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Abstract—Objectives: Identification of cow lameness is im-
portant to farmers to improve and manage cattle health and
welfare. No validated tools exist for automatic lameness detection.
In this research, we aim to early detect the cow lameness by
identifying the instantaneous fundamental gait harmonics from
low frequency (16Hz) acceleration signals recorded using leg-
worn sensors. Methods: A triaxial accelerometer has been worn
on each cow leg. Synchrosqueezed wavelet transform (SSWT) has
been applied to acceleration signals to generate the initial time-
frequency spectrum related to the gait. This spectrum is given
as an input to a designed deep neural network including time-
frequency based long short-term memory (LSTM) to estimate
instantaneous frequencies at each time point. An inverse SSWT
(ISSWT) is then used to recover the gait harmonic and to estimate
an enhanced spectrum. Results: Validation of instantaneous
frequencies has been provided for each cow leg (combined signals
from 23 cows) and the time-series cross validator across the
three folds are provided. The average of mean squared errors in
frequencies across 3 folds for each leg is obtained as 0.036, 0.033,
0.044 and 0.042 for left-front, right-front, right-back and left-
back legs, respectively. Conclusion: Estimation of instantaneous
gait frequencies is proved useful for identification of cow gait
phases, lameness detection, accurate estimation of gait speed,
coherency in movement among the legs and identification of non-
gait episodes. Moreover, the proposed method can be used as
a new frequency ridge estimation method exploiting SSWT for
many other applications.

Index Terms—Accelerometer, cow lameness, deep neural net-
work, gait analysis, LSTM, SSWT.

I. INTRODUCTION

LAMENESS management, prevention and treatment are
crucial for improving animal welfare which contribute

to both health and economic implications on dairy farms.
Traditionally, visual inspection of cows has been used for loco-
motion scoring by farmers. There is evidence to suggest that
using visual inspection, farmers underestimate the lameness
level. Early detection of lameness is thus useful for improving
the cow health and welfare and economic benefit to dairy
industry.

Accelerometers have been used for human and animal gait
analysis [1][2]. It has been documented that the use of cow-
worn sensors such as accelerometers is becoming an emerging
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technology in diary industry meanwhile the accelerometry-
based gait measurements are still rather underdeveloped [3].
Accelerometers and gyroscopes have been used for sheep
behaviour and lameness classification [4][5].

Leg-mounted accelerometers are used in [6] to detect lame-
ness in cows. Collar, leg, and ear-worn tri-axial accelerometer
are used for prediction of lameness in sheep using machine
learning with high accuracies of above 85% for sheep lameness
detection [5]. Monitored activities included walking, standing,
grazing and lying [5]. An accuracy of 91.9% has been reported
for detection of lameness in diary cattle using acceleration
signals [7]. Unilateral hind limb lameness and foot patholo-
gies have been investigated in [8] using two high-frequency
accelerometers (400 Hz) enabling extraction of gait cycle,
stance phase and swing phase. The relationship between the
gait characteristics and locomotion score has been investigated
in diary cows with hoof lesion [9].

For measurement of the changes in cow gait or behavior,
the use of sensor technologies has been explored in [10]
and [11]. Similar to sheep, accelereometers have also been
used for classification of behaviours (lying, standing, and
feeding) in cows [12]. Leg-mounted accelerometer produced a
high accuracy for classification of lying while neck-mounted
accelerometer led into a high accuracy for classification of
feeding [13]. Neck-mounted sensors measuring both position
and accelerations have been used in [14] to quantify the
feeding behavior changes associated with the lameness in
dairy cattle. Kinematic, kinetic and indirect methods have been
reviewed in [15].

Several variables such as walking duration, lying duration,
standing duration, total number of steps, and step frequency,
have been derived for activity-based lameness analysis and
found useful for early identification of lameness. However,
studies on lameness detection in cattle using accelerometers
have reported varying accuracies from 66%-91%. Moreover,
most of the studies reporting higher accuracies have used very
high frequency accelerometers (400Hz) which are not very
practical for multiple recordings in commercial environment
[12].

