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Abstract  

Background and Objectives: The traditional pain measures are qualitative and inaccurate. Therefore, electroencephalography 

(EEG) signals have been recently used and analyzed to differentiate pain from no-pain state. The challenge is emerged when the 

accuracy of these classifiers is not enough for differentiating between different pain levels. In this paper, we demonstrate that EEG-

based functional connectivity graph is remarkably changed by increasing the pain intensity and therefore, by deriving informative 

features from this graph at each pain level, we finely differentiate between five levels of pain.   

 

Methods: In this research, 23 subjects (mean age: 22 years, Std: 1.4) are voluntarily enrolled and their EEG signals are recorded 

via 29 electrodes, while they execute the cold pressure test. The signals are recorded two times from each case, while subjects 

press a button to annotate the EEGs into five pain levels. After denoising the EEGs, the brain connectivity graph in the Alpha band 

are estimated using partial directed coherence method in successive time frames. By observing the differences of connectivity 

graph features in different levels of pain, a bio-inspired decision tree (multilayer support vector machines) is proposed. 

Discriminant features are selected using sequential forward feature selection manner and the selected features are applied to the 

proposed decision tree. 

 

Results: Classification result for differentiating between the pain and no-pain states provides 92% accuracy (94% sensitivity and 

91% specificity), while for the five classes of pain, the proposed scheme generates 86% accuracy (90% sensitivity and 82% 

specificity), which is slightly decreased compared to the two-class condition. Moreover, the results are evaluated in terms of 

robustness against noise in different signal to noise ratio levels. Comparison results with previous research imply the significant 

superiority of the proposed scheme.  

  

Conclusion: In this paper, we show that the elicited features from the filtered brain graph are able to significantly discriminate 

five different levels of pain. This is therefore the amount of co-activation between the brain regions (graph links) are significantly 

varied, as the pain feeling increases. Our observations are consistent with the physiological observations acquired from the images 

of functional magnetic resonance and magnetoencephalography.   
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1. Introduction 

     Pain is an unpleasant emotional and sensual experience 

which leads to human protection against external injury. The 

primary stage in the pain perception mechanism is the 

activation of pain receptors in response to painful stimulus 

applied to peripheral nerves. The second stage is the transfer of 

pain, in which the pain message is transferred to higher brain 

centers such as thalamus, reticular formation, periaqueductal 

gray matter and hypothalamus and finally this message is 

transferred to the brain cortex. In this part, the regions of 

prefrontal cortex, anterior cingulate cortex, and somatosensory 

cortex  insula  are affected by pain [1]. In the last two decades, 

several attempts have been made for quantitative pain 

assessment, especially for patients who cannot speak or exhibit 

their pain intensity. 
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For instance, the intubated patients admitted to the intensive 

care unit (ICU), anesthetized patients in coma are unable to 

express their pain intensity. Although precise and quantitative 

pain assessment allows specialists to refine the treatment 

process, the current clinical pain measurement methods are 

mostly qualitative and therefore, their results suffer from a 

degree of subjectivity. The National Initiative on Pain Control 

(NIPC) suggests several diagnostic tools for specialists in order 

to measure the pain level. Amongst them, Wong-Baker FACES 

pain rating scale [2], visual analog scale [3] and verbal 

numerical rating scale [3] are recognized as the most popular and 

useful pain measures, which are all qualitative and no 

physiological based recording (e.g., brain signal) is carried out 

for this measurement. On the other hand, qualitative pain 

assessment highly depends on the subjects’ tolerance in a way 

that a certain amount of mechanical/thermal/electrical pain 

stimulation [4-10] is not identically felt in different subjects.  

 

 



 

     Among different noxious stimuli, the pain aroused by 

mechanical stimulation appears to be the highest. However, the 

side-effect of this stimulus is pretty high and volunteers do not 

like to experience it, whereas thermal stimulus has the lowest 

side-effect. By a deeper look through the literature, more than 

90% of pain research projects use thermal stimulations like cold 

pressure test (CPT). In this test, a subject puts his/her hand into 

cold water (1.7 C) and holds his/her hand till the pain reaches 

up to the intolerable level, when the subject cannot continue the 

test and involuntarily takes his/her hand off the cold water. 

Feeling very cold water excites the pain-receptors as well as 

activating both central and sympatric nervous systems [11]. 

     Investigations of the pain effect inside the brain have shown 

that a pain stimulus affects the cortical activity and 

desynchronizes the normal rhythms of electroencephalogram 

(EEG) signals. This desynchronization attenuates the EEG 

amplitude, specifically in the Alpha band while it alleviates the 

amplitude of Gamma band [12]. In spite of several attempts 

made to distinguish different levels of pain by analyzing EEG 

signals, the achieved results have provided acceptable 

performance just to differentiate pain and no-pain states 

[4,6,13]. In other words, by increasing the number of pain 

levels, the differentiation accuracy is significantly decreased.   

     Among several EEG features suggested for this purpose, the 

energy of EEG signals in the Delta and Alpha bands are the 

most conventional features [14]. In a few attempts, the 

coherence values in Delta, Alpha, and Beta bands between the 

left and right brain lobes are estimated to classify pain from no-

pain states [15-21]. From another perspective, Zherdin and 

Schulz [13] applied the multivariate pattern analysis to EEG 

signals and then fed these features into a support vector 

machines (SVM) classifier. Their results on 22 subjects over the 

two states of pain and no-pain provided 83% classification 

accuracy, which leaves room for improvement.  

