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A Combinatorial Deep Learning Structure for
Precise Depth of Anesthesia Estimation from EEG

Signals
Sara Afshar, Reza Boostani, and Saeid Sanei

Abstract—Electroencephalography (EEG) is commonly used
to measure the depth of anesthesia (DOA) because EEG reflects
surgical pain and state of the brain. However, precise and real-
time estimation of DOA index for painful surgical operations
is challenging due to problems such as postoperative complica-
tions and accidental awareness. To tackle these problems, we
propose a new combinatorial deep learning structure involving
convolutional neural networks (inspired by the inception module),
bidirectional long short-term memory, and an attention layer. The
proposed model uses the EEG signal to continuously predicts the
bispectral index (BIS). It is trained over a large dataset, mostly
from those under general anesthesia with few cases receiving
sedation/analgesia and spinal anesthesia. Despite the imbalance
distribution of BIS values in different levels of anesthesia, our
proposed structure achieves convincing root mean square error
of 5.59 ± 1.04 and mean absolute error of 4.3 ± 0.87, as well as
improvement in area under the curve of 15% on average, which
surpasses state-of-the-art DOA estimation methods. The DOA
values are also discretized into four levels of anesthesia and the
results demonstrate strong inter-subject classification accuracy of
88.7% that outperforms the conventional methods.

Index Terms—Attention mechanism, convolutional neural net-
work, deep learning, depth of anesthesia, electroencephalogram,
long short-term memory.

I. INTRODUCTION

BRAIN is the main human organ affected by anesthetic
drugs during surgery [1]. Specialists usually measure

the depth of anesthesia (DOA) during surgery by monitoring
physiological measures such as blood pressure, heart rate, and
blood oxygen level. These clinical parameters, however, vary in
patients and surgeries and depend on age, body weight, gender,
and medical history. Therefore, assessing the consciousness
level by observing the vital signs of patients, as primary
inputs, is quite challenging. As a supplement monitoring,
the effect of anesthetic agents by processing the online elec-
troencephalogram (EEG) during total intravenous anesthesia
is recommended to reduce the incidence of awareness [2], [3].
This is done by bispectral index (BIS).

BIS is the commercial EEG-based monitor. The BIS algo-
rithm, however, is not publicly available since it is still subject
to patent access limitation. BIS monitor’s electrodes are molded
on the forehead to capture raw EEG signals and generate DOA
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index in the range of 0-100. BIS is recognized as the most
commonly used EEG-based DOA estimator.

Machine learning techniques, including deep learning meth-
ods have shown impressive results in processing complex
data [4]–[6]. This study aims at mimicking the BIS index
in an online manner by developing a new hybrid deep learning
structure. The network receives raw EEG and generates the
DOA index without eliciting any hand-crafted EEG feature.
Using large patient datasets we show the superior performance
of our deep neural network (DNN) to other DNN structures
as well as feature-based classification systems. Utilizing DNN
in the field of anesthesia is relatively new [7], especially for
forecasting continuous BIS score in a real-time manner. The
main goal of our work is to estimate the BIS index by a proper
regression model, based on the combination of deep learning
methods.

A wide range of features in diverse domains have been
proposed for DOA assessment over past years. For example,
wavelet coefficient energy entropy and wavelet weighted
median frequency are introduced in order to obtain high
correlated indexes with BIS [8], [9]. Burst suppression is a key
feature to detect deep level of anesthesia. Sarkela et al. [10]
developed a method for detection and segmentation of burst
suppression automatically based on Nonlinear Energy Operator.
Sample and permutation entropy features are commonly applied
in several studies [11]–[13]. Instantaneous frequency (IF) is
introduced as a highly positive correlated feature to the BIS
score [14]. Short-time Fourier transform is also applied to EEG
with the aim of IF estimation. In addition, Kalman filter is
executed to predict cutoff frequencies of the band-pass filter
through consecutive windows in order to better IF estimation
[14]. For decision making, different types of classifiers and
regressors such as, artificial neural network [11], adaptive
neuro-fuzzy inference system with linguistic hedges [13] and
random forest [12] have been utilized. The datasets in anesthesia
research field, however, are mostly private. DOA labels in
datasets are assessed by anesthesiologists [15] or extracted
from automatic EEG monitoring systems [7], [12].

