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Abstract

Using a simple economic model in which social-distancing reduces contagion, we
study the implications of waning immunity for the epidemiological dynamics and
social activity. If immunity wanes, we find that COVID-19 likely becomes endemic
and that social-distancing is here to stay until the discovery of a vaccine or cure. But
waning immunity does not necessarily change optimal actions on the onset of the
pandemic. Decentralized equilibria are virtually independent of waning immunity
until close to peak infections. For centralized equilibria, the relevance of waning
immunity decreases in the probability of finding a vaccine or cure, the costs of infec-
tion (e.g., infection-fatality rate), the degree of partial immunity, and the presence of
other NPIs that lower contagion (e.g., quarantining and mask use). In simulations
calibrated to July 2020, our model suggests that waning immunity is virtually unim-
portant for centralized equilibria until at least 2021. This provides vital time for
individuals and policymakers to learn about immunity against SARS-CoV-2 before
it becomes critical.
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1 Introduction

We do not know yet the duration of immunity against severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2) causing coronavirus infectious disease 2019 (COVID-

19). But early evidence points to waning immunity against SARS-CoV-2 (Seow et al.,

2020) and we know that immunity against other coronaviruses wanes within two years

(Edridge et al., 2020; Huang et al., 2020; Kellam and Barclay, 2020).

If immunity against COVID-19 indeed wanes, then COVID-19 likely becomes en-

demic and herd immunity cannot be naturally reached. Therefore, ignoring waning

immunity may lead to costly policies with irreversible consequences. Despite these

risks, almost all the economics literature on the COVID-19 pandemic assumes perma-

nent immunity.1 Our paper fills this gap in the literature by assessing the implications

of waning immunity for decentralized and centralized equilibria in an economic model

of an epidemic.

In the model, decision makers are constrained by disease contagion and maximize

the difference between the utility from social activity and the cost of infection. The

utility from social activity captures, in a stylized way, all the payoffs from economic

and social actions that require physical proximity. Our approach is grounded in three

reasons.2 First, the main economic impact of the pandemic has been on sectors that

rely on physical proximity (Chetty et al., 2020). Second, there are also other significant

1In an already large and fast-growing economics literature addressing the COVID-19 pandemic, we are
only aware of three papers allowing for waning immunity. We contrast our paper with these three papers
below. The assumption of permanent immunity is also common outside of the economics literature: e.g.,
Ferguson et al. (2020) and Wang et al. (2020).

2Among various approaches to study epidemics in economic models, ours follows Farboodi, Jarosch
and Shimer (2020), Garibaldi, Moen and Pissarides (2020), Guimarães (2020), and Toxvaerd (2020) by di-

rectly modeling the choice of social activity. Another approach is to assume contacts are a function of
the level and type of i) consumption (Eichenbaum, Rebelo and Trabandt, 2020a,b; Krueger, Uhlig and
Xie, 2020) and/or ii) labor (Eichenbaum, Rebelo and Trabandt, 2020a,b; Glover et al., 2020). Yet another
approach is treating pandemics as exogenous shifts in state variables (e.g., human capital) (Boucekkine,
Diene and Azomahou, 2008). Such an approach resembles the MIT shock assessed by Guerrieri et al.
(2020) in the context of the COVID-19 pandemic. See also Philipson and Posner (1993), Kremer (1996),
Chakraborty, Papageorgiou and Pérez Sebastián (2010) and Greenwood et al. (2019) for an economic per-
spective of HIV and malaria.
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costs of constrained social activity such as anxiety, distress, fatigue, and domestic vio-

lence (Ravindran and Shah, 2020; Serafini et al., 2020). Third, contagion of virus causing

respiratory diseases is mostly unrelated with consumption and work (Ferguson et al.,

2006; Eichenbaum, Rebelo and Trabandt, 2020a) but can be influenced by behavior.

The epidemiological dynamics in the model is based on recurrence relations be-

tween three (main) health states: susceptible (S), infected (I), and recovered (R) with

the flow pattern S → I → R → S (and hence the conventional labeling SIRS).3 An SIRS

model nests both SIR and SIS models.4 The canonical SIR model (Kermack and McK-

endrick, 1927) assumes that agents are permanently immune after they recover from

the infection and is widely used in the economics literature addressing the COVID-19

pandemic (e.g., Alvarez, Argente and Lippi, 2020; Atkeson, 2020; Eichenbaum, Rebelo

and Trabandt, 2020a; Farboodi, Jarosch and Shimer, 2020). The canonical SIS model as-

sumes that agents are never immune and, thus, is employed in studying the economics

of recurrent diseases (e.g., Goenka and Liu, 2012, 2019; Goenka, Liu and Nguyen, 2014).

An SIRS model is between an SIR and an SIS model by allowing agents to be immune

but only temporarily. In light of the evidence on immunity against SARS-CoV-2 and

other coronaviruses, an SIRS model is warranted to study the COVID-19 pandemic

(Kellam and Barclay, 2020).

In the canonical SIRS model, immunity is a binary variable: agents are either im-

mune or not. And after agents lose immunity they become as susceptible as any other

susceptible agent. Waning immunity, however, does not necessarily mean that agents

who lose immunity are as unprotected as those who were never infected (Punt et al.,

2018; Huang et al., 2020).5 Immunological memory (e.g., antibody count) might not be

enough to avoid a reinfection but is likely enough for the body to react faster to a rein-

fection; put differently, agents can become partially immune after an infection. For this

3The flow from recovered to susceptible stems from waning immunity.
4For an accessible review of epidemiological models, see Hethcote (2000).
5In particular, Huang et al. (2020) report that individuals can be infected with the same human coron-

aviruses one year after first infection but with lower severity.
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reason, our SIRS block allows susceptible agents to differ among themselves based on

infection history. The heterogeneity in infection history and implied partial immunity

can be captured by distinct i) probabilities of being infected, ii) recovery speed, iii) viral

shedding, and iv) cost of infection. These possible distinctions are important as they

may prevent an endemic COVID-19.

In Section 4, we analyze the simplest case in which all susceptible agents, irrespec-

tive of their infection history, are alike. We reach two main conclusions. First, if im-

munological memory wanes, there is no vaccine or cure, and there is no major exoge-

nous change in the contagiousness of the virus, then COVID-19 becomes endemic be-

cause of the continuous flow of agents into the susceptible health state. In this scenario,

both a social planner and decentralized individuals choose to social-distance forever.

Second, the duration of immunity may not meaningfully change optimal choices in

the initial months of the pandemic. We find that the decentralized equilibria is virtu-

ally independent of waning immunity for more than six months and until close to peak

infections because agents abstract from how their actions affect the probability that

they are reinfected later. In slight contrast, we find that the centralized equilibria may

vary with waning immunity depending on the costs of infection and the probability of

finding a vaccine or cure.

An endemic COVID-19, induced by waning immunity, implies a higher present value

of infection costs than a non-endemic one. In response to these higher costs, the social

planner mandates further social-distancing. Yet, this extra social-distancing stemming

from waning immunity can be small in the short run. If a vaccine is expected in 18

months and the costs of infection reflect an infection-fatality rate of 0.64%, we find

that optimal centralized policies are almost independent of waning immunity for more

than 12 months. In this case, the short-term costs of infection are so high that the so-

cial planner severely constrains social activity to postpone those costs and wait for a

vaccine. As social activity is already highly constrained, the marginal cost for society

to further increase social-distancing is huge. Thus, the social planner finds that the
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expected costs due to the endemic steady-state are of little relative importance in the

short-term and almost does not react to them. In other words, when the short-term

costs of the pandemic are very large, waning immunity is relatively unimportant at the

early months of the pandemic.

If, on the other hand, the costs of infection are low (e.g., reflecting an infection-

fatality rate close to 0.2%), the costs of the pandemic are lower and the social planner

mandates less social-distancing. As the costs are lower, the marginal cost of social-

distancing are not prohibitively high, giving the social planner room for maneuver

to act early to the prospect of the endemic steady-state. Therefore, when immunity

wanes, the social planner prefers to mandate relatively more social-distancing in the

early months of the pandemic to reduce the costs of the endemic steady-state and gain

time for a vaccine to arrive. Finally, a lower probability of discovering a vaccine in-

creases the weight of future utility in the objective function in the same way as a lower

discount factor does. This has an entirely different effect depending on waning im-

munity. When immunity is permanent, future utility is relatively high as the pandemic

asymptotically disappears, which demotivates the social planner to postpone infec-

tions and mandate social-distancing. But, if immunity wanes in 10 months or two years

on average, the present value of the costs of an endemic COVID-19 increase when a vac-

cine is expected to arrive late. Therefore, the social planner prefers to social-distance

even more in the early days of the pandemic and act early to the problem of waning

immunity. In sum, waning immunity only meaningfully changes centralized policies

when the probability of discovering a vaccine is low or the societal marginal costs of

acting early to the endemic steady-state are not unbearably high.