     In another research, Panavaranan and Wongsawat [4] 

recorded EEG signals of nine subjects under the CPT protocol. 

After denoising the signals, they extracted the spectral features 

from the EEGs. They finally applied them to a fuzzy-based 

SVM classifier with a polynomial kernel. Their results yielded 

96.97% classification accuracy between the pain and no-pain 

states. Although this is a very good classification rate compared 

to previously developed methods, it stands for two-class 

classification only. It should be mentioned that although 

spectral features reveal the signals’ content in the frequency 

domain and provide acceptable results (just in two-class pain 

problem), they cannot reveal other information captured in the 

EEGs such as complexity, the amount of nonlinearity, the 

degree of distribution symmetry and higher order statistics. 

Therefore, there is a possibility to enhance the results if more 

relevant features are extracted in conjunction with the spectral 

features. In another attempt, Toliyat and Vatankhah [6] applied 

wavelet coherence transform to the EEG signals of 13 subjects 

(recorded under the CPT protocol) to elicit the informative 

features and then applied them to a nonlinear SVM classifier, 

equipped with the radial basis function (RBF) kernel. They 

achieved 95% accuracy between the pain and no-pain states, 

which is an acceptable outcome. However, the dyadic 

decomposition of wavelet frequency interval is not certainly 

matched to the conventional EEG frequency bands [20]. In other 

words, the input signals are decomposed into a few scales by 

the wavelet filters and then the coherence values are determined 

between the two-by-two channels over different scales. 

Moreover, SVM is a binary classifier and provides acceptable 

results for two-class problems but research findings [21] 

illustrate that the multi-class extension of SVMs cannot provide 

sufficiently accurate multi-level pain classification results.     

     Nezam et al. [22] recorded the EEG signals of 24 subjects 

and scored five levels of pain under the CPT protocol. During 

the process, they also eliminated the electrooculogram (EOG) 

and electromyogram (EMG) components by applying 

independent component analysis (ICA). Then, by tracing the 

grand-average brain map (just in the Delta and Alpha bands) for 

different pain levels, a hierarchical decision tree was devised 

based on the spectral features. In addition, other descriptive 

features such as fractal dimension, approximate entropy (ApEn) 

and spectral entropy were extracted and different subsets of 

features customized for the decision nodes of their proposed 

decision tree. Nonetheless, they achieved 62% accuracy for five 

pain levels and 83% for three levels. As we see, the accuracy of 

multi-class pain problems (62%) is still not convincing and a 

new category of methods is needed to achieve a higher 

accuracy.   

     Brain is the most complex organ in the human body, 

including several regions performing different functions. When 

the subject feels pain, the generated spikes from the brain 

sensory area activate the brain network [23]. To reveal the 

coactivation map of different brain regions, in response to 

different levels of pain, graph based structural and functional 

brain connectivity tools are seemed to be suitable candidates. In 

other words, the felt pain by harmonized activity of the brain 

network, connecting different regions, is encoded into a neuro-

matrix. Using functional magnetic resonance imaging (fMRI), 

a horizon about the harmonic activity of the pain neuro-matrix 

is proposed to explain how the coactivity and correlation 

between different regions of the brain is created [26]. In this 

regard, functional connectivity of variations is shown in 

different pain states [25].      

       Functional  connections during the pain feeling indicate the 

strength of temporal correlation between the activated brain 

regions.  By estimating functional connectivity features, we  can 

figure out how different regions of the brain are interacting with 

each other. To decode the functional information of the brain 

graph through a certain mental task, the graph theory is 

repeatedly deployed [26] to quantitatively illustrate the relation 

between different parts of the brain. According  to this theory, 

the brain is assumed as a graph including nodes (EEG 

channels), located on the scalp, and links which represent 

functional connectivity among the nodes [27]. Topologic 

characteristics of the brain network can be examined in small, 

medium and large  scales. In the large scale analysis, the whole 

brain is considered, in the medium scale a few regions of  the 

brain are of interest while in the small scale, only one region of 

the brain is examined. There are several metrics to describe 

topologic characteristics (functional connectivity) of a graph. 

     In the brain, the experience of pain is associated with 

neuronal oscillations and synchrony at different frequencies 

over different scalp locations. However, here an overarching 

objective is to quantify the significance of these oscillations for 

different pain levels, which has not been done before. As such, 

our research focus is on evaluation of the pain-induced brain 



 

oscillatory dynamics by exploiting the features of both local and 

global brain connectivity graphs, as physiologically meaningful 

EEG features.  

     Here, we have collected a new dataset containing the EEG 

signals of 23 healthy subjects who perform CPT for two times. 

After denoising the signals, they are filtered through only the 

Alpha band and the features like degree, betweenness, 

clustering coefficient, local and global efficiency of the brain 

graphs in two different scales are extracted. Next, the selected 

discriminant features are fed to our customized decision tree, 

which is a multilayer support vector machines classifier. This 

tree is structured by observing the differences of the brain 

connectivity graph among five pain levels. The results are 

compared to state-of-the-art methods for demonstrating the 

significant superiority of the proposed methodology. 

