
■

NOTTINGHAM®
TRENT UNIVERSITY

Libraries and Learning Resources
SHORT LOAN COLLECTION

Date Time Date Time
TU 2 1 JUN 2006

2 6 OCT 200(6 «/*
T o' 5 5 p /1

Please return this item to the issuing library.
Fines are payable for late return.

THIS ITEM MAY NOT BE RENEWED
Short Loan 06

0 6 APR ?n06

40 0764909 2

ProQuest Number: 10290217

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10290217

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Web-based Collaborative

Environment for Integrated Design

Shuyan Ji

A thesis submitted in partial fulfilment of the
requirements of Nottingham Trent University

for the degree of Doctor of Philosophy

This research programme was carried out at
Advanced Design and Manufacturing Engineering Centre,

School of Architecture, Design and Built Environment,
Nottingham Trent University,

Burton Street, Nottingham,
NG1 4BU, UK

March 2006

Abstract

The total product design process consists of several stages including the formulation of

product design specifications, conceptual design, detail design, manufacture and sales.

In recent years, the rapid development of computer technologies has greatly impacted

the product development process. In the engineering area, powerful computer-based

tools such as Computer Aided Design (CAD) and Computer Aided Manufacturing

(CAM) systems enable engineers to fulfil various tasks in individual stages such as

conceptual and detail design, and manufacturing simulation. However, the increasing

complexity of modern products, cruel competition pressure and the globalisation of

product development necessitate a collaborative design environment where distributed

computer programs and dispersed experts in similar or different domains could be

collaboratively involved in a common design activity, in order to obtain high quality

and low cost product design. The key issues for establishing such a collaborative

environment are the integration and communication of the computerised design

resources with heterogeneity and distribution features.

The collaborative architecture presented in this thesis employs a combination of

CORBA with other technologies such as Java, Genetic Algorithms to integrate

engineering design programs and to enable communication between them, regardless

of languages they are written in and platforms they are ported on, and to leverage

multiple design interests. The resultant Web-based architectures have identified and

addressed three main application paradigms. Firstly, by using CORBA-Servlet, a

singular large-size program can be executed remotely with interactive features such as

parameter input, program execution and monitoring, and varieties of dynamic and rich

forms of resultant return. The developed system also facilitates multi-user management.

Secondly, Genetic Algorithms has been employed to combine the CORBA to mediate

the impacts from different domain expert considerations over the distributed

enviromnent. In this environment, CORBA is used as an architecture for integrating

I

Abstract

multiple design applications that are heterogeneous and distributed and for enabling

them to communicating with each other, a GA-based optimiser is designed to help a

main designer to conduct gear design optimisations through invoking remote and

heterogeneous applications to meet user’s complex needs. Thirdly, Applet-CORBA

based system is developed to provide a thin client model to enable users to do the

remote invocation from a Web browser, without any setting up for CORBA in advance.

As a user of this application, a designer does not need to get to know anything about

CORBA. The rich features of applet allow client developers to design varieties forms

of Web browser application, such as dynamic data, dynamic drawing, and so on.

It is found that functionalities of traditional, stand-alone, single-user computer-aided

applications can be extended by employing modern distributed object computing and

web technologies. These technologies provide cornerstone and effective support in

building scalable, extensible, and interactive distributed systems for collaborative

design, as illustrated in demonstration systems developed in the present thesis.

Keywords: Distributed System, Web-based Collaborative Enviromnent, CORBA,

Genetic Algorithms, Java, Servlet, Applet, Gear Design

II

A cknowl edgements

Acknowledgements

The work presented in this thesis was accomplished under the supervision of Professor

Daizhong Su, Professor John Leslie Henshall and Professor Barry Hull at Nottingham

Trent University. I would like to thank my Director of Studies, my Supervisor,

Professor Daizhong Su, for his continuous support, encouragement and guidance, and

for having faith in me throughout this project. Sincere thanks are due to my

supervisors: Professor Les Henshall and Professor Barry Hull for their advice,

comments, backing and interest in my work. Their knowledge and experience have

been invaluable in the development of this dissertation.

I would like to express my gratitude for all the help and advice given by the members

of research administrators, technicians and fellow researchers. Although it is not

possible to enumerate all concerned, I would like to especially thank Mrs Doreen

Corlett, Ms Julie Bradshaw, Mr Gary Griffiths, my friends and colleagues, for their

kindly help.

Finally, my greatest thanks to my family, Jiansheng, my husband, Mengqi, my

daughter, for their unequivocal love and support.

Shuyan Ji

30/11/2005

III

Publications and Presentations

Publications and Presentations

Book Chapter

• S. Ji and D. Su, Review of Web-based collaborative design, Web-enabled

Collaborative Design and Manufacture — Literature Review, Research and

Development, ed by Daizhong Su, ppl29-143, 2005, ISBN 1-84233-114-0, EU

Asia IT&C - WECIDM

Refereed Journal Papers
• S. Ji, D. Su and J. Li, Integration, management and communication of

heterogeneous resources based on Web technologies, Lecture Notes in

Computer Science, Volume 3865 / 2005, UK

• D. Su, J. Li and S. Ji, Online collaborative design within a Web-enabled

environment, Lecture Notes in Computer Science, Volume 3168 / 2005,

ISSN 0302-9743 Springer-Verlag GmbH.

• D. Su, S. Ji, N. Amin and J. B. Hull, 2003, Multi-user Internet enviromnent for

gear design optimisation, Integrated Manufacturing Systems, Vol. 14, No.6,

2003, pp 498-507, MCB UP Limited

Refereed International Conference Papers
• S. Ji, and D. Su, A heterogeneous collaborative design enviromnent with

dynamic management features, Proceedings o f the 9th International conference

on Computer Cooperative Work in Design, ed by W. Shen, 24-26 May, 2005,

Coventry, UK, pp 690-695

• S. Ji, D. Su, J. L. Henshall and J. B. Hull, Gear design optimisation using a

Genetic Simulated Annealing Algorithm, poster proceedings, International

Conference on Adaptive Computing in Design and Manufacture, 20 - 22 April

2004, Bristol, UK, pp 5-9

• W. Peng, Y. Xiong, S. Ji and D. Su, A virtual research institute and its

utilisation in CAE for worm gear drives and gear design optimisation, 8th

IV

Publications and Presentations

International Conference on Computer Supported Cooperative Work in Design,

26-28 May 2004, Xiamen, China, pp 552-557

• S. Ji, J. Li. Internet-based design environment using CORBA and Java. 1st

Annual Academic Conference o f CSS A -Nottingham, 8th July 2003, Nottingham,

UK

• J. B. Hull, D. Su and S. Ji, 2003, Development of a powerful software tool for

collaborative design and manufacture over the Internet, Proceedings o f the

International Conference on Industrial Tools, 8-12, April, 2003, Bled, Slovenia,

pp 399-402

• D. Su, S. Ji, N. Amin and X Chen, 2002, A framework of Web support for

collaborative design, Proceedings o f the 5th International Conference on

Frontiers o f Design and Manufacturing, Volume 1, Dalian, China, pp 492-498

• D. Su, S. Ji, J. Li and J. B. Hull, 2002, Web-enabled Collaborative

Environment for Integrated Design and Manufacture, Proceedings o f

Concurrent Engineering, 27-31 July, Cranfield, pp 93-101

• S. Ji, D. Su and J. B. Hull, 2002, Application of Java Servlet technique for

Internet-based design optimisation, Proceedings o f 4th International

Conference on Mechanics and Materials in Design, 5-8 June, Nagoya, Japan,

pp 198-200

• D. Su, S. Ji, N. Amin and J. B. Hull, 2001, An Internet-based system of gear

design optimisation using Java Servlets, Proceedings o f The International

Conference on Computer Aided Industrial Design and Conceptual Design, lb-

20 October 2001, Jinan, China, pp 30-36

• S. Ji, and D. Su, Integrated worm gearing design based on distributed

heterogeneous system, Proceedings o f International Conference on Advanced

Design and Manufacture (ADM2006), ed by D. Su and S. Zhu, 8-10 Jan. 2006,

Harbin, China, pp 429-432

• S. Ji and D. Su, Gear design optimisation with a variable penalty function,

Proceedings o f International Conference on Advanced Design and

Manufacture (.ADM2006'), ed by D. Su and S. Zhu, 8-10 Jan. 2006, Harbin,

China, pp 629-632

V

Notions

Notions

Symbol Description

fa Face width coefficient: the ratio of face width to pitch diameter of the pinion

m Module

K Gear addendum coefficient

a Pressure angle

p Helical angle

Pfp Rack tip radius coefficient: the product of p f? and m is the rack tip radius

Xj Pinion addendum coefficient

*2 Wheel addendum coefficient

Pinion tooth number

a Centre distance

u Transmission ratio

0*61 Pinion bending stress

^ 2 Wheel bending stress

S Contact ratio

Contact stress

k] Permission contact stress

k] Permission bending stress

B Gear face width

t Generation

T Temperature schedule parameter

Abbreviations

)
■ li

,-K

' £
J
\

Abbreviations 1
1%
4

 _

Abbreviation Description

ACI Advanced Collaborative Infrastructure

ANTS Advanced .NET Testing System

ASP Active Server Pages

CAD Computer Aided Design

CAM Computer Aided Manufacture

CAX A summary term for various kinds of Computer Aided technologies

CGI The Common Gateway Interface

CORBA Common Object Request Broker Architecture

DCE Distributed computing environment

DCOM Distributed Component Object Model

DFM Design for Manufacture

DFX Design for X

DGDO Distributed Gear Design Optimisation

FTP File Transfer Protocol

GA Genetic Algorithms

GUI. Graphics User Interface

HTML Hyper Text Markup Language

HTTP Hypertext Transport Protocol

HTTPS Secure Hypertext Transport Protocol

IDC Industrial Development Corporation

IDL The Interface Definition Language

IGES Initial Graphics Exchange Specification

HOP The Internet Inter-ORB Protocol

IPC Inter-process communication

JDBC Java Database Connection

JESS Java Expert System Shell

VII

Abbreviations

JMS Java Message Service

JVM Java virtual Machine

KQML knowledge query manipulation Language

OASIS Organization for the Advancement of Structured Information
Standards

OMG Object Management Group

ORB The Object Request Broker

PDM Product Data Management

PDS Product Design Specifications

RMI Remote Method Invocation

RPC Remote Procedure Calls

SGML Standard Generalised Markup Language

SMTP Simple Mail Transfer Protocol

SOAP The Simple Object Access Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

