1	Improved molecular	characterization (of the Klebsiella o	<i>xvtoca</i> complex	reveals the i	prevalence of
1	mproved molecular	character ization	of the medsiend o	<i>xyioca</i> complex	i cycais the	JIC VAICHCE OI

- 2 the kleboxymycin biosynthetic gene cluster
- 3
- 4 Preetha Shibu¹#[†], Frazer McCuaig²#, Anne L. McCartney³, Magdalena Kujawska⁴, Lindsay J. Hall^{4,5},
- 5 Lesley Hoyles^{2,6}*
- 6
- ⁷ ¹Life Sciences, University of Westminster, United Kingdom
- 8 ²Department of Biosciences, Nottingham Trent University, United Kingdom
- ³Department of Food and Nutritional Sciences, University of Reading, United Kingdom
- ⁴Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, United
- 11 Kingdom
- ⁵Chair of Intestinal Microbiome, ZIEL Institute for Food & Health, Technical University of
- 13 Munich, Freising, Germany
- ⁶Department of Surgery and Cancer, Imperial College London, United Kingdom
- 15
- 16 #These authors made an equal contribution to the work; shared authorship.
- 17 *Corresponding author: Lesley Hoyles, lesley.hoyles@ntu.ac.uk
- 18 *†***Present address:** Berkshire and Surrey Pathology Services, Frimley Health NHS Trust, Wexham
- 19 Park Hospital, Slough, United Kingdom.
- 20 Running title: Distribution of the kleboxymycin BGC in Klebsiella
- 21 Abbreviations: AAHC, antibiotic-associated haemorrhagic colitis; AMR, antimicrobial resistance;
- 22 BGC, biosynthetic gene cluster; MAG, metagenome-assembled genome; MLST, multi-locus
- 23 sequencing typing; MSA, multiple-sequence alignment; NEC, necrotizing enterocolitis; PBD,
- 24 pyrrolobenzodiazepine; rMLST, ribosomal MLST; TM, tilimycin; TV, tillivaline; VFDB, Virulence
- 25 Factors of Pathogenic Bacteria Database.
- 26 Keywords: tilimycin, tillivaline, *Klebsiella michiganensis*, antibiotic-associated haemorrhagic colitis,
- 27 necrotizing enterocolitis

- 28 Data statement: Supplementary data and material associated with this article are available from
- 29 figshare.
- 30 **Data summary:** Draft genome sequences for PS_Koxy1, PS_Koxy2 and PS_Koxy4 have been
- 31 deposited with links to BioProject accession number <u>PRJNA562720</u> and under accession numbers
- 32 VTQC0000000, VTQB0000000 and VTQA0000000, respectively.
- 33
- 34
- 35 Conflict of interest statement
- 36 The authors declare that there are no conflicts of interest.
- 37
- 38

39 IMPACT STATEMENT

40 Members of the *Klebsiella oxytoca* complex are difficult to speciate using phenotypic and 41 chemotaxonomic methods. Consequently, many genomes deposited in public databases are

- 42 misclassified as *K. oxytoca*. Here we demonstrate that the current multi-locus sequence typing
- 43 (MLST) system for the complex can be used to accurately speciate many strains, which will be of use
- 44 to clinical laboratories in resource-limited settings which rely on the MLST scheme for typing and
- 45 epidemiological tracking of isolates. In addition, extended analyses of the genomes of *Klebsiella* spp.
- 46 have revealed the kleboxymycin biosynthetic gene cluster (BGC) is restricted to species of the
- 47 Klebsiella oxytoca complex (K. oxytoca, K. michiganensis, K. pasteurii and K. grimontii). Species-
- 48 and/or gene-specific differences in the cluster's sequences may be relevant to virulence of *K. oxytoca*
- 49 and related species. The finding of the kleboxymycin BGC in the preterm infant gut microbiota may
- 50 have implications for disease presentation in a subset of neonates.

51 ABSTRACT

52	As part of ongoing studies with clinically relevant Klebsiella spp., we characterized the
53	genomes of three clinical GES-5-positive ST138 strains originally identified as Klebsiella oxytoca.
54	bla_{OXY} gene, average nucleotide identity and phylogenetic analyses showed the strains to be
55	Klebsiella michiganensis. Affiliation of the strains to ST138 led us to demonstrate that the current
56	multi-locus sequence typing scheme for K. oxytoca can be used to speciate members of this
57	genetically diverse complex of bacteria. The strains encoded the kleboxymycin biosynthetic gene
58	cluster (BGC), previously only found in K. oxytoca strains and one strain of Klebsiella grimontii. The
59	finding of this BGC, associated with antibiotic-associated haemorrhagic colitis, in K. michiganensis
60	led us to carry out a wide-ranging study to determine the prevalence of this BGC in Klebsiella spp. Of
61	7,170 publicly available <i>Klebsiella</i> genome sequences screened, 88 encoded the kleboxymycin BGC.
62	All BGC-positive strains belonged to the K. oxytoca complex, with strains of four (K. oxytoca, K.
63	pasteurii, K. grimontii, K. michiganensis) of the six species of the complex found to encode the
64	complete BGC. In addition to being found in K. grimontii strains isolated from preterm infants, the
65	BGC was found in K. oxytoca and K. michiganensis metagenome-assembled genomes recovered from
66	neonates. Detection of the kleboxymycin BGC across the K. oxytoca complex may be of clinical
67	relevance and this cluster should be included in databases characterizing virulence factors, in addition
68	to those characterizing BGCs.

69 INTRODUCTION

70	Members of the <i>Klebsiella oxytoca</i> complex encode a chromosomal β -lactamase gene
71	(bla_{OXY}) (1). Differences in the sequence of this gene allowed the establishment of phylogroups (Ko),
72	which correspond to species: K. michiganensis (Ko1, with Ko5 representing a sub-lineage), K.
73	oxytoca (Ko2), K. spallanzanii (Ko3), K. pasteurii (Ko4), K. grimontii (Ko6) and K. huaxiensis
74	(Ko8). Ko7 has been described on the basis of a single isolate (1). Individual gene (<i>rpoB</i> , gyrA, rrs)
75	sequences can be used to differentiate species of the complex (2), as can genome-based average
76	nucleotide identity (ANI) and phylogenomic analyses (1,3). All members of the K. oxytoca complex
77	can be differentiated by MALDI-TOF (1), but reference databases currently in routine clinical use
78	lack reference spectra of the different species to allow identification beyond K. oxytoca.
79	Recent work has demonstrated genomic characterization of K. oxytoca strains is inadequate,
80	with large numbers of genomes deposited in public databases erroneously assigned to K. oxytoca
81	instead of K. michiganensis or K. grimontii (3-6). Consequently, K. michiganensis and K. grimontii
82	are clinically relevant but under-reported in the literature (3,7). Given that the bla_{OXY} gene has
83	diversified in parallel to housekeeping genes in the K. oxytoca complex, it is likely that the K. oxytoca
84	multi-locus sequence typing (MLST) scheme (8) can be used to speciate all members of this
85	genetically diverse group of bacteria.
86	Little is known about the antibiotic-resistance and virulence genes encoded by K. oxytoca and
87	related species. In the course of ongoing Klebsiella-phage work, with three GES-5-positive ST138
88	strains originally described as K. oxytoca (9,10), we sought to determine whether widely recognized
89	virulence factors such as enterobactin, yersiniabactin and salmochelin are encoded in the strains'
90	genomes, and the kleboxymycin biosynthetic gene cluster (BGC), as this was until recently a little-
91	studied BGC implicated in non-Clostridioides difficile antibiotic-associated haemorrhagic colitis
92	(AAHC) (11–14). AAHC is caused by the overgrowth of cytotoxin-producing K. oxytoca secondary
93	to use of antibiotics such as penicillin or amoxicillin, resulting in the presence of diffuse mucosal
94	oedema and haemorrhagic erosions (15,16). This type of colitis is distinct from the more common
95	form of antibiotic-associated diarrhoea caused by toxin-producing Clostridiodes difficile, which
96	usually gives rise to watery diarrhoea resulting in mild to moderate disease.