Better understanding of behavioral gait analysis requires
accurate and reliable estimation of gait variables and their
correlation. In this research, we propose a robust technique to
estimate the main gait harmonic by reconstructing the time-
frequency spectrum of the low-frequency (16Hz) acceleration
signals exploiting a deep learning technique. This harmonic
can be used to estimate gait frequency, duration of gait and
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non-gait periods, and the lameness base on correlation analysis
of various legs and energy analysis from the reconstructed
time-frequency spectrum. The remainder of the paper is as
follows. In Section II, the basic methods used here for
spectrum reconstruction are first explained. These include
synchrosqueezed wavelet transform (SSWT), inverse SSWT
(ISSWT) and long short-term memory (LSTM) networks.
Then, the overall deep network based structure is explained in
Section III. LSTM-based deep network has been used for two
different purposes. It is first combined with SSWT to extract
the main gait harmonic. LSTM-based deep neural network
can be considered as an automatic approach to extract the
time-frequency ridge. It can also be used for enhancement
of the time-frequency spectrum of the acceleration signals.
Then, it is used to detect the lameness based on the cow
gait behaviour history. In Section IV, the results of applying
the proposed model to triaxial acceleration data are provided.
Finally, Section V concludes the paper.

II. BASIC METHODS

A. Synchrosqueezed Wavelet Transform

Time-frequency transform is recommended for nonstation-
ary signal analysis and feature extraction. SSWT has been
often used for auditory signal analysis where a time-frequency
reassignment technique is applied for improving the time-
frequency spectral presentation of the signal [16]. This ap-
proach has been previously used in sleep analysis applications
[18][19]. SSWT can be outlined using three major steps which
are explained as follows.

Step 1: Let’s start from continuous wavelet transform
(CWT) of signal s defined as:

Ws(a, b) =

∫ ∞
−∞

s(t)a−1/2ψ(
t− b
a

)dt (1)

where ψ presents the selected mother wavelet (ψ is complex
conjugate form), t presents the time index, a is the wavelet
scale, and b is the position parameter. One necessary con-
dition on the selected mother wavelet is to assure that it
is concentrated on the positive side of frequency axis; i.e.,
ψ̂(ε) = 0 for ε < 0. To simplify understanding of the SSWT,
consider defining a purely harmonic input signal presented as
s(t) = A cos(ωt). By exploiting Plancherel’s theorem [16],
the CWT can be obtained as:

Ws(a, b) =

∫ ∞
−∞

s(t)a−1/2ψ(
t− b
a

)dt

=
1

2π

∫ ∞
−∞

ŝ(ε)a1/2ψ̂(aε)eibεdε

=
A

4π

∫ ∞
0

[δ(ε− ω) + δ(ε+ ω)]a1/2ψ̂(aε)eibεdε

=
A

4π
a1/2ψ̂(aω)eibω

(2)

In the cases where ψ̂(ε) is concentrated around ε = ω0, it is
straightforward to observe that Ws(a, b) will be concentrated
around a = ω0/ω which is spreading out over a region around

the horizontal line a = ω0/ω. When ω = ω0/a is similar but
not necessarily exactly identical to the actual instantaneous
frequency (IF) of the input signal, some undesired non-
zero energy for Ws(a, b) will appear. One main objective
of synchrosqueezing is to move these excessive energy away
from ω. The reassigning technique has been proposed to tackle
this issue.It aims to reassign the frequency locations as close
as possible to the actual IF.

Step 2: The candidate IFs (ω(a, b)) are first obtained by
applying the following equation, for which Ws(a, b) 6= 0:

ω(a, b) = −i(Ws(a, b))
−1 ∂

∂b
Ws(a, b) (3)

It is easy to demonstrate that for a purely harmonic signal
s(t) = A cos(ωt), ω(a, b) are equal to signal frequency ω
[16]. Estimation of candidate IFs is useful to recover actual
frequencies that is explained in the next step.

Step 3: Apply synchrosqueezing to CWT by using (b, a)⇒
(b, ω(a, b)) and performing a frequency re-allocation tech-
nique, where the time-scale domain is mapped into the time-
frequency domain. Presenting ωl as the nearest frequency to
the original ω(a, b), each value of Ws(a, b) is transformed into
Ts(ωl, b):

Ts(ωl, b) = (∆ω)
−1 ∑

ak:|ω(ak,b)−ωl|≤∆ω
2

Ws(ak, b)a
−3/2
k (∆a)k

(4)
where ∆ω is the width of frequency bins [ωl − 1

2∆ω, ωl +
1
2∆ω], ∆ω = ωl − ωl−1, (∆a)k = ak − ak−1 and Ts(ωl, b)
represents the synchrosqueezed transform at the centres ωl
of successive frequency bins. To derive the SSWT transform,
first, the reassigned frequencies are calculated for all the
scales at each fixed time point b using equation (3). Then,
for each desired IF of ωl, Ts(ωl, b) is calculated by summing
all Ws(a, b) taking into account the distance between the
reassigned frequency ω(a, b) and ωl. This distance must be
within a specified frequency bin width (∆ω/2).