UDDI Universal Description, Discovery and Integration

URI Uniform Resource Identifier

VRML Virtual Reality Modeling Language

W3C The World Wide Web Consortium

WSDL The Web Service Description Language

WS-I Web Services Interoperability Organisation

WWW World-Wide Web

XML extensible Markup Language

VIII

Content

Content

Abstract...I

Acknowledgements... Ill

Publications and Presentations..IV

Notions...VI

Abbreviations...VII

Content...IX

List of Figures.. XVII

List of Tables.. XX

Chapter 1 Introduction..1

1.1 Background...1

1.2 Collaborative Design Requirements.. 3

1.3 Aims, Objectives and Scope of the Research ..6

1.4 Research Approach..7

1.5 Outline of This Thesis............................... 8

Chapter 2 Review for Web-based Collaborative Design..11

2.1 Fundamentals of Collaborative Design..11

2.1.1 Design Process, Concurrent Engineering & Collaborative Engineering 11

2.1.2 Collaborative Design & the Internet...15

2.2 Web-based Collaborative Design... 17

2.3 Data Exchange... 24

2.4 Genetic Algorithms... 27

2.5 Other Web-based Technologies... 27

2.6 Gear Design.. 28

2.7 Concluding Remarks... 29

Chapter 3 Overview on Architectures of Distributed System..32

3.1 Introduction...32

3.2 Fundamental Architectures of Distributed System.. 33

IX

Content

3.3 Point-to-Point Communication Structure.. 35

3.3.1 CORBA-Based Point-to-Point Structure... .35

3.3.2 Comparison of CORBA and Other Distributed Technologies...................... 38

3.4 CORBA-Based Server-Centralised Infrastructure... 40

3.5 Hybrid Structure...42

3.6 Encapsulation of Legacy Applications...43

3.7 Combination of Java with CORBA..45

3.7.1 Platform Independence...45

3.7.2 Java Servlets..45

3.7.3 CORBA and Java... 46

3.8 Summary...47

Chapter 4 Distributed Gear Design Optimisation... 49

4.1 Introduction...49

4.2 Development, Integration and Communication of Distributed Components 51

4.2.1 Wrapping Structure Based on CORBA... 51

4.2.2 Developing Procedure of Distributed Components..52

4.2.2.1 Definition of Object Interface..53

4.2.2.2 Generating Client Stubs and Server Skeletons..54

4.2.2.3 Implementing the Client... 54

4.2.2.4 Developing the Server and the Object Implementation..........................55

4.2.2.5 Building.. 55

4.2.3 Integration Model of Distributed Objects.. . 56

4.2.3.1 Different Formats of Java Clients Sharing an Object.............................56

4.2.3.2 A Client Application Invoke Multiple Objects..58

4.2.4 Management of Objects...59

4.2.4.1 The Naming Service... 59

4.2.4.2 Portable Object Adapter (POA).. 61

4.3 Distributed System Framework of the Gear Design Optimisation...................... 62

4.3.1 Basic Requirements... 62

4.3.2 Architecture of the Distributed System..63

4.3.3 Remote Invocation Mechanism...65

4.4 Working Procedure of Distributed Gear Design Optimisation.............................66

X

Content

4.4.1 Design Parameters Input... 67

4.4.2 Design Evolution by Genetic Algorithm...67

4.4.3 Objective and Constraints Evaluation.. 68

4.4.4 Design Visualisation ..69

4.5 Automatic Gear Tooth Generation............. 70

4.5.1 Gear Profile Calculation Formula...70

4.5.2 DXF Data File Format of the Gear Tooth Profile...72

4.6 Implementation o f GUI on Windows...72

4.6.1 Design Objectives Identification...72

4.6.2 Design Variables Configuration..73

4.6.3 Specify Other Design Requirements.. 74

4.6.4 On-line Help..75

4.6.5 Input Data Selection...75

4.6.6 Calling Optimiser Program... 76

4.7 Implementation of Evaluation Programs as CORBA Object on Linux...............77

4.8 Implementation of Algorithm Application as CORBA Client on W indows 78

4.9 Summary... 80

Chapter 5 Gear Design Optimisation Using Genetic Algorithms................................... 82

5.1 Introduction...82

5.2 Gear Design Optimisation M odel.. 83

5.2.1 Addendum Modification Design...83

5.2.1.1 Addendum Modification.................... 83

5.2.1.2 Effect of Addendum Modification on the Tooth Form and its

Application...85

5.2.1.3 Consideration of Determining the Addendum Modification Coefficients

 ..86

5.2.2 Gear Design Optimisation Model Considering Addendum Modification... 87

5.2.2.1 Design variables.. 88

52.2.2 Objectives...88

5.2.2.3 Constraints...89

5.3 Implementation of Genetic Algorithms Program... 91

5.3.1 Basic Concepts of Genetic Algorithms.. 92

XI

5.3.1.1 General Procedure of Genetic Algorithms... 92

5.3.1.2 Operations on Chromosome...93

5.3.2 The Cascaded Genetic Algorithm...94

5.3.3 Chromosome Representation.. 95

5.3.3.1 Chromosome Encoding of Gear Optimisation Application................... 95

5.3.3.2 C++ Bits-field Structure for Chromosome Encoding.............................97

5.3.4 Variable Dimensional Problems... 100

5.4 Multiple Objective Optimisation...103

5.4.1 Definition of Multiple Objective Optimisation..103

5.4.2 The Weighted Sum Solution... 104

5.4.2.1 The Weighted Sum Approach.. 104

5.4.2.2 Fitness Normalisation...105

5.4.2.3 Multiple Objective Optimisation Results of Gear D esign................... 106

5.5 Variable Penalty... 107

5.5.1 The Variable Penalty Function.. 108

5.5.2 The Temperature Schedule for Variable Penalty.. 109

5.5.3 Constraint Calculation... 109

5.5.4 Instances of Calculation and Results Analysis...110

5.5.4.1 Effectiveness of Variable Penalty Approach... 110

5.5.4.2 Effect of Temperature Schedule...112

5.5.4.3 Effect of Initial Temperature Parameter...112

5.5.4.4 Effect of Fixed Temperature..113

5.5.4.5 Cascaded Structure...114

5.6 Summary... 116

Chapter 6 Remote Invocation of Single Large Size of Program....................................118

6.1 Introduction...118

6.2 Internet Solution for Executing a Singular Large Program120

6.2.1 Standalone Design Application Package... 120

6.2.2 Internet Solution..122

6.3 Development of the System..124

6.3.1 HTML F ile .. 124

6.3.2 Servlets...126

XII

Content

6.3.2.1 Servlet Vs CG I.. 126

6.3.2.2 Servlet Running Environment..127

6.3.2.3 Implementation of Servlets.. 128

6.3.3 Applets...130

6.3.3.1 Features of A pplets...130

6.3.3.2 Data Retrieval... 131

6.3.3.3 The Progress Bar Applet.. 132

6.3.3.4 Graphics Applet.. 133

6.3.4 Invoking the Application Object from the Main Servlet............................. 133

6.3.4.1 Defining the IDL Interface............................. 134

6.3.4.2 Compiling the Interface into Java ORB and C++ ORB........................134

6.3.4.3 Developing the CORBA Application Server and the Object

Implementation... 135

6.3.4.4 Developing the C lient...136

6.4 Multi-users Enviromnent.. 136

6.5 Summary ... 138

Chapter 7 Applet / CORBA Based Worm Gear Design...140

7.1 Introduction...140

7.2 Architecture of the System... 141

7.2.1 CORBA HOP and WWW HTTP..142

7.2.2 Visibroker Gatekeeper...143

7.3 Development of the System.. .144

7.3.1 IDL Interface Definition..144

7.3.2 Applet Client... 146

7.3.3 Object Server...146

7.3.4 Object Implementation... 147

7.4 Deploying and Running the Programs...147

7.5 Summary...149

Chapter 8 Results and Discussions...151

8.1 Introduction... 151

8.2 Development of the Web-based Architecture... 153

XIII

Content

8.3 Paradigm 1: Distributed Gear Design Optimisation Using Web Technology and

Genetic Algorithms..156

8.3.1 The Architecture of the System... 157

8.3.2 Heterogeneous Application Communication Implementation.....................158

8.3.3 Unified Graphical User Interface (GUI) Design... 160

8.3.4 Optimiser implementation..161

8.3.4.1 Gear Design Optimisation M odel... 162

8.3.4.2 Cascaded GA Algorithm Design... 163

8.3.4.3 C++ Bits-field Structure for Chromosome Encoding........................... 163

8.3.4.4 Variable Dimensional Problems..164

8.3.4.5 Variable Penalty Function Using Simulating Annealing......................164

8.3.4.6 Multiple Objective Optimisation.. 165

8.3.5 Automatic 2D Mating Gears Profiles Generation... 166

8.4 Paradigm 2: Remote Invocation of Singular Large-scale Computing Program

Using Servlet and CORBA... 166

8.5 Paradigm 3: On-line Worm Design Using Applet/CORBA............................... 167

Chapter 9 Conclusions and Future Work... 169

9.1 Conclusions...169

9.2 Contributions to Knowledge .. 174

9.2.1 Conceptual Contributions for Web-based Structure.....................................175

9.2.2 Technical Contributions...176

9.3 Future W ork..177

9.3.1 Improving Infrastructure Based on Emerging Web Technologies............. 177

9.3.2 Multiple Disciplinary Optimisations Based on Distributed System...........179

9.3.3 Semantic CAD Environment... 179

9.3.4 Adaptation of Graphical D ata... 180

References... 181

Appendix A The Main Features of CORBA..191

A.l The Object Request Broker (ORB)... 191

A.2 The Interface Definition Language (IDL).. 192

A.3 Static Stubs and Skeletons..192

A.4 Dynamic Invocation and Dispatch.. 193

XIV

Content

A.5 Object Adapters... 193

A. 6 Inter-ORB Protocols................. 194

Appendix B Java Platform Independence................................... 195

Appendix C Involute Spur and Helical Gear Design............................ 197

C.l Basic Knowledge of Gears...198

C.1.1 Gear Type... 198

C .l.2 Properties of Involute..199

C .l.3 Basic Geometrical Parameters of Gears..200

C .l.4 Basic Rack Profile...205

C.2 Addendum Modification..206

C.2.1 Addendum Modification.. 206

C.2.2 Application Types of Addendum Modification...206

C.2.3 Necessaiy Calculations for Addendum Modification................................. 209

