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Abstract 

 Despite the enormous increase in the number of Arabic posts on social 

networks, the sentiment analysis research into extracting opinions from these posts 

lags behind that for the English language. This is largely attributed to the challenges 

in processing the morphologically complex Arabic natural language and the scarcity 

of Arabic NLP tools and resources. This complex task is further exacerbated when 

analysing dialectal Arabic that do not abide by the formal grammatical structure. Based 

on the semantic modelling of the target domain’s knowledge and multi-factor lexicon-

based sentiment analysis, the intent of this research is to use a hybrid approach, 

integrating linguistic and machine learning methods for sentiment analysis 

classification of dialectal Arabic. First, a dataset of dialectal Arabic tweets was 

collected focusing on the unemployment domain, which is annotated manually. The 

tweets cover different dialectal Arabic in Saudi Arabia for which a comprehensive 

Arabic sentiment lexicon was constructed. This approach to sentiment analysis also 

integrated a novel light stemming mechanism towards improved Saudi dialectal 

Arabic stemming. Subsequently, a novel multi-factor lexicon-based sentiment analysis 

algorithm was developed for domain-specific social media posts written in dialectal 

Arabic. The algorithm considers several factors (emoji, intensifiers, negations, 

supplications) to improve the accuracy of the classification.s. Applying this model to 

a central problem of sentiment analysis in dialectical Arabic, these operational 

techniques were deployed in order to assess analytical performance across social 

media channels which are vulnerable to semantic and colloquial variations. Finally, 

this study presented a new hybrid approach to sentiment analysis where domain 

knowledge is utilised in two methods to combine computational linguistics and 

machine learning; the first method integrates the problem domain semantic 

knowledgebase in the machine learning training features set, while the second uses the 

outcome of the lexicon-based sentiment classification in the training of the machine 

learning methods.  By integrating these techniques into a single, hybridised solution, 

a greater degree of accuracy and consistency was achieved than applying each 

approach independently, confirming a pragmatic solution to sentiment classification 

in dialectical Arabic text. 
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Chapter 1 

1    Introduction  

1.1 Research Background 

 Over the years, surveys have been utilised as the primary method for collecting 

and exploring opinions about a given topic.  A selected sample of participants and a 

formatted questionnaire constitute the standard means for gauging opinion (Rubin and 

Babbie, 2016). However, the survey method has evolved with the growing popularity 

of social media and Internet access, such as Twitter and Facebook. Social media, in 

recent years, has played an important role in the interactions of users. A novel approach 

to learning about and analysing people’s opinions has emerged through social media, 

particularly people’s opinion regarding popular topics or products. This approach is 

called Sentiment Analysis (SA), which is what will be explored in this thesis. The aim 

is to identify opinions and emotions from a given text, with an emphasis on social 

media, in particular the Twitter medium. Twitter messages vary, ranging from politics 

to retail reviews. The aim of sentiment analysis is to clarify emotions represented in 

these messages with a polarity range of negative, neutral and positive. 

 Over the last decade, sentiment analysis has become a highly popular topic, as 

well as a speculative industry. LexisNexis1, for instance, explores consumer attitudes 

and brand awareness through news outlets. Further examples within this industry 

include IBM SPSS2, which forwards quantitative sentiment analysis summaries of data 

in an attempt to assist businesses with understanding consumer preferences. Major 

                                                 
1 http://www.lexisnexis.com/risk/data-analytics.aspx 

2 http://www-01.ibm.com/software/analytics/spss/ 



2 

 

social media news outlets, such as Politico3  and The Washington Post 4 , forward 

statistics and opinions regarding popular political figures. Global economic 

powerhouses, such as Wall Street, use sentiment analysis in their algorithmic analysis 

of trade. For example, they use OpFine5, which allows for cutting-edge analysis of 

financial developments (Olson, 2012.). 

 Early research of sentiment analysis concentrated on product reviews, such as 

comments on Amazon.com6, conducting sentiment analysis in a subjective manner. 

This approach allows for labelled data ratings; star ratings were utilised as indicative 

of quantitative expressions of opinion. After that, annotated datasets for general types 

of writing (blogs, news articles, and web pages) were created and became a popular 

method. For example, the popularity of Twitter ensured rich data tracking and 

sentiment analysis for a variety of applications, such as monitoring earthquakes 

(Sakaki et al., 2010). Although instrumental in the diversity of their applications, most 

sentiment analysis studies have concentrated on a singular source like customer 

reviews, and then researchers began adapting approaches to a variety of texts, such as 

social media content. Recently it has been usefully applied in a variety of political 

areas particularly in elections and voters’ sentiments. However, analysis of political 

and social issues is a challenge, and there are questions as to whether sentiment 

analysis approaches, which are primarily designed for mining product evaluations, are 

suitable for analysis of complicated emotions like social media content. 

 Although initially lagging behind research surrounding other languages, in 

recent years, Arabic sentiment analysis has gained increasing popularity, covering 

trending problems in different domains Some of the earliest research on this topic was 

conducted by Ahmad et al. (2007) and Almas and Ahmad (2007). They apply 

sentiment analysis to a collection of news articles about finance, using a grammatical 

approach. Subsequently, publications referencing Arabic sentiment analysis increased 

year after year, as shown in Figure 1.1. 

 

                                                 
3 http://news.cnet.com/8301-13772 3-57358111-52/politico-to-mine-facebook-forinsight-into-voter-sentiments/ 
4 http://www.washingtonpost.com/politics/mention-machine 
5 http://www.opfine.com/ 

6 https://www.amazon.com/ 
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Figure 0.1: The number of papers published on Arabic sentiment analysis per year (Created for Study) 

1.2 Research Motivation  

 Sentiment analysis has increasingly gained interest in both academia and 

industry. There has been clear progress in models of sentiment analysis, and the topic 

is an active area of research in spite of the breadth and diversity of global lanugages.  

As a critical justification for research in this field, Arabic remains the fifth most widely 

used language globally and the fourth most frequently used on the internet (Statista, 

2020) Over the past five years there has been an increasing number of people using 

Twitter in Arabic countries to freely express their opinions about various issues that 

impact their daily lives (e.g. Arab Spring, Elections). This presents public authorities 

with the opportunity to deploy sentiment analysis on Twitter feeds to examine the 

impact of policies on the citizens.  

 Arabic sentiment analysis is an active research area, but it is still open to many 

obstacles. The Arabic language is morphologically entrenched and ambiguous; in 

other words, it has many irregular forms, complex morph syntactic alignment rules 

and a high degree of dialectal variants with limited writing rules. In comparison to 

English, there is a limited amount of freely available tools and resources for Arabic 

sentiment analysis, particularly for dialectical Arabic variations that do not abide by 

the syntactic rules of the Modern Standard Arabic (MSA).  
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 The overall objective of this research effort was to develop a sentiment analysis 

system that can capture the public sentiments expressed on social media about social 

issues, particularly those that are expressed in non-standard dialectical Arabic; 

achieving this goal would benefit various groups, including citizens, policy makers, 

journalists and civic organizations. 

1.3 Research Aim and Main Questions 

 The aim of this study was to propose a technique for achieving high sentiment 

analysis accuracy for tweets written in non-standard dialectical Arabic extracted from 

social media (Twitter). The problem domain selected for this research was the trending 

topic of unemployment in Saudi Arabia. Lexicon-based analysis and machine learning 

are the most common approaches for opinion classification; therefore, the hypothesis 

of this research has predicted that combining the two approaches in a hybrid sentiment 

approach that takes into consideration multiple factors impacting the precision of the 

lexicon analysis, such as dialectical Arabic NLP and considering negation, would 

result in a sentiment analysis system capable of opinion classification in dialectical 

Arabic text with high degree of accuracy.  Achieving this research aim required 

addressing the following two primary research questions: 

 

Primary Question 1: Can a hybrid approach combining domain semantic 

knowledgebase features with machine learning improve the performance of sentiment 

analysis? 

Primary Question 2: Can a hybrid approach combining multi-factor lexicon-based 

sentiment analysis scores with machine learning improve the performance of 

sentiment analysis? 

 In addition to answering these two central research questions, the following 6 

sub-questions were answered over the course of this study. 

RQ1. What are the main challenges in utilising the methods and tools designed for 

MSA in the NLP of dialectal Arabic? 

RQ2. Can a domain specific framework support a knowledge-based approach to 

dialectical Arabic sentiment analysis? 
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RQ 3. Which linguistic features of the Arabic language can impact lexicon-based 

sentiment analysis, and how can these be collectively considered to improve the 

accuracy of the analysis? 

RQ4. Can the Semantic knowledgebase improve the accuracy of the feature extraction 

task? How can the semantic modelling of the domain knowledge further contribute to 

improving lexicon-based sentiment analysis?  

RQ5. What is the impact of Arabic language light stemming on the performance of 

machine learning sentiment classification?  

RQ6. What is the optimum algorithm and features set for utilising machine learning 

in dialectal Arabic sentiment analysis? 

1.4 Thesis Contributions 

 The work described in this thesis has provided the following contributions to 

this field of study: 

 Developed a novel stemming approach for dialectical Arabic that integrates the 

Information Science Research Institute (ISRI) stemmer and a rule-based 

stemmer, which was developed in-house. The new approach addresses the 

challenges of dialectical Arabic stemming.  The proposed stemmer was found 

to provide improved accuracy compared to other stemming algorithms. 

 Developed a gold-standard corpus7 for multi-dialects Saudi Arabic sentiment 

analysis is generated by the manual annotation of tweets.  

 Created a comprehensive multi Saudi dialects for Arabic sentiment lexicon8. 

The lexicon construction process includes sentiments, negation, emoji and 

special phrases, including supplications, proverbs and interjections. 

 Experimented with a novel phrase-based method for handling supplications in 

dialectal Arabic in an attempt to extract the sentiment from tweets as accurately 

as possible. 

                                                 
7 https://github.com/GhadahAlwakid/Unemployment_dataset/blob/master/Tweets_Unemployment%20dataset.csv 
 
8 https://github.com/Ghadah-Alwakid/Unemployment_Lexicon 
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 Developed a novel, multi-intensity lexicon-based sentiment analysis algorithm 

that considers several factors to improve the accuracy of classification, 

including emojis, intensifiers, negations, and special phrases (supplications, 

proverbs, and interjections). 

 Modelled the optimum machine learning classifiers for sentiment analysis of 

social media content in dialectical Arabic social media. Determined the most 

suitable features, such as N-grams and TF-IDF, that function at an increased 

rate with dialectal Arabic sentiment analysis in alternative machine learning 

classification. This will aid new researchers to provide a baseline within this 

area. 

 Presented a novel, linguistic-machine learning hybrid approach for sentiment 

analysis of social media content in Saudi dialectical Arabic alongside hybrid 

methods for sentiment analysis of social media content in dialectical Arabic, a 

hybrid semantic knowledgebase-machine learning approach and hybrid 

lexicon based-machine learning approach, which resulted in significant 

improvement of the accuracy of sentiment classification of dialectical Arabic 

text. 

1.5 Research Methodology 

 The research methodology adopted for this project was based on standard 

research activities that included a literature review, requirement analysis and 

refinement, incremental and iterative development, and evaluation. 

1.5.1 Literature Review  

 This study involved an evaluative literature review of Arabic natural language 

processing, corpus construction, the semantic knowledgebase to assisted sentiment 

analysis, lexicon-based sentiment analysis, machine learning algorithms and hybrid 

approaches for sentiment analysis. The literature assessment ensured the originality of 

the study to avoid any repetition of existing studies. All relevant fields were processed 
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through an iterative approach throughout the progress of the research. Related theses 

were assessed and prior experimental models yielded substantial input during the 

requirement analysis, refinement procedure and overall analysis.  

1.5.2 Requirement Analysis  

 Throughout this research, specifications for the methodology and research 

approaches were refined, analysed, and examined to determine their relevance in 

giving adequate responses to research questions.  This study was undertaken to study 

the sentiment analysis of dialectical Arabic social media content. Due to the lack of 

open dataset resources for the Arabic language, it was not possible to find a dataset 

available publicly for Saudi dialect Arabic regarding social issues.  To resolve this 

issue, a gold-standard corpus for sentiment analysis was created by manually 

annotating native Arabic tweets. The advantages of other pre-developed tools and 

approaches were adopted in order to account for tasks within the framework’s terms, 

such as Natural Language Processing, lexicon construction, machine learning 

algorithms, and sematic knowledgebase tools. Due to the complexity of dealing with 

dialectal Arabic and after investigation of the tools and techniques, it became 

necessary to develop a novel tool or technique for achieving the main objective of 

providing adequate answer(s) to the underlying research motivation and central 

research questions. 

1.5.3  Incremental and Iterative Development 

 The process of adapting the proposed solutions is central to an incremental and 

iterative progression in a field of study that has historically neglected the Arabic 

language. Incremental progression involves adapting various stages of the framework 

incrementally, gradually, and persistently filling in framework gaps and omissions. 

Iterative development is a revision of a strategy to adapt and enhance independent 

phases of the framework.  The dataset is incrementally and iteratively developed in 

order to assess required tools and approaches for implementing the proposed 

framework. 
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1.5.4 Evaluation 

 It is well established that evaluative performance of sentiment analysis 

classification systems uses the following four indices), see Table 1.1: 

 Accuracy: portion of all true anticipated instances compared with predicted 

instances 

 Precision: the number of positive predicted occurrences compared with 

positive predicted instances 

 Recall:  the number of accurate positive predicted occurrences against actual 

positive findings 

 F1-score: a harmonic mean of recall and precision  

 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

𝐹1 =
2𝑃𝑅

𝑃 + 𝑅
 

 

 Table 0.1: Confusion Matrix  

 Predicted Positives Predicted Negatives 

Actual positive instances Number of True Positive 

(TP) instances  

Number of False 

Negative (FN) instances 

Actual negative instances Number of False Positive 

(FP) instances 

Number of True Negative 

(TN) instances 

 

1.6   Thesis Organisation 

 This chapter has provided a comprehensive overview of the core research aim 

and underlying objectives, outlining the primary research questions and justifying the 

targeted orientation of this study towards meaningful and beneficial outputs for Arabic 
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sentiment analysis and language processing.  The remainder of the thesis is organised 

as follows: 

Chapter 2 presents background of sentiment analysis approaches and introduces the 

use-case motivation scenario. Then overview of natural language processing (NLP) as 

the main enabling technology for Arabic sentiment analysis with illustrate the 

characteristics of the Arabic language and challenges of Arabic text in social media 

content.  

Chapter 3 presents literature review of main approaches and methodologies in this 

research, this chapter present literature review of arabic natural language processing 

and tools,  arabic stemming tools, lexical resources for dialectical arabic language 

processing. Also, the literature review of sentiment analysis approaches lexicon-based, 

machine learning and hybrid sentiment analysis. 

Chapter 4 introduces details of the collected resources and developed tools for 

dialectical Arabic for the benefit of sentiment analysis. 

Chapter 5 explains a novel approach for multi-factor lexicon-based sentiment analysis 

of social media content in dialectical Arabic. It includes an evaluation and discussion 

of the experimental results. 

Chapter 6 presents a new algorithm by using machine learning approach for sentiment 

analysis of social media content in dialectical Arabic social media. It includes an 

evaluation and discussion of the experimental results. 

Chapter 7 presents the architecture framework of the proposed hybrid approach for 

sentiment analysis of social media content in dialectical Arabic social media. It 

includes discussion of the experimental results. Then explains the usability of a 

sentiment analysis approach to aid government and decision makers. 

Chapter 8 concludes this research and summarises the main outcomes of this work 

and outlines suggested further works. 
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Chapter 2  

2 Overview of Sentiment Analysis and Natural 
Language Processing 

2.1. Introduction 

 As Web 2.0 technology expands, so does the number of web forums and social 

media platforms; current internet users contribute their opinions, ratings, and reviews 

on a multitude of web sites, whether they are commercial, or news related. Analysing 

expressed positive and negative reviews is cumbersome and time consuming and, in 

turn, leads to the need for new techniques for extracting opinions in relation to listed 

topics, which is labelled sentiment analysis. Sentiment analysis (SA) involves 

references to Natural Language Processing (NLP) and text analysis in the extraction 

of sentiment derived from a text related to specific topic (Yi et al., 2003; Ghadeer et 

al., 2017). Turban et al. (2014) defines sentiment analysis as an approach for finding 

positive and negative views towards products and services via a plethora of textual 

data sources. It is imperative to analyse texts and data mining in sentiment analysis 

fields since opinions, sentimentality and personal viewpoints that undergird texts are 

of high significance within this field. The success of blogs and social media sites only 

confirms and enhances the importance of SA.  

 

2.2. Background to Sentiment Analysis 

 Sentiment analysis involves creating a system for collating and assessing 

opinions posted in blog posts, reviews, tweets, or the comments section of various 

websites. The majority of users express opinions and ideas via social media. These 

textual inputs are vital for determining decisions making processes for research work, 
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industry, and for individuals. In marketing, the success of an advertising campaign or 

an original product launch determines which product or service is popular, and it 

likewise determines the demographic responses regarding the pros and cons of a 

particular feature (Zhou et al., 2014; Tsytsarau and Palpanas, 2012). SA can be utilised 

in differing aspects of society and interests such as business, public concerns, finance 

and politics. Within the business sector, a multitude of studies have been carried out 

with the aim to review consumer services and products. There are internet sources 

offering automated precis and evaluation of product reviews, e.g. Google Product 

Search 9 . In a business context, sentiment analysis is also utilised to explore and 

enhance brand reputation and online advertising and commerce. It is applied in the 

monitoring of reputed brands on Facebook and/or Twitter.  

 A further function of sentiment analysis in the business world is the 

advancement of e-commerce. The given premise is that consumers take note of others' 

opinions regarding travel, restaurants and retail outlets, through online tracking and 

research, hence resulting in Bing/Google star quality rating. An influential study 

within this field was developed by (Kang et al., 2012), providing a senti-lexicon for 

culinary reviews. Whether positive or negative, opinions have a distinct influence, 

cause and effect. In the modern-day digital world in which we live, published and 

shared opinions can enhance or destroy a brand’s hitherto established and accepted 

reputation. Statistics portray that 40% of consumers derive an opinion of a business or 

company after access to 1-3 reviews online and 64% of potential software buyers gain 

access to a minimum of 6 online reviews before coming to a decision whether to buy, 

indicating the importance of company awareness of public opinion and ascertain the 

true feelings behind expressed views (Source: BrightLocal10).  

 

2.3. Social Media and Sentiment Analysis 

 In respect to the politic arena, voting advice and feedback apps are a vital 

indication of sentiment analysis. Their analysis allows campaign advisers to track and 

influence public opinion concerning a variety of issues and monitor how speeches and 

                                                 
9 https://www.google.com/shopping?hl=en 

10 https://www.brightlocal.com/research/local-consumer-review-survey/ 

about:blank
about:blank
about:blank
about:blank
https://www.brightlocal.com/learn/local-consumer-review-survey/
https://www.brightlocal.com/research/local-consumer-review-survey/
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activities of candidates may affect the vote itself. An in-depth analysis of tweets 

relating to the U.S. presidential elections. The   sentiment    analysis    includes    

measuring    the popularity of both major presidential candidates (Donald Trump and 

Hillary Clinton) on Twitter. Daily average sentiment score of tweets containing each 

candidate is calculated. All twitter attributes are utilised along with tweet text to better 

understand the sentiment displayed and the content generated or shared by the users 

(Buccoliero et al., 2020). Within this context, sentiment analysis is also utilised to 

clarify the public stance and viewpoint of politicians, including which issues they 

support or oppose, hence enhancing the quality and accuracy of information that voters 

can access. From social issues to political opinions to consumer sentiment, the field of 

sentiment analysis spans a broad and diversified spectrum of insights and 

interpretations. 

 In Arabic countries, interaction via social media is increasingly popular as 

these users deem it to be a vital tool for openly and freely sharing their views. 

Facebook is one of the most recognised social media platforms in Saudi Arabia. With 

42,400,000 Facebook users in Egypt in January 2020, which accounted for 40.4% of 

its entire population (Napoleoncat, 2020).  The effectiveness of Twitter as a social 

media tool was most noted during the Arab Spring uprisings in Syria, Yemen, 

Tunisia and Egypt. Specifically, during this period of vocalization and civilian 

uprising, citizens expressed their opinions freely through Twitter. By communicating 

across informal, socially connected media channels, protesters were able to not only 

organise movements and coordinate protests, but to raise awareness across other 

regional and global populations (Shearlaw, 2016). Summarizing the importance of 

this form of social activism, Alhindi (2012) reported a tweet frequency of 

approximately 40–45 posts per minute in Egypt alone on the 25th of January, 2011, 

precipitating the conflagration and social mobilisation that would form the basis for 

the Arab Spring. 

 The total number of Arabic users accessing twitter has increased by well over 

100% since 2017. Referencing usage statistics, Crowd Analyzer (2019) claims that the 

number of active Twitter users within Saudi Arabia eclipsed 11 million between 2018-

19, proving to be more popular than Egypt and UAE as shown in Figure 2.1. Saudi 

Arabia currently has a population of 33.85 million, 23 million (68%) of whom are 
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active social media users. Further highlighting the importance of this high participation 

rate, GMI Blogger (2019) has reported that Saudi Arabia has the largest worldwide 

social media presence, with an estimated 43.8 million mobile subscribers. Indicative 

of multiple devices used by multiple users, this finding suggests that Saudi Arabian 

consumers are continuing to depend upon social media channels for cross-network 

communication and socialisation.  The Hoot Suite (2019) reports that globally, Saudis 

are the largest community of active users on Twitter in the Arab vicinity. On average, 

Saudis spend an average of 2 hours and 50 mins daily on a variety of social media 

devices (Hoot Suite, 2019). Wonder (2019), has further confirmed that across all 

platforms, Saudi Arabian users predominately expressed an interest in nationalism, 

religion, culture and social development, with interactions mainly completed in 

Arabic. The total number of users preferring to communicate in Arabic is 3 

million, with a mere 663 thousand opting for English. 

 Recently, According to the Saudi Ministry of Communications 

and Information Technology report in 2020, Over 18 million users of social media 

applications in Saudi Arabia. Due to the interest of the Saudi people in social media 

has grown, their impact on their daily lives has increased. The number of Saudi users 

of social applications and programs has doubled in the Kingdom during the recent 

years, from 8.5 million to 12.8 million users, and most recently, the number reached 

18.3 million users, equivalent to 58 % of the population of Saudi Arabia. Smart phones 

constitute the largest platform in logging into social networks, with 260 minutes a day 

as an estimated average of logging per person using smart phones. Twitter dominate 

with the largest number of social media users in the Kingdom, where the number of 

Twitter users amounted to 9 million users (MCIT - Media Center , 2020). 
 

 
Figure 2.1: The number of active Twitter users in Saudi Arabia, UAE and Egypt 

(Source: State of Social Media 2019 reported by Crowed Analyzer) 
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2.4. Unemployment Problem Domain in Saudi Arabia: 
A Case Study  

 An increasing number of Saudis use Twitter to freely express individual 

viewpoints on issues that impact their daily lives (Al-Harbi and Emam, 2015). This 

presents local authorities with the opportunity to use sentiment analysis on Twitter 

feedback in order to assess the impact of implemented policies (Government policies) 

on the Saudi populace (Aldayel and Azmi, 2016). A report distributed by the General 

Authority for Statistics ascertained the full extent of the Saudi Arabian workforce in 

2016, and they discovered that the unemployment level was 12.1%; this is an increase 

from earlier in the same year, when unemployment was at a rate of 11.6%. The report 

also notes that an excess of 1/3 of unemployed Saudis are aged from 24 to 29 years 

old; women accounted for 63.4% of the unemployed and men 36.6% (General 

Authority for Statistics, 2016). Lack of job opportunities, particularly for young people 

of both sexes, exacerbates this problem, with an excess of 7,000 university graduates 

with doctoral or master’s degrees who struggle to find jobs (Al-smayel, 2016).  

 In an attempt to address the problem of unemployment, Khalife (2019) notes 

that Saudi Arabia has launched a projects to create in excess of half a million jobs by 

the year 2030. These jobs will be in the private sector, and plans were released as part 

of the Saudi agenda to digitise and modernise the labor market.  

 Due to the significance of this issue for the Saudi Kingdom amongst workers 

and employers, of the issue of domestic unemployment is often a trending topic on 

Twitter in Saudi Arabia. Thus, the fundamental aim of this research was to develop a 

sentiment analysis system that could capture and explore public sentiments expressed 

on social media platforms, concentrating on the issue of unemployment in Saudi 

Arabia. A successful outcome of a Twitter-derived sentiment analysis would 

potentially benefit multiple research, political, and consumer groups including, 

journalists, civic organisations, citizens and policy makers. However, the sentiment 

analysis of Saudi dialects tweets is a challenging task for the following reasons  

 The complexity of dealing with the dialectical Arabic; many tweets are 

written in non-standard dialectal Arabic, including orthographic errors, 

slang and spelling mistakes.  
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 Arabic NLP is complex in terms of morphology and structure. Indeed, 

Arabic grammar is a highly complex entity. Differing sentence structures 

can frequently be found within the Arabic language: a sentence may begin 

with a nominal or verb phrase, and, in some cases, it can begin with a noun 

phrase. Additionally, Arabic allows for different variations such as 

syntactical variations within all types of sentences. Many different parts of 

speech exist that are found only in Arabic. Additionally, Arabic is highly 

derivative and inflectional, containing many diacritics and word strands 

(Al-Shalabi, and Obeidat, 2008; Alhajjar et al., 2009). For instance, the 

same three-letter root can create many different words that have differing 

meanings. The same word can also exist in different forms, with added 

suffixes, affixes, and prefixes. 

 Performing sentiment analysis is a challenge when exploring Twitter posts 

due to the fact that each tweet is limited to just 140 characters, however, 

Twitter’s doubling of character count from 140 to 280 in 2018 increased 

the linguistic complexity of the posts. Twitter also makes use of URLs, 

hashtags, and user references (mentions). Additionally, users express their 

views in many ways, and their language may contain abbreviations and 

slang words, and there may also be repetition of letters as a means of 

showing emotion and emphasis. One major problem that many tweets are 

in non-standard dialectal Arabic, and it contain orthographic errors or 

spelling mistakes. The next chapter, then, will provide a more detailed 

examination of this issue. 

2.5. Sentiment Analysis Approaches  

 There are three main approaches to the sentiment analysis process. These can 

be labelled and presented as Lexicon-Based, Machine Learning, and Hybrid 

approaches. Table 2.1 illustrate the strengths and weaknesses of sentiment analysis 

approaches. 
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2.5.1. Lexicon-Based Approaches 

 The lexicon-based approach is divided into two techniques: Corpus Based and 

Dictionary Based. Lexicon based techniques fundamentally concentrate on analysing 

the sentiment lexicon (i.e. the collation of words where each one contains a mark that 

indicates the negative, neutral or positive tone of the text to be explored). For the 

chosen text information, marks for the subjective words are assessed and inputted 

separately, and the maximum score will decide the overall polarity. The text is 

analysed via this sentiment lexicon (Kang et al., 2012). 

2.5.1.1. Corpus-Based Approach 

 The corpus-based approach deals with the construction of a list of opinion seed 

words and is expanded and enlarged by extracting the information from the corpus 

text. Seed opinion words represent those general concepts and common words drawn 

from a pool of information that is domain-specific and directly linked to the topical or 

contextual origins of the discussion (Keshtakar and Inkpen, 2013).  The corpus based 

approach typically involves a combination of sentiment analysis and statistical 

discrimination, weighing the accuracy of the output on a contextual basis (Keshtakar 

and Inkpen, 2013). 

2.5.1.2. Dictionary-Based Approach 

 The dictionary-based approach is focuses on determining the opinion seed 

words from the chosen text through a dictionary search for synonyms and antonyms. 

Initially, a seed list is created by manually extracting opinion words. This is a complex 

process, since related opinion words are limited. Context oriented texts, such as a 

thesaurus and dictionary, are then explored to seek out and analyse antonyms and 

synonyms. At a later stage, synonyms are included in the list of seed words and the 

process is repeated until a sufficiently robust representation is collated from the 

overlapping compendium of similar words (Keshtakar and Inkpen, 2013).  

2.5.2. Machine Learning Based Approaches 

 The machine learning approach consists of a supervised, semi-supervised and 

unsupervised learning. The features are utilised and extracted to perform classification 
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through a multi-stage process which reconciles and analyses large scale datasets    

automatically. This technique is most popular in text classification because no human 

interaction is needed.  There are three different approaches to machine learning 

including supervised, unsupervised, and semi-supervised. 

2.5.2.1. Supervised Learning Approach 

 Supervised machine learning-based is a leading technique that has been 

broadly applied to sentiment analysis classification.  Two sub-sets are needed, the first 

is the labelled data set for training and the second is test set data for comparative 

purposes. The accuracy and effectiveness of these techniques depend upon the 

accuracy of the training data; therefore, if there is any wrongly labelled data within the 

training set inaccuracies are likely to be observed. The primary algorithms within this 

category include Decision Trees (DT), Naïve Bayes (NB), and Support Vector 

Machines (SVM) (Badaro et al., 2019). 

2.5.2.2. Unsupervised Learning Approach 

 Unsupervised learning techniques do not take advantage of the labelled or 

training set of data. In situations where it is difficult to label the input data, this 

technique is useful, allowing outputs to be derived from scalar results, rather than a 

more dependent, results-limited training set. These include algorithms such as K-

means clustering and Word2Vector and have been commonly applied to large scale 

social media analyses. However, this process requires a large data repository in order 

to fit the model and generate accurate results.  Model failure can result in 

incomprehensible or erroneous results that lead to a loss of time and retreat to another, 

more rigorous machine learning model (Zhang and Yu, 2017).  

2.5.2.3. Semi-Supervised Learning Approach 

 Semi-supervised learning is a combination of the advantages found in both 

supervised and unsupervised learning approaches.  Designed to compensate for a lack 

of labelled data, this solution allows for learning protocols to be expanded, 

emphasising multiple datasets (Chapelle et al., 2009). . Within this learning technique, 



18 

 

the model is trained with the combined assistance from both labelled and unlabelled 

data (Chen et al., 2014). 

2.5.3. Hybrid approach  

 The hybrid approach is a combination of the lexicon-based and machine 

learning approaches; hence it increases overall performance. For sentiment analysis, 

hybrid techniques draw upon more complex features of machine learning (e.g. 

ontologies, semantic networks) and analytical techniques from lexicon-based 

approaches to reconcile semantic variances that complicate the results (Mumtaz and 

Ahuja, 2016). Utilising both approaches improves the accuracy and performance of 

the sentiment analysis task (Mala and Devi, 2017). 

Table 2.1: The strengths and weaknesses of sentiment analysis approaches 

Sentiment analysis 
approaches 

Strengths Weaknesses 

Lexicon-based 
Approach 

 Wider term coverage 
 Simple to understand and 

implement 
 No training necessary 
 High speed of classification 

 Requires large-scale external 
lexical resources. 

 Context not considered 
 Accuracy dependent upon size 

and quality of lexicon. 

Supervised 
Machine learning 
approach 

 The capability of adapting new 
cases 

 Creating a trained dataset for 
precise contexts and purposes. 

 N-grams representation of 
sentence. 

 Uses high order of n-grams 
including context. 

 Costly in in terms of labelling 
data and time 

 An increase of sparsity with 
increase of order of n-grams. 

 Limited availability of NLP 
tools for differing dialectal 
Arabic. 

Hybrid Approach 

 High performance 
 Detection and measurement of 

sentiment analysis at concept 
level 

 Weak sensitivity to alterations in 
domain 

 Expensive, time consuming 
and takes up space 

 

2.5.4. Deep Learning Approach to Sentiment Analysis 

 The ubiquitous and persistent use of social media for cross-platform idea 

sharing and user communication has created datasets of an unprecedented scale which 
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Sharath and Tandon (2017) acknowledge must be analysed through automated systems 

capable of topically-specific sentiment analysis.  By training a convolutional neural 

network (CNN) as a deep learning solution to tweet-based sentiment analysis, the 

researchers developed a corpus of more than 14,000 words, 10 overarching domains, 

and 370 topics that could be used to train the solution (Sharath and Tandon, 2017).  By 

applying a conditional modelling solution to the CNN training, sentiment was then 

classified as either positive, negative, or neutral. The network itself was decomposed 

into two specific blocks, the sentence block and the topic block, creating bidirectional 

layers that were designed to reduce cross-entropy during the analytical exercise 

(Sharath and Tandon, 2017). 

 Central to the challenges of analysing diversified Twitter posts are the 

variations that manifest as a result of slang, emoticons, and contextual domains 

(Asghar et al., 2019).  Deep learning models such as the hybrid solution proposed by 

Asghar et al. (2019) allow for each of these variables to be classified according to its 

sentiment polarity.  Through deep learning and system training, variations and domain-

specific indicators can be used to further subdivide the output, resulting in more 

accurate, comprehensive results (Asghar et al., 2019).  By applying this technique to 

what Magumba et al. (2018, p.7) describe as a ‘recurrent neural network’, sequential 

information is retained and the computational units are subdivided into multiple layers.  

By applying this approach to complex linguistic challenges (e.g. native language, 

medical terminology), the deep learning process involves updating the weight of the 

layer before subsequent forward passes are conducted (Magumba et al., 2018). 

 Although Stojanovski et al. (2018) acknowledge the importance and value of 

machine learning approaches for prior sentiment analysis techniques, the deep learning 

solution relies upon a form of iterative classification approach which translate CNN 

outputs into sentiment-grouped outputs.  This solution includes several central stages 

including pre-processing of the tweets, embedding, convolutional operations, pooling 

of output features, and classification of the fixed size vector (Stojanovsski et al., 2018).  

Due to the complexity of linguistic traits and incongruities, Stojanovski et al. (2018, p. 

32220) have proposed that intuitive, neural language models are needed to generate 

word representaitons that can yield scalable feature vectors that ‘encode syntactic and 

semantic regularities of the words’. 
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2.6. Levels of Analysis  

 Sentiment analysis is typically categorized into the following three levels 

2.6.1. Document Level Analysis 

 The document concentrates on a single topic. Hence, texts concerning 

comparative learning are not relevant within the document level. This level classifies 

whether the document in question portrays the tone of a positive or negative sentiment 

(Pang et al., 2002; Turney, 2002). 

2.6.2. Sentence Level Analysis 

 The sentence level expresses factual information from the sentences that 

portrays subjective opinions. i.e. good/bad. The sentence level analysis is a sentence 

by exploring the sentiment indicators and decides if each sentence conveys an opinion 

that could be categorized as negative, positive, or neutral (Wiebe et al. 1999). 

2.6.3. Entity/Aspect Level Analysis 

 Entity/Aspect levels are adopted throughout the analysis. The central purpose 

of the entity level is to identify constructs, while the aspect level identifies and clarifies 

the opinion or sentiment. This approach is centrally based on the concept of an opinion 

residing of an opinion and an attitude (Liu, 2012). 

 

2.7. Applications of Sentiment Analysis 

 Sentiment analysis can be utilised to explore underlying tone of a variety of 

different data sources (e.g. e-mails, memos, transcripts).   The text can be in any 

format, including feedback, tweets, Facebook posts or comments, and all of these 

formats can announce their associated sentiments. In today’s highly competitive 

marketplace, businesses are compelled to closely monitor customers’ sentiments in 

order to gauge public reaction. Positive feedback is a reflection of customer 

satisfaction and may help the business grow, while negative and neutral feedback may 

indicate areas of deficiency or underperformance. The accuracy of such systems is 
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low, however, since the machines are unable to comprehend and translate sarcasm and 

other complex or unreliable statements. Despite this limitation, the scale of text 

generated across social media is extremely large, requiring automated, autonomous 

solutions that are capable of making meaningful interpretations out of overlapping 

datasets. The following sections offer insights into several practical applications for 

enterprise purposes. 

2.7.1. Social Media Monitoring 

 Social media monitoring yields business intelligence by extracting sentiment, 

meaning, and patterns from textual mining. Opinions from millions of tweets or posts 

float throughout social media networks daily. Mining outputs yield an overview of 

consumer brand perceptions, trending patterns, and potential threats. This type of 

analysis can be completed in minutes electronically due to the high-efficiency 

solutions offered via automated mining technologies (Nogueira and Tsunoda, 2018). 

2.7.2. Product Management 

 Products evolve and are managed by their creators, but sales can be better 

influenced by evaluating consumer opinions and their change or patterns over time. 

Product managers can electronically merge data from various sources and analyse the 

data in order to identify specific patterns and models that are relevant to understanding 

consumer perceptions and needs. Customer-derived insights improve decision making 

and help to develop new strategies and initiatives to improve the product, the 

experience of the customer, and enhance product performance over time (Suchdev et 

al., 2014). 

2.7.3. Government Policy Review 

 As instruments responsible for service and support of their civilian 

constituents, governments across the world issue new policies, laws, and guidelines 

that are derived from an intimate knowledge of civilian expectations and priorities.  

Once implemented, civilian discourse offers meaningful discussion of government 

policies, highlighting areas of deficiency or opportunity that can be resolved to 

improve service outputs.  Both negative and positive feedback are vital to the 
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assessment of the overall impact of any policy or scheme. Many applications in use 

are based on sentiment analysis such as legal assessments, brand value monitoring, 

and enterprise search (Mridula and Kavitha, 2018).  