Once SSWT has been applied to a desired signal (s(t)),
we use Ts(ωl, b) (equation (4)), instead of Ws(a, b) (equation
(1)). One interesting aspect of the synchronosqueezing stage is
that the original signal can be analytically reconstructed [16].
Overall, Ts(ωl, b) has sharper concentrations around the actual
IFs of the original signal. Therefore, the resulting spectrum
from SSWT is expected to be more sparse than Ws(a, b)
obtained by CWT.

B. Inverse Synchrosqueezed Wavelet Transform

ISSWT can be used for signal reconstruction using a sim-
ilar concept of inverting the CWT and integrating over the
frequencies that are expected to be associated with a desired
component. Consider a fully discretized version of equation
(4) which is represented as T̃s(wl, tm). ISSWT receives two
inputs; one is SSWT spectrum and the other one is a set of
fixed frequency ranges specified by the user, or frequencies
obtained by applying a standard least-squares ridge extraction
method [17]. Let’s denote these frequencies as l ∈ L(tm),
where m = 0, ..., n − 1, tm = t0 + m∆t, aj = 2j/nv∆t,
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j = 1, ..., Lnv , Lnv as log-scale samples of scale a and nv
is a user-defined parameter affecting thee number of scales.
Then, the kth mode signal can be reconstructed from:

sk(tm) = 2R−1ψ <(
∑

l∈L(tm)

T̃s(wl, tm)) (5)

where Rψ presents a normalisation constant defined in [20] and
< refers to real part of a complex number. By using both a set
of fixed frequencies (e.g. [0.01-3]Hz) and those by the least-
squares ridge extraction method, it is possible to reconstruct
the time-domain signal (kth mode).

Fig. 1. Architecture of the proposed neural network to estimate the instanta-
neous frequencies. The TF spectrum given by SSWT method is used where
FLSTM scan frequencies first, then, the time is scanned using TLSTM.

Fig. 2. The structure of the last FLSTM cell output which is used as the input
into the first cell of time-frequency LSTM (TF-LSTM) layer for temporal
analysis over time.

C. Long short-term memory
LSTM, as a recurrent neural network (RNN) has been pro-

posed by Hochreiter et al. [21]. LSTM differs from ordinary
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Fig. 3. Diagram of the proposed model to reconstruct the spectrum containing
the main gait harmonic.

Fig. 4. (a) Input SSWT from combination of two axes (anterior-posterior
and superior-inferior). (b) Maximum-energy time-frequency ridge with no
penalty for changing frequency. (c) Maximum-energy time-frequency ridge
with penalty value equal to 1. (d) Reference frequency obtained by applying
a threshold of 0.1 to (b) to find zero frequencies to be combined with (c).

neural network in that the nodes within the same hidden layer
are connected. This means that the input to the hidden layer
at each time point not only includes the output from the
previous layer, but also the output of the same hidden layer
at the previous time point [22]. LSTM development aimed
to solve the disappearance or explosion of gradient descent
problem [23] in basic RNNs. This problem is well modelled
by inclusion of the following four components:
• Memory units: store the temporal state of the network
• Input gates: modulate the input activations into the cells
• Output gates: modulate the output activations of the cells
• Forget gates: adaptively reset the cell’s memory

LSTM has been used in many applications such as automatic
speech recognition [24][25][26] and voice conversion [27].
Processing of the data sequence is a desired application of
LSTM exploiting the data history. Therefore, LSTM is a
suitable candidate to process acceleration signals as time-
series. LSTM is designed based on the following equations:

ij = σ(Wi.[xj , hj−1] + bi)

fj = σ(Wf .[xj , hj−1] + bf )

oj = σ(Wo.[xj , hj−1] + b0)

ĉj = tanh(Wc.[xj , hj−1] + bc)

cj = fj � cj−1 + ij � ĉj
hj = oj � tanh(cj)

(6)

where xj is the input vector to the LSTM unit, ij , fj , ĉj
and oj denote the input gate’s activation vector, forget gate’s
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Fig. 5. (a) Noisy input spectrum of the acceleration signal from anterior-posterior axis. (b) Reconstructed spectrum using the proposed DNN and SSWT. (c)
Estimated instantaneous frequencies. (d) Actual and estimated instantaneous frequencies with inclusion of lameness degree in the same plot.
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Fig. 6. Loss and accuracy during 50 epochs for four cow legs LB, LF, RB
and RF.

activation vector, memory cell input activation vector and
output gate’s activation vector, respectively, at step j, cj is the
cell state vector, hj is the output vector of the LSTM unit and

� is an element-wise dot product. W presents different weight
matrices, i.e. Wf is the weight matrix from the forgetting
gate, Wi is the weight matrix of the input gate, and Wo is
the weight matrix of the output gate. bf , bi, bo and bc are
bias weights to be learned during the training process and
σ is the sigmoid function. In this research, time-based LTSM
(TLSTM) and frequency-based LSTM (FLSTM) cells are used
for incorporation of both time and frequency information of
the acceleration signals which are explained in the following
section.