Lee et al. [7] propose a deep learning model, which
is trained over 231 subjects that receive total intravenous
anesthesia during surgeries. The inputs of the network are
infusion histories of propofol and remifentanil besides sub-
ject’s characteristics. It predicts the BIS score in terms of
continuous values. Their developed method outperforms the
pharmacokinetic–pharmacodynamic model’s results. Liu et al.
[15] determine the spectrogram of EEGs for 50 subjects as the
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inputs of convolutional neural networks (CNNs) like CifarNet,
AlexNet, and VGGNet. They rely on converting EEG signals
to 2D images, which is computationally intensive for big
datasets. They reach 93.5% classification accuracy over just
three levels of anesthesia, while it is more common to consider
four anesthetized states before any classification performance
can be reported [11]–[13]. Lee et al. [16] build a decision
tree with four subparameters driven from the BIS monitor
with the aim of classifying BIS ranges. Thereafter, multiple
regression models are used for BIS values calculation. The
model is being trained on a big dataset with size of 5,427
subjects. This method is less generalized and more sensitive to
noise in comparison with our end-to-end deep learning model.

The rest of the paper is organized as follows: Section II
describes the components of proposed architecture. The charac-
teristics of the deployed dataset and the description of prepro-
cessing phase are expressed in Section III. Experimental results
and discussion are presented in Section IV and Section V,
respectively. Finally, Section VI concludes the paper.

II. METHODOLOGY

A. Proposed method
Our proposed method is a combination of three DNNs. We

select CNN due to its outstanding performance in various
fields. In addition, CNN is capable of hierarchical feature
learning from unstructured data and its flexibility allows it to
be customized for specific purposes. From another perspective,
recurrent neural network (RNN) is particularly developed to
capture temporal features and memorize information through
the time in sequential data. Since EEG is a time series with
complex underlying information, combination of these two
DNNs can fulfill our purpose. The proposed model is formed by
concatenating CNN and bidirectional long short-term memory
(Bi-LSTM) in conjunction with an attention layer. Next, we
provide more details about each module.

1) CNN/Inception: The main body of our model is formed
by CNN and it is inspired by the inception module in Inception
V1 [17]. The inception module is the result of convolutional
layers concatenated with different kernel sizes and a max
pooling layer. Merging the pooling layer to the convolutional
layers increases the number of stage’s outputs successively.
Consequently, the computational complexity is drastically
grown. Therefore, a 1 × 1 convolution filter is added before
3, 5 convolution layers, as described in Fig. 1b. It helps to
reduce the computational complexity and dimension of filters
[17]. One of the advantages of inception network is that a
DNN becomes a bit wider than deeper. Using a very deep
model leads to encounter with vanishing gradient problem.
CNN part of the proposed method is formed by stacking
of inception modules as illustrated in Fig. 1. Employing the
inception module instead of vanilla plain CNN [17] in the
network stem leads to better results. Also, we substitute each
simple convolution layer with a convolution layer consisting of
regularization and batch normalization [18]. A newer version
of inception has a large number of parameters which may
over-fit the classifier for our dataset. Therefore, we prefer to
use the aforementioned blocks.

(a)

(b)

Fig. 1: Inception blocks in the proposed method. (a) inception
module with dimension reduction. 1D convolution with batch
normalization and regularization (br), (Incp1). (b) Another
applied module, (Incp2).

2) Bi-LSTM: In practice, an early version of RNN neither
handles the long-term dependency nor addresses the issue
of vanishing gradient [19]. To overcome these drawbacks,
the application of long short-term memory (LSTM) [20] is
proposed, which is made up of memory cells, an input gate,
an output gate and a forgetting gate which keeps tracking
of dependencies between the elements of input sequence
and remembering previous state. LSTM takes the previous
states and inputs into account. Bidirectional [21] wrapper
help the model be trained over both forward and backward
directions. It utilizes the future information, additionally, and
merges the results of the two sequences of past-to-future
and future-to-past. In Fig. 2

{
...,
−→
h t−1,

−→
h t,
−→
h t+1, ...

}
and{

...,←−s t+1,
←−s t,
←−s t−1, ...

}
are, respectively, the hidden forward

and backward LSTM layer state sequences.