C.2.3.1 Addendum coefficienth*a ...209

C.2.3.2 Centre Distance..210

C.2.3.3 Assessment of Bending Stress.. 211

C.2.3.4 Contact stress.. 212

C.2.3.5 Specific Coefficient at Both the Pinion and Wheel Gear.................... 212

C.2.3.6 Constraint Conditions.. 214

C.3 Summary...217

Appendix D Basic Methods Controlling the GA Process..218

D. 1 Chromosome Representation.. 218

D.2 Selection, Crossover and M utation.. 218

D.3 Population.. 222

D.4 Termination of the Optimisation Process... 222

Appendix E CORBA Model Transition towards Web Services................................. 225

E.l Introduction.. 225

E.2 Web Service... 225

E.3 Comparisons between Web Services and CORBA... 228

E.3.1 W SD L & ID L .. 229

E.3.2 HOP & SOAP.. 229

E.3.3 CORBA Services & UDDI...229

XV

Content

E.3.4 Developing M odel...230

E.3.5 Advantages and Disadvantages... 230

E.4 Building Web Services from CORBA.. 233

E.5 Intelligent Engineering Design Web Services..234

E.6 Developing Issues..236

E.6.1 Definition of Each Web Service...236

E.6.2 Intelligent Design Broker... 236

E.7 Summary...237

XVI

List o f Figures

List of Figures

Figure 1.1 Traditional and modern product development..2

Figure 1.2 Problem-solving model of collaborative design.......................................3

Figure 2.1 Design process... 12

Figure 3.1 Web server centralised architecture...34

Figure 3.2 Point-to-point architecture..35

Figure 3.3 CORBA based point-to-point communication.......................................36

Figure 3.4 Common Object Request Broker Architecture.......................................38

Figure 3.5 Architecture for the Internet based design enviromnent....................... 41

Figure 3.6 The hybrid architecture... 42

Figure 4.1 Encapsulating structure... 52

Figure 4.2 Procedure from IDL to the establishment of final client/server structure

...53

Figure 4.3 Interface definitions for the existing stress application.........................54

Figure 4.4 Different clients sharing an object.. 56

Figure 4.5 One common client GUI program invoking multiple objects..............58

Figure 4.6 Objects hierarchical naming...59

Figure 4.7 Clients and servers interact with a name server......................................60

Figure 4.8 A POA’s role in Client-Object communication......................................62

Figure 4.9 Architecture of distributed collaborative design optimisation..............63

Figure 4.10 Remote invocations based on the distributed system..........................65

Figure 4.11 Working procedure of DGDO... 67

Figure 4.12 Optimisation procedure and remote evaluation programs invocation

...69

Figure 4.13 An example of an automatically generated 2-D gear profile..............70

Figure 4.14 A 3-D solid model of gears...70

Figure 4.15 Gear tooth profile...71

Figure 4.16 Design objectives identification.. 73

XVII

List o f Figures

Figure 4.17 Selected and unselected optimisation variables................................... 74

Figure 4.18 Application, quality and material parameters data input.................... 74

Figure 4.19 Pop-up on-line h e lp .. 75

Figure 4.20 Input data selection... 75

Figure 4.21 Retrieve Existing Design Parameters file open dialog....................... 76

Figure 4.22 Calling algorithm program ...76

Figure 4.23 Registration of remote naming server.. 79

Figure 4.24 Client procedure is added in a “Process”.. 80

Figure 5.1 Four instances of addendum modification.. 84

Figure 5.2 Schematic diagram of the proposed Cascaded GA approach...............94

Figure 5.3 Pareto solutions of centre distance and actual contact stress.............. 106

Figure 5.4 Pareto solutions of actual contact stress and actual pinion bending

stress... 107

Figure 5.5 Variation of the calculated centre distance with generation, ten runsl 11

Figure 5.6 Variation of the calculated centre distance with generation, one run 111

Figure 5.7 Effect of varying the function for the cooling schedule......................112

Figure 5.8 Effect of varying the initial temperature parameter............................. 113

Figure 5.9 Effect of using a fixed temperature on the convergence process 114

Figure 5.10 Convergence process for two tiers cascaded structure......................115

Figure 6.1 Structure of the original gear optimisation software........................... 121

Figure 6.2 Hybrid architecture of the system.. 123

Figure 6.3 Parameter input form ...125

Figure 6.4 Progress bar of the remote program execution.....................................129

Figure 6.5 Text results shown by the result servlet........................ 130

Figure 6.6 Graphical results shown by the result servlet....................................... 130

Figure 6.7 NTU_DesignCentre.idl... 134

Figure 6.8 Data file conflict between different users... 137

Figure 6.9 Solution for data file conflicts in multi-user situation.........................137

Figure 7.1 Overview of the proposed system ... 142

Figure 7.2 CORBA application extends across the firewall with maintaining the

integrity and security of the network...144

XVIII

List o f Figures

Figure 7.3 The compiling sketch map of client and server interface definition

WormDesign.idl..145

Figure 7.4 The C++ files generated by the idl-to-C++ compiler...........................147

Figure 7.5 The GUI of the worm gear design application from the Web browser

...149

Figure B .l Traditional compiled programs... 196

Figure B.2 Java programs... 196

Figure C.l Spur and helical gears.. 199

Figure C.2 Involute curve of gear profile.. 200

Figure C.3 Spur gear geometry... 201

Figure C.4 Geometrical parameters of helical g ear... 204

Figure C.5 Relation between spur gear, basic rack and rack shaped tool 205

Figure C.6 Application types of addendum modification..................................... 207

Figure C.7 Mating gears with centre distance modification y .m 208

Figure C.8 Slide specific sliding ratio..213

Figure C.9 Undercutting occurring..214

Figure D .l Parent selection roulette wheel...219

Figure E.l Component architecture in a Web Service...227

Figure E.2 Generation of client and server components from interface for Web

Services and CORBA...230

Figure E.3 Exposing deployed CORBA ORB components as Web Services233

Figure E.4 Framework of intelligent engineering design Web services..............235

XIX

List o f Tables

List of Tables

Table 5.1 Encoding and decoding values of gear design variables........................ 96

Table 5.2 A chromosome with all 9 gene segments... 101

Table 5.3 Dynamic mapping array and its values...102

Table 5.4 Result comparison of cascade and non cascade structure.................... 115

Table C.l Gears applications..198

Table C.2 Standard normal modules..202

Table C.3 Face width ratio..204

Table E.l Client and server components in different RPC architecture..............228

Table E.2 Transport protocol components of CORBA and Web Services......... 229

XX

Chapter 1 Introduction

Chapter 1 Introduction

This chapter gives a thorough introduction to the research undertaken for this project.

The background to the research is explained, followed by a detailed statement of

collaborative design requirements, the project’s aim and objectives, and research

approach. A brief summary of the chapters contained within this thesis concludes this

chapter. The chapter summaries and highlights the discoveries and achievements

attained within the course of the research investigation. These achievements are

explained relative to their respective applications.

1.1 Background
Strong competition has motivated a need for a new generation o f product design

environments, where expectations of improved product quality, lead-time, cost and

functionality have risen to a level that may not be sustained by a conventional design

to manufacture sequence. To remain internationally competitive, adopting a

concurrent methodology is vital and requires a collaborative effort from a broad range

of disciplines. Figure 1.1 compares traditional and modern product development. In the

modern concurrent and collaborative design model, part of the downstream activities

in manufacture and sales are merged into the design stage, in order to obtain high-

quality and low-cost product design.

Many advanced computerised tools such as Computer Aided Design (CAD) and

Computer Aided Manufacture (CAM) systems have been successfully used for over

two decades and still play important roles in product design and manufacture

nowadays. The CAD/CAM systems enable engineers to design, analyse, simulate, and

test products by means of digital prototyping in the early stage of the product

development process without actually manufacturing physical parts. These tools

1

Chapter I Introduction

dramatically help companies to produce higher quality products in a shorter time at

lower cost.

Traditional product development

Design stage Manufacture stage Sale stage

Collaborative and concurrent engineering

Design stage

Manufacture stage

Sale stage

 ►
Product development lead-time

Figure 1.1 Traditional and modem product development

With globalisation of more industrial enterprises and increasing complexity of

products, the experts from different domains may belong to different organisations,

and even geographically located in different areas over the world. Thus it is necessary

to create a distributed and collaborative design environment over the Internet to make

the design resources (CAD/CAM systems, other design applications, database files, etc)

effectively shared, quickly accessed, and easily and flexibly used when the designers

need them. Constructing such a design system will need to overcome the following

difficulties:

• Heterogeneity: dispersed design applications may use different programming

languages, such as C/C++, Python, Java, Perl, or Cobol, and run in different

computing platforms such as UNIX, Microsoft Windows, IBM OS/2, or Apple

Macintosh.

