cells. 

Table 4.4. 4-HNE protein adduction in C2C12 myotubes incubated in GLT 

media for 5 days.  

• [Pyruvate dehydrogenase (acetyl-
transferring)] kinase isozyme 3, 
mitochondrial 

• Bifunctional purine biosynthesis protein 
PURH 

• 182 kDa tankyrase-1-binding protein 
• cAMP-dependent protein kinase catalytic 

subunit beta 

• 1-phosphatidylinositol 4,5-bisphosphate 
phosphodiesterase beta-3 

• Canalicular multispecific organic anion 
transporter 1 

• 26S protease regulatory subunit 8 • Carnitine 

• 39S ribosomal protein L28, mitochondrial • Centrosomal protein of 170 kDa 

• 7-dehydrocholesterol reductase • Ceruloplasmin 

• Actin-related protein 3B • Clathrin interactor 1 

• Acyl-coenzyme A thioesterase 13 • Coagulation factor V 

• Adenylosuccinate synthetase isozyme 1 • Coiled-coil domain-containing protein 114 

• Adipocyte plasma membrane-associated 
protein • Cold shock domain-containing protein E1 

• ADP-ribosylation factor-like protein 1 • Collagen alpha-1(VI) chain 

• Alanine--tRNA ligase, cytoplasmic • CTP synthase 1 

• Alpha-methylacyl-CoA racemase • Cytoplasmic dynein 1 intermediate chain 2 

• Amine oxidase [flavin-containing] A 
• Cytosolic acyl coenzyme A thioester 

hydrolase 

• Ankyrin repeat domain-containing protein 

17 • DDB1- and CUL4-associated factor 8 

• AP-2 complex subunit alpha-1 • Gamma-enolase 

• AP-3 complex subunit sigma-1 • GAS2-like protein 1 

• Apoptosis-inducing factor 1, mitochondrial • Glycine--tRNA ligase 

• Aspartyl/asparaginyl beta-hydroxylase • Glycogen [starch] synthase, muscle 

• ATP-binding cassette sub-family F member 
1 • Glycogen phosphorylase, muscle form 

• ATP-citrate synthase • Hemoglobin subunit alpha 

• ATP-dependent RNA helicase 
• Immunity-related GTPase family M protein 

1 

• Band 4.1-like protein 2 • Integrator complex subunit 3 

• Beta-galactosidase-1-like protein 3 • Integrin alpha-7 

• Deoxynucleoside triphosphate 

triphosphohydrolase SAMHD1 

• Inter-alpha-trypsin inhibitor heavy chain 

H3 

• DNA replication licensing factor MCM5 • IQ domain-containing protein F1 

• DNA-binding protein SMUBP-2 • Isoleucine--tRNA ligase, cytoplasmic 

• DnaJ homolog subfamily B member 6 • Isoleucine--tRNA ligase, mitochondrial 

• Dystrophin • Kelch-like protein 40 

• E3 ubiquitin/ISG15 ligase TRIM25 • Keratin 

• EH domain-containing protein 3 • Kinesin  
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• Electron transfer flavoprotein-ubiquinone 

oxidoreductase, mitochondrial • Myosin light chain 3 

• ELKS/Rab6-interacting/CAST family 
member 1 • Myosin-6 

• Elongator complex protein 3 
• NADH dehydrogenase [ubiquinone] iron-

sulfur protein 2, mitochondrial 

• ER degradation-enhancing alpha-
mannosidase-like protein 1 

• NADH dehydrogenase [ubiquinone] iron-
sulfur protein 3, mitochondrial 

• Eukaryotic peptide chain release factor 
subunit 1 

• Nascent polypeptide-associated complex 
subunit alpha 

• Eukaryotic translation initiation factor 3 
subunit C • Nesprin-1 

• Ezrin • Neutral alpha-glucosidase AB 

• FACT complex subunit SSRP1 • Nodal 

• Fatty acid desaturase 3 • Nuclear factor 1 B-type 

• FERM, RhoGEF and pleckstrin domain-
containing protein 1 • Nucleolar protein 14 

• Ferrochelatase, mitochondrial • Peptidyl-prolyl cis-trans isomerase C 

• Fibrous sheath-interacting protein 2 • Peptidyl-prolyl cis-trans isomerase FKBP1A 

• Phosphoglycerate kinase 2 • Phenylalanine--tRNA ligase beta subunit 

• Platelet-derived growth factor receptor 
beta • Phosphoglucomutase-like protein 5 

• Procollagen-lysine,2-oxoglutarate 5-
dioxygenase 2 

• Sodium- and chloride-dependent GABA 
transporter 3 

• Prolyl 4-hydroxylase subunit alpha-2 
• Sodium- and chloride-dependent taurine 

transporter 

• Prolyl endopeptidase 
• Sodium channel protein type 11 subunit 

alpha 

• Proteasomal ubiquitin receptor ADRM1 • Sodium/glucose cotransporter 5 

• Proteasome subunit beta type-2 • Spliceosome RNA helicase Ddx39b 

• Protein arginine N-methyltransferase 1 • Splicing factor U2AF 26 kDa subunit 

• Protein FAM98B • Stomatin-like protein 2, mitochondrial 

• Protein kinase C and casein kinase 
substrate in neurons protein 2 • Striatin-interacting proteins 1/2 

• Protein NipSnap homolog 2 • TBC1 domain family member 9B 

• Protein prune homolog 2 • Thioredoxin domain-containing protein 5 

• Protein transport protein Sec61 subunit 
alpha isoform 2 • Transcription elongation factor SPT6 

• Protein VAC14 homolog 
• Transcription initiation factor TFIID subunit 

4B 

• Pyruvate dehydrogenase protein X 
component, mitochondrial • Transcription intermediary factor 1-beta 

• Ras-related GTP-binding protein C 
• Transforming growth factor beta-1-induced 

transcript 1 protein 

• Ras-related GTP-binding protein D 

• Translocon-associated protein subunit 

delta 

• Ras-related protein Rab-6/8/11/15 • Trimeric intracellular cation channel type A 

• Receptor-type tyrosine-protein 
phosphatase beta • Tripartite motif-containing protein 2 

• REVERSED Arylsulfatase B • Triple functional domain protein 

• REVERSED Hepatoma-derived growth 
factor-related protein 2 

• Type 1 phosphatidylinositol 4,5-
bisphosphate 4-phosphatase 

• Rho GTPase-activating protein 11A • U8 snoRNA-decapping enzyme 
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• Rho-associated protein kinase 2 

• UDP-glucose:glycoprotein 

glucosyltransferase 1 

• Serine beta-lactamase-like protein LACTB, 
mitochondrial • Uncharacterized protein C11orf87 homolog 

• Serine/threonine-protein kinase MRCK beta 
• Vacuolar protein sorting-associated protein 

18 homolog 

• Serine/threonine-protein kinase NIM1 • Valine--tRNA ligase 

• Serine/threonine-protein phosphatase  
• Vesicle-associated membrane protein-

associated protein B 

• Short/branched chain specific acyl-CoA 
dehydrogenase, mitochondrial • Zinc transporter SLC39A7 

• Signal recognition particle subunit SRP68 
• GRIP and coiled-coil domain-containing 

protein 2 

• Small nuclear ribonucleoprotein Sm D2 
• Heterogeneous nuclear ribonucleoprotein 

A0 

• 26S protease regulatory subunit 10B/6B 
• Heterogeneous nuclear ribonucleoprotein 

D-like 

• 26S protease regulatory subunit 6B • Importin-4 

• 26S proteasome non-ATPase regulatory 
subunit 3 • Interferon-activable protein 202 

• 5'-AMP-activated protein kinase subunit 
gamma-1 

• Interferon-inducible double-stranded RNA-
dependent protein kinase activator A 

• 60S ribosomal protein L39 • Keratin 

• Adenine phosphoribosyltransferase • Leucine--tRNA ligase, cytoplasmic 

• Alcohol dehydrogenase [NADP(+)] • Lysine--tRNA ligase 

• Aminoacyl tRNA synthase complex-
interacting multifunctional protein 1 • Macrophage-capping protein 

• Aminoacyl tRNA synthase complex-
interacting multifunctional protein 2 • Malate dehydrogenase, cytoplasmic 

• AP-3 complex subunit  • MAP7 domain-containing protein 1 

• Beta-actin-like protein 2 • Methionine--tRNA ligase, cytoplasmic 

• Biglycan • Microtubule-associated protein 1B 

• Casein kinase I isoform alpha • Myosin-14 

• Cathepsin Z • Myosin-8 

• Chloride intracellular channel protein 4 • NADH dehydrogenase 

• Chromodomain-helicase-DNA-binding 
protein 2 • Sorting nexin-9 

• CLIP-associating protein 1 
• Succinyl-CoA:3-ketoacid coenzyme A 

transferase 1, mitochondrial 

• Coatomer subunit • Suppression of tumorigenicity 5 protein 

• Nucleosome assembly protein 1-like 1 • TBC1 domain family member 1 

• Peptidyl-tRNA hydrolase 2, mitochondrial • Tetratricopeptide repeat protein 30B 

• Peroxiredoxin-2 • Thimet oligopeptidase 

• Platelet-activating factor acetylhydrolase 

IB subunit alpha • Threonine--tRNA ligase, cytoplasmic 

• Potassium-transporting ATPase alpha chain 
1 • Transmembrane 9 superfamily member 1 

• Pre-mRNA-processing factor 19 • Tubulin beta-4A chain 

• Procollagen galactosyltransferase 1 • Ubiquitin carboxyl-terminal hydrolase 5 

• Proteasome subunit alpha type-6 
• UDP-N-acetylhexosamine 

pyrophosphorylase-like protein 1 

• Protein transport protein Sec23A • Xaa-Pro aminopeptidase 1 
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• Protein-lysine 6-oxidase • Septin-2 

• Putative ATP-dependent RNA helicase  • Serine/arginine-rich splicing factor 5 

• Selenocysteine-specific elongation factor • S-formylglutathione hydrolase 

• Sodium/potassium-transporting ATPase 
subunit 

• Short-chain specific acyl-CoA 
dehydrogenase, mitochondrial 

 

Table 4.5. 3-NT protein adduction in C2C12 myotubes incubated in GLT 

media for 5 days.  

• 10 kDa heat shock protein, mitochondrial  • Citrate synthase, mitochondrial  

• 14-3-3 protein beta/alpha/gamma/sigma • Collagen alpha-1(I) chain  

• 26S proteasome non-ATPase regulatory 
subunit 11/13 

• Complement component 1 Q subcomponent-
binding protein, mitochondrial  

• 40S ribosomal protein S21  • Copper transport protein AT 

• Acyl-CoA-binding protein  • Creatine kinase B-type  

• Acyl-coenzyme A thioesterase 13  • Cullin-associated NEDD8-dissociated protein 1  

• Annexin A4  • Cystatin-B  

• Argininosuccinate synthase  
• Cytochrome b-c1 complex subunit 1, 

mitochondrial  

• ATP synthase protein 8  
• Cytochrome c oxidase subunit 7A2, 

mitochondrial  

• Brain acid soluble protein 1  • Dihydrolipoyl dehydrogenase, mitochondrial  

• Calreticulin  • Dihydropyrimidinase-related protein 2  

• Cathepsin B  • DnaJ homolog subfamily A member 2  

• Cathepsin D  
• Dolichyl-diphosphooligosaccharide--protein 

glycosyltransferase 48 kDa subunit  

• Cell division control protein 42 homolog  • Glutathione S-transferase P 1/2  

• Chloride intracellular channel protein 4  • GTP-binding protein SAR1a/SAR1b 

• Electron transfer flavoprotein subunit alpha, 
mitochondrial  

• Guanine nucleotide-binding protein 
G(I)/G(S)/G(T) subunit beta-3  

• Endoplasmic reticulum resident protein 44  
• Hepatocyte growth factor-regulated tyrosine 

kinase substrate  

• Enoyl-CoA hydratase, mitochondrial  
• Isocitrate dehydrogenase [NADP], 

mitochondrial  

• Epidermal growth factor receptor kinase 
substrate 8-like protein 1  • Kelch-like protein 41  

• Eukaryotic translation initiation factor 6  • Lactoylglutathione lyase  

• Fibronectin  • Macrophage-capping protein  

• Fragile X mental retardation syndrome-related 
protein 1  • Malate dehydrogenase, cytoplasmic  

• Galectin-3  • Myoglobin  

• Glucosidase 2 subunit beta  
• N6-adenosine-methyltransferase subunit 

METTL3  

• Glutathione S-transferase Mu 1/3 • N-acetylglucosamine-6-sulfatase  

• Glutathione S-transferase Mu 3  
• NADH dehydrogenase [ubiquinone] 1 alpha 

subcomplex subunit 2  

• Parathymosin  • Phosphoglycerate mutase 2  

• Peptidyl-prolyl cis-trans isomerase C  • PRA1 family protein 3  

• Peptidyl-prolyl cis-trans isomerase FKBP1A  • Prohibitin 1/2 

• Peroxiredoxin-5, mitochondrial  • Stress-induced-phosphoprotein 1  

• Peroxiredoxin-6  
• Succinyl-CoA ligase [ADP-forming] subunit 

beta, mitochondrial  

• Prolyl 4-hydroxylase subunit alpha-1  • Superoxide dismutase [Cu-Zn]  
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• Prosaposin  

• Synaptic vesicle membrane protein VAT-1 

homolog  

• Prostaglandin E synthase 3  • Thioredoxin  

• Proteasome subunit alpha type-5 / 7 
• Thioredoxin-dependent peroxide reductase, 

mitochondrial  

• Protein disulfide-isomerase A4  • Thymosin beta-10  

• Protein S100-A13  
• Transcription elongation factor B polypeptide 

2  

• Protein SEC13 homolog  • Transgelin  

• Pyruvate dehydrogenase E1 component 
subunit alpha, somatic form, mitochondrial  • Translationally-controlled tumor protein  

• Rab GDP dissociation inhibitor beta  • Tripartite motif-containing protein 72  

• Ras-related protein Rab-5A/B/C • Tubulin beta-4A chain  

• Ras-related protein Rab-5B  • Ubiquitin-conjugating enzyme E2 N  

• Ras-related protein Rab-5C  • Ubiquitin-like modifier-activating enzyme 1  

• Receptor expression-enhancing protein 5  • Vacuolar protein sorting-associated protein 35  

• Reticulon-4  

• Voltage-dependent anion-selective channel 

protein 1  

• REVERSED Protein phosphatase 
methylesterase 1  

• Activated RNA polymerase II transcriptional 
coactivator p15  

• Rho-related GTP-binding protein RhoQ  • Cofilin-2  

• Ribonuclease inhibitor  • Destrin  

• Septin-7  • Filamin-B  

• Serine/threonine-protein phosphatase 2A 65 
kDa regulatory subunit A alpha isoform  • Flotillin-1  

• S-formylglutathione hydrolase  • Heat shock 70 kDa protein 1A /1B 

• Sideroflexin-1  • Histone H1t  

• Small ubiquitin-related modifier 2/3 • Myosin-6  

• Spectrin beta chain, non-erythrocytic 1  • Peroxiredoxin-4  

• Splicing factor U2AF 26 kDa subunit  • Protein S100-A6  

•  • Tubulin beta-3 chain  

 

4.2.3 PANTHER Classification System of 4-HNE and 3-NT Associated 

Proteins in GLT-exposed C2C12 muscle cells 

Using the program PANTHER (Protein Analysis Through Evolutionary Relationships), 

the proteins identified as being associated with 4-HNE and 3-NT under glucolipotoxic 

conditions were classified according to their molecular function, biological process, 

and protein class. The classification analysis was generated using the protein’s 

corresponding UniprotKB via the program available free from (www.pantherdb.org).  

The indicated percentage of representation in the following pie charts are considered 

and based on over the total class hits and not on over the total amount of proteins 

http://www.pantherdb.org/
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detected since a particular protein annotation number might fit more than one class 

hits.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Molecular function of 4-HNE (A) and 3-NT (B) adducted 

proteins. Proteins that are adducted by 4-HNE or 3-NT in C2C12 myotubes under 

glucolipotoxic conditions for 5 days and are protected by the presence of carnosine. 

Generated using the Panther Classification System.  
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Figure 4.4. Biological process of 4-HNE (A) and 3-NT (B) adducted proteins. 

The chart shows the biological process of associated proteins that formed adducts 

with 4-HNE or 3-NT in C2C12 under GLT conditions and in which formation is 

prevented by the addition of carnosine. Generated using the Panther Classification 

System.  
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Figure 4.5. Protein class of 4-HNE (A) and 3-NT (B) adducted proteins. The 

chart depicts the protein class of associated proteins that formed adducts with 4-HNE 

or 3-NT in GLT-treated C2C12 cells and in which formation is prevented by the 

addition of carnosine. Generated using the Panther Classification System.  
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4.2.4 4-HNE and 3-NT Protein Adduction in Human Skeletal Muscle Cells  

Tables 4.6 and 4.7, indicate those proteins that were adducted in diabetic GLT 

conditions, but not in healthy control conditions. In all cases, proteins shown in green 

are those where adduct formation was prevented by carnosine supplementation. By 

contrast, carnosine supplementation did not prevent adduction of those proteins 

indicated in black. Data are generated from three independent experiments. 

Again, carnosine showed to have protected protein adduction (80% for 4-HNE and 

65% for 3-NT) in HSkM cells. 

Table 4.6. 4-HNE protein adduction in human skeletal muscle cells 

incubated in GLT media for 5 days.  

