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Abstract

Natural disasters disrupt the connectivity of road networks by blocking road segments, which impedes effi-

cient distribution of relief materials to the affected area. We study the problem of finding coordinated paths

for clearing teams so that the connectivity of the road network is regained in the shortest time. We provide

an efficient novel heuristic algorithm for this problem. In our algorithm, the problem is first pre-processed

to define a binary problem to generate initial solutions, and then several rich and problem-specific neighbor-

hood search moves are applied to improve the derived initial solutions. We provide several analytical results

which facilitate the design of our algorithm. The performance of our proposed algorithm is assessed by dif-

ferent numerical experiments, and a comparison with existing algorithms from the literature using instances

from Istanbul road networks. The results demonstrate that our algorithm performs notably better, both in

terms of speed, and proximity to optimal solution.

Keywords: Disaster management, humanitarian logistics, road restoration, network connectivity, heuristics,

relief distribution

1. Introduction

Over the last thirty years, there has been an exponential growth in the number and magnitude of dis-

asters, affecting approximately on average 300 million people per annum and costing close to $157 billion

worth of economic damage per annum since the 1990s (Özdamar & Ertem 2015). In the wake of this

growth, major Transportation organizations of the USA such as Departments of Transportation (DoTs) and

the Transportation Research board promoted research which provides further insight in supporting disaster
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response operations. (Kim et al. 2019). While the DoTs are responsible for a large portfolio of transportation

decisions under normal conditions, they are also responsible for providing a response to unexpected natural

or man-made events that disrupts the transportation network (Renne et al. 2020). Mitigating negative effects

of such disasters through disaster management is therefore an important area of research. Sudden-onset of

natural disasters, such as earthquakes, might not be preventable, but in order to minimize the post-disaster

risks of having a high number of casualties, appropriate steps should be taken in response to the incident. For

instance, to minimize socio-economic losses, such as loss of human lives and valuables, a sufficient amount

of relief material or supplies must be distributed effectively and efficiently immediately after a catastrophe.

One of the critical problems that occur after such events is the road network disruptions. A set of

road segments is generally expected to be significantly damaged and hence, unusable during the immediate

response phase. This blockage of the roads can divide the network into several isolated parts; preventing

delivery of relief materials to the affected area, and from the affected area to crucial locations such as shelters

and hospitals. For instance, Golla et al. (2020) investigated accessibility of urban locations in a post-disaster

condition where collapsed buildings can obstruct roads and prevent accessibility to some certain locations.

The connectivity of the road network plays a key role in disaster management to avoid making cities shut-

down. The importance of road network connectivity after a disaster has been addressed and studied in Zhou

et al. (2019). Expediting the road recovery procedure of a damaged road network in a post-disaster condition

can improve the resilience of the infrastructure networks (Sun & Zhang 2020) as well. In the response phase

immediately after occurrence of a disaster, for effective and efficient distribution of relief materials such as

blankets, hygiene kits, water, food, clothes and medicines, a number of road clearance teams are dispatched

to affected regions. They are responsible for identifying and recovering a sub-set of the blocked roads with

the purpose of reconnecting the entire road network.

Examples of post-disaster road damages and inaccessibility are abundant, and several disaster scenarios

are studied as case studies in the literature of road restoration. Tuzun Aksu & Ozdamar (2014) proposed a

model to address the accessibility maximisation problem through road restoration for survivor evacuation

and tested their model on two districts of Istanbul. Caunhye et al. (2020) implemented a robust route restora-

tion model and tested their model on the data sets from 2015 Gorkha earthquake in Nepal. Coco et al. (2020)

studied the problem of restoring a set of disruptions in an urban road network while ensuring the connectivity

of the network and tested their bi-objective model on realistic instances built from the road network map of

Troyes city in France. Barbalho et al. (2021) proposed a Greedy Randomized Adaptive Search procedure

and an Iterated Local Search algorithm to address the multi-period Work-troops Scheduling Problem (WSP)

and tested their algorithms on instances from Port-au-Prince city in Haı̈ti after the 2010 earthquake. Cartes
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et al. (2021) applied an approach to recover the resilience of a road after a disaster to a road located in the

south of Chile.

The information regarding damaged roads and the amount of accumulated debris on such roads can be

gathered using Volunteered Geographic Information (VGI) or satellite images. The information collection

phase of the immediate post-disaster stage has been addressed in some studies (see Oruc & Kara (2018) and

Sokat et al. (2018)). In our study however, we assume that all the blockage information is collected and the

exact time needed for clearing teams to open the blocked edges is known. Given that the blockage informa-

tion on the blocked links is available, we furthermore assume that the teams are homogeneous meaning that

the required time to open a blocked edge is the same for all of the teams. These teams are equipped with the

necessary tools to either rapidly clear or repair the blocked edges; and if that is not possible, bypass them by

alternative modes such as temporary roads. From this point forward, we also refer to these equipped teams

by vehicles as well.

With a connectivity objective, we study the post-disaster debris clearance problem in which the goal is

to identify a subset of the obstructed roads that should be unblocked in order to regain the connectivity of the

network. Furthermore, the solution should construct coordinated paths for the vehicles to open these roads

in the shortest time i.e, minimizing the makespan. Note that since a blocked edge is non-traversable unless

it is entirely restored or unblocked, the paths should be coordinated to prevent traversing blocked edges

without opening them. Moreover, a blocked road can be opened by a team and traversed by others. As is

expected, while an edge is undergoing the unblocking procedure by a vehicle, other vehicles cannot enter it.

As a result, the arrival time of the vehicles to the blocked edges, as well as the time in which the unblocking

procedure of the blocked edges is finished should be calculated to prevent traversal time conflicts. However,

since a node can be visited by the same vehicle multiple times and also the same edges can be traversed

by multiple vehicles, time calculations are very complicated for this problem. Moreover, since some of the

blocked edges are opened during the process, shortest path distances between each pair of the nodes might

change which can further complicate the timing calculations.

Kasaei & Salman (2016) studied the single-crew case of this problem. They proposed a mathematical

model as well as a heuristic algorithm to solve this problem. However, the single-crew case of this problem

does not address timing conflicts as it does not happen when only one vehicle is considered. As a result,

in this study, the above-mentioned issue is not considered. In Akbari & Salman (2017b), a Mixed Integer

Programming (MIP) model to solve the multicrew version of the described problem is developed. However,

their model could not find feasible solutions to even moderate-sized instances as the timing constraints

restrain its performance. Hence, a relaxation of the formulation is developed to generate initial solutions
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for a local search algorithm process. Then, the solution of the relaxed problem is changed to a feasible

solution and improved by local search procedures to obtain a feasible solution for the original problem.

Their problem is called the Multi-vehicle Synchronized Arc Routing for Connectivity Problem (K-ARCP)

which aims to provide practical solutions for minimizing time for connecting the road network.

In this article, we contribute to the literature by deeply analysing the optimal features of the K-ARCP

through a number of propositions and procedures. Then we focus on more complex instances of this problem

compared to those of the literature and develop a MIP-based heuristic with Rich Local Search (MIP-RLS)

moves which performs considerably better than the proposed local search algorithm in Akbari & Salman

(2017b). In order to generate initial solutions for the MIP-RLS, we pre-process the problem to form a binary

programming problem. Using this problem along with a feasibility step, we generate the initial solutions.

We show that the generated solutions can be optimal in some of the instances. Several new and rich problem-

specific neighborhood search moves are developed to improve the initial solutions. The performance of the

MIP-RLS is tested and compared with the proposed algorithm in Akbari & Salman (2017b) on Istanbul road

network data. The results show that the MIP-RLS is capable of solving larger instances in a significantly

shorter time. Even in the instances where the method from the literature is unable to find feasible solutions

in a given time-limit, on average, the MIP-RLS finds good solutions in less than half of that time-limit. Our

proposed algorithm can thus be used in the response phase of the post-disaster decision support systems.

The remainder of the paper is organized as follows. In Section 2, we provide a literature review of

the related studies that address the utilization of humanitarian logistics in disaster management response,

followed by different algorithms used for post-disaster response operations. Section 3 provides the problem

definition and in Section 4, we present a short overview of the proposed approach in the literature and then

state our solution approach. The process of the data generation and the results are given in Section 5. Finally,

we close by some concluding remarks in Section 6.

2. Literature review

Within the context of disaster management, disasters are categorized into four main phases including

mitigation, preparation, response and recovery (Ahmadi et al. 2015). Mitigation and preparation are part of

the pre-disaster phase whereas response and recovery happens in the post-disaster stage. In the pre-disaster

phase, planning for risk mitigation and prevention helps in minimizing damage in areas affected by disaster.