III. PROPOSED FRAMEWORK

One main objective of the proposed method is to provide
a robust technique for estimation of cow gait instantaneous
frequencies. Here, we have designed a deep learning frame-
work which uses SSWT spectrum to train the model and out-
put instantaneous frequencies. The time-frequency spectrum
derived by the SSWT and reference frequencies (obtained
by applying various ridge estimation methods with manually
set frequencies and thresholds) have been used to train the
deep networks. The main motivation behind developing the
first deep neural network is to enhance the initial SSWT
spectrum (calculated from a noisy/raw signal) for extraction
of the desired gait harmonic. The proposed deep network is
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TABLE I
STRUCTURE OF THE DNN FOR ESTIMATION OF INSTANTANEOUS
FREQUENCIES, LAYER TYPES, OUTPUT SHAPE AND NUMBER OF

PARAMETERS. NONE REFERS TO THE FIRST DIMENSION THAT WILL BE
REPLACED AS BATCH SIZE DURING FITTING THE MODEL.

TF deep networks
Layer (type) Output Shape Parameter no.
Input Layer (None, 8, 31, 20) 0
Time Distributed (None, 8, 256) 28368
LSTM (None, 8, 256) 525312
LSTM (None, 8, 256) 525312
LSTM (None, 256) 525312
Dense (None, 52) 13364

expected to automatically perform frequency extraction and
spectrum enhancement. It can be considered as an objective
and automatic frequency ridge estimation technique which can
be adjusted for many other applications without requiring to
manually setting up parameters of ridge estimation method for
each windowed segment of input signal.

Based on the developed network, the frequencies are
scanned in the first layer after formation of a 2D time-
frequency presentation. Then, the temporal data of several 2D
segments (forming 3D data) are used as input to scan the
temporal variation of frequencies along the time axis.

In Fig. 1, the architecture of the proposed deep network is
shown. From this figure, FLSTM is supposed to represent the
segmented frequencies along the frequency axis. The FLSTM
also contains frequencies at the corresponding segmented time
window. We have used TimeDistributed layer along with
FLSTM to manage the time in the FLSTM for many-to-
many mappings. In the subsequent TLSTM layers (3 TLSTM
layers), the data is scanned over the time domain to explore
the temporal variations. The stacked segments of the above
2D presentations form the 3D data to be traced by TLSTM.
Finally, a dense layer (with softmax activation layer) has been
used to obtain the output instantaneous frequencies. The input
and output data are explained in the following sub-sections.

1) Input data to the deep network: To train the deep
network presented in Fig. 1, 4D data should be constructed
from the initial spectrum of the acceleration data. The 4D data
is formatted as (time-batch, time-chunk-len, frequency-
batch, frequency-chunk-len). The time-batch is specified
during run-time. For FLSTM, the frequency axis is divided
into overlapping fixed width length (frequency-chunk-len)
segments. In our experiment, we have used 50% overlap be-
tween the frequency segments. The time-chunk-len presents
the time window of the 3D data used as input into TLSTM.
In the following section, all the parameters of the DNN are
provided for detailed illustration. In addition, the relationship
between the last cell in the FLSTM layer with its output as
the input to the TLSTM layer is depicted in Fig. 2.

2) Output of deep network: Output of the DNN has a
dimension equal to the number of frequency bins. To convert
the output of the DNN to instantaneous frequency, at each time
point, maximum of the DNN outputs of all bins is calculated.
Then, the corresponding frequency of the selected bin (with
maximum value of DNN output) is considered as the estimated
instantaneous frequency.

Once the instantaneous frequencies are estimated, they
are used as the input to the ISSWT along with the initial
SSWT spectrum for reconstruction of the main harmonic of
the acceleration signals recorded from leg-worn sensors. By
applying SSWT to the reconstructed signal, a clear spectrum
is expected (see Fig. 3). This spectrum can be used for many
purposes such as accurate estimation of gait speed, correlation
analysis of various legs, detection of lameness and cow gait
phases. These are discussed in the next section supported by
some examples.