• 40S ribosomal proteins (S12,S15,S27,S29,S30)  • Elongation factor Tu, mitochondrial  

• 60 kDa heat shock protein, mitochondrial  • Enhancer of rudimentary homolog  

• 60S acidic ribosomal protein P0  • Eukaryotic initiation factor 4A-III  

• 60S ribosomal proteins (L9,L10,L13,L24, 
L27,L35,L37) • FACT complex subunit SSRP1  

• Aconitate hydratase, mitochondrial  • F-actin-capping protein subunit alpha-1  

• Actin-related protein 2/3 complex subunit 5 
• G protein-activated inward rectifier potassium 

channel 4  

• Actin-related protein 3  • Glucagon  

• ADP-ribosylation factor 1  • Guanine nucleotide-binding protein G 

• Alpha-actinin-4  • Heterochromatin protein 1-binding protein 3  

• Alpha-crystallin B chain  • Heterogeneous nuclear ribonucleoproteins 

• Annexin A5  • Histones (H1,H2A,H2B,H3) 

• Apoptotic chromatin condensation inducer in 
the nucleus  

• HLA class I histocompatibility antigen, Cw-5 
alpha chain  

• ATP synthase subunit beta, mitochondrial  
• Hydroxyacyl-coenzyme A dehydrogenase, 

mitochondrial  

• ATP synthase subunit  • Hypoxia up-regulated protein 1  

• ATP-citrate synthase  • Insulin  

• ATP-dependent RNA helicase A  • Keratin, type I (cuticular and cytoskeletal) 

• ATP-dependent RNA helicase DDX1  • Keratin, type II(cuticular and cytoskeletal) 

• ATP-dependent RNA helicase DDX3Y  • Keratin-associated proteins 

• Calreticulin  • Lamin-B1/B2 

• Coagulation factor X  • LIM domain and actin-binding protein 1  

• Collagen alpha-1(VI) chain  • Malate dehydrogenase, mitochondrial  

• Collagen alpha-2(VI) chain  • Matrin-3  

• Collagen alpha-3(VI) chain  • Metallothionein-1X  

• Core histone macro-H2A.1  • Methyl-CpG-binding protein 2  
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• Core histone macro-H2A.2  • Myosin-14  

• Coronin-1C  • NADH-cytochrome b5 reductase 3  

• Creatine kinase B-type  • Neuroendocrine convertase 2  

• Destrin  • NHP2-like protein 1  

• Electron transfer flavoprotein subunit alpha, 
mitochondrial  • Nucleolar protein 10/58 

• Elongation factor 1-alpha 1  • Nucleophosmin  

• rRNA 2'-O-methytransferase fibrillarin • Peptidyl-prolyl cis-trans isomerase B  

• Sarcoplasmic/endoplasmic reticulum calcium 
ATPase 3  • Phosphoglycerate kinase 1  

• Serine/threonine-protein phosphatase PP1-
beta catalytic subunit  • Poly(rC)-binding protein 1 / 2 

• Signal recognition particle 14 kDa protein  • Polypyrimidine tract-binding protein 3  

• Small nuclear ribonucleoprotein Sm D1 / D3 • Pre-mRNA-processing-splicing factor 8  

• Somatostatin  • Probable ATP-dependent RNA helicase DDX5  

• Splicing factor 3B subunit 3  • Protein disulfide-isomerase, A3/A6 

• Splicing factor U2AF 35 kDa subunit  • Putative RNA-binding protein Luc7-like 2  

• Stress-70 protein, mitochondrial  • Pyruvate carboxylase, mitochondrial  

• Succinate dehydrogenase [ubiquinone] 
flavoprotein subunit, mitochondrial  

• Pyruvate dehydrogenase E1 component 
subunit alpha, somatic form, mitochondrial  

• Superoxide dismutase [Cu-Zn]  • Ras-related protein Rab-1A, 3A,8A 

• SWI/SNF-related matrix-associated actin-
dependent regulator of chromatin subfamily A 
member 5  • Receptor of activated protein C kinase 1  

• THO complex subunit 4 • RNA-binding motif protein, X chromosome  

• Transformer-2 protein homolog beta  • Tricarboxylate transport protein, mitochondrial 

• Tubulin alpha-1A chain  • Vinculin  

• Tubulin beta-2A chain  • WD repeat-containing protein 1  

• Ubiquitin-40S ribosomal protein S27a  • YY1-associated protein 1  

• 14-3-3 protein epsilon  • Corneodesmosin  

• 40S ribosomal protein S11,S13 • Desmoglein-1  

• 60S ribosomal protein L11,L19 • eIF-2-alpha kinase GCN2  

• Alpha-enolase  • Elongation factor 2  

• Apolipoprotein M  • Endoplasmin  

• ATP synthase subunit alpha, mitochondrial  • Fructose-bisphosphate aldolase A  

• Calmodulin-like protein 5  • Galectin-1  

• Clathrin heavy chain 1  • Glutathione S-transferase P  

• Clusterin  • Heat shock protein HSP 90-alpha  

• Cofilin-1  • Heterogeneous nuclear ribonucleoprotein  

• Immunoglobulin gamma-1 heavy chain  • Histone H1.5  

• Junction plakoglobin  • Histone H2A.J  

• Keratin, type II cytoskeletal 6C  • Peroxiredoxin-1  

• L-lactate dehydrogenase A chain  • Plakophilin-1  

• Protein S100-A11, A8, A9 • Skin-specific protein 32  
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Table 4.7. 3-NT protein adduction in human skeletal muscle cells incubated 
in GLT media for 5 days.  

• 40S ribosomal protein  (S11, S23, S4, S5, 
S8, S9) • Keratin, type II cytoskeletal 6C  

• 60S ribosomal protein L14, L22, L7 
• Large neutral amino acids transporter small 

subunit 4  

• Actin, cytoplasmic 2  • Leucine-rich repeat-containing protein 59  

• Alpha-actinin-4  • LIM and SH3 domain protein 1  

• ATP-binding cassette sub-family A member 8  • Long-chain-fatty-acid--CoA ligase ACSBG2  

• Calcium-activated chloride channel regulator 
family member 3  • Matrix metalloproteinase-28  

• Calmodulin-lysine N-methyltransferase  • Matrix-remodeling-associated protein 5  

• Clusterin  • Moesin  

• Desmocollin-1  • Myosin light chain 4  

• EH domain-containing protein 2  • Myosin regulatory light polypeptide 9  

• Endoplasmic reticulum chaperone BiP  • Myosin-3  

• Exportin-T  • Nebulin  

• Fc receptor-like protein 2  • PC4 and SFRS1-interacting protein  

• Four and a half LIM domains protein 1  • Polycystin-1  

• Gamma-interferon-inducible protein 
16  • Profilin-1  

• GTP-binding nuclear protein Ran  • Protein Shroom3  

• Heat shock 70 kDa protein 1-like  • Putative uncharacterized protein C5orf17  

• Heterogeneous nuclear ribonucleoproteins 
C1/C2  • Rho-related GTP-binding protein RhoC  

• Histone H1, H2B, H3 • Trypsin-1  

• Immunoglobulin mu heavy chain  • Tubulin beta-2B chain  

• Spectrin alpha chain, non-erythrocytic 1  • Unconventional myosin-Ib  

• Tetratricopeptide repeat protein 28  
• UTP--glucose-1-phosphate 

uridylyltransferase  

• Tropomyosin beta chain  • Versican core protein  

• Zinc finger protein 587B • Immunoglobulin lambda-1 light chain  

• 40S ribosomal protein S15, S2, S7 • Inter-alpha-trypsin inhibitor heavy chain H4  

• 60S ribosomal protein L6, L8, L11, L19, L35, 
L36  • KAT8 regulatory NSL complex subunit 1  

• Actin, alpha cardiac muscle 1  • Myotubularin-related protein 3  

• Alpha-1-antitrypsin  • Nestin  

• Alpha-actinin-1  
• Neuroblast differentiation-associated protein 

AHNAK  

• Caveolae-associated protein 1  • Peptidyl-prolyl cis-trans isomerase B  

• Coiled-coil domain-containing protein 80  • Plasminogen activator inhibitor 1  

• Collagen alpha-1(I) chain  • Prelamin-A/C  

• Fibrillin-1  • Protein S100-A8  

• Galectin-1  • Skin-specific protein 32  

• Heat shock cognate 71 kDa protein  • Spermatogenesis-associated protein 31D1  

 • Unconventional myosin-Ic  
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4.2.5 PANTHER Classification System of 4-HNE and 3-NT Associated 

Proteins in GLT-exposed Human Skeletal Muscle Cells 

Using the same classification analysis as above, the following pie charts depict the 

molecular functions, the biological processes and what protein class the proteins 

listed in Tables 4.6 and Table 4.7 are involved in.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Molecular function of 4-HNE (A) and 3-NT (B) adducted proteins. 

Proteins that are adducted in 4-HNE or 3-NT in cultured human skeletal myotubes 

under glucolipotoxic conditions for 5 days and in which formation is prevented by the 

addition of carnosine. Generated using the Panther Classification System.  
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Figure 4.7 Biological process of 4-HNE (A) and 3-NT (B) adducted proteins. 

The biological process of associated proteins that formed adducts with 4-HNE or 3-

NT in human skeletal myotubes treated with GLT for 5 days and in which formation 

is prevented by the addition of carnosine. Generated using the Panther Classification 

System.  
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Figure 4.8 Protein class of 4-HNE (A) and 3-NT (B) adducted proteins. The 

protein class of associated proteins that formed adducts with 4-HNE or 3-NT in human 

skeletal myotubes incubated in GLT for 5 days and in which formation is prevented 

by the addition of carnosine. Generated using the Panther Classification System.  
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4.2.6 4-HNE and 3-NT Protein Adduction in Mouse Primary Islets 

In addition to skeletal muscle, the pancreas also plays a central role in the control of 

glucose homeostasis. INS-1 β-cells cultured for 5 days in GLT media have elevated 

levels of 3-nitrotyrosine and 4-hydroxynonenal (Cripps et al., 2017). However, tissue 

culture cells are not always fully representative of animal physiology, so in the current 

study it utilised mouse primary islets that were kindly isolated and cultured by Dr. 

Paul Caton (King’s College London). Isolated islets were incubated either in control 

RPMI-1640 media, or RPMI- GLT media ± 10mM carnosine for 5 days. Cell lysates 

were frozen, then shipped on dry ice to the Turner group for processing and analysis, 

and as detailed above for skeletal muscle cells. In all cases, proteins shown in green 

are those where adduct formation was prevented by carnosine supplementation. By 

contrast, carnosine supplementation did not prevent adduction of those proteins 

shown in black. Data are generated from three independent experiments. 

In line with the findings from skeletal muscle cells, 88% (4-HNE) and 75% (3-NT) of 

protein adduction in primary islets was prevented by carnosine supplementation. 

PANTHER analysis of proteins protected from adduction by carnosine was also 

undertaken in order to determine their respective molecular function, biological 

process, and protein class. 
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Table 4.8. 4-HNE protein adduction in primary mouse islets incubated in 

GLT media for 5 days.  

• 14-3-3 protein gamma • Gelsolin 

• 40S ribosomal protein S27-like • Glutathione peroxidase 3 

• 60 kDa SS-A/Ro ribonucleoprotein • Glutathione S-transferase Mu 7 

• 60S ribosomal protein L38 • Guanine nucleotide-binding protein G 

• Actin, alpha cardiac muscle 1 
• Guanine nucleotide-binding protein subunit 

alpha-13 

• Actin-related protein 3 • Heat shock 70 kDa protein 1-like 

• Activated RNA polymerase II transcriptional 
coactivator p15 • Heterochromatin protein 1-binding protein 3 

• ADP/ATP translocase 1 • Heterogeneous nuclear ribonucleoprotein F 

• Alpha-1-antitrypsin 1-6 • Histone acetyltransferase KAT7 

• Alpha-2-macroglobulin-P • Histone deacetylase complex subunit SAP18 

• Alpha-actinin-1 • Histone H2A and H2B 

• Annexin A4 • Histone H2B type 2-E 

• Aspartate aminotransferase, mitochondrial • Ig heavy chain V region 1-72 

• ATP synthase subunit d, mitochondrial • Ig heavy chain V region 345 

• Carboxylesterase 1F • Ig kappa chain V-V region MOPC 21 

• Catenin delta-1 • Inter-alpha-trypsin inhibitor heavy chain H1 

• Centromere protein V • Keratin, type I and II cuticular  

• Ceruloplasmin • Keratin, type I cytoskeletal 15 

• Charged multivesicular body protein 4c • Macrophage migration inhibitory factor 

• Chromatin target of PRMT1 protein • Matrin-3 

• Chromobox protein homolog 3 • Methyl-CpG-binding protein 2 

• Complement factor B • NHP2-like protein 1 

• Core histone macro-H2A.2 • Nuclear mitotic apparatus protein 1 

• Cullin-associated NEDD8-dissociated protein 1 • Nucleolar protein 56/58 

• Cysteine and glycine-rich protein 1 • Nucleophosmin 

• Cytoskeleton-associated protein 4 • Nucleoside diphosphate kinase A 

• Dedicator of cytokinesis protein 11 • Parathymosin 

• Dihydropyrimidinase-related protein 2 • Phosphate carrier protein, mitochondrial 

• DNA topoisomerase 2-beta • Plasminogen 

• DnaJ homolog subfamily C member 3 • Plectin 

• Dolichyl-diphosphooligosaccharide--protein 
glycosyltransferase subunit 2 • Polypyrimidine tract-binding protein 1 

• E3 ubiquitin-protein ligase RNF181 • Pre-mRNA-processing factor 19/38A 

• Enhancer of rudimentary homolog • Pre-mRNA-splicing factor 38A 

• Epiplakin 
• Pre-mRNA-splicing factor ATP-dependent RNA 

helicase DHX15 

• Eukaryotic initiation factor 4A-III • Tetratricopeptide repeat protein 30B 

• Filamin-B • Thrombospondin-1 

• Frizzled-2 • Transcription initiation factor TFIID subunit 1 

• Pre-mRNA-splicing factor CWC22 homolog • Transmembrane channel-like protein 5 

• Profilin-1 • Tropomyosin alpha-1 chain 
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• Protein AMBP 
• U5 small nuclear ribonucleoprotein 200 kDa 

helicase 

• Protein FAM135A • Unconventional myosin-Ic/Va 

• Putative ATP-dependent RNA helicase Pl10 • Vesicle-trafficking protein SEC22b 

• Ras GTPase-activating-like protein IQGAP2 • Vesicular integral-membrane protein VIP36 

• Ras-related protein Rab-1B/8B • Sorbin and SH3 domain-containing protein 2 

• Ras-related protein Rab-8B • Spectrin alpha chain, non-erythrocytic 1 

• Regulator of G-protein signaling 22 • Splicing factor 3B subunit 1,3&4 

• Rho GDP-dissociation inhibitor 1 
• Structural maintenance of chromosomes 

protein 1A 

• Ribonuclease inhibitor • Syntaphilin 

• RNA-binding motif protein, X chromosome • Serine protease HTRA1 

• RNA-binding protein FUS • Serine/arginine repetitive matrix protein 2 

• RNA-binding protein with serine-rich domain 1 • Serine/arginine-rich splicing factor 9/10 

• rRNA 2'-O-methyltransferase fibrillarin 
• Serine/threonine-protein phosphatase PP1-

beta catalytic subunit 

• Scaffold attachment factor B2 • Neutral alpha-glucosidase AB 

• 60S ribosomal protein L10 • Phosphoglycerate mutase 1 

• ATP synthase subunit O, mitochondrial • Poly(rC)-binding protein 1 

• Heterogeneous nuclear ribonucleoprotein H2 • Protein transport protein Sec31A 

• Heterogeneous nuclear ribonucleoproteins 
C1/C2 • Secretogranin-1 

• Keratin, type I cytoskeletal 28 • Signal recognition particle subunit SRP68 

• Keratin, type II cytoskeletal 75 • Small nuclear ribonucleoprotein Sm D1 

• N-acetylglucosamine-6-sulfatase • Sodium channel protein type 11 subunit alpha 

• Tubulin beta-2A chain 
•  

  

Table 4.9. 3-NT protein adduction in primary mouse islets incubated in GLT 

media for 5 days.  

• 40S ribosomal protein S10/SA • Dihydrolipoyl dehydrogenase, mitochondrial 

• 60S ribosomal protein L24/L6 • ELAV-like protein 1 

• Acetyl-CoA acetyltransferase, mitochondrial • Elongation factor 1-beta 

• Actin-related protein 3 • Elongation factor 1-gamma 

• Alpha-actinin-1/4 
• Endoplasmic reticulum-Golgi intermediate 

compartment protein 1 

• Aly/REF export factor 2 • EPM2A-interacting protein 1 

• ATP-dependent RNA helicase A/DDX39A • Eukaryotic initiation factor 4A-III 

• Clusterin • Glutathione S-transferase P 2 

• Coatomer subunit gamma-1 • Prolyl 4-hydroxylase subunit alpha-2 

• Complement factor B • Protein turtle homolog B 

• Delta-1-pyrroline-5-carboxylate synthase • Pyruvate carboxylase, mitochondrial 

• Mas-related G-protein coupled receptor 
member X2 • Ras-related protein Rab-13 

• Heterogeneous nuclear ribonucleoprotein 
H,L,M,C1/C2 • RNA binding motif protein 

• Keratin, type I cuticular Ha5 • RNA-binding protein 44 
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• Keratin, type II cytoskeletal 8 • Small nuclear ribonucleoprotein E 

• Methyltransferase-like protein 25 
• Small nuclear ribonucleoprotein-associated 

protein B/N 

• Myosin regulatory light chain 12B • Spliceosome RNA helicase Ddx39b 

• Myosin-14 • Splicing factor 3B subunit 3 

• Myosin-9 • Stress-70 protein, mitochondrial 

• Neuronal migration protein doublecortin • Synaptotagmin-3 

• NHP2-like protein 1 • T-complex protein 1 subunit beta 

• Non-POU domain-containing octamer-binding 
protein • THO complex subunit 4 

• Nuclear factor erythroid 2-related factor 2 • Transforming protein RhoA 

• Nuclear receptor coactivator 7 • Transmembrane protein 82 

• Nucleobindin-2 • Tubulin beta-2B/3 chain 

• Nucleophosmin 
• U5 small nuclear ribonucleoprotein 200 kDa 

helicase 

• Poly(rC)-binding protein 1 • Villin-1 

• Poly(rC)-binding protein 2 • Vimentin 

• Prelamin-A/C 
• Voltage-dependent anion-selective channel 

protein 2 

• Pre-mRNA-splicing factor 38A • Keratin, type II cytoskeletal 7 

• 60S ribosomal protein L36a/L7a • Keratin, type I cytoskeletal 15/18 

• ADP/ATP translocase 4 • Phosphoglycerate kinase 2 

• ATP synthase protein 8 • Phosphoglycerate mutase 1 

• Calmodulin-like protein 3 • Protein ERGIC-53 

• Cofilin-1/2 • Protein S100-A11 

• Dihydrolipoyllysine-residue acetyltransferase 
component of pyruvate dehydrogenase 
complex, mitochondrial • Ras-related protein Rab-15 

• DnaJ homolog subfamily B member 11 • Stromelysin-1/2 

• Endoplasmic reticulum resident protein 44 • Toll-like receptor 11 

• Glial fibrillary acidic protein • Triosephosphate isomerase 

• Heterogeneous nuclear ribonucleoprotein •  
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Figure 4.9. Molecular function of 4-HNE (A) and 3-NT (B) adducted 

proteins. Proteins that were adducted by 4-HNE or 3-NT in mouse primary islets in 

GLT conditions for 5 days and in which formation is prevented by the addition of 

carnosine. Generated using the Panther Classification System.  
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Figure 4.10 Biological process of 4-HNE (A) and 3-NT (B) adducted 

proteins. Proteins that were adducted by 4-HNE or 3-NT in mouse primary islets in 

GLT conditions for 5 days and in which formation is prevented by the addition of 

carnosine. Generated using the Panther Classification System.  
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Figure 4.11 Protein class of 4-HNE (A) and 3-NT (B) adducted proteins. 