     The rest of this paper is organized as follows. Section II 

describes the collected dataset and its characteristics. Section 

III describes the preprocessing steps as well as explaining the 

implementations of functional connectivity graph features and 

our proposed classifier. Section IV illustrates the empirical 

results and discusses the pros and cons of the proposed method 

compared to state-of-the-art schemes on our dataset. Section V 

concludes the paper and opens a new horizon to the future of 

this work. 

2. Data Acquisition  

     In this research, 23 right-handed volunteers are enrolled 

including 14 males and 9 females whose age is in the range of 

20-25 years old (Mean: 22 years old) with relatively similar 

education level. No sign of sleep or cognitive/behavioral 

disorder, psychological and neurological disease, head trauma, 

chronic pain and also substance addiction, affecting the brain 

activity was observed in the participants.  

     In fact, to ascertain the subjects’ status such as having 

psychological or neurological diseases, all individuals were 

initially screened by a clinical-cognitive neuroscientist for their 

health history, past medical history, and any medications they 

use. They also underwent neurological examination and 

cognitive assessment by the same expert after which they were 

granted clearance to participate in the study. 

     Individuals have an appropriate sleep in terms of quality just 

before the day of EEG recording (receiving score less than 8 in 

PIRS questionnaire and more than 7 in VAS) and avoid 

drinking tea and coffee. The minimum duration of the trial is 15 

seconds. If any individual cannot tolerate this period of time, 

he/she has a chance to rule out. Individuals after receiving 

sufficient information about the research, fill up the testimonial 

acknowledged that they have voluntarily participated in this 

research project and can leave the trial at any stage of the test. 

EEG signals are recorded by 29 silver electrodes including one 

channel as the reference located between the eyebrows (FPz) 

and 28 channels (Fp1, Fp2, F7, F8, F3, Fz, F4, FC1, FC2, FC5, 

FC6, T7, T8, C3, Cz, C4, Cp5, CP6, CP1, CP2, P7, P8, PZ, P3, 

P4, O1, O2 and OZ) located on the scalp according to 10-20 

EEG electrode positioning system [28-29]. The impedance of 

all of the electrodes is kept under 5 KΩ during the recording. 

The sampling rate is 512 Hz and the recorded signals are filtered 

by a Butterworth band pass filter with the cut-off frequencies of 

0.5 and 45Hz. The pain is induced by CPT with 1.7 Celsius 

degree. Before the signal recording, individuals’ hand is put in 

the cold water once tentatively in a way that they can enounces 

their pain stages while each volunteer seats on a comfortable 

chair. EEGs are recorded from the individuals at the rest state 

(approximately 3 minutes) subsequently the left hand of the 

participants is put in the cold water. To avoid the results from 

being biased in favor of the pain class with higher population 

(no-pain class), we randomly select a short interval of their no-

pain stage, where its length is approximately relative to the 

recording of the EEGs in the other pain classes. During the time 

that the left hand of each subject is in cold water, the signals are 

marked by a button located in the right hand of the participant 

(synchronized with the EEG recording) according to the 

intensity of the pain being felt include low, mid and high. 

Subjects press a bottom whenever they feel the level of pain is 

changed. By the passage of time, subjects cannot keep their 

hand in the cold water any longer and involuntarily take their 

hand out of the cold water. The recorded EEGs after feeling the 

high pain is labeled as the intolerable pain class. Regarding the 

differences between the participants’ tolerance in response to a 

certain level of pain, the interval of each pain state varies from 

one to another and their no-pain intervals are selected 

accordingly.  

3. Proposed Method  

The road map of the proposed procedure is illustrated in Fig. 

1, in which the recorded EEGs are passed through several stages 

including: preprocessing, brain graph creation, graph filtering, 

extracting graph connectivity metrics and finally the proposed 

bio-inspired decision tree classifier. What follows are the 

description of the mentioned phases.  

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.  Block diagram of the proposed framework 

3.1. Preprocessing 

The amplitude and frequency of EEGs vary in the range of 

10–100 µV, and 0.5 to 60 Hz, respectively. Contraction of facial 

muscles followed by feeling of pain in conjunction with other 

movement artifacts lead to interfere of EMG and EOG signals 

as well as baseline variation into the content of EEGs. 

For instance, baseline and EOG signals offend low frequency 

components of the EEGs, while EMG signals distort its high 

frequency content. Here, to remove these undesired 

components, spatial filtering is utilized, which contains three 

stages [28]. 

The recorded raw EEGs are decomposed into spatial 

components using second order blind identification (SOBI) 

algorithm. Then the fractal dimension of the decomposed 
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signals is determined. Fractal dimension of EOG sources is 

quite low because these sources contain low frequency and 

regular components while the background EEG contains more 

scattered frequency components that results in a higher fractal 

dimension value. To identify the EMG components, we have 

calculated the average power spectrum of the sources and 

compare them to the power spectrum of FP1 channel (nearest 

channel to the forehead muscle). Those sources which have the 

highest similarity with that of FP1 are removed as the EMG 

sources. Finally, the remained sources are projected back to the 

spatial domain. In addition, by filtering the reconstructed EEGs 

through a band-pass filter (0.5-45Hz) and a notch filter (50Hz), 

both baseline and power line are removed. The preprocessing 

phase is performed by the EEGLAB toolbox [27]. 

3.2. Creation of the brain graph  

To construct the brain graph from the EEGs, assume that 

EEG channels of 𝑋1(𝑡), 𝑋2(𝑡), …, 𝑋𝑁(𝑡) are considered as the N 

nodes. We set up a connection matrix WN×N, where each cell wij 

indicates the value of link between the nodes i and j. 