Pre-disaster preparedness time for disasters such as floods and storms is more than that of earthquakes as

the predictability related to the latter is uncertain. Therefore, inventory management and equipment pre-

positioning can enable fast and effective relief distribution from pre-stocked relief materials such as food,
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water, clothes and medicines to populations affected from floods and storms (Mete & Zabinsky 2010, Duran

et al. 2011, Özdamar & Ertem 2015). However, it is mainly the logistics performance during the post-disaster

phase that determines the socio-economic impact occurring as a result of earthquake. To minimize this socio-

economic impact, post-disaster phases should involve effective and efficient distribution of relief material

distribution to the affected area, debris collection, casualty transportation to hospitals and mass evacuation

to shelters. Such activities enhance post-disaster survival rates. However, successful implementation of them

requires good logistical support.

There have been many review articles published in the last decade with a focus on humanitarian logistics

in post-disaster management. Anaya-Arenas et al. (2014) reviewed articles on disaster management and

based on their findings, they claimed that emergency repair of the damages on a road network is the least

popular subject. Çelik (2016) provided a review of the articles that addressed network restoration and re-

covery in humanitarian operations. Minas et al. (2020) published a review article to study the application of

operations research models that cover all of these variations of emergency response problems. The K-ARCP

falls into different categorizations; such as traditional arc routing problems or problems with a focus on road

restoration and upgrading in both disastrous and non-disastrous situations. In general, the K-ARCP can be

seen as an application of heuristics in routing problems as well. In the following paragraphs, we first discuss

the problems with a focus on road restoration and recovery and then give the preliminary studies on the

K-ARCP.

In the studies that focus on upgrading the road network or improvement of the accessibility after an

earthquake, there are two basic approaches. The first approach concentrates on the selection of road segments

that should be upgraded or repaired and ignores the routing of the vehicles. For instance Duque & Sörensen

(2011) studied a post-disaster problem with a budget constraint. In their problem, with a goal of minimizing

the weighted sum of the required time to travel from rural areas to the nearest emergency centre, some of the

blocked roads are identified to be recovered. They have used a greedy randomized adaptive search procedure

(GRASP) to generate initial solutions and improved their obtained solutions using a variable neighborhood

search (VNS) algorithm. In another study, Cavdaroglu et al. (2013) developed a mathematical formulation

as well as a heuristic solution method for a problem in which integration of the restoration planning and

scheduling decisions in order to restore essential services provided by interdependent infrastructure systems

is considered.

The other group of related studies under the road restoration and recovery domain are those that focus

on both road network restoration and distribution of relief items and routing of the team(s). Xu & Song

(2015) built a model for joint scheduling of post-disaster road restoration and relief distribution to optimize
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the efficiency of life-saving commodity delivery. Their model is formulated as a mixed-integer multiple

commodity network flow programming problem and an ant colony optimization (ACO) approach is used to

tackle the problem. Duque et al. (2016) developed a Dynamic Programming (DP) approach, which is able

to provide the schedule and route of a repair crew for small scale instances. The authors also developed

an iterated greedy-randomized constructive procedure to solve large-scale instances. The objective of this

study is to minimize the summation of the time in which demand nodes are accessible from the depot.

Moreno et al. (2019) built upon the problem in Duque et al. (2016) and introduced The Crew Scheduling

and Routing Problem (CSRP) that targets minimizing the time that affected areas remain inaccessible. In

their study, a Branch-and-Benders-cut (BBC) algorithm is developed to tackle this problem. Moreno et al.

(2020a) studied the same problem and developed two new metaheuristics to solve the CSRP. Using a new

hybrid BBC approach they have found new optimal solutions and improved bounds for benchmark instances

of the problem.

Ajam et al. (2019) addressed a simultaneous road restoration and relief distribution problem. In this

study, both of these actions are operated by one crew. A set of pre-identified nodes referred to as critical

locations should receive the relief items with a latency minimization objective function. The latency of a

critical node is defined as the time it takes from the beginning of the planning horizon until that node is

served. Shin et al. (2019) and Briskorn et al. (2020) also addressed the integration of road restoration and

relief distribution operations. Shin et al. (2019) proposed a mixed integer linear programming model to

provide a plan for the road clearance and relief distribution teams such that damaged roads are repaired and

relief items are supplied to demand locations. Briskorn et al. (2020) addressed a problem to determine the

blocked edges to unblock and the delivery amount from each supply node to each demand node in each

period, while minimizing the duration of the road clearance activities. Other objectives and operational

challenges have been incorporated in such studies. For instance, Li & Teo (2019) developed a bi-level

mathematical model for post-earthquake network repair problem wherein the repair crew assignment and

routing decisions are made in the upper level, while fairness of the relief allocation and finding shortest path

to have quick response are the two other objectives for the decision makers of the lower level. Similarly, Li

et al. (2020) integrated logistics support scheduling with repair crew scheduling and routing in post-disaster

network restoration. Our study is different from all of the above in terms of our objective function and

existence of multiple crews.

While most of the studies addressing the post-disaster road restoration problems are of a deterministic

nature, some of the studies assume that the unblocking time of the blocked edges is stochastic. Çelik et al.

(2015) developed a multi-period stochastic problem that captures the dynamic post-disaster status in which
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road clearing times are assumed uncertain, and limited information on the debris amounts along the roads

is updated as clearance activities proceed. The solution gives the sequence of the blocked roads that should

be unblocked in each of the periods. In their study, they first developed a Markov decision process (MDP)

model and then they suggested a search tree and heuristic pruning, which were tested on both random and real

data. Sayarshad et al. (2020) proposed a dynamic non-myopic debris clearance problem that incorporates

re-positioning of equipment items in a post-disaster stochastic environment to make connectivity between

supply and demand nodes. Sanci & Daskin (2019) integrated restoration and location models for effective

disaster response. They used two-stage stochastic programming to incorporate disaster scenarios, and solved

the model by sample average approximation with concentration sets. Sanci & Daskin (2021) developed an

integer L-shaped algorithm based on a branch-and-cut procedure to solve the same problem. Our study

is different from the ones mentioned in this section as we are considering multiple teams and different

objectives.

Some studies incorporated online optimization to address the uncertainties. In an online optimization

context, Akbari & Shiri (2021) studied the post-disaster relief distribution problem in which the blocked

edges are not known in advance and are only revealed when they are observed by the relief distribution

teams. In this study, the relief distribution teams are not able to recover these blocked edges and should

find a way to bypass them when they are observed. Shiri et al. (2020) studied a post-disaster heterogeneous

multi-team search-and-rescue problem modeled on an undirected graph involving non-recoverable online

blocked edges. In this study, the search-and-rescue time for each critical node is also online. The blocked

edges cannot be recovered here, and only search-and-rescue operations in pre-identified nodes is considered.

The single-crew case of the K-ARCP (ARCP) was studied and introduced in Kasaei & Salman (2016).

In this study, the authors provide a constructive heuristic algorithm for the ARCP. They also introduced a

variation of the ARCP that instead of regaining the connectivity of the network, collects maximum prizes

by reopening components to the depot node in a given time-limit. In their problem, a prize is assigned to

opening each of the components. This variation is referred to as the Prize Collecting ARCP denoted by

PC-ARCP. Vodák et al. (2018) focused on the single vehicle case too and developed a metaheuristic using

ACO that reconnects all the isolated components by dispatching a single vehicle. Note that in both of these

studies mentioned above, a single vehicle exists and hence, timing conflicts do not occur.

Akbari & Salman (2017a) proposed a matheuristic to solve the multi-vehicle case of the PC-ARCP which

was denoted by KPC-ARCP. In a related study, Morshedlou et al. (2018) proposed two MIP models to solve a

routing problem in which synchronized planning and scheduling of recovery activities for damaged networks

is addressed. They have tested their models on infrastructure network instances from Shelby County in
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Tennessee, USA. Moreno et al. (2020b) developed three mathematical models for the multicrew scheduling

and routing problem using heterogeneous teams and validated their models though instances generated from

floods and landslides in Rio de Janeiro. Different from our study, they have incorporated the blockages on

the nodes. Finally, Akbari & Salman (2017b) introduced the K-ARCP for the first time. They developed a

local search matheuristic procedure to tackle the problem. In our study, we further focus on the complexity

of this problem, analyse the optimality features through a number of propositions and develop an efficient

approach by developing a MIP-based heuristic with Rich Local Search moves denoted by MIP-RLS. We

provide through computational experiments to verify that the MIP-RLS significantly outperforms the local

search algorithm proposed in Akbari & Salman (2017b). Specifically, for some instances that the local search

algorithm is not able to find feasible solutions within a certain time-limit, the MIP-RLS is capable of finding

either optimal or very good solutions with a proven negligible optimality gap. We verify our claim by testing

and comparing our algorithm with the algorithm presented in Akbari & Salman (2017b) on Istanbul Road

Network instances.