Protein class of associated proteins forming adducts with 4-HNE or 3-NT in mouse 

primary islets incubated in GLT for 5 days and in which formation is prevented by the 

addition of carnosine. Generated using the Panther Classification System.  
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Data indicated above showed that both 4-HNE and 3-NT are elevated in skeletal 

muscle cells incubated in media supplemented with high-glucose and high fatty acid 

(glucolipotoxicity), as compared to controls. Similar findings were also shown in rat 

pancreatic β-cells incubated in GLT media. The results obtained from these 

experiments indicated that 4-HNE and 3-NT are important biomarkers implicated in 

the impaired functions of these tissues essential to glucose homeostasis.  

Importantly, however, supplementation of carnosine protected against generation of 

those cell-damaging species.  

The PANTHER classification system (Figure 4.3-4.5) showed that for instance in GLT-

treated C2C12 skeletal muscle cells, the majority of the proteins that are adducted 

by both 4-HNE and 3-NT are involved in catalytic and binding activities and are linked 

to metabolic processes. In the case of the human skeletal muscle cell-line, Figures 

4.6-4.8 showed that the majority of proteins that are adducted by both 3-NT and 4-

HNE are also linked to metabolic processes. Using mouse primary islets, most proteins 

adducted by both 4-HNE and 3-NT (Figures 4.9-4.11) are also linked to metabolic 

and binding activities. 

Having established the 4-HNE and 3-NT protein adductome that is associated with 

metabolic stress in skeletal muscle and pancreas, it was evident that there are 

adducted proteins which were either involved in metabolic and cellular processes 

linked to stimulus-secretion coupling, both in terms of insulin-stimulated GLUT4 

translocation to the skeletal muscle plasma membrane, or glucose sensing linked to 

insulin secretion from pancreatic β-cells. Some of these proteins associated with these 

processes that were adducted following exposure to glucolipotoxic metabolic stress, 

but protected from adduction by carnosine, are detailed in Discussion section.  

 



 

171 
 

4.2.7 Effect of Carnosine Against GLT-Mediated Mitochondrial 

Dysfunction 

 

Given the extent of GLT-mediated protein adduction shown in metabolic and 

mitochondrial proteins, the next step was then to investigate how this might affect 

mitochondrial function. This was accomplished by employing a Seahorse Mito Stress 

Test kit (Agilent Tech., USA), and determining the impact of carnosine scavenging 

action on mitochondrial function. This test measures the mitochondrial oxygen 

consumption rate of live cells to assess basal, maximal and ATP-linked respiration 

using three compounds that will be introduced serially in an analyser (Seahorse 

XFe24). These compounds modulate cellular respiration and specifically target 

components of the electron transport chain. For specific experiments, myotubes 

(C2C12, mouse primary muscle cells, and human skeletal muscle cell-line) were 

treated in either control or GLT media ± 10mM carnosine for 5 days, then analysed 

according to the protocol detailed in Chapter 2.  

 

 

 

 

 

 

 

 

Figure 4.12. Schematic representation of mitochondrial stress test 

indicating key parameters of mitochondrial function. (Adapted from Agilent 

Technology, USA) 
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Figure 4.13. The effect of carnosine on mitochondrial respiration of 

glucolipotoxicity-treated skeletal muscle cells from (A) C2C12, (B) primary 

mouse, and (C) human skeletal muscle cell-line.  Previously treated muscle 

cells either in Control or GLT±10mM carnosine were seeded at the indicated number 

of cells in Seahorse XFe24 microplates using supplemented Seahorse XF DMEM and 

incubated for 24 hrs (last day treatment) and OCR measured from XFe24 Analyser. 

Each data point represents an OCR measurement, and Figures are representative 

images from 3-4 independent experiments.  

 



 

173 
 

Figure 4.13 indicates that all cells displayed a significant reduction in basal 

mitochondrial activity when exposed to the GLT treatment suggesting either a 

reduction in the steady state activity or a dysfunction in total activity. The cells 

displayed robust mitochondrial respiration under control conditions (blue traces). 

However, ATP production and mitochondrial respiration were strongly inhibited in 

these cells that had been incubated in GLT media (red traces). In all cases however, 

carnosine supplementation (green traces) had a protective action against GLT-

mediated dysfunction, albeit this was not fully preventative in restoring respiratory 

rates to those of healthy control cells.  

 

4.3 Discussion 

The regulation of blood glucose level is essential for the human body in order to 

ensure that energy requirements of vital organs are met. This is achieved by a highly 

complex network of signalling events involving hormone and neuropeptide signalling 

and crosstalk involving the brain, pancreas, liver, intestine, adipose and skeletal 

muscle tissues (Han et al., 2016, Roder et al., 2016). Regulation of the peptides and 

hormones involved in the pathways controlling glucose homeostasis is therefore of 

paramount importance, and failure to maintain this may lead to metabolic disorders 

such as type 2 diabetes (Gonzalez et al, 2018).  

One way in which the aforementioned pathways can become disrupted is through the 

formation of advanced glycation (AGE) and advanced lipidation (ALE) end products. 

Non-enzymatic reactions with glucose were first reported over a century ago 

(Maillard, 1912), and adduction with these end-products potentially leads to the 

modification of protein, lipid, or DNA structure. This then alters their functional 

capacity, typically rendering these molecules less efficient or non-functional, and 
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consequently this therefore represents a particular problem for individuals with 

diabetes (Vlassara et al,1994). Despite this knowledge however, there are currently 

few therapeutic strategies to treat diabetes that directly target these modifications, 

with conventional therapies instead seeking to improve glycaemic control through 

other mechanisms. Crucially, even when diabetes is well controlled individuals with 

T2DM still have elevated levels of glycated haemoglobin in comparison to non-

diabetic healthy individuals. Therefore, strategies that can effectively combat reactive 

species associated with glucolipotoxicity would potentially have a unique capability to 

directly reduce the incidence of diabetes complications, even when T2DM is otherwise 

well managed.  

In order to better understand the relationship between glucolipotoxic metabolic stress 

and both obesity and diabetes, this PhD study sought to identify all proteins modified 

by 4-HNE or 3-NT adduction in serum from individuals with obesity, T2DM and 

gestational diabetes mellitus (GDM). Serum from obese non-diabetic patients 

contains both 4-HNE and 3-NT adducts of proteins involved in several immune and 

cellular functions, and their regulation. Among these are apolipoproteins, proteins 

which once adducted would likely result in defective lipid transport, uptake and 

clearance. For example, defects that result in apolipoprotein A-II deficiency, one of 

the proteins that we found to be adducted, have been reported to result 

hypercholesterolemia (Al-Allaf et al, 2015). Adductions of this nature are therefore 

highly likely to contribute to the development of atherosclerosis and coronary heart 

disease in people with obesity. 

Fibrinogen was another protein adducted by both 4-HNE and 3-NT in the serum of 

obese non-diabetics. Reduced and/or dysfunctional fibrinogen occurs in various 

congenital and acquired human fibrinogen-related disorders and can result in liver 

and kidney disease (de Moerloose et al., 2013). These disorders represent a group 
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of conditions in which individuals may present with severe episodes of pathological 

bleeding and thrombosis. We also showed 3-NT adduction of coagulation factor XII, 

which is involved in blood clotting, and plasminogen, the precursor of plasmin, which 

is responsible for fibrin clot degradation. Similarly, there was 3-NT adduction of 

vitamin K-dependent protein S, a protein which, when present in the blood at reduced 

levels, results in increased risk of thrombosis (Beauchamp et al., 2004). As obesity 

has previously been shown to increase the propensity to thrombosis, the leading 

cause of death in the Western World, through pathways associated with 

inflammation, oxidative stress, dyslipidaemia, insulin resistance and the coagulation 

cascade (Darvall et al., 2007), we suggest that metabolic stress-driven adduction may 

be a unifying mechanistic basis for these pathologies, and that carnosine may be able 

to reverse this. 

Obese non-diabetic serum contained 3-NT adducts to a few members of the 

complement system, which enhances the ability of antibodies and phagocytic cells to 

attack pathogens and clear microbes and damaged cells from the bloodstream. This 

is part of a wider pattern of 4-HNE and 3-NT adduction of immunoglobulin heavy and 

light chain regions. Together these events would impair the body’s adaptive immune 

response, thereby leaving these individuals immunocompromised, and hence 

susceptible to attack from foreign substances and pathogens, including viral 

infections such as Covid-19. 

Histone H2A, H2B, H3 and H4 are all adducted by 4-HNE in the serum of obese non-

diabetic individuals. In addition, histone H3 is also adduced by 3-NT. As histones are 

the chief protein component of chromatin, this has important implications for DNA 

packing and access to factors regulating gene expression, be that either directly as 

part of the transcriptional machinery or indirectly (epigenetics) through allowing 
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access to molecules that induce further chemical modification of histone or DNA 

structure, such as acetylation and methylation.  

The number of adducted proteins observed in obese T2DM patient serum was double 

than that observed in obese non-diabetic serum, but a similar pattern nevertheless 

emerges when one examines the specific protein functions. In particular, adduction 

of proteins involved in atherosclerosis and cardiovascular disease, blood clotting, and 

immune function were also observed. In addition, another group of proteins also 

shown to be adducted by both 4-HNE and 3-NT in all serum samples are the 

extracellular matrix proteins, with hyperglycaemia-induced alterations of extracellular 

matrix proteins importantly have been being shown to be associated with renal 

dysfunction and compromised cardiac function (Law et al., 2012).  

By contrast to the other groups studied, there were fewer adduction events in serum 

of patients with GDM, perhaps that this is a temporary condition rather than one 

involving chronic exposure to hyperglycaemia. Nevertheless, 4-HNE adduction of 

multiple core histone H2A molecules, 3-NT adduction of complement proteins, and 

extensive immunoglobulin heavy and light chain adduction by both 4-HNE and 3-NT 

were observed.  As it has been hypothesised that epigenetic mechanisms contribute 

to the effect of GDM on offspring adiposity and type 2 diabetes (Elliot et al., 2019), 

AGE/ALE adduction of histones could provide a possible modifiable mechanism to 

help reduce type 2 diabetes in the next generation, with carnosine and possibly other 

reactive species scavengers potential tools to achieve this goal.   

Given the nature and the extent of the potentially damaging protein modifications 

shown in the serum of patients with obesity and diabetes, this PhD work also aimed 

to determine how nutrient overload from the combined effects of hyperglycaemia and 

hyperlipidaemia might affect the two main cell types regulating glucose homeostasis, 
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namely skeletal muscle and pancreatic β-cells. Similarly with serum experiments, 

adduction was determined following immunoprecipitation with either anti-4-HNE or 

anti-3-NT antibody, and subsequent mass spectrometry peptide analysis. In addition, 

as live cells were used in the analysis at this point, it would then now possible to 

determine how specific individual protein adduction events might be influenced by 

the presence of carnosine, a histidine-containing dipeptide that we have previously 

shown to enhance both insulin secretion and glucose uptake (Cripps et al, 2017).  

PANTHER software was used to determine specific cellular and molecular pathways 

most influenced by carnosine supplementation. With regard to C2C12 myotubes, 

HSkM cells, and primary islets, the majority of proteins that were adducted by both 

4-HNE and 3-NT are involved in catalytic and binding activities and are linked to 

metabolic processes. Further analysis by protein class also revealed that several 

metabolic enzyme classes are protected from glucolipotoxic damage by carnosine. As 

numerous membrane protein trafficking and cytoskeletal proteins were also protected 

from adduction by carnosine, this is indicative of carnosine having protective actions 

along the stimulus-secretion coupling pathway. It is also worth noting that in HSkM 

cells and primary islets, nucleic acid binding was the single main protein class of 

molecule protected, suggesting that carnosine might also be able to prevent some of 

the dysregulation in gene expression that is associated with metabolic stress, either 

directly through preserving the function of transcription factors and associated 

transcriptional and translational machinery, or indirectly through histone structure 

and epigenetic mechanisms.  

Glucose is the primary energy source for most cells in the body, making it an essential 

nutrient. However, it cannot freely cross the plasma membrane and thus requires a 

carrier-mediated system in order to promote cellular glucose entry. Glucose transport 

into most tissues is achieved by the action of glucose transporters, which transport 
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glucose by facilitative diffusion down concentration gradients. In the brain and 

pancreas this is an ongoing constitutive process that is primarily facilitated by GLUT1 

and GLUT2 transporters, thereby ensuring that these cells can constantly sense their 

extracellular environment and rapidly adapt to change. By contrast, in skeletal muscle 

in the basal (unstimulated) state, glucose transport is very low, with >90% of the 

glucose transporters internally sequestered in intercellular compartments, such as 

endosomes, the trans-Golgi network and GLUT4-specialised vesicles (Martin et al., 

1996). After consuming a meal, however, insulin is released from pancreatic β-cells, 

and glucose uptake is rapidly stimulated via GLUT4 transporters that translocate from 

their intracellular storage pool to the cell surface, whereupon the vesicles carrying 

these transporters fuse with the plasma membrane by a process of exocytosis (Rea 

and James, 1997). Once integrated into the plasma membrane, they are then able to 

effect glucose transport into the cell. Upon termination of the insulin stimulus, glucose 

transporters are recycled back from the plasma membrane to the intracellular pool, 

ready for the next insulin stimulus (Wardzala et al., 1978).  

Defects in the translocation process occur in insulin resistance, T2DM, and metabolic 

syndrome. In order to facilitate GLUT4 translocation and glucose uptake into skeletal 

muscle, the initial step in stimulus-secretion coupling in these cells is insulin signalling 

(Czech, 1995; Summers et al., 1999). We showed that a number of proteins that 

either regulate insulin sensitivity or else have an interaction with components of the 

insulin signalling pathway are adducted by 4-HNE. Encouragingly, however, proteins 

including serine-threonine protein kinases and phosphatases, mitogen-activated 

protein kinase, and the TBC1 domain family could be protected by carnosine 

supplementation.  

Mitochondrial dysfunction has been shown to result from sustained exposure to 

elevated ROS levels (Evans et al, 2002), such as that typically seen in patients with 



 

179 
 

T2DM or obesity, with both obesity and high fat diets resulting in increased production 

of hydrogen peroxide (Anderson et al., 2009). 3-NT levels are significantly higher in 

the small vessels of the skeletal muscles of patients with mitochondrial respiratory 

chain dysfunction compared with healthy controls (Vatemmi et al., 2011). This led to 

the further identification of proteins that have been affected by tyrosine nitration – 

proteins that mostly have important roles in energy metabolism and mainly localise 

in the mitochondria, including aconitate hydratase, ATP synthase β-chain subunit, 

pyruvate dehydrogenase E1 component and succinate dehydrogenase. These 

modifications would explain the observed functional changes of the mitochondria.  

Pyruvate dehydrogenase enzymes, which are important for glucose utilization and in 

maintaining a supply of acetyl-CoA for the mitochondrial activity (Lee, 2014), were 

adducted in C2C12 myotubes and HSkM cells under metabolic stress, but not in the 

presence of carnosine. Other mitochondrial enzymes adducted following exposure to 

metabolic stress, but protected from these adduction events by carnosine, included 

ATP synthase, aconitate hydratase, citrate synthase, cytochrome b-c1 complex 

subunit 1, dihydrolipoyl dehydrogenase, electron transfer flavoprotein subunit, enoyl-

CoA hydratase, isocitrate dehydrogenase, malate dehydrogenase, peroxiredoxin, 

pyruvate carboxylase, stress-70 protein, succinate dehydrogenase [ubiquinone] 

flavoprotein subunit, superoxide dismutase, and thioredoxin-dependent peroxide 

reductase. Of these, isocitrate dehydrogenase is of particular interest given that it 

has been considered a promising therapeutic target to counteract T2DM and obesity-

related metabolic disorders, and purportedly has a role in modulating both insulin 

sensitivity and substrate metabolism (Lee et al., 2016). In addition, cytochrome b-c1 

complex subunit 1 is an integral part of the mitochondrial respiratory chain that 

catalyses the oxidation of ubihydroquinone and the reduction of cytochrome c, which 

contribute to ATP synthesis. As such, defects in key regions such as catalytic sites 
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could result in mitochondrial myopathy that could, in turn, enhance superoxide 

production (Crofts, 2004).  This situation would also be further exacerbated by 

adduction of the antioxidant enzyme, superoxide dismutase, which is consistent with 

our findings showing changes in the maximal OCR. Peroxiredoxin is another 

antioxidant enzyme that is targeted by 3-NT adduction, and peroxiredoxin-knockout 

mice have previously been shown to have impaired insulin signalling and reduced 

muscle glucose uptake that is associated with overt hyperglycaemia in T2DM (Pacifici 

et al., 2014).  