97	Gene-based and genomic analyses of our ST138 isolates showed they were K. michiganensis,
98	not K. oxytoca, and that along with common virulence genes they encoded the kleboxymycin BGC.
99	Our findings led us to 1) determine whether the K. oxytoca MLST scheme could be used to speciate
100	members of the K. oxytoca complex, and 2) investigate the distribution of the kleboxymycin BGC in a
101	range of <i>Klebsiella</i> and related species.
102	
103	METHODS
104	Clinical isolates. Strains PS_Koxy1 (isolated December 2014; cardiothoracic/intensive care unit),
105	PS_Koxy2 (isolated August 2015; haematology unit) and PS_Koxy4 (isolated September 2015;
106	haematology unit) had been recovered from a throat swab, urine and rectal swab, respectively,
107	obtained from three different adults. The strains were from the study of Eades et al. (9), described in
108	further detail by Ellington et al. (10) (PS_Koxy1, patient X; PS_Koxy2, patient A; PS_Koxy4, patient
109	B; Frances Davies, personal communication). The study of anonymized isolates beyond the diagnostic
110	requirement was approved by an NHS research ethics committee (number 06/Q0406/20). Full details
111	of Methods associated with the phenotypic and genotypic characterization of the clinical isolates can
112	be found in Supplementary Material.
113	
114	ANI analysis of genome sequences. All annotated non-redundant Klebsiella genome assemblies
115	available in the NCBI Genome database on 2 September 2019 ($n = 7,170$; Supplementary Table 1)
116	were downloaded (17). ANI of genomes with their closest relatives and type strains of species was
117	assessed using FastANI (18), which uses Mashmap as its MinHash-based alignment-free
118	sequence mapping engine to provide ANI values for both complete and draft-quality
119	genomes that are related by 80-100 % ANI.
120	
121	MLST analyses. Allele sequences ($\underline{n=442}$ representing seven housekeeping genes – $gapA$, $infB$, mdh ,
122	pgi, phoE, rpoB, tonB – contributing to 354 different MLST sequence types; correct as of 19 March
123	2021) for the K. oxytoca MLST scheme (8) were used to determine the MLST profiles of all K.

124	oxytoca complex genomes included in this study (Supplementary Table 1). The allele sequences
125	were used to create BLASTN databases against which the assemblies of all genomes included in this
126	study were searched. Sequences with exact hits to one allele of each housekeeping gene were
127	retained, allowing us to identify the sequence types of the genomes included in this study
128	(Supplementary Table 2). For those genomes that returned hits to alleles across all seven
129	housekeeping genes, a phylogenetic tree (neighbour joining, Jukes Cantor) was generated in Geneious
130	Prime v2019.2.1 using the aligned (CLUSTAL W) concatenated (gapA-infB-mdh-pgi-phoE-rpoB-
131	tonB) nucleotide sequences of their housekeeping genes and those of each sequence type used in the
132	K. oxytoca MLST scheme (8). Support for clustering of nodes in the tree was determined by bootstrap
133	analysis (1,000 replications).
134	
135	Characterization of the kleboxymycin BGC in genomes. The annotated reference sequence of the
136	kleboxymycin BGC was downloaded from GenBank (accession number MF401554 (11)) and used as
137	a BLASTP database for searches with the protein sequences encoded within the genomes of
138	PS_Koxy1, PS_Koxy2 and PS_Koxy4. Initially, Geneious Prime v2019.2.1 was used to identify
139	regions of the three draft genomes encoding the complete BGC, and to align them to MF401554.
140	The protein sequences of the annotated assemblies were searched for the kleboxymycin BGC
141	using the reference sequence and BLASTP v2.9.0+, and the resulting hits were filtered based on >70
142	% identity and >70 % coverage to identify isolates potentially carrying genes from the BGC. <i>K</i> .
143	grimontii (n=3) and K. michiganensis (n=2) and K. oxytoca-related metagenome-assembled genomes
144	(MAGs) (n=25) from Chen et al. (3) were also subject to BLASTP searches. Genomes that encoded
145	the full BGC (i.e. all 12 BGC genes on a contiguous stretch of DNA) were identified from the BLAST
146	results. The protein sequences encoded in the BGC were extracted from the annotated assemblies
147	using samtools v1.9 faidx (19) and concatenated into a single sequence (the sequence data are
148	available as supplementary material from figshare). These concatenated sequences were used to
149	produce a multiple-sequence alignment (MSA) in Clustal Omega v1.2.4, along with the BGC
150	sequences of the three K. michiganensis clinical isolates, the reference sequence (11), a recently
151	described K. grimontii sequence (20) and a homologous sequence found in Pectobacterium

152	brasiliense BZA12 (to be used as an outgroup in later phylogenetic analyses; identified as encoding
153	the complete kleboxymycin BGC through NCBI BLASTP). Phylogenetic analyses were carried out
154	on the MSA using the R package Phangorn v2.5.5 (21), producing a maximum-likelihood tree, which
155	was visualised and rooted (on <i>P. brasiliense</i> BZA12) using the Interactive Tree of Life (iTOL v5.5)
156	(22). To examine variation at the individual protein level, further within-species MSAs were produced
157	for each of the 12 protein sequences in the BGC. Each of these alignments was used as the basis for a
158	consensus sequence, produced using EMBOSS Cons v6.6.0.0, representing each of the four species
159	carrying the BGC. An MSA and per cent identity matrix were then generated for each protein
160	between the consensus sequences of K. oxytoca, K. grimontii, K. michiganensis and K. pasteurii,
161	along with the reference sequence (11).
162	The species affiliations of the genomes encoding the full kleboxymycin BGC were
163	determined using FastANI v1.2 (18) against genomes of type strains of the K. oxytoca and K.
164	<i>pneumoniae</i> complexes (1,23) and <i>K. aerogenes</i> ATCC 13048 ^{T} (assembly accession number
165	GCA_003417445), with PhyloPhlAn 0.99 used to conduct a phylogenetic analysis to confirm species
166	affiliations. PhyloPhlAn identifies hundreds of conserved (core) proteins from a given genomic
167	dataset and uses them to build a complete high-resolution phylogeny.
168	
169	RESULTS
170	Characterization of the clinical isolates
171	Although initial phenotypic tests (Supplementary Material) and genomic analyses (9,10)
172	identified PS_Koxy1, PS_Koxy2 and PS_Koxy4 as K. oxytoca, analyses of the isolates' proteomes
173	showed them to be <i>K. michiganensis</i> ST138 (phylogroup Ko1, <i>bla</i> _{OXY1-8}) (Supplementary Figure 1).
174	Full details of phenotypic characterization and genome sequencing of the clinical isolates can be
175	found in Supplementary Material. PS_Koxy1, PS_Koxy2 and PS_Koxy4 all shared 98.81 %, 98.71
176	% and 98.71 % ANI, respectively, with the type strain of <i>K. michiganensis</i> (W14 ^T , GCA_901556995),
177	and 99.98 to 100.00 $\%$ ANI with each other. Based on current recommendations, ANI of 95–96 $\%$
178	and above with the genome of the type strain is indicative of species affiliation (24). Inclusion of the