In Section 5, we analyze the case in which immunity wanes but susceptible agents

differ based on infection history. Consistent with our previous results, if a vaccine is

expected in 18 months and the costs of infections reflect an infection-fatality rate of

0.64%, knowing whether susceptible agents differ based on infection history is not crit-

ical in the initial months of the epidemic. Furthermore, if agents that lost immunity are
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less likely to be infected or shed less virus, then COVID-19 does not become endemic.

In this scenario, lower costs of infection and lower probability of finding a vaccine lead

to markedly different choices in the short run. Thus, it is important to know whether

immunity wanes and whether susceptible agents notably differ based on infection his-

tory. Finally, we find that susceptible agents that were immune can be excessively active

from a social viewpoint, especially if they suffer much less from a reinfection, because

they abstract from the risk of infecting others. Thus, policymakers should be aware of

this extra source of risk if immunity wanes.

In Section 6, we change the starting date of the simulations. Our previous results

are based on initial conditions matching the start of the COVID-19 pandemic. In this

section, we account for the (epidemiological) state as of July 2020 as well as other non-

pharmaceutical interventions (NPIs) in place besides social-distancing (e.g., manda-

tory mask use and quarantining of identified infected individuals). We find that, even

if COVID-19 becomes endemic, the other NPIs in place allow for much more social

activity. Furthermore, learning how the infection history affects the protection of indi-

viduals against reinfections becomes less important as contagion falls substantially. In

fact, even a low probability of finding a vaccine or low costs of infection do not lead to

markedly different centralized responses for many months. We conclude that individ-

uals and policymakers have at least until 2021 to learn about the duration of immunity

before it becomes truly important for decision making.

In our last set of simulations, in Section 7, we consider a further robustness check

by changing our model to explicitly include vaccinated individuals. In this variant, the

date and pace of vaccination are known to all individuals at the onset of epidemic, and

vaccinated individuals are permanently immune. We find that the majority of our re-

sults regarding the importance of waning immunity are robust. We only find a clearer

difference between our baseline model and this variant when the costs of infection are

low (e.g., reflecting an infection-fatality rate close to 0.2%). In this case, if decision mak-

ers knew that vaccination would begin one year after SARS-COV-2 was identified, then
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the incentives to postpone infections are extremely large. Furthermore, very few re-

covered individuals would be expected to lose their immunity before being vaccinated.

Therefore, waning immunity becomes less important in the early days of the pandemic

even when the costs of infection are relatively low.

We are aware of three papers in the economics literature allowing for waning immu-

nity: Eichenbaum, Rebelo and Trabandt (2020b), Giannitsarou, Kissler and Toxvaerd

(2020), and Malkov (2020). These papers, however, differ from ours in crucial aspects

including the object of study, approach, and modeling choices. Eichenbaum, Rebelo

and Trabandt study the role of testing and quarantines in a model with health state un-

certainty and check the robustness of their findings if immunity wanes; thus, they do

not fully explore how the duration of immunity affects contagion in the context of the

current pandemic. Malkov focus on how waning immunity affects the epidemiologi-

cal dynamics during the COVID-19 pandemic, but he does not allow individuals and

the social planner to endogenously react in his simulations. Giannitsarou, Kissler and

Toxvaerd assess the centralized problem during the pandemic in case immunity wanes,

but they do not contrast the centralized and decentralized equilibria and their results

differ from ours due to modeling and calibration choices.6 In Section 4.2, we contrast

in more detail our results with those in the three papers.

2 Model

We build an economic model of an epidemic in which agents face a trade-off between

social activity and exposure to the virus. This trade-off results from the link between the

6There are three other relevant differences. As Eichenbaum, Rebelo and Trabandt and Malkov, Gian-

nitsarou, Kissler and Toxvaerd assume that all susceptible agents are alike irrespective of infection history.
And, as Eichenbaum, Rebelo and Trabandt, Giannitsarou, Kissler and Toxvaerd place their simulations at
the start of the pandemic and assume that only one non-pharmaceutical intervention is in place (testing

in the case of Eichenbaum, Rebelo and Trabandt and mandatory social-distancing in the case of Giannit-
sarou, Kissler and Toxvaerd). Section 6, in which we include the effects of other NPIs, thus, brings further
insights to policy discussions. Finally, in Giannitsarou, Kissler and Toxvaerd, the terminal date of the pan-
demic is certain, whereas it is uncertain in our baseline model and, in Section 7, we explicitly study the
roll out of vaccination and its implications for the epidemiological dynamics.
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epidemiological and utility-maximization blocks of the model. The link, in turn, stems

from our assumption that new infections depend on the number of susceptible and

infected agents and the social activity chosen by susceptible agents. The model is set

in discrete time. The population is constant and of measure one. In terms of notation,

we use upper-case letters to denote aggregate variables and the respective lower-case

letters to denote variables associated with one individual.

We distinguish agents that become susceptible after recovery from agents that were

never infected because the former, although no longer immune, may still have some

immunological memory and be partially immune. The remaining immunological mem-

ory may allow for a lower probability of infection, faster recovery, lower viral shedding,

and lower costs of infection. We refer to agents that were never infected as primary and

agents that were infected at least once as secondary. To further ease our exposition, we

use the index j ∈ {p, q}, when referring primary and secondary agents, respectively.

2.1 Epidemiological Block

Figure 1 summarizes the epidemiological block in our model. The population in period

t consists of five groups of agents: primary susceptible, Sp,t, primary infected, Ip,t, re-

covered, Rt, secondary susceptible, Sq,t, and secondary infected, Iq,t.
7 The number of

new infections for each type is given by

βjAj,tSj,tXt,

where βj is the measure of contagiousness for susceptible agents of type j with βq ≤ βp,

Aj,t ∈ [0, 1] is the aggregate social activity of susceptible agents of type j, and

Xt = Ip,t + σIq,t (1)

7Our baseline model does not include the possibility of COVID-19 related deaths. But in Appendix A we
show that the results of the models with and without deaths are essentially the same in the first six years
of the pandemic because the population size barely changes.
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is the (effective) number of infected agents. We adjust iq,t with σ ≤ 1 to allow secondary

infected individuals shedding less virus than primary infected ones.

Figure 1: States and Flows

The laws of motion governing the transitions between health states are the follow-

ing:

Sp,t+1 = (1− βpAp,tXt)Sp,t, (2)

Ip,t+1 = βpAp,tSp,tXt + (1− γp)Ip,t, (3)

Rt+1 =
∑

jγjIj,t + (1− α)Rt, (4)

Sq,t+1 = αRt + (1− βqAq,tXt)Sq,t, (5)

Iq,t+1 = βqAq,tSq,tXt + (1− γq)Iq,t, (6)

where γj is the probability that an infected individual of type j recovers and α is the

probability that a recovered individual loses immunity. If α = 0 and ap,t = 1 for all t, the

model reduces to the canonical SIR model. If α > 0, σ = 1, βp = βq, γp = γq, and aj,t = 1

for all j and t, the model reduces to the canonical SIRS model.8

2.2 Decentralized Problem

2.2.1 Utility Maximization

In this section, we detail the lifetime utility maximization problem of a primary sus-

ceptible agent. Agents derive utility from their social activity, a. The utility function,

8Under permanent immunity, α = 0, the number of secondary susceptible agents remains zero. Under
waning immunity, α > 0, with σ = 1, βp = βq, and γp = γq, identifying secondary agents is trivial.
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denoted by u(a) is single-peaked and its maximum is normalized to zero at a = 1. The

maximization problem of a primary susceptible agent is given by

max
{ap,t,aq,t}∞t=0

∑∞

t=0

∑

j
Λt

(

sj,tu(aj,t)− κjij,t

)