Fig. 2: Unfolded Bi-LSTM in time for three time steps, dotted
boxes encompass hidden layers of forward and backward layers.

3) Attention layer: The attention mechanism is proposed
to help memorize long source sequences. Therefore, we do
not have any concerns about the forgetting problem. We have
implemented a simple form of additive attention [22] which
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Fig. 3: Illustration of
the attention layer.{
X1, X2, ..., XT

}
is

an input sequence.
−→
hj

and ←−sj are Bi-LSTM
hidden states. aj and c
are alignment model and
contex vector, respectively.
c is the weighted sum of
the encoder hidden states.

is more similar to feed-forward attention model [23]. In fact,
our implantation does not have any decoder (Fig. 3). Here we
show the differences; the attention layer consists of:

• Alignment model/score ej:

eij = a(si−1, hj) => ej = a(hj) (1)

si−1 is the decoder’s previous hidden state, hj is the j-th
hidden state of the input sequence. a is parametrized by a
single hidden layer feed-forward neural network which is
jointly trained with other parts of the model. The attention
model does not use RNN as a decoder; consequently, it
does not have si−1 as its hidden state.

• Attention weights αj:

αij =
exp(eij)∑Tx

k=1 exp(eik)
=> αj =

exp(ej)∑Tx

k=1 exp(ek)
(2)

is a probability to represent the weight of each input and
obtained by applying softmax to the alignment score.
Tx represents the number of inputs into the encoder.
Therefore, a higher weight has a stronger influence on
the prediction results.

• Context vector c:

ci =

Tx∑
j=1

αijhj => c =

Tx∑
j=1

αjhj (3)

Context vector solves the forgetting problem of long
sequences in RNN/LSTM. It has access to the entire
input’s hidden states instead of only the last one and
adds importance to each of the hidden states by using the
attention weights. In fact, the attention makes a shortcut
between the source hidden states and the contex vector.

The mechanism of additive attention is then applied to the
top of Bi-LSTM. To sum up, attention layer not only considers
all of the source hidden states, but also adds importance to
them. Fig. 4 illustrates a flow chart for our proposed model,
encapsulating the attributes presented in figures 1, 2, and 3.

B. Experimental design
We utilized Matlab 2018a for the preprocessing phase. The

network was implemented in Python 3.6 using Keras API
2.2.4 with TensorFlow (version 1.13) backend. The training
was conducted on a system with 28 GB RAM and NVIDIA
GeForce GTX 1060.

Fig. 4: High level view of the proposed method.

1) Regularization: This is to control the complexity of
neural network to obtain a better generalization result [24]. To
achieve this, the proposed model has: 1) Dropouts, 2) Weight
decay or kernel regularization type L2 (λ is equal to 0.001), 3)
Early stopping which is a termination strategy triggered when
the loss function over validation set does not improve after
some epochs (4 epochs in our case).

2) Hyper-parameter tuning: In our model, the weights and
biases are calculated and updated to minimize the error using
Adam optimizer—a gradient-based optimization of stochastic
objective functions [25]. Our model shows the best performance
for initial Adam’s learning rate 0.0005 and batch size 64. Batch
size obtained from the grid search is small causing the learning
rate to be relatively small. The learning rate decays over epochs.
Each epoch takes approximately 10200 sec and the model is
trained for 28 epochs with early stopping criteria. The activation
function is nonlinear. We exploit exponential linear unit for
the non-linearity. Among mean squared error, mean absolute
error, and hubber loss functions, mean square error loss shows
the best result.

C. Compared methods
It is hard to find two anesthesia studies with an identical

open-access database. Therefore, for meaningful comparison,
we have to implement various methods and execute them on
our database. Accordingly, We compare our proposed method
to two state-of-the-art methods [11], [12]. Liu et al. [12] select
sample entropy as a feature and random forest as a regression
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model to predict the continuous value of DOA. They use
Multivariate empirical mode decomposition for noise reduction.
Shalbaf et al. [11] extract sample and permutation entropy
and classify them with an artificial neural network. In addition
to our developed method that embodies two sub-architectures
(CNN/Inception and CNN+Bi-LSTM in Fig. 4), we evaluated
residual network (ResNet) 18 and 34 layers [26] with 1D
convolutions.