Fewer mitochondrial enzymes were adducted in pancreatic islets, but of those 

observed, the activity of pyruvate carboxylase has a direct role in pancreatic β-cell 

adaptation to insulin resistance. Indeed, reduction of its activity has previously been 

reported in animal models of T2DM and this had a negative impact on β-cell secretory 

capacity (Xu et al, 2008). Other islet mitochondrial proteins with catalytic activities 

include acetyl-CoA acetyltransferase, and dihydrolipoyl dehydrogenase. 

As a result of increased glucose uptake by pancreatic β-cell GLUT transporters, such 

as that seen following digestion of food, the resulting glucose metabolism leads to an 

elevated ATP/ADP ratio that causes KATP channels to close. This in turn results in β-

cell membrane depolarisation and opening of Lc-type Ca2+ channels that drive Ca2+-

dependent exocytosis of insulin-containing secretory granules (Hou et al, 2009). 

Crucially, a number of protein trafficking molecules that carnosine was able to prevent 

from becoming adducted in primary islets under metabolic stress were observed, 

indicating that this may be the mechanism by which casrnosine enhances insulin 

secretion in β-cells exposed to glucolipotoxic stress (Cripps et al, 2017). Interestingly, 

one of the proteins that we see adducted, but protected by carnosine, is endoplasmic 

reticulum-Golgi intermediate compartment protein 1 (ERGIC). Vesicular integral-

membrane protein 36 is also similarly adducted, and this has been shown to be 
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involved in ERGIC-mediated cargo transport through the early secretory pathway 

(Dahm et al., 2001). This suggests that defective ERGIC transport might be one 

reason why reduced insulin content is found in β-cells under oxidative stress (Kajimoto 

and Kaneto, 2004), with our data suggesting that carnosine may, therefore, be able 

to reverse this defect.  

Oxidative damage will also be further impacted by our observed adduction of the 

transcription factor Nrf2 in islets under glucolipotoxic stress, as this is known to be 

the master regulator of numerous genes encoding antioxidant, detoxifying, and 

cytoprotective molecules in humans (Masuda et al., 2015). This is also an emerging 

target for pharmacological strategies designed to combat oxidative stress in islet 

transplantation (Jarrin-Lopex et al., 2020). Therefore, our finding that carnosine is 

able to protect this molecule from the damage associated with metabolic stress, 

suggests that carnosine could be of benefit not only to patients with T2DM, but could 

also be utilised to help extend survival and quality of islets under the oxidative stress 

associated with transplantation.   

Ras-related proteins recruit effectors and help in controlling tethering and docking of 

secretory vesicles and also play a role in stimulating insulin secretion (Xiong et al., 

2017). There are also binding proteins that are essential for tight control of insulin 

secretion and in improving its morphology and function which are also adducted by 

3-NT. For instance, clusterin, which induces and promotes cytodifferentiation of 

endocrine islet cells (Kim et al., 2006). Another protein class adducted by 4-HNE is a 

family of molecules called G-protein coupled receptors (GPCRs). These are known to 

be involved in islet cell signaling and in regulating insulin secretion, and thus could 

potentially become a new target for T2DM treatment (Layden et al., 2010; Cripps et 

al, 2020).  
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Coatomer is also an essential constituent component of vesicle transport through the 

early secretory pathway, and coatomer subunit gamma-1 has an important role to 

play in COP-I coat formation (Wegmann et al., 2004). This is also a protein that was 

adducted in islets, but protected from adduction by carnosine supplementation in the 

current study. Additionally, SEC22 (a protein that interacts with COP-II coatomer 

during ER to Golgi transport; Springer and Schekman, 1998) adduction was also 

shown. Coatomer-associated vesicular transport through the early secretory pathway 

is also dependent upon the small monomeric GTPase, Rab1B (Peter et al, 1993), a 

protein that mediates vesicular transport between ER and Golgi (Pluttner et al, 1991) 

and which was adducted in islets but protected by carnosine in the current study. 

Small monomeric GTPases act as molecular switches, alternating between the active 

GTP-bound form and the inactive GDP-bound form, a process facilitated by guanine 

nucleotide exchange factors and GTPase-activating proteins (Li and Marlin, 2015). In 

order to maintain activity, all such GTPases, including Rab1B, therefore require 

multiple effectors (Martinez et al, 2016). Crucially, we showed that a number of 

guanine nucleotide-binding proteins, GTPase activators, and GDP dissociation 

inhibitors were adducted in the presence of metabolic stress, but were protected by 

carnosine. Adduction of Rab13, a GTPase that is associated with tight junctions in 

polarized cells, and with cytoplasmic vesicular transport in non-polarised cells 

(Zahraoui et al, 1994) was also shown and is likely associated with exocytosis, as has 

been reported for insulin-stimulated GLUT4 translocation in skeletal muscle cells (Sun 

et al, 2010).  

The final stage in stimulus-secretion coupling in β-cells is Ca2+-dependent exocytosis. 

Whilst the composition of the core machinery of the SNARE-mediated fusion event is 

generally accepted, identification of the Ca2+-sensors linked to exocytosis in these 

cells is more controversial (Aganna et al, 2006). In particular, a number of studies 
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have advocated roles for different members of the synaptotagmin family in insulin 

secretion. Multiple studies have, however, shown that synaptotagmin III is part of 

the functional protein complex regulating beta-cell exocytosis (Mizuta et al, 1997; 

Brown et al, 2000; Gao et al, 2000; Aganna et al, 2006), with its overexpression 

increasing insulin secretion (Gao et al, 2000) and synaptotagmin III-specific 

antibodies inhibiting exocytosis from permeabilised β-cells (Mizuta et al, 1997, Brown 

et al, 2000). We find this protein to be adducted in islets incubated in GLT media, but 

to be protected from adduction by carnosine supplementation. 

There are numerous stimulus-secretion coupling protein adduction parallels between 

our data for islets and skeletal muscle. For instance, there are several adducted 

proteins that function in the early secretory pathway. The ER performs molecular 

chaperone activities, as well as participating in protein glycosylation. Quality control 

is mediated by proteins that include protein disulfide-isomerase, the related family 

member endoplasmic reticulum resident protein 44, and the ER chaperone protein 

BiP, all of which were adducted in HSkM cells, but protected by carnosine in the 

current study. Other proteins with catalytic activities that were adducted in GLT-

treated skeletal muscle cells include guanine-nucleotide binding proteins, creatine 

kinase B type, Ras-related proteins, protein disulphide isomerase, and 

sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA). Impaired function of 

SERCA in muscle affects its quality and quantity and triggers ER stress, which would 

also promote the progression of insulin resistance in obesity and diabetes (Kang et 

al., 2016; Qaisar et al., 2018).  

ER cargo transport is also likely to be affected by the HSkM myotube adduction of 

Rab1A, and the C2C12 myotube adduction of the GTP-binding protein Sar1, as well 

as VAT-1 (a soluble protein involved in multiple vesicular transport steps; Watanabe 

et al, 2020) adduction shown herein. Further adduction comes via vesicle-associated 
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membrane protein-associated protein B, a protein that functions as an adaptor 

protein to recruit target proteins to the ER and to execute various cellular functions, 

including lipid transport, membrane traffic, and ER stress (Lev et al, 2008). We also 

see adduction in both skeletal muscle cell types of ADP-ribosylation factor 1, a protein 

associated with coatomer function in intra-Golgi trafficking in skeletal muscle cells 

(Nori et al, 2004). 

The cytoskeleton is also a feature of skeletal muscle adduction, with α-actinin, actin, 

and actin-related molecules each being adducted both in HSkM cells and C2C12 

myotubes. As was shown in pancreatic islets, we also see adduction, and carnosine 

protection, of tubulin, spectrin, and other actin-interacting proteins. GLUT4 

exocytosis, and subsequent recycling, is known to involve the actin cytoskeleton, 

myosin motors, and several Rab GTPases, as well as the exocytotic machinery itself 

(Stöckli et al, 2011). The myosins, Rab5 and 11 (thought to regulate endosomal 

and/or TGN trafficking, as well as GLUT4 recycling; Kessler et al, 2000; Huang et al, 

2001) were included in our skeletal muscle adduction and carnosine protection 

dataset, as were vacuolar protein sorting-associated proteins 18 and 35 (thought to 

direct endosomal membrane remodelling and scission; Schöneberg et al, 2017). In 

addition, we showed that Rab8, which is implicated in GLUT4 vesicle exocytosis 

(Ishikura et al, 2007; Sun et al, 2010), and several guanine nucleotide-binding 

proteins, GTPase activators, and GDP dissociation inhibitors were all adducted by 

metabolic stress, but protected by carnosine. 

Seahorse OCR values indicated that GLT compromised cellular mitochondrial 

respiration rate, resulting in a diminished ability to meet endogenous ATP demand, 

to drive synthesis of ATP, and to maintain mitochondrial membrane potential, all of 

which are vital for an effective and normal substrate metabolism. Furthermore, the 

data also suggest the possible negative effects that GLT-mediated OS or damaging 
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4-HNE and 3-NT adduction have upon key molecules related to insulin signaling or 

insulin secretion. There is clearly widespread protein adduction throughout the 

stimulus-secretion coupling pathway of pancreatic islets and skeletal muscle following 

exposure to metabolic stress. As carnosine is able to prevent 65-90% of the 

respective 3-NT and 4-HNE adduction events measured, this PhD work hypothesised 

that the mitochondrial dysfunction that is seen in insulin resistance (Kelley and 

Mandarino, 2000) and T2DM (Rovira-Llopis et al., 2017) and is known to result from 

oxidative stress associated with nutrient excess (Evans et al, 2002; Rovira-Llopis et 

al, 2017), is likely the result of protein dysfunction resulting from AGE/ALE adduction, 

and that the protective action of carnosine in preventing/reducing damaging 

adduction of mitochondrial proteins could, however, offer important therapeutic 

benefits and, should at the very least, delay the onset of mitochondrial dysfunction 

in T2DM.  

Adduction data presented herein indicates target molecules that could be utilised for 

early detection and/or therapeutic interventions for those who have, or are at risk of 

developing, T2DM. The data also indicates the potential use of carnosine as a tool to 

prevent these damaging adductions. However, despite the promising role of 

carnosine as a supplement, its action would likely require regular administration at 

high dosage, due to the presence of tissue and serum carnosinase enzymes that 

catalyse carnosine turnover. One possible strategy to offset this limitation would be 

to design or synthesise carnosinase inhibitors and carnosine mimetics that are stable 

against the hydrolytic action of carnosinases. This forms the premise for work 

presented in Chapter 5.  
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Figure 4.14; A schematic representation of how carnosine in this Ph.D. work could 

potentially protect cells from impaired insulin signaling or diminished insulin 

production and preserve mitochondrial function via quenching 3-NT and 4-HNE 

thereby inhibiting them to crosslink and form adducts with key proteins and enzymes 

affecting their functionalities and activities.  
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5.1 Introduction 
 

The overproduction of reactive species and/or a decrease in the body’s antioxidant 

defences are associated with a number of chronic diseases, including diabetes, and 

the elevated incidence of type 2 diabetes has inspired the search for new drug 

candidates. One emerging strategy relates to the identification of compounds with 

antioxidant profiles, either from a natural or synthetic source. Another promising 

research direction is to design molecules, as either derivative of bioactive naturally-

occurring substances or as novel compounds that could exert therapeutic actions. 

The Turner laboratory reported a natural dipeptide, carnosine, to be a promising 

agent for regulating glucose homeostasis through enhancement of both insulin 

secretion by the pancreas, and glucose uptake to skeletal muscle cells (Cripps et al., 

2017).  

Despite carnosine’s promising potential as a therapeutic agent for oxidative-based 

diseases, its effectiveness is limited in humans due to the presence of serum and 

tissue carnosinase enzymes that catalyse the hydrolysis of carnosine to its amino acid 

components (Vistoli et al., 2012; Teufel et al., 2003). Upon oral ingestion, carnosine 

can be absorbed in the small intestine via PEPT1 transporters (oligopeptide 

transporter 1), with approximately 14% being transported intact (Gardner et al., 

1991). Carnosine is then either hydrolysed by carnosinase-2 (CN2) in intestinal cells, 

or else further transported to the circulation where it is potentially susceptible to 

hydrolysis by carnosinase-1 (CN1) before it reaches any peripheral tissues to render 

its beneficial action (Quinn et al., 1992; Boldyrev et al., 2013).  Given this limitation 

of carnosine, one possible solution to counteract this rapid hydrolysis is regular 

administration of high doses of exogenous carnosine in order to increase the available 

circulating level of carnosine in the system that is then able to elicit a biological effect. 



 

189 
 

Although reported to be safe during long-term administration due to the excess that 

could be cleaved by carnosinase, this mode, however, could nevertheless exert 

negative effects in rare cases such as carnosinemia (deficient of carnosinase), which 

is believed to have been associated with certain neurological disorders (Willi et al., 

1997, Boldyrev, 2009). An alternative route to achieve the desired beneficial action 

is therefore desirable, and this forms the basis for the latter part of this section. 

Investigations of the physiological roles of carnosine have mainly been directed 

towards skeletal muscle, as this is the tissue with the highest carnosine concentration. 

Initial findings indicated an anti-fatigue effect that is believed to be due to its pH-

buffering capacity, or its proton sequestering effect during acidosis-associated 

muscular contractile fatigue. This might, therefore, be the reason for its high 

abundance in skeletal muscle (Smith, 1938; Sahlin, 1980; Allen and Westerblad, 

2008). The level of carnosine in tissues is also controlled by the balance between 

carnosine synthase and carnosinase enzymes (Pegova et al., 2000). Consistent with 

this hypothesis, a study by Baguet et al.,(2010) showed that increased carnosine 

content in muscle due to nutritional supplementation of β-alanine attenuated the 

degree of acidosis in the blood during high-intensity exercise. Similarly, increased 

total muscle buffering capacity was observed after significant increase of carnosine 

content in skeletal muscle due to ingestion of β-alanine for 2-4 weeks, and this has 

the potential to elicit improvements in physical performance during high-intensity 

exercise (Sale et al., 2009; Hill et al., 2006). Supplementation of β-alanine does not 

only contribute to increasing the carnosine concentration but more importantly, 

rather than L-histidine, its availability is the rate-limiting factor for the synthesis of 

carnosine (Dunnet and Harris, 2009) through the reaction catalysed by carnosine 

synthase (CARNS). Given this available evidence on the effects of β-alanine 
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supplementation on muscle carnosine synthesis, it follows that this strategy could 

potentially also exert beneficial actions upon glucose homeostasis in T2DM. 

Carnosine is the best substrate for the human serum carnosinase, with a rate of 50-

200 fold higher as compared to other histidine-containing dipeptides (HCDs) (Peters 

et al., 2011). Importantly, a study involving diabetic mice and humans showed that 

under diabetic conditions, increased carnosinase-1 activity might be due to post-

translational modification of this gene through carbonylation and s-nitrosylation 

reactions that are influenced by the reactive metabolite methylglyoxal (MG) (Peters 

et al., 2015). Furthermore, reactive oxygen and nitrogen species could also increase 

carnosinase activity (Peters et al., 2011 and Peters et al., 2018). This being the case, 

in diabetic patients where tissue damage is driven by glucolipotoxicity, it might be 

possible to offset high serum or tissue carnosinase activity by pharmacologically 

inhibiting these hydrolysing enzymes in order to maximise the potential benefits of 

oral carnosine supplementation.  

This chapter aims to evaluate whether supplementation of β-alanine could have a 

similar beneficial effect to that of carnosine scavenging of glucolipotoxic intracellular 

reactive species, and if so, to determine whether this would enhance glucose uptake 

or improve insulin sensitivity in GLT-induced insulin-resistant skeletal muscle cells. 

Secondly, this chapter also aims to identify potential drug candidates that are 

carnosinase inhibitors designed through in silico screening and docking techniques, 

or bespoke synthesis of hydrolysis-resistant carnosine mimetics – achieved through 

collaboration with Dr. Christopher Garner and Prof. John Wallis (Chemistry, NTU). 

Thereafter these compounds will be screened for their ability to potentiate and 

sustain the action of endogenous carnosine, or to augment its known biological 

action, and importantly to improve its limitation as a therapeutic agent. Amongst the 

screened compounds, selected molecules will then be utilised for further in vivo 
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studies which are an integral part of the future direction of this PhD work – through 

collaboration with Dr. Paul Caton of Kings College London.  Either or both strategies 

from this work, if successful, will provide essential steps to create future therapeutic 

perspectives in oxidative-based diseases through a rational design of potent and 

selective quenchers of reactive species deleterious to the normal functions of cells 

and tissues.  

5.2 Results 

 

5.2.1 Identification of Carnosine Synthase Expression in C2C12 

Myotubes 

 

Carnosine is synthesized from β-alanine and L-histidine by an ATP-dependent 

synthase known as ATP-grasp domain-containing protein 1 (Drozak et al., 2010). 

Preliminary data from the Turner laboratory group has shown it to be expressed at a 

low level (data not shown, unpublished) in INS-1 β-cells, thereby indicating that β-

cells are likely capable of synthesising carnosine. Consistent with this, 

supplementation of β-cells with the rate-limiting β-alanine had a positive impact upon 

insulin secretion. I therefore sought to determine whether glucolipotoxicity would 

affect the level of this enzyme in C2C12 muscle cells.  

In order to accomplish this, C2C12 myotubes were cultured in DMEM media with and 

without GLT treatment for 5 days, after which cell lysates were generated in RIPA 

buffer and the resulting protein samples separated using SDS-PAGE, transferred to 

nitrocellulose membrane, and immunoblotted using Ab against ATPGD-1 / carnosine 

synthase (Santa Cruz, USA). As shown in Figure 5.1, the enzyme is expressed in 

skeletal muscle cells, where two isoforms were detected - namely ATPGD1 isoform 1 

at 88 kDa, and isoform 2 at about 37 kDa. It was also observed that there was no 

significant difference in the expression level of the enzyme in C2C12 cells cultured in 
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GLT media. However, this warrants further investigation in animal models of diabetes, 

and thus forms an additional goal for future research. 