2.8. Overview of Natural Language Processing (NLP)  

 Natural Language Processing (NLP) is the main technology for data extraction 

from text documents. In recent years, research in Arabic Natural Language Processing 

(ANLP) enjoyed increasing attention, and several cutting-edge systems have been 

created for a wide range of uses, including speech synthesis and recognition, machine 

translation, data retrieval and extraction, text-to-speech conversion, tutoring, and 

localisation and multilingual data retrieval systems. These applications deal with a 

range of complex problems inherent in the style and structure of Arabic. Derived from 

its complex linguistic structure, Arabic creates unique problems for NLP solutions, 

requiring specialised modules and systems that are capable of reconciling these 

variances and incongruities (Habash, 2010).  The ANPL applications must therefore 

cope with several complex practical problems aligned with the structure and nature of 

the Arabic language. As a result of such hurdles, ANLP systems are deemed null and 

void if they fail to consider specific linguistic features of the Arabic language. 

Therefore, successful solutions must be capable of reconciling the morphological 

aspects of Arabic in order to yield effective, consistent language processing outcomes. 

2.8.1. Arabic Natural Language Processing  

 NLP, otherwise termed as Computational Linguistics, is a facet of computer 

science and dovetails the science of Artificial Intelligence (AI). NLP tools analyse 

texts as an automatic function, so there is no need for human involvement (Ghosh, 

2009). The aim of NLP is to allow a machine to understand human expressions and 

language. The main NLP techniques relevant to the Arabic language are as follows: 

2.8.1.1. Character Agreement 

  In Arabic, there are 8 characters that can be utilised as additions; they form 

additional primary characters dependent upon their placement in the word, for 

example the vowel letters such as letter Alef has several shapes: for example, (إ,آ,أ,ا ), 
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Alef maksoura “ ى”, mirrors Alef, but is constantly confused when written alongside 

the letter ya “ ي”. Taa Marbota “ة” is regularly confused with ha “ ه”. Many forms of 

Hamza: “ ئ ”,“ؤ ”, and “ ء ”, are interchangeable with parts of a word within sentences 

(Darwish et al., 2012). 

2.8.1.2. Tokenization 

 This is the process of splicing a text; it places each word in isolation, which 

distinguishes the following word via the initial space; each division is then labelled as 

a token (Alhanjouri, 2017).  

2.8.1.3. Named Entity Recognition (NER)  

 This is the process of identifying names of persons, data, expressions of times, 

phone numbers, organizations, locations, percentages and quantities etc. (Ghosh, 

2009). NER aids in the location of isolated text to extract information and knowledge. 

2.8.1.4. Part of Speech Tagging (POS) 

 This is the process of identifying each individual word based on its location 

and appearance location in common expressions, such as verbs, adverbs, nouns, and 

adjectives (Habash and Rambow, 2005).  

2.8.1.5. Stemming  

 Stemming removes prefixes and suffixes from the word, returning it to its root 

state. There are four examples of affixes: Suffixes, Postfixes, Antefixes, and Prefixes, 

which can be applied to words (Froud et al., 2010).  

2.8.1.6. Arabic Stop Word Removal  

 Stop words are those that need to be filtered out prior to processing the given 

text. Stop words should be deleted since it may misrepresent and skew the results, so 

they need to be ignored in order to enhance the research process (Alhanjouri, 2017). 
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2.9. Characteristics of the Arabic language 

2.9.1.  The Arabic Language Features 

 The Arabic language is considered Semitic (a language that is complex and 

uncommon in terms of its morphology) and is the officially recognised language of 22 

countries worldwide (Boudad et al., 2018). An excess of 400 million people speaks it 

worldwide. It is deemed 4th most-used language on the internet (Boudad et al., 2018). 

It is also one of the 10 most-used languages on the web (Alison,2018). Arabic has 28 

letters in its alphabet, and it is written from right to left; it uses a free-word order where 

several specific rules are in place. The morphology of Arabic consists of many 

intonations of root words (Abdelali et al., 2004).  

 Arabic exists in two formats: Modern Standard Arabic (MSA), which is the 

formal and most recognised language commonly used in the media and literature 

throughout the Arab world. MSA adheres to the grammatical rules of the Quran and 

has a vocabulary in excess of 1.5 million words. The second format is dialectal Arabic 

(slang), which is the common socially used language in Arab countries. Although 

dialectal Arabic is derived from MSA, it may involve variations in word choice and 

grammar, dependent upon the dialectal Arabic used (McCarus, 2008). ANLP, as a 

result, is a challenging process due to its lack of applicative referencing; instead, it 

derives context and meaning from a specific origin. For instance, a particular root such 

as كتب (katab) ‘write’ represents the source of words such as ‘she writes’ تكتب (taktob) 

or ‘she wrote’ كتبت (katabat), but this is not the case in English and other languages. 

However, communication in an Arabic social media context is carried out using 

dialectical Arabic rather than MSA Arabic. Dialectal Arabic substantially differs from 

MSA in terms of phonology, morphology, lexical choice, and syntax. Dialectal Arabic 

can be subdivided into six main groups: Gulf, Maghrebi, Egyptian, Iraqi, Levantine 

and others dialectical Arabic (Guellil et al., 2019). 

2.9.2. The Difference Between English and Arabic Language  

 There are many differences between English and the Arabic language 

including lexis variations, grammatical distinctions, and syntax errors. The lexis 

variations include deletion non-vocalisation, inadequate lexicon, multiple meaning, 
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and connotation and collocation. The grammar and syntax variations include 

distinctions arising from word order, gender and reference, incorrect analysis of input, 

tense and aspect, prepositions, definite articles, coordinators and conjunctions. Most 

Arabic spellings are phonetic since each Arabic letter represents a particular sound, 

and hence there are no silent letters like those in English. Furthermore, the Arabic 

language does not combine letters to come up with a specific sound. For instance, in 

the word ‘thing’ the ‘th’ sound in the English language is reduced to the ث character 

in Arabic.  Arabic does not have the linking verb ‘to be’, and it also lacks an indefinite 

article (ARTC). Arabic lacks distinction between upper and lower case when words 

are written from right to left.  

 As a result, the letters vary in their form depending on whether they appear at 

the beginning, centre or end of a sentence. The letters that have the capability of being 

connected can be joined both in written and printed forms. The Arabic language has 

either natural or grammatical gender, and all nouns are either feminine or masculine. 

Grammatical gender applies to lifeless objects (O) while natural gender is used for 

living things. The productive gender masculine yields the feminine through the 

addition of the particular suffix ‘ة’ to the last part of the masculine word (Salem, 2009). 

Due to these intrinsic differences between English and the Arabic language, it is 

difficult to apply the English NLP tools to Arabic text, requiring the application of an 

ANLP solution. 

2.9.3.Examples of Arabic Natural Language Processing  

2.9.3.1. Free Word Order 

 Arabic language utilises free word order. According to Al Aqad (2013), there 

are multiple word orders used in the Arabic language.  Due to this flexibility, Arabic 

is rich in grammatical structure and features multiple free word order solutions 

including subject-verb-object (SVO), verb-subject-object (VSO), verb-object-subject 

(VOS) and object-verb-subject (OVS) (Abu Shquier, 2014). The word order in the 

Arabic language (MSA and dialectal Arabic) is very different from the order of words 

in English, as can be seen in the following Table 2.2 and Figure 2.2. where the green 

checkmark represents the traditional arrangement with SVO agreement in English, 

followed by three variations. The red checkmarks indicate improper word ordering in 
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the English language, but in Arabic, all four variations are identified as appropriate 

(green checkmarks) due to free word order associations. 
 

Table 2.2: The Arabic Language Features - Free word order examples 

Sentence Form English Arabic 

SVO The girl walks slowly  √ 
   √    البنت تمشي ببطء

albento tamshi bebote'  

VSO Walks the girl slowly   x 
  √      تمشي البنت ببطء

tamshi albento bebote' 

VOS Walks slowly the girl   x 
  √   تمشي ببطء البنت

tamshi bebote' albento 

OVS Slowly walks the girl   x 
  √   ببطء تمشي البنت

bebote' tamshi albento 

 

 The Arabic language allows agreement between the subject and verb as a 

suitable morphological marking on the words to distinguish the subject from the 

object, employing a free word order. The position of the actor creates the difference 

between the sentences. In Arabic, the sentences bear similar meaning, whereas English 

has a standard (SVO) sentence form. In the other words, unlike English, the Arabic 

language has a free word order that does not restrict its arrangement of words (Alduais, 

2012). For example, in English, adverbs come before the verbs they describe, whereas 

in Arabic the adverbs may come before or after the verbs they describe. Thus, the 

morphological syntactic analysis of the Arabic language is complex compared to 

English or other languages. 

 
Figure 2.2: Examples of Arabic Free word order  



27 

 

2.9.3.2. Negation: 

 Negation is an English concept entailing the use of words such as ‘do not’, 

‘does not’, ‘did not’ and ‘no’ as shown in Table 2.3. 

 

Table 2.3: The Arabic Language Features – Negation examples 

 English Arabic (MSA and dialectal Arabic) 

Do not, does not = لا Do not give up 
 تستسلم لا

tastaslem la 

Did not = لم  He did not sleep all night 
 ينم طوال الليل لم

yanam twal allayl lam 

No = ممنوع / لا / ليس  No smoking 
 التدخين ممنوع

altadkheen mamnoo‘ 

 

2.9.3.3. Singular and Plural: 

 In Arabic (MSA and dialectal Arabic) non-imperative sentences, when the 

gender of the referent changes, there are morphological verbal changes (Adawood and 

Mohammed, 2008) as in Tables 2.4, 2.5 and 2.6. 

Table 2.4: The Arabic Language Features - Singular and Plural examples 

English Arabic Gender 

He wrote the report 
 تقريرال كتبهو 

taqreeral katabahowa  
 Masculine 

She wrote the report 
 تقريرال تكتبهي 

taqreeral tkatabahiyya  
 Feminine  

 

 

 Sentences phrased by male and female speakers in different tenses 

Table 2.5: The Arabic Language Features - Sentences phrased by male and female speakers in different tenses 

examples 

English Arabic Tense Gender 
 I write the report تقريرال كتبأ 

taqreeral ktoba 
Present simple  Masculine / feminine 

 I wrote the report  تقريرال تكتب 
taqreeral tkatab 

Past simple Masculine / feminine 
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Sentences phrased by male and female speakers in plural 

Table 2.6: The Arabic Language Features - Sentences phrased by male and female speakers in plural examples 

English Arabic Tense Gender 
We write the report تقريرال كتبن 

taqreeral ktobna 
Present simple Masculine / feminine 

We wrote the report تقريرال ناكتب 
taqreeral nakatab 

Past simple  Masculine / feminine 

 

2.9.3.4. Gender:  

 Nouns may classify into gender classes if they fall under a language with a 

‘grammatical gender’ system (Badr et al., 2009). The grammatical gender may have 

an influence on the basis of a word’s morphological or phonological features. This 

leads to difficulties in translating grammatical gender to the Arabic language (MSA 

and dialectal Arabic).  

 The literature indicates that a gender problem occurs from generalisation in the 

English language with elements such as ‘I’, which occasionally take the form of ‘أنا’ 

in Arabic. Sensitive gender treatment is of great concern in the Arabic language 

(Holes, 2004), see examples in Tables 2.7, 2.8, 2.9 and 2.10.  

 

Table 2.7: The Arabic Language Features – Gender examples 

English Arabic Gender 

I am a tourist (male) 
 سائحأنا 

sae'hana  
Masculine 

I am a tourist (female) 
 هسائحأنا 
ahsae'hana  

Feminine 

 

  ‘Grammatical gender’ terminology is a two-level semantic component. 

Usually, it refers to the biological gender (male and female). In Arabic, this may 

represent as (man =رجل ragol) and (women = امرأه amra'ah), indicating gender 

specificity. Antagonistically, for such nouns as ‘doctor’ and ‘driver’, gender is 

generalised. Many Arabic words are changed according to their gender. However, if 

an Arabic word ends with (ة,ه,ـه(  ,)ى, ـى) or (اء ,ـاء) it is considered as feminine (Badr 

et al., 2009). 
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2.9.3.5. Suffixing 

Suffixing – The linked taa' (ـه)   

Table 2.8: The Arabic Language Features - Suffixing – The linked taa' (ـه) examples 

English Arabic (male) Arabic (female) 

Lawyer محامي 
mohami 

 همحامي
mohamiyah 

Secretary سكرتير 
secretaire 

 هسكرتير
secretairah 

 

Suffixing – al Alif al Maqsūra (ى) 

Table 2.9: The Arabic Language Features - Suffixing – al Alif al Maqsūra (ى) examples 

English Arabic Gender 

The oldest brother 
 الاكبرالاخ 

al'akh al'akbar 
 Masculine 

The oldest sister 
 ىالكبرالاخت 

al'okht alkobra 
 Feminine  

                          

Suffixing – al Alif al Mamdūdah (ـاء) 

Table 2.10: The Arabic Language Features - Suffixing – al Alif al Mamdūdah (ـاء) examples 

English Arabic (male) Arabic (female) 

Single 
 أعزب

a’azab 
 اءعزب

‘azbaa' 

 

 Nonetheless, there are nouns in the Arabic language that are formally treated 

as feminine even though they are functionally masculine, such as (Hamza, حمزة) and 

(Moawya, معاويه). 

2.9.3.6. Proper Nouns in the Arabic Language: 

 Closer consideration of changes in the gender of the referent will lead to 

changes at the phrasing and sentential levels, as illustrated Table 2.11. 

Table 2.11: The Arabic Language Features - Proper Nouns in the Arabic Language examples 

English  Arabic 

A big castle 
In Arabic, castle = masculine, 
which makes big = masculine 

 كبير قصر
kabeerqaser  

A big bus 
In Arabic, bus = feminine, which 
makes big = feminine 

 ةكبير حافلة
ahkabeer hafelah 
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2.9.3.7. Changing Verbs According to Gender: 

 Wightwich and Gaafar (2005) highlight that, in the Arabic language, the verb 

will change according to gender. The example shows not only a change in the verb but 

also a gender-based change in three other words, as in Table 2.12. 

Table 2.12: The Arabic Language Features - Changing Verbs According to Gender examples 

English Arabic Gender 

One of my students did not 
attend the session 

 الجلسة طلابي احد يحضرلم 
lam yahdor ahad  tolabbi algalsah 

Masculine 

One of my students did not 
attend the session 

 الجلسه طالباتي احدى تحضرلم 
lam tahdor ehda talebati algalsah 

Feminine 

 

2.9.3.8. Using a Nominal Phrase with the Pronouns 'He’ or ‘She': 

 Consider the phrase, ‘a smart manager’. In English, this could refer to either a 

male or a female. In fact, it is not essential to inflect the determinative and the adjective 

(ADJ) to make them agree with the head noun of the phrase, which remains unchanged 

(Ryding, 2005). However, in the Arabic language this should be changed to inflect the 

determinative and the adjective with the feminine head noun, see Table 2.13. 

 

Table 2.13: The Arabic Language Features - Using a Nominal Phrase with the Pronouns 'He’ or ‘She' examples 

English Arabic Gender 

He is a smart manager 
 ذكي مدير هو

dhakimodeer  howa 
Masculine 

She is a smart manager 
 ةذكي ةمدير هي

yahdhaki ahmodeer hiyya 
Feminine 

 

2.9.4. Morphological differences between MSA and the 
dialectal Arabic 

 The morphological differences between MSA and dialectal Arabic can be 

found in many aspects, as exemplified in Tables 2.14 and 2.15. 

 

- Future proclitic:  
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Table 2.14: The Arabic Language Features - future proclitic examples 

In English MSA Dialectal Arabic 
Will He will 

go 
 s   سـ
  سوف
sawf 

يذهبس     sayadhhab 

يذهب سوف    sawf 
yadhhab 

 h     حـ
 b      بـ

 rh    رح

يروحح       hyrwh 

يروحب        bayruh 

يروح رح     rh 
yaruh 

 

-  The substitution of the pronouns: 

Table 2.15: The Arabic Language Features - the substitution of the pronouns examples 

In English MSA Dialectal Arabic 

This  
That 

 This 
teacher 
That 
teacher   

  هذا
hadha 
  هذه
hadhih 
  ذاك
dhak 
  تلك
 tilk 
  هؤلاء
hwla' 

المعلمهذا     
hdha almuelam 

المعلمههذه    
 Hadhih 
almuelimuh 

المعلمذاك     
hadha almaelam 

المعلمهتلك     
tilk almuelimuh 

المعلمينهؤلاء     
hwla' 
almuealimin 

  هـ
 h 
   هاكـ
hak 

  هذيك
hdhik 
  هذاك
hadhak 
  ذولاك
dhulak 
  هذولاك
hadhulak 
  هذيليك
hadhilik 
  هذاهمك
hdhahimk 

المعلمه   
 halmelm 

المعلمهاك     
hak almaelam 

المعلمههذيك     
hdhyk almuelamih 

المعلمهذاك     
hadhak almaelim 

المعلمينذولاك     
dhulak almuealimin 

المعلماتهذولاك     
hdhwlak almuealamat 

المعلمينهذيليك     
hadhilik almuealimin 

المعلمينهذاهمك     
hadhahimik 
almuealimin 

 

 

- Prepositions of Time and place 

 Another observation is the use of one letter (abbreviated) such as ( ع) letter in 

place of the ( على ), see Table 2.16. 

 

Table 2.16: The Arabic Language Features - Prepositions of Time and place examples 

In English MSA Dialectal Arabic 

In 
On  

In the hotel  
On the table  

 fi   في 
 ealaa  على

الفندقفي    
 fi alfunduq 

الطاولهعلى     
ealaa altaawilih 

 f  فـ

  بـ
b 
 a ع

الفندقف      falfunduq 

الفندقب      
bialfunduq 

الطاولهع     
aaltawulh 
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2.9.5.Particulars of Arabic Social Media Content - 
Challenges with Analysing Social Media Output 

 Text used in social media, particularly micro-text such as tweets, presents 

numerous challenges when compared to formally structured text, such as text that is 

presented in newspapers and scientific journals. As explained by Nabil et al. (2015), 

the challenges related to the sentiment analysis systems applied to Twitter arise due to 

several features of tweets. Tweets can contain unstructured language, numerous 

orthographic mistakes, slang words, ironic sentences, contractions, colloquial 

expressions, abbreviations, or idiomatic expressions. 

 Analysing tweets composed in Arabic is a particularly challenging task due to 

spelling inconsistencies, the use of connected words, and a lack of capitalisation, 

which would otherwise be used to identify features. In addition, most people write 

tweets as they speak; for instance, it’s important to consider the emotional character 

of Arabic tweeters and the frequent tendency to repeat letters for exaggeration, 

examples of which include ‘sorrrrrrrry’ and ‘noooooo’ as shown in Figure 2.3. 

Moreover, some characters have more than one form, an issue that highlights the need 

for normalisation, i.e., the unification of Arabic characters, as demonstrated in Table 

2.17.  

 

 
Figure 2.3: Example of challenges with analysing social media output 
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Table 2.17: Arabic normalisation 

Letter After normalisation Example 

  ya’a   ي 

 alef maqsura   ى 
 Ali — male name      يعل ya’a  ي

ىعل      On top of 
    ta’a marbuta   ة

 ha’a   ه
  Beautiful      ةحلو ha’a  ه

هحلو       Beautiful 
  alef hamza’h   إ 

 alef hamza ‘h    أ 

 alef wasel   ا

فضل ا alef wasel without   hamza’h  ا     Best  

فضلأ      Best  

 

 To summarise, Arabic social media content is associated with the following 

challenges: 

 Unstructured language 

 Orthographic mistakes  
 Slang words  

 Ironic and colloquial expressions, contractions, abbreviations 
 Spelling inconsistencies 
 Lack of capital letters in Arabic, which would otherwise be used to identify 

features  
 Emoticons  
 The tendency to repeat letters in writing to convey feelings 

 

2.10. Characteristics of the Arabic Language Relevant 
to Sentiment Analysis 

 Ahmed et al. (2013) explained that the Arabic language is a morphologically 

rich language (MRL), in which a substantial quantity of information regarding 

syntactic elements and relations is articulated at the level of a single word. Certain 

sentiment analysis systems were developed for the English language at the word level; 

however, the English language has less morphological disparity. Therefore, the direct 

application of lexical features to the sentiment analysis of the Arabic language will 

lead to insufficient data. The reason for this is that one word in the Arabic language 

can have several different surface forms as examples in Table 2.18. 
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Table 2.18: Example of multiple forms of Arabic verbs 

English word Arabic word Forms in English Forms in Arabic  
Love  حب (Root) 

hub 

I love حبأ    'uhiba 

He loves حبي    yuhibu 

She loves حبت    tuhibu 

They love واحبي    yuhbuu 

We love حبن      nahab 

 

 Hence, in the English language, the verb ‘love’ has few forms and can assume 

individual features. In the Arabic dataset, however, there is a high probability that 

every word could have a substantial number of forms. Additionally, the majority of 

Arabic first names (and, to a lesser extent, family names) are derived from Arabic 

adjectives that can be easily confused for sentiments (Mohammed, 2016), see Table 

2.19. This is a challenging problem in Arabic natural language processing (NLP) that 

is traditionally addressed by applying pattern analysis of POS tags of words in text to 

determine whether the word is a proper noun or adjective. However, this solution is 

more difficult to apply to dialectal Arabic where the accuracy of the POS tagger is 

especially poor. 

Table 2.19: Examples of Arabic names 

Arabic name Adjective  

  Nabil     Noble   نبيل 

  Saeid  Happy سعيد

  Jamiluh Beautiful جميله

 

 Due to the use of diacritics and rich morphology, Arabic words with the same 

root can have incompatible emotional orientations. This poses a significant challenge 

when applying stemming mechanisms to identify the polarity of sentiments. Some 

instances of inconsistent sentimental words with the same Arabic roots are displayed 

in Table 2.20. 

Table 2.20: Arabic is morphologically rich 

Arabic word In English    Sentiment   Root  

 talaeub Manipulate Negative -1   تلاعب
 laeib   لعب

 yaleab Plays Positive +1     يلعب

 tamyiz Discrimination Negative -1     تمييز
 miz    ميز

 iimtiaz Excellent  Positive +1'    إمتياز
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 The challenges presented in this section suggest that the effective sentiment 

analysis of Arabic tweets requires linguistic processing to clean the data. After deep 

understanding of the characteristics of the Arabic language and all the challenges of 

analysing social media content, it is evident that the NLP tools of MSA Arabic 

language may not work efficiently with dialectal Arabic. Also, the dialectal Arabic are 

different from country to country, so the Arabic NLP tool for the Egyptian dialect will 

not achieve good results with Saudi dialects, which is illustrated in detailed in the 

following chapter.  

 Addressing Arabic NLP challenges has attracted a lot of research interest, and 

this has resulted in a number of scientifically mature tools that attempted to process 

Arabic NLP. The maturity of these tools is less relevant in dealing with dialectical 

Arabic because of the complexity of the dialectal Arabic.  

 

2.11. Chapter Summary 

 The chapter started with overview of sentiment analysis, then presented the 

importance of social media in Arab countries. The users in social media freely 

express individual viewpoints on issues that impact their daily lives. One of the main 

issue in Saudi Arabia is unemployment which is the problem domain used as the case 

study for this research. After that, the main sentiment analysis approaches were 

reviewed highlighting their strengths and weaknesses such as lexicon based 

approach, machine learning approach, the hybrid approach and deep learning 

approach. The characteristics of the Arabic language were explored in detail with 

specific focus on the challenges they present to social media sentiment analysis. This 

chapter illustrate an in-depth exploration of NLP and its application to the Arabic 

language.  Through a comparative review of multiple linguistic traits and variations, 

these findings have highlighted the need for an alternative ANLP solution capable of 

reconciling Arabic traits and features during sentiment analysis.   
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Chapter 3 
 
3 literature review 

 This chapter reviews studies in the literature that highlights the litruture in 

sentiment analysis. The majority of the online data is unstructured, high efforts are 

demanded to extract information from that data to be structured and understandable by 

utilising different techniques and approaches. Recently, the research community has 

widely acknowledged the use of sentiment analysis for knowledge representation and 

understanding people opinion. In this chapter the literature review of sentiment 

analysis applications and approaches will be illustrated. 

3.1. Literature Review of Arabic Natural Language 
Processing 

 One of the earliest studies done on Arabic NLP is by Khoja and Garside (1999), 

which adopts a root-based approach. It utilises morphological analysis to derive the 

root of a specific Arabic example of vocabulary, in line with derivation patterns and 

vocalization variation. Khoja and Garside (1999) attempted to locate root Arabic 

words and based this location on predefined morphological analysis and root lists, 

thereby creating abstract roots. In a more recent study, Cunningham (2002) developed 

the General Architecture for Text Engineering (GATE), which is a recognised 

framework for language engineering applications, supporting text processing as its 

main function. The GATE tool can handle the Arabic language and it is openly 

available for public access, developed in Java. It allows for building blocks that can be 

used to create new modules (plug-ins). This is facilitated via GATE’s component-

based model and Application Programming Interface (API). It involves a group of re-

usable processing resources for everyday NLP tasks. These are collated to form A 

Nearly New IE System (ANNIE), A, and can be utilised as individual components. 
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ANNIE is made up of the following main processing resources: semantic tagger, 

orthomatcher, tokenizer, sentence splitter, POS tagger, Gazetteer, and coreference 

resolver. The semantic tagger, called a JAPE transducer, is a set of rules written in the 

JAPE language, describing patterns that can be matched and annotations that can be 

created. Additionally, GATE has a huge set of plug-ins, including: Stemmer, Chunker, 

machine learning components, and WordNet. The GATE also supports formats 

including RTF, HTML, XML, SGML, plain text, and email.  

 The Stanford POS Tagger was originally developed for the English language 

and was derived at Stanford University. The tagger is a supervised system mirroring 

the maximum entropy model. The Arabic version, described in Toutanova (2003), was 

adapted within the training section of the Arabic Penn Treebank (ATB). It has an 

accuracy of 96.42% when applied to the Arabic language. ISRI Stemmer, which was 

developed by Taghva et al. (2005), is an example of light stemming. In the absence of 

a root dictionary, the ISRI algorithm adopts affix lists and the most common patterns 

to extract roots. MADA+TOKAN is a collection of tools for POS tagging, stemming 

and lemmatization, tokenization, morphological disambiguation, and diacritisation 

provided by Habash et al. (2009). MADA functions by exploring a set of possible 

analyses for individual words and choosing the best-fit analysis for the current context 

through support vector machine models that can classify 19 individuals, weighted 

morphological aspects. TOKAN receives the data gleaned from MADA to generate 

tokenized output in a vast collection of customisable formats. It achieves an excess of 

96% accuracy regarding basic morphological choice and lemmatization. For complete 

diacritisation, MADA achieves an excess of 86%.  

 In the Al-Shammari Lemma-based Stemmer, Al-Shammari and Lin (2008) 

integrated root stemming, light stemming, and dictionary referencing. They utilised a 

stop list with an excess of 2,200 words containing noun and verb dictionaries as 

linguistic sources. Additionally, this enhanced success in clustering tasks. The Al-

Shammari algorithm was more successful than Khoja and light stemmers regarding 

over-stemming evaluation (Al-Shammari, 2013). SALMA Tools is a conglomerate of 

tools, open-source standards, and resources that open the range and ability of Arabic 

word structure analysis, particularly morphological evaluation, to explore Arabic text 

corpora within differing formats, genres, and domains in vowelized and non-
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vowelized samples of text. Sawalha et al. (2013) forward the argument that a more 

fine-tuned presentation of text is required to consider the complexities of Arabic. The 

SALMA-Tagger is an example of a fine-grained morphological analyser, dependent 

upon linguistic data derived from traditional Arabic grammar studies and lexical 

resources; namely the SALMA–ABC Lexicon. It is a morphological tag-set that adapts 

a morphological analyser to complement appropriate linguistic data to each particular 

part or morpheme of the word (suffix, enclitic, proclitic, prefix, and stem). This tool 

yields a very high accuracy of 98.53%- 100% for the CCA test and 90.11%-100% 

relating to the Quran test. 

 Another solution identified as AraNLP by Althobaiti et al. (2014) is a free, 

Java-based library covering a variety of Arabic preprocessing tools. It is an attempt to 

harness the majority of widely used Arabic text preprocessing tools into a single library 

that can be simply utilised by combining or accurately adapting existing tools, hence 

creating new ones when desired. The library includes a root stemmer, part-of-speech 

tagger (POS-tagger), word segmenter, sentence detector, tokenizer, light stemmer, 

normalizer, and a punctuation/diacritic remover. A maximum entropy model has been 

created and used on Arabic text corpus regarding sentence boundaries. The 

performance achieved a score of 0.97 precision and .98 recall. For the token boundary 

detection, a MaxEnt machine learning model was created and trained, achieving a 0.97 

precision and recall result. Monroe et al. (2014) developed Word Segmenter. At 

Stanford University, where a group was working on Arabic NLP, the researchers added 

to an existing MSA segmenter a simple domain adaptation approach and original 

features to segment dialectal and informal Arabic text (Monroe et al., 2014). The 

segmenter itself was based on a sequence classifier (Conditional Random Fields) to 

produce an Arabic conjunction, preposition, clitic segmentation, and pronoun. The 

significant advantage of this is that it processes Arabic text at a much speedier rate 

compared to other systems in existence, enhancing the segmentation F1 score on 

Egyptian Arabic corpus to 92.09%, compared to 91.60% for a different segmenter 

designed for the same purpose. 

 Antoun et al. (2020) designed an Arabic model to boost the recent 

technological advances in a number of NLU Arabic tasks. They built a bidirectional 

transformer encoder using the BERT model (Devlin et al., 2018). This model is 
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commonly used as the framework for the most advanced results in various language 

NLP tasks. In order to achieve the same success as BERT in English, they pre-trained 

the BERT specifically for the Arabic language. AraBERT's success is comparable to 

Google's multilingual BERT and other cutting-edge approaches. The results showed 

that AraBERT has achieved the latest developments in Arabic NLP tasks in most 

proven applications. In order to democratise the processing of Arabic, Alyafeai et al. 

(2020) created ARBML with a collection of demonstrations and resources to allow 

developers, users, and researchers to make use of it easily. They rework and render the 

NLP pipeline for Arabic. 

 

3.2. Literature Review of Arabic NLP Tools 

 Throughout the literature in this field, an emergent number of studies have 

explored the viability of Arabic NLP for MSA. MADAMIRA, for example, was 

developed by Pasha et al. (2014), and focuses explicitly on MSA. It is not dedicated to 

MSA in isolation but also takes into account the Egyptian dialect. MADAMIRA, offers 

a lot of NLP tasks such as phrase chunking, named entity recognition, feature 

modelling, and tokenization. YAMAMA is a NLP tool for morphological analysis 

developed by Khalifa et al. (2016).  Similar to the work completed by Pasha et al. 

(2014), Khalifa et al. (2016) concentrated on MSA in relation to the Egyptian dialect, 

producing a solution that they suggest is around five times faster than MADAMIRA.  

 Another NLP stemmer tool, Farasa was developed by Abdelali et al. (2016) 

and adopted a linear SVM solution. To support Farasa, the authors compare it with 

two additional segmenters: The Stanford Arabic Segmenter (SAS) (Monroe et al., 

2014) and MADAMIRA (Pasha et al., 2014). Although the Farassa stemmer achieved 

better results, it included limited NLP tasks, limiting its overall functionality for more 

complex analyses. To reduce the complexity of such processes, Abainia et al. (2018) 

introduced ARLSTem, an Arabic light stemmer solution which eliminates prefixes, 

infixes, and suffixes. Similar in their approach, Zalmout and Habash (2017) presented 

a NLP tool based on Recurrent Neural Networks (RNN) which addresses Arabic 

morphological disambiguation. Their model yielded accurate outcomes; however, as 

it was designed for MSA, experiments were not conducted with dialectical Arabic 
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Text. In presenting their findings, Zalmout and Habash (2017) introduced the Long 

Short-Term Memory Model to demonstrate that their findings had achieved an 

accurate result. 

 Drawing upon prior techniques in this field, Shahrour et al. (2015) introduced 

the CamelParser, a tagger based upon the MADMIRA model originated by Pasha et 

al. (2014). Using SVMs, the tagger ranks all the possible analyses that resulting from 

a morphological analyser. It enhances the MADAMIR by utilising syntactic analysis 

to improve the accuracy of the output. More recently, NUDAR, a Universal 

Dependence treebank for the Arabic language, was proposed by Taji et al. (2017). This 

fully automated conversion of the Penn Arabic Treebank was forwarded to the 

syntactic representation. Subsequently, More et al. (2018) designed their Universal 

Morphological Lattices for Universal Dependency (UD) Parsing to Arabic. 

 As researchers strive toward a solution for Arabic NLP, some recent scholars 

have targeted a variety of orthographic standards, conventions, and rules.   For 

example, Habash et al. (2018) undertook to establish commonly recognised guidelines 

with adequate specificity to analyse dialectal Arabic. One of the most vital topics were 

POS tagging. which recently has been attracted the researchers to addressed to process 

dialectal Arabic. Darwish et al. (2018) also provided a POS tagger, which relied on a 

sequence mark of Conditional Random Field. This tagger is devoted to address several 

dialects such as Gulf, Egyptian, Levantine. They manually segmented 350 tweets into 

each dialect to test their study. Samih et al. (2017) suggested a segmenter that would 

use neural networks to target 350 annotated tweets. The authors adapted segmentation 

for the Arabic language by applying sequence grouping based on character models to 

the outputs (Samih et al., 2017). An alternative approach introduced by Saadane and 

Habash (2015) demonstrates that Egyptian and Tunisian dialects could be applied to 

the Algerian dialect, allowing for combinative analysis. Highlighting the importance 

of dialectical considerations, Zribi et al. (2013) developed a system for adapting a 

related morphological analyser extracted from the MSA. They used Tunisian dialect 

lexicons which were developed on the basis of an existing MSA lexicon (Zribi et al., 

2013). 

 For the Gulf dialects, a POS tagger was recently proposed by Alharbi et al. 

(2018) who noted that SVM derived results were improved by using a Bi-LSTM label. 
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For Emirati dialectal Arabic, Khalifa et al. (2018) forwarded a manually annotated 

corpus of on a large-scale morphology. They used about 200,000 Gumar-derived 

words in Khalifa et al. (2016).  Similarly, the Analyser for Dialectal Arabic 

Morphology (ADAM) was developed by Salloum and Habash (2014). They measured 

the performance of ADAM in terms of two dialectical Arabic such as Egyptian and 

Levantine. Another morphological analyser and tagger was studied by Al-Shargi et al. 

(2016). This analyser was trained upon a morphologically annotated corpus that was 

manually constructed by the authors and adapted the annotation interface DIWAN (Al-

Shargi and Rambow, 2015). Their analyser with a focus on the dialect of Sanaani, 

Yemeni and Morocco. ADAM is comparable to CALIMA which is designed by 

Habash et al., 2012, a morphology analyser for Egyptian dialectal that requires great 

durability and expensive resources to be built.  

 Continuing to extend these dialectical solutions, an Arabic morphological 

analyser was introduced by Khalifa et al. (2017) exploring over 2,500 verbs for Gulf 

dialects. The authors used dual resources including a lexicon of verbs and a collection 

of root-abstracted paradigms (Khalifa et al., 2017). In contrast, the MADARi interface 

is an annotation tool developed by Obeid et al. (2018) to assess text derived from only 

the Egyptian dialect. It is a Web based interface which supports spelling correction 

and morphological annotation. Zalmout et al. (2018) recently argued for a neural 

morphological tagging and disambiguation model relating to the Egyptian dialect, with 

a variety of expansions to cope with the loud and irregular content.  The authors 

adapted the CNN and LSTM models to generate character embedding.  

 CAMel Software, which includes a group of open-source tools for natural 

Arabic language processing in Python, has been introduced by Obeid et al. (2020). 

CAMeL Tools offers pre-processing, dialect recognition, identified object 

identification, morphological modelling, and sentiment analysis services. In addition, 

these tools have provided a variety of pre-processing tools popular with Arabic NLP 

but often re-implemented. A number of tools and packages are not really well-known 

or exposed over their own use, for certain pre-processing steps. With these utilities in 

the bundle, the workload of writing of Arabic NLP applications has been reduced and 

the pre-treatment is consistent between projects. Another NLP tool is ADAWAT, 

which is developed by Zerrouki et al. (2020) offer a range of applications, verb 
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conjugator, Light stemmer, spell checker, dictionary synonyms, speech system 

document, Mishkaldiacrtizer, morphological analyser, vocalised texts body, and 

collocations. The primary approach to constructing rules and data used is rules-based. 

These tools are built with existing systems such as Hunspell Spell Checkers for 

millions of users using LibreOffice and Firefox.  