,

subject to

sp,t+1 = (1− βpap,tXt)sp,t,

ip,t+1 = βpap,tsp,tXt + (1− γp)ip,t,

rt+1 =
∑

jγjij,t + (1− α)rt,

sq,t+1 = αrt + (1− βqaq,tXt)sq,t,

iq,t+1 = βqaq,tsq,tXt + (1− γq)iq,t,

and the initial conditions for the state variables. sp,t, ip,t, rt, sq,t, iq,t are the probabili-

ties that the agent is in each health state in period t, and the constraints are the laws

of motion of these probabilities. Each agent is atomistic and takes the (effective) num-

ber of infected agents, Xt, as given; thus, in their choice of ap,t and aq,t, agents in the

decentralized equilibria do not internalize the externalities of their actions. Λ is the

discount factor and κj captures the costs of infection. As primary and secondary in-

fected agents may respond differently to the infection (e.g., differ in symptoms sever-

ity), we set κq ≤ κp. The decentralized optimum social activity is, then, governed by the

transversality conditions and

u′(aj,t) = βjXt(Vsj ,t − Vij ,t), (7)

Vsj ,t

Λ
= u(aj,t+1) + Vsj ,t+1 − βjaj,t+1Xt+1(Vsj ,t+1 − Vij ,t+1), (8)

Vij ,t

Λ
= −κj + Vij ,t+1 − γj(Vij ,t+1 − Vr,t+1), (9)

Vr,t

Λ
= Vr,t+1 + α(Vsq,t+1 − Vr,t+1), (10)

for both j ∈ {p, q} and Vz,t denotes the (shadow) value of the agent in state z ∈ {sp,

sq, ip, iq, r}. Eq. (7) summarizes the trade-off. Its left-hand side is the marginal util-
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ity of social activity while its right-hand side is expected marginal costs resulting from

the possibility of infection. Marginal costs depend on how likely they are exposed by

marginally increasing activity, βjXt. And it also depends on the change in the value

caused by exposure, which is always positive, Vsj ,t − Vij ,t > 0. Thus, susceptible agents

restrain their social activity, aj,t ≤ 1, to reduce exposure risk.

Eqs. (7-10), determining the behavior of primary agents, are symmetric along j.

Given that these equations do not depend on the probability of being in any health

state, the same equations also determine the behavior of secondary agents. Therefore,

for brevity, we do not present the utility maximization problem of secondary agents.

2.2.2 Decentralized Equilibrium

Decentralized equilibria are symmetric with ap,t = Ap,t and aq,t = Aq,t. Given initial val-

ues for the state variables, a decentralized equilibrium corresponds to a path of social

activities, {Ap,t, Aq,t}, the number of infected agents, Xt, state variables, {Sp,t, Sq,t, Ip,t,

Iq,t, Rt}, and shadow values, {Vsp,t, Vsq,t, Vip,t, Viq ,t, Vr,t}, that satisfy the transversality

conditions and Eqs. (1–10).

2.3 Centralized Problem

2.3.1 Utility Maximization

In this section, we present the maximization problem of the social planner. The social

planner chooses socially optimal activity by directly influencing aggregate variables. In

particular, the maximization problem of the social planner is given by

max
{Ap,t,Aq,t}∞t=0

∑∞

t=0

∑

j
Λt

(

Sj,tu(Aj,t)− κjIj,t

)

,

subject to Eqs. (1-6) and the initial conditions. Relative to the decentralized problem,

Eq. (1) is the additional constraint because the social planner internalizes how infected

individuals affect contagion; in other words, the social planner is aware of its ability to
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affect Xt, whereas individuals are not.9 The socially optimum social activity is, then,

governed by the transversality conditions and

u′(Aj,t) = βjXt(VSj ,t − VIj ,t), (11)

VSj ,t

Λ
= u(Aj,t+1) + VSj ,t+1 − βjAj,t+1Xt+1(VSj ,t+1 − VIj ,t+1), (12)

VIj ,t

Λ
= −κj + VIj ,t+1 − γj(VIj ,t+1 − VR,t+1)− σj

∑

jβjAj,t+1Sj,t+1(VSj ,t+1 − VIj ,t+1)

(13)

VR,t

Λ
= VR,t+1 + α(VSq ,t+1 − VR,t+1), (14)

for both j ∈ {p, q}, and σj =











1 if j = p,

σ if j = q.

Comparing this set of equations govern-

ing the optimal choice of the social planner with that governing the optimal choice of

agents in the decentralized problem (Eqs. 7-10), we can see that the only difference is

in the shadow values of the infected states, reflecting the externality that individuals

abstract from in decentralized equilibria. As a result, both VIp,t and VIq,t are lower than

Vip,t and Viq,t, which (ceteris paribus) tends to further restrain social activity relative to

decentralized equilibria. Part of our objective in this paper is to analyze how the pos-

sibility of recovered agents losing immunity distances decentralized and centralized

choices.

2.3.2 Centralized Equilibrium

Given the initial values for the state variables, a centralized equilibrium corresponds to

a path of social activities, {Ap,t, Aq,t}, the number of infected agents, Xt, state variables,

{Sp,t, Sq,t, Ip,t, Iq,t, Rt}, and shadow values, {VSp,t, VSq,t, VIp,t, VIq,t, VR,t}, that satisfy the

transversality conditions, Eqs. (1-6), and Eqs. (11-14).

9This key distinction between decentralized and centralized equilibria is well explained in Gersovitz
and Hammer (2004) and Rowthorn and Toxvaerd (2020).
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3 Calibration

We summarize our parameter choices in Table 1. Each period in the model corresponds

to one day. The discount factor includes both a time discount rate, ρ, and the probabil-

ity of finding a cure-for-all, δ, which is a shock that ends the epidemic instantaneously,

curing all infected individuals and/or granting permanent immunity to all.10 In partic-

ular, we set Λ = 1

1+ρ
1

1+δ
, ρ = 0.05/365, and δ = 0.67/365 reflecting a yearly discount

rate of 5% and the probability of finding the cure-for-all of 67% within a year (see, e.g.,

Alvarez, Argente and Lippi, 2020; Farboodi, Jarosch and Shimer, 2020).

Table 1: Benchmark Calibration

Discount factor: Λ = 1

1+0.05/365
1

1+0.67/365

Cost of infection: κp = κq = 28.44
Average number of days as infected: γ−1

p = γ−1
q = 18

Infectiousness: βp = βq = 2.4/18
Average number of days immune: α−1 = 750
Relative viral shedding of secondary infected: σ = 100%

As in Farboodi, Jarosch and Shimer (2020) and Guimarães (2020), the utility of social

activity is determined by:

u(a) = log(a)− a+ 1, (15)

which guarantees that u(a) is single-peaked with maximum at a = 1 and u(1) = u′(1) =

0. We also follow Farboodi, Jarosch and Shimer to calibrate the costs of infection, κp.

In particular, we proxy the costs of infection using the expected utility loss per day due

to the risk of dying when infected.11 Assuming that the value of statistical life is US$10

10In the model, a higher probability of finding a cure-for all implies a higher discount rate, reducing the
present value of the future costs of infection because the probability of infection and of requiring social-
distancing are lower in the future. In Section 7, we study a variant of the model without cure-for-all but
in which vaccination is known to begin at a predetermined date. Almost all our conclusions are robust to
this change.

11Our baseline model abstracts from demographics and COVID-19 related deaths and, thus, an infec-

tion does not materialize in death. Appendix A, however, shows that the models with and without these
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million and assessing how much agents would be willing to permanently reduce their

consumption to permanently lower the probability of dying by 0.1%, we find that the

value of life is 80000 in model units. The meta-analysis of Meyerowitz-Katz and Merone

(2020) suggests that about 0.64% of those infected with the virus, die. Thus, we set

κp = 512γp.

We follow Atkeson (2020) and most of the economics literature assessing the COVID-

19 pandemic and assume that infected individuals remain so for 18 days, γ−1
p = 18. To

calibrate βp, we follow Acemoglu et al. (2020) and assume βp = 2.4/18, implying a basic

reproduction number, R0, of 2.4. This number is relatively optimistic in light of, for ex-

ample, the R0 assumed in Alvarez, Argente and Lippi (2020) of 3.6.

At this stage, the duration of immunity against COVID-19 and how secondary agents

differ from primary agents is unknown. To calibrate the probability that recovered in-

dividuals lose immunity, we use the evidence regarding other coronaviruses surveyed

in Huang et al. (2020) and also the assumption in Eichenbaum, Rebelo and Trabandt

(2020b) and set α−1 = 1/750, implying that agents have immunity for about two years.