• Distribution of both computers and users: computer network technology has led

to a distributed working environment where an ever-increasing number of

distributed application systems are involved and running on many computers.

These computers are connected over networks having different architectures,

protocol standards, bandwidths, etc.

2

Chapter I Introduction

Such a collaborative environment enables multiple specific domain experts and their

computerised software tools to work together to search one design space, in order to

obtain a common solution. Figure 1.2 shows the problem-solving model of

collaborative design in this circumstance. In the present research, the design and

optimisation of gears is taken as an example of a distributed application.

Collaborative design aims to find an optimal design solution to a design problem.

However most design problems are difficult and complex and affections of the models

from different specialists to the design solution are comprehensive. The compromise

between the various objectives is not easy to find since the optimisation criteria are

often contradictory. Therefore, in the collaborative design environment, not only an

appropriate architecture where different experts and their applications can be

integrated, but also a resolution strategy to balance these different interests from

different domains in such a complex situation is required to ensure efficient and

effective collaborative design.

Figure 1.2 Problem-solving model o f collaborative design

1.2 Collaborative Design Requirements
To implement this research work, the requirements of collaborative design and the

limitations of current systems must first be identified. Engineering collaborative design

3

Chapter 1 Introduction

is a veiy broad term that is closely related to several technical and social disciplines

such as engineering design, computer science, human computer interaction, decision­

making behaviour, and social sciences. In this research, the term “collaborative

design” refers to a design activity where distributed applications will be shared and

invocated by an active main designer towards a complex design problem over the

Internet. With regard to the application heterogeneity and distribution, the following

features of building a collaborative design system will be the challenges in this

research:

• Legacy system reusability: system development cost is an inevitable problem to

be taken into consideration. Reuse of legacy systems is a methodology for

reducing the high cost of software development and maintenance. It is

necessary to build an environment to accommodate many existing design and

manufacturing applications without rewriting the essential codes.

• Scalability: scalability means that additional resources can be incorporated into

the system as required. This capability should be possible without disrupting

the links previously established.

• Resource sharing and management: The system design should support the

finding, accessing, and management of design sources.

From the view of engineering design, some problems need to be resolved, such as:

• Remote execution of a single large-size computing program: in the engineering

field, there are many large-size computing programs for product design and

analysis. These programs may not be convenient or not allowed to be

downloaded on the client machine and likely run on the owner’s previous

machine. System design needs to facilitate the parameters input, program

execution and monitoring, and result viewing.

• Invocation of multiple programs: to a complex product design, there may be a

need for invocation of multiple programs during a complex design procedure.

These applications should be available over the Internet and can be invocated

dynamically according to the user requirement.

4

Chapter I Introduction

• Interest leverage between multiple design domains: to a single design problem,

multiple interests from different design domains should be leveraged especially

when they are controversial.

• Quick reaction to alternative design modification: system design should

provide an integrated environment to implement the parameterised design

mechanism. To each modification of design input, system can be facilitated

with viewing of resultant data, geometrical shape creation, manufacturing

check and motion simulation.

Most of the existing CAD/CAM systems are standalone, completely autonomous, and

single-user applications. Some CAD/CAM packages, such as Windchill for Pro-

Engineer, enable the users to collaborate over the Internet. However, the Internet-based

collaboration can only be operated with the same software in the same type of platform

and operating system. Therefore, there is inevitably for a need to construct a

distributed and collaborative environment to accommodate heterogeneous and

standalone resources to conduct a design.

The observed limitations of current CAD/CAM systems and the requirements of

engineering collaborative design have led to the following formulated research

question in this thesis:

Which tools, methods, and architectures are needed to develop the distributed system
supporting engineering collaborative design over the Internet?

This is a broad research question that can be further divided into a few major sub­

questions, namely:

• How should huge amounts of complex engineering design resources, which are

distributed, heterogeneous, dynamic, and continuously evolving, be efficiently

integrated?

• How do engineering design resources communicating with each other?

• How is collaboration between multiple distributed applications conducted to

resolve a design problem?

5

Chapter 1 Introduction

The combination of all the above features to provide a robust tool for collaborative

environment applied in design and manufacture is a novel and challenging task. One

task in this project is to investigate and choose proper Internet and Web technologies

to develop such a collaborative environment for integrated design at low cost, with the

features of heterogeneity, scalability, interoperability and legacy component reusability.

Another task is to provide a proper optimisation mechanism to support collaborative

design conducted by multiple designers. As a case study, spur and helical gear design

based on the proposed system is implemented.

1.3 Aims, Objectives and Scope of the Research
The overall aim of this project is to construct a Web-based system at low cost, to

support effective collaborative design over the Internet and thereby shorten the product

development lead-time. More specifically, the following main objectives in support of

this aim are:

• To review current relevant work and investigate enabling Web technologies

and tools.

• To establish an infrastructure of Web-based collaborative environment for

integrated design.

• To develop an appropriate optimisation mechanism for the co-design among

multiple concerns.

• To develop an approach to invocate singular large sized design programs over

the Internet and multiple users management.

• To develop an architecture to support collaborative work of multiple

heterogeneous applications.

• Taking gear design as a case study, to explore the feasibility of the proposed

system.

This thesis is grounded in the field of mechanical engineering and draws attention to

some technical issues of constructing distributed system for engineering collaborative

design. In this research, existing Web-based technologies such as Java and distributed

object computing are utilised to achieve the research aim. The optimisation approaches

are employed to assist a designer to conduct the design optimisation over the

6

Chapter 1 Introduction

distributed collaborative design concerns. It is expected that the findings can provide

an efficient mechanism for engineering collaborative design over the Internet.

1.4 Research Approach
This research work employs distributed object computing technology to build a

collaborative environment supporting integrated design, an optimisation method to

implement collaborative co-decision among different domain concerns, Web-oriented

programming tools such as Java to develop friendly graphical user interface within

web browser, and C++ programming tool to develop the application interface for

existing C++ design applications.

In order to create, deploy, and manage the distributed components, CORBA (the

Common Object Request Broker Architecture), a well-known specification for

distributed object computing, is used to implement design resource integration in a

platform, hardware, and software-independent maimer. Existing design applications

can be wrapped into distributed objects, irrespective of which language it is written,

which platform it is running on and what hardware it is ported on. Proper CORBA

developing tools need to be investigated in order to fulfil those communications

between C++ applications and Java applications, and between applications residing on

Windows and on Linux.

In addition, Genetic Algorithms (GA) are utilised in this research. With respect to the

concurrent and collaborative engineering, there may be many designers from a wide

range of disciplines to carry out one single design problem. Affections to the design

parameters from different domain consideration are complex, and sometimes even

controversial. GA-based design optimisation procedure is modelled to help to evaluate

the multiple design objectives and to find multiple feasible inferior solutions with

global searching.

Furthermore, Java Applets and Java Servlets technologies are used to fulfil the remote

execution of large sized and time-consuming computing program. Servlets, as a Web

server extension, are used for accepting user client, activating execution, and returning

7

Chapter 1 Introduction

results with a Web page. Java Applets can be embedded in a Web page and used to

design a friendly user interface. Applets are also combined with CORBA to provide a

more powerful model for a distributed system.

Moreover, the C++ programming language is used to develop some applications such

as a graphical user interface program on Windows and an algorithm execution program

on Linux. In the proposed distributed system, there are many existing applications

written in C++ to be integrated. The service program for these programs needs to be

developed in C++.

1.5 Outline of This Thesis
Chapter 2 Review for Web-based Collaborative Design

Research and literature relating to the major topics of the project are investigated and

reviewed. The topics to be reviewed are Internet-based communication methods and

the improvement in the field of engineering design. Traditional design methods with

respect to sequential and much iterative process for product development and emerging

concurrent and collaborative engineering to improve the product developing process

are reviewed. Current collaborative systems and relevant technologies are investigated.

Also, data exchange technologies and the Genetic Algorithm technique are explored to

identify their capabilities with respect to product information exchange and design

optimisation in the field of engineering design.

Chapter 3 Overview on Architectures of Distributed System

In order to provide a Web-based collaborative environment for integrated design, two

architectures of distributed system: point-to-point structure and server-centralised

structure are investigated and described in this chapter. The application models of

these two architectures are presented. The combined model of them is also proposed in

order to provide an effective and easy-to-administrate platform for the distributed

application system. Architecture and technologies to implement the distributed system

are explored. A combination of CORBA and Java is considered to address the

challenges.

Chapter 1 Introduction

Chapter 4 Distributed Gear Design Optimisation

Gear design is a complex process and often needs collaborative design conducted by

different disciplinary experts. This chapter presents a distributed environment based on

CORBA, all the computerised program or service procedure owned by the experts are

wrapped into distributed components and consequently can be integrated together, and

communicate with each other. All the concerns from different design experts are

abstracted as objectives or constraints in the design optimisation model. An optimising

mechanism, i.e. optimiser, supporting design optimising and design result visualisation

is developed and illustrated.

Chapter 5 Gear Design Optimisation Using Genetic Algorithms

In order to implement the design optimisation, an appropriate optimisation approach is

needed. In this research, Genetic Algorithms (GA) is utilised. In this chapter, the GA

approach is investigated, followed by the modelling for the addendum modification

design problem of spur and helical gears, and then key issues about controlling the

optimising process are presented. Variable penalty function for controlling the

convergence process, dynamic variable combination for the variable dimension

problem, and multiple objective optimisation approach for the co-design model are

illustrated.