179 genomes with representatives of all six species of the *K. oxytoca* complex in a phylogenetic analysis

180 confirmed the affiliation of PS_Koxy1, PS_Koxy2 and PS_Koxy4 with K. michiganensis

- 181 (Supplementary Figure 2).
- 182
- 183 Assigning MLST sequence types to species
- 184 While annotations for genomes are improving, we have previously noted and continue to
- 185 notice issues with identities attributed to *K. oxytoca* genomes in public repositories (3). Consequently,

186 the identity of all genomes included in this work was first confirmed by ANI analysis

187 (Supplementary Table 1), with *bla*_{OXY} gene and phylogenetic analyses supporting our findings

188 (Supplementary Material). Of the 178 K. oxytoca complex genomes identified, many had been

189 misassigned in GenBank: seven genomes were listed as *K. grimontii*, 106 as *K. oxytoca*, 51 as *K.*

190 michiganensis, 13 as Klebsiella sp. and one as K. pneumoniae. Our analyses of the 178 genomes

191 showed the dataset actually represented K. michiganensis (n=76), K. oxytoca (n=66), K. grimontii

192 (n=24), K. pasteurii (n=6), K. huaxiensis (n=5) and K. spallanzanii (n=1).

193 The *K. oxytoca* MLST scheme uses sequence polymorphisms among seven housekeeping

194 genes – *gapA*, *infB*, *mdh*, *pgi*, *phoE*, *rpoB*, *tonB* – to generate sequence types for isolates. Currently,

195 there are 442 allele sequences that contribute to 354 unique MLST sequence types. We first identified

196 nucleotide sequences within the genomes with exact matches to nucleotide sequences within the allele

197 reference dataset. One-hundred-and-twenty-nine genomes returned hits to known MLST profiles, and

198 10 isolates returned MLST profiles with no assigned sequence type (Supplementary Table 2). Our

199 clinical isolates returned the expected ST138 result.

200 Of the 66 K. oxytoca genomes, 59 could be assigned to known sequence types (in order of

201 abundance: ST2, ST176, ST199, ST36, ST19, ST30, ST53, ST101, ST18, ST31, ST34, ST48, ST58,

202 ST59, ST141, ST145, ST153, ST181, ST221, ST222, ST257, ST258, ST287, ST323) and one

203 (GCA_003937225) represented a novel sequence type. Of the 24 K. grimontii genomes, 13 could be

204 assigned to known sequence types (ST172, ST216, ST104, ST186, ST236, ST263, ST316, ST319,

205 ST350), with four (GCA_002856195, GCA_900451335, GCA_008120915, GCA_004343645)

- 206 representing unique novel sequence types. Of the six K. pasteurii genomes, three could be assigned to
- known sequence types (ST47, ST311, ST351) and one (GCA_901563825) represented a novel

208	sequence type. Of the 79 K. michiganensis genomes (including our three clinical isolates), 57 could be
209	assigned to known sequence types (ST85, ST27, ST202, ST143, ST29, ST50, ST84, ST138, ST11,
210	ST88, ST317, ST28, ST40, ST52, ST82, ST92, ST98, ST108, ST127, ST144, ST146, ST157, ST170,
211	ST180, ST226, ST294, ST315), with four genomes (GCA_000783895, GCA_000735215,
212	GCA_007097185, GCA_007097115) representing three novel sequence types. None of the K.
213	huaxiensis or K. spallanzanii genomes returned hits to known alleles (Supplementary Table 2), but
214	the relevant individual housekeeping gene sequences are provided as Supplementary Files for use by
215	other researchers.
216	For those genomes that encoded known or novel sequence types, we concatenated their
217	housekeeping-gene sequences and used them to create a MSA with the concatenated sequences of
218	each of the 354 recognized MLST sequence types. This MSA was used to create a phylogenetic tree,
219	allowing us to visualize the relationships among species and sequence types (Figure 1).
220	Of the 354 known MLST sequence types, 342 (96.6 %) were associated with specific
221	members of the K. oxytoca complex (Supplementary Table 2): 115 with K. oxytoca, 130 with K.
222	michiganensis, 73 with K. grimontii and 24 with K. pasteurii. Eleven were associated with
223	unspecified members of the K. oxytoca complex. ST105 was associated with Raoultella
224	ornithinolytica, sharing 99.73 % sequence similarity type strain's MLST profile. K. oxytoca-specific
225	sequence types shared 98.64–100 % sequence similarity, K. michiganensis-specific sequence types
226	shared 96.62–100.00 % sequence similarity, K. grimontii-specific sequence types shared 98.20–
227	100.00 % sequence similarity, K. pasteurii-specific sequence types shared 99.00-100.00 % sequence
228	similarity and K. huaxiensis-specific sequence types shared 97.09–99.7 % sequence similarity. A
229	matrix of similarity values for the 504 sequences included in the analysis is available in
230	Supplementary Material, along with the MSA alignment used to generate the phylogenetic tree
231	shown in Figure 1 .
232	
233	Detection of the complete kleboxymycin BGC in clinical isolates

It has long been known that *K. oxytoca* gut colonization is linked with AAHC (16). Schneditz *et al.* (12) showed tillivaline (TV), a pyrrolobenzodiazepine (PBD) derivative produced by *K. oxytoca*,

236	is one of the enterotoxins responsible for causing AAHC. This toxic product is encoded by the
237	heterologous expression of the kleboxymycin [also known as tilimycin (TM) (14)] BGC comprising
238	12 genes (11). Protein sequences of the reference sequence (11) were used to create a BLASTP
239	database against which the proteins encoded in the genomes of PS_Koxy1, PS_Koxy2 and PS_Koxy4
240	were compared. The genomes of PS_Koxy1, PS_Koxy2 and PS_Koxy4 encoded a complete
241	kleboxymycin BGC (Figure 2). All genes in each of the genomes shared >99 % identity and >99 %
242	query coverage with the genes of the reference sequence (12): mfsX, 99.76 % identity; uvrX, 99.87 %;
243	hmoX, 99.80 %; adsX, 99.85 %; icmX, 99.52 %; dhbX, 99.62 %; aroX, 99.74 %; npsA, 99.80 %; thdA,
244	98.68 %; npsB, 99.93 %; npsC, 98.47 %; marR, 99.39.
245	Our strains were K. michiganensis ST138, so we downloaded and assembled (from
246	BioProject PRJEB30858) available raw sequence data from 19 K. oxytoca ST138 strains described
247	recently (10) and determined whether they were in fact K. michiganensis and encoded the
248	kleboxymycin BGC. All strains were confirmed to be K. michiganensis on the basis of ANI analysis,
249	and encoded the complete kleboxymycin BGC (Supplementary Figure 4).
250	Schneditz et al. (12) reported npsA/npsB were functionally conserved in six sequenced strains
251	of K. oxytoca (Table 1), based on a BLASTP analysis. Full details of the analysis are unavailable,
252	with only a brief mention of presence being determined based on BLASTP sequence identities >90 %
253	with no indication of sequence coverage. All the genomes included in the study of Schneditz et al.
254	(12) were compared with those of the type strain of K. oxytoca and related species to confirm their
255	species affiliations (Table 1). While some strains were <i>K. oxytoca</i> , others belonged to <i>K</i> .
256	michiganensis, K. pasteurii, K. grimontii and R. ornithinolytica. Using thresholds of 70 % identity and
257	70 % query coverage in our BLASTP analyses to reduce the potential for detecting false positives, we
258	reanalysed the genomes included in the study of Schneditz et al. (12). Our results agreed with those of
259	Schneditz et al. (12) for all genomes, except we detected npsA/npsB (and all other genes encoded in
260	the kleboxymycin BGC) in K. grimontii SA2. K. oxytoca 10–5243, K. pasteurii 10–5250, K. oxytoca
261	11492-1, K. oxytoca 10–5248 and K. grimontii M5a1 also encoded the whole kleboxymycin BGC. All
262	genes in all matches shared greater than 90 % identity across greater than 99 % query coverage. K.
263	michiganensis 10-5242, E718 and KCTC 1686 did not encode homologues associated with the