3. Problem definition

In order to be consistent with the literature, we define the problem with the same notations given in

Akbari & Salman (2017b). We represent the road network of a city or region by an undirected connected

graph given as G = (V, E) where V denotes the set of nodes and E gives the set of all the edges prior

to an incident. Assuming that the graph is undirected, is a standard assumption in disaster management

modelling. This is because in disaster conditions, we can assume that roads can be used in both directions

by road restoration teams. For each edge (i, j) ∈ E there is a time associated with travelling from node i

to j denoted by ci j. Given that the road network is modeled by an undirected graph, the traversal times are

assumed to be asymmetric. After a disruption occurs in the road network, a subset of the edges denoted by

B, B ⊂ A, are blocked and the intact edges together with the nodes set V form the graph GB = (V, E \ B),

which is separated into Q components. We assume that the location of these blocked edges is known and is

collected from satellite images, open street maps and by the use of helicopters or drones.

Blocked edges are assumed to be non-traversable unless they are fully restored by one of the road clear-

ance teams. The unblocking procedure of edge (i, j) ∈ B requires an additional bi j units of time to be

completed. As a result, traversing and restoring a blocked arc (i, j) ∈ B for one of the road restoration teams

takes ci j + bi j units of time. An important observation is that, after a blocked arc (i, j) is restored by one

of the road restoration teams, the other road restoration teams can traverse it within ci j units of time. Since

blocked edges are only required to be opened once and their traversal time changes after they are recov-
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ered, the problem becomes more complex compared to regular arc or node routing problems. This means

that the restoration timing of the blocked links should be considered in the formulation which significantly

complicates the problem.

Knowing that GB consists of Q separated components, let us furthermore denote the qth separated com-

ponent of GB by Cq (q = 1, ...,Q). We also denote the node and edge sets of the Cq by Vq and Eq, re-

spectively. The goal of the K-ARCP is to find a sub-set of the blocked edges denoted by R, in a way that

GR = (V, (E \B)∪R) forms a connected graph. The solution to this problem should find the set R and extract

a path for each of the road clearance teams starting at the depot. These paths collectively cover R. We

also denote the depot node where all the road clearance teams are initially positioned by D. The objective

function of the K-ARCP is to minimize the latency or the time in which the last road clearance team finishes

their operations.

An example of this problem is given in Figure 1. Plot (a) in this figure gives the graph G = (V, E) before

the disruption. Plot (b) in this figure gives GB = (V, E \ B) which has 7 components in it. In this example we

assume there are 2 road clearance crews that are initially positioned in node 1 as the depot. Plot (c) gives the

paths of the clearing teams. First team goes from node 1 to 10 through node 9 and then opens (10, 18). Then

from 18 goes to 17 and opens (6,17). Finally, it goes from 6 to 5 and opens (3,5). The second team, first

opens (1,13) and then goes to 15 and opens (12,15). From 12 goes to 10 and uses (10,18) that has already

been opened by team 1. This shows the coordination of the routes. After this point, team 2 opens (18, 19)

and then goes to node 21 to finally opens (21, 25) when the network becomes reconnected. Plot (d) gives the

restored network. As it was expected, it can be observed that we do not need to open all the links to ensure

connectivity of the network.

4. Solution methodology

In this section we first explain the local search matheuristic algorithm suggested in Akbari & Salman

(2017b) for K-ARCP. Then, we discuss the drawbacks of the proposed method and present our efficient

algorithm called MIP-based heuristic with Rich Local Search (MIP-RLS) to handle more complex and bigger

instances of this problem.

4.1. Local search heuristic in Akbari & Salman (2017b)

In Akbari & Salman (2017b) an exact MIP model is introduced to solve the K-ARCP. However, since the

size of this exact model is very large, off-the-shelf optimizer packages cannot find a feasible solution within

3 hours even for moderate-sized instances (with 75 nodes). Thus, the authors have suggested a relaxation of
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(a) Initial network before disruption (b) Disconnected network

(c) Route (d) Restored network

Figure 1: An example of the problem

the model, called R-MIP, where all the time-related constraints of the road clearance teams are relaxed. After

solving R-MIP optimally, two possible scenarios can happen: 1) no timing conflicts exist in the outputted

paths of the optimal solution. Hence, the optimal solution of the R-MIP is also the optimal solution of the

K-ARCP; 2) timing conflicts exist in the outputted paths from its optimal solution. In this case, feasible

solutions are obtained by changing the assignment of unblocking tasks to the road restoration teams and

imposing the necessary waiting times. After the initial solution is extracted from the R-MIP, a local search

algorithm based on swapping the opener of the blocked edges or swapping some parts of the paths of the

vehicles with each other is developed to enhance the extracted initial solutions. The solution derived from

solving the R-MIP provides a lower bound for the K-ARCP and the upper bound of this problem is obtained

from the feasible solution extracted from the local search Algorithm.

Although this procedure shows quite good results in the tested instances of Akbari & Salman (2017b), it

requires solving the R-MIP optimally. Several parameters from the input data set can affect the performance
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of the R-MIP significantly. In general, the number of vehicles (K), number of nodes (|V |), the amount of

blocked edges (|B|) and the number of separated components (Q) can have contrariwise influence on the run

time of the R-MIP. Figure 4 shows the results of testing R-MIP with 2 to 10 vehicles on instances generated

from Istanbul road network. These two networks are the ”Simplified Istanbul” and the ”Southwestern”

region of the Istanbul city that are used in Akbari & Salman (2017b) as well. Ten instances are generated

and tested from each of these networks. The simplified Istanbul road network has 74 nodes and 179 edges

(Figure 2) and the Southwestern Istanbul network has 250 nodes and 539 edges (Figure 3). The experiments

are conducted on a computer with Intel Xeon W-2123 3.60 GHz 3.60 GHz processor, 32 GB RAM and

64-bit Windows 10 Professional operating system. The algorithms are coded in Python. We solve the MIP

models using Gurobi Optimizer 9.0 in the Python environment.

Figure 2: Simplified road network

The plots on Figure 4, (a) and (b), show the average performance of solving R-MIP for the Simplified

Istanbul road network using 2 to 10 vehicles on 10 distinct instances over a 600 seconds time-limit. The

average number of components in these 10 instances is 14.5 and the average number of blocked edges is

94.7 which is approximately 53% of all the edges. Plot (a) in Figure 4 shows the average percentage of

the relative MIP gap for R-MIP over 600 seconds. This gap is extracted from the solver after 600 seconds.

As the number of vehicles increases, the gaps increase in general and the solver is unable to solve real-

sized instances of R-MIP in the given time-limit. The results of two instances with 16 and 12 separated

components are given in plot (a) as well. For the instance with 16 components and more than 5 vehicles,

the Gurobi solver could not find a feasible solution in 600 seconds in any of the cases. In the section (b) of

Figure 4, “Solved optimally” shows the number of instances (out of 10) that has been solved optimally and

“Not feasible” indicates the number of instances (out of 10) that the Gurobi solver could not find a feasible
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Figure 3: Southwestern road network

solution for them in 600 seconds. Note that in the algorithm developed in Akbari & Salman (2017b), the

R-MIP should be solved optimally to obtain the lower bound and to test whether the extracted paths are

feasible or not. Hence, if the R-MIP cannot be solved optimally, their algorithm cannot produce a solution to

the K-ARCP. The results are shown using 2 to 10 vehicles. For instances with 5 vehicles, only 1 instance has

been solved optimally in 600 seconds and in 2 of the tested instances gurobi was not able to find a feasible

solution in 600 seconds. Plots (c) and (d) of Figure 4, show the same results on Southwestern Istanbul road

network but in 1800 seconds time-limit as these networks are larger. On these instances, the average number

of components is 15.1 and the average number of blocked edges is 187.1 which is approximately 35% of

all the edges. Note that in the Southwestern instances of Akbari & Salman (2017b), the average number

of blocked edges is less than 110 corresponding to less than 20% of all the edges. In plot (c) the average

obtained relative mid-MIP gap using the R-MIP in 1800 seconds is given. These gaps are relatively large for

a 30 minutes run time. Besides, since R-MIP is not solved optimally we cannot generate initial walks from

its results. In Plot (c), the data of examples with 13 and 16 components are given as well. In the instance

with 13 components, Gurobi did not find a feasible solution in 1800 seconds with 9 and 10 vehicles. In the

given instance with 16 components, in none of the cases with more than 5 vehicles a feasible solution was

found within 1800 seconds. Plot (d) in Figure 4 shows the number of instances solved optimally and the

number of instances that a feasible solution could not be found in the given time-limit for the Southwestern
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instances. None of the instances with 5 and more vehicles have been solved optimally. As the number of

road clearance teams increases in more cases the Gurobi solver fails to find a feasible solution in 30 minutes.

It indicates that solving the R-MIP optimally is not a reliable method to solve K-ARCP for larger instances.
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Figure 4: R-MIP performance analysis

4.2. The MIP-based algorithm with Rich Local Search moves (MIP-RLS)

The drawbacks of the developed matheuristic algorithm in Akbari & Salman (2017b) to solve K-ARCP

are given in Section 4.1. We develop a new heuristic algorithm (MIP-RLS) that is capable of obtaining

good feasible solutions in larger instances in acceptable time intervals (less than 20 minutes). In the fol-

lowing sections, first the initial solution generation procedure and then our proposed problem-specific rich

neighborhood moves of the MIP-RLS are given.