The main graph-based methods to determine the functional 

connectivity in the time and frequency domains are granger 

causality (GC) and partial directed coherence (PDC), 

respectively [28-29]. PDC describes the relation between 

multivariate time series in the frequency domain which is based 

on the coherence analysis of the multivariate autoregressive 

models [30]. In comparison with the other functional 

connectivity schemes, it is demonstrated that PDC is more 

robust to noise and is not also affected by the volume 

conduction [34]. The PDC values are in the range of [0,1], 

where higher values indicate more interaction between two 

EEG channels. The multivariate autoregressive (MVAR) model 

with order 𝑝 is described as follows: 

 

(1) 𝑋(𝑡) = − ∑ 𝐴(𝜏)𝑋(𝑡 − 𝜏) + 𝐸(𝑡)

𝑝

𝜏=1

 

where 𝐴(𝜏) = [
𝑎11(𝜏) … 𝑎1𝑁(𝜏)

… … …
𝑎𝑁1(𝜏) … 𝑎𝑁𝑁(𝜏)

] are the matrix 

coefficients of MVAR model at delay 𝜏 and 𝐸 is the noise 

vector. The autoregressive coefficients of 𝑎𝑖𝑗(𝜏), where i,j=1, 

…, N, represents the affection of 𝑥𝑗(𝑡 − 𝜏) on the 𝑥𝑖(𝑡). In other 

words, 𝑎𝑖𝑗(𝜏) shows the amount of information flow of the jth 

signal to the ith signal. In this study, matrix 𝐴 and the order of 

autoregressive model are estimated by the stepwise least square 

method [31] and Bayesian information criterion [32], 

respectively. The PDC of the channel jth to the channel ith in the 

frequency domain is defined as [28]:    

 
(2) 

𝑃𝐷𝐶𝑖𝑗(𝑓) =
𝐴𝑖𝑗(𝑓)

√∑ 𝐴𝑘𝑗(𝑓)𝐴𝑘𝑗(𝑓)𝑁
𝑘=1

 

 

where 𝐴(𝑓) is the Fourier transform of the MVAR coefficients 

of 𝐴(𝜏). If the element 𝑎𝑖𝑗(𝑓) in the matrix 𝐴(𝑓) is the Fourier 

transform of 𝑎𝑖𝑗(𝜏) in the matrix 𝐴(𝜏). Therefore, we can have  

𝑎𝑖𝑗(𝑓) = ∑ 𝑎𝑖𝑗(𝜏)𝑒−𝑙(2𝜋 𝑝)⁄ 𝑟𝑓𝑝
𝜏=1   .  Since the AR model is only 

valid for stationary signals, the EEG signals of all channels are 

segmented into successive windows (with 50% overlap), where 

the length of each window is selected one second to guarantee 

preserving the stationary property. After finding the directed 

functional connectivity of all channels through the time frames, 

we sketch the grand average (information flow graph) over the 

brain using the Econnectome software [37] for each pain level, 

separately in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

Fig. 2. Grand average brain graph in rest, low, moderate, high and intolerable 

pain states.  
 

 

Fig. 2 demonstrates all the channels are involved in the 

recordings during rest, low, moderate, high and intolerable pain 

states. Nevertheless, in each state we have identified the 



 

strongest connections between some channels as follows:  

Rest stage: FP1, FP2, F8, F3, F4, T8, C3, P8, P4, FC1, CZ, 

PZ, FC5, FC6, CP6 with dominant connections amongst FP2, 

F8, F3, T8, FC5, FC6.  

Low pain stage: FP1, FP2, F7, F8, F4, T7, C3, C4, P7, P3, 

P4, O1, O2, FC1, FZ, CP1 with dominant connections amongst 

FP1, T7.  

Moderate pain stage: FP1, FP2, F8, F4, T8, C3, C4, P7, P8, 

P3, P4, O1, FC1, FC2, CZ, PZ, CP1, CP2, FC5, FC6, CP5, CP6 

with dominant connections amongst FP1, PZ, CP2, P4.  

High pain stage: FP1, F7, F8, F3, T8, C4, P8, P3, P4, O2, 

FC1, FC2, FZ, CZ, PZ, CP1,CP2, FC6, CP6 with dominant 

connections amongst FP1,FC2, CP2,CP6.  

Intolerable pain stage: FP1, FP2, F7, F8, F3, T7, T8, C3, C4, 

P7, P8, P3, P4, O1, O2, FC1, CZ, PZ, CP1, CP2, FC5, FC6, 

CP5, CP6 with dominant connections amongst FP1, FP2, F8, 

T8, O2, PZ, FC6.  

As illustrated in the Figure, the left frontopolar cortical 

region (FP1) appears to be the source for information flow in 

all stages of pain perception. The more intense the pain gets the 

flow of information and sensory motor rhythm coherence swing 

toward the right hemisphere. 

3.3. Graph filtering  

After determining connections between the graph nodes, 

some of the non-realistic links must be filtered because the 

values of elements in matrix WN×N (functional connectivity 

graph) can be seriously affected by non-neurological 

disturbances such as additive noises [38]. In the cumulative 

thresholding method, the threshold value is chosen in a way that 

the connectivity matrix with densities of 10% to 90% of the 

strongest connections is determined [35].   