264	kleboxymycin BGC.	K. oxytoca	10-5245 encoded	almost-complete	homologues of four gene	es
-----	-------------------	------------	-----------------	-----------------	-------------------------	----

265 [EHS96696.1 (marA) 98.79 % identity, 99.39 % coverage; EHS96697.1 (npsC) 95.38 % identity,

- 266 99.23 % coverage; (EHS96698.1 (*mfsX*) 96.68 % identity, 99.87 % coverage; EHS96699.1 (*uvrX*)
- 267 94.88 % identity, 99.76 % coverage] in contig JH603137.1.
- 268

269 Detection of the kleboxymycin BGC in the faecal microbiota of preterm infants

- 270 Our previous work had highlighted the preterm infant gut microbiota harbours a range of
- 271 species belonging to the K. oxytoca complex (3). BLASTP searches of the two K. michiganensis

272 (P049A W, GCA_008120305; P095L Y, GCA_008120085) and three K. grimontii (P038I,

273 GCA_008120465; P043G P, GCA_008120425; P079F P, GCA_008120915) strains we previously

- 274 characterized showed all three *K. grimontii* strains encoded the kleboxymycin BGC (Supplementary
- Figure 5). All BGC genes in their genomes shared >98 % identity and >99 % query coverage with the
- 276 genes of the reference sequence (11): *mfsX*, 100 % identity; *uvrX*, 99.60–99.73 %; *hmoX*, 99.80 %;
- 277 adsX, 99.69 %; icmX, 100 %; dhbX, 100 %; aroX, 99.94–99.74 %; npsA, 99.21–99.41 %; thdA, 98.68
- 278 %; npsB, 99.31–99.38 %; npsC, 99.23–100 %; marR, 100 %. The BGC was also detected in 8/25 of
- the preterm-associated K. oxytoca complex MAGs (3 K. oxytoca, 5 K. michiganensis) we described
- previously (3). An MSA of the preterm-associated genomes' BGC against the reference sequence (11)

281 suggested species-specific clustering of the sequences (Supplementary Figure 5).

282

283 **Prevalence of the kleboxymycin BGC in** *Klebsiella* **spp.**

284 Given the work detailed above had detected the kleboxymycin BGC in several different but

285 closely related *Klebsiella* species and in a range of clinical and gut-associated isolates, and Hubbard *et*

al. (20) recently detected the BGC in a strain of K. grimontii, we chose to increase the scope of our

- analysis to include 7,170 publicly available assembled *Klebsiella* genomes (including our three
- clinical strains, and five isolates from preterm infants (3)) (Supplementary Table 1).

As mentioned above, we have noted issues with identities attributed to *Klebsiella* genomes in

- 290 public repositories (3), so the identity of all non-*K. oxytoca* complex genomes included in this work
- was first confirmed by ANI analysis (Supplementary Table 1). The majority (n=6,245) of the

292	additional	genomes were <i>k</i>	. pneumoniae	. followed by	ι K.	variicola subsi	n variicola	(n=241), h	K.
	additional	genomes nere r		, 10110	,				

- 293 quasipneumoniae subsp. similipneumoniae (n=184), K. aerogenes (n=168), K. quasipneumoniae
- subsp. quasipneumoniae (n=120), K. variicola subsp. tropica (n=19), 'K. quasivariicola' (n=11) and
- *K. africana* (*n*=1). Out of 7,170 genomes, 110 (1.5 %) had one or more matches with the 12 genes
- encoded within the kleboxymycin BGC reference sequence, with all except two genomes (both *K*.
- 297 *pneumoniae*) belonging to species of the *K. oxytoca* complex (**Supplementary Table 3**). Ninety-six
- 298 genomes all belonging to the K. oxytoca complex encoded at least 12 genes belonging to the BGC
- 299 (Supplementary Table 3), and were examined further.
- 300 One genome (GCA_002856195) encoding 12 BGC genes was found to encode two stretches
- 301 of the same protein with the other cluster-associated genes non-contiguous, while one
- 302 (GCA_004005605) encoded 13 BGC genes (one gene duplicated) in a non-contiguous arrangement.
- 303 Fifty-five out of 66 (83.3 %) K. oxytoca genomes encoded the entire kleboxymycin BGC, as did
- 304 19/24 (79.2 %) K. grimontii, 9/79 (11.4 %) K. michiganensis and 5/6 (83.3 %) K. pasteurii genomes
- 305 (Figure 3a). Phylogenetic analysis (Figure 3b) confirmed findings from ANI analyses
- 306 (Supplementary Table 1) that showed all genomes belonged to species of the *K. oxytoca* complex.
- 307 The 88 genomes confirmed to encode the complete kleboxymycin BGC included the type strain of *K*.
- 308 grimontii. The BGC cluster sequences grouped according to species, and the reference sequence (11)
- 309 clustered with K. grimontii sequences and was closely related to the type strain of that species (Figure
- 310 **3**c).
- 311 Species-specific consensus sequences were generated for all genes within the kleboxymycin
- BGC and are available as supplementary material from <u>figshare</u>. Similarity values for each gene
- 313 within the BGC consensus sequences across the four species are available in **Supplementary Table**

314

315

316 **DISCUSSION**

4.