Regarding the remaining parameters, in our benchmark we simply assume that βq = βp,

γq = γp, κq = κp and σ = 100%. Therefore, our benchmark calibration implies a SIRS

model augmented with the endogenous choice of social activity.

We solve the model using a shooting algorithm as detailed in Garibaldi, Moen and

Pissarides (2020). As a starting point, we assume that 1 in a million agents are primary

infected, Ip = 1/106, and the remaining are primary susceptible.

4 Results

considerations deliver essentially the same results as long as the cost of infection and the cost of dying im-
ply the same expected cost when an agent becomes infected. Therefore, following this calibration strategy,
our model captures the effects of the risk of dying in a more stylized framework.
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4.1 Main Results

Panels A and B of Figure 2 present how a waning immunological memory affects op-

timal decentralized and centralized dynamics, respectively. The blue (solid) lines as-

sume our benchmark, i.e., agents are immune for two years on average. The green

(dashed) lines assume, as a lower bound and consistent with Huang et al. (2020) and

Kissler et al. (2020), that immunological memory lasts only 10 months. The red (dot-

dashed) lines assume, as an upper bound and as in the economics literature (e.g. Al-

varez, Argente and Lippi, 2020; Eichenbaum, Rebelo and Trabandt, 2020a; Farboodi,

Jarosch and Shimer, 2020), that immunity lasts forever (implying an SIR model).

Two of our findings in Figure 2 are striking. First, if immunological memory wanes

(α > 0), then in both centralized and decentralized equilibria, social activity is severely

and permanently curtailed until the discovery of a vaccine or cure. This results from

the continuous flow of agents from immune to susceptible, implying a continuous flow

from susceptible to infected and, therefore, a permanent exposure risk. Thus, if immu-

nity wanes, COVID-19 reaches an endemic steady-state. In the centralized equilibrium,

social activity stabilizes at about 55% lower than absent the epidemic. In the decentral-

ized equilibrium, social activity reaches its minimum after about 200 days and then

recovers slightly to its long run value, 30% lower than absent the epidemic. If agents

never lose immunity, α = 0, the results are very different. In this case, all agents return

to normal activity as infections asymptotically disappear. This happens faster, albeit

at a higher social cost, in the case of the decentralized equilibrium, leading to much

higher peak infections. Furthermore, in the decentralized equilibrium, approximately

60% of the agents are infected at least once within three years, which differs substan-

tially from about 5% in the centralized equilibrium.

Second, the underlying duration of immunity barely moves the initial dynamics of

epidemiological variables and social activity for around 200 days in the decentralized

and 400 days in the centralized equilibrium. This result is partly explained by the low

accumulation of secondary agents as few agents obtain and lose immunity in the initial
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Figure 2: The Role of Immunity Duration

Panel A: Decentralized Equilibrium
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Panel B: Centralized Equilibrium
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Note: Susceptible agents are Sp,t + Sq,t; infected agents are Ip,t + Iq,t; secondary agents are
Sq,t + Iq,t +Rt; primary activity is Ap,t (which, in this case, equals secondary activity, Aq,t);
and mean activity is Sp,tAp,t + Sq,tAq,t + Ip,t + Iq,t +Rt.

months of the epidemic even when immunity wanes after 10 months, α = 1/300. But

other factors play important roles, especially in centralized equilibria. In decentralized

equilibria, agents do not take into account how their actions, by affecting infections,

change the pace at which they might be reinfected. As a result, social activity in de-

centralized equilibria is mostly affected by the dynamics of infected agents. As soon
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as many agents start losing immunity and become susceptible and infected again, the

effects of waning immunity become visible in optimal social activities.

In centralized equilibria, however, the externalities of social activity are considered

in decision-making. The social planner knows that by reducing social activity, it low-

ers and postpones infections and, thereby, decreases the number of secondary agents

that lose immunity. Furthermore, the social planner is aware of the costs of the en-

demic steady-state. These two factors combined motivate the social planner to con-

strain social activity by more when waning immunity induces an endemic COVID-19.

Yet, surprisingly, in our benchmark case, the optimal centralized social activity is al-

most unmoved by the duration of immunity for 400 days.

The social planner aims to minimize the sum of the present value of the costs of

infection and of social-distancing. If immunity is permanent, Panel B of Figure 2 shows

that the best option to minimize social costs is to endure high social-distancing, post-

pone infections, and wait for the vaccine. If, on the other hand, immunity wanes, fu-

ture infection costs increase but their present value is substantially discounted because

the vaccine or cure is expected in 18 months. Furthermore, as social activity is heav-

ily constrained even if immunity is permanent, the marginal costs of social-distancing

are high and very sensitive to further increases in social-distancing due to the curva-

ture of the utility function. Put differently, the social planner lacks room to maneuver

to strongly react to waning immunity in the early months of the pandemic. These two

factors combined explain why waning immunity is relatively unimportant for many

months in determining optimal social-distancing.

To gain further insight, in Figure 3, we show how two key parameters change the

number of infected agents and social activity of primary agents in centralized equilib-

ria. Panel A depicts again the benchmark cases to ease comparison. Panel B depicts the

results when expected time to find a vaccine or cure is 4.5 years, implying δ is a third of

its benchmark value. Panel C depicts the results when the infection-fatality rate is ap-
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proximately 0.21%, implying κj is a third of its benchmark value. This figure shows that

waning immunity matters in these two deviations from benchmark in the centralized

equilibria.12 The results are particularly staggering in the case of low δ: in this scenario,

peak infections occur much earlier and is more than 20 times higher when immunity is

persistent than when immunity wanes.

Figure 3: The Role of Immunity Duration - Centralized Equilibria

Panel A: Benchmark
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Panel B: Low Probability of Discovering a Vaccine or Cure ( =0.22/365)
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Panel C: Low Costs of Infection ( =9.48)

0 500 1000 1500 2000

Days

0

0.02

0.04

0.06
Infected

 = 1/750

 = 1/300

 = 0

0 500 1000 1500 2000

Days

0.4

0.6

0.8

1
Primary Activity

Note: Infected agents are Ip,t + Iq,t; primary activity is Ap,t (which, in this case, equals sec-

ondary activity, Aq,t).

12Figure C1 in the Appendix shows that the way waning immunity affects decentralized equilibria relies
much less on κp and δ.

18



A lengthier period to discover a vaccine or cure, captured by a lower δ, implies that

the social planner must restrict social activity for more time to avoid infections and

wait for the vaccine or cure. We find that the corresponding increase in the present

value of social-distancing costs greatly exceeds the increase in the present value of the

costs of infection if immunity is permanent. Therefore, the social planner allows for

more infections. The opposite holds when immunity wanes. Technically, a lower δ re-

duces the discount factor, increasing the present value of the infection costs caused

by waning immunity and the endemic COVID-19. Therefore, the social planner reacts

even stronger to the pandemic when it emerges if immunity wanes and the vaccine is

expected later in time.

A reduction in the infection-fatality rate, captured by a lower, κj , implies less costs

of infection and, thus, more social activity whatever is α. But the rise in social activity

increases in the duration of immunity (i.e., decreases in α). When the costs of infec-

tion, κj , are lower, the implied point of the reduced social activity is under the flatter

range of the curved utility.13 Thus, the marginal cost of additional social-distancing is

also relatively low, increasing the room to maneuver of the social planner. Therefore,

the social planner acts stronger from the onset of the pandemic to reduce the costs of

an endemic COVID-19 and gain time for the discovery of a cure or vaccine. This differ-

ence in optimal choices lead to clearly different disease dynamics: the faster immunity

wanes, the more the social planner postpones and reduces peak infections.

In sum, waning immunity implies a persistent reduction in social activity either

individually chosen or mandated. But because individuals lack altruism, implying a

weaker link between choice and (re)infection, the early response to the pandemic in

decentralized equilibria is not dependent on waning immunity. In centralized equilib-

ria, however, waning immunity may affect the early response to the pandemic depend-

ing on the magnitude of the costs of infection and critically on how likely a vaccine or

13In an experiment (not reported), we varied the curvature of the utility function and find that the
changes in social activity brought by waning immunity decrease in the curvature.
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cure is expected to arrive. Yet, in our benchmark calibration, which we find plausible,

waning immunity barely affects early optimal choices of social activity in the central-

ized equilibria.