 

 

 

 

Figure 5.1; ATP-grasp domain-containing protein 1 is expressed in muscle 

cells. C2C12 myotubes were incubated in control or GLT media supplemented for 5 

days. Cells were then lysed to extract proteins and then separated via SDS-PAGE, 

transferred to nitrocellulose and detected using anti-ATPGD-1 or anti-actin antibody. 

Data expressed as mean ± SEM from 3 independent experiments. *p < 0.05.  

 

5.2.2 Effect of β-Alanine Supplementation on Scavenging of 

Glucolipotoxic Intracellular Reactive Species in C2C12 

Myotubes 

 

Skeletal muscle is able to take up β-alanine via a specific β-amino acid transport 

protein (Miyamoto et al., 1990), and this could potentially contribute to the increase 

in skeletal muscle carnosine concentration following supplementation of this amino 

acid that has been reported in several studies (Hill et al., 2007; Saunders et al., 2017). 

The present study thus sought to determine whether β-alanine supplementation 

could also exert scavenging action towards reactive species, similar to that seen with 

carnosine in my previous experiments. In order to answer this, C2C12 myotubes were 

treated with control or GLT media for 5 days ± 10 mM β-alanine. Intracellular reactive 

species were estimated based on fluorescence intensity using DCFDA dye.  

Figure 5.2 shows that GLT-exposed C2C12 cells had a higher level of reactive species, 

with an increase of 87.25 ± 15.33 % compared to control. Whilst β-alanine 
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supplementation had no significant effect in the control condition, it significantly 

lowered the increase of reactive species in GLT-treated cells. Although scavenging of 

reactive species is fast, β-alanine was supplemented for 5 days in order to allow for 

synthesis of carnosine to take place, albeit intracellular carnosine was not formally 

measured in this particular experiment. Data (not shown) generated by a colleague 

in the Turner group working with INS-1 β-cells, did not, however, show any significant 

effect upon scavenging of GLT-mediated reactive species. This might, however, have 

been due to the β-alanine incubation time being only one hour, and so treating this 

for longer might still elicit an effect.  

 

Figure 5.2; β-alanine scavenging reactive species in C2C12 skeletal muscle 

cells.  C2C12 myotubes were cultured in control or GLT media for 5 days ± 10mM 

β-alanine. A 20μM DCFDA in KREBS buffer was then added to cells for 1h and reactive 

species detected via fluorescence with excitation and emission of 495nm and 530nm. 

Reactive species are expressed as a percentage change in comparison to control from 

3 independent experiments ± SEM. (**p<0.005 vs Control, #p<0.05 vs GLT; Tukey’s 

test) 



 

194 
 

5.2.3 Effect of β-Alanine Supplementation on Glucose-Uptake in 

Glucolipotoxicity Treated C2C12 Myotubes 

 

As supplementation of β-alanine significantly reduced the level of intracellular reactive 

species generated in glucolipotoxicity-treated muscle cells, then this could potentially 

elicit similar effects to those shown with carnosine to enhance glucose uptake in the 

GLT-induced model of insulin-resistant muscle cells. In order to evaluate this, 

differentiated C2C12 muscle cells were incubated in either control or GLT media for 

5 days in the presence or absence of 10mM β-alanine. Glucose uptake was then 

determined using a luminescence-based assay.  

As shown in Figure 5.3, GLT-treated cells (insulin-stimulated) have significantly lower 

glucose-uptake (69.92 ± 11.36) compared to healthy control with insulin stimulation. 

However, the observed increase in glucose uptake upon supplementation of β-alanine 

was found to be statistically not significant. The observed enhancement could be 

attributed either to the level of carnosine that could have endogenously formed, or 

to β-alanine itself. Further, the addition of β-alanine to GLT media neither elicited 

toxicity to the cells, nor significantly affected cell number, an observation that was 

made using Calcein-AM fluorescence-based cell viability assay and depicted in Figure 

5.4.  
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Figure 5.3; Glucose-uptake assay of β-alanine-supplemented GLT-exposed 

C2C12 muscle cells. C2C12 myotubes were cultured in DMEM media, or DMEM 

GLT media for 5 days ± 10mM β-alanine.  Cells were serum-starved overnight in 

DMEM supplemented with 5 mM glucose, then incubated for 1 h in glucose-free 

DMEM +/−100nM insulin. Medium was replaced with PBS + 0.125 mM 2-deoxy 

glucose (2-DG). Glucose uptake reactions were conducted for 30 min. 2DG6P was 

detected using a luminometer. Data are expressed as means ± SEM of 3 

independent experiments. (*p < 0.05,**p< 0.005; Tukey’s test) 

 

Figure 5.4; β-alanine supplementation does not affect cell viability of 

C2C12 Myotubes. C2C12 myotubes were cultured in control or GLT media for 5 

days. After 1h incubation with 5μM solution of Calcein AM, fluorescence intensity was 

measured using excitation and emission of 490nm and 520nm. Results shown are 

expressed as percentage change compared to control from 4 independent 

experiments ± SEM. (p>0.05; t-test) 
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5.2.4 CNDP-2 / Tissue Carnosinase Expression in Healthy / Control, 

and Glucolipotoxicity-Treated C2C12 Myotubes 

 

Increased expression of carnosinase, and thus its activity, has been reported to be 

associated with increased risk of diabetic nephropathy and altered kidney function in 

type 2 diabetes (Ahluwalia et al., 2011). A study by Chiu et al., 2014, also indicated 

that cytosolic non-specific dipeptidase or carnosine dipeptidase -2 (CNDP2) 

expression was observed to be significantly elevated in both male and female 

hypertensive mice, wherein there was a reduced carnosine level and decreased 

protection against oxidative stress.  

In order to assess whether or not the level of CNDP2 changed in GLT-exposed muscle 

cells, C2C12 myotubes were treated in either control or GLT media for 5 days. The 

cells were then lysed and the proteins separated by SDS-PAGE, before being 

subjected to immunoblot analysis using an anti-CNDP2 primary antibody. Figure 5.5, 

showed that under GLT conditions CNDP2 is significantly upregulated relative to 

control, with an increase of 88.86 ± 19.42%. 
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Figure 5.5; Expression of CNDP2 is upregulated in GLT-exposed C2C12 

myotubes. C2C12 myotubes were incubated in control or GLT media supplemented 

for 5 days. Cells were then lysed to extract proteins and then separated via SDS-

PAGE, transferred to nitrocellulose and detected using anti-CNDP2 or anti-actin 

antibody. Data expressed as mean ± SEM from 4 independent experiments. 

(**p < 0.005; t-test).  

 

Since the potential beneficial action of carnosine could be hampered by the activity 

of serum and tissue carnosinase, resulting in its rapid degradation, I therefore next 

sought to identify molecules that could inhibit the activity of tissue CNDP2. Molecules 

were assessed using in silico computational analysis of predictive catalytic cleft spacial 
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interactions in order to predict those most likely to be stable against hydrolysis and/or 

CNDP2 inhibitors. If effective, this strategy could sustain the action of endogenous 

carnosine. 

Using carnosine as the template, a library of over 50,000, compounds available from 

Maybridge (www.maybridge.com) were virtually screened to initially identify hit 

compounds that are similar in shape with carnosine. After assessing the 

stereochemical and physical quality of the molecules, the selected hit compounds 

(top 500) were docked with the binding site of carnosinase-2 (CN2), particularly in 

the region involved in hydrolysis, using the GOLD software 

(https://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold) and the 

Tanimoto combo scoring function, which quantitatively measures and ranks the 

similarity between carnosine and Maybridge molecules. The top 50 hits were then 

chosen for further screening and were re-docked to the active site of CN1 and CN2 

with increased search efficiency in order to determine which of these had the most 

similar shape to carnosine. Bestatin, an analogue of carnosine, was used as an 

internal control to validate and identify any malfunction and error in the method. 

From this measurement, 14 of these molecules met the said criteria and these are 

labelled as M4, M8, M14, M17, M21, M28, M36, M37, M38, M43, M44, M47, M48, 

M49.   

5.2.5 Effect of Carnosinase Inhibitors and Carnosine Mimetics 

on Cell Viability 

 

In order to investigate the effect of the potential drug candidates on cell number and 

viability, fluorescence-based cell viability testing was conducted using calcein-AM dye. 

This was initially performed using C2C12 muscle cells (Figures 5.6, 5.7 and 5.8), 

showing that the five analogues initially selected did not cause any significant toxicity. 

Consequently, the present study then went on to determine their scavenging activity 

http://www.maybridge.com/
https://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold
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in GLT-treated muscle cells. Figure 5.8 shows some representative images of C2C12 

myotubes that were treated for 5 days with the indicated compounds, as well as a 

separate compound that was toxic to the cells (M44). The reason for M44 toxicity 

remains unknown, but might be better explained by a future comprehensive 

structure-function analysis. 

 

Figure 5.6. Selected carnosine-derivative molecules did not affect C2C12 

cell viability. C2C12 myotubes were cultured in control or GLT media + compound 

for 5 days. After 1h incubation with 5μM solution of Calcein AM, fluorescence intensity 

was measured using excitation and emission of 490nm and 520nm. Results shown 

are expressed as a percentage change compared to control from 3 independent 

experiments ± SEM. (p>0.05; ANOVA) 

 

 

Similarly, different carnosine esters (sythesised through a condensation reaction 

between alcohol and carnosine in the presence of trimethylsilyl chloride) were also 

tested whether these compounds would have significant effect on cell viability of GLT-

treated cells. Introducing an ester group is designed to make these derivatives more 

stable against hydrolysis by carnosinase, whilst retaining biological actions similar to 



 

200 
 

that of carnosine. Indeed, this may potentially improve the nucleophilic character of 

the histidine moiety, thereby making it more reactive towards electrophilic toxic 

aldehydes; resulting in it becoming a more preferential site for protein glycation due 

to the proximity of imidazole and carboxylate. The synthesis of these carnosine esters 

was conducted in the Chemistry Department of NTU under the supervision of Dr. 

Christopher Garner. Methyl, ethyl, and isopropyl were allowed to react for about 15 

minutes with trimethylsilyl chloride, before L-carnosine was added, after which the 

resulting solution was allowed to reflux at 95oC overnight to obtain alkyl carnosine 

esters labelled as CE1, CE2, and CE3. The purity of the compounds was ensured and 

validated using magnetic resonance spectroscopy. Figure 5.7 showed that each of 

100µM carnosine methyl ester (CE1), carnosine ethyl ester (CE2), and carnosine 

isopropyl ester (CE3) in GLT-treated cells did not significantly affect cell viability as 

compared to healthy control. 

 

Figure 5.7. The effect of three carnosine esters on C2C12 cell viability. 

C2C12 myotubes were cultured in control or GLT media + compound for 5 days. After 

1h incubation with 5μM solution of Calcein AM, fluorescence intensity was measured 

using excitation and emission of 490nm and 520nm. Results shown are expressed as 

a percentage change compared to control from 3 independent experiments ± SEM. 

(p>0.05; ANOVA) 
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Figure 5.8; Representative images of C2C12 myotubes treated with 

different selected Maybridge molecules using the Olympus CKX53 

microscope. 

 

The potential toxicity of carnosine-derived molecules was also determined on a 

human skeletal muscle cell-line. As indicated in Figure 5.9, 5-day of treatment with 

100µM each of M4, M8, M14, M28 and M38, and in addition with three different 

carnosine mimetics (100 µM each of CE1, CE2, and CE3 or carnosine esters) in GLT-

treated human myotubes were not significantly different to the healthy control cells, 

suggesting that the treatments did not have cytotoxic effects to the human muscle 

cell-line. Nevertheless, this dosing might have to change when administered in animal 

models during in vivo validation moving forward. In this collaborative in vivo work, 

three molecules (M8, M28, and CE3) were initially chosen for further analysis, based 

upon scavenging and glucose uptake data (Figures 5.12-15). Figure 5.10 shows 

example images of human myotubes treated for 5 days in GLT with the indicated 

molecules. 
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Figure 5.9; Treatment of the proposed carnosinase inhibitors and isopropyl 

carnosine ester on GLT-exposed cells did not affect cell viability. HSkM 

myotubes were cultured in control or GLT media for 5 days. After 1h incubation with 

5μM solution of Calcein AM, fluorescence intensity was measured using excitation and 

emission of 490nm and 520nm. Results shown are expressed as a percentage change 

compared to control from 3 or more independent experiments ± SEM. (p>0.05; 

ANOVA) 
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Figure 5.10; Human skeletal myotubes with 5-day treatment of some 

selected molecules using the Olympus CKX53 microscope. 

5.2.6 Scavenging Activity Assay on Skeletal Myotubes Treated 

with Potential Carnosinase Inhibitors and Carnosine 

Mimetics 

 

Promising drug candidates were next investigated for biological action, through 

scavenging, insulin secretion and glucose-uptake assays. Based upon the preliminary 

glucose uptake data (Figure 5.11), five molecules, namely M4, M8, M14, M28, and 

M38, were initially selected and further screened for scavenging activity using the 

DCFDA fluorescent dye. Following this, glucose uptake was determined. These 

molecules were also then evaluated for other functional activity relevant to glucose 
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homeostasis, such as insulin secretion assay (performed and reported by Michael 

Cripps in the Turner laboratory).  

A stock solution of these molecules was prepared in 100% sterile ethanol and further 

diluted with sterile KREBS to yield a solution containing 10mM of each of the 

compounds. A 100μM solution (1:100, compound to experimental media) was chosen 

as the treatment concentration for all the screening conducted in this chapter work, 

as 100μM is optimal to elicit significant scavenging effect, whilst for many compounds 

does not affect cell viability. Although carnosine is optimally effective at a 

concentration of 10mM, a much lower concentration of optimal activity was desired 

in the use of synthetic compounds.  

 

Figure 5.11. Initial glucose-uptake assay of some carnosine-shaped 

molecules. C2C12 myotubes were cultured in DMEM media, or DMEM GLT media 

for 5 days ± 100µM of the indicated labelled molecules.  Cells were serum-starved 

overnight in DMEM supplemented with 5 mM glucose, then incubated for 1 h in 

glucose-free DMEM +/−100nM insulin. Medium was replaced with PBS + 0.125 mM 

2-deoxy glucose (2-DG). Glucose uptake reactions were conducted for 30 min. 

2DG6P was detected using a luminometer (n=1).  
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The following figures depict the scavenging potential of five molecules (M4, M8, M14, 

M28, M38) believed to inhibit carnosinase-2. The molecular weight of these molecules 

ranges from 188 g/mol to 213 g/mol not far from that of carnosine 226 g/mol.  

There was no significant difference in reactive species levels between the control 

condition and the control treated with the selected molecules (Figure 5.12). As GLT 

resulted in a significant increase in reactive species (215.55±9.58%) compared to 

control, it is interesting to note that supplementation of GLT-exposed cells with 

100µM of these five molecules (M4, M8, M14, M28, and M38) for 5 days resulted in 

a significant reduction of intracellular reactive species when compared to the GLT 

condition.  

 

Figure 5.12; Scavenging assay of selected carnosinase inhibitors. C2C12 

myotubes were cultured in control or GLT media for 5 days ± 100µM of indicated 

labelled molecules. A 20μM DCFDA in KREBS buffer was loaded for 1h and reactive 

species detected via fluorescence with excitation and emission of 495nm and 530nm. 

[Control Vehicle – 1% ethanol] Reactive species are expressed as a percentage 

change in comparison to control from 4 independent experiments ± SEM. 

(****p<0.0001 vs Control, ##p<0.005, ###p<0.0005 vs GLT; Tukey’s test) 
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In conjunction with carnosine analogs that are putative carnosinase inhibitors that 

have already been investigated using scavenging and glucose-uptake assays, this 

PhD work also evaluated the carnosine-like properties of three ester derivatives of 

carnosine.  

As shown in Figure 5.13, all ester derivatives of carnosine significantly scavenged or 

reversed the increased intracellular reactive stress generated following incubation in 

GLT media, with both ethyl and isopropyl carnosine esters having the highest 

scavenging potential. Specifically, GLT media containing 175.50 ± 12.83% and 

184.64 ± 19.11 reactive species (relative to control) was reduced to 99.38 ± 19.35% 

and 100.66 ± 17.37% following incubation with CE2 and CE3. 
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Figure 5.13; Three carnosine esters have shown scavenging action against 

glucolipotoxicity mediated generation of reactive species. (A) methyl 

carnosine ester (B) ethyl carnosine ester (C) isopropyl carnosine ester. C2C12 

myotubes were cultured in control or GLT media for 5 days. Corresponding media 

were then replaced and supplemented ± 100µM of different alkyl carnosine esters 

for 1h. A 20μM DCFDA in KREBS buffer was loaded for 1h and reactive species 

detected via fluorescence with excitation and emission of 495nm and 530nm. 

Reactive species are expressed as a percentage change in comparison to control from 

4 independent experiments ± SEM. (*p<0.05, **p<0.005 vs Control, #p<0.05, 

###p<0.001 vs GLT; Tukey’s test)  

 

5.2.7 The Effect of Potential Carnosinase Inhibitors and 

Carnosine Mimetics on Glucose-Uptake in 

Glucolipotoxicity-Treated Skeletal Myotubes 

 

Previous observations made following carnosine and β-alanine supplementation (as 

discussed in Chapter 3 and above) demonstrated that when cells are incubated in the 

presence of these compounds there is beneficial impact on glucose homeostasis, both 

through improved insulin secretion and glucose uptake. As such, carnosine-based in 

silico synthetic molecules could provide an important new direction in the 

development of novel treatment strategies beneficial for those either at risk or who 

are patients with type 2 diabetes.  