317 Genotypic characteristics of the three clinical *K. michiganensis* strains

The three clinical strains characterized herein had previously been included in a study of outbreak strains encoding GES-5 and CTX-M-15 (9), the first report of GES-5-positive clinical

320	isolates of K. oxytoca ST138 in the UK. Subsequently, it has been shown that the GES-5 gene in these
321	strains is encoded on an IncQ group plasmid (10). The whole-genome sequence data reported on
322	previously (9) were not available to us. API 20E (this study; Supplementary Material), MALDI-
323	TOF and limited sequence analysis (9) had shown the strains to be K. oxytoca. Our previous work
324	with isolates recovered from preterm infants had shown that API 20E testing on its own was
325	insufficient to accurately identify K. oxytoca strains (3). The strains described by Eades et al. (9) were
326	characterized before the availability of MALDI-TOF databases capable of splitting species of the K.
327	oxytoca complex (MALDI-TOF was only able to identify as K. oxytoca but did not have sufficient
328	resolution to identify individual species within the complex) (1). As we are using PS_Koxy1,
329	PS_Koxy2, PS_Koxy4 in ongoing phage work, we generated draft genome sequences for the strains,
330	to accurately identify them and facilitate detailed host-phage studies in the future.
331	ANI and phylogenetic analyses confirmed all three strains belonged to the species K.
332	michiganensis, not K. oxytoca (Supplementary Material). In addition to the AMR genes GES-5 (β -
333	lactamase with carbapenemase activity) and CTX-M-15 (an ESBL responsible for resistance to
334	cephalosporins) reported previously (9), the strains encoded SHV-66, an ESBL not previously
335	reported in K. oxytoca and related species (Supplementary Material). SHV-66 has previously only
336	been reported in a minority of β -lactamase-producing <i>K. pneumoniae</i> in Guangzhou, China (25). In
337	this study, SHV-66 (99.65 % identity, bit-score 580 – strict CARD match) was also found in K.
338	michiganensis strains E718 (26), GY84G39 (unpublished), K1439 (unpublished) and
339	2880STDY5682598 (7) (accession numbers GCA_000276705, GCA_001038305, GCA_002265195
340	and GCA_900083915, respectively), included in the phylogenetic analysis shown in Supplementary
341	Figure 1. Moradigaravand <i>et al.</i> (7) noted in their study that 2880STDY5682598 encoded a bla_{SHV}
342	gene, but did not document its type nor indicate its novelty.
343	The three strains had identical virulence factor profiles (Supplementary Figure 3b),
344	encoding the plasminogen activating omptin Pla, the Mg ²⁺ transport proteins MgtBC, Hsp60,
345	autoinducer-2 (LuxS), type I fimbriae, type 3 fimbriae, type 6 secretion system I, Escherichia coli

346 common pilus and enterobactin. They also encoded numerous proteins associated with capsule,

347 regulation of capsule synthesis (RcsAB) and LPS, with several of the latter sharing identit	y with
---	--------

- 348 Haemophilus endotoxins (RfaD, GalU, LpxC, GmhA/LpcA, KdsA). All six proteins required for
- 349 allantoin utilization were encoded in the strains' genomes.
- 350 No capsule or O antigen types could be assigned to the strains using Kaptive, but all three
- 351 strains were best matched with KL68 [PS_Koxy1, 17/18 genes matched (*cpsACP* missing);
- 352 PS_Koxy2 and PS_Koxy4, 16/18 genes matched (cpsACP and KL68_18 missing)] and O1v1 [4/7
- 353 genes (*wzm*, *wzt*, *glf*, *wbbO*) matched in all strains].
- 354
- 355 MLST sequence types can be used to speciate members of the K. oxytoca complex

356 The *bla*_{OXY} gene diversified in parallel to housekeeping genes in the *K. oxytoca* complex, and

it is already known that rpoB – one of the seven genes included in the K. oxytoca MLST scheme (8) –

358 can be used to speciate members of the complex (2). Given that our three clinical strains were ST138

359 and belonged to K. michiganensis, we determined whether specific sequence types within the MLST

360 scheme could be assigned to species. We found that all species of the K. oxytoca complex are

361 associated with specific sequence types. In addition, we identified 10 novel MLST sequence types

- 362 that can be used to identify K. grimontii, K. michiganensis, K. oxytoca and K. grimontii genomes
- 363 (Supplementary Table 2).
- 364 Herzog *et al.* (27), when originally describing the *K. oxytoca* MLST scheme to characterize
- 365 clinical isolates, showed their concatenated sequence data for 74 clinical K. oxytoca isolates were
- 366 associated with three clusters (A, B1 and B2). Comparison of their sequence types with our
- 367 annotations shows that cluster A represents K. oxytoca, cluster B1 represents K. michiganensis and
- 368 cluster B2 represents K. grimontii and K. pasteurii.

369 The ability to use the *K. oxytoca* MLST scheme to speciate clinical isolates will be of

- 370 particular interest to clinical microbiologists in resource-limited settings who rely on the MLST
- 371 scheme for typing and epidemiological tracking of isolates in the absence of whole-genome sequence
- data. It should also be noted that ribosomal MLST (28) (rMLST) available via the Species ID portal
- 373 of the PubMLST website allows those working with genome sequence data derived from K. oxytoca

374	complex isolates to	speciate isolates.	This resource uses 53	genes encoding the	bacterial ribosome
-----	---------------------	--------------------	-----------------------	--------------------	--------------------

375 protein subunits (*rps* genes) to rapidly characterize genomic data to the species level.

376 The identification of ST105 as belonging to *Raoultella ornithinolytica* indicates this sequence

377 type should be withdrawn from the *K. oxytoca* MLST scheme.

378

379 Distribution of the kleboxymycin BGC in *Klebsiella* spp.

380 As relatively little is known about the virulence factors of *K. oxytoca* and related species, and

381 the VFDB is limited with respect to the number of *Klebsiella* spp. on which it reports information, we

382 wanted to see whether our strains encoded the kleboxymycin BGC responsible for generating

383 microbiome-associated metabolites known to directly contribute to AAHC (11,12). The cytotoxic

384 nature of a heat-stable, non-proteinaceous component of spent media from K. oxytoca strains isolated

385 from patients with AAHC was first reported in 1990 (29). With respect to K. oxytoca being a

386 causative agent of AAHC, the bacterium has fulfilled Koch's postulates (15). While a commensal of

387 the gut microbiota of some individuals, it has been suggested that cytotoxic K. oxytoca is a transient

388 member of the gut microbiota (29).

389 TV is a PBD produced by *K. oxytoca* and is a causative agent of AAHC (12). The TV

390 biosynthesis genes are encoded on a non-ribosomal peptide synthase operon and include *npsA*, *thdA*

391 and *npsB*. The genes *aroX* and *aroB* are also essential for TV production (13). *npsA*, *thdA*, *npsB* and

392 *aroX* are located on a pathogenicity island (PAI). In clinical isolates, the PAI was present in 100 % of

toxin-producing isolates, but only 13 % of non-toxin-producing isolates (12). AAHC is characterized

394 by disruption of epithelial barrier function resulting from apoptosis of epithelial cells lining the colon.

395 TV exerts its apoptotic effect by binding to tubulin and stabilising microtubules, leading to mitotic

396 arrest (14).

A second PBD generated by the same pathway as TV has been identified (13). TM [also called kleboxymycin (11)] has stronger cytotoxic properties than TV, having a PBD motif with a hydroxyl group at the C11 position, while TV has an indole ring. When deprived of indole by the inactivation of the indole-producing tryptophanase gene *tnaA*, *K. oxytoca* produces TM but not TV. TV production is restored with the addition of indole, as indole spontaneously reacts with TM to