IV. RESULTS

In this section, the results of applying the proposed frame-
work to the acceleration signals recorded from four legs;
left-front (LF), left-back (LB), right-front (RF), right-back
(RB), are presented. Cows were from one farm where they
were housed indoors and walked on a concrete floor for up-
to 5 minutes in a straight alleyway. Ethics Approval (num-
ber 2137171016) was obtained from School of Veterinary
Medicine and Science, University of Nottingham Ethics com-
mittee.

A custom-made wearable device based on the Intel R©
Quark

TM
SE microcontroller C1000 integrating Bosch

BMI160 (Bosch-sensortec.com, 2016), flash memory and a
low-power wide-area radio module was used for data acquisi-
tion. BMI160 included a low-power inertial measurement unit
(IMU), featuring a 16 bit triaxial accelerometer and a 16 bit
gyroscope. The sampling frequency of the signals is 16Hz.
Lameness is classified as locomotion score 0/1 as non lame and
2 and above as lame [28]. For each leg, acceleration signals
of all cows are concatenated. This allows temporal analysis of
individual cow legs across subjects. SSWT has been applied to
time windowed segments (5000 samples) of the acceleration
signals with their mean removed. It is worth noting that the
mean removal of accelerations is the only pre-processing done
before apply the SSWT to minimise the baseline shift and
potential effect of drift. To segment the final time-frequency
matrix given by the SSWT, the frequency axis was initially
limited to 3.2Hz as the maximum walking-cycle frequency to
be applied to the deep network.

At each time point, a window of length 20 frequency bins
(frequency-chunk-length) is formed. The frequency win-
dows are moved for every 10 frequency bins (50% overlap).
Considering the initial 310 frequency bins, 31 segments are
formed each with a length of 20. Therefore, frequency-batch
is 31. In this case, at each time point a 2D matrix of 31× 20
is constructed. The time-chunk-length has been set to 8.
Therefore, the 3D tensor of 8×31×20 are formed to be used
as input to the deep network. When forming these 3D tensors
over time, a 4D data input is formed considering the time-
batch. To capture the frequency dynamics of cow gait, all the
acceleration signals of one cow leg (LB/LF/RB/RF), from 23
cows, are combined and fed to the deep network. The number
of samples for each leg is 204999 where 25624 samples is the
total number of total time batches.

A summary of the DNN including the layer type, output
shape and number of parameters is shown in TABLE I. In
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TABLE II
VALIDATION OF DEVELOPED LSTM-BASED FRAMEWORK TO ESTIMATE

THE INSTANTANEOUS FREQUENCIES USING 3-FOLD (k IS THE FOLD
NUMBER) TIME-SERIES CROSS-VALIDATOR.

Leg metrics k=1 k=2 k=3

LB
train# 5095 10188 15281
test# 5093 5093 5093
MSE 0.0369 0.0503 0.0403

LF
train# 3587 7171 10755
test# 3584 3584 3584
MSE 0.0271 0.0201 0.0608

RB
train# 3898 7794 11690
test# 3896 3896 3896
MSE 0.0460 0.0503 0.0348

RF
train# 5731 11462 17193
test# 5731 5731 5731
MSE 0.0285 0.0314 0.0392

this table, the final number of frequency bins is set to 52. A
frequency resolution of 0.06 has been considered for output
frequencies in the training stage considering the reference
frequencies where maximum frequency is set to 3.12Hz.

A. Cow Gait Spectral Analysis

1) Deriving reference frequency: We have applied a time-
frequency ridge estimation method to the initial spectrum
derived by SSWT. First, a function called tfridge integrated
in Matlab toolkit (The MathWork Inc.) has been used.
This function gives both the time-dependent frequency ridge
(called fridge) and the row-index vector associated with the
maximum-energy ridge (called iridge). We need an automatic
approach to estimate the maximum-energy time-frequency
ridges while taking discontinuance in the spectrum (zero
frequencies) into account. This is the basis of the first proposed
deep neural network. We have manually set a threshold of
0.1 to assign a frequency of zero to the positions of cow
stops. This threshold has been set manually with reference
to the neighboring frequencies. An example, illustrating the
estimated time-frequency ridges and the reference extraction
using SSWT spectrum is shown in Fig. 4. In this figure, the
SSWT spectrum of the signal derived from two accelerometer
axes (the square root of multiplication of anterior-posterior
and superior-inferior to get a more enhanced spectrum for
reference extraction) of LB which is shown in Fig. 4(a). The
estimated maximum-energy time-frequency with penalty value
equal to zero is shown in Fig. 4(b). This penalty value has been
used in the tfridge of Matlab toolkit and controls the changes
in frequency (the higher value for penalty value; the lower
changes in adjacent frequencies). By increasing the penalty
value to 1, smoother frequencies can be obtained as shown in
Fig. 4(c). In order to obtain the final reference frequencies,
smoothed frequencies must be combined with those episodes
of zero frequencies. These episodes are obtained from Fig.
4(b) (where the penalty value is zero) by applying a threshold
of 0.1. Then, the final reference is shown in Fig. 4(d).