In order to find out what influence the selected molecules had upon glucose uptake, 

differentiated C2C12 cells were treated with either control media or GLT ± 100µM of 



 

208 
 

carnosine ester or carnosinase inhibitor for 5 days. Following this treatment, they 

were then serum-starved overnight and insulin-stimulated for an hour before glucose 

uptake was measured using a luminescence-based assay.  

The improvement in glucose-uptake shown in Figures 5.14 and 5.15, could be 

attributed to the positive effect seen in the scavenging data of selected Maybridge 

molecules (M4, M8, M14, M28, and M38) and the isopropyl carnosine ester (CE3) on 

cells incubated under glucolipotoxic conditions. In all cases, stimulated GLT-exposed 

cells had significantly lower uptake of glucose (p < 0.005) as compared to control-

stimulated cells. 5-days of treatment of these molecules (with the exception of M4) 

resulted in increased glucose uptake to GLT-treated cells (p < 0.05, GLT-stimulated 

vs GLT-stimulated + carnosine analogue). Since CE2 and CE1 were not effective 

(Figure 5.15) in improving glucose uptake under GLT conditions, only CE3 was chosen 

for further evaluation with either a human skeletal muscle cell-line or for future in 

vivo work. 
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Figure 5.14; Glucose-uptake measurements of GLT-exposed cells treated 

with selected carnosine-shaped molecules. C2C12 myotubes were cultured in 

DMEM media, or DMEM GLT media for 5 days ± 100µM of indicated 

compound.  Cells were serum-starved overnight in DMEM supplemented with 5 mM 

glucose, then incubated for 1 h in glucose-free DMEM +/−100nM insulin. Medium 

was replaced with PBS + 0.125 mM 2-deoxy glucose (2-DG). Glucose uptake 

reactions were conducted for 30 min. 2DG6P was detected using a luminometer. 

Data are expressed as means ± SEM of 3 independent experiments. (*p<0.05 vs 

Insulin-stimulated Control, #p<0.05 vs Insulin-stimulated GLT; Tukey’s test). 
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Figure 5.15; Isopropyl carnosine ester enhances glucose-uptake of GLT-

induced insulin resistant C2C12 muscle cells. C2C12 myotubes were cultured 

in DMEM media, or DMEM GLT media for 5 days ± 100µM of isopropyl carnosine 

ester (CE3).  Cells were serum-starved overnight in DMEM supplemented with 5 mM 

glucose, then incubated for 1 h in glucose-free DMEM +/−100nM insulin. Medium 

was replaced with PBS + 0.125 mM 2-deoxy glucose (2-DG). Glucose uptake 

reactions were conducted for 30 min. 2DG6P was detected using a luminometer. 

Data are expressed as means ± SEM of 3 independent experiments. (**p<0.01 vs 

Insulin-stimulated Control, #p<0.05 vs Insulin-stimulated GLT; Tukey’s test). 

 

 

Following the in silico analysis and subsequent in vitro experiments detailed above, 

three leading candidate molecules (M8, M28, and CE3) were selected for further 

evaluation, This in vivo study was conducted by a collaborator at King’s College 

London (Dr. Paul Caton), and employed glucose tolerance test (GTT) primarily to 

assess beneficial effect(s) of these drug candidates on a high-fat fed mouse model 

of type 2 diabetes. Whilst this in vivo work was underway, glucose-uptake assays 

were conducted using human skeletal muscle cells that were differentiated and 

treated either in control or GLT media ± 100µM each of M8, M28 and CE3 for 5 days, 

and similarly M21 as a negative control. Figure 5.16 shows that all compounds, except 
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M21 and M28, significantly increased glucose uptake in the GLT model of insulin-

resistance using myotubes from a human skeletal muscle cell line.  

 

Figure 5.16; Glucose-uptake Assay of selected carnosine-shaped and 

carnosine mimetic molecules on human skeletal muscle cell-line. Human 

skeletal myotubes (HSkM) were cultured in DMEM-F12 media, or DMEM-F12 GLT 

media (17mM glucose, 200 μM Palmitic acid, 200 μM Oleic acid) for 5 days ± 100μM 

of indicated compound.  Cells were serum-starved overnight in DMEM 

supplemented with 5 mM glucose, then incubated for 1 h in glucose-free 

DMEM +/− 1μM insulin. Medium was replaced with PBS + 0.150 mM 2-deoxy 

glucose (2-DG). Glucose uptake reactions were conducted for 30 min. 2DG6P was 

detected using a luminometer. Data are expressed as means ± SEM of 3 

independent experiments. (***p<0.001 vs Insulin-stimulated Control, #p<0.05, 

###p<0.001 vs Insulin-stimulated GLT; Tukey’s test). 

 

5.2.8 Effect of β-Alanine Supplementation, Carnosinase 

Inhibitors, and Carnosine Mimetics on Insulin Secretion in 

Glucolipotoxicity-Treated INS-1 β-cells 

 

The expression of carnosine synthase has been shown in INS-1 β-cells by colleagues 

(K. Hannah and M. Cripps doctoral theses) in the Turner group. This suggests that 

the entry of β-alanine could increase the active pool of intracellular carnosine in these 

cells. In order to investigate this hypothesis, the effect of β-alanine supplementation 
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was evaluated in INS-1 cells via scavenging and insulin secretion assays conducted 

by M. Cripps. The results (data available from http://irep.ntu.ac.uk/id/eprint/36698/) 

indicated a significant reduction in glucolipotoxicity-mediated reactive species 

following the 5-day treatment with β-alanine, which consequently elicited an 

increased secretagogue-stimulated insulin secretion. Importantly, a reversal of 

glucolipotoxic inhibition of insulin secretion was also shown.  

Incubation of INS-1 β-cells with putative carnosinase inhibitors was toxic in certain 

instances, e.g. M44, but for the most part these compounds (M4, M8, M28, and M14) 

showed no significant effect on cell viability. They had varied scavenging actions, 

however, and showed no significant increase in insulin secretion (M. Cripps thesis).  

Initial screening of the carnosine mimetic, isopropyl carnosine ester (CE3), on INS-1 

β-cells (performed with N.N. Dilla in the Turner group) showed that 5-day treatment 

of these pancreatic cells with CE3 did not affect cell viability and was not toxic to 

these cells. Importantly the addition of this molecule significantly reduced the 

increase of GLT-mediated intracellular reactive species.  

 

Figure 5.17; The effect of some carnosine-shaped molecules (M44 and 

M21) and carnosine mimetic (CE3) on INS-1 β-cells. INS-1 β-cells were 

cultured in control or GLT media for 5 days. After 1h incubation with 5μM solution of 

Calcein AM, fluorescence intensity was measured using excitation and emission of 

http://irep.ntu.ac.uk/id/eprint/36698/
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490nm and 520nm. Results shown are expressed as a percentage change compared 

to control from 3 or more independent experiments ± SEM. * p < 0.05, **p<0.01 vs 

Healthy control; Dunnett’s test) 

 

Figure 5.18; Example of INS-1 images treated for 5-days with the 

indicated compound. [Images obtained by N.N. Dilla, MSc student in Turner 

group] 

 

Figure 5.19; Carnosine isopropyl ester is effective as a scavenger of GLT-

mediated intracellular reactive species generated in GLT-exposed 

pancreatic β-cells. INS-1 pancreatic beta cells were cultured in control or GLT 

media ± 100µM of different alkyl carnosine esters. A 20μM DCFDA in KREBS buffer 



 

214 
 

was loaded for 1h and reactive species detected via fluorescence with excitation and 

emission of 495nm and 530nm. Reactive species are expressed as a percentage 

change in comparison to control from 3 independent experiments ± SEM. (*p<0.05 

vs Control, #p<0.05 vs GLT). 

5.2.9 Evaluation of Carnosinase-2 Activity on Selected 

Carnosinase Inhibitors and Carnosine Mimetics 

 

Following the in-silico screening of carnosine-shaped molecules for likely stability 

against carnosinase hydrolysis, their theoretical inhibitory actions were next tested 

using commercially available recombinant human CNDP2 (rhCNDP2) in conjunction 

with a fluorescence-based assay using carnosine as substrate. The fluorescence 

intensity produced was then used to assess the inhibitory action of each molecule 

based upon the complex formed between the histidine component from the cleaved 

carnosine substrate and the derivatization reagent ortho-pthaldialdehyde (o-PA) used 

in the assay (protocol detailed in Chapter 2). Similarly, to assess the hydrolysis of 

carnosine ester derivatives, the same approach was employed by making it as the 

substrate and allowing it to react with rhCNDP2. The lower the flourescence intensity, 

the lower the amount of histidine that was available to form the fluorescent complex, 

and thus the lower the amount of carnosine ester that was hydrolysed to release the 

histidine moiety.  

As indicated in Figure 5.20, M4 (p < 0.05), M14, M28 and M8 (p < 0.005) significantly 

inhibited the enzyme and protected carnosine from cleavage when compared to 

control (rhCNDP2 + carnosine only), whilst M38 (p = 0.2007) and M49 (p= 0.2410) 

showed no significant inhibition of carnosinase 2 cleavage of carnosine. In the case 

of the carnosine mimetics / carnosine esters, comparing to carnosine there were 

negligible fluorescence intensity values observed, indicating that these carnosine 

analogs are highly effective at preserving carnosine integrity.  
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Figure 5.20; Estimation of the inhibitory effects of selected carnosinase 

inhibitors and hydrolytic property of the carnosine esters. Each substrate 

(e.g., CE3) was allowed to react at room temperature with rhCNDP2 for 1hr (prior to 

this is a 30-min reaction period in the presence of inhibitor e.g M8). After the reaction 

was stopped with trichloroacetic acid, o-pthaldialdehyde detection reagent was added 

and incubated for 30 mins to obtain a fluorescent complex measured at 360 nm 

(excitation) and 460 (emission). Data reported as average values ± SEM of n=3.  (* 

p < 0.05, **** p < 0.0001 vs Carnosine Control; Dunnett’s test). 

 

5.3  Discussion 
 

Supplementation of β-alanine has been found to have a positive influence on the 

carnosine concentration in skeletal muscle (Hill et al., 2006), and studies by 

Bakardjiev and Dunnet indicated that β-alanine, and not histidine, limits the synthesis 

of carnosine. Carnosine synthase also known as ATPGD1 is an enzyme that is required 

for the endogenous synthesis of carnosine, and has been found to be mainly 

expressed in skeletal muscle and in the brain (Miyaji et al., 2012; Drozak, et al., 

2010). Similarly, the data presented here indicated the expression of the enzyme 

ATPGD1 in C2C12 mouse muscle cells, although in the duration of this experiment 

GLT had no significant effect on its expression level.  
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The experimental data obtained herein indicate that 5-days of supplementation with 

β-alanine in GLT exposed C2C12 muscle cells significantly attenuated the increase of 

GLT-mediated intracellular reactive species.  This effect resulted to an increased 

glucose-uptake although not statistically significant. However, this does not mean β-

alanine would have no effect nor conclusive to state that it is biologically unimportant 

in glucose homeostasis. Most likely the condition or number of experiments 

conducted here might not be more enough to reveal its real effect. On the other 

hand, carnosine synthase is present in INS-1 pancreatic cells (Hanna, 2018) 

suggesting that carnosine synthesis is possible in these cells. Consistent with this 

hypothesis, 5-days of treatment of β-alanine reduced the GLT-generated reactive 

species levels in these cells, resulting in improved insulin secretion (Cripps, 2019). 

Taken together, our data from skeletal muscle and pancreatic β-cell experiments 

suggest that taking β-alanine as a dietary supplement might offer therapeutic benefit 

to patients with diabetes. 

Carnosine as a natural constituent in excitable tissues possesses diverse biological 

effects and the level of carnosine in tissues is regulated by several enzymes, 

particularly those involved in its hydrolysis (e.g., tissue carnosinase (CNDP2) and 

serum carnosinase (CNDP1). The overexpression or high activity of carnosinase, 

specifically CNDP1, has been linked to diabetic nephropathy that is common in 

patients with type 2 diabetes (Janssen et al., 2005; Albrecht et al., 2017). The activity 

of tissue carnosine-degrading enzyme (CNDP2) also regulates the role of imidazole-

containing dipeptides in tissues like brain and skeletal muscles. Together with CNDP1, 

when both expression or activity is increased these enzymes might lead to decreased 

concentrations of endogenous carnosine and other imidazole-containing dipeptides 

and, therefore, this could potentially limit the action of available natural antioxidant 

or defence mechanisms for cells under oxidative stress. Collectively, the interplay 
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between related carnosine transporters (stated in Chapter 1) and related enzymes 

(e.g. CNDP1 and CNDP2) and nutritional stimuli (e.g. β-alanine supplementation), 

might have important roles in regulating muscle carnosine homeostasis. 

The concentration of carnosine in skeletal muscle has previously been shown to be 

relatively stable (Baguet et al., 2009), and the pH in muscle is also not optimal for 

degradation to take place (Teufel et al., 2003). This has led some to question, 

although not established, that there may be an absence of carnosine-degrading 

enzyme in mammalian skeletal muscle. However, the data presented earlier in this 

PhD work disproved this observation, as it was shown that at least in differentiated 

C2C12 muscle cells, CNDP2 was expressed through western blot analysis. 

Importantly, data herein also showed that glucolipotoxicity potentially reduces 

cellular carnosine levels, albeit both observations warrant further validation using 

more relevant physiological models.   

In type 2 diabetic patients, the level of carnosine content in muscle was observed to 

be significantly reduced compared to healthy controls (Gualano et al., 2012), and as 

part of the ageing process, carnosine level is believed to decline over time (Everaert 

et al., 2011). This might therefore be attributed to the decreased ability to synthesise 

carnosine with increasing age, plus human conditions such as diabetes generate 

increased levels of reactive species and thus accelerated ageing, which could lead to 

a decreased production and increased destruction of carnosine (Boldyrev et al., 2001; 

Bellia et al., 2009; Everaert et al., 2011).    

Carnosine degrading enzymes may therefore be considered as a risk factor in type 2 

diabetes and its associated complications, and they pose a challenge to any anti-

diabetic treatment / prevention strategy involving carnosine. One of the objectives of 

this PhD programme of work was to address this issue through the identification and 
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synthesis of carnosine-related molecules that could have the same beneficial action 

upon glucose homeostasis, but importantly are resistant towards hydrolysis. Initial 

data obtained in the Turner group has identified a number of promising candidates 

for use as anti-diabetic agents, from which three molecules (M8, M28, and CE3) were 

chosen to be further evaluated in subsequent in vivo studies. However, once the most 

effective compound is identified, further comprehensive dose-response experiments 

will need to be conducted in order to establish a suitable concentration for 

physiological application.  

The carnosine-shaped molecules studied here are relatively small in size and possess 

some aromaticity due to the presence of either the 6-membered ring (benzene or 

pyridine) or 5-membered ring (furan, azole, imidazole) in their structures, with mainly 

amino functional groups in their side alkyl chain. Just like carnosine, these functional 

groups are nucleophilic which might be useful for sequestering reactive species. 

However, this needs to be further validated via structure-activity relationship analysis 

or prediction of activity spectra for substances (PASS) approach -  by comparing the 

structure of new compound with structure of well-known biological active substrate 

existing in the database, which at this stage is beyond the scope of this PhD project. 

Both of these functional groups are relevant in the sequestering action towards 

reactive and deleterious aldehydes, like 4-HNE, via Schiff base formation and 

intramolecular Michael addition reaction mechanism. The orientation of these 

molecules towards the active site of carnosinase-2 is similar to that of carnosine, 

where the aromatic group occupies one pocket of the enzyme’s active site and the 

carboxyl-alkyl chains map to the other functional site. Also, when these molecules 

were docked in carnosinase-1 almost similar desired binding scores were observed, 

indicating that these molecules also fit with this enzyme with a similar extent of 
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interaction involved, and, as such, are likely to be resistant against hydrolysis from 

either carnosinase.  

Carnosine and its analogue bestatin - a known inhibitor of carnosinase, were allowed 

to interact with CN2 computationally in order to establish interaction conditions, 

molecular conformations, functional groups or bonding type present for substrate 

recognition. From the Maybridge database, this step then allowed to identify 

carnosine analogs that are resistant to hydrolysis. Due to intellectual property 

considerations and a pending patent application, sadly the exact chemical structural 

details of the chosen molecules must remain confidential at this time. This in silico 

work was kindly undertaken by the Garner group of NTU Chemistry Department.   

The 5-day treatment of selected carnosine-related molecules on both mouse and 

human myotubes under glucolipotoxic conditions successfully attenuated the 

increased formation of intracellular reactive species, and consequently improved 

glucose uptake. Whilst some compounds did not affect pancreatic β-cell viability, an 

ineffective response was seen on insulin secretion following incubation with these 

carnosinase inhibitors. One likely reason for the different responses shown between 

skeletal muscle and pancreatic β-cells is that the carnosine concentration in skeletal 

muscle is very high, whereas there are no data available to indicate the concentration 

in β-cells. Importantly, preliminary data obtained by a colleague in Turner group has 

in fact determined that there is a very low concentration of carnosine in INS-1 β-cells. 

This is consistent with the observation of Robertson and Hammon (2007) that islets 

are one of the least protected tissues in terms of an inherent antioxidant defence 

system. This makes these cells more susceptible to damage under oxidative stress, 

such as prolonged exposure to glucolipotoxicity. However, whilst carnosinase 

inhibitors are likely to prove of little direct benefit in enhancing insulin secretion, 

Cripps et al. (2017) have demonstrated that carnosine can significantly increase 
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insulin secretion. In contrast to carnosinase inhibitors, therefore, it seems likely that 

biologically active carnosine mimetics, which are also resistant to hydrolysis, will 

eventually prove to be highly effective insulin secretagogues. 

In conclusion, data obtained from functional assays relevant to glucose homeostasis 

showed that selected carnosinase inhibitors are effective agents to increase skeletal 

muscle glucose uptake, and hence are likely to be effective at combating insulin 

resistance. Carnosine mimetics are also effective in this capacity, and have the added 

benefit of being likely to increase insulin secretion from pancreatic β-cells as well. 