402 produce TV. Limited interconversion between TM and TV may also occur spontaneously in vivo (11). 403 TM is a genotoxin and triggers apoptosis by interacting with DNA, which leads to the activation of 404 damage repair mechanisms, causing DNA strand breakage (14). DNA interaction is prevented in the 405 case of TV by its indole ring, and both the molecular targets and apoptotic mechanisms of TM and 406 TV are distinct. The kleboxymycin BGC is not native to K. oxytoca, nor the wider 407 Enterobacteriaceae. Instead, the BGC is thought to have been acquired via horizontal gene transfer 408 from Xenorhabdus spp., which in turn acquired the BGC from bacteria of the phylum Actinobacteria 409 (11).410 In the current study, we found the kleboxymycin BGC in our K. michiganensis isolates and 411 that it was common among four species of the K. oxytoca complex, with K. oxytoca and K. grimontii 412 strains making the largest contribution and the type strains of K. grimontii and K. pasteurii encoding 413 the BGC (Figure 3). Prior to this study, sequences from two K. oxytoca strains (MH43-1, GenBank 414 accession number MF401554 (11); AHC-6, GenBank accession number HG425356 (12)) were 415 available for the kleboxymycin BGC. Draft genome sequences do not appear to be publicly available 416 for either of these strains. However, our analysis of the kleboxymycin BGC across the K. oxytoca 417 complex has shown that MH43-1 is a strain of K. grimontii (Figure 3c). Hubbard et al. (20) recently 418 reported on a strain of K. grimontii that encoded the BGC, based on antiSMASH analysis. 419 Comparison of the AHC-6 sequence with that of MH43-1 and other sequences included in this study 420 shows AHC-6 is a strain of K. oxytoca (99.0–99.55 % nucleotide similarity with the BGCs encoded 421 by the three K. oxytoca MAG sequences included in **Supplementary Figure 5**). It is likely that as 422 more genomes of K. oxytoca complex species are deposited in public databases, the range of species 423 encoding the kleboxymycin BGC will increase. 424 All three of our *K. michiganensis* strains encoded the kleboxymycin BGC (Figures 2 and 3), 425 as did strains of K. grimontii we previously isolated from preterm infants and K. oxytoca and K. 426 *michiganensis* MAGs recovered from publicly available shotgun metagenomic data (**Supplementary** 427 Figure 5). Whether the BGCs encoded in our clinical and infant-associated strains are functional will 428 be the subject of future studies. The discovery of the kleboxymycin BGC in strains and MAGs 429 recovered from preterm infants is of particular concern. Gut colonization is linked with AAHC, with

430	disease caused by the overgrowth of cytotoxin-producing strains secondary to use of antibiotics (16).
431	AAHC presents as diffuse mucosal oedema and haemorrhagic erosions (16), and patients pass bloody
432	diarrhoea (30). The gut microbiota of preterm infants is shaped by the large quantity of antibiotics
433	these infants are given immediately after birth to cover possible early onset infection, with 'blooms'
434	of bacteria preceding onset of infection (3). Blood in the stool is frequently associated with
435	necrotizing enterocolitis (NEC) in preterm infants, which shares similar pathological hallmarks to
436	AAHC – i.e. intestinal necrosis. Notably, NEC is difficult to diagnose in the early stages and is often
437	associated with sudden serious deterioration in infant health, with treatment options limited due to
438	emerging multi-drug-resistant bacteria associated with disease. Previous studies have linked
439	Klebsiella spp. to preterm NEC (supported by corresponding clinical observations), with bacterial
440	overgrowth in the intestine linked to pathological inflammatory cascades, facilitated by a 'leaky'
441	epithelial barrier and LPS-TL4 activation. Recent work has demonstrated K. oxytoca complex isolates
442	of ST173, ST246 and a novel ST (7-32-38-44-69-25-43) recovered from infants with NEC can
443	produce kleboxymycin (TM) and TV (31). Using our MLST annotation scheme (Supplementary
444	Table 2), we determine these sequence types represent K. grimontii, K. grimontii and K. pasteurii,
445	respectively, with rMLST analyses of the whole-genome sequence data of Paveglio et al. (31)
446	confirming our findings (rST 124484, rST 124487 and rST 157090, respectively). Taken together
447	with the results from our study, we suggest specific virulence factors - i.e. kleboxymycin-related
448	metabolites encoded by atypical Klebsiella spp. – may also play a role in NEC, and this warrants
449	further study.
450	Attempts have been made to link specific subtypes of K. oxytoca to AAHC (32). Cytotoxic
451	effects were limited to K. oxytoca, with faecal (and to a lesser extent skin) isolates of K. oxytoca most
452	commonly associated with cytotoxicity (32). No genetic relationship was associated with cytotoxic
453	strains based on pulsed-field gel electrophoresis, and 31/97 strains exhibited evidence of cytotoxin
454	production (i.e. reduced viability of Hep2 cells). Joainig et al. (32) isolated genetically distinct
455	cytotoxin-positive and -negative strains from one AAHC patient, leading them to suggest that, when
456	detected in faeces, K. oxytoca should be considered an opportunistic pathogen able to produce disease

457 upon antibiotic treatment. They also found that, in patients with acute or chronic diarrhoeal diseases,

458	more than half of the isolates recovered were cytotoxin-positive. Given that K. oxytoca-related species
459	are not routinely screened for in such samples, it is possible that kleboxymycin-producing isolates
460	may make a greater contribution to diarrhoeal diseases than currently recognized, especially in
461	patients suffering from non-C. difficile-associated disease. We have shown that there are species-
462	specific differences in the kleboxymycin BGC (Figure 3c). These differences may have implications
463	for virulence of strains and warrant further study. It is hoped that the identification of an increased
464	range of strains (including type strains) encoding the kleboxymycin BGC will facilitate such studies.
465	
466	ACKNOWLEDGEMENTS
467	Consultant microbiologist Dr Frances Davies (Imperial College Healthcare NHS Trust) is
468	thanked for providing access to clinical strains. Imperial Health Charity is thanked for contributing to
469	registration fees for the Professional Doctorate studies of PS. This work used the computing resources
470	of CLIMB (33), the UK MEDical BIOinformatics partnership (UK Med-Bio, supported by Medical
471	Research Council grant number MR/L01632X/1) and the Nottingham Trent University Hamilton
472	High Performance Computing Cluster. The research placement of FM was funded by Nottingham
473	Trent University. LJH is funded by a Wellcome Trust Investigator Award (no. 100/974/C/13/Z); a
474	BBSRC Norwich Research Park Bioscience Doctoral Training grant no. BB/M011216/1 (supervisor
475	LJH, student MK); an Institute Strategic Programme Gut Microbes and Health grant no.
476	BB/R012490/1 and its constituent projects BBS/E/F/000PR10353 and BBS/E/F/000PR10356; and an
477	Institute Strategic Programme Gut Health and Food Safety grant no. BB/J004529/1 to LJH. PS did all
478	phenotypic characterization work. PS did initial bioinformatics analyses (assembly, annotation,
479	CARD, initial BGC work), while FM and LH undertook the large-scale BGC analyses and infant-
480	associated BGC work; LH undertook the MLST annotation work; ALM and MK prepared and pre-
481	processed DNA for sequencing; LJH, ALM and LH supervised the work. We would like to thank
482	Dave Baker and the QIB core sequencing team for WGS library preparation and sequencing. All
483	authors contributed to interpretation and analyses of data, and writing of the manuscript.
484	