Chapter 6 Remote Invocation of Single Large Size of Program

Integration and remote invocation of a large size of program is developed and

presented in this chapter. The implementation of parameter input, program execution

and monitoring, and result visualisation within a web page is demonstrated. Multiple

user environments are developed and described as well. The system is developed based

on a server-centralised model using Java Servlet and CORBA. In this model, the

execution of a program is not affected due to network interruption and calculation

results can be viewed later.

Chapter 7 Applet / CORBA Based Worm Gear Design

By using CORBA and Java applet, a plug-in miming model of a remote program for

worm design is given. A session established between point-to-point can be kept linking

9

Chapter 1 Introduction

until stopped manually. This model is used for the flexible need for parameter

modification repetitively.

Chapter 8 Results and Discussions

This chapter discusses the features of the Web-based systems, the framework and

developing issues about three application paradigms: the distributed gear design

optimisation with GA-based optimiser, remote invocation of singular large-scale

program, and the worm gearing design system. Transformation of a developed system

towards the emerging model is also summarised. Along with the discussion of work,

the achievements are accordingly presented in every part of work.

Chapter 9 Conclusions and Future Work

This chapter gives the conclusions from the research work with the descriptions of

contribution to knowledge. Further research work will be further conducted in several

aspects: explorations on Web technologies, extension towards multiple disciplinary

optimisation, semantic CAD environment and adaptive graphical data for mobile

environment.

Chapter 2 Review for Web-based Collaborative Design

Chapter 2 Review for Web-based Collaborative

Design

This chapter highlights the benefits and drawbacks of current collaborative systems,

current Web-technologies that are relevant to collaborative design are presented, and

the similarity between collaborative architectures and Web-technologies. A number of

web-based collaborative design environment are reviewed. Finally, current challenges

and hot topics are discussed.

2.1 Fundamentals of Collaborative Design

2.1.1 Design Process, Concurrent Engineering & Collaborative
Engineering

Product design is the process by which the needs of the customer or the marketplace

are transformed into a product satisfying these needs. Five main specific dimensions,

all of which ultimately relate to profit, are commonly used to assess the performance of

a product development effort: product quality, product cost, development time,

development cost, and development capability [1].

Typically, the design of a new product consists of six basic design stages, illustrated in

Figure 2.1.

All design starts with the identification of a need. Ideas for new products or product

improvements usually come from some combination of focus groups, customer

feedback, market surveys, published studies, and company intuition.

11

Chapter 2 Review for Web-based Collaborative Design

Products design specification

Conceptual design

Sales

Detail design

Need

Manufacture

Figure 2.1 Design process

Once a market need is identified, it is needed to formulate product design

specifications (PDS) such as performance parameters, required features, appearance,

size, weight, user, cost, environments for storage and use, maintenance requirements,

expected life, shipping methods and so on.

Designers use the results of specification definition phase to generate and evaluate

concepts for the product. Generating concepts involves establishment of the functions

to be included in the design, identification and development of suitable solutions. The

goals to evaluate concepts are to compare the concepts generated to the requirements

developed during specification development and to select the best concepts for

refinement into products.

Once the engineers are satisfied that the concept is technically feasible the detail

design can proceed in earnest. During this stage, each part is identified and engineered.

This detail work will involve in-depth decisions as to the geometry, tolerances,

materials, surface finish, etc. It will also include decisions as to the method of

manufacture, the materials to be used, the need for special purpose machinery of

tooling, whether existing components can be adapted, the advisability of making in-

house or buying in, and so on. The design is documented with drawings and computer

12

Chapter 2 Review for Web-based Collaborative Design

files describing the geometry of each part and the process plans for the fabrication and

assembly of the product.

Manufacture is used as a synonym for production, that is, to refer only to the portion of

the product realization process that involves the actual physical processing of materials

and the assembly of parts.

Sales include the marketing of the final product - distribution, service back-up, etc.,

which are all part of the marketing or selling activity.

Conventionally, the above-mentioned activities are divided into almost separate

functions, resulting in design and manufacture occurring as serial activities. Product

designers are mainly concerned about their products’ performance and functionality

and may not give sufficient consideration of process design, manufacturing’s

constraints and/or marketing’s constraints. In recent years, it has been found that

sequential design is brittle and inflexible and often requires numerous iterations, which

make the design expensive and time-consuming, and also limit the number of design

alternatives that can tried out. Sequential design is usually practiced with downstream

information flow. It may cause an inefficient design (and hence inefficient product

development), due to the absence of manufacture-ability checks at the design stage.

Due to the growing demands for better and cheaper products, the traditional practice of

passing decisions sequentially “over the wall” has been replaced with the concurrent

engineering approach in recent years. In this approach, the simultaneous design of a

product and all its related processes in a manufacturing system are taken into

consideration, ensuring required matching of the product’s structural requirements

with functional requirements and the associated manufacturing implications. This

means that all pertinent information flows should be multi-directional among the

design functions and all related processes in an organization. Processes influencing

product design usually include market analysis, materials procurement, product cost

estimation, machining, assembly, inspection as well as the later phases of the product’s

life cycle such as service, maintenance, disposal and recycling [2],

13

Chapter 2 Review for Web-based Collaborative Design

Many aliases of concurrent engineering have been used to describe similar approaches,

including simultaneous engineering, life-cycle engineering, design integrated

manufacturing, design for X (DFX), parallel engineering, concurrent design, design

fusion, and design in the large. Design for X stands for all the other related upstream

and downstream functions in the development process of product, such as Design for

Manufacture (DFM), design for producibility, design for assemblability, design for

serviceability, and so on [2].

With the increasing availability of world wide concurrent grid of engineering resources,

the concurrent engineering approach has delivered significant impact on industrial

productivity over the past decade. However, as the product complexity increases and

engineers are asked to be more socially responsible, engineering decisions, whether

they are made sequentially or concurrently, must involve multiple stakeholders with

different expertise and competing interests. Facing with this additional challenge

engineers must have new methods of not only sequencing multiple decisions but also

negotiating a single agreement. The task of achieving a jointly agreed decision among

multiple stakeholders is called Collaborative Engineering, which represents the next

frontier of concurrent engineering research [3].

According to the definition given by Mills [4], collaborative engineering is the

application of team-collaboration practices to the organization’s product development

endeavours. It builds upon the nature of cross-functional product development teams

introduced in the realm of concurrent engineering. While concurrent engineering has

historically been concerned with the careful structuring of products, workflow, teams,

and organizations, collaborative engineering is, in contrast, more concerned with

creating the environment of effective, free-flowing, and ad-hoc collaboration among

peers whose insights complement one another and whose whole as a team is far greater

than the sum of its individual parts.

When a product is designed through the collaborative engineering and collective

efforts of many designers, the design process may be called Collaborative Design (it

14

Chapter 2 Review for Web-based Collaborative Design

may be also called Co-operative Design or Inter-disciplinary Design). The objectives

of the collaborative design team might include optimising the mechanical function of

the product, minimizing the product developing costs, or ensuring that the product can

fast, easily and economically be serviced and maintained [5].

Based on collaborative design engineering, traditional approaches with large, isolated

groups of engineers and designers have given way to small, nimble, multidisciplinary

integrated product teams that are able to quickly catch and correct design flaws. By

increasing communication and coordination, these new teams can more quickly and at

reduced costs complete the development of high-quality products [6].

2.1.2 Collaborative Design & the Internet
Primarily, collaborative design tries to address those problems in traditional sequential

models for design generation, concurrently by considering constraints and detecting

conflicts early in the design stage, as concurrent engineering. It might include those

functions as disparate as design, manufacturing, assembly, test, quality and purchasing

as well as those from suppliers and customers [7]. Wang [8] introduced a unique

combination of machining feature, agent technology, and function block to tackle and

facilitate concurrent design problems with due considerations of downstream

constraints under distributed environment.

However, collaborative design engineering not only augment the capabilities of the

individual specialists in the structural combination, but as an extension of concurrent

engineering, must also enhance the ability of collaborators to interact with each other

and with computational resources, whether in a sequential or concurrent working flow.

Chung developed a framework called Manufacturing Integration and Design

Automation System (MIDAS), where engineers could (a) identify valid process

configurations based on constraints provided from many different sources; (b) update

and share the process configuration via Internet; and (c) facilitate coordination among

distributed process participants [9]

15

Chapter 2 Review for Web-based Collaborative Design

To implement product development based on collaborative design engineering, the

people standing for multiple-domain experts and their computerised technical tools

such as computer-aided design, analysis, or manufacture tools, product information

files, knowledge bases, and so on are essential elements for collaboration. A proper

infrastructure what makes collaboration possible is also important for gaining required

collaboration. In essence, collaborative design engineering is all the things about

establishing an enviromnent including these three elements, i.e. people, tools and

infrastructure, to support collaboration.

In this context, the Internet becomes a unique infrastructure for collaborative design

engineering. Nowadays, it is very difficult to talk about concurrent or collaborative

design and manufacture, or virtual enterprises or alliances without mentioning the

enabling information infrastructures built over the Internet. Remote collaborative

design and manufacturing becomes a specific form of virtual alliance, which exploits

the Internet technologies for information communication and function coordination

among design partners scattered over long distances. The ever-increasing improvement

of Web technologies has opened more and continuing possibilities for resource

integration and access, data sharing, and collaborative design generation required in

collaborative design engineering.

Significant efforts have been made to develop computer supports and information

technologies to facilitate collaborative teamwork. Early developments and

achievements in computer supported concurrent engineering had been reported in an

American Society of Mechanical Engineers (ASME) workshop organised by Sriram,

Logcher and Fukuda [10] and a special issue in the IEEE (Institution of Electrical and

Electronic Engineers) Computer Journal (1993). Recent Surveys by Huang and Mak

[11] and Erkes et al. [12] indicate that the Internet/Web technology is playing

increasing roles in developing and applying Collaborative product design. Indeed, a

number of major initiatives and projects recently launched in America and Europe

involving government, academic and industrial institutions, have adopted the

Internet/Web technology as their development infrastructure. Examples include the

Manufacturing Automation and Design Engineering (MADE) program and its follow-

16

Chapter 2 Review for Web-based Collaborative Design

up Rapidprogram [13], the Agile Infrastructure Manufacturing Systems (AIMS)

project [14], Technologies Enabling Agile Manufacturing (TEAM) program [15], the

Global Engineering Networking (GEN) project [16], Production Planning and

Management in an Extended Enterprise (PRODNET) project [17] and the Web-

enabled Collaboration in Intelligent Design and Manufacture (WCIDM) project [18].