III. EXPERIMENTAL SETUP

A. Dataset
The experimental dataset in our study was collected and

registered by the Department of Anesthesiology and Pain
Medicine, Seoul National University Hospital, College of
Medicine, Seoul, Republic of Korea [27]. We chose subjects
who received vascular surgery with various types of diagnosis
and operations. Among 176 subjects, 74 are female and the
rest are male. The physical status of the patients were ASA
(American Society of Anesthesiologists) scores I, II, III and IV.
Multiple techniques were conducted during anesthesia induction
and maintenance. They received target-controlled infusion of
propofol and/or remifentanil, administration of inhaled volatile
anesthetics (sevoflurane and/or desflurane) or combination of
both techniques in conjunction with another essential drug.
Main characteristics of patients like age, height, weight and
anesthesia duration are shown in Table I.

The data was collected using the BIS monitoring system (BIS
Vista, Medtronic, Minneapolis, MN, USA) and BIS Quatro
sensor. BIS represents DOA in terms of continuous values
within the range of 0 (flat line EEG) to 100 (awake). The
BIS sensor has 4 EEG electrodes (2 channels), which are
placed directly over the forehead. The EEG sampling rate is
128 samples/sec for each channel and BIS is updated every 1
second.

B. Data prepossessing
EEG signals are often contaminated by another biological

signals (e.g., eye blink, muscle activity, heart beat) and power
line noise [30]. To deal with contamination, although the
frequency range of EEG signal is from 0.5 to around 70
Hz, most of anesthesia relevant content of EEG signal occurs
between 0.5 to 47 Hz [31]; consequently, EEGs are filtered
by a minimum order band-pass FIR filter (bandpass function
in Matlab) with cut-off frequencies of 0.5 and 47 Hz. The
following cases, which contain very few samples, are excluded
from dataset in order to improve the model performance.

• Segments with missing values and its corresponding BIS
• BIS with zero value and its corresponding EEG segment

(Although BIS value of zero represents an isoelectric EEG
signal, most zero BIS values are before the beginning
of anesthesia; therefore, they do not contain any useful
information.)

• EEG segments with amplitudes larger than 200 µV and
smaller than -200 µV [11]
(These outliers have very large amplitudes around 1000
µV . Few exclusions have been considered in order to

improve the accuracy for the regression fit which is
sensitive to outliers.)

An EEG segment refers to 1s of two EEG channels (128×2
samples).

Input representation: Before feeding the data to the model,
we process the data from successive windows without overlap
to the successive windows with overlap. Accordingly, we assess
the spectrum over different window lengths of 1, 5, 10, 30, and
60 seconds and select 10 sec window based on performance,
computational time and memory criteria. Then, the 10 sec
window is moved 1 sec at a time so that the consecutive
windows have 90% overlap. The detailed results are discussed
in Section IV. Note that, the DNN input configuration changes
from 128× 2 to 1280× 2, as demonstrated in Fig. 5

Fig. 5: Sliding of overlapping windows over the input sequence.

C. Evaluation metrics
After obtaining the regression outputs, the resulting predicted

values are categorized into 4 levels of consciousness following
the BIS manual for performance analysis using classification
metrics. Accordingly, the four stages are deep anesthesia (DA,
BIS: 0-40), general anesthesia (GA, BIS: 40-60), light sedation
(S, BIS: 60-80), and awake (W, BIS: 80-100). The model
selection is carried out through cross validation. The results
are expressed in terms of regression error and classification
accuracy. To evaluate the regression performance of the models,
the predicted values are measured by the following most
common evaluation metrics [7], [12]: mean square error (MSE),
root MSE (RMSE), mean absolute error (MAE), R-squared (R2)
and correlation coefficient (CC). We use several classification
metrics like accuracy (ACC), sensitivity (SE) and area under
the curve (AUC). In addition, F1 score (F1), specificity (SP),
and precision (PR) are used to measure and compare the
performances.