Here, we consider that in places where the transition be-
tween hoof contacts is rather slow, frequency of zero has
not been used and this is considered as a low speed gait
cycle rather than making it as no-motion. These are related

to very short stops and can make training of the DNN very
difficult. In addition, we avoid very short duration of no-
walking. Moreover, to apply tfridge, the fixed frequencies are
set manually for each leg.

An example illustrating the operation of DNN for instanta-
neous frequency estimation is shown in Fig. 5. The LB signal
is segmented from 20000 to 40000 samples. The initial time-
frequency spectrum directly estimated by the SSWT is shown
in Fig. 5(a). From this figure, there are two (main) very close
harmonics and some noise/artefact related components around
them. There is also discontinuance in the spectrum which is
related to the case that the cow has stopped walking. It is
a difficult task to identify the main gait harmonic from such
spectrum while identifying places where the cow stops.
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Fig. 7. Pairwise comparison of simultaneous frequencies of LB (lame leg)
versus other legs (normal gait).
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Fig. 8. Pairwise comparison of simultaneous frequencies of RF (lame leg)
versus other legs (normal gait).

The output of DNN includes the estimated instantaneous
frequencies as shown in Fig. 3. These frequencies have been
used to produce a new time-frequency spectrum which is more
enhanced and only contains the main cow gait harmonic. To
do this, the estimated instantaneous frequencies by the DNN
are used to extract the row-index vectors (to re-produce new
iridge). The row-index vectors are used by the ISSWT along
with the initial spectrum to reconstruct the gait harmonic and
subsequently the enhanced spectrum which is shown in Fig.
5(b) for the selected segment. In Fig. 5(c), the instantaneous
frequencies (output of DNN) are overlaid with the recon-
structed spectrum (Fig. 5(b)). These instantaneous frequencies
versus the reference frequencies are shown in Fig. 5(d). In this
figure, the lameness degree has been also provided. The main
gait harmonic can be used for detailed cow data analysis such
as speed of cow gait and identification of non-gait episodes
as well as measurement of duration of non-gait period. All of
these information are useful in detection of any abnormal gait
or lameness.
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As noted earlier, the acceleration signals from the same leg
of all cows (23 cows) are combined together and used to train
the DNN. The accuracies and losses for each epoch are shown
in Fig. 6. A total of 50 epochs and batch size of 48 are used.
For the model settings, we used mean squared error (MSE) for
loss, adam as optimizer and accuracy as the metric to evaluate
the DNN performance. The final training accuracies at 50th

epoch are 92% , 88% , 93% and 91% for LB, RB, LF and
RF, respectively.
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Fig. 9. Histogram of energies for lame and normal gaits for pairwise
comparison of three legs (LB, RF, and RB).

2) Time-series cross-validator: For validation of the pro-
posed framework, since a time-series is constructed exploiting
temporal dependencies between frequencies, data shuffling
seemed inappropriate. Therefore, we have used a specific
time-series cross-validator using a python package called tscv.
Based on the provided split function of this package, the
time series data samples are split such that the test indices
become higher as the folds increase. Also, unlike the standard
cross-validation methods, successive training sets are supersets
of those that come before them. Considering k-fold cross
validation, in the kth split, the first k folds are returned as
the training set while the (k+1)th fold is considered as the test
set. The results of 3-fold cross validation is shown in Table II.
For each leg, and in each fold the number of training and test
sample size are shown. The MSE of instantaneous frequencies
are calculated for each leg and each fold.

3) Correlation analysis and lameness detection: Simulta-
neous correlation analysis of cow gait can reveal important
information regarding lameness. This is useful to identify for
which leg the force is more exerted and how symmetrical the
cow gait cycles are. Here, a case study for presenting simple
correlation among pairwise frequencies of various legs has
been presented for lameness monitoring application.