More projects are emerging in other countries and regions. Demonstrative systems are

being developed. CyberCut [19] and MADEFAST [20] have also presented

experimental workbenches for Web-based design to production, including activities

such as conceptual and detail product design, process planning, Design for

Manufacture, NC (Numerical Control) programming and rapid prototyping.

In parallel, collaborative design is also functionally supported and improved by the

technologies in the domain of artificial intelligence, such as agent technology,

knowledge management, knowledge-based systems, genetic algorithm, and so on.

Furthermore, product data format and exchange technologies have been accordingly

evolved and developed for Web-based collaborative engineering. These enabling

technologies research serve as the wheels of the collaborative design vehicle to more

forward [21].

2.2 Web-based Collaborative Design
The Internet is a large and connected network of computers and the World-Wide Web

(WWW) is the fastest growing segment of the Internet [22]. The popularity of the

Internet is largely due to the influence of the World Wide Web proposed in 1989,

which has made the Internet accessible and available to mass population. Powered by

the ever-improving information technologies, such as HTML (HyperText Markup

Language), Java, search engines, email, XML (extensible Markup Language), and

distributed object technology, the Web provides an interface to feel information for

interaction. The ability of the Web for designers to combine multimedia to publish

information relevant to the spectrum of the design process, from concept generation

and prototyping to product realisation and virtual manufacturing, motivated the

adoption of the Web as a design collaboration tool. A collaborative design system

developed with the Web as a backbone would primarily provide: (1) access to

17

Chapter 2 Review for Web-based Collaborative Design

catalogue and design information on components and sub-assemblies; (2)

communication among multidisciplinary design team members in multimedia formats;

and (3) authenticated access to design tools, services and documents [21].

The Web technology has been applied or experimented to develop virtually many

aspects of design across the entire life cycle of the product development and realisation

process. Starting from the front-end, the Web-based approach is particularly suitable

for customer requirement management in the new or market research. An interesting

work at the Philips Advanced Development Centre [23] is to use the Internet as a

communication infrastructure for lead user involvement in the new product

development process. Another related project is to use the Web for customer

requirement analysis for software product development [24].

The utilization of a web interface allows individuals to access relevant design

information [25]. The Web can be used for the design team members as a medium to

share data, information and knowledge [26, 27]. In some cases the Web is also

integrated with appropriate technologies for product data management. Research

papers [28-30] show that 40-50% parts of a new product are entirely the same as

existing ones, 30-40% parts require slight modification of existing ones, and only 10-

22% parts are new. Thus Wang et al [31] focus on the management of existing design

resource including the design knowledge, methods and geometry data of those existing

product parts and tried to enable the maximum reuse of existing design resources in the

development of a new product.

Many CAD/CAM systems are usually designed to work in isolated environment and

not able to communicate with each other. In the research of [32], the framework was

built on the Internet for data exchange among different CAD/CAM systems. Translator

applications located on the Web is easily used to translate files of different formats into

the standard STEP format for other users to share them.

Some contribution is focused on the design process management. Yoo and Kim’ Web-

based knowledge management system is for facilitating seamless sharing of product

18

Chapter 2 Review for Web-based Collaborative Design

data among application systems in virtual enterprises [33]. MIDAS [34] is a

framework for integrated design and manufacturing process. One of facilities of the

system is to support a collaborative design by sharing data and processes. Engineers

are able to access a process, compare alternative process, analyse interdependencies,

and generate their own processes [34]. In the research of [35], the web-based and

adaptive design process management approach is software tool based on dynamically

constructed ‘flows’. A key aspect of the design process management is that multi­

perspective visualisation allows both managers and designers to view the design

process from their respective perspectives.

In manufacture, Wanger et al [36] experimented with developing fixture design

systems on the Internet. Rapid prototyping is one of areas where the Web technology

has been applied [37]. Krause et al. [38] employed the Web technology to achieve

global product data management. Wang et al [39] presented implementation of remote

robot manufacturing over Internet. The application system is under hybrid architecture

of Web browser/server and client/server to manipulate the product data and to carry

out a variety o f manufacturing functions. A well-developed product model should have

the following characteristics: encapsulating product data into data objects; capturing all

product data required and generated throughout the whole product lifecycles;

organizing various product data in a logical way to allow multiple users operate on the

same data model, and dynamically reflecting product configuration transformation

process through different manufacturing stages.

Different web technologies are used for the different function and at different levels. In

the research of developing Web-based concurrent design systems, Name and

Engelstein listed tools for distributed concurrent design [40]. These tools include e-

mail, World Wide Web (WWW), Virtual Reality Modelling Language (VRML), File

Transfer Protocol (FTP), groupware, and so on.

Roy et al. [41] reported the development of a prototype Web-based collaborative

product modelling system, in which designers can collaborate through shared Web

pages and VRML models. Li et al [42] proposed the collaborative product

19

Chapter 2 Review for Web-based Collaborative Design

development mode on Internet to allow partners easily to retrieve design information

stored in HTML, VRML. Asynchronous collaboration can be received through e-email

and Web publishing among collaborators to get to know design task on demand,

problem discussion, newest advanced technical progress, and so on [43].

The Web with only HTML page is not enough for the interactive medium between

client and server side. Web servers needs to route the content of HTML forms to back­

end server applications. Some technologies such as CGI (The Common Gateway

Interface), Java, JavaScript, ASP (Active Server Pages), and so on are emerged into

Web application to enhance the interaction ability.

Wu’s Cdesign system [43] is built on client /server architecture. Through centralised

Web server and its services implemented in Java, ASP applications dispersed

knowledge bases, design applications, collaborative management applications, and

clients possess Web-browser are linked together to conduct collaborative design.

Chun [44] proposes product recommender system implemented by JESS (Java Expert

System Shell) and Java Servlet. The system employs a multimedia user interface that is

accessible with standard web browsers. In the client/server system, the client software

supports the user interface and the geographically separated server software supports

the expert system. The database is accessed using the JDBC (Java Database

Connection) capability of the Java Server Extension (Servlet). Product domain

knowledge is stored as a form of facts and rules in a JESS knowledge base file.

Ballaminut et al’s WIRED is a framework, written in Java, to build High Energy

Physics event displays used across the network. It can be used as a stand-alone

application or as an applet inside a WWW browser [45],

Abdel-Wahab et al developed a system called Java Collaborative Environment (JCE)

in Java application and showed how a group of Internet users can share single-user

Java applications for synchronous collaboration. The system allows application sharing

20

Chapter 2 Review for Web-based Collaborative Design

among diverse systems such as UNIX workstation-based and PC windows-based

systems [45, 46].

The main problems of these approaches in the above systems are that they require

HTTP and the Web server to mediate between objects running on the client and objects

rumiing on the server. There is no way for a client to directly invoke a server object.

However collaborative application among diverse partners over Internet needs a highly

interactive communication between resource components. To get the full benefits of

object-to-object interactions, the Web must be augmented with a distributed object

infrastructure. This kind of technologies includes RMI (Remote Method Invocation),

DCOM (Distributed Component Object Model) or CORBA (the Common Object

Request Broker Architecture). RMI is for communication for Java applications;

DCOM is for systems based on Microsoft’s Windows; and CORBA is designed for

language-independent and platform-independent application.

Raje et al’s collaborative environment for visualization using Java RMI is developed

for the purpose of native Java-client and Java-server. It allows users to view or explore

3D objects, natural phenomenon, or complex data [46].

In the Alda et al‘s research for supporting collaborative design among multiple

universities, DCOM is used for the deployment and invocation of application

components over the peer-to-peer architecture [47].

To the complex and highly diverse collaborative design environment, CORBA is more

used than others. CORBA, defined by the Object Management Group (OMG), is a

standard for the distributed computing and systems integration [48]. Its promises of

platform-independent and language-independent enable object components to be

operated from anywhere in a network without concern for the operating system they

are running on or the programming language they are written in.

In the research conducted by Kim et al, the system integrates multiple clients,

application servers, and databases together over a three-tier structure. The

21

Chapter 2 Review for Web-based Collaborative Design

communication between clients and application servers is done via CORBA for

interoperability among the distributed objects [49].

Li et al [50] discusses the idea that the collaborative product development mode on

Internet is a process of collaborative decision making in stages. CORBA is used to

establish an environment for collaborative problem solving.

Ong [51] implemented a multi-tier Web-based environment for accessing power

system data via networks, in which CORBA is used for the interface between the Java

GUI and Power Flow software. CORBA helps to turn a local PF application into the

Web-based simulator tool. This demonstrates how any existing applications written

using C/C++ can blend easily with Java. Similar examples are also given in [52-54].

Yoo [55] developed a Web-based knowledge management system for sharing data in

virtual enterprises, where CORBA interface helps Java agents communicated with the

knowledge base system and in replace of CGI/HTTP techniques. This enables more

dynamic user interfaces on heterogeneous Java virtual machines, updating for any

changes in the user interfaces.

Hauch et al [56] explored communication between integrated software tools using

CORBA. The proposed system allows the encapsulated components in different

processes on different machines to directly communicate in a high-level manner. Java

is used for the implementation of system components and GUI. A CORBA-compliant

wrapping tool is developed for the encapsulation of system components.