Together they are promising drug candidates that could potentially offer novel 

therapeutic strategies for the prevention and treatment of type 2 diabetes.  

 

Figure 5.21; A schematic representation of how carnosinase inhibitors, carnosine 

mimetics, or β-alanine could be utilised as potential treatment strategies for oxidative-

stress driven diseases like type 2 diabetes.  
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5.4  Future Work 
 

The increasing and improved data on protein 3D structures has contributed to the 

success of structure-based approaches in the development of several experimental 

and theoretical techniques for the rational design of protein ligands, and thus through 

the application of combinatorial chemistry provides a potentially rapid identification 

of potential new drug candidates. With this advancement, the Turner laboratory, in 

conjunction with the Garner Synthetic Chemistry research group at NTU, are engaged 

in the ongoing search, design, and evaluation of anti-diabetic agents based on 

carnosine-carnosinase interactions. The use of chromatographic techniques like high-

performance liquid chromatography (HPLC) can also provide understanding as to the 

likely effectiveness of carnosinase inhibitors by quantifying the concentration of 

carnosine within different cell types, as well as in the presence or absence of 

metabolic stress or therapeutic treatments.  

Evaluation of additional molecules identified to elicit improved insulin secretion and 

glucose uptake in cells exposed to glucolipotoxicity will also be further evaluated in 

vivo using high-fat-fed mice – through an ongoing collaboration that has been 

established between the Turner and Caton group in King’s College London. Ultimately, 

it is planned that NTU and the Philippines’ MSU-IIT will maintain collaborative work 

by moving forward the initial data obtained in this project to future clinical trials and 

food supplementation studies aimed to be initiated upon the conclusion of this PhD 

study – a research initiative that will be most likely supported by the Philippine 

government research agency which has contributed much to the success of this entire 

PhD project. By so doing it is hoped that we may be able to develop a new class of 

therapeutic agents with ever increasing efficacy and effectiveness. 
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Conclusions 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

223 
 

6.1 General Discussion 

 

Diabetes mellitus is an endocrinological and/or metabolic disorder characterised by 

persistently high blood glucose levels stemming from inadequate or defective 

pancreatic insulin secretion, and impaired insulin-directed transport or utilisation of 

glucose by target cells, such as skeletal muscles. The diagnosis of diabetes is based 

upon an oral glucose tolerance test and/or measurement of glycated haemoglobin 

(World Health Organisation, 2011, Section 2). The clinical diagnosis of diabetes is 

typically prompted by several associated symptoms, which may include excessive 

thirst and frequent urination, intermittent infections, unexplained reduction of weight, 

glycosuria, and in severe instances, drowsiness and coma (Alberti and Zimmet, 1998).  

There are three major types of diabetes and each of these has different causes and 

risk factors. Among these types, type 2 diabetes mellitus (T2DM) is the most common 

and accounts for about 95% of diabetes cases (Dardano et al., 2014). The prevalence 

of T2DM has been growing at an alarming rate worldwide; it is predicted that in 2045 

there will be over 1 billion people living with or at high risk of diabetes. Around 80% 

of these patients will be in low-middle income countries and most of them will be 45-

64 years old (Wild et al, 2004, International Diabetes Federation, 2017; Harvard T.H. 

School of Public Health, 2016).  

Genetic and environmental factors, poor diet (low in fibre, high in fat, salt, sugar) 

and a sedentary lifestyle are some of the factors believed to promote the development 

of T2DM (Fletcher et al., 2002; Stumvol et al., 2005). Also, while there is a clear 

association between the ageing of the population and greater prevalence of T2DM, 

the increasing incidence of obesity has resulted in a dramatic rise of T2DM among 

children, teenagers and adolescents, which also increases their risk of health 

complications in later life (Pulgaron et al., 2014; Silverstein et al, 2001). T2DM often 
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develops over a period of years, and therefore symptoms can also develop gradually. 

Diabetic individuals are more susceptible to several forms of acute and chronic 

complications, which could lead to serious damage to both small and large blood 

vessels. These complications may include some of the macrovascular diseases like 

hypertension, hyperlipidemia, heart attacks, coronary artery disease, strokes, 

cerebral vascular disease, and peripheral vascular disease, and microvascular 

diseases namely, retinopathy, nephropathy, and neuropathy (Forbes, 2013, Wu et al, 

2014 and Evans, 2015).  

A 2016 study indicated that the global cost of diabetes has reached 825 billion US 

dollars per year (Diabetes UK, 2019; Harvard School of Public Health, 2017). The 

alarming prevalence of T2DM led to the development of several therapeutic 

approaches for hyperglycaemia, these are in the form of either oral or injectable 

drugs, mainly to reduce and maintain patients’ blood glucose concentrations and 

prevent patients from developing further complications. However, due to the complex 

nature of the pathophysiology of T2DM and the varied responses of patients towards 

these drugs, over time they lose their effectiveness. Therefore, it is vital to constantly 

identify and develop novel targets and treatment strategies to combat this 

challenging health problem.  

The aim of this PhD thesis was to investigate the biological action and therapeutic 

potential of carnosine and related molecules for T2DM treatment through targeted 

action to improve insulin resistance in skeletal muscles. In this study, a 

glucolipotoxicity cellular model of T2DM was employed. In order to induce insulin 

resistance, skeletal muscle cells (C2C12 and primary mouse muscle cells) were 

cultured in DMEM, or ready to use skeletal muscle growth media (human skeletal 

muscle cell-line) supplemented to a final concentration of either 28mM glucose 

(animal muscle cells) or 17mM glucose (human muscle cells), along with 200μM 
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palmitic acid and 200μM oleic acid for 5 days to mimic diabetic extracellular 

glucolipotoxic conditions or GLT (high glucose and high fatty acids). The choice of 

these fatty acids and their concentrations were selected as they are the most 

abundant fatty acids in the diet and in the serum.  The Turner Group initially published 

data demonstrating that glucolipotoxicity decreased insulin secretion (Marshall et al, 

2007) and subsequent studies also showed that GLT can initiate pancreatic beta-cell 

death (Baganati et al., 2016). This PhD work has contributed to the existing 

international state of the art on this topic by confirming that glucolipotoxic conditions 

did negatively affect insulin secretion and glucose uptake (Cripps et al., 2017). 

The work presented in Chapter 3 showed that carnosine supplementation in C2C12, 

human skeletal myoblasts, and primary muscle cells could protect these cells against 

the oxidative stress driven by reactive species that are generated following chronic 

exposure to high glucose and free fatty acid concentrations, and thereby determined 

that  this could enhance insulin-dependent glucose uptake. Oxidative stress (OS) has 

been considered as the common denominator for the pathogenesis of several 

diseases including cancer, diabetes, obesity and neurodegenerative disorders (Son, 

2012; Devi, 2015; Reuter, 2010). In particular, OS is associated with the pathogenesis 

of the two most relevant hallmarks of T2DM, namely insulin resistance and β-cell 

dysfunction (Pitocco et al., 2013; Poitout et al., 2008). Oxidative stress ensues when 

the oxidant production in the living system exceeds that of the cell’s antioxidant 

machinery, in other words, a disease results when there is a imbalance in the redox 

system of the cell (Henriksen et al., 2011).  

Oxidants are either generated intentionally, or as by-products which can be in the 

form of reactive oxygen species and reactive nitrogen species. My experiments 

showed that GLT-treated cells have increased 3-nitrotyrosine (3-NT), a molecule that 

has been detected in many human pathologies. Importantly, 3-NT is a useful marker 
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for the presence of a strong oxidant or reactive nitrogen species called peroxynitrite, 

which is also a product from the reaction of common reactive species nitric oxide and 

superoxide (Ischiropoulos and Al-Mehdi, 1995; Ischiropoulos et al., 1992). Another 

reactive nitrogen-derived species that has been shown to be modulated by GLT is the 

inducible nitrogen oxide synthase (iNOS), which is an instigator of inflammation, 

insulin resistance, and is increased in the skeletal muscles of type 2 diabetic patients 

(Ceriello et al., 2002; Tannous et al., 1995; Torres et al, 2004).  

In addition to the RNS and ROS above, another reactive species that could easily 

react with the nucleophilic sites of proteins such as Lys, His, and Cys, and DNA 

thereby causing cellular dysfunction are the reactive carbonyl species (RCS). Proteins 

are the target of RCS, and through a series of oxidative and nonoxidative reactions 

yield the irreversible advanced glycation end products (AGEs), which are shown to 

be amplified and accumulated in diabetes because of hyperglycaemia (Uchida, 2003). 

Proteins are also modified by lipids through lipid peroxidation and produce advanced 

lipid peroxidation end products (ALEs). Possible mechanisms by which AGEs and ALEs 

modify proteins, and thereby impair their functions, involve the induction of signal 

transduction (e.g. receptor activation inducing inflammatory cascades) , which would 

potentially lead to cellular damage and the mediation of the functional disorganisation 

of their target molecules as a consequence of conformational changes or catalytic 

distortion (Coughlan et al., 2009; Bierhaus et al., 2009). One particular reactive 

aldehyde quantified in this work is 4-hydroxynonenal or 4-HNE.  

4-HNE is the most intensively investigated and quantitatively most important product 

of lipid peroxidation due to its high cytotoxic role inhibiting gene expression (Ayala et 

al., 2014). It enhances the development and progression of several pathological 

states, including diabetes, and GLT-treated cells had increased levels of these species. 

This was consistent with the negative impact of glucolipotoxicity on insulin secretion. 
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Thus, given the implication of oxidative stress in the onset of type 2 diabetes, it is 

possible that antioxidant strategies would be effective in the prevention or treatment 

of diabetes. These are molecules or compounds that could scavenge, quench or even 

neutralise excess reactive species, thereby preventing cellular damage and preserving 

function.  

In order to address this, the Turner group have shown that a natural dipeptide, 

carnosine, has the ability to offset the negative effects that reactive species have 

upon beta cells and skeletal muscle cells, and by so doing increased insulin secretion 

and glucose uptake in cells exposed to glucolipotoxic conditions. The antioxidant and 

scavenging action of carnosine towards radicals or reactive species can be attributed 

in many ways. For example,  it is a good buffer not only for protons but also for 

regulating the level of mixed-valence metal ions (copper, cobalt, manganese, iron, 

and cadmium) that take an active part in many metabolic processes activating free-

radical processes. Another one is its anti-glycating or anti-crosslinking properties that 

could block oxidative damage of biomolecules (Prokopieva et al., 2015).  In the case 

of RNS and ROS, carnosine could form a charge-transfer complex with free-radicals 

converting them to a stable or unreactive molecule (Boldyrev et al., 2013), and with 

RCS like 4-HNE, carnosine could trap this cytotoxic aldehyde through a sacrificial 

mechanism in lieu of the target substrate by acting like the preferable site of addition 

by HNE (Liu, Xu and Sayre, 2003). 

Data shown in Chapter 4 detailed proteins that both interacted and formed adducts 

with 4-HNE and 3-NT in skeletal muscle and pancreatic islet cells under metabolic 

stress due to exposure to glucolipotoxic conditions for 5-days. In order to generate 

these data, cell lysates were immunoprecipitated against 4-HNE and 3-NT primary 

antibodies prior to analysis using high-resolution mass spectrometry (SCIEX 

TripleTOF 6600). The proteins identified were classified according to molecular 
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function, biological process, and protein class using the program PANTHER (Protein 

Analysis Through Evolutionary Relationship). Initial data obtained using the C2C12 

cell-line revealed that the majority of 4-HNE and 3-NT associated or adducted 

proteins are linked to metabolic processes and involved in catalytic activity. 

Importantly, about 65% and 95% of this adduction, respectively, were prevented by 

carnosine supplementation. Interestingly in this list, there are particularly 

mitochondrial enzymes (e.g., pyruvate dehydrogenase [acetyl-transferase] kinase 

isozyme 3, pyruvate dehydrogenase protein X component, isoleucine-tRNA ligase, 

ATP citrate synthase, and citrate synthase) that are promising therapeutic targets for 

patients with metabolic syndrome and are also important in glucose utilisation and in 

maintaining a steady supply of ATP in the cell (Lee, 2014; Zhou et al., 2019). Also, 

included in this list are mitochondrial processing peptidase, apoptosis-inducing factor, 

glycogen synthase and magnesium transport proteins that have been implicated in 

mitochondrial dysfunction and mitochondrial-related diseases (Gakh, Cavadini and 

Isaya, 2002; Padrao et al., 2012; Bano and Prehn, 2018). Mutations or dysregulated 

activities of some of these enzymes are also believed to have a causal link in severe 

muscle mitochondrial dysfunction, leading to atrophy and neurodegeneration.  

This glucolipotoxicity-related mitochondrial impairment in skeletal muscle could 

potentially compromise protein quality control and normal skeletal muscle function in 

the mitochondria. The data obtained in this study (Chapter 4) indicated that there 

are also catalytic enzymes adducted by both 4-HNE and 3-NT relevant in regulating 

insulin sensitivity and action, and related signalling pathways. In  a human skeletal 

muscle cell-line, the extent of adduction by 4-HNE and 3-NT was also determined and 

data showed that the majority of proteins that are adducted by both 3-NT and 4-HNE 

are also involved in binding, catalytic and structural molecule activities. In terms of 

biological process, the classification system in PANTHER showed that just like what 



 

229 
 

has been shown from C2C12, these proteins generally participate in metabolic and 

cellular processes.  

In terms of 4-HNE adduction, more than 80% of adducted mitochondrial proteins 

(e.g., ATP synthase, aconitate hydratase, ATP-citrate synthase, electron transfer 

flavoprotein subunit, malate dehydrogenase, pyruvate carboxylase, stress-70 protein, 

succinate dehydrogenase [ubiquinone] flavoprotein subunit, and superoxide 

dismutase with catalytic activities) are prevented by carnosine. The data for this 

adduction experiment also indicated that other proteins thought to be adducted by 

4-HNE and 3-NT in GLT-treated human skeletal muscle cells are guanine-nucleotide 

binding proteins, creatine kinase B type, Ras-related proteins, protein disulphide 

isomerase, and sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA). 

Impaired function of SERCA in muscle affects its quality and quantity and triggers ER 

stress, which could also promote the progression of insulin resistance in obesity and 

diabetes (Kang et al., 2016; Qaisar et al., 2018) 

Dr Katie Hannah (of the Turner group) conducted similar IP-MS analysis on INS-1 

pancreatic β-cells, which have been cultured in either control or GLT media ± 

carnosine to obtain a preliminary profile of proteins adducted by the reactive carbonyl 

(4-HNE) and nitrogen (3-NT) species adduction. This has been furthered by working 

with mouse primary islets (isolated at Kings College London by Dr Paul Caton, working 

with Home Office and local Ethics Committee approval) similarly treated for 5 days 

with either RPMI control or GLT ± 10mM carnosine. Interestingly, based on this list, 

more than 80% of protein-HNE and protein-3NT adduction in GLT conditions was also 

prevented by the addition of 10mM carnosine.  Data for this showed that proteins 

with binding molecular functions involved in metabolic biological process are the ones 

that are mostly adducted by both 4-HNE and 3-NT. The mitochondrial enzymes, such 

as acetyl-CoA acetyltransferase, dihydrolipoyl dehydrogenase, pyruvate carboxylase, 
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and stress-70 protein, are important in normal mitochondrial activity in pancreatic β-

cell metabolism and energy production, and when these are modified by adduction 

for instance studies showed that this could possibly lead to a progressive failure to 

potentiate insulin secretion (Kowluru et al., 2006; Gorrepati et al., 2018; Kim et al., 

2006; Mziaut et al., 2016). Also, in the list are proteins that are important in islet 

signalling, and are effectors in controlling, tethering and docking of secretory vesicles 

to help regulate insulin secretion.  

The concept of protein adduction mediated by carbonylation and nitrosylation may 

not be confined to the glucose homeostasis-relevant tissues described above. This 

PhD work also included the identification of proteins adducted by 3-NT and 4-HNE in 

human serum samples from obese, type 2 diabetic, and gestational diabetic 

individuals. Results for this are not only helpful to construct a detailed road map of 

how obesity and diabetes contribute to the pathology of HNE and 3-NT adduction, 

but they might also be important in aiding early disease detection (possibly through 

blood test), allowing the implementation of therapeutic interventions earlier in the 

disease process to prevent the manifestation of damaging and irreversible diabetes 

complications. Analysis of the serum proteins adducted by both 3-NT and 4-HNE 

identified molecules involved in adaptive immunity. This implies that oxidative stress-

driven adductions of important serum molecules may contribute to impairment of the 

immune defences of obese and diabetic individuals, which could influence the 

progression of diabetic complications.   

Interestingly, extracellular matrix proteins (ECM) in these serum samples were also 

associated with both 4-HNE and 3-NT, and, as such, they might modify ECM protein 

structures and change cellular interactions. Law et al., 2012 showed that persistent 

elevation of blood glucose and oxidative stress could induce ECM alterations that are 
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indicative of several diabetic complications, including renal dysfunction and cardiac 

dysfunction.  

Another group of proteins called apolipoproteins are observed in this work to be most 

likely adducted by 3-NT in all serum samples used in this study. The oxidative stress 

and disrupted antioxidant defences that occur in diabetes is associated with perturbed 

lipid metabolism. This high index of oxidation modifies plasma apolipoproteins, as 

reflected by the observed increase in oxidised forms of these proteins, and, as a 

consequence, cardiovascular complications can arise due to the poorly mediated 

efflux of cholesterol in the circulation (Azizkhanian et al., 2016).  

Several types of histones were also associated with 4-HNE in the serum of obese and 

gestational diabetes individuals, suggesting that they might be modified by this 

reactive alkenal. The potential modification of histones by 4-HNE might serve as a 

common denominator between obesity and diabetes, but could also suggest that the 

offspring of mothers with gestational diabetes are predisposed to obesity and type 2 

diabetes, as this inherited genetic variant has been shown in observational studies 

(Michalczyk et al., 2016; Kasinska et al., 2016).  