A data segment has been selected where only one leg
(LB) is lame and the other legs (i.e. RF, LF and RB) are
normal. In addition, another segment (similar size) has been
selected where all the legs are normal. Pairwise frequencies
for LB versus RF, LF and RB are shown in Fig. 7. From
this figure for normal legs, the gait frequencies are towards
lower frequencies (or lower speed) than when the leg is lame.
A similar comparison of correlation between various legs is
provided in Fig. 8 where RF is lame and other legs are non-

TABLE III
STRUCTURE OF THE DNN FOR LAMENESS DETECTION, LAYER TYPES,
OUTPUT SHAPE AND NUMBER OF PARAMETERS. NONE REFERS TO THE

FIRST DIMENSION THAT WILL BE REPLACED AS BATCH SIZE DURING
FITTING THE MODEL.

Deep networks for lameness detection
Layer (type) Output Shape Parameter no.
Input Layer (None, 1, 16) 0
LSTM (None, 1, 200) 173600
LSTM (None, 1, 200) 320800
LSTM (None, 200) 320800
Dense (None, 100) 20100
Dense (None, 1) 101

lame. From this figure, it can be seen that there are more
non-gait phases for LB versus RF. Although this observation
might not be generalised, it can demonstrate the load timings
of lame/non-lame legs.

4) Energy analysis: Associated energy of the gait harmonic
in spectral domain has shown to be an important feature in
lameness classification too. To demonstrate the effectiveness
of energy analysis of the main gait harmonic, a simple test
was carried out. First, the gait signals of all the legs were
segmented where all legs were normal was selected. Then,
other data segments with similar size to thee normal gaits were
selected while at least one of these legs was lame (LB, RB,
RF). The maximum energy of the gait harmonic considering a
total of four frequency bins around the estimated frequencies
are calculated. The histogram of difference between these
energies for each two legs are shown in Fig. 9. It can be
clearly seen from this figure that, for the normal segments,
the energies are centered around zero while for the case of
lameness, the energies are skewed towards one lame leg.
Detailed analysis of energies reveals new insight into early
lameness detection.

5) Gait phases: Accurate detection of gait phases is crucial
to understand the cow gait behaviour, which is possible
using the reconstructed signal in time-domain (Fig. 3) and
by applying peak detection techniques. This is particularly
important while using a low-frequency accelerometer such that
used in the presented research and can be further explored in
future studies.

B. Lameness detection

For detection of lameness, first, we have directly used
the output of developed TF-LSTM presenting instantaneous
frequencies (for each leg) as input to another DNN. Then,
based on the analysis examples explored in Section IV-A,
more features such as spectral energies around instantaneous
frequencies were used. We also segmented the data where the
simultaneous sensor readings from all legs were available.
Therefore, a reduced number of samples were used in the
second DNN. Features include: a stream of instantaneous
frequencies 4 legs (4D), the associated maximum and mean
energy in the spectral domain (8D) and the absolute value
of squared root of multiplication of two accelerometer axes
for each leg (4D) were used. Therefore, the new input data
dimension was 16. As seen from Table III, we used three
LSTM layers and two Dense layers with sigmoid activation
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TABLE IV
RECEIVER OPERATING CHARACTERISTICS USING TEST DATASET.

LSTM output
metric Original avg

(1sec.)
avg
(5sec.)

avg
(15sec.)

avg
(30sec.)

avg
(60sec.)

Fold#2
Sensitivity 0.7883 0.8611 0.9080 0.9505 0.9975 0.9897
Specificity 0.6572 0.8490 0.9396 0.9992 0.9889 0.9835
F1-score 0.7448 0.8586 0.9238 0.9743 0.9934 0.9870

Fold#3
Sensitivity 0.6347 0.6307 0.6476 0.6502 0.8041 0.9014
Specificity 0.7271 0.9481 0.9990 1.0000 1.0000 1.0000
F1-score 0.6613 0.7486 0.7856 0.7880 0.8914 0.9481
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Fig. 10. (a) Ground truth lameness. (b) Original LSTM output using DNN
model in Table III. Moving average filter applied to LSTM output using (c)
1 second, (d) 5 seconds, (e) 15 seconds, (f) 30 seconds, and (g) 60 seconds
windows.

function. The loss was set to binary crossentropy, optimizer
as adam and metrics as accuracy. The input data was reformed
as (74831, 1, 16).

The ground truth lameness is shown in Fig. 10(a) for the
selected data segments with all recordings available. In this
figure, the interval with amplitude 1 refers to a segment of
lame cow walking and the 0 amplitude interval refers to
normal walking segment (the non-lame and lame segments can
come respectively from a healthy cow and a cow suffering
from lameness). In Fig. 10(b), the LSTM output has been
shown when streaming the entire data into the LSTM. The
final loss and accuracy were obtained as 0.0856 and 0.9673,
respectively. However, for binary classification of lameness, it
was found that by applying a moving average filter, lameness
patterns became more evident. Next, we used time-series
cross-validator using 3-fold cross validation. The first fold did

not use a balanced data size for training the non-lame and lame
conditions. Therefore, we focused on the test results using the
second and third folds.