Lee’s Collaborative optimisation approach for multidisciplinary design optimisations

of mechanical systems allows diverse optimising system belonging to different

disciplinary co-optimise a single problem. The system level service program is

functioned as the client program that requests the necessary information. Each

discipline optimiser can be functioned as the server programs, located in the

heterogeneous systems connected with network. CORBA offers common interfaces

[57].

22

Chapter 2 Review for Web-based Collaborative Design

Sang focused on the CORBA wrapping of legacy scientific applications, especially the

procedures in details for wrapping to the non-object-oriented Fortran codes using

CORBA and C++ is demonstrated [58].

In the fast-developing IT world, new object and exchange paradigms emerge rapidly.

A wide acceptance of approaches based on the extensible Markup Language (XML)

appears into the world. The W3C defines a set of XML-based languages that are the

foundation for the current notion of web services. The Web Service Description

Language (WSDL) issued to describe interfaces of a web service. These interfaces can

be accessed using the Simple Object Access Protocol (SOAP), in which recent

development contends with CORBA [59].

Ouyang et al [60] presented a novel web seivice based distributed collaborative CAD

system, employing feature as collaborative elements. SOAP is used for the

communication between the server and the client. The system supports collaborative

design on heterogeneous environment.

Lostienlco et al [61] introduced an Advanced Collaborative Infrastructure (ACI) for

distance spamiing, tool integration, and administration as well as open interfaces for

XML-based data exchange. The ACI core components are implemented as Web

Seivices that are interconnected using the SOAP. The SOAP messages between the

components are transported using ANTS (Advanced .NET Testing System).

Most of the Web-based collaborative design systems would primarily provide: (1)

access to catalogue and design information on components and sub-systems; (2)

communication among multidisciplinary design team members in multimedia formats;

and (3) authenticated access to design tools, seivices and documents; (4) design team

members would use the Web as a medium to share data, information and knowledge.

However, to implement collaborative design over the Web-based infrastructure, some

other enabling technologies, such as data exchange, artificial intelligence, and so on,

have to be involved.

23

Chapter 2 Review for Web-based Collaborative Design

2.3 Data Exchange
The CAD/CAM systems have been developed for many years. Most of them are

capable of handling complex geometric information for a product throughout its life

cycle. However, these systems may not be able to communicate with each other in

collaborative design environment. To build up a collaborative environment for

CAD/CAM system users on different sites communication requires a proper standard

to represent all information to be transferred [62-65] and a good communication

system tool to breakthrough the barrier of product data exchange and sharing [66-69].

In the CAD/CAM context, there are several existing standards for data exchange, such

as Initial Graphics Exchange Specification (IGES), SET, VDA-FS, EDIF, DXF, etc

[70]. The most popular exchange standard in use is the IGES. It was designed as a

neutral format for the exchange of CAD data and has been used as the standard for

geometric information by most CAD/CAM systems.

Although IGES is best supported as an interchange format for geometric information,

it camiot fulfil the completeness requirement in representing product data. STEP was

first proposed in 1984 to represent complete information of a product throughout its

life cycle. It integrates geometric representation and adds additional information, such

as the process models, for different stages of the product development. The

information in STEP is represented using an information modelling language called

EXPRESS. STEP uses application protocols (APs) to specify the representation of

product information for one or more applications [71].

STEP has gained considerable importance due to active support from the automobile,

aerospace and the defence sectors. CAD software vendors and third parties for systems

like AutoCAD, PRO/Engineer, CATIA, Unigraphics, Microstation, Trispectives and

ACIS, have STEP interfaces in their new releases. As the acceptance and the use of

STEP-based information exchange increases, a need for translation services to convert

information represented in legacy file formats like IGES into STEP will arise.

Bhandarkar et al cs report focuses on a procedure for converting product design data

24

Chapter 2 Review for Web-based Collaborative Design

from legacy IGES format into STEP [72]. Chao and Wang developed an application

for exchanging CAD/CAM data on Internet. In this research the AutoCAD DXF file

format is changed into STEP format [73]. Oh et al presented an interface module based

on the STEP methods to implement the data exchange between a CAD system and a

PDM system [74].

To implement the data exchange, individual STEP translators for various systems need

to be developed. A possible solution to this problem is to provide the Internet-based

services for STEP data translation. Zhang et al demonstrates an avenue for on-line

STEP data translation services for virtual enterprises [75].

Hardwick et al. [76] proposed an infrastructure for sharing manufacturing information

for the virtual enterprise. They use the STEP model data as the standard to represent

product data, the CORBA as the communication tool, and WWW as their

infrastructure.

Using STEP, Regli [77] discusses the feature of Internet-enabled CAD systems and

brings out two features that Internet tools should have: access to information, access to

tools and collaborators. Smith and Muller [8] focused on obtaining a multi-view

database system for information sharing for establishing a concurrent engineering

environment using STEP.Ly [78] builds a distributed editing system on the network so

that the editing processes can be carried out on it.

Brown and Versprille [79] discuss issues on information sharing through the network

among different CAx (a summary term for various kinds of Computer Aided

technologies) systems. They focus on feature extraction methods of traditional

CAD/CAM databases. They use CORBA as the tool to transmit features, and stored

them in an object-oriented database system and suggested that other tools such as

Microsoft’s ActiveX can be used for transmission. Kimuro et al. [80] discuss a

Continuous Acquisition of logistic Support (CALS) environment with CAD databases

using agents. They use such technology to query distributed CAD databases as a

centralised database system.

25

Chapter 2 Review for Web-based Collaborative Design

Chao and Wang focused on establish a data exchange and sharing environment for

distributed CAD/CAM users across different platforms and implemented a framework

including client databases, an index server, a CAD data format translator, and a file

sharing control module to provide engineers a handy tool to implement concurrent

engineering. The CAD data format translator can be used for translate different formats

into the STEP format [81].

Chin et al proposed a methodology that represents multiview integrated product

modelling based on the outcome of a research project on ISO 10303 STEP. They have

proved that the STEP EXPRESS language is applicable for describing the integrated

product model, while the mapping has been successfully developed by EXPRESS-X

language [82].

Deshayes et al proposed an approach allowing different experts to cooperate via

Internet. To facilitate the communication of information among different experts,

STEP standards are viable tool that can be used in this frame [83].

Yeh and You implemented a pilot system for STEP-based product Data Exchange

system for the requirement of product data exchange between enterprises. The data

from miscellaneous information systems, such as CAD/CAM, MRP/MRPII, ERP, and

PDM, in the design and manufacturing phase of a product’s life cycle can be

exchanged using this system [84].

The STEP has been the dominant technology for product data distribution and sharing.

It provides a systematic approach for well-established user communities to share data

on specific types of products and manufacture. However, when the first STEP

standards STEP standards were developed, the World-Wide Web was in its infancy.

Since then, the development of Web technology and its popularity have opened up

further opportunities in the application of STEP. Many efforts have gone into making

STEP technology compatible with the Internet [75-81, 83]. Especially, in the recent

time, the XML is becoming an obvious choice. Integrating STEP with XML facilitates

26

Chapter 2 Review for Web-based Collaborative Design

the deployment of STEP data in the Internet/WWW domain. With the increasing

popularity of the XML on the Internet, mapping STEP data into XML becomes a

logical way to make STEP data more accessible through the Internet. Chan et al [85]

discuss the ways of automated conversion from STEP into XML, and the exchange of

STEP data though the XML-based mediator architecture.

2.4 Genetic Algorithms
Genetic Algorithms are stochastic search techniques based on the mechanism of

natural selection and natural genetics [103]. GA is an ideal solution to the gear design

optimisation. The nature of GA meets the engineering requirements in two aspects:

GA does not have much mathematical requirement about the optimisation problems

and can handle any kind of objective functions and any kind of constraints (i.e. linear

or nonlinear) defined on discrete, continuous, or mixed search spaces. It would

accommodate any complex consideration from multiple domains. On the other hand,

the ergodicity of evolution operators makes genetic algorithms very effective at

performing global search (in probability). It would benefit from a broad region of

search and retrieve a wide class of alternative design solution [100].

Genetic Algorithms is used for performance-based design evolution and automatic

design of fuzzy system. The approaches allow the user to explore and visualise the

design evolution and its form generation in an attempt to stimulate the designer

creativity that might contribute to their output [90, 91].

2.5 Other Web-based Technologies
Significant research has focused on technologies that can assist designers for

collaborative product development in the distributed design enviromnent. In addition

to the Web for the infrastructure and STEP data exchange, those include CAD

conferencing, work process modelling and management, agent-based knowledge

sharing and conflict management [86].

CAD conferencing supports synchronous collaborative works by exchanging

geometric models using a teleconferencing system in a networked enviromnent. Most

27

Chapter 2 Review for Web-based Collaborative Design

of the research in this field focuses on application sharing, co-authoring, three-

dimensional geometry visualizing and desktop conferencing [87].

Research for agent-based knowledge sharing has focused on enabling collaboration

among software agents [88]. In the SHARE project, knowledge queiy manipulation

Language (KQML) was used for supporting design teams in sharing their

understanding of the design process [26].

Conflict management is needed to coordinate information for collaborative design.

Coordination strategies that avoid conflicts between design participants have been

proposed at the task level [89].

All of the technologies have been implemented in application forms existed in the Web.

In the collaborative domain, environment design should include finding and

controlling the execution of these distributed design method or rule applications.

2.6 Gear Design
A gear design, like other complex product design, undergoes a series of iterative

revisions leading to a number of design alternatives that are evaluated with respect to

the different design objectives. Especially addendum modification design of spur and

helical gears involves multiple design objective evaluation and multiple constraints

check such as gearing intervene check, undercutting check, and so on.

Several CAD/CAM systems have been developed and implemented to increase design

productivity in the gear industry [123-126]. Most are standalone systems that adopt

conventional design methods, with various design activities being carried out

sequentially and without integration of the various stages. This sequential and non-

intelligent approach is long and costly lead times in the design process. To obtain

economic and viable design solutions for the gear design and manufacturing process,

analysis, evaluation and optimisation should be carried out concurrently.