3.3. Literature Review of Arabic Stemming  

 Stemmers have been developed for a wide range of languages, including 

English, French, Arabic, and Chinese. Across languages, several factors affect 

stemming. In English, for example, because the usage of affixes is less complex than 

in Arabic, English-language stemmers mostly focus on the removal of prefixes and 

suffixes (Al-Omari and Abuata, 2014). In addition, the numbers of words with 

irregular forms that are not amenable to direct stemming (e.g., ‘write’ and ‘wrote’) are 

limited and can be dealt with explicitly using a root lexicon. The design of stemmers 

for highly inflected languages such as Arabic (Larkey et al., 2002) requires a deep 

understanding of these languages’ grammar and considerable linguistic expertise 

(Hammo, 2009). 

 The Khoja (1999) Arabic stemmer is a fast stemmer that works in two main 

steps: (1) by removing the longest suffix and prefix present in the input word, and then 

(2) matching the remaining word with a root library containing lists of known noun 

and verb patterns. The stemmer considers the inevitable irregularities in the language, 

with the aim of extracting the correct root from words that do not adhere to the general 

rules. Notwithstanding numerous tagging errors, the Khoja stemmer has been 

successfully applied to a variety of natural Arabic-language processing tasks (Larkey 

et al., 2002). The stemmer does have two drawbacks, however. First, the root 

dictionary requires maintenance to ensure that newly found words will be stemmed 

correctly; second, the stemmer does not cover all Arabic patterns and occasionally fails 

to remove all the affixes attached to words.  

 While the ISRI stemmer (Taghva et al., 2005) applies the same approach as the 

Khoja (1999) stemmer to word rooting, it was developed to cope with situations where 

it is impossible to root a word. In these cases, various normalisation techniques, such 

as normalising all shapes of the letter ta’a (‘ ه‘ -’ ة ’), are applied to extract the word’s 
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stem. For example, rather than leaving the word unchanged, the ISRI stemmer removes 

the end patterns or certain determinants. This feature makes the ISRI stemmer capable 

of stemming rare and new words. It returns a normalised form for non-stemmed words 

and has more stemming patterns, such as /فعال  /فاعل / مفعل/ فعول   / فعيل   /مفاعل /مفعول / فعلة/

 and more than 60 stop words. Bsoul and Mohd (2011) proved that the ISRI ,فعولة

stemmer makes excellent improvements to language tasks (for instance, document 

clustering) compared to non-stemmed approaches. The stemmer is incapable of 

addressing the irregular plural form, however. Pasha et al. (2014) developed the 

MADAMIRA tool in 2014, which is a morphological analyser that provides a set of 

features, including stemming, and is composed of two sub-tools. The first is MADA, 

created by Habash et al. (2009), and the second is AMIRA, designed by Diab et al. 

(2009). MADAMIRA also provides light stemming analysis by removing prefixes and 

suffixes from words. The tool does not explicitly define morphological rules, however. 

The FARASA stemmer (2016), which falls between heavy and light stemmers, 

performs an initial grouping of words, which allows for accurately conflating different 

variants into the same form while limiting over-stemming. The FARASA tool has a 

tag set of 16 basic tags, although the stemmer is limited in certain cases.  

 Kanaan et al. (2008) developed a rule-based stemmer in which the input word 

is compared with a single pre-defined list of Arabic patterns to find matches. If the 

pattern matches the word, then no changes are made. If the word does not match any 

patterns, then light stemming is done to remove the prefixes and suffixes. The size of 

the pattern list cannot be known, however. In their paper, the sample term lists 

contained only 21 words. Al-Kabi et al. (2015) developed an approach to detect the 

root using the Khoja (1999) stemmer. As in Khoja (1999), the algorithm in their study 

begins with the removal of suffixes and prefixes in the input word. The difference 

between the two algorithms is that the Khoja stemmer depends on matching the 

extracted stem with patterns in terms of their length. Accordingly, in Al-Kabi et al.’s 

(2015) approach, the pattern is chosen according two main criteria: the length and the 

common letters between the stem and the pattern. The results show that, while 

accuracy is greatly improved over the Khoja (1999) stemmer, the approach fails to 

extract roots from words shorter than four letters. Recently, Sameer (2016) developed 

a light stemmer approach to stemming Arabic words. In the proposed algorithm, the 
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pre-defined lists of suffixes and prefixes are removed according to their order in the 

algorithm. The algorithm was not tested sufficiently, however, as only 14 words were 

used to test the algorithm. Although the stemmers previously discussed were 

developed primarily for MSA and cannot be directly applied to Saudi dialectal Arabic, 

the ISRI stemmer has demonstrated acceptable results when applied to Saudi dialectal 

Arabic in processing (Abozinadah and Jones, 2016). 

 Few studies have focussed solely on developing stemmers for Saudi dialectal 

Arabic. One example presented by Shoukry et al. (2012), implemented a customised 

stemmer for dialectal Egyptian. The main objective of the stemmer was to reduce the 

input word to its shortest possible form without compromising its meaning. The 

researchers tested their implemented stemmer against an available light stemmer and 

observed that their stemmer produced better results because it addressed dialect-

specific issues (Shoukry et al., 2012). Similarly, Al-Gaphari et al. (2012) developed a 

system for working with the Sana’ani dialectal Arabic and MSA. Their approach is 

based on morphological rules that assist in the conversion of dialectal Arabic to the 

corresponding MSA (Al-Gaphari et al., 2012). Because their approach uses dialectal 

Arabic stemming to translate the Sana’ani dialectal Arabic into MSA, they 

implemented their method using a simple MSA stemmer. 

 Sabtan (2018), using a corpus-based approach, implemented a light stem for 

Arabic. The stemmer groups morphology variants of words into an Arabic corpus 

using similar characteristics and extracts their prefixes to create their common stem 

before removing them. Experimental findings show that 86% of the terms in the test 

set are grouped accurately in a similar reduced state, which is the possible stem. The 

reduced form is not the legal stem in some situations. The assessment indicates that 

72.2% of the test words are reduced to the legitimate stem. Atwan et al. (2019) sought 

to explain light stemmers efficiency in the restoration of Arabic knowledge. The 

calculation of the light stemmer is carried out by the use of TFIDF because it considers 

that the main system is comparable to the primary system, without stemming, as a 

popular system of weighting compatible with the Linguistic Data Consortium (L DC). 

In order to achieve the best efficiency, the suggested light stemmer must be used. This 

study explores the effects of stemming and its effect of improving the text of Arabic. 

The analysis findings from this study are based on two measurements: accuracy and 
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recalling. Therefore, the author clarifies the effect of the stemmer on improvement of 

light stemming performance in Arabic documents in this study. 

3.4. Literature Review of Lexical Resources for 
Dialectical Arabic Language Processing  

 The widespread popularity of social media websites has led to frequent usage 

of unstructured text throughout the web. This text is often accepted objective, while 

still reflecting both facts and/or subjective viewpoints that include both sentiments and 

opinions. Sentiment analysis is a significant research field involving the identification 

of opinions within a given text and classifying expressions (e.g. positive, negative, 

neutral). Research has been carried out to develop and analyse a lexicon for the Arabic 

language. The following sections explore the extant literature in this field, whereby, 

two methods have been established by researchers to develop lexicon for sentiment 

analysis approach including manual and automatic.  

 The manual approach establishes a “sentiment” based on a set list of Arabic 

vocabulary that is gathered from a set dataset or established domain. The lexicon 

derived from this approach is generally highly accurate, but a disadvantage is that it is 

limited in size due the time it takes to collate and annotate. Resources were developed 

to enhance the value and effect of this approach. One such resource is ArabSenti 

(Abdul-Mageed et al.,2011); derived from the Arabic Tree Bank (ATB) part 1 V3.0, it 

includes 3,982 adjectives from 400 texts. Another is SIFFAT (Abdul-Mageed et al., 

2012), which contains 3,325 adjectives under the headings neutral, positive or 

negative. This resource has evidenced clear improvement in accuracy in terms of 

determining sentiment as a subjectivity analysis tool. Adjectives used in both these 

resources were manually labelled as neutral, positive and negative by native Arabic 

speakers and were analysed by a linguistic expert. This area involves MSA and the 

data is not publicly available.  

 A further manual resource was created by Abdulla et al. (2013); this resource 

translated 300 words as a seed set from Sentistrength (Thelwall, 2013) to Arabic. 

Synonyms, antonyms and emoticons were adapted to expand this seed set. Differing 

from the previous resources, this resource does not include neutral language. Again, 

this resource is not publicly available since it is involved with MSA. A recent 
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sentiment lexicon is NileULex (El-Beltagy, 2016; El-Beltagy, 2013). It includes 

compound phrases, as well as single words, from dialectal Arabic and MSA. Terms 

and compound phrases were derived from social media automatically, even though 

they were manually annotated. Stand-alone terms were deliberately unambiguous and 

compound phrases were adopted to avoid any misleading interpretations. NileULex 

contains 5,953 annotated terms labelled as positive or negative. This sentiment 

resource was used by the NileTMRG team (El-Beltagy, 2016) while participating in 

the SemEval 2016 Task 7 (Kiritchenko, 2016). NileULex was expanded by El-Beltagy 

(2017) to automatically assign scores or weights to entries and allowed the resulting 

resource, called “WeightedNileULex”, to be available to the public.  

 Regarding the automatic approaches, it is clear that automatic approaches to 

sentiment analysis need to be developed. Though it may contain some erroneous data, 

it is nonetheless cheaper and takes up less time. Traditionally, automatic expansion is 

achieved through manual intervention and it collects English sentiment lexicon, which 

is then translated (or finds the nearest equivalent) into Arabic. Mourad and Darwish 

(2013) for example, revamped the manual ArabSenti to automatically expand the 

resource with graph reinforcement. ArabSenti was translated into English, and, by 

using mechanical translation tables (English-Dialectical Arabic, English-MSA), the 

lexicon was enriched with new terms. MPQA lexicon (Wilson et al., 2005) was also 

translated from English to Arabic by utilizing the Bing mechanical translation device, 

combing all lexica and creating an opinion-based classification approach. Once again, 

the data is not publicly available, and the total number of terms is unknown. 

 Arabic WordNet (AWN) by Black et al. (2006) and English SentiWordNet 

(ESWN) by Baccianella et al. (2010) and Farra et al. (2010) were linked by Alhazmi 

et al. (2013) for utilizing a synset (synonym set) offset approach to data. This was 

limited in its coverage (approximately 10K lemmas) and no definition was forwarded 

in terms of adopting the lexicon in more practical applications, bearing in mind the 

complexity of Arabic morphology. Again, this was not publicly available; hence, no 

evaluation of sentiment is possible. The availability of ESWN and its success, 

however, was exploited by Badaro et al. (2014) by developing a lemma-based 

sentiment based on Arabic lexicon: ArSenL. This was derived by fusing two sub-

lexicons. Initially, AWN 2.0 was mapped with ESWN 3.0 via sense map files and 
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utilizing EnglishWordNet, as used by Alhazmi et al. (2013), though one important 

deviation was to adapt the AWN lemma format to LDC. This approach is vital to allow 

for integration with various other NLP applications. Secondly, ArSenL-Eng mapped 

ESWN 3.0 with the Standard Arabic Morphological Analyser (SAMA) (Maamouri et 

al., 2010) through matching the gloss terms in SAMA with synset terms in ESWN. 

ArSenL, is available to access with 29K lemmas and their linked POS tags, ESWN 

sentiment values and EWN synset ID. This approach has certainly improved accuracy 

and sentiment classification. A recent further extension of ArSenL is ArSEL (Badaro 

et al., 2018); Arabic Sentiment and Emotion Lexicon with an extra eight emotion 

values compared to the ArSenL lemmas. Emotion values are derived from a WordNet 

lexicon application EmoWordNet (Badaro et al., 2018). 

 A semi-automatic approach for developing sentiment lexicon was devised by 

Abdulla et al. (2014). 300 words from English to Arabic were manually extracted from 

SentiStrength and synonym tables were adopted for expansion. Google Translate was 

utilized as the automatic factor for translation purposes. An annotated corpus was also 

investigated, allowing sentiment to identify positive and negative words using a term-

frequency weight approach. Abdul-Mageed and Diab’s (2014) manual sentiment 

lexicon (SIFAAT) was developed automatically via machine translation and formulaic 

statistical analysis based on common information to form SANA. This involved 

224,564 separate entries covering Egyptian, Levantine dialects and Modern Standard 

Arabic (MSA). Duplication is evident since a number of sources were used in creating 

SANA in gloss matching, including Arabic SAMA (Maamouri et al., 2014), 

THARWA (Diab et al., 2014), English ESWN (Baccianella et al., 2010) and Affect 

Control Theory (Heise, 2007). SANA automatic influences include Maktoob (Twitter 

database), Yahoo and a comments database from YouTube (Abdul-Mageed et al., 

2011). SANA, predictably, is not publicly available and was not classified as a 

sentiment task. 

 Lexicon syntactic rules were adopted by ElSahar and El Beltagy (2014) to 

automatically derive subjective Arabic phrases. DA rules were applied, concentrating 

on the Egyptian Cairene dialect. An initial seed set was manually translated into Arabic 

and a stream of patterns was defined to illustrate subjectivity. Upon deleting slang, 

Pointwise Mutual Information (PMI) determined the nature of the phrase with 
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annotated tweets. A total of 7.5M cleared tweets produced 633 expressions with an 

impressive 89% accuracy. Further research by ElSahar and El Beltagy (2015) adopted 

supervised learning to create sentiment lexicon identifying positive and negative 

values. A corpus, annotated with 35K sentences, was used to extract bio grams and 

unigrams, which were SVM sentiment classified. Higher positive extracts were cited 

as positive sentiment and lower when negative. This is publicly accessible and 

considers both MSA and dialectal Arabic. 

 Sentiment lexicons were focused on DA by Al-Twairesh et al. (2016) to 

enhance the accuracy of opinion-mining approaches in data gained from Twitter. 

Approximately 2.2 million tweets involving specified positive and negative seed 

vocabulary were sourced. Coupled with emoticons, the seed words aided annotation 

in semantic evaluation. Using this dataset, the authors established duel sentiment 

lexicons: AraSenti-Trans and AraSenti-PMI. Regarding the former, tweets were fed 

through MADAMIRA (Pasha et al., 2014) (Arabic lemmas) and matched the given 

English gloss with existent sentiment lexicons Liu Lexicon (Hu and Liu, 2004) and 

MPQA (Wilson et al., 2005) to label sentiment Arabic sentiment in accordance with 

established matching rules. 132K Arabic terms were used with 60K being positive and 

72K negative. On the other hand, Ara-Senti PMI exploited computing PMI to trace 

words that appeared 5 times or more in both the positive and negative tweets, 

ultimately generating a sentiment score. 57K positive terms were traced; 37K were 

negative. Both lexicons were sentiment evaluated and classified using differing 

Twitter datasets AraSenti-Tweet (Al-Twairesh et al.,2017), ASTD (Nabil et al., 2015) 

and RR (Refaee and Rieser, 2014). Average scores were 88.92%, 59.8% and 63.6% 

respectively. Saudi dialects were targeted by Assiri et al. (2018) through a manual 

annotation of terms and comments in Saudi social media before merging the results 

with ArSenL. This updated version removed all diacritics and punctuation from the 

lemmas. Sadly, it is not publicly available. The resource pool for study is scarce due 

to the limited access of sentiment models to the public. The author of this work 

acknowledges this challenging obstacle; however, existing accessible models will be 

explored to the full. 
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3.5. Literature Review of Lexicon-based Approaches 

 Exemplifying the application of a lexicon-based approach to sentiment 

analysis, Badaro et al. (2014) proposed the ArSenL lexicon, which is similar to the 

well-known English SentiWordNet2; it is publicly available as a web-based graphical 

user interface. The ArSenL lexicon uses two lexicons: Arabic WordNet (AWN) and 

Standard Arabic Morphological Analyser (SAMA) mapped with English SWN. 

Another Arabic sentiment lexicon (ASL) was used in Mahyoub et al. (2014). In this 

case, the lexicon was built using a small seed list of positive and negative words and a 

semi-supervised method was used to assign the polarity scores to 2000 words (600 

negative, 800 positive and 600 neutral words). Importantly, these lexicons were built 

based on the general purpose Arabic WordNet; therefore, in the work by Mahyoub et 

al. (2014), it is difficult to prove that all the sentiment words that might appear in the 

reviews were included in the lexicon.  

 In another study, Abdul-Mageed and Diab (2014) constructed their Arabic 

sentiment lexicon, SANA, by combining many pre-existing lexicons that contain 

different approaches, such as automatic machine translation from an existing English 

lexicon, extensive manual correction and statistical formulation. The SANA included 

224,564 entries for MSA and two dialects, Egyptian and Levantine. However, these 

entries were not distinct, as they contained many duplicates, which limited their 

resource usability. Similarly, Al-Ayyoub et al. (2015) proposed an unsupervised 

technique for sentiment analysis of Arabic tweets. The approach to this study was 

streamlined, as the tweets were first collected and pre-processed, following which a a 

sentiment lexicon with sentiment scores between 0 and 100 was developed and divided 

into three sentiment groups. A scalar instrument was used to subdivide these groups, 

assigning scores from 60 to 100 for positive sentiments, scores between 40 and 60 for 

neutral sentiments and scores less than 40 for negative sentiments. In this way, the 

sentiment score of an input sentence was computed by combining the three 

corresponding scores (Al-Ayyoub et al., 2015). Although the overall accuracy of this 

technique was reported to be 86.89%, it was limited in its ability to handle different 

Arabic dialects.  
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 Continuing to extend this lexicon-based approach, Abdulla et al. (2014) 

developed a four-step solution designed to address dialectical variations in the text.  

The first step consisted of selecting 300 seed words from the SentiStrength website. 

Then, in the second step, the synonyms of these selected words were added to the 

lexicon. In the third step, a term frequency weighting technique was applied to the 

lexicon in order to identify whether there were still missing words after going through 

the first two steps. The fourth step added words from different Arabic dialects to the 

lexicon. Then, based on this lexicon as well as the simple lexicon-based method, the 

sentiment analysis was performed by computing the polarity of the text without taking 

into account negation and intensification. The reported results of their study had an 

accuracy of 70.05% using different lexicon scalability phases, but failed to adequately 

consider dialectical variations. Extending such research, Al-Twairesh, et al. (2017) 

presented three different methods for Arabic sentiment analysis; one of them was an 

enhanced version of a simple lexicon-based method that is capable of handling 

contextual polarity, such as negation and intensification. By adding these extra 

features, the authors achieved a better performance (91.75%) than the one obtained in 

Abdulla et al. (2014), where such contextual polarity was not taken into account.  

 Although dialectical research is limited in this field of study, a sentiment 

analysis lexicon approach exploring dialectic Arabic text (mainly Algerian) was 

proposed by Mataoui et al. (2016). This specific dialect involves a high degree of code 

switching, particularly between French and Arabic. This example portrays the extreme 

challenges faced by researchers in this particular field and anticipates new techniques 

for tackling this problem. Three sentiment lexicons were developed manually. The first 

lexicon is based on an extant Egyptian dialectical sentiment lexicon; the authors 

retained only the terms that were commonly used within the Algerian dialect. The 

second is a list of negative vocabulary frequently present in Algerian dialect, and the 

final lexicon is a list of intensifiers found within the dialect. The authors then tested 

differing configurations of the model. The first configuration was satisfactory at the 

phrase level, presenting similarities of comments that illustrated existent label phrases. 

The second configuration required word-level analysis subsequent to the application 

of developed parsers within the Algerian dialect. This was done in order to carry out 

normalisation and avoid word removal and tokenisation. The next stage was to process 
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the tokens through language detection and a stemming module. This clarifies the root 

language of the tokens. Stemming was utilised for Arabic tokens, whereas tokens for 

alternative languages were initially translated into Arabic before being stemmed. The 

next stage was to match stems with developed sentiment lexicons, which allowed for 

computation of a text semantic orientation calculation. Mataoui et al. (2016) then 

amassed their findings and manually annotated the polarity of 7,698 Facebook 

comments, covering a wide range of topics including Algerian dialect and MSA. When 

the two configurations were combined, a score of 79/13% was achieved. 

            AL-Twairesh, et al. (2017) presented three different methods for Arabic 

sentiment analysis; one of them was an enhanced version of a simple lexical-based 

method capable of handling contextual polarity, such as negation and intensification. 

By adding these extra features, the authors achieved 91.75% accuracy.  Al-Moslmi et 

al. (2018) found that the lexicon-based model is normally used in case the data is 

unlabeled. As for sentiment lexica, they are used to mark the data and to estimate the 

polarity. Using sentiment lexicon, the sentiment of a text (a review) can be measured 

using phrases and words in the lexicon. Aloqaily et al. (2020) developed lexicon-based 

sentiment analysis for Arabic tweets datasets concerning the Syrian civil war and 

crises. Arabic Tweets, expressed as bag-of-words (BOW), are classified as positive 

and negative by looking up the mentioned sentiments in an Arabic sentiment lexicon. 

The registered classification accuracy was 68% and the paper does not report on the 

analysis of other factors impacting the SA performance such as intensification and 

negation; dialectical Arabic was not considered by the authors. 

3.6. Literature Review of Machine Learning 
Sentiment Analysis 

 This section reviews works published in the literature that address the use of 

machine learning for Arabic sentiment analysis. The SAMAR system for subjective 

sentiment analysis was initially presented by Abdul-Mageed et al. (2012). The authors 

used diverse sets of data written in different Arabic dialects and MSA; they considered 

all social media types in Arab countries, including Wikipedia talk pages, tweets, chats 

and newswire domain forums. Their proposed approach considered several problem 

domains, including political, economic, sports and entertainment news. Unfortunately, 
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the SAMAR system performed inefficiently for datasets composed of tweets, 

producing a positive sentiment F-score equal to 49.41% for the Twitter dataset.  

 Azmi and Alzanin (2014) assessed a four-level polarity via the mining of 

remarks from local online newspapers in Saudi Arabia. The set of about 815 comments 

in Arabic was subdivided into 620 training set comments and 195 testing set 

comments, resulting in an accuracy of 85%. Also, Itani et al. (2017) researched the 

applications used for the processing of natural language, such as machine translation, 

categorization of text and the analysis of sentiment, for which the verification of 

accuracy and quality needs an annotated corpus. A corpus is basically a group of texts 

with labels, which are description tags and POS (part of speech) tags from various 

sources. The corpus of Itani et al. was comprised of 1000 posts gathered from a 

Facebook page called ‘The Voice’ and 1000 posts gathered from the ‘Al Arabiya’ 

Facebook news page. In this approach by Itani et al., they used Facebook to create the 

corpus in order to deal with dialectal Arabic. A corpus is also used to predict movie 

sales; also, it is used in publications to show polarity in sentiment analysis (negative, 

neutral and positive). POS taggers, tokenisers, vocalisers, and stemmers were used in 

the processing of natural language to construct the corpus. Manual tagging, IAA (Inter 

Annotator Agreement) and classifiers like decision trees (DT), support vector 

machines (SVM), naïve Bayes (NB) and k-nearest neighbours (KNN) were used for 

the content polarity categorisation. However, Azmi and Alzanin (2014) and Itani et al. 

(2017) did not handle the negation terms properly in their study, which has a 

significant effect on sentiment polarity. Also, irrelevant comments were not filtered in 

the pre-processing stage.  

 Nabil et al. (2015) forwarded a 4-way sentiment analysis classification that 

places texts in four distinct categories: objective, subjective negative, subjective 

positive and subjective mixed. Their dataset was made up of 10,006 Arabic Tweets, 

annotated manually through the use of the Amazon Mechanical Turk (AMT) service. 

They took advantage of a number of machine learning algorithms (MBN, BNB SVM, 

KNN and stochastic gradient descent) on both the balanced and unbalanced datasets. 

They found that adopting n-grams as unique features in a multi-way classification 

approach failed to provide encouraging results.  They did not apply pre-processing to 

the set tweets. Al-Obaidi and Samawi (2016) developed a sentiment analysis 
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classification model for dialectical Arabic, Saudi and Jordanian dialects. They 

enhanced the pre-processing adoption of the system by presenting a bespoke stop-

words list for both dialects with a light stemmer specifically forwarded for each. They 

explored differing classification approaches and strategies along with Bag-of-Words 

(BOW) and n-gram features. It was found that Maximum Entropy performed best with 

trigrams. Conclusive findings in these studies indicate negative consensus regarding 

the ideal experimental approach (length of n-gram or representation) and ultimately 

that findings are corpus dependent. This is an anticipated result, since the simplicity of 

these features does not reflect upon the complexity of the exercise. 

 Alomari et al. (2017) examined a collection of Jordanian tweets and split them 

into negative and positive ones. The tweets totalled to 1800 written in the Jordanian 

dialect. A comparison of NB and SVM classifiers was made using two pre-processing 

strategies and features to analyse Arabic topics on social media written in MSA or in 

the Jordan dialect using the supervised machine learning sentiment method. Many 

bigrams, trigrams, n-grams and unigrams were used by Alomari et al. with different 

weighing methods (term frequency–inverse document frequency (TF-IDF), term 

frequency (TF)); alternative stemming methods were also applied: light stemmer, no 

stemmer and stemmer. Through using a SVM with bigrams as well all a TF-IDF using 

the stemmer, Alomari et al. received the best performance scenario, which gave an 

88.72% resolution score and an 88.27% F-score in comparison with the study that used 

a NB classifier. Al-Rubaiee et al. (2016) studied the application and the layout of 

Arabic text categorization regarding the thoughts of students at King Abdul-Aziz 

University. Their approach consisted of five basic steps: data collection, data filtering, 

data pre-processing, classification and, finally, evaluation. They then prepared the 

dataset that was collected using a Twitter API; the data comprised of 2000 tweets. By 

using the RapidMiner program, the light stem, stop word removal and tokenization 

methods for Arabic NLP were applied. Also, they used the NB and SVM methods for 

supervised machine learning. However, one of the main challenges in Alomari et al. 

(2017) and Al-Rubaiee et al. (2016) was the size of the datasets, which is important 

for training the machine learning algorithms. Thus, the approaches proposed in their 

studies may improve with larger datasets, also, they experiment few classifiers.  
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 Al-Horaibi and Khan (2016) aimed to improve how emotion is measured in 

Arabic tweets. This approach for analysing emotion in Arabic tweets consisted of three 

levels: data collection, data pre-processing, classification and evaluation. The tweets 

were collected using the Twitter API stream. Moreover, Tweepy library was used in 

their Python script. While running their scripts, they collected a total of 14,984 tweets. 

Arabic stop word removal and tokenisation were done using Python language, and a 

162-word roster was generated. Then, the light stemmer and the Information Science 

Research Institute (ISRI) stemmer were applied to get the root of each token within a 

tweet. Finally, DT and NB classifiers through the Natural Language Toolkit (NLTK) 

tool were applied. An average accuracy score of 45.60% and a F-measure score of 

31.54% were achieved when they used the English SentiWordNet (SWN) classifier in 

the experiment. However, their results due to the fact that they used English NLP tools 

on Arabic dialect tweets, which have different characteristics than English. Sghaier et 

al. (2016) proposed a multi-algorithm based supervised approach for performing 

Arabic Sentiment Analysis. In particular, KNN, SVM and NB were used in 

combination with a bag of words to classify the data collected from e-commerce 

websites. The reported accuracy for SVM and NB were 93.9% and 93.87%, 

respectively. However, in this study, the corpus contained only 250 documents, which 

is quite small. Moreover, they did not consider negation in their study.  

 Baly et al. (2017) explored the complexity of opinion mining Arabic using 

Twitter, in regard to increased noise through tweets and the multiplicity of dialectical 

Arabic. The authors carried out a study to assess differing linguistic use in a variety of 

Arabic areas. They also created a typology of tweets to establish extended 

comprehension and fuel further investigation. The authors used machine learning on 

Arabic Twitters with the use of feature engineering and the deep learning approach. 

They collated datasets via Egyptian tweets (10,006 used by Twitter API, divided into 

categories: positive (799), negative (1,684), objective (6,691), neutral (832)). They 

applied both POS tagging and lemmatization utilising MADAMIRA v2.1 to extract 

features for the SVM classifier.  The optimum result achieved with SVM was 55.70%.  

Baly et al. (2017) forwarded a further study; a comparative evaluation of sentiment 

analysis methods within Arabic dialect. They presented their analysis of sentiment 

analysis through a study of different dialects. Overall, they established the Multi-
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Dialect Arabic Sentiment Twitter Dataset (MD-ArSenTD), covering 12 Arabic 

countries. The annotations not only included the topic, but also the overall SA, the 

target of the sentiment and the means of expression. The authors experimented with 

two classifiers, LSTM and SVM. It was found that the accuracy of Egyptian tweets 

was 60.6% in comparison to UAE tweets (51.1%). The variance in the nature of each 

dialect resulted in a challenging task, hence carried out separately. The author 

indicated that the SVM classifier performed significantly better upon analysis of the 

Egyptian tweets. This fact can be justified due to the difficulty in predicting sentiment 

analysis regarding religious entries, which constitute the majority of UAE social media 

communication. 

 Rahab et al. (2017) enhanced sentiment analysis throughout newspaper 

comments in Algeria, annotating comments made by two Algerian Arabic-speaking 

native contributors. They held many experiments, to illustrate the impact of a word-

weighting strategy, the classification method and light stemming. They also used 

word-weighting algorithms (Binary Term Occurrence (BTO), Term Frequency, 

Occurrence and Inverse Document Frequency (TF–IDF). The authors also exploited a 

significant number of classifiers such as K-Nearest Neighbours (KNN), SVM and NB 

for which they chose tenfold cross-validation. The optimum results were obtained 

using TF with an NB classifier, relying on light stemming with an accuracy of 75%. 

The dataset was constituted of 92 comments, 60 derived from the negative and 32 from 

the positive category. However, though this research was successful considering the 

differing weighting scheme, it explored comments differing from tweets, hence the 

dataset is limited. At the SemEval International Workshop help in 2017, Mulki et al. 

(2017) provided their valuable contribution. Task 4 entitled "Twitter Sentiment 

Analysis" was addressed explicitly as a 4A-Arabic subtask. It suggested the use of 

monitored and un-monitored learning methods to incorporate the two Arabic 

classifying patterns. Arabic tweets were pre-processed for both models until various 

bag-of-N-grams schemes were obtained as functions. They studied the classification 

of sentiments in the Arabic language through two separate learning strategies and 

classification models. The supervised and lexicon-based models obtained satisfactory 

results. The supervised learning model has been chosen for the final submission 

because the highest average recall value and F-score values have been achieved. 
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However, without any support from stemming, the lexicon model has also produced 

strong results. It is worth noting that the combined lexica have successfully controlled 

MSA/multi-dialectal content. 

  Maghfour et al. (2018) have recently analysed Facebook Arabic comments 

that were made in Moroccan and MSA. They tried to investigate, before classification, 

the benefit of classifying the Arabian corpus in its forms (dialect or MSA). Their key 

concept was to adjust pre-processing text according to each type of language. For 

example, for dialectical texts the writers used light stemming. For both NB and SVM 

classificators, they applied their method. It improved its efficiency by taking into 

account the heterogeneity of MSA and the dialect studied. This two-stage classification 

was found to be minimising word stemming errors. But in broader multi-dialectical 

datasets, use of this approach can be difficult. A recent study done by Sayed et al. 

(2020), they suggested an Arabic-language sentiment research Multidimensional 

System. They began creating a dataset of 6318 reviews obtained from the hotels 

reservation website (Booking.com). Both regular and dialect types of the Arabic 

language were reviewed. They implemented the use of nine machine learning 

classifiers, which included K-Nearest Neighbour (KNN), Logistic Regression (LR), 

Multilayer Perceptron (MLP), Ridge Classifier (RC), Decision Tree (DT), Support 

Vector Machine (SVM), Gradient Boosting (GB), Random Forest (RF), and Naive 

Bayes (NB) classifiers. Several factors have been explored in the data representations. 

Moreover, detailed scenarios have been examined for the feature vectors. The designed 

dataset was used to evaluate the performance of the nine classifiers in different 

situations. The results of the experiment demonstrated the highest overall performance 

in recalling, precision, precision, F1 scoring, and training times for Ridge Classifier 

(RC). In addition, it enhances classification efficiency by applying pre-processing 

techniques such as stemming and stop-word removal. 

3.7. Literature Review of Hybrid Sentiment Analysis 

  Exemplifying this approach to sentiment analysis, El-Halees (2001) presented 

a hybrid strategy for sentiment analysis classification of Arabic. The approach 

commenced with the utilisation of lexicon-based technique to pinpoint either a positive 

or negative classification to the unannotated work. The resulting data was then fed into 
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the Maximum Entropy (ME) classifier in the format of a training set, to segregate 

remaining documents, unclassified at the lexicon-based stage. The classified 

documents, utilising both lexicon-based and the ME approach, were fed into a KNN 

classifier and treated as a training set in order to classify the finalised set of texts left 

un-classified. El-Halees (2001) reported an accuracy of 80.29%. However, this study 

did not consider negation words. More recently, Khalifa and Omar (2014) adapted a 

hybrid approach for analysing Arabic opinions, inviting answers through the addition 

of lexicon features to three classifiers: NB, SVM and KNN. Once the data was 

prepared and differing pre-processing techniques were applied, the authors tested the 

three classifiers, ignoring lexicon features and subsequently testing the same 

classifiers, but this time with lexicon features included.  In all experiments, they 

witnessed an enhancement in results through the addition of lexicon features. The 

experimental results have shown that NB provides the best result, which is better than 

SVM and KNN.  

 Focusing more specifically upon social media, Khasawneh et al. (2015) 

introduced a hybrid strategy to classify Arabic tweets as positive, negative or neutral. 

The authors composed their unique dataset, consisting of Arabic tweets and recordings 

from Twitter. Arabic tweets were collected from three specific domains, news, 

economics and sport, totalling in 1500 comments and reviews. The Arabic audio was 

composed of a mere 15 files. From the textual dataset, only 13 lexicons were created 

manually. The proposed system initially requested the user to choose their review 

domain; the system would convert the set audio into text. Subsequently, utilising the 

lexicon-based approach, the text was labelled. The authors adopted duel machine 

learning classifiers; boosting and bagging. Experimental results illustrated that 

predictive textual data is an enhanced means of analysis in comparison to predicting 

audio data, showing an accuracy of 85.95% and 82.95%, respectively whilst adopting 

the bagging technique, whereas accuracy was 69.25% and 64.52%, respectively using 

the boosting technique. However, input in this research is audio converted to text, 

which differs from social media content and input. There were also vital limitations, 

such as not taking into account sentiments such as laughing or yelling with the audio 

content.  
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 A further innovative study was done by Alhumoud et al. (2015) which provided 

a hybrid sentiment analysis approach through the removal of unsentimental words 

from the training dataset, resulting in the training dataset solely containing instances, 

sentimental words and labels. The authors utilised two classifiers, KNN and SVM, and 

compared the assessed approach with machine learning via identical classifiers. The 

results confirmed that the approach was more accurate when compared with explicit 

machine learning. However, due to the relatively small dataset and the lack of 

negation, the results failed to adequately represent the broader and complex domain of 

dialectical Arabic. 

 In another study, Abuelenin et al. (2017) utilised the cosine similarity 

algorithm and the Information Science Research Institute Arabic stemmer (ISRI) to 

ascertain the most similar word within the lexicon and forge a hybrid approach to 

enhance the accuracy of Egyptian Arabic. Their proposed hybrid framework increased 

performance by integrating machine learning techniques with semantic orientation. A 

further study was presented by Alkubaisi et al. (2018) and focused on the analysis of 

a Twitter-based dataset. The research proposed a Hybrid Naïve Bayes Classifiers 

(HNBCs) as the optimum machine learning method for stock market classification. 

The findings have direct applications for companies, investors and researchers, 

enabling them to formulate strategies in accordance with underlying public sentiments. 

Al-Twairesh et al. (2018) suggested the use of a hybrid approach for evaluating 

sentiment of a particular Saudi dialect in the Arabic language. They used a collection 

of features designed to be dialect-independent and tested by a functionally reverse-

selection process. Then three Saudi Twitter classification models were constructed and 

contrasted as follows: two approaches (negative and positive), three methods (neutral, 

negative, and positive) and four methods (neutral) (mixed, negative, positive, and 

neutral). The authors assessed the effects of all existing classification models of the 

suggested feature sets. They observed that the AraSenTi lexicon extracted features 

were there in all the best feature classes of the experimented classification methods. 

 HILATSA, a hybrid incremental learning approach for ASA was recently 

launched by Elshakankery et al. (2019). The key idea is to develop a method for 

sentiment analysis for tweets in Arabic, which can manage the rapid translation and 

use of terms. The authors have developed some critical lexicons, such as emoticon 
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lexicon, lexicon, idioms lexicon, and special enhanced lexicon terms. Elshakankery et 

al. tested the usefulness of the Levenshtein Distance Algorithm in order to cope with 

various word types and misspelling. SVM and LR algorithms and one RNN were used 

in the experiments that demonstrated a positive outcome in a complex setting with 

high precision and reliability. Harrag et al. (2020) suggested the use of a hybrid 

approach that incorporates recommendation system and sentiment analysis to fix 

issues with data sparsity. This can be done using NLP and text mining models to know 

the product rating from user feedback. This analysis focuses on a range of Arabic 

reviews, in which the model is tested with the Arabic Opinion Corpus (OCA) dataset. 

Their system was effective and almost 85% accurate to predict the rating of reviews. 