In the second fold, 37417 samples were used for training
while the next 18707 were used for testing. These 18707
samples are shown in a dashed box in Fig. 10(a) which are
separated from the data and shown in Fig. 11(b) The noisy
output shown in Fig. 11(c) did not provide a good lameness
detection. However, after applying a moving average filter,
using 1 second (16 samples), 5 seconds (80 sample), 15
seconds (240 samples), 30 samples (480 samples) and 60
seconds (960 samples), lameness detection converged into the
ground truth (Fig. 11(d-h)). Similar analysis was performed for
the third fold (See Fig. 12), where 56124 samples were used
for training while the next 18707 were used for testing. The
calculated sensitivity, specificity and F1-score are reported in
TABLE IV for fold #2 and #3. It is evident that by increasing
the windowed size in averaging, these calculated parameters
were approached to 1.

V. CONCLUSION

In this research, a robust frequency ridge estimation using
deep learning and SSWT has been proposed. Moreover, an
effective approach for automatic detection of cow lameness
using accelerometer data has been investigated. The proposed
DNN framework has been used to reconstruct the spectrum of
the noisy low frequency acceleration signals (16Hz) including
the main gait harmonic. The reconstructed spectrum can be
used for identification of various gait parameters useful for
early detection of lameness in cows. These parameters include,
gait speed, duration of non-gait episodes, correlation of various
legs from both frequency and energy analysis of the spectrum
and gait phases. Detailed gait analysis can be also performed
by detection of gait phases using the reconstructed signal
in time domain from the fundamental gait harmonic. This
allows for better identification of peak amplitudes related to
hoof contacts and therefore estimating gait symmetry level of
various combination of legs.

Designed DNN framework exploits LSTM networks to
estimate instantaneous frequencies. The designed platform
can be used in future systems exploiting suitable machine
learning techniques to detect lameness in a large cohort of
diary cows. Meanwhile, identification of the fundamental gait
harmonic from only exploring the spectrum given by the
SSWT is challenging as there are extra, closely related and
noisy harmonics which need to be moved away from the
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Fig. 11. (a) Ground truth scores for lameness; 0 is for non-lame and 1 is for
lame. (b) the zoomed highlighted segment using dashed-rectangle in graph
(a) used for fold #2. (c) Original LSTM output using DNN model in Table
III. Moving average filter applied to LSTM output using (d) 1 second, (e) 5
seconds, (f) 15 seconds, (g) 30 seconds, (h) 60 second windows.

spectrum. Using the power of deep learning and by training the
system using the reference frequencies, it is possible to provide
a reliable estimation of instantaneous frequencies. Such system
is preferred rather that the use of manual parametric setting
in the frequency ridge estimation method applied to SSWT
spectrum. Such parameter settings need to be adjusted for
many signal segments protecting variations in the frequencies.

The proposed method in this paper can be generalized to
solve many problems which require robust frequency estima-
tion. This includes heart rate analysis from wearable sensors
including optical sensors and accelerometers.

Automatic methods using machine learning have been ap-
plied in gait analysis of cows/cattle to detect lameness with
varying success. Our approach for the first time identified
novel insights into features useful for lameness detection
showing high accuracies. Our system uses low-power con-
sumption sensors with low sampling frequency which makes
continuous monitoring more practical. Higher sampling fre-
quencies are beneficial for detailed temporal signal analysis.
However, our method exploits both temporal and spectral
domain for reliable gait harmonic extraction. Such system is
expected to help farmers identify the cows/cattle with lameness
to improve their welfare, health and associated costs. However,
having only two categories of lame and no-lame may not be
sufficiently helpful. Historical observation of cow/diary cattle
gait patterns can help prevention and early identification of
lameness. One more advantage of our method is that, since

Fig. 12. (a) Ground truth scores for lameness; 0 is for non-lame and 1 is for
lame. (b) the zoomed highlighted segment using dashed-rectangle in graph
(a) used for fold #3. (c) Original LSTM output using DNN model in Table
III. Moving average filter applied to LSTM output using (d) 1 second, (e) 5
seconds, (f) 15 seconds, (g) 30 seconds, (h) 60 second windows.

it exploits an LSTM network, it is able to learn long-term
dependencies on cow gait behavior which can be very useful
for early identification of lameness. In addition, such data can
help assignment of severity of lameness which is an important
aspect of cow/diary cattle gait analysis which has not been well
explored yet.
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