4.2.1. Initial solution generation for the MIP-RLS

In MIP-RLS, instead of generating the initial solutions using common procedures such as Greedy Ran-

domized Adaptive Search Procedure (GRASP), we develop a novel heuristic and obtain the initial solutions

by solving a binary problem. We will refer to this problem as the Initial Solution Binary Problem or the ISBP.

Different from the R-MIP that is a step-based formulation with numerous binary and integer variables and

several step-related constraints, we pre-process the problem to identify two sets of parameters that enable us

to develop a path-based formulation with considerably less constraints and variables.

We denote the first parameter set with Tq : q = {1, 2, ...,Q} which shows the earliest time that each

component q can be opened. In order to obtain Tq, the minimum of shortest path distances from depot to

13



all the nodes in Vq should be calculated. These shortest paths should be calculated considering the blockage

times. In order to reflect this observation we define a transformation of the graph GB = (V, E \B) into another

graph T (GB) = (V, E) such that V and E are the set of all nodes and all edges, respectively. The difference

between T (GB) and G(V, E) is that the traversal time of blocked edges B, is set to its traversing time plus the

opening time, i.e. ci j +bi j. Moreover, there is a path Rq associated with Tq which is the shortest path from the

depot to a node in Vq on T (GB). The second set of parameters that are calculated in the pre-processing step

are denoted by Cq′
q ∈ {0, 1} : q, q′ = {1, 2, ...,Q}. This set of parameters are defined to bundle components

that opening them requires to open another set of components. Cq′
q is a binary parameter that equals 1 if

component q′ has been opened in the calculated shortest path of component q; and equals 0, otherwise i.e.,

there are nodes from q′ in Rq. Due to frequent usage of the word “bundle” in this study, we will clearly

define it in the following. Components q and q′ are in the same bundle if Cq′
q = 1 or Cq

q′ = 1. An example of

such relation is shown in Figure 5. In Figure 5, R2 depicts the shortest path connecting component 2 to the

depot. On this path, the vehicle should visit a node in component 3 before traversing to component 2 which

implies that C3
2 = 1 and therefore, components 2 and 3 are in the same bundle.

Q-1

Q-2

Q-3

Depot

R2

Figure 5: Cq′
q Parameters demonstration

Given parameters Tq and Cq′
q , in what follows, we first provide the definition of the decision variable and

then, define constraints of ISBP:

Decision variables of ISBP:

zk
q =


1, if path Rq is assigned to vehicle k = 1, 2, ...,K, q = 1, ...,Q

0, otherwise
(1)
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w : An intermediate continuous decision variable indicating the length of the longest path (2)

ISBP:

Min w (3)

w ≥
Q∑

q=1

Tqzk
q, k = 1, 2, . . . ,K (4)

K∑
k=1

Q∑
q=1

Cq′
q zk

q ≥ 1, q′ = 1, 2, ...,Q. (5)

zk
q ∈ {0, 1}; k ∈ {1, ...,K}, q ∈ 1, ...,Q (6)

w ≥ 0 (7)

Objective function shown by (3) and Constraints (4) set the objective function that minimizes the longest

path. Note that more than one Tq can be assigned to a vehicle and by
Q∑

q=1
Tqzk

q the path length of vehicle k

can be calculated. Constraints (5) ensure that all components get connected by assigning all components

to at least one vehicle. Cq′
q zk

q will equal 1 for component q′ only if both Cq′
q and zk

q equal 1. That is, when

path Rq includes opening component q′ and its opening procedure is assigned to vehicle k. In here, we point

out that while each component should be assigned to at least one vehicle, a solution to the ISBP, does not

satisfy
∑K

k=1 zk
q = 1, q ∈ {1, ...,Q}. It is because some of the components that are in the same bundle, might

be assigned to the same vehicle. Moreover, zk
q does not indicate whether vehicle k visits component q or

not, and it shows whether path Pq is assigned to vehicle k or not. Different from the R-MIP which is a

computationally difficult optimization model, the ISBP is an easy binary problem and it can be solved in a

short time (less than 1 minute) within the content of its application in our study.

We extract the optimal decision variable values of ISBP once it is solved optimally and denote them by

z∗kq . Considering this solution, we can identify the set Qk for each vehicle k ∈ {1, ...,K}, so that it contains

the components that should be opened by vehicle k. In mathematical notations; Qk = {q′ ∈ {1, ...,Q} :
Q∑

q=1
Cq′

q z∗kq = 1}. With Qk in hand, we can solve an MIP model to obtain a path for vehicle k, such that the path

length is minimized and it covers all the components in Qk. We refer to this MIP model, the “Single-Vehicle

Component Coverage” and denote it by SVCC. The mathematical formulation for the SVCC problem is

given in subsection 4.2.2. Since in the single-vehicle instances of the K-ARCP, all the components should

be opened while in the SVCC only the components that are in Qk should be opened, it is a simpler version of

the ARCP that should be solved in a subset of components of the entire network. Hence, each time that the
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SVCC is solved for a set of components, we eliminate the parts of the graph, i.e. the components that should

not be opened and traversed. Although the computational tests on SVCC demonstrate that it can be solved

in less than 2 minutes in all the tested instances, we define Procedure 1 to avoid resolving similar instances.

Procedure 1: SVCC
1: procedure SVCC(Q̂)

. The SVCC problem for all the components in Q̂.
2: if Q̂ ∈ Dtemp : then return temp(Q̂) . Possible termination point.
3: else
4: Dtemp = Dtemp ∪ Q̂
5: temp(Q̂) = optimal objective value of the SVCC with set Q̂
6: return temp(Q̂)
7: end if
8: end procedure

The input of the SVCC procedure is a set of components, Q̂ and the output is the minimum tour length

associated with opening them, S VCC(Q̂). In Procedure 1, we define a one-to-one function called temp

whose domain is denoted by Dtemp. Initially, Dtemp is an empty set (Dtemp = ∅). If the optimal path for

traversing a set of components is calculated, the set of components will be added to the domain of temp and

the temp(Q̂) will be the tour length associated with opening those components. Using the temp function, we

avoid recalculating the optimal tour for a set of components that is already calculated.

Having solved SVCC for all the vehicles k ∈ {1, ...,K} using the set Qk, we can derive a path for each

vehicle. Let us denote these paths by Pk. In the following we show two propositions; in the first one we

show that we can obtain a feasible solution from the obtained solutions of SVCC problems, in the second

one we claim that the collection of Pk gives the optimal solution to the K-ARCP in special cases.

Proposition 1. The collection of Pk for all the vehicles k = 1, ...,K, gives a feasible solution to K-ARCP.

Proof. For these paths to be feasible two conditions should hold; 1) the collection of the paths should open

all the components, 2) paths should be coordinated, meaning that no blocked edges is traversed unless it is

opened. First condition holds because of the Constraints (5) given in ISBP. For the second condition, we

should notice that for each vehicle k, Pk corresponds to a set of intact and blocked edges that need to be

traversed. In these paths, traversal of a blocked edge always results in the additional unblocking time and

hence the timings cannot be infeasible.

Proposition 2. Let us denote the optimal objective function value of the ISBP and the K-ARCP with Z∗IS BP

and Z∗K−ARCP, respectively. If Z∗IS BP =
Q

max
q=1

Tq then the derived paths from ISBP, Pk, are the optimal paths to

K-ARCP, i.e. Z∗IS BP = Z∗K−ARCP.
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Proof. Let us distinguish component q̂ such that Tq̂ =
Q

max
q=1

Tq. As by definition of parameter Tq, the

minimum time required to reconnect component q̂ is Tq̂, the minimum time to reconnect all the components

should be higher than Tq̂, Z∗K−ARCP ≥ Tq̂. Since Pk gives paths that reconnect all the components in Tq̂ and

by Proposition 1 the collection of these paths is a feasible solution to K-ARCP hence, Z∗K−ARCP ≤ Tq̂. It

implies that Z∗K−ARCP = Tq̂ and Z∗IS BP = Z∗K−ARCP.

Corollary 1. A collection of paths that provides a feasible solution to the K-ARCP and has an objective

function value equal to
Q

max
q=1

Tq gives an optimal solution to the K-ARCP.

Proof. The proof follows with the same argument in the proof of Proposition 2.

In the following we define a procedure that calculates the objective function value that corresponds to a

component assignment to all vehicles,Q =
K⋃

k=1
Qk. Recall that for each road clearance team k ∈ {1, ...,K} a set

Qk shows the components that vehicle k opens them and Pk gives the path associated with that. Furthermore,

let us assume `k denotes the length of path Pk.