To prone the graph, alternative windowed thresholding is 

used as an adaptive method, which determines the threshold 

within each time frame. For instance, the first graph is mapped 

from 10% of the strongest connections, the second graph from 

10% of the strongest remnants and so on, such that the last 

graph is mapped from 10% of the weakest connections [36].  

 

After filtering the connectivity graphs, we analyze them in the 

framework of large and small scales. In the large scale, the 

metrics (features) are extracted from the whole brain area, while 

in the small scale, the metrics are elicited from a single region 

of the brain (e.g., one node). To elicit meaningful features, the 

node degree, betweenness, clustering coefficients, local and 

global efficiency metrics are determined. These                       

metrics are explained as follows.  

3.4. Graph metrics  

3.4.1. Degree  

The node degree 𝐾𝑖 is the number of links which are 

connected to the node i. Nonetheless, in directed graphs, the 

node degree has two parts:  
 

The number of outgoing links 𝐾𝑖
𝑜𝑢𝑡 = ∑ 𝑎𝑖𝑗𝑗  and the number 

of incoming links to the node 𝐾𝑖
𝑖𝑛 = ∑ 𝑎𝑗𝑖𝑗 , where 𝑎𝑖𝑗  is the 

connection status between i and j. When link (i, j) exists then 

𝑎𝑖𝑗  = 1; otherwise 𝑎𝑖𝑗  = 0. The total degree of node i is the 

summation of 𝐾𝑖
𝑜𝑢𝑡 and 𝐾𝑖

𝑖𝑛 [37]. The node degree is used for 

small scale graph analysis. 

3.4.2. Betweenness  

Betweenness is a metric, revealing the importance of a node 

in a graph, under the assumption that information primarily 

flows through the shortest paths between them. This feature is 

determined below:  

 
(3) 

𝑏𝑖 = ∑
𝑛𝑗𝑘(𝑖)

𝑛𝑗𝑘
𝑗,𝑘∈𝑁𝑗≠𝑘

 

 
where 𝑛𝑗𝑘 is the number of shortest paths that connecting 𝑗 and 

𝑘 and 𝑛𝑗𝑘(𝑖) is the number of shortest paths connecting 𝑗 and 𝑘 

that passes through node 𝑖 [37]. 

3.4.3. Efficiency  

In the network field, the efficiency criterion measures how 

well the information is communicated between nodes. The 

concept of efficiency can be used locally or globally in a 

network. The global efficiency measures the performance of 

transferred information in the whole network, in which the 

information is simultaneously communicated. On the other 

hand, the local efficiency determines the resistance of a network 

against inefficiency in a small scale. The local efficiency of a 

node specifies the amount of transferred information by its 

neighbor, where the corresponding node is eliminated. The 

global efficiency of a network is defined as:  

 
(4) 

𝐸 =
1

𝑁
∑ 𝐸𝑖

𝑖∈𝑁

=
1

𝑁
∑

∑ 𝑑𝑖𝑗
−1

𝑗∈𝑁 𝑗≠𝑖

𝑛 − 1
𝑖∈𝑁

 

 
where 𝐸𝑖 is the efficiency of node i, N is the set of all nodes in 

the network, n is the number of nodes contributing in 

determining Ei  and 𝑑𝑖𝑗  is the shortest path between nodes i and 

j. The local efficiency is also defined as: 

 
(5)       

        𝐸𝑙𝑜𝑐 =
1

𝑛
∑ 𝐸𝑙𝑜𝑐,𝑖 =

𝑖∈𝑁

1

𝑛
∑

∑ 𝑎𝑖𝑗𝑎𝑖ℎ[𝑑𝑗ℎ(𝑁𝑖)]−1
𝑗,ℎ∈𝑁 𝑗≠𝑖

𝑘𝑖(𝑘𝑖 − 1)
𝑖∈𝑁

 

 

where 𝐸𝑙𝑜𝑐,𝑖 is the local efficiency of node i, and 𝑑𝑗ℎ(𝑁𝑖) is the 

length of the shortest path between j and h, that contains only 

neighbors of i [38].   

3.4.4. Clustering coefficient  

This criterion gives a value for each node of a graph that 

determines its tendency to be a member of cluster. This 

coefficient is mathematically determined via the following 

relation [45]: 

 

𝐶𝑖 =  
∑ ∑(𝑤𝑖𝑗

1 3⁄
+ 𝑤𝑗𝑖

1 3⁄
)(𝑤𝑖𝑘

1 3⁄
+ 𝑤𝑘𝑖

1 3⁄
)(𝑤𝑗𝑘

1 3⁄
+ 𝑤𝑘𝑗

1 3⁄
)𝑗≠𝑖 𝑘≠𝑖,𝑘≠𝑗

2[(𝐻𝑇 + 𝐻)𝑖((𝐻𝑇 + 𝐻)𝑖 − 1) − 2𝐻𝑖𝑗
2 ]

 

 

(6) 

where wij is the directed functional connectivity related to the 

nodes i and j. The nodes j and k are two neighbors of the node i 



 

and H is the adjacency matrix (𝐻𝑖𝑗 = 1 𝑖𝑓 𝑤𝑖𝑗 ≠ 0). The mean 

of clustering coefficient over the nodes is defined as: 

 
(7) 