Immunoprecipitation and mass spectrometric analysis of skeletal muscles and 

pancreatic islet cells (Chapter 4) showed that some mitochondrial proteins are 

adducted with both 4-HNE and 3-NT, and this finding might explain how oxidative 

stress-driven mitochondrial dysfunction is linked with glucolipotoxicity-induced insulin 

resistance and β-cell dysfunction, thereby contributing to the pathogenesis of type 2 

diabetes. Further evidence of this is provided by the profile of mitochondrial stress 

shown Seahorse XFe24 data, where key parameters of mitochondrial function, such 

as basal, maximal and ATP-linked respiration, were evaluated. The effect of 

glucolipotoxicity treatment on the skeletal muscle cells, as reflected by a decreased 
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oxygen consumption rate (OCR) compared to control, could be indicative of 

mitochondrial dysfunction. The change shown in GLT-treated cells is suggestive of 

compromised mitochondrial respiration rate, which could result in a diminished ability 

for effective and normal substrate metabolism. The addition of 10mM carnosine 

improved mitochondrial respiration, particularly in mouse C2C12 and human skeletal 

muscle cell lines, which might be attributed to its scavenging or quenching effect 

towards reactive species and/or its by-products (4-HNE and 3-NT), thereby 

preventing key biomolecules like proteins and enzymes from damaging adducts 

formation.  

Carnosine synthase (ATPGD1) is an enzyme that is required for the endogenous 

synthesis of carnosine and is mainly expressed in skeletal muscles and in the brain 

(Miyaji et al., 2012; Drozak, et al., 2010). The data presented in Chapter 5 indicated 

that although ATPGD1 was detected in C2C12 mouse muscle cells, there was no 

significant difference in its expression between healthy control and GLT-treated cells.  

β-alanine supplementation increases the  carnosine content of skeletal muscles, with 

β-alanine being the limitation to the synthesis of carnosine (Harris et al., 2006). After 

β-alanine has been transported into skeletal muscles by the proton-assisted amino 

acid transporter 1 (PAT1) and taurine transporter (TauT) it combines with L-histidine 

to form carnosine through the enzyme carnosine synthase. Work conducted in this 

thesis indicated that 5-day supplementation of β-alanine in GLT exposed C2C12 

muscle cells resulted in a significant decrease in GLT-mediated intracellular reactive 

species, and enhancement of glucose-uptake, as compared to healthy control. 

Carnosine synthase was also detected in INS-1 pancreatic β-cells (study conducted 

by colleagues Cripps and Hanna). Interestingly, a 5-day treatment of β-alanine also 

lowered the GLT-generated reactive species in these cells and importantly also 

prevented GLT-impaired insulin secretion.  
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The promising potential of carnosine as a therapeutic agent for oxidative-based 

diseases is limited in humans due to the presence of serum (CNDP1) and tissue 

carnosinase (CNDP2), which catalyse the hydrolysis of carnosine to its amino acid 

components (Vistoli et al., 2012; Teufel et al., 2003). In this work, the level of enzyme 

CNDP2 was evaluated and data showed that, under GLT conditions, CNDP2 is 

significantly upregulated relative to control. Upregulation of carnosinase, and thus its 

activity, has been reported to be associated with increased risk of diabetic 

nephropathy and altered kidney function in type 2 diabetes (Ahluwalia et al., 2011). 

Chiu et al. (2014) has shown that CNDP2 expression is significantly elevated in both 

male and female hypertensive mice. Consequently, the carnosine-carnosinase 

equilibrium may be disturbed across a broad spectrum of cardiometabolomic 

diseases.  

The design and synthesis of carnosine-related molecules was an integral component 

to this project. Importantly, these molecules have been designed to be stable against 

hydrolysis by carnosinases. The data obtained from the evaluation of these molecules 

showed some promising candidates for use as potential anti-diabetic agents. From 

these, three (M8, M28 and CE3) were initially chosen to be evaluated in vivo for anti-

diabetes action in a high fed mouse model of diabetes. The carnosine-related 

molecules used in this work were relatively small in size with an aromatic ring and 

amino functional group in their structures. Both of these functional groups are 

relevant in the sequestering action towards reactive species and deleterious 

aldehydes like 4-HNE.  The 5-day treatment with these selected carnosine-related 

molecules in both mouse and human myotubes under glucolipotoxic conditions 

significantly lowered the increased formation of intracellular reactive species, and 

consequently improved glucose uptake.  



 

234 
 

Some of these molecules were also tested in GLT-treated pancreatic β-cells for 5-

days (work conducted by a colleague M. Cripps). However, those that did not affect 

cell viability showed varied responses or were ineffective at enhancing the insulin 

secretion. One reason for the different responses observed between skeletal muscles 

and pancreatic β-cells might be due to the level of endogenous carnosine, as that is 

known to be  high in the former (Suzuki et al., 2002) while so far, there is no published 

data or known value to indicate this in the latter. There was, however, a very low 

concentration of carnosine detected in INS-1 β-cells based on preliminary data 

obtained by a colleague in Turner group, which might explain why the carnosinase 

inhibitors were ineffective in β-cells. This observation is also consistent with what was 

reported by Robertson and Hammon (2007), indicating that the pancreas is one of 

the least protected tissues in terms of inherent antioxidant defence system, and 

thereby making the β-cells more susceptible to damage under oxidative stress. It is 

then tempting to speculate that carnosine mimetics such as carnosine esters might 

be better for the pancreas, although this warrants further work to prove. 

   

6.2 Conclusions 

 

This PhD thesis has demonstrated that when skeletal muscle cells were cultured in 

glucolipotoxic (GLT) media, levels of cellular reactive oxygen and nitrogen species 

significantly increased. GLT mediated the increased generation of two biomarkers 

that are implicated in several pathologies, including diabetes, namely  4-HNE and 3-

NT. The increase of these cellular reactive species in GLT-exposed muscle cells was 

negatively correlated with their ability to uptake glucose. The negative impact of 

glucolipotoxicity was not only demonstrated with insulin resistance, but also had a 

negative impact on insulin secretion and elevated quantities of the aforementioned 
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reactive species (shown by a related project in the Turner group). Carnosine 

supplementation was able to scavenge or quench those glucolipotoxicity-mediated 

free radicals and reactive species, thereby resulting in an improved insulin sensitivity 

through increased glucose uptake in skeletal muscle cells. Similarly, carnosine also 

inhibited the GLT-driven generation of reactive species in β-cells and increased insulin 

secretion. Therefore, the scavenging action and the use of carnosine as a blocking 

agent against those deleterious species could offer potential treatment and 

therapeutic perspectives for T2DM patients with dual beneficial actions on glucose 

homeostasis. 

The immunoprecipitation-mass spectrometry tandem experiment allowed us to 

identify possible proteins that are associated or adducted by 4-HNE and 3-NT species 

in muscle cells and pancreatic islets under GLT conditions. Using the PANTHER 

classification system, it was shown that the majority of these proteins are involved in 

catalytic and binding activities that relate to metabolic processes, some of which are 

relevant to the biosynthesis and action of insulin. Treatment of cells under GLT-

induced metabolic stress with 10mM carnosine prevented the majority of adduct 

formation, indicating that the protective action of carnosine in this context was 

effective, thereby preserving mitochondrial and other cellular functions. In addition 

to skeletal muscle and pancreatic islets, this work also identified different classes of 

proteins that are mostly adducted by 4-HNE and 3-NT from obese, type 2 diabetes 

and gestational diabetes serum samples. Analysis showed that some of these are 

critical for immune responses, such as the immunoglobulins, whilts others include 

apolipoproteins and histones. This approach not only allowed us to evaluate the 

extent of carnosine’s protective action towards protein damage by 4-HNE and 3-NT 

adduction, but also identified a class of proteins that could serve as a tool for early 
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detection. They may also be potential targets for therapeutic intervention in the 

treatment or prevention of diabetes and its complications. 

Supplementation of the rate-limiting constituent of carnosine synthesis, β-alanine, to 

GLT-treated myotubes enhanced glucose uptake and reduced glucolipotoxic-driven 

generation of reactive species, suggesting that this amino acid could potentially offer 

protective actions, most probably by sustaining or increasing the intracellular pool of 

carnosine. Likewise, screening of carnosinase inhibitors or carnosine mimetics, which 

were designed through computational and bespoke organic synthetic chemistry 

approaches, showed that some are able to reduce glucolipotoxic-mediated formation 

of cellular reactive species and consequently improved glucose uptake. Therefore, 

carnosine and synthetic carnosine-derived molecules are potentially promising drug 

candidates that could offer novel therapeutic strategies for the prevention and 

treatment of type 2 diabetes.  

Finally, this work proposed that future studies in this area should be extended to 

focus upon carnosine actions on the immune system. The fact that several immune 

system proteins adducted in the serum of obese and diabetic individuals were seen 

in this work may, at least in part, help to explain why individuals from these groups 

are more susceptible to infection than the general population. Given that data 

presented in here indicated that the majority of adduction resulting from glucolipotixic 

metabolic stress can be prevented by carnosine supplementation of cells and tissues 

as far as this PhD work is concerned, it is tempting to speculate that carnosine might 

prove equally as effective at preserving serum immune function as it did in preserving 

stimulus-secretion coupling in cells that mediate insulin secretion and glucose uptake. 

This is especially pertinent at the present time, given that immunocompromised 

individuals are particularly susceptible to Covid-19, and that ~30% of all UK hospital 

deaths attributed to Covid-19 in April 2020 were reported to be from individuals with 
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diabetes and obesity.  Carnosine could, therefore, potentially improve the prognosis 

of patients with diabetes and obesity not only by enhancing stimulus-secretion 

coupling in skeletal muscle and pancreatic β-cells and thereby reducing HbA1c levels, 

but also by preserving immune function.  
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Chapter 7 

Limitations of the Study and 

Future Directions 
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This study utilised only one method in assessing cell viability. As the Calcein-AM may 

not always be an ideal or sole measure of cell viability, other test and method such 

as apoptosis assay and flow cytometry would provide stronger evidence to indicate 

that the GLT response was not an artefact of either GLT-driven cell death or cell 

proliferation. In addition, the present study did not include a positive or negative 

control to check the working condition of the reagent employed in the assay.  

The list of proteins identified and indicated in Chapter 4 is based on the use of one 

immunoaffinity enrichment-based technique (magnetic bead immunoprecipitation), 

and so there could possibly GLT adduction – carnosine protection events that might 

be outside the level of detection by this method. Other enrichment strategies or 

enrichment kits for the mass spectrometry-based identification of specifically targeted 

class of proteins would be more advantageous complementary tools for greater 

protein identification. Protein classification was solely based on PANTHER software 

which might have some limitations too. In addition, patients’ ethnicity as indicated in 

Table 4.1 were not specified since additional information are unavailable and thus 

were only presented as Asian, White and Black.  

The current study, in conjunction with that of others in the Turner group, has 

identified that carnosine is effective in scavenging reactive species in different 

glucolipotoxicity-based cellular models of type 2 diabetes, thereby preventing protein 

damage through deleterious adduction by oxidative biomarkers (4-HNE and 3-NT) 

and preserving mitochondrial function of cells under metabolic stress. As such, future 

studies are likely to include similar adduction experiments and obtain mitochondrial 

stress test profiles in these cellular models for the leading candidate carnosine-related 

molecule(s) in order to characterise their biological actions. 
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Initial adduction data obtained from this work, and future analysis using additional 

and/or other clinical samples for adipose tissue and human primary adipocytes 

combined, might also provide information related to potential anti-inflammatory 

actions of carnosine directed against adipocytokine release (both types of samples 

were initially processed but due to technical and facility-related problems, this needed 

to be resampled and re-processed). If so, this could help us to better understand how 

obesity and diabetes contribute to the pathology of HNE and 3-NT adduction. In turn, 

this could provide novel therapeutic intervention strategies for type 2 diabetes and 

its complications.   

 

The choice of carnosine-derived molecules presented in Chapter 5 was initially based 

on computational data and criteria (geometrical). Thereafter, the selection of 

molecules which have been further studied both in vitro and in vivo were then based 

on their bioactivities (ROS scavenging or glucose uptake assays). Dose-dependence 

experiments in all carnosine-derived molecules were not conducted at the beginning 

and would only be examined after selecting top 3 best compounds for future work in 

vivo. Such experiment (dose-response) would have been necessary to define the 

most effective compound. Particularly, assays where carnosine-derived molecules are 

involved, vehicle control in healthy condition was only included during the initial ROS 

scavenging assay (e.g. Figure 5.12) and in one glucose uptake assay (Figure 5.14), 

and there was no inclusion of a vehicle control in GLT condition. It was only assumed 

that the solvent used for the preparation of molecules had no effect on other similar 

assays both in control and GLT based on prior cell viability experiments. 

Based on the preliminary scavenging data and glucose uptake experiments of more 

than 10 carnosine-related molecules that have been evaluated in the present study, 

three candidate molecules (designated as M8, M28 and CE3) have emerged from this 
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work as potential therapeutic agents. These were initially chosen to be evaluated for 

anti-diabetic effects in vivo using high fat fed mice as a representative animal model 

of diabetes that mirrors the dyslipidaemia and hyperglycaemia typically seen in obese 

humans with T2DM. The graph below indicates a representative glucose tolerance 

test conducted after 8-weeks of high fat diet. This part of work has been conducted 

by our collaborator Dr. Paul Caton of King’s College London, and all animal procedures 

are approved by the King’s College London Ethics Committee and are carried out in 

accordance with the UK Home Office Animals (Scientific Procedures) Act 1986.  

 

 

 

 

 

 

 

 

Figure 7.1. Glucose tolerance test data from 8-weeks high fat fed mice. 

(Conducted by Dr. Paul Caton, King’s College London) 

 

Preliminary data with the analogues is encouraging, but full analysis is still ongoing 

at the time of this submission. If this in vivo study is as successful as early data 

indicates, then this will form the basis for future pharmacokinetic studies wherein 

absorption, distribution, metabolism, excretion and toxicity data will be generated in 

multiple animal species. It should also then be possible to extend these analyses to 

predict likely human dose tolerance as a prelude to conducting a small-scale clinical 
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trial. If successful, that could lead to wider roll-out for the benefit of a significant 

number of those with type 2 diabetes.   

 
In parallel to this work, the Turner Laboratory and the Garner Synthetic Chemistry 

research groups of NTU continue to design and evaluate further potential anti-

diabetic candidates based upon carnosine-carnosinase interactions and/or other 

diabetes-relevant biological targets. This structure-based screening for more 

molecules will also utilise chemical libraries other than Maybridge. In addition, 

carnosine-related molecules investigated in this PhD work and some others that can 

be developed by Turner and Garner group in the future can also be further 

investigated using concentrations other than what had been used in this work. 

 

Sedentary lifestyle is a factor known to contribute to the development of insulin 

resistance and T2DM. Regular physical exercise, by contrast, is believed to help in 

the management and delayed onset of this disease (Lumb, 2014), and therefore 

considered a possible solution to improve metabolic health of patients with T2DM. 

Skeletal muscle glucose uptake depends upon both GLUT4 translocation and 

expression, a process that can also be regulated by exercise. This contraction-

mediated pathway is an insulin-independent mechanism of glucose disposal into 

skeletal muscles. Therefore, one possible future direction would be to identify the 

molecular mechanisms regulating the effect of exercise in improving glucose uptake 

in skeletal muscles, and to determine the impact this might have upon mitochondrial 

function, and its influence on metabolic genes.  

It would also be interesting to determine the effects there might be when exercise is 

combined with carnosine supplementation. Similarly, does exercise alone have any 

influence on the concentration of endogenous carnosine in muscles, or on its release 

to the circulation? In vitro studies for this purpose could involve the application of 



 

243 
 

stimuli to the cells such as electrical stimulation and mechanical loading to mimic 

acute or chronic exercise, followed by functional analysis including glucose-uptake 

measurement or by quantitative analysis of carnosine by HPLC or mass spectrometry.  

 

In summary, the findings from this PhD show that carnosine enhances insulin 

secretion from the pancreas and increases glucose uptake into skeletal muscle. This 

has major implications for diabetes prevention and for the treatment of diabetes and 

associated complications. Future work the author would like to embark upon is to 

commence translation of this basic research into strategies that could have significant 

benefit to people (particularly in the Philippines) who are living with diabetes. 

Preliminary clinical trials on carnosine have begun to support the mechanistic studies. 

The benefit of carnosine appears greatest in obese individuals, again supporting our 

previously published work that showed carnosine could prevent damage to skeletal 

muscle and insulin producing cells exposed to high sugar and fat. The pilot carnosine 

studies to date have, however, been conducted in Western Europe, Australia, or North 

America, where individuals have a different genetic make-up to individuals in the 

Philippines. By contrast, there have been no such studies conducted in countries in 

the Western Pacific region and, as such, the extent to which carnosine might benefit 

individuals in this region is currently unknown. If the above strategies and plans are 

successful, planned collaborative work with NTU (Turner Laboratory) will allow future 

work to embed development of these novel therapeutic tools (in the Philippines) and 

thereby offer a significant future benefit to individuals at high risk of T2DM.     
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Carnosine is an effective scavenger of glucolipotoxic reactive species in β-

cells. INS-1 cells were cultured in RPMI-1640 media or GLT media for 5 days 

before incubation with media supplemented ± 10mM carnosine for 1h. 20μM 

DCFDA was loaded in KREBS buffer for 1h and reactive species detected via 

fluorescence with excitation and emission of 495nm and 530nm. Reactive 

species are expressed as a percentage change in comparison to control from 

4 independent experiments ± SEM. **p<0.005 (Obtained from Michael 

Cripps). 
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Appendix 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reversal of GLT-inhibited insulin secretion by carnosine in INS-1 cells. 

INS-1 cells were cultured in control or GLT media for 5 days. 2 days prior to 

stimulation, cells were incubated with or without experimental conditioned 

media supplemented with 10mM carnosine. Insulin secretion was determined 

by ELISA following incubation ± secretagogue cocktail for 2h [(-) blue, (+) 

red] with data normalised to protein content. Data are expressed as mean ± 

SEM from 5 independent experiments. ***p<0.0005 (conducted by Michael 

Cripps) 