4.2 Discussion

In this section, we contrast our findings with the three papers in the economics liter-

ature that study waning immunity. Eichenbaum, Rebelo and Trabandt (2020b) study

the role of testing and quarantining in a model linking consumption and labor choices

to contagion. They also find that decentralized individuals permanently reduce their

activity (consumption and labor supply) due to the endemic steady-state caused by

waning immunity. Furthermore, their Figure 9 suggests that, for over a year, waning

immunity is virtually irrelevant for decentralized decisions. Yet, waning immunity af-

fects their centralized equilibria in a way different from ours because of the different

policy instruments considered. Their testing and quarantining polices rule out en-

demic steady states because asymptotically all individuals are continuously tested and

infected ones are quarantined. Therefore, waning immunity neither restricts social

planner’s actions nor permanently constrains economic activity in Eichenbaum, Re-

belo and Trabandt (2020b).

Giannitsarou, Kissler and Toxvaerd (2020) study the effects of waning immunity on

social-distancing policy. Notable differences between our paper and theirs are as fol-

lows. They assume that the pandemic ends in a finite number of years (by the discovery

of a vaccine), ruling out any endemic steady state. As a result, social activity returns to

normal in their simulations. Moreover, the costs of infection and social-distancing are

much lower in their model. They assume that the costs of infection are 10% lower out-

put by infected and zero output by deceased individuals. The costs of social-distancing

are quadratic and finite in a mandated full-lockdown, which provide a vast room to

maneuver for the social planner to act. Therefore, when immunity wanes, they obtain

deferment of peak infections and a negative relation between immunity duration and

mandated social distancing (similar to our results in the low cost of infection case, Fig-
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ure 3, Panel C).

Malkov (2020) studies how waning immunity affects the dynamics of an epidemio-

logical model under different calibrations of the basic reproduction number. He con-

cludes that until close to peak infections, waning immunity barely changes the dis-

ease dynamics. Although Malkov does not include endogenous decision making in his

model, his findings are relatively close to our findings in the decentralized equilibria

as waning immunity also only matters close to peak infections. But his findings differ

substantially from our results in the centralized equilibria. In this case, the social plan-

ner takes into account the future costs of waning immunity in his early response to the

pandemic, which in turn, leads to different disease dynamics.

5 Partial Immunity

So far, we have analyzed an SIRS model augmented with endogenous social activity. Us-

ing our benchmark calibration, in Figure 4, we illustrate how our results change when

secondary susceptible and infected agents differ from their primary counterparts in

three aspects. Figure 5 complements our illustration in Figure 4 by showing how our

results differ if δ and κp are low. Green (dashed) lines show the case in which secondary

susceptible agents are 75% less likely to be infected than primary susceptible agents;14

red (dot-dashed) lines show the case in which secondary infected individuals shed 75%

less virus than primary infected; yellow (dotted) lines show the case in which the costs

of infection are 75% lower for secondary agents; and blue (solid) lines show the bench-

mark. In the first two cases, even though all agents eventually lose immunity, asymp-

totic R0 is below 1 and, thus, the epidemic will asymptotically disappear as secondary

agents gradually replace primary agents. In the case of κq = 0.25κp, the cost of a rein-

fection is much lower but the flows between states do not asymptotically converge to

zero. That is, asymptotically, individuals are continuously infected but suffering much

less than in the beginning of the epidemic. In this case, COVID-19 converges to an en-

14This implies a reduction of 75% in R0. Different combinations of changes in βj and γj leading to the
same fall in R0 imply similar results.
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demic steady-state, which is similar to that of other coronaviruses giving rise to flu-like

symptoms (Edridge et al., 2020; Huang et al., 2020; Kellam and Barclay, 2020).

Figure 4: Partial Immunity
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Panel B: Centralized Equilibrium
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Note: Homogeneous refers to the case in which secondary and primary agents are alike.
Susceptible agents are Sp,t + Sq,t; infected agents are Ip,t + Iq,t; secondary agents are Sq,t +
Iq,t + Rt; primary activity is Ap,t; secondary activity is Aq,t; and mean activity is Sp,tAp,t +
Sq,tAq,t + Ip,t + Iq,t +Rt.

Figure 4 and Panel A in Figure 5 show that if secondary and primary agents dif-

fer, there are little changes to the optimal social activity of primary susceptible agents
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Figure 5: Partial Immunity - Centralized Equilibria

Panel A: Benchmark
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Panel B: Low Probability of Discovering a Vaccine or Cure ( =0.22/365)
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Panel C: Low Costs of Infection ( =9.48)
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Note: Homogeneous refers to the case in which secondary and primary agents are alike.
Infected agents are Ip,t + Iq,t; primary activity is Ap,t; secondary activity is Aq,t.

for approximately a year and a half in both centralized and decentralized equilibria.

This contributes to a similar path for the number of susceptible (both primary and sec-

ondary) agents for many months. Thus, as in the previous section, our benchmark

calibration implies that any uncertainty caused by waning immunity is not much rele-

vant for several months after the start of the epidemic.

Our results in the centralized equilibria depend, again, on δ and κp. When it is un-

likely to discover a vaccine or cure (low δ), the early response to the pandemic critically
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depends on whether COVID-19 becomes endemic. If it becomes endemic (benchmark

and κq = 0.25κp), the social planner restricts social activity further as the present value

of the costs of the endemic steady-state are larger. But if COVID-19 does not become

endemic (βq = 0.25βp or σ = 0.25), the social planner is more lenient. A low cost of

infection of primary agents, κp, grants room for maneuver for the social planner to act

early to endemic steady-states due to the curvature of the utility function. Therefore,

mandated social-distancing visibly increases with the overall costs of the pandemic in

Panel C of Figure 5.

The optimal behavior of secondary susceptible agents is much different from that

of primary susceptible agents irrespective of δ and κp. If it is unlikely that secondary

agents are reinfected (βq is low), they restrain social activity by much less than primary

ones, which is problematic from a social perspective because they expose other agents

(especially primary) significantly. Thus, even if susceptible agents are unlikely to be

reinfected, policymakers should be aware that these agents are likely to be excessively

active.

This problem of excessive social activity in the decentralized equilibrium is even

worse if κq = 0.25κp. As agents are not altruistic, they only care about their own risks. A

lower cost of reinfection then significantly lowers their incentives to social-distance. In

contrast, the social planner would like secondary agents to substantially constrain their

activity because their viral shedding and probability of infection are unchanged and

many susceptible agents are still primary susceptible.15 The scenario of κq = 0.25κp

also shows that agents asymptotically constrain social activity, even in the decentral-

ized equilibrium, because COVID-19 becomes endemic and the costs of infection re-

main high (these costs imply a probability of dying of 0.16% in the benchmark). If

these costs were lower, closer to those of endemic human coronaviruses, agents in a

15In this regard, secondary agents are similar to young agents in models that breakdown agents based
on age (Acemoglu et al., 2020; Gollier, 2020). In those models, because young agents know that they are
less likely to suffer if infected, they are too active from a social perspective as they increase exposure of
older individuals.
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decentralized equilibrium would behave almost as if there was no virus which is what

we observed until the COVID-19 pandemic.

The results are very different if σ = 0.25. Recall that σ measures how likely sec-

ondary infected shed virus onto susceptible. Since σ pertains only to the externality

caused by secondary agents’ actions, it does not affect decisions in the decentralized

equilibrium: secondary susceptible agents act as primary susceptible agents. A social

planner, in contrast, would allow secondary agents to enjoy relatively more social ac-

tivity. Both primary and secondary agents, however, benefit indirectly from the lower

viral-shedding of secondary infected agents, which allows them to enjoy more social

activity, converging asymptotically to full social activity in both equilibria.

6 The Role of Initial Conditions and Additional NPIs

Following the SARS-CoV2 outbreak, governments around the world have combined

several NPIs to change the natural course of the pandemic. To account for this change,

in this section, we base our simulations on initial conditions matching the (epidemio-

logical) state of the COVID-19 pandemic on 1 July 2020.