IV. EXPERIMENTAL RESULTS

In the validation procedure, the changes in pattern of
hyperparameters are important for measuring the generalization
of our deep learning model. To have an unbiased evaluation, we
need to construct a separated set (from test set) called validation
set. Accordingly, the dataset (described in Section III), is
divided into three separated subsets for single fold cross
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Table I: Patient characteristics, mean ± standard deviation (min-max)

Training Set Validation Set Test Set

Age (year) 58.72 ± 19.64 (15-92) 57.65 ± 14.52 (17-81) 58.77 ± 14.09 (17-88)

Height (cm) 160.99 ± 15.94 (140-184) 162.98 ± 9.51 (144.8-178.2) 164.99 ± 8.73 (151-182.9)

Weight (kg) 61.26 ± 14.82 (30.7-103) 61.88 ± 11.4 (38.283.4) 64.23 ± 13.71 (43.3-101.3)

Anesthesia Duration(h) 3.34 ± 1.85 (0.67-8.83) 3.06 ± 2.15 (0.92-9.83) 2.93 ± 1.34 (0.75-8)

validation 1. The total number of data points is 1,938,940:
20% for test subset (35 patients: 357,619 samples), 15% for
validation subset are (23 patients: 244,403 samples) randomly
selected and the remaining data is considered for the training
subset (118 patients: 1,336,918 samples). Fig. 6 illustrates the
distribution of the whole dataset (consisting of 176 patients),
which is divided into 4 levels of anesthesia. Table II represents
the distributions of labels in each class and set.

Then, each model predicts the BIS values of a test patient
in the evaluation phase. Therefore, we report regression results
in terms of mean and standard deviation for all patients in the
test set. We have two approaches for comparing the results:
(a) the performance of our model in tracing the BIS score is
compared with the outcome of other deep learning models,
(b) the selected deep learning model outcome with a feature
extraction-regression method. All models are trained and tested
on the same dataset as used in this study. We will analysis the
results in next section.

Fig. 6: Histogram of label distribution, the number of data
points and percentage of each class are annotated.

Fig. 5 presents a graphical illustration of epoch’s size
modification as an input of the proposed model. Note that
each EEG channel is a time series and BIS monitoring utilizes
previous information to predict DOA index, a point also
elaborated by other authors: e.g. Rampil [28] states "BIS value
represents an average value derived from the previous 60 sec of
useable data". Accordingly, the overlapping windows method

1We divided the dataset randomly between the three subsets with one
constraint which forces the testing subset to include patients with all 4 levels
of consciousness. This is done so that the absence of a level would not
artificially distort the classification metrics.

Table II: BIS values in training, validation, and test sets.

DOA Training Set Validation Set Test Set

DA 468065 (35.01%) 91573 (37.47%) 183687 (51.36%)

GA 658949 (49.29%) 91525 (37.45%) 134114 (37.5%)

S 130197 (9.74%) 38219 (15.64%) 23265 (6.5%)

W 79707 (5.96%) 23086 (9.44%) 16553 (4.6%)

significantly improves the results. There is a mean comparison
of datasets with 1, 5, and 10 sec epochs in Table III. All
datasets are trained on the CNN part of Fig. 4 with equivalent
test set. Subsequently, CNN can better learn for larger windows
using a bigger slice of samples as input. We also test 30 and
60 sec epochs. Their results are relatively close to 10 sec
but their computational time and memory costs are too high.
Consequently, 10 sec window provides the best results in terms
of time, memory and efficiency, so we present these results.

Table III: Means ± standard deviations of window’s lengths

1 sec 5 sec 10 sec

MSE 66.26 ± 27.35 60.86 ± 24.89 36.35 ± 12.22

MAE 6.13 ± 1.35 6.03 ± 2.09 4.65 ± 0.86

RMSE 7.98 ± 1.58 7.86 ± 2.65 5.95 ± 0.99

R2 61.89 ± 16.98 65.28 ± 15.65 79.25 ± 9.96

CC 82.23 ± 7.45 80.3 ± 12.65 91.23 ± 4.04

AUC 70.9 ± 4.53 71.38 ± 7.54 79.28 ± 4.57

Moreover, Fig. 7a shows one of the best prediction results
in terms of error loss. It illustrates that the proposed model
tracks out of range peaks in BIS index (level of hypnotic),
which may stem from the skin incision during surgery.