  𝐶 =
1

𝑁
∑ 𝐶𝑖

𝑖∈𝑁
 

3.5. Decision tree  

Looking at Fig. 2, we can see a significant difference 

between the functional connectivity graph of the no-pain and 

the other pain states. Therefore, an SVM classifier is assigned 

to classify the no-pain from the other pain classes in the first 

decision node. Then, among the four remained classes, the 

intolerable pain graph has a significant difference with the 

graphs of the remained three classes. Similarly, a SVM is 

assigned for this task. In the next stage, the high pain is 

classified and finally the low and mid pain classes are classified 

according to the differences of the corresponding graphs. The 

proposed bio-inspired decision tree structure, which is a 

multilayer SVM, is shown in Fig. 3, where a SVM is assigned 

at each decision node. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.  Structure of the decision tree 

 

4. Experimental Results  

In this section the classification results of the proposed brain 

connectivity features for classifying the five classes of pain are 

presented. As we mentioned in the preprocessing section, the 

signals are all filtered only through the Alpha band (8-12Hz) 

because all of the pain detection studies emphasize the 

existence of distinguishable information within this band [46]. 

The EEG signals are de-noised using SOBI and afterward, 

the large and small scale graph connectivity features are 

extracted from the functional brain connectivity graphs in order 

to finely describe the state of pain. This is therefore pain is a 

sense followed by a motor reflex and any somatosensory 

process that can be screened by the interval between the Alpha 

and Beta bands called SMR (12 to 13 Hz). In fact, SMR is 

influenced by every sensory process, whether controlled 

(merely sensory) or not controlled (painful sense). Thus, we 

analyze just the Alpha band of EEG signals. Brain network 

graph requires two elements in order to be drawn. The number 

of effective EEG channels (nodes) is 28 [35-36] and links are 

calculated through the Alpha band for successive one-second 

time frames with 50% overlap. Graphs’ links are obtained 

through functional connectivity graph calculation which is a 

28 × 28 matrix for each window along EEG [36]. Functional 

connectivity using PDC is determined [32]. In addition, we 

have used generative surrogate data method with 100 

realizations for selecting the most important measured values 

with the confidence level of 99%. The values of directed 

connectivity of PDC are considered as features (28× 28 =
784 features) for distinguishing the two levels of pain and no-

pain. This differentiation is performed via SVM classifier 

equipped with radial basis function (RBF) kernel. To achieve 

the best accuracy, the value of C is determined through the cross 

validation (5 folds). Due to facing with large number of 

features, we have used sequential floating forward selection 

(SFFS) as a search strategy to elicit a proper subset of features 

in a wrapper style, where the classifier feedback is used as the 

objective function. By eliciting the directed functional 

connectivity features, the no-pain class is classified from other 

pain classes and the results are presented in Table 1.  
 

Table 1 

The pain classification results by Using the PDC directed functional 

connectivity 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy ± std 

(%) 

Classified states 

94.03 91.06 92.75±0.0476 
No-pain VS. 

Pain 

 

To filter the functional connectivity matrix with traditional 

cumulative thresholding method, the connection matrix 

elements with the density of 10%, 20%, …., 80% and 90% is 

respectively preserved [39]. Other elements are sequentially 

substituted with zero. In an alternative windowed thresholding 

method, the connection matrix is obtained in seven windows 

(levels of selection). Hence, we have: window#1 includes 1-

10% of the strongest connections, window#2 indicates 

intermediate brain connections, window#3, 4, 5, 6 and 7 

indicates weakest brain connections [40]. By having filtered 

functional connectivity matrix, we study the brain network in 

both large (metrics on the whole graph) and small (metrics on a 

single region) scales. Thereafter, we empirically calculate the 

degree, betweenness, clustering coefficient, local efficiency and 

global efficiency [41]. Except the global efficiency criterion, 

the other criteria include a vector with size: 1×28. In order to 

compare the extracted criteria from the functional connectivity 

matrix with the density of 90%, we have used the ANOVA test, 

and the results are presented in Fig. 4. The mean of the graph 

measures include clustering coefficient, local and global 

efficiency in five levels of pain over 23 subjects, with the 

densities of 10% to 90% are shown in Fig. 5, where the 

windowed connectivity matrix are extracted for 1-10% , 11-

20% , 21-30%, 31-40%, 41-50%, 51-60%, 61-70%. Error bars 

demonstrate the standard deviation.  

 In this stage, the classification of no-pain class versus the 

other pain classes, the low-medium-high pain classes versus the 

intolerable pain classes, low-medium versus high pain classes 

and the low pain class versus the medium pain class are 

performed. SVM with RBF kernel is used for the classification 



 

at each node. As we mentioned, SFFS is utilized to select the 

features [44].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4. Box plots of distribution of all different features in five pain states. The p-value and the examined features name is included in the text  

boxes of every different plot. 

 

For classification, we divide our community into two groups: 

one validation group including 17 individuals and test group 

including 6 subjects. No over-fitting is occurred among the 

validation and test groups. K-fold method is used in the 

validation group, where K is considered as five. Therefore, the 

validation group is divided into five separate groups. Each time 

one of these five groups are put aside and the remaining groups 

are considered as the training group and a SVM classifier is 

trained and then the accuracy of test group is evaluated. This 

process is repeated five times. Parameter C has been chosen in 

the interval of 0.1 to 10 with steps of 0.05 in a way that the 

validation group achieves the most accuracy. For each 

functional connection matrix, 16 filtered matrices with 

traditional cumulative thresholding and alternative windowed 

thresholding methods are obtained. Now we have 16 functional 

communication matrices for each time frame which are filtered. 