REFERENCES

- 486 1. Merla C, Rodrigues C, Passet V, Corbella M, Thorpe HA, Kallonen TVS, et al. Description of
- 487 *Klebsiella spallanzanii* sp. nov. and of *Klebsiella pasteurii* sp. nov. Front Microbiol.
- 488 2019;10:2360.
- 489 2. Passet V, Brisse S. Description of *Klebsiella grimontii* sp. nov. Int J Syst Evol Microbiol. 2018
 490 Jan;68(1):377–81.
- 491 3. Chen Y, Brook TC, Soe CZ, O'Neill I, Alcon-Giner C, Leelastwattanagul O, et al. Preterm
- 492 infants harbour diverse *Klebsiella* populations, including atypical species that encode and
- 493 produce an array of antimicrobial resistance- and virulence-associated factors. Microb Genom.
- 494 2020 May 21;761924.
- 495 4. Zheng B, Xu H, Yu X, Lv T, Jiang X, Cheng H, et al. Identification and genomic
- 496 characterization of a KPC-2-, NDM-1- and NDM-5-producing *Klebsiella michiganensis* isolate.
 497 J Antimicrob Chemother. 2018 01;73(2):536–8.
- 498 5. Pedersen T, Sekyere JO, Govinden U, Moodley K, Sivertsen A, Samuelsen Ø, et al. Spread of
- 499 plasmid-encoded NDM-1 and GES-5 carbapenemases among extensively drug-resistant and
- pandrug-resistant clinical *Enterobacteriaceae* in Durban, South Africa. Antimicrob Agents
 Chemother. 2018;62(5).
- 502 6. Seiffert SN, Wüthrich D, Gerth Y, Egli A, Kohler P, Nolte O. First clinical case of KPC-3-
- 503 producing *Klebsiella michiganensis* in Europe. New Microbes New Infect. 2019
- 504 May;29:100516.
- Moradigaravand D, Martin V, Peacock SJ, Parkhill J. Population structure of multidrug-resistant
 Klebsiella oxytoca within hospitals across the United Kingdom and Ireland identifies sharing of
 virulence and resistance genes with *K. pneumoniae*. Genome Biol Evol. 2017 Mar 1;9(3):574–
- 508 84.
- 509 8. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb
- 510 software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;3:124.
- 511 9. Eades C, Davies F, Donaldson H, Hopkins K, Hill R, Otter J, et al. GES-5 carpabapenemase-
- 512 producing *Klebsiella oxytoca* causing clinical infection in a UK haematopoetic stem cell

- 513 transplantation unit. 26th European Congress of Clinical Microbiology and Infectious Diseases,
- 514 Amsterdam, The Netherlands; 2016.
- 515 10. Ellington MJ, Davies F, Jauneikaite E, Hopkins KL, Turton JF, Adams G, et al. A multi-species
- 516 cluster of GES-5 carbapenemase producing *Enterobacterales* linked by a geographically
- 517 disseminated plasmid. Clin Infect Dis Off Publ Infect Dis Soc Am. 2019 Nov 20;
- 518 11. Tse H, Gu Q, Sze K-H, Chu IK, Kao RY-T, Lee K-C, et al. A tricyclic pyrrolobenzodiazepine
- 519 produced by *Klebsiella oxytoca* is associated with cytotoxicity in antibiotic-associated
- 520 hemorrhagic colitis. J Biol Chem. 2017 24;292(47):19503–20.
- 521 12. Schneditz G, Rentner J, Roier S, Pletz J, Herzog KAT, Bücker R, et al. Enterotoxicity of a
- nonribosomal peptide causes antibiotic-associated colitis. Proc Natl Acad Sci U S A. 2014 Sep
 9;111(36):13181–6.
- 524 13. Dornisch E, Pletz J, Glabonjat RA, Martin F, Lembacher-Fadum C, Neger M, et al. Biosynthesis
- 525 of the Enterotoxic pyrrolobenzodiazepine natural product tilivalline. Angew Chem Int Ed Engl.
- 526 2017 13;56(46):14753–7.
- 527 14. Unterhauser K, Pöltl L, Schneditz G, Kienesberger S, Glabonjat RA, Kitsera M, et al. Klebsiella
- 528 *oxytoca* enterotoxins tilimycin and tilivalline have distinct host DNA-damaging and
- 529 microtubule-stabilizing activities. Proc Natl Acad Sci U S A. 2019 26;116(9):3774–83.
- 530 15. Högenauer C, Langner C, Beubler E, Lippe IT, Schicho R, Gorkiewicz G, et al. Klebsiella
- 531 *oxytoca* as a causative organism of antibiotic-associated hemorrhagic colitis. N Engl J Med.
- 532 2006 Dec 7;355(23):2418–26.
- 533 16. Beaugerie L, Metz M, Barbut F, Bellaiche G, Bouhnik Y, Raskine L, et al. *Klebsiella oxytoca* as
 534 an agent of antibiotic-associated hemorrhagic colitis. Clin Gastroenterol Hepatol Off Clin Pract
 535 J Am Gastroenterol Assoc. 2003 Sep;1(5):370–6.
- 536 17. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinforma Oxf Engl. 2014 Jul
 537 15;30(14):2068–9.
- Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI
 analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018
 30:9(1):5114.

- 541 19. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence
- alignment/map format and SAMtools. Bioinforma Oxf Engl. 2009 Aug 15;25(16):2078–9.
- 543 20. Hubbard ATM, Newire E, Botelho J, Reiné J, Wright E, Murphy EA, et al. Isolation of an
- 544 antimicrobial-resistant, biofilm-forming, *Klebsiella grimontii* isolate from a reusable water
- 545 bottle. MicrobiologyOpen. 2020 Mar 3;e1023.
- 546 21. Schliep KP. phangorn: phylogenetic analysis in R. Bioinforma Oxf Engl. 2011 Feb
- 547 15;27(4):592–3.
- Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments.
 Nucleic Acids Res. 2019 Jul 2;47(W1):W256–9.
- 550 23. Rodrigues C, Passet V, Rakotondrasoa A, Diallo TA, Criscuolo A, Brisse S. Description of
- 551 Klebsiella africanensis sp. nov., Klebsiella variicola subsp. tropicalensis subsp. nov. and

552 *Klebsiella variicola* subsp. *variicola* subsp. nov. Res Microbiol. 2019 May;170(3):165–70.

553 24. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, et al. Proposed minimal
554 standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol

555 Microbiol. 2018 Jan;68(1):461–6.

- 556 25. Zuo B, Liu Z-H, Wang H-P, Yang Y-M, Chen J-L, Ye H-F. [Genotype of TEM- and SHV-type
- beta-lactamase producing *Klebsiella pneumoniae* in Guangzhou area]. Zhonghua Yi Xue Za
- 558 Zhi. 2006 Nov 7;86(41):2928–32.
- 559 26. Liao T-L, Lin A-C, Chen E, Huang T-W, Liu Y-M, Chang Y-H, et al. Complete genome
- 560 sequence of *Klebsiella oxytoca* E718, a New Delhi metallo-β-lactamase-1-producing

561 nosocomial strain. J Bacteriol. 2012 Oct;194(19):5454.

- 562 27. Herzog KAT, Schneditz G, Leitner E, Feierl G, Hoffmann KM, Zollner-Schwetz I, et al.
- 563 Genotypes of *Klebsiella oxytoca* isolates from patients with nosocomial pneumonia are distinct
- from those of isolates from patients with antibiotic-associated hemorrhagic colitis. J Clin
- 565 Microbiol. 2014 May;52(5):1607–16.
- 566 28. Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C, Colles FM, et al. Ribosomal
- 567 multilocus sequence typing: universal characterization of bacteria from domain to strain.
- 568 Microbiol Read Engl. 2012 Apr;158(Pt 4):1005–15.