  

3.8. Chapter Summary 

 This chapter has provided a review of the extant literature regarding sentiment 

analysis and the growing spectrum of applications of these techniques to practical 

research and enterprise problems.  From social media mining to customer feedback 

comparisons, the advantages of effective and reliable sentiment analysis are significant 

resources that can be used to predict changes, model opportunities, and improve 

performance.  Whilst a variety of emergent sentiment mining techniques have been 

developed in recent academic history, the majority are based upon the English 

language and fail to address more complex or multi-dimensional problems beyond 

these limited results. Arabic Natural Language Processing was reviewed and the tools 

that been developed for Arabic language. Stemming is one of the main NLP tool, so, 

in this chapter literature review of Arabic stemming was presented. There are several 

sentiment analysis approaches have been reviewed such as Lexicon-Based approach 

and lexical resources for dialectical Arabic language processing, machine learning 

sentiment analysis approach, hybrid sentiment analysis. 
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Chapter 4 

 
4 Developing the Resources and Tools for 

Lexicon-Based Sentiment Analysis of 
Dialectical Arabic 

 With the increasing amounts of dialectal Arabic written text on the web, the 

efforts of dialectical Arabic natural language processing (NLP), such as morphological 

analysis and disambiguation, have increased although they are still in the early stages 

compared to those for Modern Standard Arabic (MSA). According to Habash and 

Rambow (2006), Jarrar et al. (2014), and Khalifa et al. (2016), the available resources 

and tools developed for MSA gives limited performance when applied to dialectal 

Arabic. However, some dialectal Arabic, such as Egyptian Arabic, have received 

attention from researchers by developing a collection of resources that include 

annotated datasets and morphological analysers more than other dialectal Arabic, such 

as Gulf Arabic which is lagging behind. This chapter presents the resources and tools 

that were developed for the lexicon-based analysis of Saudi dialect. Specifically, a 

morphologically annotated corpus of the Saudi dialects with all the NLP tasks, such as 

normalisation has been presented, and novel light stemming methods are outlined. 

Then, a a novel lexicon construction is introduced that contains sentiment lexicon, 

negation, emoji, special phrases such as supplication, proverbs and interjection. 

 

4.1. Toward Creating a Morphologically Annotated 
Corpus of the Saudi Dialects 

 Through social media, Arabic users communicate with each other and share 

opinions and ideas utilising unstructured Arabic slang (Abdulla et al., 2013). 
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Exploiting SA, it is possible to determine aspects of expression, through text polarity, 

in terms of positive or negative reactions. Despite enhanced interest in SA, limited 

academic studies have applied this concept to Saudi dialects. This constraint is largely 

due to limited publicly accessible annotated data (Abdul-Mageed and Diab, 2011). 

Hence, the current study has undertaken to contribute the first stage of a publicly 

accessible Saudi domain-specific annotated corpus. This solution could only be 

achieved by producing a set-procedure regarding manual corpus annotation drawn 

from a specific data series, in this case, unemployment in Saudi Arabia. 

 

4.1.1  Overview of the Previous Corpus for the Arabic 
Language 

 In prior studies targeting an Arabic language corpus for NLP applications 

exemplifying the linguistic complexities of ANLP, COLABRA is one example of an 

Arabic corpus created for NLP resources that incorporates four Arabic dialects: Iraqi, 

Moroccan, Egyptian, and Levantine (introduced by Diab et al., 2010). MAGEAD 

(Habash and Rambow, 2006) was utilised by the authors, along with the Buckwalter 

Morphology Analyzer and Generator (BAMA) (Buckwalter, 2004). The Gumar corpus 

is a further extension of this approach developed by Khalifa et al. (2016) and draws 

upon a field of Gulf dialects to populate its database of more than 110 million words.  

The Gulf dialect labels were used to annotate the corpus at the document level; hence, 

no morphological annotation was evident. In a more recent application of this corpus, 

approximately 200,000 dialectal Arabic terms from Emirati dialect were selected, with 

the corpus then being manually annotated to reveal English glosses, lemmas, POS, and 

tokenization. During the manual annotation period, dialectal Arabic and conventions 

in spelling were included as factors to consider (Khalifa et al., 2018). 

 Another, dialect-specific corpus, Curras was developed to account for the 

Palestinian dialect (Jarrar et al., 2017). Within this targeted solution, 43,000 words 

were extrapolated from the Palestinian dialect via social networks. The MADAMIRA 

application was used for conducting the annotation of the corpus and an additional 

finding during the process was the establishment of a standard form to annotate 

Levantine dialect through orthographical means (Pasha et el., 2014). This approach is 



62 

 

now used as an advancement of Conventional Orthography for Dialect Arabic 

(CODA), devised by Habash et al. (2012). Initially, the purpose of CODA was to create 

a unified framework to define dialectal Arabic by exploiting conventional 

orthography. CODA guidelines were described in great detail for the EGY dialect. 

A recent attempt to extend the guidelines covering dialectal Arabic from 25 cities was 

forwarded by Habesh et al. (2018). The MADAR project is a further investigation of 

dialectal Arabic, explored by Bouamor et al. (2018). The ultimate aim was to create a 

single framework unifying annotated guidelines to be used with applications that 

include Machine Translation (MT) and Dialect Identification (DID). A parallel corpus 

was devised for the 25 cities by the authors. This was achieved by translating 2000 

selected sentences extracted from the Basic Travelling Expression Corpus (BTEC) in 

MSA, English, and French (Takezawa et al. ,2007). Additionally, a lexicon was created 

involving 1,045 entries from the specified cities. Regarding the dedicated corpora 

serving NLP applications in view of the Saudi dialects, great strives have been made 

to create a corpora reflecting sentiment exploration from Twitter responses (Al-

Twairesh et al., 2017; Assiri et al., 2016).  

 

4.2. Collecting the Saudi Twitter Corpus for 
Sentiment Analysis 

 Due to the absence of a public Arabic dataset, many Arabic opinion-mining 

researchers have been obliged to independently collect datasets to advance their 

research. Emergent research has resulted in limited public datasets for the Arabic 

language language, such as OCA (The Opinion Corpus) for Arabic movie reviews 

(Cherif et al., 2015) and the Arabic Book Reviews (LABR) dataset (Aly and Atiya, 

2013). Figure 4.1, presents the pipeline model of the methodology applied to the 

multiple stages of this collection process for a corpus for Arabic sentiment analysis, 

which includes five main phases (data collection, pre-processing, normalization, light 

stemming, and the annotation). 
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Figure 4.1: Pipeline of collecting the gold-labelled corpus 

 

 A Python script was developed to collect tweets in a Saudi dialect using 

Twitter’s API using two methods: first, streaming tweets and, second, searching past 

tweets. In the first stage of this research, the tweets were collected according to two 

criteria: first, the geographical location (Saudi Arabia). An effort was made to collect 

equal tweets for each specific dialect, such as Hejazi and the Najdi using the user 

location, but some issues were observed, such as the location being locked by users 

and avoidance of dialectical Arabic in tweets by others. Then, the dataset was collected 

by selecting specific hashtags that were trending in Saudi Arabia from thousands of 

tweets. Hashtags are used to discuss social issues, such as السعوديه_للسعوديين (Saudi 

Arabia for Saudis) and توطين_قطاع_الإتصالات (localisation of the telecommunications 

sector). Around 23,500 tweets were collected, and, after the removal of redundancies, 

this number was reduced to around 10,000 tweets.  Although comprehensive, this 

dataset was characterised by significant noise due to irrelevant tweets, such as 

advertising or tweets related to different topic as shown in Table 4.1. To eliminate this 

issue, a novel improvement was implemented by focusing on just one of the most well-

represented accounts, @JoblessGrads9 ( عاطلون بشهادات عليا). Most of the followers of 



64 

 

this Twitter account are interested in the domestic unemployment issue, and as a result, 

the majority of the posts on the account were found to be topically related. From this 

dataset, approximately 5000 tweets were extracted, resulting in a baseline of just over 

3,000 tweets once all redundancies had been removed.  

Table 4.1: The number of tweets after removal of redundant tweets 

 Hashtag 
No. of collected 

tweets 

1 
 للسعوديين_السعوديه

alsewdyh_lilsaeudiiyn 

Saudi Arabia for Saudis 
10,000 

2 
 الإتصالات_قطاع_توطين

twtyn_qtae_ali'iitsalat 
Localisation of the telecommunications sector 

319 

3 
 عاطلات_قديمات_جامعيات_خريجات

khryjat_jamieiat_qidimat_eatulat 

Unemployed women graduate for a long time 
2,788 

4 
 بالتوظيف_يطالبون_سعوديات

sewdyat_ytalbwn_baltawzif 

Saudi women demanding employment 
10,000 

5 
 2بالتوظيف_يطالبون_سعوديات

sewdyat_ytalbwn_baltawzif 2 

Saudi women demanding employment 2 
358 

 

4.3. NLP Methods for Corpus Pre-Processing: 

 Prior research and experimentation in this field has highlighted the challenges 

arising from sentiment analysis in dialectical Arabic.  To overcome these challenges, 

this section presents a practical solution to NLP and pre-processing in order to improve 

the results of sentiment analysis. 

4.3.1. Lexical Normalisation of Raw Tweets  

 In total, around 40,500 tweets were collected from several hashtags and 

accounts. The need to lexically normalise the tweets was an initial consideration when 

applying NLP tools. A lexical normalisation system contains two stages: (1) 

identification of non-standard words and (2) alternative word selection (Han et al., 

2013). To achieve accurate outcomes from a lexical normalisation system, several 

functions need to be implemented as illustrated in the following pseudo-code model:  
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The pseudo-code of function: The NLP for Corpus pre-processing 

1. Input: collected tweets 
2. Output: the processed tweets  
3. Begin 
4. For each tweet in the dataset 

       5.                    Remove URL, remove hashtag, remove username  
       6.                    Removal of redundant tweets 
       7.                    Removal of irrelevant information 
       8.                    Remove punctuations  
        9.                   Delete the stop words 
       10.                  Delete the non-Arabic words and numbers 
       11.                  Apply normalisation  
       12.                  Apply Arabic light stemmer  
 
       13.    Display the result 
       14.   End  

 

 The first step involves removing redundant tweets (i.e., cleaning the collected 

tweets). A Python script was developed to remove the redundant tweets, the results of 

which are shown in Table 4.2. 

Table 4.2: The number of tweets after removal of redundant tweets 

 Hashtag 
No. of collected 

tweets 

After removal 
of redundant 

tweets 

1 
 للسعوديين_السعوديه

Saudi Arabia for Saudis 
10,000 3,552 

2 
 الإتصالات_قطاع_توطين

Localisation of the telecommunications sector 
319 111 

3 
 عاطلات_قديمات_جامعيات_خريجات

Unemployed women graduates for a long time 
2,788 936 

4 
 بالتوظيف_يطالبون_سعوديات

Saudi women demanding employment 
10,000 4,211 

5 
 2بالتوظيف_يطالبون_سعوديات

Saudi women demanding employment 2 
358 286 

 

 The collected tweets contain a lot of noise as shown in Figure 4.2. Every tweet 

was processed as follows: User information, URLs, and mentions were removed from 
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the tweets because they included information unrelated to the case study topic. Then, 

diacritics were removed from words, followed by the removal of redundant letters 

often used to show emotion.   It was important for the SA approach to consider some 

punctuation like question-marks and exclamation symbols. For example, “The Sauda 

program is good.”, and “The Sauda program is good !!!!”, the two sentences have the same 

words, but totally different sentiments. The only information which can help to determine 

the differences between these statements is the punctuation which shows the actual feeling. 

In the current dataset, around 3900 tweets (55%) contained question marks or exclamation 

symbols; therefore, identifying and addressing these punctuation marks was an important 

part of ensuring accuracy during this process. 

 Sentiments, which are made up of punctuation also play a role in sentiment 

analysis such as “(':, O_o, ._., :), :(, -_-, :D, xD” , when processed correctly. However, in 

this system this type of punctuation is not considered due to the user behaviours that were 

identified within the dataset. Around 42 tweets of the 7,000, expressed sentiment by using 

this type of punctuation. In addition, the users usually wrote the Quran quotes, providers, 

and supplications in brackets preceded by two vertical points which were carefully 

examined and not considered as indications of sentiment. For examples ُ يحُِبُّ  قال تعالى:) وَاللَّه

ابِرِينَ( , /   الصه Allah says:( And Allāh loves the steadfast). 

 

 

Figure 4.2: Screenshot of he collected tweets before pre-processing 

 

 Finally, the tweet was tokenised. An example for the cleaning and processing 

steps of a tweet is shown in Table 4.3.  
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Table 4.3: Example of pre-processing a tweet 

Original 
tweet 

هذا الشي  !!كذا تظلموووووونا .. مستتتتتتتحيل أنا أرفض السعوده الوهمية تماماالسعوده #

 مرفوض
# alsueuduh musttttttthyl 'ana 'arfid alsueudah alwahmiat tamamaan .. kadha 
tzlmwwwwwwna !! hdha alshy marfud 

Cleaned 
tweet 

 هذا الشي مرفوض !كذا تظلمونا . مستحيل انا ارفض السعوده الوهميه تماما
mustahil 'iinaa arfd alsueudih alwahimiuh tamama. kadha tuzlamuna! hdha alshy 
marfud 

Tokens 

 ,'الشي' ,'هذا' ,'!' ,'تظلمونا' ,'كذا' ,'.' ,'تماما' ,'الوهميه' ,'السعوده' ,'ارفض' ,'انا' ,'مستحيل['
 ']مرفوض'

'] msthyl' , 'ana' , 'arfd' , 'alsueuduh' , 'alwahmayih' , 'tmama' , '.' , 'kdha' , 'itzalamuna' , 
''!' , 'hdha' , 'alshy' , ' marfud [  

 

 As seen in the normalisation example presented in Table 5.3, the process of 

normalising the word ‘تظلموووووونا’ to ‘تظلمونا’ can result in the undesired loss of the 

intense feeling expressed by the blogger, which is significant to capture the sentiment. 

One of the most noticeable behaviours of Arab Twitter users is the repetition of one 

letter to express a strong feeling, whether negative or positive. Nevertheless, this 

intensity can be preserved if, instead of removing all the repeated letters, two letters 

are kept. In this case, the words ‘تظلموووووونا’ and تظلموووووووووووونا will be normalised 

into ‘تظلمووونا’. Although prior investigations have adopted more than one form to 

justify Arabic normalisation, it is better to just consider some of Arabic vowel letters 

such as the ( ه and  ا) to be normalised because of the multiple  shapes. Further 

reconciling these conflicts, the character (ى - alef maqsura) should not be normalised 

because it is the only vowel changes the semantic meaning of the word, as shown in 

Table 4.4.  

Table 4.4: Examples of Arabic normalization 

Letter After normalisation Example 
  ya’a   ي 
 alef maqsura   ى 

 Ali — male name علي  ya’a  ي
 On top of على

    ta’a marbuta   ة
 ha’a   ه

  Beautiful  حلوة  ha’a  ه
 Beautiful حلوه 

  alef hamza’h   إ 
 alef hamza ‘h    أ 
 alef wasel   ا

      alef wasel without  ا
hamza’h 

  Best افضل 
  Best أفضل
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4.3.2. Towards an Improved Saudi Dialectal Arabic 
Stemming (SDS) 

 Stemming is an important text-processing step for numerous applications, 

including information extraction, sentiment analysis, and machine translation. The 

stemming process reduces the size of inflected words to their stem by removing the 

prefixes and suffixes, but the stem is not necessarily the root of the word (Jaafar et al., 

2017). Arabic is a highly inflected language with a rich, complex morphology. 

Stemming is a critical natural language processing (NLP) task in which words are 

grouped based on their lexical semantic similarity (El-Beltagy et al., 2016; Albogamy 

and Ramsay, 2015). For example, the words ‘يحب’ (he loves), ‘يحبون’ (they love), 

 ’أحب‘ have similar semantics to (?have you loved) ’أأحببتم‘ and ,(he will love) ’سيحب‘

(he loved). Hence, stemming allows text-processing applications to manage one target 

stem instead of five target words. Although most stemmer tools have been designed 

for Modern Standard Arabic (MSA), dialectal Arabic is more popular than MSA in the 

Arab world. As people have come to rely more on social networking services to 

express opinions and to consult others about issues that influence their daily lives, the 

analysis of social media output has become the subject of increasing interest 

(Alghamdi et al., 2008).  

 The stemming of Saudi Dialectal Arabic words has received limited prior 

attention because of the challenges in Arabic NLP due to the language’s complex 

morphology, which is exacerbated by orthographic mistakes, spelling inconsistencies, 

the use of abbreviations and slang words, the tendency to repeat letters in writing to 

convey emotion, and the fact that most posts are written in non-standard dialectal 

Arabic (Kalwakid et al., 2017).  The diversity of dialectal Arabic within Saudi 

Arabia, including Hejazi and Nejdi, is indicative of the rich variety of dialectal Arabic, 

even within the same country, which is one of the main challenges for the NLP of 

Saudi dialectal Arabic (Aldayel and Azmi, 2016). For example, the word ‘window’ in 

MSA is نافذه / nafitha, in the Hejazi dialect it is طاقه / taqa, and in the Nejdi dialect it is 

 shobak. Most of the current stemming techniques focus on dealing with MSA / شباك

texts; while this delivers a good performance, it falls short of dealing with dialectal 

Arabic. The current study addresses shortcoming by introducing a new stemming 

mechanism that can handle Saudi dialectal Arabic. The proposed novel stemming 
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approach integrates the Information Science Research Institute (ISRI) stemmer and a 

rule-based stemmer purpose-built for this investigation.  

 

4.3.3. Analysing the Effectiveness of Applying MSA 
Stemmers to Saudi Dialectal Arabic 

 The primary goal of Improved Saudi dialectal Arabic Stemming is to derive an 

efficient algorithm for extracting the stem of Saudi dialects words, which are collected 

from specific trending hashtags in Saudi Arabia. The proposed approach integrates 

two techniques to address the challenges of stemming Saudi dialects: the ISRI stemmer 

and a rule-based stemmer. First, attempts were made to retrieve the stem using the 

ISRI stemmer, as experimental analysis showed that this stemmer performed the best 

among MSA-based stemmers. Subsequently, the rule-based stemmer was applied to 

stem any words that ISRI failed to process. This stemming approach comprises three 

stages: 

 

 1st Stage: Tweets were collected from trending hashtags in Saudi 

Arabia. This corpus was pre-processed to achieve good results by 

considering specific objectives, such as the removal of redundant 

tweets (duplicates) from the dataset and by tokenisation. The test 

corpus consisted of 6,000 words extracted from Saudi dialects tweets.  

 2nd Stage: Six Saudi linguists performed manual stemming of the test 

corpus. Tables 4.5 and 4.6 show the characteristics of the 6,000-word 

test corpus.  

 

Table 4.5: Characteristics of the test corpus 

Word length Word frequency Percentage 
2 74 1.23 % 
3 2,313 38.55 % 
4 1,608 31.80 % 
5 1,275 21.25 % 
6 321 5.35 % 
7 409 1.81 % 
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Table 4.6: Sample characteristics of the test corpus 

Word Word length Inflection forms Manual stem 
 ghil / غل
Malevolence   

2 
 غل مغلول / غلهم

 haq / حق
Rights 

 حق حقوق / حقوقنا

 karaf / كرف
Boring 

3 
 كرف يكرفوني / مكروفين

 bijah / بجح
Unashamed 

 بجح بجحات / بجاحه

 walif / وليف
Lover 

4 
 ولف وليفي / موالفه

 saneah / سنعه
Adroit 

 سنع تسنعنا / سناعه

 yakhsun / يخسون
Contempt for 

5 
 خسى خسيت / تخسي

 wanasah / وناسه
Happiness 

ونسناكممونساتنا /   ونس 

 amynin / امينين
Trustworthy 

6 
 امن امانه / امين

 hiatuhum / هياطهم
Haughty 

 هيط مهايط / هياط

 munfqirin / منفقرين
Poor 

7 
 فقر فقرانين / فقيرات

 ghathynkum / غاثينكم
Nausea 

 غثى غثه / غثيتوني

 tanashibuna / تناشبونا
Unwelcome person  

مناشبهاينشب /  8  نشب 

 

 3rd Stage: The test-corpus words were stemmed using the MSA 

stemmers listed in Table 4.7, and then compared against the baseline of 

manual stems to determine the best-performing stemmer.  

 

Table 4.7: Results of MSA stemmers applied to Saudi dialects words 

Stemmer Accuracy 
Correct 
stem 

Incorrect 
stem 

MADAMIRA  25 % 1,500 4,500 

Khoja  38 % 2,280 3,720 

FARASA   22 % 1,320 4,680 

ISRI  64 % 3,840 2,160 
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 The evaluation results indicated that ISRI was the most accurate stemmer, see 

Table 4.7. Nevertheless, the ISRI stemmer failed to stem some of the words as 

indicated in Table 4.8, because it was primarily developed for MSA rather than 

dialectal Arabic. Lexical analysis was then performed on the incorrectly stemmed 

words to develop a rule-based light stemmer to complement the MSA stemmer. 

 

Table 4.8: Examples of MSA stemming applied to Saudi dialectal Arabic words 

Word / Manual stem MADAMIRA Khoja FARASA ISRI 
 كرف / karaf  كرف 
Boring 

 ×   رف √   كرف ×   رف
   كرف
√ 

 سنع / saneah  سنعه
Adroit 

 √   سنع ×   نع ×   نعي ×   وعى

 خسى / yakhsun يخسون
Contempt for 

 ×   خسو ×   يخسون √   خسأ ×   خس

 فقر / munfqirin منفقرين
Poor 

 √   فقر ×   منفقرين √   فقر   ×   منفقرين

 غثى / ghathynkum غاثينكم
Nausea 

 √   غثى ×   غاثينكم ×   غوث ×   غاثينكم

 نشب / tanashibuna تناشبونا 
Unwelcome person 

 ×   تناشبونا
   تناشبونا
× 

 ×   شبو ×   تناشبونا 

 

4.3.3.1. New Algorithm for Saudi Dialectal Arabic Stemming 

 The overall performance of the he ISRI Arabic stemmer algorithm is superior 

to other MSA stemmers when applied to dialectal Arabic. Based on the lexical analysis 

of the words that the ISRI approach failed to correctly stem, it was important to 

subsequently devise a set of rules to extract the stem of the Saudi dialectal Arabic 

words. This light stemming approach initially processes the smallest Arabic stem 

(consisting of three letters), since 75% of MSA words have a three-letter root. The 

main steps of the proposed algorithm are as follows. 

1. Check the size of the word (< = 3). This step is performed each time a letter is 

removed from the word. 

2. If the word matches an MSA pattern, then the word is stemmed using the ISRI 

stemmer.  

3. Remove the prefixes commonly used in Saudi dialectal Arabic ( / بال / هال / بهال

ال / لل / ولل / فال وش / اش /شال / شهال / وال / ). 
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4. Remove the suffixes commonly used in Saudi dialectal Arabic ( ات  /الكم  /تو  /هن

ها  /ين  /ت  /الك  /ونهم  /هم  /ته  /ه  /ينه  /ونه  /تني  /تكم  /تك  /ني  /تي  /وكم  /كم  /ك  /ون  /

/). 

5. Then, following the removal of the prefix, further processing might be required 

for the first segment of the word, as follows:  

a) If the word starts with a letter or letters from the following set { م  /ن  /ي  /ا/ 

 .then remove them ,{من /وت  /وم  /ون  /وي  /وا  /ت 

b) If the word starts with a letter from the set { ت /م  /ي ن  /ا}, and the third 

letter in the word is )ت(, then remove both letters. 

6. Check all the vowels: 

a) If one vowel is in the word, then remove it. 

b) If two vowels follow in sequence in the word, then remove one, in the 

following order: (ا) then (ي) and then (و). 

c) If three vowels follow in sequence in the word, then remove the first and 

third vowels.  

  

 This dialectal Arabic light stemming approach is encoded in the following 

pseudo-code that was developed explicitly for this study: 

 

Input: MYWORDS a file of the word list for applying stemming on it, MSAP a file of MSA 

patterns words  

Output: WSTEM a file of stemmed words list, FORISRI a file of words list belongs to MSA 

Begin 

1. While MYWORDS is Not Empty 

2. MYW=Read each Word () 

3. While WLength > 3 

4.            IF MYW have Prefix (بال / هال / بهال / وش / اش /شال / شهال / وال / ال / لل / ولل / فال) 

Then 

5.               Delete Prefix from MYW 

6.           End If 

7.       End While 

8.          If MYW have Suffix (   هن / تو / الكم / ات / ون / ك / كم / وكم / تي / ني / تك / تكم / تني / ونه

ينه / ه / ته / هم / ونهم / الك / ت / ين / ها /   / ) Then 
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9.             Delete Suffix from MYW 

10.         End If 

11.     If MYW contains Prefix ( ا / ي / ن / م / ت / وا / وي / ون / وم / وت / من   )  Then 

12.      Delete Prefix from MYW 

13.   End If 

14.   If first Letter of MYW is (  ا / ي / ن / م / ت )  And third letter of MYW is ) ت ( Then 

15.        Delete Both Letters from MYW 

16.   End If 

17. While not all letters scanned and WLength >3 

18.   Set L to Letter of MYW 

19.     If L is vowel and next letter of L not vowel Then 

20.        Delete L  

21.     End If  

22.     If L is vowel And one next letter of L also a vowel Then 

23.         Delete the vowel with less priority  

24.     End If  

25.     If L is vowel And tow letter after L also vowels Then 

26.         Delete tow vowels with less priority 

27.     End If  

28. End While  

29. End While 

End 

 

 Table 4.9, shows examples from the application of the proposed algorithm to 

several Saudi words. 

Table 4.9: Examples of applying algorithm to Saudi words 

Saudi dialects Manual 
stem  

The rules of algorithm  Stemmer  

 munazalamat / منظلمات
Injustice  

 (من) Remove prefix– ظلم 
–Remove suffix (ات) 

 ظلم 

 mazyunah / مزيونه
Beautiful  

 (م) Remove prefix– زين 
–Remove suffix (نه) 
One vowel (و)  Remove 

 زين 

 almubtalish / المبتلش
In trouble 

 (ال) Remove prefix– بلش
–1st letter is (م) and 3rd letter is (ت)   
 Remove both 

 بلش

 وجع (م) Remove prefix– وجع mawajie / مواجع
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Pain –1st vowel is (و) and 2nd vowel is (ا)  
remove less priority (ا). 

 ajawid' / اجاويد
Generosity 
 aqawyl / اقاويل
Saying 

 جود
 قول

–Remove prefix (ا) 
–1st vowel is (ا), 2nd vowel is (و), and 3rd 
vowel is (ي)  remove less priority (ا) then 
 .(ي)

 جود
 قول

 

4.3.3.2. Evaluation of the Saudi Dialectal Arabic Stemmer 

 The objective of this experimental study was to derive an efficient algorithm 

for extracting the stem of Saudi dialectal Arabic words by integrating two techniques 

to address the challenges of stemming: the ISRI stemmer and a rule-based stemmer. 

The test corpus contains 6,000 words; the correct stemming of these words was 

determined manually by six Saudi-language linguists. After applying the proposed 

algorithm to the Saudi dialectal Arabic test corpus, accuracy was found to be 79%. 

Since no stemmers currently exist for Saudi dialectal Arabic words, comparisons were 

drawn between the results of four existing stemmers and the results of the proposed 

stemmer to determine which was the most accurate. The evaluation results (Table 4.10) 

indicate that the FARASA stemmer, which was developed for MSA, provides the 

lowest accuracy with 22%, while the experimental stemmer developed for this study 

is the best for handling Saudi dialectal Arabic words.  Figure 4.3. provides a visual 

representation of the accuracy variations reported across these five stemmer solutions, 

highlighting the superior accuracy of the experimental stemmer developed for this 

study.  

Table 4.10: Results of experiment applying light stemming algorithm 

Stemmer Accuracy 
Correct 
stem 

Incorrect 
stem 

MADAMIRA  25 % 1,500 4,500 

Khoja  38 % 2,280 3,720 

FARASA   22 % 1,320 4,680 

ISRI  64 % 3,840 2,160 

SDS Stemmer  79% 4,740 1,260 
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Figure 4.3: Results of experiment of applying light stemming algorithm 

 

 This study has confirmed the ISRI stemmer is the most accurate when applied 

to Saudi dialectal Arabic words. However, the evidence indicates that the ISRI 

stemmer fails to stem certain words because it was primarily developed for MSA rather 

than dialectal Arabic. The proposed novel stemming approach integrates the ISRI 

stemmer and a rule-based stemmer capable of addressing the challenges of Saudi 

dialectal Arabic stemming. The proposed rule-based algorithm comprises a set of pre-

defined rules for extracting the stem of Saudi dialectal Arabic words. This approach 

can be used in applications where the Saudi dialect is prevalent, such as in social media 

networks and across varying applications including sentiment analysis, information-

retrieval systems, and machine translation.  Table 4.11 provides an example of the 

application of the algorithm to different Saudi dialects.  

 

Table 4.11:Example of Algorithm Application to Different Saudi Dialects. 

Word / Manual stem In English Saudi Dialects 
Manual 
stemmer 

SDS 
stemmer  

 aistihbal Idiot استهبال

Najdi 

 x   هبال    هبل 

     غبن غبن maghbun Defeated مغبون
 x   غشيمه غشيم ghshimah Stupid غشيمه

 eibatah Naïve عباطه

Hejazi 

    عبط    عبط

    بكش بكش bakashin Liars بكاشين

    سيب سيب yusibuhum Leave them يسيبوكم
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 qaftuhum Caught them قفطوهم

Sharqawi 

    قفط    قفط

    طر طر tatiruhum Sharpened تطرهم

    عفس عفس eafsuna Unorganized عفسونا

 taqratun Throw تقرطون

Shamali 

    قرط    قرط

    جعص جعص jaeis Confident جاعص
 x   تنوماس نوماس yatnawmasun Happy يتنوماسون

 abthuruna Not welcomed ابثرونا

Janubi 

    بثر    بثر

    طنخ طنخ matnukh Rich مطنوخ

    زرف زرف yazrafuna Stole يزرفونا
 

4.4. The Data Annotation Process  

 A gold-standard corpus was generated by the manual annotation of 7,000 

tweets performed by seven human annotators who labelled the polarity of each tweet 

with its appropriate sentiment (positive or negative) (See Figure 4.4). Although 

consideration was given to other variations such as ambiguous or neutral tweets, the 

evidence suggested that most tweets are either positive or negative in both their 

construction and intention, increasing the reliability of the annotation exercise. Similar 

findings presented by Al-Ayyoub et al. (2018) have confirmed that most tweets reflect 

either a positive or negative sentiment, resulting in a formal procedure termed binary-

sentiment analysis (BSA).  Other researchers including El-Halees (2011), El-Beltagy 

et al. (2016), and Biltawi et al. (2017) have employed BSA for similar sentiment 

analysis purposes. 

 

 
Figure 4.4: Screenshot of annotated data 
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 Annotation represented a principle stage in generating a gold-standard corpus.  

To streamline this process, all annotators were required to adhere to the following 

instructions and guidelines: 

 

 

 Where the chosen tweet is an advertisement, news feed, or fact, where no 

sentiment is present, labelling was omitted regarding positivity or negativity 

and replaced with (/), (See Table 4.12). 

Table 4.12: Example of annotation news or facts 

Tweet  Type  Label  

وزاره الشؤون البلديه والقرويه تعلن عن توفر فرص وظيفيه ) 

للجنسين ( لحمله درجه البكالوريوس ، والماجستير ، والدكتوراه 

 . . ، والتقديم عبر الموقع الالكتروني
wazarah alshuwuwn albaladayuh walqarawiuh tuelin ean 
tuafir furas wazifih ( liljinsayn ) lihamlih darajah albkalwryus 
, walmajsitir , waldukturah , waltaqdim eabr almawqie 
al'iiliktrunii.. 
The Ministry of Municipal and Rural Affairs announces the 
availability of career opportunities for both bachelor, master, 
doctoral and postgraduate degrees. 

advertisement / 

الشورى يصوت لصالح استقطاب حمله الشهادات العليا للعمل 

الخاص بما يضمن المزايا الوظيفيه التي تناسب  في القطاع

 مؤهلاتهم وتلزم جهه التوظيف بها
alshuwraa yusawit lisalih aistiqtab hamlih alshahadat aleulya 
lileamal fi alqitae alkhasi bma yadman almazaya alwazifiuh 
alty tanasab muahalatihim watulzim jahh altawzif biha 
Shura Council votes in favor of attracting high degree 
certificates to work in the private sector in order to ensure the 
functional advantages that suit their qualifications and require 
the recruitment agency 

News / 

 

 Since viewpoint dictates sentiment positivity and negativity, annotators needed 

to assign what was said by whom (See Table 4.13). 
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Table 4.13: Example of annotators description 1 

Tweet  Point of view  Label  

السعوديه تفرض ضريبه على عائلات المقيمين الأجانب 

العاملين في القطاع الخاص قد يكون ذلك لتقليل من 

 عددهم
alsaeudiuh tafrid daribah ealaa eayilat 
almuqimin al'ajanib aleamilin fi alqitae alkhasi 
qad yakun dhlk litaqlil min eadadihim 
Saudi Arabia imposes tax on families of foreign 
residents working in the private sector may be 
this happened to reduce them  

Positive if the 
author is Saudi 
and negative if 
the author is 
foreigner  

Two annotators 
label it as 
positive and one 
as negative 

 

 Epistemic modality was also considered while assessing the Twitter extracts. 

This topic considers the judgement of knowledge by the contributor and 

whether they trust that a statement is true (Palmer, 2001). Root words as hedges 

could illustrate areas where there is a lack of confidence; for example, 

“somewhat”, “perhaps” or “maybe”. These are strengthened with such 

examples as “certainly” and “of course” (Polanyi and Zaenen, 2006). 

Additionally, epistemic modality can enhance the polarity and subjectivity of 

a clause within a sentence (See Table 4.14). 

Table 4.14: Example of annotators description 2 

Tweet  Special word / 
emoji  

Label  

 القطاع الخاص يضع شروط كثيره للتوظيف 
alqitae alkhasu yadae shurut kathirih 
liltawzif 
The private sector asks for many conditions 
to employment 

- /  

 القطاع الخاص يضع شروط كثيره للتوظيف للأسف
llasf alqitae alkhasu yadaeu shurut kathirih 
liltawzif 
Unfortunately, the private sector asks for 
many conditions to employment 

  للأسف 
Unfortunately  

Negative  

 �� ��القطاع الخاص يضع شروط كثيره للتوظيف 
alqitae alkhasu yadae shurut kathirih 

liltawzif 💔 👎 

The private sector asks for many conditions 

to employment 💔 💔 

💔  /💔  Negative 
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 Annotators were strongly instructed not to allow background knowledge or 

bias to influence their work. Such factors include religious, cultural or social 

issues. (See Table 4.15). 

Table 4.15: Example of annotators description and their point of view 

Tweet  Label  

 بدل الندره يجب أن يتوقف صرفه عن الموظفين
bdl alnadruh yjb 'an yatawaqaf sarfah ean almuazafin 
The recompense for scarceness must be stopped given to 
the employees  

Negative for employee 
and positive for 
unemployed  

 

 Following the annotation process, Cohen’s (1960) Kappa, was utilised to 

examine how reliable the annotations were. This process involves deploying a 

statistical tool for measuring inter-rater agreement regarding qualitative terms. This 

tool is recognised as a robust indicator rather than a simplistic percentage calculation, 

since ĸ considers agreement by chance. The agreed level of agreement was deemed to 

be 91.74% and the weighted Kappa came out as ĸ = 0.816, indicating accurate 

annotations (Carletta, 1996).  The collected tweets were cleaned and then annotated 

by human annotators. The annotators annotated each tweet with either a positive or 

negative designation, and the annotator also discarded irrelevant tweets (See Table 

4.16). 

 

Table 4.16: Statistics of the tweets in dataset 

Dataset  Positive 
tweets 

Negative 
tweets 

Total tweets 2004 4996 
Total number of words 16383 33945 
Average number of words in each tweet (Tokens) 7.56 10.03 
Average number of characters in each tweet 58.89 39.97 

 

 

4.5. Lexicon Construction for the Saudi Dialect 

 This experiment has focused on collecting a lexicon for Saudi dialectical 

Arabic. For Saudi dialects, there are some proposed lexicons, such as the lexicon 

created by Aldayel and Azmi (2016). This lexicon contains only about 1500 terms. Al-

Twairesh et al. (2016) developed AraSenTi-PMI and AraSenTi-Trans which are two 



80 

 

large-scale Arabic sentiment lexicons. Another large lexicon contains 14,000 

sentiment terms has been built by Assiri (2016), it is based on a pre-created lexicon 

developed by Badaro et al. (2014) and encoded using the Buckwalter translation. 

However, all these lexicons are not publicly available with the exception of AraSenTi 

by Al-Twairesh et al. (2016), which is about multi-domain such as educations, sports, 

news etc. However, their lexicon was based on extracting lexicon from set of tweets 

automatically and then review it manually. This method failed to consider the different 

Saudi dialects such as Hejazi and Najdi. 