All these stages are repeated for each functional communication 

matrix to discover which one is filtered. Here, we assess the 

classification accuracy over the one by one extracted features 

from the filtered connectivity matrix.  The maximum accuracy 

belongs to the extracted criteria from the connectivity matrix 

with the density of 90%. The maximum accuracy of the pain 

levels is related to following features which are listed in Table 

2. The classification accuracy of the pain levels are 

demonstrated in Table 3. 

Since the pain is continuously increased, we can divide this 

interval into three intervals in a way that we concatenate the low 

and moderate pain as one label and the high and intolerable pain 

states as the third label. Hence, we have three new labels 

including rest, moderate pain and high pain. The results for 

three-level and five-level pain classes are illustrated in Table 4. 

In order to compare the proposed method with state-of-the-art 

methods in this field, their results in terms of number of pain 

classes, the utilized EEG features and the classification 

accuracy are demonstrated in Table 4. It should be considered 

that the best result for each method is shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

Fig. 5. Network metrics (Clustering coefficient,  local efficiency   &global efficiency) in five pain states. Error bars depict the standard deviation of the mean 

across the 23 subjects. 

 

Table 2 

The SFFS selected features for each node in the proposed decision 

tree by SVM 

The best features in terms of 

accuracy 

Classified states 

Global efficiency, local 

efficiency 

No-pain VS. Pain 

Degree, betweenness Low, medium & high VS. 

intolerable 

Degree, betweenness Low & medium VS. high 

Degree, betweenness Low VS. medium 

 
Table 3 

The pain classification results by the proposed decision tree 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy ± std 

(%) 

 

Classified states 

 

94.29 90 92.14±0.04 

No-pain VS. 

Pain 

 

90.27 79 85.21±0.13 

Low, medium & 

high VS. 

intolerable 



 

 

85.57 73.86 80±0.1 Low & medium 

VS. high 

 

93.8 88 90.03±0.6 Low VS. 

medium 

 

5. Robustness 

Since EEG recordings in clinics are often contaminated by 

noise, to show the robustness of the proposed method against 

additive noises, we have added white noise with different 

intensities to the raw EEG signals and then evaluated the results 

in the noisy conditions. 

Here, white noise with signal to noise ratios (SNRs) of 10, 

20, 30 and 40dB are added to the EEGs. Results imply that by 

diminishing the SNR value, the results is slightly decreased as 

shown in Fig. 6. This little deviation of results against different 

intensities of additive noise implies the strong robustness of the 

proposed scheme. 

 
Table 4 

Comparison of Pain State Classification problems 

Accuracy Method Classified 

states 

Source 

83% 

Multivariate 

Pattern Analysis 

 

No-pain 

VS. Pain 

Schulz & 

Zherdin [13] 

89% 

Energy ratio 

approximate 

entropy 

fractal dimension 

Lyapunov 

exponent 

 

No-pain 

VS. Pain 

Vatankhah et al. 

[6] 

90.25% 

Wavelet higher-

order spectral 

(WHOS) 

No-pain 

VS. Pain 

Hadjileontiadis 

[7] 

90.6% fractal dimension 

Shannon entropy 

approximate 

entropy 

spectral entropy 

No-pain 

VS. Pain 

Nezam et al. 

[22] 

83% 3 Levels  
Nezam et al. 

[22] 

62% 5 Levels  
Nezam et al. 

[22] 

92.14% 

Metrics extracted 

PDC directed 

connectivity 

No-pain 

VS. Pain 

Proposed 

Method 

88.67% 3 Levels  
Proposed 

Method 

86.84% 5 Levels  
Proposed 

Method 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Increasing the amount of Gaussian noise added to  the features (which 

results in decreasing in SNR). Afterward, noisy test features were applied to the 
classifiers  trained with the noisy features. As it can be seen, the  selected subsets 

of features manifest a robust behavior versus increasing the noise level. 

6. Discussion 

Since feeling pain is associated with synchronization and 

co-activation among some parts of the brain in a certain 

frequency range, discovering the spatio-temporal patterns of 

this co-activation in different pain intensities enables us to 

measure the pain level. To decode the spatio-temporal patterns 

corresponding to different pain levels, the EEG-based 

functional connectivity graph of the brain is characterized by 

some meaningful features. Since the connections among the 

brain regions are dynamic and change with pain, to decode 

these temporal patterns, we use the directed graph features. 

Some of these features are used to analyze the connectivity only 

in a small neighborhood (e.g., with one EEG channel), while 

some other graph features are global and give the information 

about the connectivity measures among all the scalp channels. 

In other words, local and global connections between the brain 

regions are decoded for each level of pain. After extracting 

meaningful and tangible features, we found out that the overlap 

between features of different pain classes is considerably high 

and a single classifier cannot provide acceptable results. 

Consequently, a multilayer classifier in the form of a decision 

tree is suggested. To design the classifier structure, we carefully 

trace the differences between various pain levels on the brain 

connections illustrated in Fig. 2.  Due to the strong ability of 

SVM for two-class tasks, a SVM is assigned to each node. This 

yields a significant improvement over the state-of-the-art 

methods.   