V. DISCUSSION

CNN as a deep learning model has been a choice of the
most recent research papers. CNN shows great performance
on sequential data like biomedical signals, especially in EEG
applications [29]–[31]. There is some resemblance between
hand-crafted frequency-based features and learned temporal fil-
ters by a CNN [32], [33]. The former results from convolutional
operation by Fourier filters and the later are temporal filters
learned by CNNs [34]. As shown in Fig. 1, the advantage of
inception modules is increasing convolutional filters’ learning
ability by different dimensions, resulting in more complex
filters. Batch normalization in convolutional layers of the
proposed method helps decrease the training time. Moreover,
dropout in conjunction with batch normalization reduces over-
fitting. Without dropout the model is biased toward learning
noise patterns.
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Table IV: Comparing the proposed method with the benchmark approaches. All models used an identical dataset in Sec IV.

(a) Classification metrics, Values are in percentage %

ResNet18 ResNet34 CNN/Inception CNN+Bi-LSTM Liu et al. [12] Shalbaf et al. [11] Proposed method
stage SE ACC SE ACC SE ACC SE ACC SE ACC SE ACC SE ACC
DA 84.92 79.17 65.72 76.32 76.37 79.45 83.54 81.15 37.73 62.79 56.01 70.1 78.46 80.95

GA 64.09 76.3 82.8 73.5 75.19 76.78 70.07 78.54 83.73 57.5 72.49 66.86 76.57 78.43

S 50.63 95.96 54.36 96.04 55.52 95.91 57.85 96.19 41.78 92.96 61.4 92.13 64.7 96.47

W 90.62 98.86 86.39 98.88 93.42 98.58 94.78 98.8 23.25 95.89 68.76 97.16 90.71 98.98
Overall 72.57 87.57 72.32 86.17 75.13 87.68 76.56 88.67 46.62 77.28 64.67 81.57 77.62 88.71

(b) Regression metrics and AUC classifcation metric (below divider)

Metric ResNet-18 ResNet-34 CNN/Inception CNN+Bi-LSTM Liu et al. [12] Shalbaf et al.[11] Proposed method

MSE 36.58 ± 13.7 38.67 ± 13.64 36.35 ± 12.22 32.85 ± 12.62 142.31 ± 85.52 98.83 ±69.29 32.44 ± 12.28

MAE 4.58 ± 0.94 4.83 ± 0.93 4.65 ± 0.86 4.36 ± 0.87 8.44 ± 2.37 7.38 ± 2.32 4.3 ± 0.87

RMSE 5.95 ± 1.1 6.13 ± 1.04 5.95 ± 0.99 5.61 ± 1.07 11.44 ± 3.38 9.5 ± 2.91 5.59 ± 1.04

R2 79.25 ± 10.77 78.02 ± 10.24 79.25 ± 9.96 81.27 ± 8.9 32.09 ± 25.7 50.57 ± 23.02 81.55 ± 8.9

CC 90.43 ± 4.59 90.9 ± 4.24 91.23 ± 4.04 91.79 ± 3.93 66.33 ± 14.47 81.84 ±8.4 91.87 ± 4.03

AUC 78.33 ± 4.71 78.27 ± 5.83 79.28 ± 4.57 80.89 ± 4.34 62.29 ± 5.31 72.64± 5.71 81.11 ± 5.27

The proposed method is compared with multiple deep
learning models. Results reported in Table IV suggest that
RestNet18 and 34 lead to over-fitting during the learning phase
because ResNet18 has a high SE in the DA stage (84.92%) and
ResNet34 has a high SE in the GA stage (82.8%). However,
the sensitivities are much weaker in other stages. In addition, in
the training phase of these two residual networks, training loss
drops after a few epochs with no improvement in validation loss.
In terms of SE and ACC metrices, after multiple model training
processes for each network, CNN/inception with SE 75.13%
surpasses both ResNet18 and 34 with SE 72.57% and 72.32%
2. Consequently, we choose our developed CNN/inception for
the convolutional part of the proposed model.

Primarily, attention layer on top of the RNN captures and
selects the most relevant extracted features by evaluation of
all last hidden states. As reported in Table IV, despite a small
size of S level, the proposed model shows noticeably improved
SE after adding an attention layer to CNN+Bi-LSTM, from
57.85% to 64.7%.