Procedure 2: objective function of a component assignment Q

1: procedure ObjCalc(Q)
2: for k ∈ {1, ...,K} do
3: `k ← S VCC(Qk)
4: end for
5: return max

k
`k

6: end procedure

In procedure 2, first we calculate the path length associated with each vehicle considering the component

set that is assigned to it using Procedure 1. Then, we set the corresponding objective value ofQ to the longest

path among all the vehicles i.e. the makespan.

In the following we define another procedure that shows whether an assignment of components to ve-

hicles corresponds to an optimal solution of K-ARCP or not. In Procedure 3, the input is a set Q with K

subsets, Qk, that shows the assigned components to vehicle k = 1, ...,K. The output is either True or False.

It is True if by using Corollary 1 we can show that Q is an optimal component assignment to vehicles and

False, otherwise. We use Procedure 2 to determine the objective function value corresponding to Q. If it is

equal to the largest Tq, q ∈ {1, ...,Q}, then Q corresponds to an optimal solution and the output of OptCom(Q)

will be True. The output will be false otherwise.
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Procedure 3: optimality of component assignments to vehicles

1: procedure OptCom(Q)

2: if ObjCalc(Q) =
Q

max
q=1

Tq then return True

3: else return False
4: end if
5: end procedure

4.2.2. The Single-Vehicle Component Coverage problem

The Single-Vehicle Component Coverage (SVCC) problem can be defined as finding the best path for a

vehicle k to open all the components in the set Qk. Recall that Vq and Eq give the set of nodes and edges

for component Cq, q ∈ {1, ...,Q}, respectively. Furthermore, in numbering the components, we assume that

the depot is located in component 1. In order to remove non optimal feasible solutions, we define a graph

G = (V,E) where V is the set of all nodes in the component with the depot and all the nodes which are

in the components that should be opened by the corresponding vehicle, V = {i : i ∈ Vq,Cq ∈ Qk} ∪ V1;

and E is the set of all intact edges in the union of C1 and Qk, E = {(i, j) : (i, j) ∈ Eq,Cq ∈ Qk} ∪ E1 \ B

where B is the set of all blocked edges in component 1 and in all components q such that Cq ∈ Qk. Other

parameters such as the traversal time of edges or opening times of blocked edges will remain the same as in

the K-ARCP for the SVCC. In the following, first provide the definition of the decision variables and then

show the formulation.

Table 1: Definition of the decision variables utilized in the SVCC

Sign Restrictions Description
xi j, ∀(i, j) ∈ A {0, 1} 1 if (i, j) is traversed in direction from i to j; 0, ow.
zi j, ∀(i, j) ∈ B̄ {0, 1} 1 if (i, j) is unblocked; 0, ow.
fi j, ∀(i, j) ∈ A ≥ 0 The amount of flow in the direction from node i to j.

vi,i ∈ V ∪ {n + 1}
≥ 0

Number of times node i is visited by the road clearance team.
(Integrality Relaxed)

Min
∑

(i, j)∈A

ci jxi j +
∑

(i, j)∈B̄

bi jzi j (8)

∑
j:(D, j)∈A

(xD j − x jD) = 1 (9)

∑
j:(i, j)∈A, j,n+1

(xi j − x ji) = 0, ∀i ∈ V\D (10)

∑
j∈V

x j(n+1) = 1 (11)

xi j ≥ zi j, ∀(i, j) ∈ B̄ (12)
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xi j + x ji ≤ 2(zi j + z ji), ∀(i, j) ∈ B̄ (13)∑
j:( j,i)∈A

x ji = vi, ∀i ∈ V (14)

∑
i∈Vq

vi ≥ 1, q : Cq ∈ Qk (15)

∑
j:∈V∪{(n+1)}:(i, j)∈A

( fi j − f ji) = −vi, ∀i ∈ V ∪ {(n + 1)} \ D (16)

∑
j∈V∪{(n+1)}

( fD j − f jD) =
∑

i∈V∪{(n+1)}\{D}

vi, (17)

∑
j∈V

f j(n+1) = 1 (18)

fi j ≤ |V|xi j, ∀(i, j) ∈ A (19)

fi j ≥ xi j, ∀(i, j) ∈ A (20)

xi j ∈ {0, 1}; (i, j) ∈ A (21)

zi j ∈ {0, 1}; (i, j) ∈ B̄ (22)

fi j ≥ 0; (i, j) ∈ A (23)

vi ≥ 0; i ∈ ∪{n + 1} (24)

The objective function given in (8) minimizes the the total unblocking and traversal times. Constraints

(9) to (11) are the vehicle balance equations. By constraint (9) the vehicle starts its path from the depot. By

constraints set (10), once the vehicle enters a node other than the depot or the sink node, should also leave

it. By constraint (11) the path of the vehicle should ends in the sink node. By constraint (12) a blocked edge

is only opened if the road clearance team traverses it and by constraint (13) the traversal of a blocked edge

is only viable after it is unblocked. Constraint (14) the number of times the road clearance teams visits node

i ∈ V is counted. By constraints (15), at least one of the nodes in each of the components that are assigned

to vehicle k should be visited. Note that this formulation is given for vehicle k. Constraints (16) to (20) are

defined to guarantee the connectivity of the walks. Detailed description of these constraints together with an

illustrative example can be found in Akbari & Salman (2017a). The remaining constraints from (21) to (24)

are variable restrictions that are defined in Table 1.

4.2.3. Rich Local Search procedure

After obtaining Pk from the solutions of the SVCC problems, we can initiate the Rich Local Search

(RLS) procedure. Since we obtain the path of each vehicle using the SVCC procedure, we cannot further

improve them and we do not have any inter-path local search moves. Hence, new intra-path moves should
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be defined to interrelate the paths of different vehicles. An important difference between our developed RLS

moves and the local search in the literature is that instead of changing the order of visiting nodes, which is a

common procedure for most of the local search moves in the literature, we update the components assigned

to vehicles to obtain better objective functions. Moreover, our RLS moves are also different from the ones

in Akbari & Salman (2017b) which develop inter and intra local search moves. The intra moves include

swapping blocked edges or parts of the paths between vehicles when they traverse the same blocked edges.

However, our RLS moves, changes the assignment of a whole component to a vehicle and hence considers

larger neighborhoods. As it is stated above, it does not require inter-path moves as the optimal path for

covering the corresponding components is obtained by solving the SVCC model.

Furthermore, our RLS moves consider that only shortening the length of the longest path might result

in a better objective function value. In the following we define some notations and then these new and rich

problem specific moves are explained.

Once the initial paths associated to each vehicle are extracted from the ISBP model, without loss of

generality, let us sort the index of the vehicles based on the length of the paths denoted `k values such that

`k ≥ `k+1, k ∈ {1, ...,K − 1}. For each component q in Qk let Nk
q denote the number of components bundled

with component q in the path of vehicle k. This value is calculated as it is shown in equation (25) and its

value is 0 for those component that their opening process does not involve traversing other components and

they are not required to be traversed to open other components.

Nk
q =


if z∗kq = 1 :

Q∑
q′=1,q′,q

(Cq′
q z∗kq )

if z∗kq = 0 :
Q∑

q′=1,q′,q
(Cq′

q̂ z∗kq̂ ), q̂ ∈ {1, ...,Q} such that: Cq
q̂ z∗kq̂ = 1

(25)

Below we give the novel rich local search moves developed for the K-ARCP. These moves are defined

to balance the paths obtained by SVCC problems. In all of these moves the input is the set of components

assigned to each vehicle (Qk) and the corresponding path length to cover these components (`k). The output

is a new set of components assigned to each vehicle. Note that different from regular local search moves used

in routing problems, here we do not change the node assignments to vehicles, but we change the assignment

of components to the vehicles and re-optimize their paths. Furthermore, we do not change the order of

visiting the components in these moves as the SVCC model decides about that.

• Remove insert: By this operator, one of the assigned components to vehicle 1 is moved to QK . In other

words we eliminate a component q from Q1 and add it to the components that are assigned to vehicle

K, QK . Recall that before this move vehicle 1 has the longest path and vehicle K has the shortest path
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(`k ≥ `k+1, k ∈ {1, ...,K − 1}). The selection process is not random, we pick component q in Q1 such that

N1
q = 0. If none of the components satisfy this condition, we skip this move.

• Swap with shortest: Swap with Shortest is defined to elaborate Remove insert in instances that it is not

applicable. By this move, we swap one or more of the assigned components between vehicle 1 and vehicle

K. In other words, we pick the smallest bundle from Q1 and swap it with the smallest bundle in QK . To

pick a component with the smallest bundle, for instance for vehicle 1, we need to pick all components q̌

such that N1
q̌ ≤ N1

q .

• Double swap: This swap is defined not only to consider the longest and shortest paths but also to consider

the second largest and second shortest paths. In this move, we use the same Swap with shortest operator

but with the difference that it will be done once between Q1 and QK and once between Q2 and QK−1.

Similarly, we pick the smallest bundles from the paths of each vehicle.