- 569 29. Higaki M, Chida T, Takano H, Nakaya R. Cytotoxic component(s) of *Klebsiella oxytoca* on
- 570 HEp-2 cells. Microbiol Immunol. 1990;34(2):147–51.
- 571 30. Youn Y, Lee SW, Cho H-H, Park S, Chung H-S, Seo JW. antibiotics-associated hemorrhagic
- 572 colitis caused by *Klebsiella oxytoca*: two case reports. Pediatr Gastroenterol Hepatol Nutr. 2018
- 573 Apr;21(2):141–6.
- 574 31. Paveglio S, Ledala N, Rezaul K, Lin Q, Zhou Y, Provatas AA, et al. Cytotoxin-producing
- 575 *Klebsiella oxytoca* in the preterm gut and its association with necrotizing enterocolitis. Emerg
- 576 Microbes Infect. 2020 Dec;9(1):1321–9.
- 577 32. Joainig MM, Gorkiewicz G, Leitner E, Weberhofer P, Zollner-Schwetz I, Lippe I, et al.
- 578 Cytotoxic effects of *Klebsiella oxytoca* strains isolated from patients with antibiotic-associated
- 579 hemorrhagic colitis or other diseases caused by infections and from healthy subjects. J Clin
- 580 Microbiol. 2010 Mar;48(3):817–24.
- 581 33. Connor TR, Loman NJ, Thompson S, Smith A, Southgate J, Poplawski R, et al. CLIMB (the
- 582 Cloud Infrastructure for Microbial Bioinformatics): an online resource for the medical

583 microbiology community. Microb Genomics. 2016;2(9):e000086.

- 584 34. Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved
- 585 phylogenetic and taxonomic placement of microbes. Nat Commun. 2013;4:2304.

587 **Table 1.** Genomes included in analyses conducted by Schneditz *et al.* (12) with corrected

Assembly accession	Strain	Species	ANI with shown genome*	npsA/npsB
GCA_000240325.1	KCTC 1686	K. michiganensis	98.69 %, GCA_901556995.1	_
GCA_000247835.1	10-5242	K. michiganensis	97.59 %, GCA_901556995.1	-
GCA_000247855.1	10–5243	K. oxytoca	99.31 %, GCA_900977765.1	+
GCA_000247875.1	10-5245	K. oxytoca	99.13 %, GCA_900977765.1	_
GCA_000247895.1	10–5246	Raoultella ornithinolytica	99.21 %, GCA_001598295.1	_
GCA_000247915.1	10-5250	K. pasteurii	99.29 %, GCA_901563825.1	+
GCA_000252915.3	11492-1	K. oxytoca	99.15 %, GCA_900977765.1	+
GCA_000276705.2	E718	K. michiganensis	98.37 %, GCA_901556995.1	-
GCA_000427015.1	SA2	K. grimontii	99.33 %, GCA_900200035.1	+
GCA_001078235.1	10-5248	K. oxytoca	99.25 %, GCA_900977765.1	+
GCA_001633115.1	M5a1	K. grimontii	99.40 %, GCA_900200035.1	+

588 species affiliations (originally reported as *K. oxytoca*)

589 *GCA_901556995.1 = K. michiganensis W14^T; GCA_900200035.1, K. grimontii 06D021^T;

590 GCA_900977765.1 = *K. oxytoca* ATCC 13182^T; GCA_001598295.1 = *R. ornithinolytica*

591 NBRC 105727^T; *K. pasteurii* SB3355^T GCA_901563825.1.

(a)													
	1	2,000		4,000		6,000	8,000	10,000	12	2,000	14,000	16,000	18,162
Consensus Identity	****												
MF401554 (bases 1 to 18158)		mfsX	uvrX		hmoX	ads	<pre></pre>	d aroX	npsA		nps	<u> </u>	
PS_Koxy1 (reversed) (bases 1 to 18154)		mfsX	uvrX		hmoX	ads)	< <u> </u>	d aroX	npsA		npsl	3	
PS_Koxy2 (reversed) (bases 1 to 18154)		mfsX	uvrX		hmoX	ads)	< <u> </u>	d aroX	H npsA		npsi	3	
PS_Koxy4 (bases 1 to 18154)	CHC.	mfsX	uvrX		hmoX	ads.		d aroX	H npsA		npsl	3	
						1	int int	*		ana			ops name

(b)

		mfsX	uvrX	hmoX	adsX	icmX	dhbX	aroX	npsA	thdA	npsB	npsC	marR	
	PS_Koxy1 ORF	PSKoxy1_03008	PSKoxy1_03007	PSKoxy1_03006	PSKoxy1_03005	PSKoxy1_03004	PSKoxy1_03003	PSKoxy1_03002	PSKoxy1_03001	PSKoxy1_03000	PSKoxy1_02999	PSKoxy1_02998	PSKoxy1_02997	
	PS_Koxy2 ORF	PSKoxy2_03101	PSKoxy2_03100	PSKoxy2_03099	PSKoxy2_03098	PSKoxy2_03097	PSKoxy2_03096	PSKoxy2_03095	PSKoxy2_03094	PSKoxy2_03093	PSKoxy2_03092	PSKoxy2_03091	PSKoxy2_03090	
602	PS_Koxy4 ORF	PSKoxy4_04877	PSKoxy4_04878	PSKoxy4_04879	PSKoxy4_04880	PSKoxy4_04881	PSKoxy4_04882	PSKoxy4_04883	PSKoxy4_04884	PSKoxy4_04885	PSKoxy4_04886	PSKoxy4_04887	PSKoxy4_04888	
603	Figure 2. A	Alignment o	f the klebox	xymycin BC	Cs from th	e three clini	cal K. mich	iganensis st	rains with t	he complete	e cluster of	K. oxytoca	MH43-1 [GenI	Bank
604	accession number MF401554 (11)]. (a) The image (alignment view) was generated via the progressiveMauve algorithm plugin of Geneious Prime v2019.2.1													
605	05 (default settings, full alignment), with gene names for the three clinical isolates assigned manually. (b) Genes corresponding to Prokka-generated annotations.													
606	Consensus	identity is t	he mean pai	irwise nucle	otide identi	ty over all p	pairs in the o	column: gre	en, 100 % i	dentity; gre	eny-brown,	at least 30	% and under 1	00 %
607	identity; re	d, below 30	% identity.											

Figure 3. Distribution of the kleboxymycin BGC in *Klebsiella* spp. genomes. (a) Distribution of the

K. oxytoca complex genomes encoding the entire kleboxymycin BGC. (b) Unrooted maximum-

- 612 likelihood tree [generated using PhyloPhlAn v0.99 (34) and 380 protein-encoding sequences
- 613 conserved across the genomes] confirming species affiliations of the 88 genomes within the *K*.
- 614 *oxytoca* complex (1) encoding the kleboxymycin BGC. Type strains are shown with coloured
- backgrounds corresponding to the legend. The clade associated with *K. huaxiensis* and *K. spallanzanii*
- 616 has been collapsed because of space constraints. (c) Maximum-likelihood tree generated with the
- 617 concatenated protein sequences for the kleboxymycin BGC of the 88 genomes found to encode all 12
- 618 genes of the BGC plus the reference sequence (11). The tree was rooted using the kleboxymycin-
- 619 encoding BGC of *Pectobacterium brasiliense* BZA12. Values at nodes, bootstrap values expressed as
- 620 a percentage of 100 replicates. Sources of isolates, where known, are shown to the right of the
- 621 assembly accession numbers. (b, c) Scale bar, average number of substitutions per position.