 Due to the lack of freely and publicly available dialectal Arabic sentiment 

lexicons (either in general or domain specific), a new lexicon construction approach is 

proposed. The Arabic language consists of MSA and many different regional dialectal 

Arabic, which are typically used in informal daily communication. In fact, Arabs from 

different regions or countries usually write their tweets in their own dialects. In 

particular, Saudi Arabia has six different dialects. In order to address this issue, Saudi 

dialects attributes for the lexicon are added from different Saudi dialects, such as 

Hejazi (west region), Najdi (middle region), Shamali (north region), Janubi (south 

region) and Sharqawi (east region). The lexicon in this study is created both 

automatically and manually by linguists, with the inclusion of native speakers of and 

Saudi and Arabic dialects. However, it is important to consider that because of the 

complicated nature of dialect, most of the efforts have been made to build and enhance 

the lexicon manually. In addition, the involvement of native speakers of different 

dialects has been crucial for the development of the lexicon, since, despite its massive 

popularity, there is a lack of standardisation for colloquial Arabic. 

 The first phase of lexicon construction involved developing the Arabic 

sentiment lexicon (MSA and different dialectical Arabic). This sentiment lexicon can 

be used for any further studies about Arabic sentiment analysis because it contains 

many terms for various domains and topics, and it may have adopted to other dialects 

of Arabic. In the second phase, the domain features lexicon was constructed. This 

lexicon is domain-specific and corresponds to the issue of unemployment in Saudi 

Arabia. In addition, the lexicon construction process includes all terms that determine 

the polarity level, such as intensifiers, negations, emojis and special phrases such as 

supplications, proverbs and interjections. 
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4.5.1. Building a Dialectical Arabic Sentiment Lexicon  

 To construct the lexicon, sentiment words and phrases were collected from 

different resources. In the first place, 1130 sentiment words written in MSA were taken 

from Azmi and Alzanin (2014). Subsequently, each word was associated with a 

synonym set and the different Saudi dialects set of the MSA word by eight native 

speakers. After that, the words were manually classified by annotators into one of four 

polarity levels: very positive (+1), positive (0.5), negative (-0.5) or very negative (-1), 

as shown in Table 4.17. In this way, the sentiment lexicon was expanded from 1130 

words to 16500 sentiment terms.  The following offers an overview of those core 

stages associated with developing the sentiment lexicon: 

1. The sentiment lexicon construction of the specific problem domain involves 

the collection task of words and phrases. It was collected from different 

resources. Firstly, 1130 sentiment words written in MSA were taken from 

Azmi and Alzanin (2014). After that, a list was created from SentiStrength11 

website and then translated it into Arabic using English–Arabic dictionary. 

Finally, the translated terms were revised manually by Saudi native speakers. 

2. Associated the terms with their synonym set in addition to their word forms, 

each word was associated with a synonym set. Due to the limited coverage of 

Arabic WordNet, only a few Arabic sentiment words are covered (Abouenour, 

et.al., 2008). A manual collection of Arabic sentiment lexicon and their synsets 

is considered for Saudi dialect to have a good coverage of sentiments with their 

synonym. Several sources were associated that provided words plus their 

synsets. Then, these were assigned the same polarity as their original word. For 

each word, 3 synonyms (on average) were added.   

3. All of the Saudi dialects, such as Hejazi, Nejdi, Qassmi, Shamali and Janubi 

were considered in this experiment. There is a degree of difference between 

Saudi dialects, therefore, the native speakers from different regions of Saudi 

                                                 
11 sentistrength.wlv.ac.uk/ 
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Arabia manually added the dialects expression on the words list and different 

words were often used to express the same opinion. 

4. The final stage in this study was the assessment of all the sentiment words that 

were collected and weighted according to the appropriate polarity. In this work, 

the polarity weighting score of each entry in the sentiment lexicon was 

determined manually while considering simultaneously. The words were 

manually classified by three native speaking annotators into one of four 

polarity levels: very positive (+1), positive (0.5), negative (-0.5) or very 

negative (-1). 

Table 4.17: Example of the lexicon construction 

Main word Synonym set Dialectal Arabic 
Word  Polarity Word Polarity 

 jayid  جيد
Good  
+0.5 

 hasan  حسن
 salih  صالح
 jamil  جميل
 khayr  خير

+0.5 
+0.5 
+1 
+1 

 zyn  زين
 halu  حلو
 mamluh  مملوح
 tamam  تمام

+0.5 
+1 

+0.5 
+0.5 

 syy  سيئ
Bad  
-0.5 

 fashil  فاشل
 talih  طالح
 batil  باطل

-1 
-0.5 
-1 

 yafshil  يفشل
 khays  خايس
 maefan  معفن

-0.5 
-1 
-1 

 

4.5.2. Building the Domain Features Lexicon 

 Unigram provides good coverage and is the simplest of features to extract from 

the text, enhancing the credibility of the data.  In contrast, bigrams and trigrams capture 

important elements in the text such as sentiment expression patterns or negation.  

Therefore, the process began with a statistical approach (NB classifier) through 

extraction of frequent terms, namely the unigrams, bigrams and trigrams in the 

annotated tweets. Then, for each of these features, the terms were manually checked 

by domain experts, creating a dictionary for all the candidate features that are relevant 

to the domain specific with the synonym set, inflections’ forms and dialects (as 

mentioned in detail in a previous section). Although this process determines several 

domain features, it cannot be relied upon since it does not provide a satisfactory 

coverage. Therefore, domain experts were responsible for accurately building and 

enhancing manual lexicon features. The resultant domain feature lexicon is 1987 

words, as illustrated in Table 4.18 and Table 4.19.  
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Table 4.18: Domain categories 

Categories   
Domain features 

Lexicon 
Saudi cities 42  

Countries 25 

Saudi government organizations 90 

Saudi national programs  7 

Nationalities  98 

Qualifications  58 

Jobs  77 

 
 Example of the Domain Features Lexicon 

 

Table 4.19: Example of domain features lexicon 

Main 
word 

Category  Synonym set Dialect Inflections’ forms 

 سوري

suri 

Syrian 

Nationalities  سوارنه شامي 

 سواريه

 الشوام

 سوريه

 سوريين

 سوريات

 راتب

ratib 

Salary 

Employee  معاش دخل شهري 

 مرتب

 رواتب

 معاشات

 معلمه

muelimuh 

Teacher 

Job  مدرسه 

 مربية أجيال

 أستاذه

 أبله

 

 معلم

 معلمه

 معلمات

 معلمين

 

4.6. The Polarity Level and Intensifiers 

 Most of the available research in the literature addresses the Arabic sentiment 

analysis issue as a binary classification problem — that is, a two class (positive or 

negative sentiment) problem. In this sense, words, phrases or documents that may have 

different intensities have to be merged into one of these two classes; they have to be 

classified either as a positive or negative sentiment (Badaro et al., 2019). In the case 

of word-level sentiment analysis, the two-class approach would lead to the system not 

being able to recognise the difference between words such as ‘nice’ and ‘beautiful’, 

which both have the same polarity (positive but different intensities). In the case of a 
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phrase-level sentiment analysis, however, these kinds of approaches will not be able 

to distinguish different sentimental connotations brought about by intensifiers, such as 

‘very’, ‘absolutely’, ‘extremely’, etc.  

 Within the context of these methods, no difference would be noticed between 

‘nice’ and ‘extremely nice’, as both would be classified as only positive. However, in 

real-world sentiment analysis, the polarity spectrum of sentiment ranges across a 

gradient of positives and negatives. In fact, researchers agree that in order to improve 

the quality of the NLP systems, it is crucial to model intensity at the phrase level, 

especially in question answering and textual entailment (de Marneffe et al., 2010). 

Thus, researchers have proposed combining an intensifier (support word), such as 

‘very’, with a polar adjective, such as ‘good’ or ‘bad’, as a multiplying effect. This can 

help to establish different sentiment scores for the phrases ‘very good’, ‘good’, ‘bad’, 

and ‘very bad’. 

  Throughout the prior research in this field, Saudi sentiment analysis studies 

have not yet considered the impact of intensifiers on sentiment polarity. Thus, in this 

study, the intensifiers for Saudi dialects were collected manually by native speakers 

due to the lack of a pre-existing list of intensifiers in the literature. Around 33 Saudi 

intensifiers were collected, of which three are presented in Table 4.20.  

 

Table 4.20: Example of some intensifiers  

In English  In Arabic  
Very  جدا / كثير / واجد / وايد 

jiddaan / kthyr / wajid / wayd 
Absolutely طبعاً / أكيد / من قلب  

tbeaan / 'akid / min qalb 
Extremely  مره / حيل 

marah / hayl 

 

4.6.1. Considering Negations  

 The identification of negations is crucial for the success of sentiment analysis 

since the presence of such words can alter the whole meaning and orientation of an 

opinion. Duwairi and Alshboul (2015) proposed an analysis of negation particles for 

Arabic sentiment analysis that considers two grammar rules: لنصب أدوات ا  and  أدوات
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 Based on these rules, five important negation particles widely used in Arabic .الجزم

were identified and divided into two different negation representative groups, which 

are maa 'ما', laa 'لا', lam 'لم', lan 'لن', and laysa 'ليس'.  

 Hamouda and El-Taher (2013) proposed a machine learning based sentiment 

analyser for analysing comments on Arabic Facebook news pages. The authors used 

different machine learning methods, as well as different features, for training. The 

machine learning model considered five different negations in order to optimise 

performance and accuracy. However, it is important to highlight that the proposed 

model took into account only five MSA negations and did not consider dialects. In 

addition, Hamouda and El-Taher (2013) used equations to narrow the search process 

which mean that only the percentage of negation in the post or the comment was taken 

into account as a feature, which paid no attention to the effect of negation on the 

phrase. In this study, in order to cope with the complex nature of the Arabic language, 

particularly the negation issue, it was necessary to use advanced rules that are capable 

of handling the most relevant and popularly used negation expressions. Therefore, the 

negation list was collected manually, resulting in a total of 45 negation words used in 

Saudi dialects, such as مش ، مو ، ماني ، مارح ، محد ، معاد (msh, mw, mani, marih, mahadun, 

mueadin). 

4.6.2. Considering Emojis  

 Emojis are small digital images used in social media to represent moods, 

thoughts, emotions and feelings (Felbo et al., 2017). In the last few years, the use of 

emojis on microblogging services and social networks has significantly increased, 

particularly on Twitter. Without relying on the language or domain, emojis can 

effectively and quickly convey specific feelings. Therefore, to develop sentiment 

analysis applications effectively, the detection and classification of the emojis is 

necessary. There are a few works that consider the use of emojis in Arabic Sentiment 

Analysis, such as Abdellaoui et al. (2018) and Al-Azani and El-Alfy (2018).  Applying 

this technique to a practical challenge, Al-Azani and El-Alfy (2018) introduced the 

idea of resorting to new non-verbal features for the sentiment analysis of microblogs 

as an alternative to using NLP processes The study integrated several machine learning 

algorithms into a single solution with features extracted from 969 emojis (Al-Azani 
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and El-Alfy, 2018). Experimental results show that the proposed emoji-based features 

performed well for detecting sentiment polarity. 

 This study considered non-verbal features within the comprehensive solution 

to Arabic sentiment analysis. In this way, the intended/overt sentiment of the emojis 

could be evaluated, as well as their effect on sentiment analysis. The emojis 

represented four levels of sentiment: very positive (VP), positive (P), negative (N) and 

very negative (VN).  The list of emojis applied to this study originated from Novak et 

al. (2015) and contains 592 individually distinct characters. The list of the emojis was 

annotated by human annotators to manually assign polarity class and to score each 

emoji. The annotators were informed to assign scores of VP= 1.0, P= 0.5, N= -0.5 and 

VN= -1. The score nearest to the average of the annotators’ scores was computed for 

each emoji. Overall, agreement among the annotators was high at 91.2%, with a Kappa 

(K) score of 0.85. The partial list of VP, P, N and VN emojis and an example are shown 

in Tables 4.21 and 4.22. 

Table 4.21: Partial list of emojis 

Label Emoji 

VP 👌    💪    ❤    💕 

P 💜    👌    💚    👍 

N 😐    ☹    😶    😞 

VN 😫     💔   😓    👎 
 

Table 4.22: Example of a tweet containing some emojis 

Tweet   تعرف على برنامج  السعوده الرائع واستغل الفرصه لترتقي ببلدك و

�� �� �� ��اعر ف حقوقك  رددفرصه ياشباب الوطن لا تت ☝   
taearaf ealaa barnamaj alsueudih alrrayie 
waistaghala alfirasah litartaqi bibaladik w aer f 

huquqik farasuh yashbab alwatan la tataradad 💚 👌 

🌸 🌸 ☝ ☝ 
Translation Learn about the wonderful program Sauda and take the 

advantage of the opportunity to improve your country 

and know your rights 💚 👌 🌸 😎 ☝ it is good 
opportunity Do not hesitate 

Annotation   Positive tweet by all annotators 
Emojis   💚 / 👌 / 🌸 / 😎  / ☝ 
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4.6.3. Considering Special Phrases 

 There are many special phrases in dialectal Arabic that express feelings, such 

as supplications, proverbs and interjections, and these play an important role in 

sentiment classification. To improve the developed Arabic sentiment analysis system 

in this study, it was crucial to be able to analyse these special phrases in a clear and 

accurate way. To address this issue, a novel, phrase-based method for handling 

supplications in dialectal Arabic was devised, improving the overall accuracy of the 

sentiment extraction process. 

4.6.3.1. Supplications 

 Arab people usually use supplications in their daily life, especially the Saudis. 

This behaviour is also reflected in their social media content. Semantic experts agree 

that supplication can represent both positive and negative attitudes (Mohammad, 

2016). Although supplications are often used in social media to express positive as 

well as negative feelings, there are only a few studies that address them in the Arabic 

sentiment analysis context (Ibrahim et al., 2015). In the corpus developed for this 

study, more than 32% of the tweets contained supplications, whether positive or 

negative ones, indicating the importance of supplications for determining sentiment. 

There are several sources of supplication, such as good wishes, as illustrated in Tables 

4.23 and 4.24, and bad wishes, as illustrated in Tables 4.25 and 4.26. 

 

Table 4.23: An example of a good wish supplication 1 

Tweet   سعون لحل أسعدنا و وفقنا و بشرنا و سخر لنا عبادك الصالحين الذين ياللهم

  مشكلتنا و نتوظف
allahum 'aseadna w wafiqna w basharna w sakhar lana 
eibadik alsaalihin aladhin yaseawn lihali mushkilatuna w 
natawazaf 

Translation Oh God, give us the happiness, reconcile, tell us good news 
and let a good people work hard to solve our problems by 
employing us  

Annotation   Positive tweet by two annotators and a negative tweet by one 
annotator  

Source   Personal expression  
Special 
phrases 

 اللهم أسعدنا /   وفقنا /  بشرنا / سخر لنا عبادك الصالحين
allahum 'aseadna / wafaqnaa / basharna / sakhar lana 
eibadik alsaalihin 
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Table 4.24: An example of a good wish supplication 2 

Tweet  برينالله يبسط الرزق لمن يشاء و يقدر و هذانا صا  
allah yabsut alrizq liman yasha' w yuqadar w hidhanana 
sabirin 

Translation God simplifies the livelihood for whomever he pleases 
Annotation   Positive tweets by two annotators and a negative tweet by 

one  
Source   Qur’an (the holy book)  
Special 
phrases 

 allah yabsut alrizq   الله يبسط الرزق

 

Table 4.25: An example of a bad wish supplication 1 

Tweet   الله يحرق قلوبكم مثل ما قلوبنا محترقه و ينتقم منكم .. الى متى و

 حنا مهمشين؟
allah yuhariq qulubikum mithl ma qulubuna 
muhtariquh w yantaqim minkum .. alaa mataa w 
hanna muhimashina? 

Translation Oh God, give them the misery feeling like what we 
feel and take revenge .. until when we are 
marginalized? 

Annotation   Negative tweets by all annotators  
Source   Personal expression  
Special 
phrases 

 allah yuhriq qulubikum   الله يحرق قلوبكم

 

 

Table 4.26: An example of a bad wish supplication 2 

Tweet   تم رفضي بدون مقابله حسبي الله و نعم الوكيل 
hasbi allah w nem alwakil tama rafdi bidun 
muqabilih 

Translation God is enough for me and the best deputy 
Annotation   Negative tweets by all annotators  
Source   Qur’an (the holy book)  
Special 
phrases 

 hasbi allah w nem alwakil   حسبي الله و نعم الوكيل

 

 To address these issues, a seto of common supplications phrases was developed 

from several resources, such as the Qur’an or common quotes used in everyday speech. 

The supplications were identified in the tweets if they contained one of these words: 
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 see Table 4.27. Most of the supplications phrase were collected from the ,اللهم or الله

“ALkalem attayeb” website (Kalemtayeb, 2019). Around 70 supplication phrases were 

collected that are commonly used in Arabic tweets, in addiction to some other 

supplications which were added manually. 

Table 4.27: An example of a set of common supplications 

Positive sentiment supplication Negative sentiment supplication 

 hasbi allah w nem  حسبي الله و نعم الوكيل allah yuafiqik  الله يوفقك
alwakil 

 aeudh biallah'  أعوذ بالله barak allah fik  بارك الله فيك

 la hawl w la quat  لا حول و لا قوة الا بالله jazak allah khayr  جزاك الله خير
'iilaa biallah 

 allah almustaean  الله المستعان allah yuetik aleafih  الله يعطيك العافيه
 

4.6.3.2. Proverbs 

 Proverbs are short expressions of popular wisdom. A proverbial expression is 

a type of conventional saying similar to a proverb, which is transmitted by oral 

tradition. Idiomatic phrases are also similar constructions; it is sometimes difficult to 

draw a distinction between tideioms and proverbs. For proverbial expressions and 

idiomatic phrases, the meaning does not immediately follow from the phrase itself. In 

addition, some experts classify proverbs and proverbial phrases as types of idioms 

(Ibrahim et al., 2015). In this study, the analysis of the proverbs was included in order 

to acknowledge expressions of feeling about particular issues. The proverbs were 

manually collected from a variety of colloquial sources, resulting in a total of 200 

proverbs in Saudi dialects. Table 4.28 shows examples of positive and negative 

proverbs, and Table 4.29 shows an example of a tweet containing a proverb. 

 

Table 4.28: Example of positive and negative proverbs 

Positive sentiment proverbs Negative sentiment proverbs 

 bidun husayb w la  بدون حسيب و لا رقيب alsabr miftah alfaraj  الصبر مفتاح الفرج
raqib 

خلف لخير سلفخير    khayr khalf likhayr 
salaf 

 alshiqu 'akbar min  الشق أكبر من الرقعه
alraqeih 

 w ealaa eaynak ya tajr  و على عينك يا تاجر ma harak dawak  ما حرك داواك
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Table 4.29: Example of a tweet containing a proverb 

Tweet  تعبنا ونحن نطالب ونستجدي ولا حياه لمن تنادي 
taebuna wanahn nutalib wanastajdi wala hiah liman 
tanadi 

Translate  We are tired of demanding and begging but no one 
responds  

Annotation  Negative tweets by all annotators  
Special phrases حياه لمن تنادي ولا    wala hiah liman tanadi 

 

4.6.3.3. Interjections  

 The use of interjections usually expresses a negative feeling (Ortigosa et al., 

2014). For instance, expressions like   ، الى متى ، وين قاعدين ، من متى ، وش باقي usually 

come with punctuation marks, such as (؟) and (!). Around 30 interjections were 

collected manually as shown in Table 4.30.  

Table 4.30: Example of a tweet containing an interjection 
Tweet  لى المؤهلات وخبرات ودورات وأعلى تجاهل ؟ أع ما العذر في

الدرجات في قياس ولا نجد فرص عمل لا في الخدمه المدنيه ولا 

الجامعات . . . ونطالب منذ سنوات . . بلا جدوى القطاع الخاص ولا 

 . . إلى متى ؟ ؟
ma aleudhr fi tjahl? 'aelaa almuahalat wakhibrat 
wadawrat wa'aelaa aldarajat fi. . . wanutalib mundh 

sanawatin. . bila jadwaa. . 'iilaa mta؟ ؟ 

Translation What excuse is there to ignore us? Higher qualifications, 
experience, courses and higher grades in Qiass programs 
but no job opportunities in the civil service or the private 
sector or the universities. . . We have been demanding 
them for years. . useless. till when? ? 

Annotation  Negative tweets by all annotators  
Special phrases إلى متى   /   ؟   . 'iilaa mta؟ 

 

4.7. Chapter Summary 

 This chapter has provided an in-depth overview of the resources and collection 

methods used to develop a corpus for analysing Arabic sentiment across social media 

channels like Twitter. Due to the lack of open datasets for the Arabic language, this 

study has created a gold standard corpus for sentiment analysis through the manual 

annotation of tweets. The dataset was captured from an array of trending Saudi Arabian 
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hashtags and included thousands of tweets that discussed unemployment social issues, 

such as السعوديه_للسعوديين (Saudi Arabia for Saudis) and توطين_قطاع_الإتصالات 

(localisation of the telecommunications sector) and one of the most important 

accounts, @JoblessGrads9 ( عاطلون بشهادات عليا). Subsequently, these tweets were by 

removing the URL, hashtags, redundant tweets and stop words. After that, NLP was 

applied to the collected tweets, such as tokenisation and normalisation. Regarding the 

light stemming, this study confirmed that MSA stemming algorithms are not 

applicable to Arabic dialects, and not many stemmer tools can reconcile the specific 

dialectic variations. These findings confirm that the ISRI stemmer is the most accurate 

when applied to Saudi dialectal Arabic words. Still, the ISRI stemmer fails to stem 

certain words because it was primarily developed for MSA rather than dialectal 

Arabic. Accordingly, this study has developed a novel stemming approach that 

integrates the ISRI stemmer with a bespoke rule-based stemmer to address the 

challenges of Saudi dialectal Arabic stemming. This rule-based algorithm comprises a 

set of pre-defined rules for extracting the stem of Saudi dialectal Arabic words and 

was found to provide improved accuracy when compared to other stemming 

algorithms. Subsequently, a gold-standard corpus comprised of 7,000 manual tweet-

based sentiment annotations was developed Finally, a a domain specific lexicon was 

developed in to assess the polarity, intensifier, negation, emoji, and special phrases 

related to native Arabic tweets. 
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Chapter 5 
 

5 Multi-factor Lexicon-Based Sentiment 
Analysis of Social Media Content in 
Dialectical Arabic 

 

 Due to the structural limitations of social media communication (e.g. character 

limitations, context, directional), users are frequently challenged to express ideas and 

arguments with limited linguistic efforts (Albogamy and Ramsay, 2015).  For Arabic 

sentiment analysis, the result of such conditional communication is significant, 

resulting in a dialectical bias that not only limits the applicability of traditional MSA 

approaches, but require careful consideration for dialectical influences and biases (El 

Beltagy et al., 2016).  Evidence captured during this study from Twitter revealed a 

range of abbreviations, acronyms, colloquialisms, emojis, and other lexical limiters 

that have complicated the application of traditional sentiment analysis tools to high-

engagement social media channels like Twitter.  This chapter addresses such 

limitations, drawing upon a multi-factor solution to address the complexities of 

dialectical Arabic and to increase the accuracy and insightfulness of sentiment analysis 

outcomes. 
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 Sentiment analysis methods are mainly based on lexical (linguistic) or machine 

learning (statistical) approaches. In machine learning approaches, the extracted text 

features are processed using machine learning algorithms, such as a support vector 

machine (SVM), naïve Bayes (NB) and decision tree that are trained using text that is 

pre-labelled with the sentiment polarity. In the case of the lexicon-based approach, in 

the sentiment analysis context, a robust sentiment lexicon with a custom number of 

terms (each with a known polarity) has to be built. Then, based on this lexicon and the 

application of statistical-semantical weighing and distribution schemes, the polarities 

of the unknown words can be established in order to finally determine the polarity of 

the whole block of text. However, lexicon-based approaches require a significant 

human effort, since the collection of the opinion words has to be done manually to 

build a high-quality lexicon (Abdulla et al., 2014). Different Arabic sentiment analysis 

techniques have been proposed in the literature to analyse Modern Standard Arabic 

(MSA) or dialectical Arabic (DA). Some studies focus on machine learning 

approaches using different machine learning algorithms (Duwairi et al., 2016; 

Hammad et al., 2016; Al-Horaibi et al., 2016). The lexicon-based approach is also 

considered in the literature (Al- Twairesh et al., 2018; Mataoui et al., 2016; and Abd-

Elhamid et al., 2016), and in general, many of these studies focus on sentiment analysis 

for MSA.  

 However, little research examines the sentiment analysis of dialects. Although 

Saudi Arabia has recently been ranked among the countries with the fastest Twitter 

growth, a major challenge in the sentiment analysis of Saudi Twitter posts is the lack 

of a gold-labelled corpus and comprehensive sentiment lexicon that covers the 

different Saudi dialects. Some studies demonstrate an interest in sentiment analysis for 

the Saudi dialect sentiment analysis (Al-Harbi and Emam, 2015; Assiri et al., 2018; 

Al-Thubaity et al., 2018; Alahmary et al., 2019); however, the research is still in an 

early stage. To supplement such emergent theory and experimental models, this study 

focused on lexicon-based sentiment analysis which incorporates a multi-intensity 

lexicon-based sentiment analysis algorithm capable of contributing to sentiment 

analysis in relation to dialectical Arabic. 
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5.1. Domain Analysis and Feature Extraction 
 

5.1.1 Knowledge Map of the Specific Domain for Arabic 
Sentiment Analysis 

 

 The lexicon-based approach developed for this study fundamentally relies on 

the comprehensive analysis of the problem domain knowledge. In the context of this 

work, the overall analysis is critical to the extraction of the semantic features in 

preparation for their pairing with sentiments. Domain knowledge includes information 

about a domain’s environment, its key concepts, their synonyms and ground facts and 

the relationship between these items. Domain knowledge in linguistics can be utilised 

to improve sentiment analysis based on corpus of a data set. The modelling of domain 

knowledge focuses on capturing relevant information and organising it into concepts 

connected via relationships. For this case study problem domain of unemployment in 

Saudi Arabia, the modelled knowledge includes key concepts, such as unemployment, 

organisation, person, opinion and sentiment; it also includes interrelations, such as 

interactions with key stakeholders (e.g., citizens and policy makers) and the 

communication/advice medium (Twitter posts). The concept map is illustrated in 

Figure 5.1. The concept map was then translated into a formal ontology for use in 

populating a knowledgebase with semantically tagged information from the Twitter 

feeds (Khalil and Osman, 2014). 
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Figure 5.1: Concept diagram 
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5.1.2 Building an Arabic Sentiment Ontology 

 Ontology is defined as a set of representational primitives used to model a 

domain of knowledge (Noy et al., 2001). A JAVA based ontology editor and 

knowledgebased framework called Protégé 12  was used to develop the targeted 

ontology. To allow for a good sentiment analysis of tweets, it is necessary to specify 

which phrases indicate different sentiments, requiring a method capable of assigning 

which phrases indicate these various sentiments. Therefore, this study involved 

developing an ontology for the Saudi Arabian dialect that focuses on the semantic 

relations between the sentiments and their instances. Specifically, there are two 

polarities in the ontology which are Positive and Negative. In addition, there are 

different categories of sentiments, for instance, the subtype relation is used to to show 

that a certain sentiment, e.g. ‘‘فقر” (poor) is a subtype of ‘‘سلبي” (negative) to indicate 

groupings of sentiments. Along with the sentiment classification, each instance is 

associated with a polarity (+1) for positive and (-1) for negative.  

 The primary classes in the formal unemployment ontology are decision-

makers, employment offers, national programs, opinions, organizations, people, 

recommendations, sentiments, Twitter posts and semantic features such as company 

and city. National programs and organizations are super classes that capture some of 

the unemployment domain’s key concepts and synonyms. Parts of these key concepts, 

such as governmental organizations, non-governmental organizations and private 

companies, are subclasses of the class organization, which represents names of 

organization as individuals with respect to their roles in the community. The class 

labelled sentiment contains subclasses such as negative sentiments and positive 

sentiments, which represents the sentiment orientation of an expressed opinion. The 

rest of the key concepts, such as foreign labour and citizens are subclasses of the class 

labelled as people. The class “opinion” contains individuals that characterises the 

expressed opinions in tweets. All individuals of the created classes were linked 

together using object relationships, such as “write in”. Figure 5.2 presents a snapshot 

of the completed unemployment ontology. 

                                                 
12 http://protege.stanford.edu/ 

http://protege.stanford.edu/
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Figure 5.2: Screenshot of the unemployment ontology 

5.1.3 Enriching the Gazetteer Lists 

 GATE13 is one of the main free software tools currently available that deal with 

NLP techniques. It was developed as open source software by the University of 

Sheffield in 1996. Many NLP applications use GATE in multiple languages and media. 

                                                 
13 https://gate.ac.uk/ 

https://gate.ac.uk/
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GATE automatically manages other standard procedures such as data visualisation, 

data storage and format analysis. Since the tool is open source, the implementation 

details, grammar rules and gazetteer lists are available within the tool’s source code. 

These components can be modified to improve the accuracy within the target domain. 

In this research, each gazetteer list presents a set of names, such as organizations, jobs 

and cities etc. The gazetteer data was collected from different resources, such as 

government websites and Wikipedia. Figure 5.3 is a screenshot shows the Arabic 

gazetteers that were created for this study, exemplifying the positive sentiments written 

in dialectical Arabic. 

 

 

Figure 5.3: Screenshot of the gazetteer lists 
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5.2. Lexicon-Based Multi-Factor Sentiment Analysis 

 The lexicon-based sentiment analysis uses two sentiment lexicons (positive 

and negative) to match the sentiment terms in the tweets. Sentiment terms are counted 

in the text to calculate the overall polarity of a tweet. The common approach uses some 

rules to determine the label of the tweet. One rule is that if the number of positive terms 

in the tweet is larger than the number of the negative terms, then the tweet is labelled 

as positive, and vice-versa (Pak and Paroubek, 2010). This is a multi-factor process 

and required several techniques to improve the accuracy of the sentiment analysis. 

5.2.1. Feature-Sentiment Association 

 In order to exclude expressed opinions that were irrelevant to the problem 

domain, an association window (the neighbouring words to the left and right of the 

target word) was used to determine the sentiments that are located in close proximity 

to the domain key concepts (features) identified at the knowledge modelling stage. 

Traditional POS-based referencing techniques (Al-Horaibi and Khan,2016; Ibrahim et 

al.,2015) cannot be directly used for feature-sentiment association, as dialectal Arabic 

lacks the grammatical structure of MSA.  The proposed feature-sentiment association 

technique comprises several steps as exemplified in the tweet in Table 6.1:  
 

Step 1. Find positive/negative sentiments (good, excellent, bad) using the sentiment 

lexicon, as shown in Table 5.1.  

Table 5.1: Sentiments in the tweet 

Origenal 
Tweet  

الواسطه خربت علينا بجد واضح للمسؤلين نتيجة الفساااااد ..أقول بس يا زين 

 النوم 

alwasituh kharabat ealayna bijidin wadih lilmswlin natijat alfsaaaaad 
..aqwl bs ya zayn alnuwm 

Translation “cronyism really ruined us it is clear to the decision makers the 
corruption .. it is better to sleep” 

Light tweet   واسطه خرب على جد واضح مسؤل نتيجه فساد قول بس يا زين نوم 
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Step 2. If sentiments are found, find semantic domain features (salary, jobs, etc.) 

around the sentiments using the domain features lexicon, according to a predefined 

association window (2 words before and after the sentiment) see Table 5.2; this is 

sufficient for the relatively short sentence length of tweets.  

Table 5.2: Sentiments and features in the tweet 

Tweet   الواسطه خربت علينا بجد واضح للمسؤلين نتيجة الفساااااد ..أقول بس يا زين

 النوم 

Light tweet   واسطه خرب على جد واضح مسؤل نتيجه فساد قول بس يا زين نوم 

 

Step 3. Count: consider only sentiments within the window of the feature, as shown in 

Table 5.3.  

Table 5.3: Consideration of sentiments of the domain features 

 

 It is clear from the previous example (Table 6.3) that the sentiments   خرب and 

 were considered because they surrounded the semantic domain features. The فساد 

sentiment  زين  was considered as a non-relevant sentiment and was excluded because 

it refers to نوم , which is not a domain feature. 

Step 4. Associate: associate sentiments with feature, see Table 5.4. 

Table 5.4: Sentiment-feature association 

  Negative واسطه_خرب

  Negative مسؤل_فساد

 

5.2.2.  Computing Sentiment Score 

 Using a term-matching technique, a given term is looked up in the lexicon. If 

there is a match, the score is considered; otherwise, no score is considered for the given 

term. The score is calculated by the following steps: 
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pseudocode: Tweet Score Calculation 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

Inputs: A tweet, lexicons  

Output: Sentiment score  

Set Score ← 0 

Words ← Tokenize(Tweet) 

FOR EACH word in words DO 

    IF word is PositiveLexicon THEN  

Score ← Score + 0.5  

ELSIF word in VeryPosLexicon THEN  

    Score ← Score + 1.0  

ELSEIF word is NegativeLexicon THEN  

Score ← Score  - 0.5  

ELSIF word is VeryNegLexicon THEN  

        Score ← Score - 1.0 

Label ←  Classify-Tweet(Score)  

RETURN Label 

 

 The tweet score (TS) is calculated by summing all sentiment scores for all the 

words of the tweet (WS), as shown in the following equation:  

𝑇𝑆 = 𝛴𝑤𝑠 

 Where TS is tweet score, and WS is word (sentiment) score. 

5.3. Techniques to Improve the Basic Sentiment 
Analysis Process 

 Experiments were conducted with different techniques to improve the accuracy 

of the sentiment analysis mechanism, namely light stemming and morphological 

analysis of Arabic language, negation, intensification words, emojis and special 

phrases. 

5.3.1. Tweet-Score Calculation with Negation   

 With respect to sentiment analysis, using negation in language reverses the 

polarity of the sentiment. For example, ‘not happy’ should be considered negative. 
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Thus, considering negation in sentiment score calculation is important. Negation is 

represented by a window for terms in tweets. For instance, consider the following 

tweet: ‘I do not like pizza’,‘ البيتزا انا ما احب ' , making the window equal to one for the 

tweet allows us to get the previous word for each word as follows: ‘_ I’, ‘I do’, ‘do 

not’, ‘not like’ and ‘like pizza’, ‘انا_’,’ انا ما  ’,’ ما احب  ’,’ احب البيتزا  ’. Making the window 

for dialectical Arabic is exactly the same way in English. The pseudo-code of function 

tweet-score calculation with negation is as follows. 

 

The pseudo-code of function: tweet-score calculation with negation   

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 

Inputs: A tweet, lexicons  
Output: Sentiment score  
Initialize Score ← 0 
window_list ← generate-Window(Tweet, 1) // generate a window with size 1  
FOR EACH previous_word, word in window_list DO 
    IF word is PositiveLexicon AND previous_word in negation_list THEN  

Score ← Score - 0.5  
ELSIF word in VeryPosLexicon AND previous_Word in negation_list THEN  
    Score ← Score - 1.0  
ELSEIF word is NegativeLexicon AND previous_word in 
negation_list  THEN  

Score ← Score  + 0.5  
ELSIF  word is VeryNegLexicon AND previous_word in 

negation_list  THEN  
        Score ← Score + 1.0 
Label ←  Classify-Tweet(Score)  
RETURN Label 

 

5.3.2. Determining the Sentiments’ Intensity 

 In this approach, the compiled intensification terms were used to assess the 

sentiments’ intensity. By considering a window (neighbouring words) for terms in 

tweets to it is possible to get the previous and next words for each tweet because in 

some cases, the intensity is not associated with the sentiment as shown in the examples 

in Table 5.5. This is due to the use of dialectal Arabic on Twitter. The pseudo-code of 

tweet-score calculation with a consideration of intensification is further described:  
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Table 5.5: Example of some tweets containing intensification 

Tweets  Translation  

كثيره من المتخرجين  حيلأعداد  رفض ماهي أسباب  
mahy 'asbab rafad 'aedad hyl kathirih min 
almutakharijin 

What are the reasons for rejecting too many 
graduates 

للخير سباقين جداعيال الديره   
eial aldiyrih jiddaan sabaqin lillkhayr 

Citizens have very initiative to do good 
things 

بيننا  كراهيهتولد  حيللا تكتبوا أمور   
la taktabuu 'umur hyl tulad karahih baynana 

Don't write things that generate too much 
hatred among us 

متعدده .. فقط تأمل حولك جداخياراتها  السعاده  
alsaeaduh khiaratuha jiddaan mutaeadiduh .. 
faqat tamal hawlik 

Happiness has very different options. Just 
look around you 

 

The pseudo-code of function: tweet-score calculation with considering intensification 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

Inputs: A tweet, lexicons  
Output: Sentiment score  
Initialize Score ← 0 
window_list ← generate-Window(Tweet, 2) // generate a window with size 2  
FOR EACH previous_word, word, next_word in window_list DO 
    IF word is PositiveLexicon THEN  

Score ← Score + 0.5  
IF previous_word in intensification_list OR next_word in 
intensification_list THEN 

Score ← Score + 0.5  
ELSIF word in VeryPosLexicon THEN  
    Score ← Score + 1.0  
    IF previous_word in intensification_list OR next_word in 

intensification_list THEN 
Score ← Score + 0.5  

ELSEIF word is NegativeLexicon THEN  
Score ← Score  - 0.5  
IF previous_word in intensification_list OR next_word in 
intensification_list THEN 

Score ← Score - 0.5  
ELSIF  word is VeryNegLexicon THEN  

        Score ← Score - 1.0 
        IF previous_word in intensification_list OR next_word in intensification_list 
THEN 

Score ← Score - 0.5  
Label ←  Classify-Tweet(Score)  
RETURN Label 
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5.3.3. Experimental Analysis of a Novel Lexicon-Based 
Approach  

 To evaluate the effectiveness of the proposed algorithm, several experiments 

with multi-intensity lexicon-based sentiment analysis and multi-factor lexicon-based 

sentiment analysis were conducted, considering emojis, intensifiers, negations and 

special phrases, such as supplications, proverbs and interjections. To evaluate the 

different approaches, the traditional measures employed in text classification have 

been employed including: precision (P), recall (R), accuracy (Acc) and F-measure 

(F1). However, the F-measure, which is a harmonic mean of recall and precision and 

the accuracy, is also used to evaluate the performance of the system (Bekkar et al., 

2013).  