Based on the regression and classification criteria, the best
model is selected through the cross validation. The conventional
method needs to extract features after artifact removal. The
method by Liu et al. [12] suffers from a complex preprocessing
stage. Accordingly, this method cannot be applied to real-time
situations due to its time-consuming noise reduction phase. In
contrast, DNN has end-to-end learning. Exploiting a DNN like
CNN does not have that tedious part, since the backpropagation
weight updating decreases the effect of noise in the raw data
[35]. In this application, for assessing DOA, it is crucial to
have an online prediction. Our method can be applied in an
online manner.

Moreover, according to Table IV both traditional methods
are biased toward the training set’s largest class (GA, BIS: 40-
60). For example, the high SE of GA level in [12] is 83.73%,
and in [11] is 72.49% with low sensitivities in other levels.

2Although SE of proposed method is better than those of other deep learning
methods both numerically and statistically, ACC is only better numerically
but not statistically.

Furthermore, as shown in Fig. 8, F1, PR and SP in our proposed
method are significantly higher than those achieved by the other
two methods: e.g. 78.31%, 80.45% and 90.3% versus 61.87%,
61.6% and 85.32% for [11], and 47.16%, 59.15% and 81.74%
for [12], respectively. The AUC score for our our methods,
Liu et al., and Shalbaf et al. are 81.11 ± 5.27, 62.29 ±
5.31, and 72.64 ± 5.71, respectively. Therefore, our proposed
method separates the consciousness levels more accurately
than the other methods. These results suggest that there are
limitations to conventional methods, which are feature-based,
to much larger datasets. Unlike these approaches, DNNs elicit
a set of customized features for each dataset. As a result, the
proposed model does not need any experts’ knowledge of
feature extraction. Besides, Fig. 9 illustrates that training and
validation losses of our proposed model during the learning
phase provides a good generalization behavior.

Our regression scores in Table IVb are significantly better
(p < 0.001) than the conventional methods as discuss below.
For instance, we note that MSE (32.44 ± 12.28), MAE (4.3
± 0.87), R2 (81.55 ± 8.9), and CC (91.87 ± 4.03) of our
proposed method far surpass MSE (142.31 ± 85.52), MAE
(8.44 ± 2.37) , R2 (32.09 ± 25.7), and CC (66.33 ± 14.47) of
[12], and MSE (98.83 ± 69.29), MAE (7.38 ± 2.32), R2 (50.57
± 23.02), and CC (81.84 ± 8.4) of [11]. The results show that
the proposed method predicts DOA index more precisely.

We now examine the performance of our proposed model by
its confusion matrix. More specifically, all of the test results
are combined and expressed in terms of confusion matrix for
a better visualization in Fig. 10. Our model does not directly
perform the classification; therefore, many of misclassifications
have close distances with their true BIS indexes. It is noted that
demarcation of the four states of consciousness is an artifact
of classification and it can lead to misclassification with small
changes in BIS scores. For example, we note that in Fig. 11
the true BIS is 38.2 (DA stage) and the predicted index is
41.12 (GA stage). Although there is only a small difference
between the indices, this index is counted as a misclassification
in the confusion matrix. Subsequently, the SE scores may not
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(a)

(b)

Fig. 7: Comparison of true and predicted BIS by the proposed
method. (a) One of the best prediction with MAE 2.88, age: 48
year-old. (b) Worst prediction with MAE 6.4, age: 63 year-old.

express the exact class.

VI. CONCLUSION

Real-time monitoring of DOA by automatic analysis of EEG
is very useful in assisting anesthesiologists with there decision
and judgment. EEG monitoring and online DOA assessment
during surgery have great potential for improving neurologic
outcomes. We propose a deep learning architecture based on
inception building blocks, Bi-LSTM, and an attention layer,
to accurately measure the DOA automatically. Our dataset
contains a wide range of patients with various characteristics
and different types of anesthesia. Statistical analysis shows
that in terms of both regression and classification errors our
model outperforms the competitive methods particularly, for
large EEG datsets.

In future studies, informative features like those from EMG
can be added to our proposed model to further improve the
performance in terms of both error types. Moreover, it would
be useful to evaluate the effect of different attention networks
with encoder-decoder mechanism.

Fig. 8: F1, PR and SP of the mentioned models which are
trained and tested on this study dataset.

Fig. 9: Training and validation losses during the learning
process.
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