In the (new) initial conditions, we accommodate a compromise between the epi-

demiological state in Canada, the US, and four European countries, France, Italy, Spain,

and the UK. On 1 July 2020, the fraction of infected population was approximately

0.08% in Canada, 0.46% in the US, 0.09% in France and 0.02% in Italy.16 These num-

bers are likely understated as authorities fail to test and identify many of infected and

especially asymptomatic people (see references in Stock, 2020 for evidence on the pro-

portion of asymptomatic). Bearing in mind the understatement and cross-country dif-

ferences in the numbers, we find a compromise at Ip = 0.2%. To set the initial number

of recovered agents, we look at the evidence from antibody surveys. In France, Spain,

and the UK, antibody surveys suggest that slightly more than 5% of the population has

16Statistics consulted in https://coronavirus.jhu.edu/map.html on 2 July 2020.
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antibodies against SARS-CoV-2.17 Given that the fraction of infected population ratio is

two to three times higher in the US than in France, Spain, and the UK, we find a com-

promise at R = 6%.

In all countries that we examined for this section, identified infected individuals are

quarantined. This NPI naturally reduces contagion and we model it as an exogenous

reduction in the social activity of some infected agents. In particular, we assume that

50% of infected agents, which is within the current estimated range of asymptomatic

cases, are identified and cannot enjoy maximum social activity. In case infected in-

dividuals are identified, they enjoy 40% of normal social activity, which increases the

expected costs of infection. Thus, average social activity of infected individuals falls by

30%. As of 1 July 2020, other NPIs, like mandatory mask use, differ across countries. In

Canada, although some communities mandate mask use in public transport, the Pub-

lic Health Agency of Canada merely recommends mask use when physical distancing is

not consistently possible. In France and the UK, mask use is only mandatory in public

transport, whereas in Spain, it is mandatory even in open-air spaces if it is not possible

to maintain physical distance.18 In our model, we treat mask use (mandatory or not)

as an exogenous reduction in contagiousness, βp and βq, by 30%. In sum, these NPIs

reduce βp and βq by slightly over 50%.19

We depict the results in Figures 6 and 7. Blue (solid) lines assume the benchmark

values for the rest of the parameters. Green (dashed) lines assume that agents are

permanently immune. Red (dot-dashed) lines assume that in their contagiousness

and cost of infection, secondary agents differ substantially from primary agents: βq =

0.25βp, σ = 0.25, and κq = 0.25κp.20 Compared to our previous simulations, the other

17See the ONS COVID-19 Infection Survey for the UK; for France and Spain, see Salje et al. (2020) and
Pollán et al. (2020).

18Since July 2020, countries have changed their mask-using rules. For example, France, UK, and some
provinces in Canada have mandated mask use in indoor public places.

19Crucially, R0 is still above one as the pandemic would asymptotically disappear if R0 < 1. But R0
permanently below one seems unlikely as pointed by the second wave of infections in Australia and South
Korea.

20In these simulations, we assume that the initial fraction of secondary susceptible and infected indi-
viduals is zero.
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NPIs significantly elevate social activity because of the fall in contagiousness. Further-

more, the simulations suggest that individuals and policymakers do not need to know

the duration of immunity and how secondary agents differ from primary ones until at

least 2021 even if δ andκp are low.21 Thus, the combination of lower contagiousness and

relatively high initial infections reduce the relevance of waning immunity even in cen-

tralized equilibria, making the social planner less responsive to future infection costs.

This suggests that other NPIs provide substantial extra time to learn about the dura-

tion of immunity. Yet, given the implications of the costs of infection for social activity,

and consistent with Hall, Jones and Klenow (2020), learning about the actual infection-

fatality rate seems highly important.

7 The Role of Vaccination

The calibration of the discount rate in our model assumes that a vaccine or cure might

be found, instantaneously ending the pandemic. We share this assumption with Far-

boodi, Jarosch and Shimer (2020) and, to some extent, with, e.g., Giannitsarou, Kissler

and Toxvaerd (2020), who assume that the pandemic exogenously ends at some future

date. Yet, the pandemic does not end immediately when a vaccine is invented as it takes

time to vaccinate the population; furthermore, as the share of the vaccinated popula-

tion increases over time, the epidemiological dynamics can change.

Because of these considerations, we now assess a variant of our model in which

the discount rate only reflects the time discount rate but agents might be vaccinated.

We assume that the first approved vaccine is rolled out τ periods after the start of the

pandemic. From period τ onwards, a proportion υ of recovered and (primary and

secondary) susceptible individuals is vaccinated every period; thus, (primary and sec-

ondary) infected agents do not have access to the vaccine until they recover (because

the vaccine does not cure). Furthermore, τ and υ are known to all agents from the be-

21Although there are slightly visible differences in terms of optimal primary activity if δ and κp are low,
the implied dynamics of infected individuals is almost unchanged. Optimal secondary activity depends

much more on the scenario for waning immunity, but there are very few agents that are secondary sus-
ceptible.
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Figure 6: Different Initial Conditions and Other NPIs
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Note: Optimistic refers to the case in which βq = 0.25βp , σ = 0.25, and κq = 0.25κp .
Susceptible agents are Sp,t + Sq,t; infected agents are Ip,t + Iq,t; secondary agents are
Sq,t + Iq,t + Rt; primary activity is Ap,t; secondary activity is Aq,t; and mean activity is

Sp,tAp,t + Sq,tAq,t + 0.7(Ip,t + Iq,t) +Rt.

ginning of the pandemic. Finally, we assume that the vaccine is permanently and en-

tirely effective in protecting vaccinated individuals and in eliminating their viral shed-

ding; in other words, vaccinated agents are permanently immune.22

22This assumption is arguably strong especially given that we do not know the extent of immunity of
vaccinated agents. Yet, some approved vaccines are very effective (in excess of 90%) and, if needed, they
might be readministered later, allowing for, at least approximately, permanent immunity.
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Figure 7: Different Initial Conditions and Other NPIs - Centralized Equilibria

Panel A: Benchmark
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Panel B: Low Probability of Discovering a Vaccine or Cure ( =0.22/365)

Panel C: Low Costs of Infection ( =9.48)
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Note: Optimistic refers to the case in which βq = 0.25βp , σ = 0.25, and κq = 0.25κp . Infected
agents are Ip,t + Iq,t; primary activity is Ap,t; secondary activity is Aq,t.

Figure 8 depicts the states and flows in this variant of our model, while Appendix

B offers technical details about it. Figure 9 summarizes our results in the centralized

equilibrium, in which we assume that τ = 365 and υ = 1/300 based on recent events.

This implies that after one year a vaccine starts to be administered and a non-infected

individual is vaccinated within an additional 10 months on average. Panel A, which

reports the results using our benchmark calibration, shows that the pace of waning im-

munity is virtually unimportant for the optimal decision of the social planner, in line
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with the results of the baseline model. Given that a vaccine is known to arrive relatively

early in the pandemic, the motivation to postpone infections is very high, rendering

the risk of reinfections relatively unimportant.

Figure 8: States and Flows with Vaccinations

Panel B, in which we report the results of this variant when a vaccine is only admin-

istered about three years after the beginning of the pandemic, is also in line with the

results of the baseline model. If we compare this panel with Panel B in Fig. 3, which

assumes a low probability of finding an instantaneous cure-for-all is relatively low, we

can easily see the similarities in the share of infected individuals. There are, however,

natural differences in terms of activity because herd immunity is known to be reached

after approximately 1500 days as a result of mass vaccination.

The case in which the model with vaccinations delivers clearly different results when

compared with the baseline model is when the costs of infection are low (a third of the

value in benchmark). In this case, waning immunity is again unimportant for the social

planner and it barely changes primary activity relative to benchmark. The reason for

this result is that vaccines are known to be available within just one year from the be-

ginning of the pandemic. Thus, virtually no recovered individual is expected to lose im-

munity (even when α = 1/300) before being vaccinated and the incentives to postpone

infections are extremely large. We have, however, experimented with other calibrations
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Figure 9: The Role of Immunity Duration - Centralized Equilibria

A: Benchmark
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Note: Infected agents are Ip,t + Iq,t; primary activity is Ap,t (which, in this case, equals sec-
ondary activity, Aq,t).

(not reported) and we find that waning immunity is important in the early days of the

pandemic in a scenario with an even lower κ or in a scenario combining a low κ and

slightly higher τ . In these scenarios, as in our baseline model, the social planner has

more room to maneuver to demand higher social-distancing in the early days of the

pandemic.