 The classification results presented in Table 5.6 and Figure 5.4, display the 

accuracy and the average F-score between the negative and the positive classes. All 

tests were applied to the study-derived, gold-labelled dataset. The approach of 

combining all the factors (Lexicon-based baseline, light stemming, polarity, negations, 

emojis, intensification words) obtained the best classification results (See Table 6.6) 

and reached an accuracy score of 89.80% and a F-score of 86.32%, registering an 

improvement of 5% and 9% respectively over the baseline. However, Table 6.6 also 

shows a good result for the lexicon-based system baseline with classification accuracy 

of 84.34% and F-score of 76.47%, which is attributed to two reasons, first, the 

knowledgebased approach which allows the capture of domain-specific characteristics 

and the effective lexicon construction of Saudi dialects. 

 These results also show that emojis exhibit lower accuracy than the baseline 

system with a score of 82.63% and the F-score of 48.70%, which was in-part due to 

the sarcastic behaviour of Twitter users. In some cases, for example, they may have 

used emojis to reflect the opposite feeling, expressing sarcasm, but also affecting the 

accuracy of the assessment. As shown in Table 6.6, the classification accuracy and the 

F-score for combining the lexicon-based and polarity was 88.94% and 82.14% 

respectively. The classification accuracy for combining the lexicon-based and special 

phrases was 85.39% and the F-score was 76.99%. In terms of light stemming, when 

applied in conjunction with the lexicon-based method, the classification accuracy 

score and the F-score were 88.99% and 81.16%, respectively.  
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 Negation is a more complex task which required specific rules to identify all 

of the negation expressions and avoid misrepresentations due to their inconsistencies 

in usage. An in-depth linguistic analysis and semantic reconciliation were needed to 

address the complexities of the Arabic language and the issue of negation.  The 

negation result for the lexicon-based method was poor due to two factors. The first 

was the use of special characters, such as exception characters in the Arabic language, 

which are common in tweets (e.g., لن ينجح الا المجتهد/, ‘no one successful only the hard 

working’). The second factor was the free order of words in an Arabic sentence, which 

led to the wrong match between the negation and the sentiment. The results indicate 

that the accuracy of the negation with the lexicon-based method was 79.53% and the 

F-score were 57.70%. As a result, with the exception of negation and emojis, all factors 

proved individually useful in improving the classification accuracy. Combining the 

factors resulted in the highest classification accuracy measurement. 

 

Table 5.6: Results of multi-factor lexicon-based sentiment analysis of social media content in dialectical Arabic 

Method Average Accuracy Average F-score 

Lexicon based 84.34% 76.47% 

Lexicon based+ polarity 88.94% 82.14% 

Lexicon based+ light stemming 88.99% 81.16% 

Lexicon based+ negation 79.53% 57.70% 

Lexicon based+ intensification words 86.37% 77.53% 

Lexicon based+ emoji 82.63% 48.70% 

Lexicon based+ Special phrases 85.39% 76.99% 

All enhancement techniques (lexicon based+ light 
stemming + polarity + negation + emojis + 
intensification words) 

89.80% 86.32% 
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Figure 5.4: Results of multi-factor lexicon-based sentiment analysis of social media content in dialectical Arabic 

5.4. Comparison to Similar Work on Dialectal Arabic 
Sentiment Analysis 

 The proposed lexicon-based approach fundamentally relies on utilising 

problem domain knowledge in the sentiment analysis process. Hence, it is useful to 

evaluate the applicability of this approach to other problem domains. This section 

compares the performance of the proposed approach against the works of two lexicon-

based approaches for Saudi dialects that were published in the Journal of Information 

Science (JIS).  

 The first comparative dataset was used by Adayel and Azmi (2016). The 

authors selected hashtags discussing different social issues in Saudi Arabia, such as  

 ,alratb_mayikfy_alhaja (our salary is not sufficient) # #الراتب_مايكفي_الحاجة  

_اكتوبر 26#قيادة_  #qyadt_26_aktubar (women driving on 26 October) and 

 almhtsbwn_lldywan_mjdda (Sheikhs went to discuss the #   اً #المحتسبون_للديوان_مجدد

women driving with the leader again). Their dataset contained 1103 Arabic annotated 
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tweets.  They developed a sentiment analysis system that aims to identify the polarity 

of the tweets, with two classifications (positive or negative). Regarding Arabic 

sentiment lexicons, they initially used SentiWordNet to extract some sentiment words 

after translating the dataset into Arabic and combining the corpus with their own list 

of essential sentiment-indicating words.  The resultant sentiment lexicon consisted of 

1500 sentiment words (1000 negative and 500 positive). The overall tweet’s polarity 

was determined according to the cumulative score of the positivity degree of all the 

sentiment words in that tweet. In their research Adayel and Azmi (2016) considered 

negation and used regular expression to implement the negation term detector. The 

algorithm extracted unannotated tweets and returned tweets with sentiment scores. 

However, some of the returned tweets could not be annotated because the semantic 

approach depends only on the sentiment words that are found in the lexicon. Therefore, 

in some instances, the classifier failed to classify a tweet that was devoid of any 

obvious sentiment word, or the sentiment words were not found in the lexicon. The 

highest performing results of the Adayel and Azmi (2016) model included a score of 

67.60% for the accuracy, F-score of 78.24%, 91.74 for precision and 67.43% for recall.  

 The second dataset deployed to test the proposed model was collected by Al-

Twairesh et al. (2017) in which a total of 14,806 tweets were manually annotated by 

the recruited annotators. The AraSenti-Tweet corpus is publicly available14 and the 

dataset is divided into a training set and test set. The sentiment lexicons ‘AraSenti-

Trans’ were extracted from the datasets of tweets using MADAMIRA tool and 

contains 131,342 terms. Al-Twairesh et al. (2017) experimented with managing 

negation in the tweet, compiling a list of negation particles found in the tweets and 

checking if the tweet contained a negation particle or not. The accuracy assessment 

revealed that f-score in their work registered 76.31%, the precision was 78.38% and 

recall was 78.15%. 

 Table 5.7 and Figure 5.5, compare the performance of the study-proposed 

sentiment analysis approach against that of Adayel and Azmi (2016) and Al-Twairesh 

et al. (2017) using their experiments’ corpora. 

                                                 
14 https://github.com/nora-twairesh/AraSenti/tree/AraSenti-Tweet-Corpus 

https://github.com/nora-twairesh/AraSenti/tree/AraSenti-Tweet-Corpus
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Table 5.7: The results of applying the studylexicon-based approach with Al-Twairesh et al and with Adayel and 

Azmi corpus 

Research  Corpus  Domain Accuracy  F-score  Precision Recall 
Aldayel and Azmi 
(2016) 

1103 tweets multi-domain 
(social issues) 

78.22% 76.24% 75.49% 77.02% 

Al-Twairesh et al 
(2017) 

4700 tweets multi-domain 78.61% 62.22% 61.30% 63.17% 

Current work  7000 tweets specific domain 
(unemployment) 

89.80% 86.32% 86% 86.65% 

 

 

 

 

Figure 5.5: The results of applying the study lexicon-based approach with Al-Twairesh et al and with Adayel and 

Azmi corpus 

 The experimental results show that the current study’s lexicon-based approach 

clearly outperforms the other across all dimensions including accuracy, F-Score, 

Precision, and Recall. As the accuracy is not considered in Al-Twairesh et al. (2015), 

it is assumed that the results indicate an improvement of the f-score around 2% over 

their work. This is clearly attributed to the fact that the proposed model offers a more 

comprehensive coverage of the factors that impact lexical analysis including the use 

of intensifiers, negations, supplication, proverbs and interjections as well as the 

comprehensive multi-intensity sentiment lexicon for Saudi dialects. These findings 

confirm that the proposed lexicon-based approach can be re-adapted for other domains, 

expanding the transferability of these findings to other studies in the future. 
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5.5. Chapter Summary 

 This chapter has introduced a novel multi-factor lexicon-based sentiment 

analysis of social media content in dialectical Arabic social media. This approach 

integrates the processing of several factors, such as intensification and negation, to 

improve the classification accuracy. Using unemployment as the target problem 

domain, the documented research puts forth a sentiment lexicon that is complemented 

by a comprehensive set of multidialectal sentiment synonyms. Also, this methodology 

applies an effective light stemming approach which considered knowledge-assisted 

lexicon-based sentiment analysis and developed the knowledge map of the domain 

specific for Arabic sentiment analysis. The result was a formal output of an 

unemployment Arabic Sentiment Ontology which plays a main role in feature-

sentiment association in order to exclude expressed opinions that are irrelevant to the 

problem domain. These results indicate that the proposed combined lexicon approach 

(light stemming, emojis, intensifiers, negations and special phrases, such as 

supplications, proverbs and interjections) obtained the best classification result when 

compared with other prior studies with similar modalities.  
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Chapter 6 

 
6 Machine Learning Approach for Sentiment 

Analysis of Social Media Content in 
Dialectical Arabic  

 

6.1. Introduction 

 Sentiment Analysis via Machine Learning is a topical area of cutting-edge IT, 

with classifiers predicting target data based upon a large collection of texts and studies. 

Machine learning identifies feature of a text through specific applications and 

approaches. Machine learning searches for patterned straits within texts and exploits 

them (positive or negative expressions) to classify the most fitting and accurate class. 

Using machine learning to analyse sentiment from a given body of texts (tweets) has 

several differing procedures. The initial step is to annotate a corpus for the data field, 

the Arabic sentiment corpus has been created to achieve this aim and explained, in full, 

in previous chapters. Subsequently, the text requires converting to a suitable model for 

machine learning algorithms. This model, otherwise labelled as the vector or feature 

model, consists of a numerical data matrix. Each individual column within the created 

matrix signifies an individual word within the corpus. Each individual row signifies 

the sentence or document from which it is derived, dependant on level classification. 

The values for both rows and columns illustrate the frequency of the given word within 

either the sentence or document. In the creation of this matrix, unique features 

generated or specified to be added. Once the model has been created, the Machine 

Learning classifier is updated with data, analysed and ‘learns’ from remaining data to 

ascertain its own performance.  
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 In linguistic analysis, there are several issues that affect the results. Most of these 

problems require a robust analytical tool to extrapolate meaning from the evidence.  Prior 

to conducting this study, negation was identified as a critical variable in Arabic text which 

required careful consideration and analysis. In sentiment analysis, word polarities are 

affected significantly if negations are ignored, which also affects the text polarities by 

converting the meaning of the sentence to its opposite. Another issue that was confronted 

during the lexicon-based sentiment analysis was the need to connect different words 

together. In Twitter-based social media posts, the length of the tweet is limited, and for 

this reason, users are likely to connect stop-words with other words that affect the filtering 

exercise, potentially biasing or amending the outputs.  Table 6.1 offers an example of the 

linguistic problem encountered during this analysis, thereby mandating the application of 

a machine learning solution to sentiment analysis.  

 

Table 6.1:Example of Linguistic Problem Mandating ML Solution 

Word  connecting words 

 الواسطه

Cronyism 

alwasituh 

/  بالواسطه/  الاالواسطه /اماالواسطه /  الاالواسطهه / عالواسط  /والواسطه

/  وبالواسطه /والاالواسطه/  اماالواسطه/  الاالواسطه/  ضدالواسطه

/  وبالواسطه/  وعالواسطه/  وحننجح/  واماالواسطه/  وضدالواسطه

 وضدالواسطه

walwasituh / ealwasth / alaalwasth / amaalwasth / alaalwasth / 

bialwasitih / ddalwasth / alaalwasth / amaalwasituh / walawaastuh 

/ wabialwasitih / wadadalwasitih / wamaaalwasith / wahannjah / 

waealuasitih / wabialwasitih / wadadaluu 

 ننجح

We succeed 

nanjah 

ياننجح / وقدننجح/  ولاننجح/  لاننجح/  قدننجح/  فننجح/  حننجح/  سننجح  

sananjuh / hananjah / fananjih / qadnanjah / lannajah / 

walannajah / waqadnanajih / yannajah 

 

The motivation of applying machine learning sentiment analysis is to solve some linguistic 

analysis issues 

6.2. Overview of the Most Common Machine 
Learning Techniques 

 This section illustrates the most commonly used machine learning classifiers 

for sentiment analysis. However, within the Arabic sentiment analysis domain, there 
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is a particular focus on these techniques in the myriad of technologies available for 

sentiment analysis. For dialectal Arabic, there are a limited number of studies that have 

been completed to compare with MSA, therefore, there is no prior evidence of the 

optimal classifier solution. 

6.2.1. Naïve Bayes Classifiers  

 Naïve Bayes classifiers are simplistic and probabilistic based classifiers that 

apply to Naïve Bayes’ theorem. Attributes are independent from each other, resulting 

in naïve assumptions (Du, 2010). Generally, allowing for independent assumption, 

class-conditional probability regarding an object (X) (a record or row based within the 

dataset) is an anticipation of the product of isolated events (Feature Values, X1, X2, 

X3 …. Xd), conditional on probabilities for the class Y, (d) refer to documents: 

 

𝑃(𝑋|𝑌 = 𝑦) =  ∏ 𝑃(𝑋𝑖|𝑌 = 𝑦)
𝑑

𝑖=1
  

 

 Therefore, when predicting class Y: 

𝑃(𝑌 = 𝑦|𝑋) = 𝑃(𝑌 = 𝑦)(∏ 𝑃(𝑋𝑖|𝑌 = 𝑦)/ 𝑃(𝑋)
𝑑

𝑖=1
 

 

 Given that P(X) is a standard common denominator for class predicted 

calculations for a record in isolation (X), it has no effect on the class; hence, replacing 

the previous formula with the following is possible: 

𝑃(𝑌 = 𝑦|𝑋) = 𝑃(𝑌 = 𝑦)(∏ 𝑃(𝑋𝑖|𝑌 = 𝑦)
𝑑

𝑖=1
 

 

 The main strengths of Naïve Bayes classifiers include nullified values being 

ignored with irrelevant features uniformly distributed since they fail to have a 

significant influence on classification. The resultant handling noise data averaged out 

within the estimated conditional probability. Several Naïve Bayes variations exist, 

including the Bernoulli Naïve Bayes and the Multinomial Naïve Bayes. 
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6.2.1.1.  Multinomial Naïve Bayes Text Classifiers  

 Upon adopting the Multinomial Naïve Bayes Text Classifier, the presented 

probability of a given document (d) being in class (c) is forwarded as (Manning et al., 

2010): 

𝑃(𝑐|𝑑) ∝ 𝑃(𝑐) ∏ 𝑃(𝑡𝑘|𝑐)

1≤𝑘≤𝑛𝑑

  

 

 P(tk|c) is the conditional probability factor in terms of (tk) throughout the said 

document regarding terms of class (C). An interpretation of P(tk|c) ascertains that (C) 

is the appropriate class. P(c) is the previous probability within the document, 

represented as class (C). Where the document fails to provide evidential basis for one 

class in relation to another, the case gains a higher prior probability. (t1, t2 tnd) 

represent tokens in (d) that are a factor of the terms adopted for classification and nd 

is the sum total of tokens in (d). e.g. (t1, t2 tnd) for a single sentence: “Beijing and 

Taipei join the WTO” may be (Beijing, Taipei, join, WTO), with nd equalling, when 

treating the term “and” as a stop word. In text classification, the goal is to ascertain the 

optimum class for the given transcript. The optimum category in Naïve Bayes 

classification is the most used; the optimum category could also mean having the 

Maximum Posteriori (MAP) class cmap: 

𝐶𝑚𝑎𝑝 = 𝑎𝑟𝑔 𝑐∈𝐶𝑚𝑎𝑥 𝑃̂(𝑐|𝑑) = 𝑎𝑟𝑔𝑐∈𝐶 max 𝑃̂(𝑐) ∏ 𝑃̂(𝑡𝑘|𝑐)

1≤𝑘≤𝑛𝑑

 

 

 P ̂(c) is ascertained by assessing the frequency of class (c), in relation to the 

overall size of the training data: 

𝑃̂(𝐶) =
𝑁𝑐

𝑁
 

 

 In which (Nc) represents the overall number of texts in class (c), in which (N) 

is identified as the mass of documents. P ̂(tk|c) is determined by ascertaining the total 

of occurrences of (t) in relevant documents within class (c), including multi-

occurrences of a given term: 

𝑃̂(𝑡|𝑐) =
𝑇𝑐𝑡

∑ ∈ 𝑉 𝑇𝑐𝑡1𝑡1
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 Where (Tct) represents the number of t in training data within class (c), 

including a multiplex of occurrences of a given example within the given document. 

Whilst implementing Multinomial Naïve Bayes (MNB), a smoothing addition needs 

to be added to the conditional probability to avoid negative probability of new terms 

within the set testing sample unavailable in the training set (Manning et al., 2010).  

 

6.2.1.2. Bernoulli Naïve Bayes Text Classifiers  

 One alternative to multinomial modelling is the multivariate Bernoulli model. 

This presents an indicator for each and every term of the text, with 1 establishing the 

presence of the intended term and 0 indicating negative presence. This estimates P ̂(t|c) 

as the fraction of texts regarding class (c) containing term (t). The Bernoulli model is 

as complex as the multinomial model (Kim et al., 2006). 

6.2.2. Support Vector Machines Classifiers  

 A Support Vector Machine (SVM) is a non-probabilistic binary classifier based 

on a linear basis that constructs a set of hyperplanes or a singular hyperplane within 

an infinite dimensional space and is utilised for classification and regression (Yu and 

Kim, 2012). The essential underlying concept for SVM regarding Saudi dialectal 

Arabic classification is to establish a hyper plane, dividing documents or tweets with 

respect to the sentiment analysis and the marginalising classes as high as possible 

(Bhuta et al., 2014). For example, here is a training set expressed mathematically: 

 

𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑚, 𝑦𝑚)} 

 

 In which (xi) is represented as an n-dimensional real vector (a document or 

tweet), with (yi) being either 1 or -1, representing the class to which (xi) is denoted. 

Initially, the SVM classification F(x) is required to derive positive data points and 

negative numbers for every point (xi) in (D). Furthermore, F(x) (the hyperplane) 

requires marginal maximisation. The margin itself is the distance between the 

hyperplane and the nearest data point (the support vector). This creates the SVM 



115 

 

classifier to an optimization constraint dilemma. This can be solved using a language 

multiplier, such as (Yu and Kim, 2012): 

 𝐹(𝑥) = ∑ 𝛼𝑖𝑖 𝑦𝑖 𝑥𝑖
 . 𝑥 − 𝑏 

 

 In which the auxiliary non-negative variable (α) is labelled as lagrange 

multipliers, whereas (b) is the bias, computed by SVM within the training stage. Kuhn–

Tucker conditions of optimization theory state that the solution of (α) must satisfy: 

∝𝑖
∗ {𝑦𝑖(𝑤∗. 𝑥𝑖 − 𝑏) − 1} = 0   𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑚 

 

 and (α) or corresponding constraints {yi (w.xi – b) -1} must be non-zero. This 

requirement indicates that when (xi) is a support vector, or when {yi (w.xi – b) -1} = 

1, corresponding coefficients (αi) will also be non-zero. Following exploration of 

theoretical literature regarding SVM, it is not considered as an algorithm, but a 

mathematical relationship leading to optimal complexity. This complexity requires an 

optimisation algorithm in order to seek a solution. The algorithm has been termed the 

SVC () method of “sklearn”. 

6.2.2.1. Linear SVC Classifier 

 Linear SVC, which is related to the Support Vector Machine, determines the 

optimum linear classification boundary; it attempts to locate hyper line, with the 

highest margin, derived from the polarity sample from tweets within the dataset. 

Hence, there is minimum loss in accuracy. It is a popular technique, since it is robust 

and rarely demands feature selection due to its singular inherent support vectors 

(Ismail et al., 2016). 

6.2.3.  Tree Classifier:  

6.2.3.1. Random Forest Text Classifier 

   

 The Breiman (2001) Random Forest learning method stores and targets 

classification trees. Tree predictors are formatted so that single trees are dependent on 

isolated patterned values regarding random vectors. Every tree is distributed uniformly 

throughout the forest. Since a random forest is a classifier in itself, comprised of tree 
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structured classifiers with an identical distributed random vector, each tree omits a unit 

vote for the most utilised class. Random forests have been applied to a variety of 

complex situations in microbiology and genetic epidemiology in recent times. Indeed, 

random forests have become a major data analysis approach. For example, Ahn et al. 

(2007) describes their research on Classification on Random Partitions. Classification 

is a challenge. Based on classifiers, a robust procedure for classification was 

developed. This predicts random partitions of predictions. A proposed method 

integrates multiple classifiers in order to achieve enhanced improvement in prediction 

compared to previous classifiers. This is designed particularly for high dimensional 

data sets. 

6.2.3.2. Decision Tree Classifier  

 Decision Tree Classifiers imitate decision-making processes found within 

humans. A tree is a collection of nodes, leaf nodes and links (to children nodes). In the 

same way, a decision tree also has components with differing interpretations. Each 

node signifies an attribute. Attaining a child node involves a decision. Subsequently, 

leaf nodes signify an output. However, it is prone to excessive data since trees have 

expansive heights. A deep Decision Tree also shows signs of high variance. This 

algorithm is termed DecisionTreeClassifier, through the method of “sklearn” 

(Safavian and Landgrebe, 1991). 

6.2.4. K-Nearest Neighbor Classifier 

  K-Nearest Neighbour (KNN) is a simplistic method for classifying text (Tan, 

2005). In the proposed approach, with an unannotated document d, the system 

ascertains that k’s nearest neighbour, within the training documents, is classified 

within the two previous phases. The scored similarity of neighbouring documents, in 

an attempt to test accuracy, is utilised as the weight of documents. The weighted sum, 

in kNN classification is   

𝑠𝑐𝑜𝑟𝑒(𝑑, 𝑠) = ∑ 𝑠𝑖𝑚(𝑑, 𝑑𝑗)𝛿(𝑑𝑗𝑑𝑗∈𝑘𝑛𝑛(𝑑)
, 𝑠)  
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 knn(d) is the set of (k) nearest the neighbours of (d) where (dj) is aligned to 

sentiment (s), d(dj,s) equals 1, or 0. Document (d) is aligned to the sentiment (s) having 

the highest rating (Han et al., 2001). 

6.2.5. Stochastic Gradient Descent (SGD) 

 The Stochastic Gradient Descent (SGD) is an algorithm utilised to teach other 

machines to learn algorithms such as SVM, in which sampling a subset takes place at 

each stage. It computes gradients from an isolated subset and utilises the gradient to 

re-evaluate the specified weight vector (w) of SVM classifier. The SGD method 

calculates the gradient, independent iteration and estimates the overall value of the 

gradient, recognising randomly chosen examples considered by Bottou (2014). 

The stochastic process {w t, t = 1, 2.} is dependent upon randomly chosen examples 

during each iteration, in which Q (z t, w t) is utilised to limit the risk, as γt is deemed 

as the learning rate. Convergence of SGD is affected by noisy approximation of the 

gradient. Where the learning rate decreases, the parameter estimate (w t) also slows 

down at the same level; however, if the rate decreases too rapidly, the parameter 

estimate (w t) slowly reaches the optimum point. 

 This approach is utilised when the extent of training data is large. Due to its 

computational advantage and simplicity, it is extensively adopted for large-scale 

machine learning problems (Bottou and Bousquet, 2008). 

RT (w∗ ) , X T t=1 (L(wt , zt) + Ψ(wt)) − X T t=1 (L(w∗ , zt) + Ψ(w∗ )) 

 

6.3. Developing a Machine Learning Approach for 
Sentiment Analysis of Dialectical Arabic Social 
Media Content  

 Working with the same problem domain of unemployment in Saudi Arabia, 

this study has investigated the application of a machine learning approach for 

sentiment analysis in multi-dialect Saudi tweets. The task involved building aclassifier 

that classifies tweets into positive or negative labels.  There were several stages 

involved in this procedure:  First, the dataset was pre-processed; then, features were 

extracted from the corpus, including different n-grams features and weighting 
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schemes. After that, training was applied to different machine learning algorithms. In 

the last stage, the performance of different combinations of features were evaluated 

including the weighting schemes and machine learning algorithms. The performance 

metric that was adopted for this study is based upon the traditional measures employed 

in text classification: precision, recall, accuracy and F-measure, as discussed in 

previous chapters.  

 

 Figure 6.1 illustrates the workflow of the machine learning approach. This 

includes the NLP pre-processing stage, feature extraction, and classification as 

detailed in the following sections. 

 

 
Figure 6.1: Frame work of the system Machine Learning for Sentiment Analysis of dialect Arabic 
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6.3.1. Pre-processing of the Tweets 

 In this step, tweets are cleaned by removing links, hashtags and special twitter 

characters such as (RT), which is shorthand for “retweet”. Then, the text is normalized 

by removing diacritics or redundant letters (more than two). This step is important 

because it reduces the number of variations of word features. Also, light stemming was 

applied to the tweets, as outlined in the pre-processing stage. 

6.3.2. Feature Extraction for Machine Learning Sentiment 
Analysis 

 The fundamental objective of feature-selection was to ascertain the most 

indicative features for classification by deleting irrelevant, redundant and noisy data 

(Liu and Zhang, 2012). Feature selection also included a secondary aim, in reducing 

both special featural dimensionality and processing longevity. A plethora of text 

features require consideration for sentiment analysis (Pang et al., 2002), including POS 

and n-grams models. The former is utilised to locate opinionated adjectives. The N-

grams models consist of a continuous sequence of n terms within a set text. When n = 

1, features are labelled as unigrams or Bag of Words (BOW), considering the text as 

unstructured non-contextual vocabulary. Where n = 2, features are labelled as bigrams 

(dual grams), extracted from the text within a sequence of two words. This application 

retains textual context. In a similar way, trigrams (triple grams) are extracted in an 

identical way. N-grams may also be combined to illustrate text in a contextual basis. 

 Larger and more significant N-grams are classified by n’s value and retain 

vocabulary with the highest score achieved in accordance with a pre-defined, accepted 

threshold (a pre-determined indication of the word’s importance). In the feature 

extraction stage, text is translated into vector representation. Within this model, the 

feature (weight) of the text is assessed in accordance with the document wherein the 

word exists. Several weighting approaches, such as the TF-IDF, TF, Inverse Document 

Frequency (IDF) and Binary (Boolean), offer efficient approaches and schemes. TF-

IDF is a numerical statistic reflecting the significance of lexis within the entire 

document. Scikit-learn creates vectorisers that interpret input documents into featural 
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vectors. The library function TF-IDF Vectoriser can be utilized, in which parameters 

for the desired features are maintained through reference to the minimum acceptable 

frequency features. 

S1 = "This film is bad" 

S2 = "This film is good" 

 The TF-IDF weighting approach is highly relevant here; it is a standard and 

popular tool regarding document classification. The formula is: 

 

𝑡𝑓(𝑤, 𝑑) = 𝑓𝑑(𝑤): 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑤 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑 

𝑖𝑑𝑓(𝑤, 𝐷) = 𝑙𝑜𝑔
1 + |𝐷|

1 + 𝑑𝑓(𝑑, 𝑤)
 

 The value of TF (w, d) is the repetition of certain words (w) appearing within 

a set document (d).  

𝑡𝑓𝑖𝑑𝑓(𝑤, 𝑑, 𝐷) = 𝑡𝑓(𝑤, 𝑑) × 𝑖𝑑𝑓(𝑤, 𝐷) 

 The aggregated value of TF-IDF equals the complete number of documents 

within the corpus divided by the number of times w is repeated within the set corpus 

for the IDF (w, D). A more concise labelling for frequency, IDF is a numbered 

statistical identifier to illustrate the importance of a word within a document in a 

collated piece of work or corpus. The TF-IDF value expands proportionally and is 

dependent upon the repeated times the given lexis appears within the document itself; 

offset by the overall number of documents found within the corpus that contain this 

specific word, this is an aid in adjusting for the situation that words used more 

frequently as a general rule (Mohammad et al., 2016). 

 The most common features used in machine learning sentiment analysis are 

surface features that generally include n-grams and syntactic features. The Syntactic 

Features are utilised to reflect the structural nature of the text and comprehend how 

words combine and function as a process of conveying meaning. Since Arabic is both 

a rich and morphologically complex language, incorporating morphological and 

about:blank
about:blank
about:blank
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syntactic evaluation is of vital importance when considering sentiment analysis. In the 

research literature, a very early grammatical approach forwarded the notion to simplify 

both nominal and verbal phrases into a single distinct format based on “actions” and 

“actors”, subsequently training SVM to use the following features: adjectives, nouns, 

actors, actions, syntactic sentence structure, word sentiment polarity and conjunctions 

relating to previous sentences (Farra et al., 2010). 

 The recent advanced Arabic NLP resources and tools allowed for the automatic 

emergence of morphological and syntactic features, utilised in mitigating the impact 

of complex SA. Such resources include SAMA (Ibrahim et al., 2015), ATB 

(Maamouri, 2004) and MADAMIRA (Pasha et al., 2014). For example, 

complementing word-level inflectional morphological features (number, voice and 

gender) to standard features improves the enhancement of sentiment analysis 

classification regarding MSA data (Abdul-Mageed et al., 2011), whereas performance 

lapsed when applied to Twitter which usually written in dialectical Arabic (Refaee and 

Rieser, 2014). 

 The reason for the performance lapse when applying Arabic NLP to dialectical 

Arabic text such as tweets is predominantly due to the fact that the majority of Arabic 

NLP tools are designed for MSA texts. Studies by Abdul-Mageed (2017), Abuaiadah 

et al. (2017), Al-Harbi (2017) and Cherif et al, (2016) proved that considering N-grams 

features show better performance than POS tags features in dialectal Arabic text. 

Which mean that considering POS feature fails to provide enhanced improvement for 

sentiment analysis of dialectal Arabic. In this study, the syntax features, which are 

dependent on NLP and grammar, are not useful, as proven in the literature. This is due 

to the lack of specific grammar in the dialectical Arabic text to allow the use of NLP 

tools, such as extracting POS. So, in this work, unigrams, bigrams and trigram features 

were extracted from the corpus as shown in Figures 6.2, 6.3 and 6.4. Analysis was 

stopped at trigrams due to the nature of tweets (short messages) and to avoid the 

potential for noise. 
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Figure 6.2: Screenshot of a sample of unigram features 

 
Figure 6.3: Screenshot of a sample of bigrams features 

 
Figure 6.4: Screenshot of a sample of trigrams features 

 

 N-grams that have frequency lower than a predefined certain threshold are 

discarded (5 in this experiment). This value is also called a “cut off” in the literature. 

The threshold is a filter that removes features that have a probability (value) less than 

a certain threshold. The goal was to reduce n-gram features to avoid noise. The value 

of the threshold was determined in these experiments by trial and error (try multiple 

values and set it to the value that gives the best result). In Figure 6.5, min_df= 5 
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parameter means discard n-gram features that occurred in 5 documents or less, 

max_df= 0.95 parameter means discard n-gram features that occurred in 95% of the 

documents. 

 

 

 

 

 

 
Figure 6.5: Determined the threshold in experiments 

 

 Word features (unigrams), bigrams and tri-grams were weighted using the TF-

IDF weighting scheme, which defines the importance of a feature based on the term 

frequency/inverse term frequency. Thus, features and their weights form a so-called 

document-term matrix. This paradigm is called Vector Space Model or VSM. Another 

weighting scheme is called Binary weighting (0/1 indicates the absence/presence 

respectively of n-grams feature in the tweet) is also commonly used in text 

classification. This study has not formally addressed the TF; this is due to the 

difference of TF and TF/IDF, which is based on whether the corpus-frequencies of 

words are used or not. The TF/IDF is by far a better choice, independent of classifier.  

Thus, some common words e.g. articles received a large weight even if they contribute 

no real information. In TF/IDF the more frequent a word appears in the dataset, the 

lower the weight it received.  Accordingly, the common words such as articles received 

small weights, however, the rare words, which are assumed to carry more information, 

received larger weights.  

 Also, it should be noted that negation is considered due to the use of bigrams 

and trigram features.  Scikit-learn (sklearn), a machine learning library in Python, was 

adopted to implement these experiments. scikit-learn (sklearn) has different machine 

learning algorithms and preprocessing operators. In this work, two files were fed to 

Threshold = min frequency / number of all features 

min frequency (trial and error): 1, 3, 5, 7, ……..etc 

used value is 5 
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the classifier, one file contains the positive tweets and a second file contains negative 

tweets. Each line in the both files represents a tweet. The classifiers have a set of 

parameters that are useful when dealing with text.   

 

6.3.3. Application of Machine Learning for Sentiment 
Classification  

 In this step, different machine learning algorithms are applied to different 

combinations of n-gram features and weighting schemes. Before that, the dataset is 

prepared by splitting the corpus into two parts: training (80%) and test (20%). The 

training part is used to train the machine learning algorithm, and the test part is used 

to evaluate the performance of the machine learning models. The experiments in this 

section used different machine learning classifiers to carry out a targeted, novel 

approach to the analysis of dialectal Arabic sentiment analysis. The classifiers are 

Naïve Bayes Variant (BernoulliNB, MultinomialNB), Support vector machine (SVC, 

LinearSVC), Trees (DecisionTree, RandomForest), KNeighbors and SGD.  Most of 

the machine learning sentiment analysis approaches for MSA language used two 

classifiers, which are Naïve Bayes (NB) and Support Vector Machine (SVM), because 

in NLP and MSA sentiment analysis field these machine learning classifiers are the 

state-of-the-art that are usually used (Abbasi et al., 2008; Abdul-Mageed et al., 2011; 

Pang and Lee, 2008).  

 On the other hand, for dialectal Arabic, there is limited number of studies 

completed when compared with the scope of MSA in prior research... Some of those 

studies that were completed achieved the best result by applying SVM, such as Al-

Rubaiee et al. (2016) and Boudad et al. (2017); however, El-Masri et al. (2017) and 

Mahmoud and Elghazaly (2018) demonstrated that NB outperforms the other 

classifiers. On the other hand, Nuseir et al. (2017) and Ismail et al. (2018) found that 

KNN provides the best result, while Altawaier and Tiun (2016) and Abo et al. (2018) 

selected DT to be the best classifier. SGD provides the best results in some research 

for dialectical Arabic, such as Rizkallah et al. (2018) and Gamal et al. (2019). 
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Pseudocode: Applying Machine Learning Algorithms  

 

1.      Inputs: Load dataset  

2.      Output: Sentiment classification 

3.      Extract n-gram features and filter data  

4.     Compute TF-IDF features  

5.     Apply Machine Learning Algorithms on TF-IDF features  

6.     Use the trained model to get the class label for test data  

 

 

 

6.4. Experimental Evaluation of Utilising Machine 
Learning for Sentiment Analysis of Dialectical 
Arabic 

 To evaluate the effectiveness of the machine learning capabilities, three 

separate, but similar experiments were conducted. The first stage was to conduct the 

machine learning baseline experiment. A baseline refers to the measurements of key 

conditions (indicators) prior to the commencement of experiments. Secondly, the 

machine learning approach was implemented with the TF-IDF weighting scheme, and 

finally with the binary weighting scheme. The weighting scheme is intended to 

illustrate how vital words are to a document within a corpus (O’Keefe and Koprinska, 

2009). The main aim of the weighting of sentiment analysis is to assign an accurate 

weight for individual words to reflect its relative significance within the feature, in 

turn, allowing for accurate prediction of sentiment polarity.  