• Top double swap: This swap is useful when `1 is considerably larger than other paths. In this move, we

pick two of the smallest bundles from Q1 and move them to QK and QK−1.

• Perturbation: By this operator, we first pick the smallest bundles for vehicles 1 to K. Next, we move the

chosen bundle from Qk to Qk+1 for k = 1, ...,K − 1. Using this move all the paths are subject to changes.

Perturbation is added as an step to avoid local optima.

Note that each time that the assignment of the components to the vehicles changes, paths of all the

vehicles, Pk, k ∈ {1, ...,K} should be recalculated to be feasible. Procedure 1 is defined to avoid recalculating

the paths corresponding to the same component assignments.

Using the initial solution generation procedure from Section 4.2.1 and the RLS moves defined in 4.2.3

the MIP-RLS algorithm can be shown as in Procedure 4.

On line 1 of the MIP-RLS the graph T (GB) = (V, E) is formed by setting the traversal time of blocked

edges to be equal to ci j + bi j. On line 2, the parameters Tq and Cq′
q are calculated based on the input

information. On line 3, we solve the Initial Solution Binary Problem (ISBP) with the calculated parameters,

Tq and Cq′
q and then set Z∗kq values to be equal to the optimal solution of it. On lines from 4 to 7, using the

Z∗kq values, first for each vehicle k, we calculate Qk = {q′ ∈ {1, ...,Q} :
Q∑

q=1
Cq′

q z∗kq = 1} and then using the

set Qk and the SVCC, we can obtain path Pk. By line 9, if Proposition 2 and the OptCom Procedure show

that Q gives the optimal component assignment to the K-ARCP, the algorithm terminates and otherwise we

use this solution as the initial solution and start the improvement phase using our rich local search moves

proposed in section 4.2.3. We showed all the Possible Termination Points in the algorithm with PTP. The
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Procedure 4: MIP-based heuristic with Rich Local Search for the K-ARCP (MIP-RLS)
Input:

All the parameters of the input problem. . (Sets V , E, B, ci j, bi j, Q, K and Depot).
1: Form T (GB) which is a transformation of G(V, E).
2: Calculate parameters Tq and Cq′

q .
3: Z∗kq ← IS BP
4: for k ∈ {1, ...,K} do
5: Qk ← Z∗kq
6: Pk ← S VCC(Qk)
7: end for
8: Q =

K⋃
k=1

Qk

9: if OptCom(Q) = True then : return Q end if . PTP
10: while “Time-limit” do
11: Qnew = Remove insert (Q,`)
12: if ObjCalc(Qnew) < ObjCalc(Q) then : Q = Qnew

13: if OptCom(Q) = True then : return Q . PTP
14: end if
15: end if
16: Qnew = Swap with shortest (Q,`)
17: if ObjCalc(Qnew) < ObjCalc(Q) then : Q = Qnew

18: if OptCom(Q) = True then : return Q . PTP
19: end if
20: end if
21: Qnew = Double swap (Q,`)
22: if ObjCalc(Qnew) < ObjCalc(Q) then : Q = Qnew

23: if OptCom(Q) = True then : return Q . PTP
24: end if
25: end if
26: Qnew = Top double swap (Q,`)
27: if ObjCalc(Qnew) < ObjCalc(Q) then : Q = Qnew

28: if OptCom(Q) = True then : return Q . PTP
29: end if
30: end if
31: Q = Perturbation (Q,`)
32: end while
33: return Q . PTP

lines from 10 to 32 gives the application of the defined RLS moves. The termination condition of the MIP-

RLS is a time-limit which is set in line 10. In our application, we set the time-limit to be at most 20 minutes.

However, the algorithm can end before the time-limit is reached by finding the optimal solution in any of the

possible termination points. In lines 11, 16, 21 and 26 an updated assignment of components to vehicles is

created based on the defined search moves. The input of these search moves are the current assignment of

components and the length of the associated paths for all vehicles. This updated assignment of components

is called Qnew. On lines 12, 17, 22 and 27 if the corresponding objective function of the created component

assignment set Qnew using ObjCalc procedure gives a better objective function compared to the current Q,

22



the best component assignment will be updated. On lines 13, 18, 23 and 28 optimality of the current best

assignment is checked using the OptCom procedure and if the current solution is optimal, the algorithm

terminates. On line 31 a perturbation move is implemented to perturb the assignments of the components to

the vehicles. This step update the sets Qk in all the cases to skip local optimal solutions. If the time-limit is

reached, meaning that an approve-able optimal solution is not found, the algorithm exits the search process.

In line 33 the best component assignment set is outputted. The path of each vehicle can be determined using

the SVCC model.

5. Data and computational study

To experiment the performance of the MIP-RLS we used two networks from Istanbul city that are intro-

duced in Akbari & Salman (2017b). The first road network that we consider, is a Simplified road network

from Istanbul in which only 74 nodes and 179 edges are considered. The second road network however, is

a detailed road network obtained from the Southwestern region of Istanbul. In this detailed road network

of the Southwestern Istanbul, 250 nodes and 539 edges are considered. Even though these road networks

were exactly the same as those of the literature, we have tested more intense scenarios with more blocked

edges as we are targeting larger data sets in terms of the intensity of the disaster and hence the amount of

blocked edges and separated components. For example in the Southwestern instances tested in Akbari &

Salman (2017b), in all the instances under 20% of the edges were blocked but in our study, on average,

approximately 35% of the edges are assumed to be blocked. The number of these blocked edges has a direct

impact on the number of separated components that determines the difficulty of the problem as well. In

the following, we first discuss the optimality gap of the MIP-RLS and next, give the results of the tested

instances.

5.1. On the optimality gap of the MIP-RLS

Before giving the results on the larger instances, an analysis on the performance of the MIP-RLS is

necessary. Since the objective function is to minimize the time of the longest road clearance team route, the

obtained feasible walks will give an upper bound on the optimal solution value. However, in order to get a

lower bound, as it is suggested in Akbari & Salman (2017b) we need to solve R-MIP optimally which is not

possible as R-MIP cannot be solved optimally in our intended instances within a reasonable time-limit. The

weak performance of the R-MIP in larger instances is also discussed in Section 4.1. Instead, we generated

10 smaller instances of the Simplified Istanbul network and tested them with both R-MIP and MIP-RLS by

2 to 4 vehicles. These instances were small enough to be solved by R-MIP in a one hour time-limit. On
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these instances the average value of Q is 8.3 varying from 7 to 10 and on average 77.7 edges are blocked.

For instances 1 and 2, Q = 7, for instances 3 to 6, Q = 8 for instance 10, Q = 10 and for the remaining

instances this value is equal to 9.

Figure 6 illustrates the results of the tested instances and Table 2 presents a summary of the 10 tested

instances with 2 to 4 vehicles. Plot (a) in Figure 6 shows the optimality gap in the tested instances of MIP-

RLS. This gap is calculated by setting the results of the MIP-RLS as the upper bound and the results of

the R-MIP as the lower bound. All the instances with 4 vehicles have been solved optimally. Among 10

instances, 7 of them with 3 vehicles have been solved optimally and among those which have not been solved

optimally the maximum optimality gap is 7.11%. In instances with 2 vehicles 4 instances have been solved

optimally and on the other instances the average optimality gap is 2.44%. In Figure 6 plots (b), (c) and (d)

show the run time comparison of the tested instances between solving R-MIP and MIP-RLS with 2,3 and 4

vehicles respectively. Note that in these graphs, the MIP-RLS time is calculated by adding the initiation and

search steps of the algorithm. Only in instances 5 and 6 with two vehicles the execution time of R-MIP is

less than that of MIP-RLS. In all other instances the run time of MIP-RLS is significantly shorter than that

of R-MIP, particularly when the number of the road clearance teams increases.
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Figure 6: MIP-RLS Optimality gap analysis

Table 2 summarizes the results of these tested instances. Column ¯|Q| gives the average number of sepa-

rated components, ¯|B| gives the average number of blocked edges, K is the number of road clearance teams,

R-MIP Average Run time and MIP-RLS Average Run time columns provide the corresponding values re-

spectively. As mentioned, these given times for the MIP-RLS algorithm include both the initiation and
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search steps. The last column gives the achieved average optimality gap for the MIP-RLS over the 10 in-

stances. Note that these instances are small-sized networks and are tested for benchmarking and verifying

the performance of the MIP-RLS and their optimality gap is calculated by setting the solution from the MIP-

RLS as the upper bound and the results of the R-MIP as the lower bound. While the R-MIP average run

time increases as the number of vehicles increases, the MIP-RLS found the optimal solution of all the tested

instances with 4 vehicles on average in 62.26 seconds which is 2.89% of the required run time to solve the

R-MIP for the same instances. For instances with 2 and 3 vehicles, the MIP-RLS shows good performance

as well. While the average run time is less than 3 minutes for instances with 2 vehicles, the average optimal-

ity gap is less than 1.5%. For instances with 3 vehicles the run time decreases to less than 20 seconds while

the average optimality gap remains under 1.6%.