Cognitive information processing including consolidating 

memory and learning predominantly takes place within the 

fronto-parietal network (FPN). Meanwhile, emotional 

processing (social communication) is largely processed in the 

fronto-temporal network (FTN). The primary somatosensory 

area is the initial cortical hub, which receives and processes the 

sense of pain, whereas the secondary somatosensory area 

(association area) participates in the process of identifying the 

intensity of pain. As such the process of pain perception 

essentially occurs within the parietal cortices. 

     The strong fronto-parietal brain connectivity enables instant 

fine motor processing, though motor reflexes not only depend 

on (intensity and velocity) the prefrontal cortex but also involve 

in tolerance and decision making. On the other hand, the insular 

lobe receives the pain sense as emotional and trauma as external 

stimuli in order to change the internal representation of external 

stimuli and creates different codes.  

     Fig. 2 reveals cognitive information processing with respect 

to the pain intensity level. Our findings indicate that in the 

moderate and high pain states, dense functional connectivity 

emerges within the FPN, while upon intolerable pain, the 

processing of emotional data evolves within FTN. While 

subjects are wondering for negative sensation (pain) even 

though upon no-pain state a robust functional connectivity 

continues to shape within FTN.  

Given the above findings, our study strives to deploy 

functional brain connectivity graph features to decode the EEG 

information simultaneously (co-activation) and successively 



 

(directed graph) distribute over different cortical hubs for 

various states of pain. Although the EEG power spectral and 

spatial patterns (e.g., Alpha, Beta and Delta) tend to change 

when pain is repeatedly investigated, to the best of authors’ 

knowledge this is the first directed graph connectivity approach 

that determines the information flow patterns in pain-

concurrent EEG signals. Eliciting large and small scale graph 

features allows us to discover the coactivity patterns of the brain 

subsystems in different states of pain. Taken that into account, 

we design a customized decision tree structure, adopting the 

physiological connection of the brain subsystems upon 

perceiving various intensities of painful stimuli. Finally, 

applying the features to the developed classifier provides 

outstanding classification accuracy on the five levels of pain. 

Moreover, the robustness of such features is assessed under 

different SNR values.   

In line with what we report, a landmark study by Chen and 

Rappelsberger [15] highlight the fact that peripheral painful 

stimuli are reflected by EEG changes. The diminished EEG 

amplitude and simultaneous reinforced EEG coherence in the 

central regions are suggested to be the cortical correlates of 

human pain [15]. In a similar report, Chen et al [16], postulate 

that modular identification and delineation of the arousal–

attention (located in FPN), emotion–motivation (placed in 

FTN) and perception–cognition (located in FPN) neural 

networks of pain processing in the brain are essential to our 

deeper understanding of how the brain processes painful 

stimuli. As such and similar to our investigation, brain 

mapping/neuroimaging studies using EEG, magnetic 

electroencephalography (MEG) and functional MRI (fMRI) 

have elaborated on the integration of sensory–motor function in 

pain perception [45]. 

     In the same vein, a more recent investigation substantiate 

that the accuracy of EEG signal classification depended on 

pain-evoked responses at about 8 Hz (low alpha) oscillation 

with respect to the temporal–spectral pattern of pain-related 

neuronal responses [12]. In agreement with what they report, 

our results reposition EEG-informed Alpha coherence within 

FPN and FTN as a neuronal marker of pain sensitivity.  

Such an EEG-based neuromarker would significantly be of 

value when patients with decreased level of consciousness or 

those who status-post operation in the recovery room, and well 

as intubated ICU-admitted patients are literally unable to 

express subjective pain. In line with earlier reports, the present 

findings may assist clinicians with objectively assessed 

evidence-based solutions in pain management.  

The present study is subject to some limitations including a 

relatively small sample size and shortage of other data 

modalities (e.g., fMRI or MEG) which might be co-registered 

with our EEG data. In other words, while the analyses of 

oscillations are conceptually and methodologically well suited 

for pain investigation of the brain mechanisms of pain, evidence 

on the role of oscillations and synchrony in pain perception has 

remained scant. Future research may be needed to analyze the 

correspondence between EEG, MEG, and fMRI data to specify 

the abnormal oscillations and synchrony underlying acute and 

chronic pains. 

The hypotheses which emerge from the present findings and 

deserve further testing are captivating. For instance, the 

question of whether similar brain-behavior dynamics are 

expected to be similar in patients who cannot speak with those 

healthy individuals who explicitly talk about their pain 

intensity, needs further investigations. Moreover, future works 

are required to examine whether the pain stimulus studied here 

(the cold pressure test, or CPT) is a representative stimulus of 

other possible pain stimuli in terms of the elicited EEG 

response. 

7. Conclusion  

In this paper, we have derived efficient features from the 

functional connectivity graph of EEG channels, in the Alpha 

band, in order to finely classify five classes of thermal pain. 

PDC features in two different graph scales are extracted. These 

features are degree, betweenness, clustering coefficient, local 

efficiency and global efficiency of the estimated graphs. As far 

as the features of pain classes have a high overlap, a single 

classifier is not able to perform this task. Therefore, a bio-

inspired decision tree is customized for this problem and due to 

a large number of the generated features, a feature selection 

method is applied to reduce the complexity for the classification 

stage. The classification result for two-class state (pain versus 

no-pain) produces 92% accuracy while this result for the five-

class state has slightly decreased to 86% accuracy. This slight 

decline implies the robustness of the proposed method. 

Moreover, results of the proposed method for different number 

of pain classes statistically outperform state-of-the-art schemes 

for the same number of classes. 
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