6.4.1. Experimental Evaluation of Machine Learning 
Baseline   

 It is essential to initially establish a standard baseline experiment in order to 

compare results. This allows for a method to present a comparison between the 

performances of differing classifiers and relevant feature sets.  It is difficult to estimate 

the optimal baseline experiment results, since it will vary, depending upon the precise 
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nature of the experiment itself. In this situation, varied n-gram feature model was 

chosen as a baseline for the applied pre-processing and the light stemming tool for 

Saudi dialectal Arabic, since they provide a point of reference to judge alternative 

feature set experiments for each classifier explored. This baseline is functionally 

adequate, since it retains basic knowledge of the text classification quandary, which 

yields the primary underlying challenge in Sentiment Analysis (SA). To begin, an 

experiment was conducted to find out the effectiveness of pre-processing and the Saudi 

light stemming (see appendix A). The results indicated that applying pre-processing 

improved the performance of machine learning around 8% against the results without 

light stemming. In the experiment of machine learning baseline, differing n-gram 

models were created and explore their effect on machine learning classifiers. A 

secondary objective of this experiment was to ascertain which N-Gram model was 

most successful in regard to the text classification for Arabic dialectal text and also to 

examine its effect of pre-processing and dialectal Arabic light stemmimg on differing 

machine learning classifiers.  

 The results of three N-Gram experiments are shown in Figures 6.6, 6.7 and 6.8 

which display the varying classification results (baseline experiments with Saudi light 

stemming) in terms of the accuracy, recall, precision and F-score. It can be noted from 

the results that the BernoulliNB classifier obtained the best classification result with 

bigrams features; it reached an accuracy score of 81.71% and a F-score of 79.85%. 

However, LinearSVC also shows a good result with bigrams; the classification actuary 

had a score of 81.20% and a F-score of 81.77, with a small difference from 

BernoulliNB around 0.51%.  

 also It was also evidence in the review of both classifiers that the highest results 

were achieved with the bigrams features. This is attributed to the common use of 

genitive Arabic phrases in Saudi dialect that consists of two words (bigram) such as 

السعوده ) foreign labour, localisation of sectors ,(unreal Saudisation) ”السعوده الوهميه“

 The results also show that trigrams have the worst   .(الوهميه, العماله الاجنبيه توطين القطاعات

results in all classifiers experiments, which can be attributed to the noise captured in 

the additional gram that suggests false relationships between the words.  The result of 

the trigram experiment confirmed the original hypothesis that that the result will 

decline in accuracy if more grams are considered. 
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 Figure 7.8 demonstrates that the tree classifiers (DecisionTree and 

RandomForest) have poor performance in all evaluation measures (precision, recall, 

accuracy and F-measure). The best precision and recall (80.84% and 82.73%) was 

achieved by LinearSVC with bigrams features The classification results of the 

KNeighbors and SGD (see Appendix B) show that it achieved good performance in 

dialectal Arabic sentiment analysis, especially SGD with Unigram. In this case, the 

classification accuracy score was 81.12% and the F-score was 80.71%. However, 

BernoulliNB and LinearSVC achieved the best classification measurement with 

bigrams features. 
 

 
Figure 6.6: The results of Machine Learning Baseline - Naive Bayes classifiers 

 
Figure 6.7: The results of Machine Learning Baseline - SVM classifiers 

Unigram Bigrams Trigrams Unigram Bigrams Trigrams

BernoulliNB MultinomialNB
Accuracy 80.84 81.71 80.81 80.77 81.09 79.3
Recall 79.25 80.17 77.36 76.89 80.27 78
precision 78.5 79.54 77.92 79.31 79.46 78.24
F-score 78.87 79.85 77.64 78.08 79.86 78.12
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Accuracy 72.74 73.21 69.73 80.65 81.2 78.07
Recall 68.19 72.97 67.98 80.18 80.84 78.48
precision 68.65 75.3 68.02 79.37 82.73 76.91
F-score 68.42 74.12 68.00 79.77 81.77 77.69
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Figure 6.8: The results of Machine Learning Baseline - Trees classifiers 

 

6.4.2. Experimental Evaluation of Machine Learning 
Techniques with weighted schemes features  

 This experimental process has incorporated two commonly used weighting 

schemes in sentiment classification, TF-IDF and Binary. According to Oussous et al. 

(2019), the binary model has been effectively validated and employed in a varied range 

of prior studies. However, Naz et al. (2018) used three different weighting schemes 

(TF, TF-IDF and Binary) to understand the impact of weighting on classifier accuracy. 

They observed that the TF-IDF weighting scheme works best.  

 This study has investigated sentiment analysis by using the machine learning 

approach for dialectal Arabic f to analyse the results and study the impact of different 

weighting schemes on classification in the dialectical Arabic text. The N-Grams 

features were weighted using the TF-IDF weighting scheme, which defines the 

importance of a feature based on the term frequency/inverse term frequency. This 

paradigm is called Vector Space Model or VSM. Another weighting scheme called 

Binary weighting (0/1 indicates the absence/presence, respectively, of N-Grams 

features in the tweet) and is also commonly used in text classification. This study has 

applied several machine learning classifiers and the results show all the evaluation 

measures. 

Unigram Bigrams Trigrams Unigram Bigrams Trigrams

DecisionTree RandomForest
Accuracy 70.55 70.97 68.54 70.69 70.51 68.72
Recall 68.35 69.57 66.38 70.25 69.07 66.93
precision 69.17 70 66.21 68.63 67.94 67.5
F-score 68.76 69.78 66.29 69.43 68.50 67.21

63
64
65
66
67
68
69
70
71
72
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6.4.2.1. Machine Learning Techniques with TF-IDF Features 
Experiment  

 This section presents the experimental evaluation of machine learning with TF-

IDF features and provides results in Figures 6.9, 6.10 and 6.11. The initial example 

demonstrates how the experiment works with a sample of tweets. 

from sklearn.feature_extraction.text import Tfidf Vectorizer 
 
corpus = [ 
 ,'وظفونا يا جماعة وظفونا'    
 ,'يجب توطين قطاع الاتصالات'    
 ,'وظفونا حسبي الله ونعم الوكيل'    
    ' الاتصالاتالعمالة الاجنبية مسيطرة على قطاع  ', 
] 
 
features = TfidfVectorizer() 
X = features.fit_transform(corpus) 
print(features.get_feature_names()) 
print(X.shape) 
for word in features.get_feature_names(): 
    print(word, features.vocabulary_.get(word), end='\t') 
print(X) 
print(X.toarray()) 
 
------------------------------------------------------------------------------------ 
SKLearn features  
features: [' ', 'يجبالاتصالات', 'الاجنبية', 'العمالة', 'الله', 'الوكيل', 'توطين', 'جماعة', 'حسبي', 'على', 'قطاع', 'مسيطرة', 'وظفونا', 'ونعم', 'يا '] 
dim: (4, 15) 
0الاتصالات  1الاجنبية   2العمالة   3الله   4الوكيل   5توطين   6جماعة   7حسبي   8على   9قطاع  

10مسيطرة   11وظفونا   12ونعم   13يا   14يجب      (0, 11) 0.7444497035180324 
 
  (0, 13) 0.47212002654617047 
  (0, 6) 0.47212002654617047 
  (1, 14) 0.5552826649411127 
  (1, 5) 0.5552826649411127 
  (1, 9) 0.43779123108611473 
  (1, 0) 0.43779123108611473 
  (2, 11) 0.3667390112974172 
  (2, 7) 0.4651619335222394 
  (2, 3) 0.4651619335222394 
  (2, 12) 0.4651619335222394 
  (2, 4) 0.4651619335222394 
  (3, 9) 0.3443145201184689 
  (3, 0) 0.3443145201184689 
  (3, 2) 0.43671930987511215 
  (3, 1) 0.43671930987511215 
  (3, 10) 0.43671930987511215 
  (3, 8) 0.43671930987511215 
[[0.         0.         0.         0.         0.         0. 
  0.47212003 0.         0.         0.         0.         0.7444497 
  0.         0.47212003 0.        ] 
 [0.43779123 0.         0.         0.         0.         0.55528266 
  0.         0.         0.         0.43779123 0.         0. 
  0.         0.         0.55528266] 
 [0.         0.         0.         0.46516193 0.46516193 0. 
  0.         0.46516193 0.         0.         0.         0.36673901 
  0.46516193 0.         0.        ] 
 [0.34431452 0.43671931 0.43671931 0.         0.         0. 
  0.         0.         0.43671931 0.34431452 0.43671931 0. 
  0.         0.         0.        ]] 
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 The results in Figures 6.9-6.11 represent the outputs of three classifiers: Naïve 

Bayes Variant (BernoulliNB, MultinomialNB), Support vector machine (SVC, 

LinearSVC) and SGD. 

 

 
Figure 6.9: The results of Machine Learning with TF-IDF features - Naive Bayes classifiers 

 

 
Figure 6.10: The results of Machine Learning with TF-IDF features - SVM classifiers 

Unigram Bigrams Trigrams Unigram Bigrams Trigrams

BernoulliNB MultinomialNB
Accuracy 86.14 86.97 85.25 85.31 85.54 83.98
Recall 84.99 86.5 83 81.33 85.04 85.35
precision 86.38 86.08 82.74 84.57 83.2 85.99
F-score 85.68 86.29 82.87 82.92 84.11 85.67
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Recall 72.85 79.19 78.16 85.52 85.27 82.37
precision 73.32 80.33 78.34 84.5 86.54 82.86
F-score 73.08 79.76 78.25 85.01 85.90 82.61
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Figure 6.11: The results of Machine Learning with TF-IDF features – SGD classifiers 

6.4.2.2. Machine Learning Techniques with Binary Features 
Experiment 

 This section illustrates the experiment for Machine Learning binary features, 

and presents the associated results. Figure 6.12 and 6.13 show an example of most 

informative binary (Boolean) feature. Figure 6.14 shows a sample of frequencies 

features. The included example shows the function of this experimental approach. 

 
d: w0 w1 
p(pos|w0) 0.7 
p(neg|w0) 0.3 
 
p(pos|w1) 0.4 
p(neg|w1) 0.6 
 
p(pos| w0, w1) = 0.61 
p(neg| w0, w1) = 0.39 
 

 

 
Figure 6.12: Example of machine learning classifier with binary features 

Unigram Bigrams Trigrams

SGD
Accuracy 86.65 85.66 86.54
Recall 85.34 84.81 86.32
Persian 85.28 86.3 86.29
F-score 85.31 85.55 86.30
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Figure 6.13: Screenshot about a sample of most informative features for binary  

 

 
Figure 6.14: Sample of frequencies features 

 The results in Figures 6.15-6.17 reflect three classifiers: Naïve Bayes Variant 

(BernoulliNB, MultinomialNB), Support vector machine (SVC, LinearSVC) and 

SGD. 

 

 
Figure 6.15: The results of Machine Learning with binary features - Naive Bayes classifiers 

 

Unigram Bigrams Trigrams Unigram Bigrams Trigrams

BernoulliNB MultinomialNB
Accuracy 84.56 84.08 81.85 83.47 85.21 81.47
Recall 77.29 83.75 83.16 83.24 81.76 80.36
precision 80.93 86.21 81.01 83.5 85 80.92
F-score 79.07 84.96 82.07 83.37 83.35 80.64

72
74
76
78
80
82
84
86
88



133 

 

 
Figure 6.16: The results of Machine Learning with binary features – SVM classifiers 

 
Figure 6.17: The results of Machine Learning with binary features – SGD classifiers 

 

6.4.3. Results and Discussion of Machine Learning 
Techniques with Weighted Schemes Features 

 It is clear from the results that the accuracy of machine learning techniques 

with TF-IDF features is better than machine learning techniques with binary features. 

The best result achieved was by the BernoulliNB classifier with TF-IDF for bigrams; 

the accuracy was 86.97% and the F-score was 86.29%. This is higher than the 

BernoulliNB classifier with binary for bigrams, which achieved an accuracy score of 

Unigram Bigrams Trigrams Unigram Bigrams Trigrams

SVC LinearSVC
Accuracy 77.7 79.03 75.5 84 85.94 82.2
Recall 73.34 79.53 73.27 83.14 85.51 82.48
precision 72.8 79.46 73.15 82.92 83.69 81.22
F-score 73.07 79.49 73.21 83.03 84.59 81.85
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Precision 83.58 83.17 83.16
F-score 83.50 83.63 82.94

80
81
82
83
84
85
86
87
88



134 

 

84.08%. Also, this result is higher by around 5% of baseline results, which is a 

significant improvement over prior models. This improved outcome was due to the 

pre-processing stage of the tweets and to the negation consideration, which has been 

previously proven in relation to MSA experimentation. These results, thereby extend 

such research, confirming that the pre-processing stage has improved the classifier’s 

performance in dialectal Arabic. Figure 6.18 compares the results of BernoulliNB 

classifier with Baseline, TF-IDF and Binary features. 

 

 
Figure 6.18: Comparison of the results of BernoulliNB classifier with Baseline, TF-IDF and Binary features 

 

 From these findings, the highest performing outcome with binary features for 

unigram was achieved by the SGD classifier with 86.71% of accuracy; the F-score was 

83.50% and around 83% for recall and precision. At the same time, the SGD classifier 

with TF-IDF for trigram achieved good results; the classification accuracy score was 

86.54%. The SGD classifier provides good results with most N-Grams and with both 

weighting schemes.  Moreover, the KNeighbors classifier also demonstrates good 

performance with all N-Grams features and with both weighted schemes; the accuracy 

and F-score of machine learning with TF-IDF of unigram was 84.58% and the 

accuracy and F-score of machine learning with binary of bigrams were 82.29 and 

83.32%, respectively. These findings yield positive results that suggest that these 

solutions can process large datasets and yield computationally efficient results. 
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The findings from these experiments also illustrate that tree classifiers were subject to 

the lowest performing results within all experimental models that integrated machine 

learning with TF-IDF and binary. The lowest accuracy achieved was by the 

RandomForest classifier with trigrams, with an accuracy and f-score reported at 

73.12%. The most common problem observed in relation to the DT classifier is its 

inability to incorporate variations in data, including noise, when trees increased and 

deepened. This inadequacy is commonly termed as overfitting. Additionally, the 

structure of the tree would inevitably be altered due to the addition of data (see 

Appendix B for KNeighbors and trees classifiers results). LinearSVC results show a 

good performance of this classifier with all evaluation measures. It shows the highest 

precision for machine learning with TF-IDF of bigrams feature, which was 86.54%. 

On the other hand, the best recall is by the BernoulliNB classifier, which reached a 

score of 86.50% with bigrams, as well as for machine learning with TF-IDF.  Based 

upon these findings, it can be concluded that Naïve Bayes (BernoulliNB), Support 

vector machine (LinearSVC) and SGD classifiers provide the best results for sentiment 

analysis of machine learning approach with TF-IDF of dialectal Arabic.  

6.5. Comparing The Machine Learning Approach for 
Sentiment Analysis of Saudi Tweets Against 
Similar Works  

 This section compares the experimental results captured during this multi-stage 

process with the results of two other works related to machine learning approaches for 

Saudi dialects. The current study has adopted a machine learning approach for 

sentiment analysis in tweets related to a specific domain, and the tweets were a mixture 

of MSA and Saudi dialects. Due to the lack of a specific domain, this comparative 

assessment determines whether these findings could be transferrable to other specific 

domain problems or experimental conditions.  These additional experiments were used 

to study how the machine learning approach could perform on two different corpora 

that were used in two other works related to the analysis of machine learning 

approaches for tweets in Saudi dialects. 

 The first dataset that experimented with was collected by Adayel and Azmi 

(2015). In their study, they selected hashtags discussing different social issues in Saudi 
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Arabia (multi-domain), such as    الراتب_مايكفي_الحاجة#  (our salary is not sufficient), 

_اكتوبر 26#قيادة_  and  المحتسبون_للديوان_مجدد# (these tweet regards women driving). Their 

dataset contained 1103 Arabic annotated tweets and was provided for research 

purposes.  They developed a sentiment analysis system that was designed to identify 

the polarity of the tweets using two classifications (positive or negative). For the 

machine learning classifier, they used Support Vector Machine (SVM). All three N-

Grams models (unigrams, bigrams and trigrams) were applied on the annotated tweets 

and they used TF-IDF weighting scheme on the N-Grams and all the features that have 

frequencies greater than a certain threshold were selected. Their results were a score 

of 78% for the accuracy, 79% for precision and around 77% for recall and F-score.  

 The second dataset was collected by Al-Twairesh et al. (2017). Their study was 

published in the Procedia Computer Science. Initially, they collected around 6.3 

million Arabic tweets in three months, and applied cleaning and pre-processing to the 

output, resulting in a remainder of 2.2 million tweets. Then, they decreased the number 

of tweets to 13,226 and add 6,090 newly collected tweets. Also, they collected 2090 

tweets from three trending Saudi hashtags in 2016. The resulting number of tweets 

after cleaning was 1,580. A total of 14,806 tweets were manually annotated by the 

recruited annotators. The AraSenti-Tweet corpus is publicly available15 . The dataset 

is divided into a training set and test set. Al-Twairesh et al. (2017) conducted several 

experiments for multi-way sentiment classification. In the current study, only the two-

way classification (positive and negative tweets) was considered). For classification, 

they used SVM with a linear kernel, and, for the term feature, they tested the TF-IDF 

features. They only show the F-score in their work, which is 60.05%. 

6.5.1. Evaluating the Machine Learning Approach 
(Experiment 1) 

 The results of the comparative machine learning experiment are shown in 

Table 6.2 (The best result shown in green colour and the worst result in red colour).  

These findings applied the Adayel and Azmi (2015) corpus to the range of classifier 

                                                 
15 https://github.com/nora-twairesh/AraSenti/tree/AraSenti-Tweet-Corpus 

https://github.com/nora-twairesh/AraSenti/tree/AraSenti-Tweet-Corpus


137 

 

schemes developed for this study, extrapolating accuracy and performance across three 

levels of N-Grams. 

 

Table 6.2: The results of applying machine learning approach with Adayel and Azmi corpus 

Classifier N-grams Accuracy  Precision  Recall F-score 
BernoulliNB Unigram 72.33% 72.05% 72.71% 72.38% 

Bigrams 75.86% 74.21% 71.50% 72.83% 
Trigrams 71.41% 75.85% 72.74% 74.26% 

SVC 
 

Unigram 72.22% 69.87% 71.34% 70.60% 
Bigrams 75.43% 74.55% 73.83% 74.19% 
Trigrams 68.50% 67.74% 66.77% 67.25% 

RandomForest Unigram 55.29% 59.57% 55.00% 57.19% 
Bigrams 58.86% 63.56% 58.84% 61.11% 
Trigrams 58.03% 64.83% 58.15% 61.31% 

LinearSVC Unigram 69.07% 69.31% 69.57% 69.44% 
Bigrams 69.46% 69.63% 69.19% 69.41% 
Trigrams 69.88% 69.20% 69.88% 69.54% 

MultinomialNB Unigram 75.53% 73.79% 73.06% 73.42% 
Bigrams 79.84% 77.98% 76.41% 77.19% 
Trigrams 73.19% 73.22% 73.54% 73.38% 

KNeighbors 
 

Unigram 56.66% 61.45% 56.69% 58.97% 
Bigrams 60.21% 62.00% 60.40% 61.19% 
Trigrams 56.74% 57.63% 56.18% 56.90% 

SGD Unigram 71.91% 71.54% 71.43% 71.48% 
Bigrams 68.89% 68.07% 68.73% 68.40% 
Trigrams 69.43% 69.43% 69.43% 69.43% 

DecisionTree Unigram 50.36% 39.18% 50.53% 44.14% 
Bigrams 50.97% 40.50% 50.85% 45.09% 
Trigrams 50.23% 39.18% 50.39% 44.08% 

 

6.5.2. Evaluating The Machine Learning Approach 
(Experiment 2) 

 The results of the comparative machine learning experiment are shown in 

Table 6.3 (The best result shown in green colour and the worst result in red colour).  

These findings applied the Al-Twairesh et al. (2017) corpus to the range of classifier 

schemes developed for this study, extrapolating accuracy and performance across 

three levels of N-Grams  
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Table 6.3: The results of applying the machine learning approach with Al-Twairesh et al corpus 

Classifier N-grams Accuracy  Precision  Recall F-score 
BernoulliNB Unigram 67.23% 64.86% 64.91% 64.88% 

Bigrams 67.08% 64.42% 64.93% 64.67% 
Trigrams 65.56% 64.58% 64.58% 64.58% 

SVC 
 

Unigram 61.25% 73.15% 58.92% 65.27% 
Bigrams 61.33% 73.24% 58.60% 65.11% 
Trigrams 59.32% 73.77% 55.45% 63.31% 

KNeighbors Unigram 53.93% 49.87% 50.08% 49.97% 
Bigrams 54.14% 58.25% 51.82% 54.85% 
Trigrams 54.90% 58.45% 51.63% 54.83% 

LinearSVC Unigram 64.05% 64.13% 63.13% 63.63% 
Bigrams 66.28% 64.41% 63.52% 63.96% 
Trigrams 62.66% 63.07% 63.44% 63.25% 

MultinomialNB Unigram 65.86% 65.58% 63.82% 64.69% 
Bigrams 64.57% 66.14% 63.42% 64.75% 
Trigrams 61.34% 65.72% 63.92% 64.81% 

RandomForest Unigram 47.50% 23.75% 50.48% 32.30% 
Bigrams 47.19% 23.82% 50.79% 32.43% 
Trigrams 47.04% 23.85% 50.17% 32.33% 

SGD Unigram 66.37% 66.86% 66.60% 66.73% 
Bigrams 69.74% 66.64% 66.22% 66.43% 
Trigrams 63.87% 65.35% 64.16% 64.75% 

DecisionTree Unigram 47.62% 23.87% 50.32% 32.38% 
Bigrams 47.81% 23.61% 50.49% 32.17% 
Trigrams 47.63% 23.55% 50.09% 32.04% 

 

 The evidence captured from these two experimental outputs reveals that the 

machine learning approach attained positive, high-performing results with both of 

these distinct, dialectical datasets (See Figure 6.19). Overall, the Adayel and Azmi 

corpus shows better performance than the Al-Twairesh et al. corpus. The 

MultinomialNB classifier achieved the best result for bigrams features in the Adayel 

and Azmi corpus; the accuracy was 79.84%, which is around their original result of 

78%. The accuracy in the proposed approach is around 2% higher than their findings 

yielded. On the other hand, the best result achieved with the Al-Twairesh et al. corpus 

was the SGD classifier, which had 69.74% accuracy and 66.43% F-score. The F-score 

in the proposed approach is 5% higher than their findings yielded. Indicative of a 

transferrable finding from this study to future modelling, the evidence confirmed the 
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poor performance of trees with both corpuses. The accuracy of DecisionTree with the 

trigrams of the Adayel and Azmi corpus was 50.23%, while the accuracy of 

RandomForest with trigrams of the Al-Twairesh et al. corpus was 47.04%. Even 

though the proposed approach to machine learning analysis is domain knowledge 

informed, it is applicable with any domain specific problem, indicating that it could be 

re-adapted to other domains in future studies. 

 

 
Figure 6.19: The results of applying our approach with two other domain specific datasets 

 

 To summarise our experiences, in these study we experiment two approaches 

for sentiment analysis and we run our system in different datasets as shown in table 

6.4. 

 

Table 6.4:Result of Comparative Analysis of Lexicon-Based Approach and ML Variations 

  Aldayel and 
Azmi (2016) 

Al-Twairesh et 

al (2017) 

Our work 
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ML 

With 

TF-
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weight

ed 

schem

es 
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s 

Multinomial
NB 

Bigra

m  

79.84
% 

77.19
% 

64.57
% 

64.75
% 

85.54
% 

84.11
% 

SGD Bigra
ms 

68.89
% 

68.40
% 

69.74
% 

66.43
% 

85.66

% 

85.22

% 

DecisionTre
e 

Trigra
ms 

50.23
% 

44.08
% 

47.63
% 

32.97
% 

68.54

% 

68.55

% 

RandomFor
est 

Trigra

ms 

58.03
% 

61.31
% 

47.04
% 

32.33
% 

68.72

% 

68.34

% 

 

 The first approach is the Lexicon-Based approach. The experimental results 

presented in Table 7.4 show that the lexicon-based approach outperforms the prior 

models developed in this field.  For example, there was an improvement in accuracy 

of around 10% over the Adayel and Azmi corpus. As the accuracy is not considered in 

Al-Twairesh et al, however, the results indicate an improvement in the f-score of 

around 2% over the prior outputs of that study. This performance improvement is 

attributed to the more comprehensive coverage of the factors that impact lexical 

analysis including the use of intensifiers, negations, supplication, proverbs and 

interjections as well as the comprehensive multi-intensity sentiment lexicon for Saudi 

dialects. 

 The second approach is the ML Approach, in addition to the lexicon 

performance improvements, Table 6.4 also demonstrates improved performance 

within the range of ML solutions for the current study when compared with the two 

prior experiments.   From the corpus-based proposition, the Adayel and Azmi corpus 

indicates superior performance over the Al-Twairesh et al. corpus. The 

MultinomialNB classifier achieved the best result for bigrams features in the Adayel 

and Azmi corpus; the accuracy was 79.84%, which is around their result of 78%. The 

accuracy in the current approach was around 2% higher than the prior experimental 

results in Adayel and Azmi (2016). The best results were achieved with the Al-

Twairesh et al. corpus by applying the SGD classifier, which had 69.74% accuracy 

and 66.43% F-score. The F-score in the current approach is 5% higher than the 

performance in the Al-Twairesh et al. (2017) experiment.  Even though the current 
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approach was domain knowledge informed, it is applicable with any domain specific 

problem features. 

 After find out the performance of two different sentiment analysis approaches, 

we will develop a hybrid lexicon based-machine learning approach for sentiment 

analysis of social media content in dialectical Arabic, this hybrid approach will benefit 

from the advantages of both approaches.  

 

6.6. Chapter Summary 

 This chapter has introduced and analysed a machine learning approach for 

sentiment analysis of social media content in dialectical Arabic. This approach has 

been used to investigate the sentiment analysis performance of the proposed model 

with the Arabic language, and in particular the dialectical Arabic written on Twitter. 

To solve the problem related to a lack of specific grammar in the feature selection 

stage, this experimental approach has focused on N-Grams features (unigrams, 

bigrams and trigram).  The experimental results indicated positive outpcomes which 

favoured the BernoulliNB classifier with TF-IDF for bigrams that suggested a 5% 

improvement through pre-processing and N-Gram weighting. Finally, the 

effectiveness of the proposed approach was evaluated by applying the model to two 

other researcher corpuses, resulting in positive, higher performing accuracy results 

across both of the experiments.    Even though the proposed approach is domain 

knowledge informed, these findings confirm that it does yield adequate results for any 

domain specific problem features. 
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Chapter 7 
 
 

7 Linguistic-Machine Learning Hybrid 
Approach for Dialectical Arabic  

 

7.1. Introduction  

 A central objective of the hybrid approach in sentiment analysis is to establish 

a more content-rich analysis for classifiers and to carry out sentiment analysis to a 

more precise degree, with the objective of attaining accurate results for sentiment 

classification.  This study has explored a hybrid approach for sentiment analysis of 

dialectical Arabic tweets by adopting two different, but interrelated methods.  The first 

method involved a hybrid lexicon-based machine learning approach.  The lexicon-

based approach considers central linguistic features and ensures the transparency of 

the classification criteria and useful treatment of the syntax.  Machine-based sentiment 

analysis calculates the polarity values through statistical estimation and enables the 

creation and adaptation of the trained data set.  The second method was a hybrid 

semantic knowledgebase machine learning approach.  This approach adopted a 

semantic knowledgebase approach to analyse a collection of tweets at the domain 

feature level and produce a set of structured information that associates the expressed 

sentiments with domain specific features. 

 The motivation of developing a hybrid approach is to combine two different 

methodologies or systems to create a new and better model. According to Gupta et al. 

(2019) the hybrid approach of sentiment analysis exploits both statistical methods and 

knowledge-based methods for polarity detection. It inherits high accuracy from the 

machine learning (statistical methods) and stability from the lexicon-based approach. 
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7.2. Proposed Hybrid Approach 

 Drawing upon the prior methods and models, the current study has proposed a 

linguistic-machine learning hybrid approach for sentiment analysis of social media 

content in dialectical Arabic. Two possible methods have been explored, combining 

linguistic and machine learning approaches for sentiment analysis based upon domain 

knowledge. The first method adopts domain-specific features and sentiment lexicon 

modelled in the semantic ontology as the token training features for the opinion 

classification. In the second method, the sentiment score resulting from the lexicon-

based sentiment analysis was included in the training feature-set. The utilisation of 

domain knowledge in a second method was implicit as it was used to associate the 

sentiment mention with the domain features. Finally, the performance of these features 

has been assessed and recommendations regarding the best performing solution have 

been made. 

 

7.2.1. Hybrid Semantic Knowledgebase-Machine Learning 
Approach 

 In spite of a growing compendium of research in this field, there are limited 

studies that have undertaken to combine machine learning with semantic features. 

The proposed methodology combines the advantages of both approaches: machine 

learning approach and ontologies and semantic knowledge to enhance the 

performance of sentiment analysis.  

 The technique developed employed three N-Grams features and the TF-IDF 

weighting scheme, and added semantic features from the ontology. For example, the 

semantic domain features are: (unemployment-البطاله – albitaluh / Saudah program- 

 aleamalat al'ajnabia). Each tweet - العماله الاجنبيه -Saudah / foreign labour – السعوده

was inspected and the semantic features were detected in order to extract the 

corresponding features for this tweet and map these features into a higher concept. 

The domain ontology is used to map the tweets as demonstrated in the following 

examples:  
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Positive Tweet:  

 ”برنامج قوى مفيد مره اشكر الوزير على اهتمامه بنا كعاطلين“

“barnamaj quaa mufid marih 'ashkura alwazir ealaa aihtimamah bina kaeatilin” 

Translate: “Quaa program is very useful, I thank the minister for his interest in us as 

unemployed” 

Mapping by domain ontology: “’National Program’ is ‘Intensifiers’ ‘Positive Sentiment’, 

I ‘Positive Sentiment’ the ‘Decision Makers’ for his ‘Positive Sentiment’ in us as ‘Domain 

Feature’” 

------------------------------------------------------------- 

Negative Tweet: 

 “ عبئاً على مجتمعنا .. لقد تولى المصريون والهنود السعودة المزيفة هي سبب الفشل في الحد من البطالة ... لقد أصبحنا 

 ”وظائفنا

“alsueudat almuziafat hi sbb alfashal fi alhadi min albitala ... laqad 'asbahna ebyana ealaa 

mujtamaeina .. laqad tawalaa almisriuwn walhunud wazayifna” 

Translate: “Fake Saudization is the cause of failure to reduce unemployment ... we become 

burden on our society .. Egyptian and Indians took our jobs” 

Mapping by domain ontology: “’Negative Sentiment’ ‘National Program’ is the cause of 

‘Negative Sentiment’ to reduce ‘Domain Feature’ ... we become ‘Negative Sentiment’ on 

‘Domain Feature’ .. ‘Foreign Labor’ and ‘Foreign Labor’ took ‘Domain Feature’” 

 

 Different machine learning algorithms were tested with these features and the 

pseudocode of combining features in hybrid semantic knowledgebase-machine 

learning approach has been presented. Figure 7.1 shows the framework of the hybrid 

semantic knowledgebase-machine learning approach. 

 

Pseudocode: Combining Semantic Features with Text Features  

 
1.      Inputs: Load dataset  
2.      Output: Class label of sentiment classification 
3.      FOR every tweet DO  
4.                 Extract semantic features  
5.                 Extract n-gram features  
6.                 Combine semantics features with n-gram features  
7.     Train the machine learning algorithm on the hybrid features  

8.      Use the trained model to get the class label for test data  
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Figure 7.1: Frame work of the hybrid approach algorithm of Incorporating TF-IDF features with semantic 

features (domain features) 
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7.2.2. Hybrid Lexicon Based-Machine Learning Approach 

 In this hybrid approach, the output of the linguistic sentiment analysis (the 

lexicon-based approach) was used to enhance the training of the machine learning 

approach. Using three N-Grams features and the TF-IDF weighting scheme, a 

sentiment score was then extracted from the lexicon and added to the construct. Each 

tweet and its lexicon was inspected to extract the corresponding total sentiment score 

for each individual tweet. This final, resultant score was added into the machine 

learning approach and considered several underlying factors including feature-

sentiment association, light stemming, emojis, intensifiers, negations and special 

phrases, such as supplications, proverbs and interjections. The final scores were then 

aggregated with 3-Gram features with the TF-IDF weighting scheme, and the 

machine learning classifier was then trained to classify tweets into positive or 

negative. Several different machine learning algorithms for these features were 

investigated and the pseudocode of combining sentiment score features with TF-IDF 

features has been presented. Figure 7.2 considers the framework of the hybrid 

approach algorithm of Incorporating sentiment score features. 

 

 

Pseudocode: Combining Sentiment Score Features with TF-IDF Features  

 

1.     Inputs: Load dataset  

2.     Output: Class label of sentiment classification 

3.     FOR every tweet DO  

4.                     Get the sentiment score using the lexicon-based method  

5.                     Extract n-gram features  

6.                     Combine n-gram features with the sentiment score  

7.     Train the machine learning algorithm on the hybrid features  

8.      Use the trained model to get the class label for test data  
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Figure 7.2: Frame work of the hybrid approach algorithm of Incorporating TF-IDF features with sentiment score 

features 
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7.3. Results and Discussion of the Proposed Hybrid 
Approach 

 This section presents the results of the linguistic-machine learning hybrid 

approach for sentiment analysis of social media content in dialectical Arabic.  

 

7.3.1. Hybrid Semantic Knowledgebase-Machine Learning 
Approach 

 The result of the hybrid approach of the machine learning (TF-IDF features) 

and lexicon-based approaches (Semantic Knowledgebase) is illustrated in Figures 7.3, 

7.4 and 7.5. It is clear from the results that the LinearSVC classifier with bigrams 

shows the best performance, with 90.07% accuracy and an 87.82% F-score. This 

classifier shows a good result with unigram and trigrams; the accuracy was 88.59% 

and 87.72%, respectively. Another interesting observation from Figure 7.3 is that the 

NB Variant (BernoulliNB and MultinomialNB) shows a good performance with 

accuracy between 88% and 86%. However, the trees classifiers (DecisionTree and 

RandomForest) show the worst results across all the evaluation measures. The 

accuracy of RandomForest with all n-grams features was 70.77%. According to recall, 

the best result was for the KNeighbors classifier with trigrams, which was 87.61%; 

another observation is that this result is higher by around 8.50% than bigrams with 

same classifier. The SGD classifier shows good results, which was around 86% in all 

the evaluation measures (see Appendix C for KNeighbors and SGD classifiers results). 

These results confirm a 4% improvement from the semantic knowledge included from 

the ontology to enhance the accuracy of the hybrid approach. 



149 

 

 
Figure 7.3: The results of hybrid approach (TF-IDF features + semantic features) - NB classifiers 

 

 
Figure 7.4: The results of hybrid approach (TF-IDF features + semantic features) - SVM classifiers 

 

 

Unigram Bigrams Trigrams Unigram Bigrams Trigrams

BernoulliNB MultinomialNB
Accuracy 87.51 86.87 86.77 87.09 86.17 86.01
Recall 86.4 85.27 82.63 80.67 87.21 84.86
precision 86.62 85.86 86.56 81.04 85.89 87.9
F-score 86.51 85.56 84.55 80.85 86.54 86.35
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Figure 7.5: The results of hybrid approach (TF-IDF features + semantic features) - Trees classifiers 

 
 

7.3.2. Hybrid Lexicon Based-Machine Learning Approach 

 The results of the hybrid lexicon based-machine learning approach are 

illustrated in Table 7.1 and Figure 7.6. Three experiments that combined the three 

highest results of the machine learning approach with the highest result of the multi-

factor Lexicon-based approach were conducted and included all enhancement 

techniques (light stemming, polarity, negation, emojis and intensification words).  

Based upon these findings, this particular method achieved the highest recall (88.34%) 

and the best precision (89.55%). The accuracy of the highest performing method, the 

linear SVC classifier of bigrams was 93.45% and the F-score was 89.55%. Across all 

methods, improved accuracy was reported, such as the accuracy of the BernoulliNB 

and SGD of bigrams feature with Lexicon method (All levels), which was 91.85% and 

92.33%, respectively. Based upon these findings, it is confirmed that the hybrid 

approach of machine learning (TF-IDF features) and the lexicon-based approaches 

provide the best results and confirms the originating hypothesis about the improvement 

that the hybrid approach brings to sentiment analysis 
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 It is clear that this hybrid approach between the machine learning approach and 

the lexicon-based approach (the final lexicon sentiment score of each tweet as feature) 

provided a significant improvement in accuracy compared with the result of the 

lexicon-based approach alone which is around 4%. This improvement confirmed that 

there is a benefit from the final score from the sentiment lexicon to enhance the hybrid 

approach. In general, the core observation from these experiments is that the three 

machine learning classifiers performance is quite similar to what is achieved via the 

machine learning approach, which provided good performance. What makes the 

difference is the final lexicon sentiment score of each tweet’s features, which was 

added to the classifiers. This improvement was due to the multi-factor lexicon-based 

sentiment analysis, in which the tweet went through several stages, such as pre-

processed, NLP and lexicon feature extraction process, until the final score was issued. 

It was processed with deep linguistic analysis of social media content in dialectal 

Arabic. This confirms the hypothesis that the hybrid approach improves the sentiment 

classification to a more precise level and attains accurate results.  