Table 2: MIP-RLS optimality test

¯|Q| ¯|B| K
R-MIP Average MIP-RLS Average MIP-RLS Average

Run time Run time Optimality Gap

8.3 155.4
2 427.68 134.04 1.46%
3 910.02 19.43 1.58%
4 2149.55 62.26 0.00%

5.2. Numerical results on large-sized K-ARCP instances

We have tested 10 instances on each of the Simplified Istanbul and Southwestern networks using 2

to 10 vehicles. Note that in the largest instances of Akbari & Salman (2017b), four vehicles are used for

Istanbul road networks whilst we test our algorithm with up to 10 vehicles. The average number of separated

components, Q, in our tested instances is 14.5 and 15.1 for Simplified Istanbul and Southwestern instances,

respectively, while in the tested instances of K-ARCP in Akbari & Salman (2017b), the average values

of Q over 15 tested instances are 5.8 and 4.6 for Simplified Istanbul and Southwestern Istanbul instances,

respectively. It shows that the instances tested in this study are larger than those of the literature. The

average number of blocked edges in the tested instances in our study for Simplified Istanbul is 94.7 and for

Southwestern Istanbul is 186.1. Comparing to literature on K-ARCP where the average number of blocked

edges on Simplified Istanbul instances is 72.3, and for Southwestern Istanbul is 108.2, in this study, we focus

on larger instances in this aspect as well.

In Section 4.1 we provided some results on the performance of R-MIP on the same instances. Although

R-MIP could not be solved optimally in most of these instances in the given time-limit, in the following

we will show that MIP-RLS solves many of the instances in a reasonable time-limit. The results of testing

the MIP-RLS and R-MIP algorithms on the large-sized Simplified and Southwestern instances are given in

Tables 3 and 4 for the Simplified and the Southwestern networks, respectively. In these tables, columns “ins”,
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”|Q|”. ”|B|” and “|K|” respectively indicate the instance number, number of components, number of blocked

edges and number of used vehicles. The optimally gap of the R-MIP in the given time-limit, Best Objective

Function Value (OFV) obtained by the MIP-RLS and the run time for each instance in seconds are reported

in the next three columns. In the instances for which the R-MIP Gap (%) is shown by —, the Gurobi solver

could not find a feasible solution in the given time-limit. In Tables 3 and 4, the optimal solutions obtained

by the MIP-RLS are bolded. The optimality of these solutions is confirmed by Proposition 2.

Figure 7 visualizes the run time results of the R-MIP and the MIP-RLS on the Simplified and Southwest-

ern instances. The run time of the MIP-RLS takes into account both the initiation and search steps. In the

plot (a), the simplified instances are tested over 600 seconds time-limit. The run time of the R-MIP shows

an increasing trend as the number of vehicles increases. Note that as K increases, R-MIP hits the time-limit

without finding an optimal solution in most of the instances. This shows that we are not able find a fea-

sible solution for this instances using the algorithm proposed in Akbari & Salman (2017b). However, our

MIP-RLS solves several instances optimally and the run time is considerably shorter. As the number of road

clearance teams increases, the MIP-RLS have shorter run times and terminates faster by finding the optimal

solution. Plot (b) of Figure 7 provides and illustration for the results of the instances on the Southwestern

Istanbul network where the time-limit is set to be 1800 seconds for R-MIP and 1200 seconds for MIP-RLS.

While the R-MIP could not be solved and hit the time-limit in almost all of the instances, the MIP-RLS finds

a feasible solution in a significantly shorter time and it finds the optimal solution to most of the tested in-

stances particularly when the number of road clearance teams increases. Again, it can be seen that in general

the run time of the R-MIP is increasing in the number of vehicles. In contrast, when the number of vehicles

increases the MIP-RLS run time decreases and it terminates by finding the optimal solution to most of the

tested instances.
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Figure 7: MIP-RLS run time analysis

Figure 8 illustrates the number of instances solved optimally among the tested instances by MIP-RLS.
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Table 3: Results for large-size Simplified K-ARCP instances

ins |Q| |B| |K|
R-MIP MIP-RLS

ins |Q| |B| |K|
R-MIP MIP-RLS

GAP (%) Best OFV Time (s) GAP (%) Best OFV Time (s)

1 16 186

2 29.48% 13.49 600

6 13 188

2 3.46% 21.72 600
3 82.05% 10.58 600 3 0.77% 16.81 600
4 89.11% 8.91 600 4 5.16% 15.8 6.39
5 88.44% 7.75 600 5 0.51% 15.8 6.43
6 — 6.58 600 6 0.36% 15.8 2.17
7 — 6.33 11.16 7 1.80% 15.8 5.41
8 — 6.33 4.06 8 0.00% 15.8 5.48
9 — 6.33 3.73 9 0.46% 15.8 6.09
10 — 6.33 3.8 10 91.90% 15.8 5.92

2 12 166

2 0.00% 11.52 600

7 14 192

2 8.03% 15.33 600
3 0.00% 8.98 600 3 14.63% 13.44 600
4 1.28% 8.21 600 4 30.82% 11.61 4.01
5 13.62% 7.37 600 5 28.66% 11.61 5.52
6 4.47% 6.5 3.17 6 87.48% 11.61 6.4
7 24.83% 6.5 2.12 7 89.15% 11.61 7.81
8 20.76% 6.5 2.3 8 91.68% 11.61 5.34
9 18.56% 6.5 2.58 9 91.28% 11.61 5.8
10 37.42% 6.5 2.72 10 92.86% 11.61 5.85

3 12 170

2 0.00% 12.83 600

8 14 210

2 3.96% 22.83 600
3 10.91% 11.71 600 3 2.50% 15.47 600
4 17.33% 10.87 2.86 4 2.18% 15.47 4.97
5 13.71% 10.87 2.31 5 5.69% 15.47 4.9
6 9.54% 10.87 2.39 6 0.00% 15.47 3.93
7 0.00% 10.87 2.28 7 0.00% 15.47 3.35
8 12.99% 10.87 2.52 8 90.65% 15.47 2.95
9 0.00% 10.87 2.49 9 95.23% 15.47 6.01
10 33.35% 10.87 2.71 10 93.09% 15.47 4.52

4 16 204

2 20.52% 27.88 600

9 14 178

2 4.08% 26.38 600
3 46.34% 17.5 600 3 0.00% 23.55 3.16
4 84.08% 15.82 10.48 4 0.00% 23.55 2.97
5 — 15.82 264.33 5 0.00% 23.55 3.67
6 — 15.82 13.22 6 0.00% 23.55 3.58
7 — 15.82 17.92 7 0.00% 23.55 4.96
8 — 15.82 16.58 8 88.91% 23.55 3.52
9 — 15.82 14.92 9 94.49% 23.55 7.61
10 — 15.82 13.12 10 94.75% 23.55 3.48

5 15 194

2 18.15% 17.44 600

10 19 206

2 — 17.59 600
3 20.21% 14.27 600 3 — 12.84 600
4 28.03% 11.34 600 4 — 10.04 600
5 86.31% 10.15 600 5 — 8.51 43.96
6 87.98% 9.26 600 6 — 8.51 3.25
7 — 8.82 496.24 7 — 8.51 8.47
8 — 8.82 34.83 8 — 8.51 6.71
9 — 8.82 6.09 9 — 8.51 36.01
10 — 8.82 5.92 10 — 8.51 21.74
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Table 4: Results for large-size Southwestern K-ARCP instances

ins |Q| |B| |K|
R-MIP MIP-LS

ins |Q| |B| |K|
R-MIP MIP-LS

GAP (%) Best OFV Time (s) GAP (%) Best OFV Time (s)

1 14 378

2 12.84% 2.11 1200

6 16 366

2 11.79% 3.21 1200
3 23.39% 1.56 1200 3 0.00% 2.54 1200
4 42.46% 1.27 1200 4 0.00% 2.34 115.43
5 — 1.05 1200 5 12.76% 2.34 97.84
6 — 0.94 1200 6 89.14% 2.34 511.33
7 93.99% 0.8 1200 7 — 2.34 121.27
8 — 0.78 1200 8 79.05% 2.34 113.13
9 94.62% 0.72 76.64 9 86.35% 2.34 119.23
10 — 0.72 75.61 10 80.71% 2.34 154.07

2 14 366

2 0.09% 2.26 1200

7 16 370

2 14.89% 2.03 1200
3 13.61% 1.78 1200 3 24.98% 1.43 1200
4 21.24% 1.23 1200 4 50.46% 1.06 1200
5 40.07% 0.99 1200 5 87.25% 0.88 1200
6 80.19% 0.98 28.25 6 — 0.78 18.51
7 — 0.98 22.15 7 — 0.78 18.93
8 61.23% 0.98 26.11 8 — 0.78 15.82
9 70.32% 0.98 22.87 9 — 0.78 18.87
10 70.13% 0.98 23.19 10 — 0.78 22.51