31



8 Concluding Remarks

It is likely that immunity against COVID-19 eventually wanes and recovered individuals

face the risk of a reinfection (Edridge et al., 2020; Huang et al., 2020; Kellam and Barclay,

2020; Seow et al., 2020). This scenario is especially problematic if COVID-19 becomes

endemic as other human endemic coronaviruses. We show that without the discovery

of a vaccine or cure, COVID-19 reaches an endemic steady-state and social-distancing

is here to stay. But, on the bright side, we also show that optimal decentralized and

centralized choices do not necessarily depend on waning immunological memory for

many months following the initial outbreak/contagion. This is especially the case if a

vaccine is expected early in the pandemic, the costs of infection are already large in

the short run, and other NPIs that lower contagiousness are in place. Before making

irreversible decisions, individuals and policymakers seem to have time to learn more

about immunological memory against SARS-CoV-2 and answer the call for serological

studies from Kellam and Barclay (2020), Kissler et al. (2020), and Lerner et al. (2020).

Yet, in 6-12 months, without a vaccine or cure, we do need to know more about

how antibodies and T-cells defend the human body against SARS-CoV-2. In partic-

ular, we must know how long immunity lasts and whether individuals that were in-

fected (secondary agents) differ substantially from those that were never infected (pri-

mary agents). The longer immunity lasts, the less demanding should social-distancing

be. And, in the limit, if immunity lasts a lifetime, then COVID-19 does not reach an

endemic steady-state and social-distancing will sooner or later be unwarranted. Fur-

thermore, if secondary agents may be reinfected but are somewhat protected against

the virus, then COVID-19 may not become endemic. Yet, the way in which secondary

agents differ from primary agents is crucial to design policy. For example, if most of the

gains from the additional protection are private – because secondary agents are less

likely to die or less likely to be reinfected – then secondary agents are excessively active

from a social viewpoint. If, on the other hand, most of the gains from the additional

protection are social – because secondary agents shed less virus – then the decentral-
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ized and centralized equilibria are closer and less social-planning is required.

Even though most of the economics literature assumes permanent immunity, this

simplification may not have dire consequences in the short run. If a vaccine or cure

arrives early in the pandemic, the costs of infection are not small, and other NPIs are

in place, then our model suggests that the optimal response in the initial months of the

pandemic is virtually independent of waning immunity. The same is true if secondary

agents, despite no longer immune, develop a strong protection against SARS-CoV-2 or

shed much less virus. But, if these conditions do not hold, many of the policy prescrip-

tions need to be revised as they rely on the possibility of herd immunity.
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A Birth and deaths

In this appendix, we present a variant of our model including exogenous births and

deaths as well as COVID-19 related (endogenous) deaths. The results of this variant

provide a robustness check of the results in the baseline model.

Figure A1: States and Flows with Vaccinations

A.1 Epidemiological Block

The epidemiological block of the model is given by:

Sp,t+1 = (1− βpAp,tXt − d)Sp,t + bNt, (A1)

Ip,t+1 = βpAp,tSp,tXt + (1− γp − d)Ip,t, (A2)

Rt+1 =
∑

jγj(1− πj)Ij,t + (1− α− d)Rt, (A3)

Sq,t+1 = αRt + (1− βqAq,tXt − d)Sq,t, (A4)

Iq,t+1 = βqAq,tSq,tXt + (1− γq − d)Iq,t, (A5)

Nt = Sp,t + Ip,t +Rt + Sq,t + Iq,t, (A6)

Dt+1 = Dt +
∑

jγjπjIj,t + dNt.

There are only three differences relative to the epidemiological block in the baseline

model. First, new agents are born every period and become primary susceptible; these
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newborns sum to bNt, where Nt represents the population and b is the birth rate per

period. Second, a proportion d of the individuals in each health state die for exogenous

reasons every period; this is represented by an outflow from all health states to dead,Dt.

Third, COVID-19 related deaths are modeled as a flow from (primary and secondary)

infected agents, Ip,t and Iq,t, to dead; in particular, we assume that a proportion γjπj of

infected agents of type j die due to the infection while γj(1− πj) recover.

A.2 Decentralized Problem

A.2.1 Utility Maximization

The lifetime utility maximization problem of a primary susceptible agent changes for

two reasons. One is that we explicitly model the cost of infection as the cost associated

with the risk of dying, i.e., the cost of infection is γjπjκ̄j , which equals the value of life,

κ̄j , multiplied by the probability that an infected agent dies, γjπj . Yet, as explained

below, we choose κ̄j such that the results of this variant of the model are comparable to

those of the baseline model (i.e., κj in the baseline model equals γjπjκ̄j in this variant).

The maximization problem is given by

max
{ap,t,aq,t}∞t=0

∑∞

t=0

∑

j
Λt

(

sj,tu(aj,t)− γjπj κ̄jij,t

)

,

subject to

sp,t+1 = (1− βpap,tXt − d)sp,t + bnt,

ip,t+1 = βpap,tsp,tXt + (1− γp − d)ip,t,

rt+1 =
∑

jγj(1− πj)ij,t + (1− α− d)rt,

sq,t+1 = αrt + (1− βqaq,tXt − d)sq,t,

iq,t+1 = βqaq,tsq,tXt + (1− γq − d)iq,t,

nt = sp,t + ip,t + rt + sq,t + iq,t,
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and the initial conditions. The decentralized optimum social activity is, then, governed

by the transversality conditions and

u′(aj,t) = βjXt(Vsj ,t − Vij ,t), (A7)

Vsj ,t

Λ
= u(aj,t+1) + bVsp,t+1 + (1− d)Vsj ,t+1 − βjaj,t+1Xt+1(Vsj ,t+1 − Vij ,t+1), (A8)

Vij ,t

Λ
= (1− d)Vij ,t+1 + bVsp,t+1 − γj(πjκ̄j + Vij ,t+1 − (1− πj)Vr,t+1), (A9)

Vr,t

Λ
= (1− d)Vr,t+1 + bVsp,t+1 + α(Vsq ,t+1 − Vr,t+1), (A10)

for both j ∈ {p, q}. Again, these equations do not depend on the (subjective) proba-

bility of being in any health state, implying that the same equations also determine the

behavior of secondary agents.

A.2.2 Decentralized Equilibrium

Decentralized equilibria are symmetric with ap,t = Ap,t and aq,t = Aq,t. Given initial val-

ues for the state variables, a decentralized equilibrium corresponds to a path of social

activities, {Ap,t, Aq,t}, the number of infected agents, Xt, state variables, {Sp,t, Sq,t, Ip,t,

Iq,t, Rt, Nt}, and shadow values, {Vsp,t, Vsq,t, Vip,t, Viq ,t, Vr,t}, that satisfy the transversal-

ity conditions, Eq. (1), and Eqs. (A1–A10).

A.3 Centralized Problem

A.3.1 Utility Maximization

In this section, we present the maximization problem of the social planner. The social

planner chooses socially optimal activity by directly influencing aggregate variables. In

particular, the maximization problem of the social planner is given by

max
{Ap,t,Aq,t}∞t=0

∑∞

t=0

∑

j
Λt

(

Sj,tu(Aj,t)− γjπjκ̄jIj,t

)

,
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subject to Eqs. (1, A1–A6) and the initial conditions. The socially optimum social activ-

ity is, then, governed by the transversality conditions and

u′(Aj,t) = βjXt(VSj ,t − VIj ,t), (A11)

VSj ,t

Λ
= u(Aj,t+1) + bVSp,t+1 + (1− d)VSj ,t+1 − βjAj,t+1Xt+1(VSj ,t+1 − VIj ,t+1), (A12)

VIj ,t

Λ
= (1− d)VIj ,t+1 + bVSp,t+1 − γj(πj κ̄j + VIj ,t+1 − (1− πj)VR,t+1)

− σj
∑

jβjAj,t+1Sj,t+1(VSj ,t+1 − VIj ,t+1) (A13)

VR,t

Λ
= (1− d)VR,t+1 + bVSp,t+1 + α(VSq ,t+1 − VR,t+1), (A14)

for both j ∈ {p, q}, and σj =











1 if j = p,

σ if j = q.

A.3.2 Centralized Equilibrium

Given initial values for the state variables, a centralized equilibrium corresponds to a

path of social activities, {Ap,t, Aq,t}, the number of infected agents, Xt, state variables,

{Sp,t, Sq,t, Ip,t, Iq,t, Rt}, and shadow values, {VSp,t, VSq,t, VIp,t, VIq,t, VR,t}, that satisfy the

transversality conditions, Eq. (1), Eqs. (A1–A6), and Eqs. (A11–A14).