 
 

 

Table 7.1: The results of hybrid approach (TF-IDF features + lexicon sentiment score feature) 

Method Accuracy Recall  Precision  F- score 

linear SVC + bigrams feature + 

Lexicon method (All levels) 
93.45% 88.34% 90.80% 89.55% 

BernoulliNB + bigrams feature + 

Lexicon method (All levels) 
91.85% 83.11% 89.97% 86.40% 

SGD + Unigram feature + 

Lexicon method (All levels) 
92.33% 87.50% 90.00% 88.73% 
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Figure 7.6: The results of hybrid approach (TF-IDF features + lexicon sentiment score feature) 

7.4. The Usability of Sentiment analysis to Aid 
Government and Decision Makers 

 Using opinions expressed through social media can be seen as inexpensive and 

may be more accurate than surveys, since the latter may not reflect an honest opinion. 

Assessing and exploring social networks allows researchers to interpret the the 

generalised expressions of users, reflecting their immediate and personal reactions to 

an event or topic. Sentiment analysis (SA) of user opinions is vital for analysing 

matters concerning the provision of public services, government policy and emerging 

political policy. An overall aim of this study was to support policy makers in their 

decisions, with the ultimate objective to improve and enhance the day-to-day life of 

the local and national community. more effective SA models, government policy 

makers will have the opportunity to explore, identify, arrange and evaluate public 

opinion and reaction to policy decisions in both a qualitative and quantitative manner, 

with sentiment analysis highlighting the positive and negative reactions.  

 Generally, this study has determined that most of the information expressed in 

social networks can help to predict future strategies regarding political and social 

issues. The proposed novel dataset regarding opinions and issues of concern will 

inevitably expand on a massive scale, as millions of users regularly express their views 

through social networks. As a vehicle of purposive communication, Twitter is now a 

prime source of information and can be exploited by sentiment analysis for decision 
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makers. Sentiment analysis, from this perspective, allows for improved decision-

making due to the evaluation of opinions expressed and products and services 

reviewed. Additionally, it explores and categorises all collated data available and 

translates it into reliable and useable information, allowing decision makers to make 

informed choices. 

 Sentiment analysis has the ability to facilitate a close bond between public 

decision makers and the general public. From this position, these social comments are 

capable of communicating strong opinions, whilst SA functionality helps policy 

makers to implement, or avoid, decisions and ineffective strategy. Sentiment analysis 

conducted throughout social networks can be exploited by public bodies to learn about 

and satisfy user demands/expectations. It also enhances the confidence of the general 

public, since their opinions are being heard and acted upon to influence policy, change 

existing service delivery and update existing services. Based on previously published 

analysis (Corallo et al., 2015), and the findings collected over the course of this 

research, it is evident that utilising sentiment scores (searching for both positive and 

negative aspects) shapes and influences decision-making. There are, however, 

significant obstacles that have been identified in using sentiment analysis for decision-

making in light of the complexity of the content and usage of tweets. One vital issue, 

is that opinionated lexicon may be considered positive in one scenario, but negative in 

another. A further challenge discovered over this research is that opinions are not 

always expressed in the same manner, taking into consideration the differences in style 

between texts and tweets. Individual opinions can be contradictory, and sentiment 

analysis exploration regarding Twitter data and alternative micro-blogs face 

challenges regarding interpretation, primarily due to the limited length of the entry and 

the irregular structure of the expression. 

 In this sentiment analysis exploration study, alternative techniques and 

approaches may enhance the decision-making procedure regarding a particular 

controversial social issue, such as unemployment issues in Saudi Arabia and the 

evaluation of positive and negative reactions via tweets.  To investigate such 

phenomena, this research has proposed hybrid sentiment analysis to pinpoint and 

classify sentiment expressed via electronic text using Twitter, where posts express 

opinions, feelings and reactions concerning particular social concerns. The overall 
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intention is to improve decision-making by policy makers, local councils and 

journalists. These bodies can take advantage of these information insights and, thereby 

achieve an informed position to improve their decision-making process and better 

reflect public opinion. This strategy is termed as the ‘machine learning approach’ and 

is adapted through knowledge-based language to exploit all approaches to sentiment 

classification and to maximize accuracy. The hybrid approach has been introduced, 

experimentally confirmed, and is thereby proposed, with n-grams features derived 

from machine learning for the Arabic dialect to fulfil this informational gap in 

policymaking and public service. Initially, n-grams were fused with semantic elements 

(semantic features) from semantic ontology, followed by sentiment collaborative 

language elements (score features) from the multi-factor lexicon-based sentiment 

analysis of social media content in dialectal Arabic. The results gained from this hybrid 

approach resulted in an accuracy of 93.45 and an F-score of 89.55, illustrating a clear 

indication that individual feelings were understood based on Twitter entries 

throughout Saudi Arabia regarding unemployment. 

 Since sentiment analysis is considered a state-of-the-art approach regarding 

classification, this study sanctioned an optimized evaluation approach when analysing 

tweets related to specified social issues, such as unemployment figures. This ensures 

that it can cope with potential obstacles when utilising sentiment analysis in decision-

making and can be used to the benefit of government policy makers. The ability to 

determine attitudes from social media and to classify such sentiments, adapting 

differing sentiment analysis approaches, ensures that the proposed approach is a vital 

supporting tool for decision makers. Thus, a central objective was to present an 

optimized and reliable sentiment analysis approach concerning the general public’s 

opinion about institutions; in particular, this work helps determine the efficiency of 

delivery and infrastructure and the degree of public satisfaction revolving around 

social issues. Table 7.2 shows some examples of the usability and informative 

information from the dataset. The model demonstrates the simplest way to practically 

exploit the sentiment analysis approach which involves extracting the positive and 

negative sentiments about a particular phrase/keyword identified by the policy maker. 

Subsequently, opinion polarity can be calculated about the topic, whilst also providing 

the top 100 tweets (in terms of scores) expressing either negative or positive opinions. 
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Table 7.2: examples of the usability and informative information from the dataset 

Keyword  Current Dataset Positive tweet  Negative tweet 
 السعوده
Alsueuduh 
)Saudisation( 
Program of the 
ministry of 
labour 

# of positive tweets: 125 
# of negative tweets: 
1013 
12.33% positive 
87.66% negative 

بكل مايقدرون وزاره العمل 

رائعه شغاله بطريقه 

الوظاءف جهودهم  بسعوده

 مشكوره

الصحيح انه السعوديه 

وخيرها لاجانب يكنون 

لنا . البغيضه و الكره 

والوزاره تدعم الكلام هذا 

 السعودهبدليل حملات 

 الوهميه
 الواسطه
Alwasituh 
Cronyism 

# of positive tweets: 0 
# of negative tweets: 
2254 
0.00% positive 
100.00% negative 

هي العنصريه  /

الاستفزازيه الممارسات 

التي تمارسها الجائره 

ضد جهات التوظيف 

المواطن في وطنه 

بتفضيل الوافدين أو 

الأقل  الواسطهاصحاب 

 كفاءه
 طاقات
Taqat 
Program of the 
ministry of 
labour 

# of positive tweets: 
1072 
# of negative tweets: 325 
69.68% positive 
30.31% negative 

ينفع القرار الجديد و جميل 

المواطنين صاحب العمل 

قبل يسمح له استخراج فيزه 

لازم يعلن عن الوظيفه 

 تابعوا موقعهم بطاقات 

نظام العمل يجبر 

المؤسسات على التوطين 

بالاعلان عن طريق 

لفتره محدده واذا  طاقات

ماتوفر سعوديين يسمح 

لهم بتوظيف أجنبي   

فيحطون مواصفات 

 تعجيزه
 العماله الاجنبيه
aleumaluh 
alajnibih 
Foreign labour 

# of positive tweets: 192 
# of negative tweets: 870 
22.06% positive 
77.93% negative 

براي القرارات الاخيره 

لشريحه مفيده ومشجعه 

العماله الاجنبيه كبيره من 

اللي بيستثمرون اموالهم في 

 بلدنا

كفانا ظلم و قهر 

سعوديون ينتفضون ضد 

بعبارة  العماله الاجنبيه 

 احنا اولي بفلوسنا

 كفاءات
kafa'at 
Program of the 
ministry of 
labour 

# of positive tweets: 
2909 
# of negative tweets: 765 
73.70% positive 
26.29% negative 

اتمنى ان يطبق برنامج ) 

( على كل مؤسسه  نطاقات

وجامعه بحيث كل ماقلت 

النسبه كلما تمت عدم موافقه 

نجح على التعاقد البرنامج 

مع القطاع الخاص جدا   

لحل تم ايجاده  نطاقات

لمشكلة التوظيف مؤقت 

حنا ما هو مفيد الكبيره 

  نبغى حل جذري للمشكله

 البطاله
Albitaluh 
Unemployment 

# of positive tweets: 53 
# of negative tweets: 
2141 
2.47% positive 
97.52% negative 

مصلحة أنظمه الدوله في 

المواطن فهي لا تسمح 

بالتعاقد لأكثر من عشر 

لإتاحه الفرص سنوات 

للمواطنين والحد من 

  البطاله

و  البطالهغبن فوق 

اليوميه من آثارها المعاناه 

الاقتصاديه و النفسيه 

يزيدوننا والاجتماعيه 

و بالتكاسل باتهامنا غبنا 

في التشكيك و التعالي 

 جدارتنا
 بدل الندره
bdl alnadruh 
amount of 
money added to 
the salary for 
scarcity 

# of positive tweets: 75 
# of negative tweets: 483 
15.52% positive 
84.47% negative 

الوطن يحتاج للتنميه   

وقبلها يحتاج إلى قلوب 

بحبه تنبض   
 بدل الندره على لا تركزوا

ليست المشكلهلانه   

الكبرى هي أن الجريمه 

يتعاون أبناء البلد مع 

الأجانب لإقصاء 

السعودي من أجل 

بدل الحصول على 

 الندره 
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7.5. Chapter Summary 

 This chapter presented the lingustic-machine learning hybrid approach for 

sentiment analysis of social media content in dialectical Arabic. This approach has 

utilised the advantages of several methods when integrating different features together 

and two techniques were used to determine the best hybrid approach. The first method 

adopted the domain-specific features and sentiment lexicon modelled in the semantic 

ontology as the token training features for the opinion classification. In the second 

method, the sentiment score resulting from the lexicon-based sentiment analysis was 

included in the training feature-set. The utilisation of domain knowledge in a second 

method was implicit as it was used to associate the sentiment mention with the domain 

features. In the first method, the domain-specific features and sentiment lexicon were 

modelled in the semantic ontology as the token training features for the opinion 

classification. In the second method, the sentiment score resulting from the lexicon-

based sentiment analysis were included in the training feature-set. The utilisation of 

domain knowledge in a second method is implicit as it was used to associate the 

sentiment mention with the domain features. The best result was achieved by the 

hybrid approach that incorporates TF-IDF with lexicon sentiment score features. It 

combined the linear SVC classifier with bigrams feature and the best multi-factor 

lexicon method (all levels); the accuracy was 93.45% and the F-score was 89.55%. It 

was observed that both of the hybrid approach methods provided higher results than 

applying approaches separately (lexicon-based approach alone and the machine 

learning approach alone). This improvement confirms the initial hypothesis which 

suggested that the hybrid approach improved the sentiment classification of dialectical 

Arabic text. 
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Chapter 8 
 
8 Conclusion and Suggestions for Future Work 

 This chapter is an overview of the findings explored within this study along 

with the overall outcome, contributions, PhD anticipated research limitations and 

recommended proposals for further investigation. 

8.1 Overview  

 The expansion of social media allows posting opinions on a variety of subjects 

such as eating out and politics. Posted opinions contain personal viewpoints to 

commercial and institutional organizations, since information gleaned can steer and 

direct marketing policy and aid in ascertaining the general publics’ opinion and mood 

towards events such as general elections or product campaigns. However, the expanse 

and seemingly chaotic nature of online data means that the evaluation and 

classification of text sentiment is a challenge. 

 Twitter is deemed a valuable Sentiment Analysis (SA) resource, since 

individuals turn to media outlets to express their personal views on a variety of 

subjects. It is one of the most popular social media apps in Saudi Arabia. Platforms 

such as Twitter, allow for a lucrative capture of the sentiments of the general public, 

particularly in terms of social issues and politics. This study has focused on 

unemployment in Saudi Arabia as a case study, analysing documents and an in-depth 

exploration of challenges identified in capturing sentiments posted by Arabic users of 

the net.   It was ultimately concluded that Arabic NLP can be utilised for dialectic 

expressions, but this requires further research. 

 



158 

 

 This study introduced a novel hybrid strategy that integrated lexicon-based 

sentiment analysis and machine learning approaches to extract and evaluate opinions 

from dialectal Arabic tweets. This approach followed several stages, with each 

developed to meet sentiment analysis challenges yet consider viable alternatives. 

In the initial stages, for a corpus sentiment analysis of a specific domain 

(unemployment) was created by collating tweets posted in Saudi dialect via Twitter’s 

API. W The data was amassed through hashtags trending in Saudi Arabia and attracted 

a huge volume of tweets. Approximately 23,500 tweets were collected, and once the 

redundancies had been deleted, approximately 10,000 tweets were assessed. A 

significant contribution to the collected tweets was from the popular account, 

@JoblessGrads9 ( عاطلون بشهادات عليا), which specialises in unemployment issues. From 

this account alone, approximately 5000 tweets were extracted and ultimately reduced 

to 3000 after deleting redundant entries.  The final dataset involved 7000 tweets. 

Lexical normalization of tweets was deemed a vital factor in the application of NLP 

tools.  

 As MSA stemming algorithms do not apply to Arabic dialects and only limited 

available stemmer tools compute dialectic vocabulary. Some of NLP tools for MSA 

have been experimented with in past studies, yielding poor results. For this reason, the 

current investigation has developed a novel stemming strategy that marries the 

Information Science Research Institute (ISRI) with a rule-based stemmer, to meet the 

obstacle posed by Saudi dialectical Arabic. The ISRI Arabic stemmer algorithm 

outperforms other MSA stemmers when applied to dialectal Arabic. Based on the 

lexical analysis of the words that the ISRI approach failed to correctly stem, a set of 

rules were devised to extract the stem of the Saudi dialectal Arabic words. The 

algorithm improved the stemming accuracy of dialectical Arabic in comparison to 

alternative stemming algorithms. This strategy can be utilised in applications where 

Saudi dialect is used, within social media, information-retrieval applications and 

machine translation.  

In the second stage of this research, since public dialectal Arabic sentiment 

resources are rare, Saudi dialectal resources were developed. First, a sentiment lexicon 

was collected to analyse the idiosyncratic elements in online posts. Several stages 

followed to collate 16,500 sentiment terms. Initially, the early work by Azmi and 
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Alzanin (2014) and their lexicon of 1,130 sentiment items of vocabulary, presented in 

MSA was used to direct this exercise. Then, eight native speakers worked on linking 

each word to synonym sets, considering all the Saudi Arabian different dialects such 

as Hejazi and Najdi. Finally, the collected lexicon was manually classified by 3 

annotators to confirm sentiment.  Additional lexicons were developed including 

intensifiers, negation, emojis, supplication, proverbs, and interjections.    Initially, 

statistical algorithms were constructed to locate frequently used terms, i.e. unigrams, 

bigrams, and trigrams. For each of these features, information was manually checked, 

constructing a dictionary for all relevant candidate features of the domain, with 

reference to, inflection forms, dialect and synonym sets. 

In the third stage, a semantic knowledgebase of detailed knowledge within the 

domain was devised. Amassing this knowledgebase commenced with modelling the 

domain representing data collected from opinions and reviews. The model was 

converted into a formal ontology representing the schemata to populate the domain 

knowledgebase with data. To extract features, the semantic domain knowledgebase 

identified synonyms and vital issues from pre-viewed tweets. Identifying key concepts 

was carried out by linking root words in pre-assessed tweets with terms in the semantic 

knowledgebase via GATE’s onto Root Gazetteer.  From this baseline, a domain feature 

sentiment process was compiled to select domain features with corresponding features. 

Sentiment lexicon was the utilised to detect sentiment vocabulary from tweets and the 

elevant sentiment was considered by calculating the associated scores.  

In the fourth stage, a multi-factor lexicon-based sentiment within dialectical 

Arabic social media was created. A novel multi-intensity lexicon-based sentiment 

analysis algorithm was developed that took into account several factors that will 

improve classification accuracy by considering emojis, negations, intensifiers and 

special phrases. This sentiment analysis approach also integrated a light stemming 

mechanism that matched sentiments to the corresponding root word in the 

multidialectal sentiment lexicon.  Experimental analysis was performed to evaluate the 

accuracy of this multi-intensity lexicon-based strategy. The evaluation evidenced that, 

combined with light-stemming, the consideration of multiple factors (as opposed to 

single factors) contributed to the enhancement of the performance of the algorithm in 

relation to tweet sentiment classification. The accuracy of the implemented algorithms 
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improved by approximately 6%, which compared positively with two prior research 

projects that had enacted a lexicon-based approach for the sentiment analysis of Saudi 

dialects. 

  The penultimate stage of this research involved a machine learning approach 

to classify the overall sentiment in dialectical Arabic posts. Differing machine learning 

algorithms were used to combine weighting schemes and n-gram features. The training 

section was employed to teach the machine learning algorithm, whereas the test was 

adapted to evaluate performance of machine learning models. The resultant 

experiments adopted differing machine learning classifiers with the intention to 

process the strategy with dialectal Arabic sentiment analysis. The accuracy of machine 

learning techniques, in comparison with TF-IDF features was superior to machine 

learning techniques with binary features. Optimum results were achieved via with TF-

IDF for bigrams and BernoulliNB classifiers, which created a solid coverage of 

phrases, with an accuracy score of 86.97%. 

Finally, this study has proposed a linguistic-machine learning hybrid approach 

for sentiment analysis of social media content in dialectical Arabic. The main objective 

of the proposed hybrid approach was to improve the sentiment classification to a more 

precise level and attain more accurate results. The proposed hybrid approach uses two 

methods to integrate machine learning and computational linguistics. The first method 

uses the domain semantic knowledgebase, and the second, the lexicon-based sentiment 

classification. Regarding the hybrid semantic knowledgebase-machine learning 

approach, this study combined the machine learning approach with semantic features 

extracted from the ontology.  Three n-grams features and the TF-IDF weighting 

scheme were used, in addition to semantic features from the ontology. t. In the hybrid 

lexicon based-machine learning approach, the final score of the multi-factor lexicon-

based approach was extracted and added into the machine learning approach. Three 

N-Grams features and the TF-IDF weighting scheme were used, and several factors 

such as feature-sentiment association, light stemming, emojis, intensifiers, negations 

and special phrases, such as supplications, proverbs and interjections were also 

considered. 

 The results of these experiments confirm that the hybrid approach, 

utilising machine learning approach and lexicon- based approach, improves 
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performance and accuracy of the sentiment analysis of dialectal Arabic. The best 

sentiment classification results were achieved by the hybrid approach, incorporating 

sentiment scores with TF-IDF, combined favoured lexicon methods (multi-factor) and 

linear SVC classifier with bigram features. The accuracy was 93.45%. Importantly, 

this result was enhanced by approximately 4% compared with optimum results when 

using the lexicon-based approach, attaining better results than machine learning by 

approximately 6.5%. Ultimately, both of the hybrid approach experiments provided 

higher results than applying the individual approaches separately (lexicon-based 

approach alone and the machine learning approach alone). This improvement confirms 

that the core hypothesis, that the hybrid approach improved the sentiment classification 

of dialectical Arabic text. 

8.2. Thesis Contributions 

 The main aim of this research was to propose a technique for achieving high 

sentiment analysis accuracy for tweets written in non-standard dialectical Arabic 

extracted from social media (Twitter).  It has been achieved by addressing research 

and development challenges of a novel hybrid sentiment analysis combining two 

approaches: machine learning and lexicon-based. The subsequent sections will discuss 

how the findings answered each of the two primary research questions identified at the 

onset of this study and each of the 6 sub-questions that were also answered through 

this multi-stage research. 

 

Primary Research Question 1: Can hybrid approach combining domain 

Semantic Knowledgebase features with machine learning improve the 

performance of sentiment analysis? 

 In the hybrid semantic knowledgebase-machine learning approach, this study 

evaluated the combination of a machine learning approach with domain features 

extracted from an ontology.  Through this approach, the central advantages of both 

approaches were used to improve the accuracy of the analysis: Three N-Grams features 

were employed and the TF-IDF weighting scheme was adopted, with specific domain 

features adopted from the ontology. It is clear from the results achieved in this study 

that the LinearSVC classifier with bigrams shows the best performance and also 
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achieved positive results with both unigram and bigrams.  Further, when compared 

with singular machine learning approaches the results demonstrated a significant 

improvement of more than 4%, suggesting a positive benefit from the semantic 

knowledge extracted from the ontology to enhance the hybrid approach. 

 

Primary Research Question 2: Can a hybrid approach combining multi-factor 

lexicon-based sentiment analysis score with machine learning improve the 

performance of sentiment analysis? 

 In the hybrid lexicon based-machine learning approach, the output of the 

linguistic sentiment analysis (the lexicon-based approach) was used to enhance the 

training of the machine learning approach. Three n-grams features and the TF-IDF 

weighting scheme were adopted and a sentiment score was then extracted from the 

sentiment lexicon.  By inspecting each tweet and detecting the sentiments lexicon, the 

corresponding total sentiment score for an individual tweet was extracted. The final 

score was then added into the machine learning approach and considered several 

factors such as feature-sentiment association. The final scores were aggregated with 

3-Gram features with the TF-IDF weighting scheme, and the machine learning 

classifier was subsequently trained to classify tweets into positive or negative 

groupings. These results confirmed the effectiveness of this hybrid approach; 

achieving the highest performing results with the combination of the linear SVC 

classifier of bigrams feature with the lexicon method (all levels).  Both of the hybrid 

approach experiments provided higher results than the lexicon-based approach and the 

machine learning approach. 

 

 In addition to answers to these two primary research questions, the following 

series of 6 sub-questions were also answered over the course of this study: 

 

RQ1. What are the main challenges in utilising the methods and tools designed 

for MSA in the NLP of dialectal Arabic?  

 In social media, many individuals write in dialectal Arabic, writing as they 

speak; e.g., the emotional Arabic tweeters and frequent habits of repeating letters to 

exaggerate, (helooooo)’. Appling NLP tools to dialectic vocabulary is challenging due 
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to its complex specific features such as, slang, ironic sentences, unstructured language, 

contractions, colloquial expressions, idiomatic expressions, abbreviations, spelling 

errors, use of conjunctives and lack of punctuation. In literature dealing with MSA, 

scholars apply speech patterns and syntactic dependency regarding Arabic text with 

the view to extract sentiment and featured, utilising guidelines such as nouns and 

adjective order, extracting both grammatical terms. This approach allows for 

satisfactory results because of the grammatical structure of the MSA. However, the 

dialectal Arabic is considered as a spoken language rather than written language. There 

is no itemised structure that generally concurs with written standard for dialect, hence, 

applying NLP tasks in terms of dialectical language is not viable. With clearer 

comprehension of the characteristics of dialectical Arabic, with its challenges 

regarding structure and meaning, this study has demonstrated that the NLP tools 

analysing MSA Arabic is not an efficient solution when presented with the dialectical 

Arabic texts. 

 This research has concluded that NLP tasks such as stemming and 

normalisation have a clear impact on results.  The most challenging NLP task in this 

research is stemming Saudi dialect, primarily due to obstacles in Arabic NLP because 

of language complexity and morphology. Diversity of dialects within Saudi Arabia, 

e.g. Hejazi and Nejdi, provide typical examples of the varied dialects within the Arabic 

language, which presents a challenge to NLP analysis of Saudi dialect. Most of the 

current stemming techniques focus on dealing with MSA texts and some specific 

dialects such as Egyptian. Following experiments involving existing NLP tools on 

Saudi dialect text, it was confirmed that the Information Science Research Institute 

(ISRI) stemming tool delivers a solid performance, though it fails to deal with dialect. 

In this research, this problem was addressed by enabling a novel stemming mechanism 

for Saudi dialect. The proposed stemming approach couples a rule-based stemmer 

developed in-house with the ISRI stemmer, thereby enhancing the accuracy of Saudi 

dialectical Arabic stemming. 
 

RQ2. Can a domain specific framework support a knowledge-based approach to 

dialectical Arabic sentiment analysis? 
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 Regarding the corpus, there are very limited open-source datasets for MSA and 

there is no annotated based morphological corpus for Saudi dialect of specific domain. 

Hence, this investigation created the gold-standard dataset for domain-specific 

research (e.g. unemployment). Tweets were collated by searching through streaming 

and previously posted tweets.  As a result of in-depth research and discrimination, the 

gold-standard corpus for sentiment analysis was created via manual annotation of 

tweets by labelled polarity with their sentiment: positive or negative, representing the 

absolute value. The number of annotated tweets was 7,000. 

  At the core of this approach, lexicon is one of the main resources for sentiment 

analysis and it has a very important role in sentiment classification. This study revealed 

that Saudi Arabia has six different dialects, leading to lexical challenges due to a lack 

of adequate sources. In order to address this issue, dialect attributes for the lexicon add 

Saudi dialects, Hejazi (west region), Najdi (middle region), Shamali (north region), 

Janubi (south region) and Sharqawi (east region). The lexicon in this study was created 

both automatically and manually by experienced linguists who are native speakers of 

Saudi dialects. To build the lexicon, sentiment vocabulary and phrases were collated 

from various resources. Initially, 1130 sentiment words, created in MSA, were gleaned 

from Azmi and Alzanin (2014). Each word was linked with a synonym set and applied 

to a unique Saudi dialect set of MSA by 8 native speakers. Subsequently, vocabulary 

was manually classified by 3 annotators with polarity levels of very positive (+1), 

positive (0.5), negative (-0.5) or very negative (-1). The sentiment lexicon was hence 

increased from 1130 words to 16,500. Finally, several lexicons were created such as, 

the domain features lexicon (1987 words), intensifiers (33 words), negation (45 

words), emojis (969 emojis), supplication (70 phrase), proverbs (200 phrase), 

interjections (30 words). 

 

RQ 3. Which linguistic features of the Arabic language can impact the lexicon-

based sentiment analysis, and how can these features be collectively considered 

to improve the accuracy of the analysis? 

 This study has investigated several linguistic features of the Arabic language 

that enhance accuracy of the lexicon-based sentiment analysis classification. Different 

techniques have been adopted over the course of this resarch to determine the final 
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classification of tweets, such as light stemming that integrates two strategies for 

dialect-specific words: the ISRI Arabic stemmer and an in-house rule-based stemmer. 

Also, morphological analysis was conducted, drawing upon the effects of intensifying 

vocabulary and emojis. To cope with complex Arabic constructs such as negation, this 

study has adopted advanced means of exploiting the most frequently used negative 

expressions. In addition, intensifiers were combined to increase the accuracy of the 

analysis (very nice). Finally, a window technique was adopted for tweets terms (the 

neighbouring words to the left and right of the target word) to resolve the free word 

order characteristics of the Arabic language. During this investigation, it was 

determined that colloquial expressions and interjections were likely to influence the 

polarity of the textual sentiment, requiring a phrase-based modelling method capable 

of manging supplications in dialectical Arabic and increase the accuracy of tweet 

sentiment analysis. 

 Over the course of this process, a multi-dimensional lexicon-based sentiment 

analysis algorithm was developed for Saudi dialects that synthesised all of these 

specific, targeted features into a singular, high-performing analytical resource. 

Experimentation and model validation was subsequently conducted in order to confirm 

the accuracy of this multi-factor approach and to interpret the potential advantages of 

the proposed model over prior research in this field.  This study has confirmed that 

with light stemming and multi-factor consideration (e.g. emojis, supplications, 

proverbs), the accuracy of the sentiment analysis was significantly improved.  As a 

result, future applications of this model to Arabic tweet analysis and sentiment 

modelling are predicted to yield valuable, accurate, and domain-specific results for a 

variety of applications.   

 

RQ4. Can the Semantic knowledgebase improve the accuracy of the feature 

extraction task? How can the semantic modelling of the domain knowledge 

further contribute to improving lexicon-based sentiment analysis? 

 The lexicon-based approach developed for this study fundamentally relies on 

the comprehensive analysis of domain-specific knowledge. Due to topical, domain-

specific variations, effective analysis is critical to the extraction of the domain features 

in preparation for their pairing with sentiments. Domain knowledge includes 
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information about a domain’s environment, its key concepts, their synonyms and the 

relationships between these items. Domain knowledge in linguistics can be utilised to 

improve sentiment analysis based on rigorous dataset. The modelling of domain 

knowledge captures relevant information and organises it into concepts connected via 

relationships.   For example, the specific domain problem adopted for this study, 

unemployment in Saudi Arabia, drew from a range of key concepts, such as 

unemployment, organisation, person, opinion and sentiment; it also includes 

interrelations, such as interactions with key stakeholders (e.g., citizens and policy 

makers) and the communication/advice medium (Twitter posts). The concept map was 

then translated into a formal ontology for use in populating a knowledgebase with 

semantically tagged information from the Twitter feeds. 

 One of the primary strategies for improving the accuracy of the feature 

extraction task was the feature-sentiment association which relied on the Semantic 

knowledgebase. After a sentiment was identified, the approach evaluated specific 

semantic domain features (salary, jobs, etc.) related to the sentiment using the domain 

features lexicon. According to a predefined association window (the neighbouring 

words/ two to the left and two to right of the target word) this approach was sufficient 

for the relatively short sentence length of tweets. Subsequently, the sentiments were 

associated with these particular features, and only domain-specific opinions were 

thereby accepted. To ensure that these sentiments were proximally linked to the 

domain concepts, an association window was employed, connecting the knowledge 

modelling output with the domain-specific indicators. 

 

RQ5. What is the impact of Arabic language light stemming on the performance 

of machine learning sentiment classification? 

 For dialectal Arabic, a limited number of studies have been completed, 

restricting the comparable evidence regarding classifier performance and optimality.  

Throughout the literature in this field, it was evident that the most common features 

used in machine learning sentiment analysis are surface features that generally include 

n-grams and syntactic features such as POS. The Syntactic Features are utilised to 

reflect the structural nature of the text in order to understand how words combine and 

function as a process of conveying meaning. Since Arabic is both a rich and 
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morphologically complex language, incorporating morphological and syntactic 

evaluation is of vital importance when considering sentiment analysis. However, the 

difficulty in applying Arabic NLP to dialectical Arabic text such as tweets is 

predominantly due to the fact that the majority of Arabic NLP tools are related to MSA 

data and designed for MSA texts. In this study, the syntax features, which are 

dependent on NLP and grammar, are not useful, as proven in the literature. This is due 

to the fact that dialectical Arabic text does not have a specific grammar to allow the 

use of NLP tools, such as extracting POS. So, in this study, unigrams, bigrams and 

trigram features were extracted from the corpus.  

 

RQ6. What is the impact of applying pre-processing and the impact of adding 

weighting schemes on the performance of machine learning?  

 This study investigated the impact of pre-processing on the effectiveness of the 

Saudi light stemming tool that was created for the machine learning sentiment analysis. 

The corpus was cleaned by removing links, hashtags and special twitter characters 

such as retweets. Then, the text was normalized by removing diacritics or redundant 

letters (more than two). This step was important because it reduced the number of 

variations in the associated word features. Also, the Saudi light stemming was applied 

to this analysis. Through experimentation, it was observed that pre-processing 

improved the performance of machine learning around 8% against the results without 

light stemming. 

 Supplementing this pre-processing technique, this study has also investigated 

sentiment analysis by using a machine learning approach to analyse the results and 

studying the impact of different weighting schemes on classification in the dialectical 

Arabic text. The N-Grams features were weighted using the TF-IDF weighting 

scheme, which defined the importance of a feature based on the term frequency/inverse 

term frequency. In addition, several machine learning classifiers were applied to the 

output, resulting in the superior performance of machine learning with TF-IDF features 

than machine learning with binary features.  These findings indicate that future studies 

using domain-specific sentiment analysis could appropriate the machine learning with 

TF-IDF features techniques developed for this study to significantly improve the 

accuracy and reliability of the sentiment analysis outputs. 
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8.3. Future Work 

 Having completed this study and critically assessed literature and explorative 

=findings and results, there are certain fields of interest and relevance requiring further 

exploration regarding sentiment analysis and its application to dialectical Arabic. The 

following provides several possible research directions that could be adopted in the 

future in order to expand the depth and accuracy of this high-performing solution: 

 

Investigating the feasibility of applying the hybrid lexicon based- machine 

learning approach to text reviews. 

 Corporations could adopt sentiment-based analytical tools to analyse web-

based customer reviews in order to trace the strengths and weaknesses of their products 

or services. Organisations invest time and money into resources collating and 

analysing online materials to pinpoint customer habits and expectations regarding 

consumer sentiment. They utilize this data to enhance the quality and effect of their 

products, along with services, production targets and marketing direction.  

 However, merely posting comments on a website allows for complete 

subjective opinions to be expressed without limits or specifications. Tese variations 

present a challenge when compared with other social media channels such as Twitter 

since sentiment analysis is designed to track positive or negative word use across 

limited comments and feedback.  The general reviews on the internet are likely to vary 

by scope and specificity, drawing upon a variety of issues and complaints without a 

specific topical domain.  This issue will require the adoption of a domain-oriented 

solution, requiring expert input on effect and consequence in order to increase the 

accuracy of the sentiment analysis.  It is predicted that the proposed hybrid lexicon 

based-machine learning approach could be broadened to explore general reviews on 

the net rather than just tweets. 

 

Improve lexicon construction (sentiment lexicon - domain features lexicon - the 

polarity level and intensifier - negations - emojis - special phrases) by adding a 

numerical score.  

 Throughout this study, a novel lexicon approach was proposed, assessing five 

different dialects within Saudi Arabia. For future work, this lexicon could be expanded 
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and positioned for use by the general public.  By applying a numerical value to each 

lexical item in order to indicate a positive or negative sentiment, the accuracy and 

depth of the proposed model could be expanded to improve transferability and 

applicability across a range of other analytical problems.  

 

Investigating the development of a recommendation system based on data 

analysis - Application on tweets SA. 

 Despite many previous works proposing novel methods of analysing English 

text, limited studies pinpoint Arabic work. Future research will explore various 

approaches to the analysis of dialectical Arabic based on SA, taking advantage of 

Spark, an online application framework offering extensive data, to extract the plethora 

of information available on the internet and social networks. In detecting general 

opinions concerning a specific domain covering multiple tweets, the SPARQL query 

is the chosen recommender function, retrieving the average quality of predicted rates 

within all tweets analysed. Complicated SPARQL queries may be adopted to analyse 

usage of domain knowledgebase for complex interrogative evaluation of opinions 

regarding the recommender functions (Nabil et al., 2018). KnowledgebaseIn future 

work, an application exploiting a semantic knowledgebase will be developed in order 

to to offer and satisfy demand for the recommender system user.  

 

Develop deep learning models that can be used to analyse variations in word 

embeddings and varying class sizes 

 This study adopted six Deep learning models with the use of different word 

embeddings such as Arabic Online Commentary Word Embeddings (AOC), 

Twitter, Twitter-City Word Embeddings, FastText Arabic Wiki Word Embeddings, 

Mazajak Word Embeddings.   The results yielded interesting and relevant findings, 

and, in most cases, they were superior to the most frequent class baseline. When 

compared with ML approach it was found that classical ML models do better than deep 

learning models.  This finding was expected considering the number of classes and the 

size of the dataset. Deep learning models work better with much more data. In future 

work, improvements to the current dataset are proposed in order to make expand it in 

scale and then apply a deep learning approach to the modified result.  
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10  Appendix 

Appendix A 
 

 

The Impact of Pre-processing on Machine Learning Classifiers for Dialectical 

Arabic Content  

 

 

 

Figure 10.1: The Impact of Pre-processing on Machine Learning Classifiers 

  

Without
Preprocessing

With
Preprocessing

Without
Preprocessing

With
Preprocessing

Accuracy F-Score
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Appendix B 

 
1. The results regarding KNeighbors and SGD for Machine Learning 

Baseline Experiments 

 

 
Figure 10.2: The results of Machine Learning Baseline - KNeighbors classifiers 

 

 
Figure 10.3: The results of Machine Learning Baseline - SGD classifiers 
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2. The result and discussion of Machine Learning Techniques with weighted 

schemes features for Trees and KNeighbors classifiers results 

 

2.1. Machine Learning Techniques with TF-IDF features 

 

 

 
Figure 10.4: The results of Machine Learning with TF-IDF features - Tree classifiers 

 

 

 

 
Figure 10.5: The results of Machine Learning with TF-IDF features - KNeighbors classifiers 
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2.2.Machine Learning Techniques with binary features 

 

 

 
Figure 10.6: The results of Machine Learning with binary features – Tree classifiers  

 

 
Figure 10.7: The results of Machine Learning with binary features – KNeighbors classifiers 
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Appendix C 

 
1.  Hybrid approach for TF-IDF features + semantic features (domain features) 

for KNeighbors and SGD classifiers results. 

 

 

 
Figure 10.8: The results of Hybrid approach (TF-IDF features + semantic features) - KNeighbors classifiers 
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Figure 10.9: The results of Hybrid approach (TF-IDF features + semantic features) - SGD classifiers 
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