3 14 376

2 24.75% 2.34 1200

8 15 368

2 16.86% 2.85 1200
3 41.50% 1.7 1200 3 11.66% 2.49 64.2
4 55.96% 1.32 1200 4 23.91% 2.49 35.7
5 53.65% 1.13 123.84 5 88.43% 2.49 32.17
6 68.93% 1.13 71.05 6 91.33% 2.49 32.64
7 — 1.13 57.67 7 92.62% 2.49 56.03
8 — 1.13 39.59 8 79.48% 2.49 67.81
9 — 1.13 39.85 9 92.33% 2.49 73.41
10 — 1.13 64.53 10 79.87% 2.49 69.78

4 13 382

2 21.84% 1.6 1200

9 19 374

2 — 3.02 1200
3 — 1.16 1200 3 — 2.39 1200
4 42.21% 1.07 1200 4 — 1.84 1200
5 53.43% 0.88 1200 5 — 1.81 1200
6 59.99% 0.81 1200 6 — 1.67 1200
7 92.93% 0.64 1200 7 — 1.41 1200
8 62.07% 0.59 531.25 8 — 1.31 1200
9 — 0.59 44.89 9 — 1.22 108.59
10 — 0.59 87.14 10 — 1.22 123.89

5 15 374

2 11.24% 2.18 1200

10 15 368

2 18.67% 2.93 1200
3 18.28% 1.68 1200 3 63.85% 2.18 1200
4 37.74% 1.31 1200 4 87.54% 1.79 1200
5 42.59% 1.11 1200 5 92.66% 1.57 1200
6 45.28% 1.01 1200 6 95.50% 1.37 1200
7 — 0.94 22.4 7 89.01% 1.2 1200
8 91.80% 0.94 80.54 8 94.47% 1.04 121.56
9 58.26% 0.94 28.91 9 — 1.04 119.73
10 64.75% 0.94 29.38 10 — 1.04 117.38
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As the number of vehicles increases MIP-RLS is able to verify the optimality of a feasible solution using

Proposition 2 and corollary 1 in more cases. In general the optimality of more instances can be verified

in Simplified Istanbul instance. However, when the number of vehicles increases in most of the instances

in both Southwestern and Simplified networks the optimality is achieved. When the number of vehicles is

less than 5, the optimality cannot be verified in more instances. However, in Section 5.1, we showed that in

instances with less than 5 vehicles, if we can verify a lower bound the obtained feasible solution from the

MIP-RLS gives very good optimality gaps.
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Figure 8: MIP-RLS optimality analysis

Figure 9 depicts a summary on the performance of the rich local search step of the MIP-RLS algorithm.

Plot (a) shows the average improvement percentage by the RLS steps. Generally, when the number of road

clearance teams increases, the improvement decreases. This is mainly because with more vehicles, ISBP

finds the optimal solution of K-ARCP more frequently. For instance, in all the Simplified network instances

with 9 and 10 vehicles, the optimal solution was found by ISBP. Moreover, we can see that on average the

improvement percentage of the Simplified instances are higher than those of Southwestern network with

the same number of vehicles. This is because the graph in the Simplified instances are smaller compared

to Southwestern and more successful moves are applied even in the shorter time-limits (600 seconds for

Simplified and 1200 seconds for Southwestern). The latter case can be approved in plot (b) as well. Plot

(b) of Figure 9 shows the number of successful RLS moves for the tested instances. Again, in Simplified

instances with 9 and 10 vehicles, no improvement move is applied since ISBP gives the optimal solution

in all the tested instances. As the number of vehicles increases, this number decreases in general. The

reason of this behavior is explained in the following; plot (c) in Figure 9 gives the information on when

the improvement moves are done in average over all the tested instances. With each network (Simplified or

Southwestern) and each number of vehicles (k = 2, ..., 10), the y-axis value of the circle shows the average

time that an improvement move is found and applied and the size of the circle shows the frequency of

such improvement moves. For instance, with 2 vehicles on the Simplified Istanbul network, the average
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time for an improvement move to be found and applied was 152.60 seconds and there has been 41 of such

improvement moves. On the other hand, for instances with 3 vehicles on the Southwestern network, on

the average 892.44 seconds is spent to find and apply an improvement move and 17 of such moves have

been found in total. This plot shows that “in general” as the number of vehicles increases the average time

required to find an improvement move decreases. However, we know that once the number of road clearance

teams increases, the number of improving moves decreases from plot (b). This is because when the number

of vehicles increases, the performance of ISBP becomes better and it finds optimal or near-optimal solutions

that can turn into optimal solutions with small number of improving moves. This is why in plot (b) the

number of successful moves decreases as k increases. It is also observed that when the larger network

is considered, from Simplified to Southwestern, the required time to find an improving move is generally

higher.
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Figure 9: RLS performance analysis

Table 5 summarizes the results of the tested K-ARCP instances. We have set 2 to 10 vehicles in all the

tested instances. Note that since timing conflicts do not occur in instances with single vehicle, they can be

solved optimally in relatively short time intervals. For the Simplified network instances, the given time-limit

was 600 seconds. The average relative mid-MIP gap of the R-MIP for the tested instances in the time-limit

is reported in this table. This gap is extracted from the solver once the given time-limit is reached and the

model has not been solved to optimality. In almost all the instances, the 600 time-limit is fully used. Without

the optimal solution of R-MIP, the local search procedure developed in the literature cannot be initiated and

these gaps are not the optimality gap to the K-ARCP. However, using the MIP-RLS we can find optimal or
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near-optimal solutions in all the tested instances. For example, in the Simplified instances with 10 vehicles,

all the instances were solved on average within 6.97 seconds. For the Southwestern instances, the time-limit

was set to be 1800 seconds and the summary of the results for those instances is also given in the right side

of Table 5.

Table 5: Summary of the results on large-size K-ARCP instances

Simplified Istanbul Southwestern
R-MIP MIP-RLS R-MIP MIP-RLS

K Gap Time Time Gap Time Time
2 9.74% 506.45 291.26 14.77% 1800 850.64
3 19.71% 526.17 219.13 24.66% 1682.93 1007.45
4 28.67% 563.35 115.52 40.17% 1733.61 617.34
5 29.62% 561.43 49.60 58.86% 1800 437.04
6 27.12% 578.26 37.86 75.77% 1800 590.59
7 19.30% 581.83 55.97 92.14% 1800 300.81
8 50.83% 581.82 8.42 78.02% 1800 145.48
9 50.00% 558.77 9.13 80.38% 1800 65.29
10 73.90% 600 6.97 73.87% 1800 76.74

6. Conclusions and remarks

In this paper, we have considered the coordinated multicrew arc routing for optimal connectivity in a post

disaster condition. In this problem, the paths of K work crews in a post-disaster condition where some of

the streets are blocked is optimized. These work crews are capable of reopening the blocked road segments

by spending additional opening time on them. The debris accumulated on the roads after a disaster impedes

accessibility to critical locations such as hospitals and fire stations. The paths of the work crews should be

coordinated to prevent traversing blocked edges without opening them. We developed an efficient heuristic

algorithm with a novel initial solution generation step. We call our algorithm the MIP-based heuristic with

Rich Local Search (MIP-RLS). The initial solutions for the proposed MIP-RLS procedure are generated

using an optimization model that is created by pre-processing the original problem. This model is a binary

programming optimization model namely Initial Solution Binary Problem (ISBP). After the generation of

the initial solutions, new and rich problem-specific local search moves are defined and implemented. Since

the structure of problem is unique in terms of feasibility and optimality of the paths, we developed a new

novel search procedures that can be used in problems with multiple work crews. We further analysed the

performance of our algorithm and compared it with the optimal solution by a number of propositions. In this

study, we tested our proposed algorithm on instances from Istanbul road network. While in the literature the

largest tested instances consider up to 6 separated components and 4 work crews, we tested instances with
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up to 19 separated components, and up to 10 work crews. According to our numerical tests, our proposed

MIP-RLS finds a feasible solution for all instances within less than 2 minutes.

In a more realistic setting, the structure of this study can be changed to cases where the road clearance

crews may differ in terms of their capabilities since the machinery, equipment, tools, consumables and oper-

ating personnel required for a specific restoration task may show variability. Given a set of limited resources,

team forming can be a part of the problem, after an initial assessment of the required tasks. Moreover, some

equipment may even be repositioned among the teams working at different locations. The obtained results

can be compared to perform a study on the use of these problems in post-disaster decision support. While we

considered the problem of connecting all the components without prioritization, in disaster response phase

it is crucial to reconnect the critical components first and then aim to reconnect all other components. In

this case, we still need to be able to solve the second step of the problem that aims to reconnect the entire

network in a short time, and still the validity and importance of the problem in this study hold.
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