A.4 Calibration

The calibration of this variant of the model is mostly identical to that in Table 1 as we

want to dissect solely the implications of birth and deaths in the model. Therefore, we

set κ̄j = 512/0.0064 = 80000 and πj = 0.0064 (based on Meyerowitz-Katz and Merone,

2020) as our benchmark.

Regarding the two new parameters, b (birth rate) and d (death rate), we rely on the

calibration in Kissler et al. (2020), who use the US as a reference country. In the US,

births sum to 3.8 million and the population is 330 million; thus, we set b = 3.8
330

1

365
. And

the expected lifespan in the US is 80 years, implying d = 1

80

1

365
.
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A.5 Results

Figures A2 and A3 contrast the results of the baseline model with those of the variant

with births and deaths under various calibrations of the model in the centralized and

decentralized equilibrium, respectively. The results under the two variants of the model

are essentially the same, particularly in the first 1000 days of the pandemic. In separate

experiments (not reported), we find an even clearer overlap if b = d = 0.

The reason for the huge similarity in the results is that the size of the population is

almost trendless and COVID-19 related deaths represent only a tiny proportion of the

population. This results in part from the relatively low probability of dying (0.64%) and

immunity lasting 24 months (in the experiments reported; we also experimented with

α = 1/300 and the conclusions remain unchanged). But it mostly results from social-

distancing in both decentralized and centralized equilibria that greatly curb infections

and COVID-19 related deaths.

If we study longer time horizons (especially beyond 2000 days), however, then births

and deaths start to play a clearer role in affecting infections. Then, as the population

size has a negative trend, contacts and infections tend to fall in the model because we

assume mass-action dynamics. If, alternatively, we had frequency-dependent dynam-

ics (in which, Xt = (Ip,t + σIq,t)
1

Nt
instead of Xt = Ip,t + σIq,t), the similarity between

the two variants would arguably be even larger in the early days of the pandemic.

All these results, together with the fact that we mostly focus on the early response

to the pandemic, justify our choice of the more stylized variant of the model (without

births and deaths) as our baseline as long as κj reflects the costs of dying.

44



Figure A2: Baseline Vs Birth Death Variant - Centralized Equilibria

A: Benchmark
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B: Low Probability of Discovering a Vaccine or Cure ( =0.22/365)
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Note: Infected agents are Ip,t+ Iq,t; primary activity is Ap,t (which equals secondary activity,
Aq,t, in all panels except D). Optimistic partial immunity refers to the case in which βq =
0.25βp , σ = 0.25, and πq = 0.25πp . Bas. stands for the baseline model and B&D stands for
the model with births and deaths presented in this appendix.
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Figure A3: Baseline Vs Birth Death Variant - Decentralized Equilibria

A: Benchmark
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B: Low Probability of Discovering a Vaccine or Cure ( =0.22/365)
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D: Optimistic Partial Immunity

0 500 1000 1500 2000

Days

0

0.01

0.02

0.03
Infected

Bas. ( =1/750)

B & D ( =1/750)

0 500 1000 1500 2000

Days

0.4

0.6

0.8

1
Primary Activity

Note: Infected agents are Ip,t+ Iq,t; primary activity is Ap,t (which equals secondary activity,
Aq,t, in all panels except D). Optimistic partial immunity refers to the case in which βq =
0.25βp , σ = 0.25, and πq = 0.25πp . Bas. stands for the baseline model and B&D stands for
the model with births and deaths presented in this appendix.
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B Model Featuring Vaccination

B.1 Epidemiological Block

Most of the epidemiological block of the model is unchanged relative to the baseline

model. The laws of motion governing the transitions between health states are the fol-

lowing:

Sp,t+1 = (1− βpAp,tXt − υt)Sp,t, (B1)

Ip,t+1 = βpAp,tSp,tXt + (1− γp)Ip,t, (B2)

Rt+1 =
∑

jγjIj,t + (1− α− υt)Rt, (B3)

Sq,t+1 = αRt + (1 − βqAq,tXt − υt)Sq,t, (B4)

Iq,t+1 = βqAq,tSq,tXt + (1− γq)Iq,t, (B5)

(B6)

where υt =











0 if t < τ,

υ if t ≥ τ

is the share of non-infected agents vaccinated at time t.

B.2 Decentralized Equilibrium

The objective function in the decentralized equilibrium is unchanged by explicitly con-

sidering vaccinated individuals as it is pointless to constrain activity when vaccinated

and the value of being in this state is zero (i.e., not negative as for the other states). Yet,

the constraints of the problem change according to the change to the epidemiologi-

cal block of the model. This, in turn, implies that the solution to the optimal control
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problem is given by

u′(aj,t) = βjXt(Vsj ,t − Vij ,t), (B7)

Vsj ,t

Λ
= u(aj,t+1) + (1− υt)Vsj ,t+1 − βjaj,t+1Xt+1(Vsj ,t+1 − Vij ,t+1), (B8)

Vij ,t

Λ
= −κj + Vij ,t+1 − γj(Vij ,t+1 − Vr,t+1), (B9)

Vr,t

Λ
= (1− υt)Vr,t+1 + α(Vsq ,t+1 − Vr,t+1), (B10)

for both j ∈ {p, q}. Decentralized equilibria are symmetric with ap,t = Ap,t and aq,t =

Aq,t. Given initial values for the state variables, a decentralized equilibrium corre-

sponds to a path of social activities, {Ap,t, Aq,t}, the number of infected agents, Xt, state

variables, {Sp,t, Sq,t, Ip,t, Iq,t, Rt}, and shadow values, {Vsp,t, Vsq,t, Vip,t, Viq ,t, Vr,t}, that

satisfy the transversality conditions, Eq. (1), and Eqs. (B1–B10).

B.3 Centralized Equilibrium

In the centralized equilibrium, similar to the decentralized equilibrium, the change in

the constraints implies that the solution to the optimal control problem is given by

u′(Aj,t) = βjXt(VSj ,t − VIj ,t), (B11)

VSj ,t

Λ
= u(Aj,t+1) + (1− υt)VSj ,t+1 − βjAj,t+1Xt+1(VSj ,t+1 − VIj ,t+1), (B12)

VIj ,t

Λ
= −κj + VIj ,t+1 − γj(VIj ,t+1 − VR,t+1)− σj

∑

jβjAj,t+1Sj,t+1(VSj ,t+1 − VIj ,t+1)

(B13)

VR,t

Λ
= (1− υt)VR,t+1 + α(VSq ,t+1 − VR,t+1), (B14)

for both j ∈ {p, q}, and σj =











1 if j = p,

σ if j = q.

. Given initial values for the state vari-

ables, a centralized equilibrium corresponds to a path of social activities, {Ap,t, Aq,t},

the number of infected agents, Xt, state variables, {Sp,t, Sq,t, Ip,t, Iq,t, Rt}, and shadow

values, {VSp,t, VSq ,t, VIp,t, VIq,t, VR,t}, that satisfy the transversality conditions, Eq. (1),
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Eqs. (B1–B5), and Eqs. (B11–B14).
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C Robustness Checks for Decentralized Equilibria

Figure C1: The Role of Immunity Duration - Decentralized Equilibria

Panel A: Benchmark
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Panel B: Low Probability of Discovering a Vaccine or Cure ( =0.22/365)
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Panel C: Low Costs of Infection ( =9.48)
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Note: Infected agents are Ip,t + Iq,t; primary activity is Ap,t (which, in this case, equals sec-

ondary activity, Aq,t).
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Figure C2: Partial Immunity - Decentralized Equilibria

Panel A: Benchmark
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Panel B: Low Probability of Discovering a Vaccine or Cure ( =0.22/365)
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Panel C: Low Costs of Infection ( =9.48)
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Note: Homogeneous refers to the case in which secondary and primary agents are alike.
Infected agents are Ip,t + Iq,t; primary activity is Ap,t; secondary activity is Aq,t.
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Figure C3: Different Initial Conditions and Other NPIs - Decentralized Equilibria

Panel A: Benchmark
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Panel B: Low Probability of Discovering a Vaccine or Cure ( =0.22/365)

Panel C: Low Costs of Infection ( =9.48)
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Note: Optimistic refers to the case in which βq = 0.25βp , σ = 0.25, and κq = 0.25κp . Infected
agents are Ip,t + Iq,t; primary activity is Ap,t; secondary activity is Aq,t.
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