Yiu-Wing and Siang-Kok [127] described the development o f an expert system for

gearing design application and the detailed design calculations are performed within a

28

Chapter 2 Review for Web-based Collaborative Design

software environment that was developed using C. The selection and design of gears is

governed by design specifications such as power transmission requirements, speed

ratio, shaft arrangement, mechanical efficiency and quality of operation. However, the

application results only provide the outline dimensions of the gear-set and do not

include tooth form generation and 3-D model construction.

Aziz and Chassapis [128] developed an integrated environment for spur and helical

gears design with geometry generation. The system integrated optimisation application,

2-D gear model and stress analysis. The advantage of the integrated system is that it

provides an early estimation of the full stress fields during the design phase, where

there is still time to make significant changes. However this system is not designed

based on the distributed structure does not support to conduct design over the Internet.

In order to support the cooperative design over the world based on the Internet, there is

a need to make all the gear design resources including gear design experts, their design

tools, and databases work collaboratively together in a platform over the Internet.

2.7 Concluding Remarks
A framework for enabling collaborative designs should allow a designer to access their

favourite tools from hypermedia workspace. Today’s Web technology supports

coordination through provision of shared information space. However, to fully

participate in a collaborative design, designers need to be able to, not only exchange

data [40-42, 70-75] but also to negotiate their design intent governing the design

generation. This negotiation requires a task-oriented view of the design project, rather

than just the data-oriented view provided by the Web. Fortunately, the tools capable of

supporting a task-oriented view can be implemented on top of the Web infrastructure

using the latest information technologies, such as Java Servlets, intelligent search

engines, XML, VRML (virtual reality modelling language), Java 3D, and middleware

technologies (such as RMI, DCOM, CORBA and EJB). In addition, client side

scripting, applets, and ActiveX controls often make significant contributions to the

execution of design applications or tools. Furthermore, AI techniques, Genetic

Algorithms, and so on are becoming enabling technologies in collaborative design, in

29

Chapter 2 Review for Web-based Collaborative Design

an attempt of improving efficiency and intelligence in design process. Some efforts

have been devoted already to address these problems [43-61, 76-85, 88-91].

From these examples, it can be found that the latest Web technologies could be used to

establish an open architecture based on the existing Web infrastructure for

communication, facilitate collaborative design activities or capture the collaborative

session. Most of the proposed systems are still under proof-of-the-concept prototype

development stage. It is clear that challenges in these areas will remain as a research

opportunity. In summary, the following areas have been identified as future research

opportunities and challenges:

1. System architecture with decision mechanism fo r Web-based collaborative

design. The architecture of a collaborative design system needs to be carefully

formulated to make full use of the Web features to capture fuzzy information

and facilitate creative design generation. From client’s perspective, these

features include client-side scripting, applets, ActiveX controls, DII of CORBA,

XML-based response in extensive use of CGI, Java Servlets, ASP, JSP, PHP,

EJB, DSI of CORBA. Special attention should be paid to deal with the

limitations of Web technologies. Using Web technologies could obtain

fundamental communication architecture for collaborative engineering.

However, clients are not passive user but design partner.

2. Intelligent mechanism. Artificial intelligence mechanism should be added to

improve client’s side ability for making design decision. More flexible and

freer design resource interaction should be facilitated in collaborative

environment to support complex design making process.

3. Scalability, openness, and heterogeneity. The system architecture can

accommodate any growth in future load such as sequent computers and tools

and can be easily extended and modified. Any new components integrated in

the system can communicate and work together with some of components that

already exist in the system. The distributed system is constructed using

different programming languages, operated on different hardware platforms

and obeys different protocols. The system architecture should supports

communication with heterogeneous components.

30

Chapter 2 Review for Web-based Collaborative Design

From the context of gear design domain, most of CAD/CAM systems that support gear

design are standalone. Current integrated gear design systems that facilitate concurrent

design structure are not designed based on the open distributed system. As an

extension of concurrent engineering applied in design engineering, collaborative

environment based on the Internet is needed in gear design domain, to obtain more

flexible integrated design environment with the following features:

1. Integrated design environment based on the Internet. In gear design area, there

are many existing design applications and continuing coming applications, to

be integrated and communicated with each other. These systems may be

executed in different operating systems such as Unix, Windows, OS2, and so

on, and may be written in different programming languages such as C/C++,

Java, and so on.

2. Legacy codes reusability. Existing applications should be integrated seamlessly

together with a new application without code rewriting and can be

interoperated with each other. More reusable components mean more efficient

development processes, more reliable application systems and lower

developing cost.

3. Multiple working models support. Over the Internet, Web-based design system

should facilitate multiple working models supports such as multiple programs

working model, singular large scale computing program invocation, design

resource sharing among multiple designers, integrated design environments

that invocate multiple programs, and so on.

4. Multiple design interest balance mechanism Gear design involves many design

disciplines. Co-design among multiple disciplines needs an effective

mechanism to balance multiple interests.

The combination of all the above features to provide a robust tool for Web-based

collaborative environment for integrated gear design is a novel and challenging task.

The tasks in this project are to develop such a Web-enabled collaborative environment

with the above-mentioned features for design and manufacture, and to apply the

environment to the design and manufacture of spur and helical design, and worm

gearing design systems.

31

Chapter 3 Overview on Architectures o f Distributed System

Chapter 3 Overview on Architectures of

Distributed System

3.1 Introduction
A collaborative design is a collection of either the co-operated efforts undertaken by a

team of designers and other specialists, or the one-person-made multi-concerned

decision making use of multiple criteria defined by multiple other experts. In this study,

the later one is addressed and focused on. Partners perhaps diverse geographically and

even across time zones, it is not always convenient to make all the partners available at

any time. In addition, products are increasingly complex so that one single procedure

of design process would take a long time. Thus the system design has to include the

consideration of the situation that partners are absent but have their resources available,

such as the domain-specific application tools, data files, or service programs. An active

designer could directly access essential resources to pass design requirements, retrieve

resultant data, invoke service program, or even execute remotely the specific tool to

implement a design task.

Establishing such an environment has to take consideration of the following aspects:

Heterogeneous application integration - In a collaborative environment, many

applications are needed for integrated design and manufacture, including different

kinds of large size computing programs, CAD/CAM/CAE systems, and databases

accessing services. These systems are mostly standalone and heterogeneous, e.g.

written in different languages such as Java and C/C++ and running on different

platforms such as Windows, Unix, OS2, or Macintosh, and required to be integrated

together to implement a complex design task. A proper infrastructure is needed to

provide a common interface to enable all the heterogeneous systems to be integrated

together.

32

Chapter 3 Overview on Architectures o f Distributed System

Communication o f multiple programs'. To a complex product design task, there may

be a need for invocation of multiple programs during the design procedure. The

proposed system should provide a communication mechanism to support such an

invocation between programs, and a controlling mechanism to help to execute multiple

programs logically for certain design purpose.

Legacy system reusability'. System development cost is an inevitable problem to be

taken into consideration. Reuse of legacy system is a methodology for reducing the

high cost of software development and maintenance. It is necessary to build an

environment to accommodate many existing design and manufacturing applications

without rewriting their essential codes.

Large size and time-consuming program invocation — In engineering field, there are

many large-size of computing programs for product design and analysis. These

programs are not convenient to work together due to its time consuming feature.

System needs to provide facilities to support these programs to execute singularly.

To address these challenges a hybrid infrastructure is considered for this study. In this

chapter, two basic architectures of distributed systems, i.e. point-to-point structure and

server-centralised structure, and their benefits and drawbacks are firstly introduced in

Section 3.2. Point-to-point structure and its implementation technology are then

described in Section 3.3. In Section 3.4, server-centralised structure is illustrated.

Hybrid architecture of these two structures is presented in Section 3.5 and combination

of multiple technologies are considered and described in Section 3.6. At last it ends

with the summary part.

3.2 Fundamental Architectures of Distributed System
In a collaborative environment, multiple applications need to work together. From a

user’s point of view it would be nice to have one system that can integrate all the

applications as needed and that provides a unified graphical user interface.

33

Chapter 3 Overview on Architectures o f Distributed System

From a resource owner’s perspective, the application should be ported and executed on

the original machine. Only essential information such as input parameters, output

parameters and application execution command is sent to the remote user, other than

the essential codes.

From a programmer’s perspective, an integrated architecture requires a tight

association between the algorithm implementation of an application and its graphical

user interface, and also allows them to be developed using the developer’s favourite

languages and running on their own platforms. To satisfy the needs of both the user

and the programmer, a flexible middleware layer has to be introduced in place, which

separates the client from the application functionality and allows utilisation of

applications within a single graphical user interface.

A distributed architecture can be considered to fulfil such a strict separation of

algorithmic functionality i.e. design programs and graphical user interface. Currently,

there are basically two types of architectures possible to realise this distributed

platform [129]. In a three-tier configuration as shown in Figure 3.1, a central Web

server takes on the task of a mediator and brings together application providers and

interested clients. It provides administrative services and controls all interactions.

GUI 3 G U M
□ =

GUI 2

Web Server

Figure 3.1 Web server centralised architecture

On the other hand, a totally decentralised system could be conceivable, too. Clients

could contact application servers without going through a central station, as shown in

34

Chapter 3 Overview on Architectures o f Distributed System

Figure 3.2. This point-to-point architecture would avoid a central bottleneck, however,

each application component server would have to implement its own administrative

system.

Figure 3.2 Point-to-point architecture

In this study, these two structures are used in different paradigms in the integrated

design environment. Point-to-point direct connection structure is used in the

circumstances with multiple programs integration to make sure higher efficiency due

to the direct communication. Server-centralised model is used for the remote execution

of large size program, as seen in details in chapter 6. In addition, hybrid structure of

these two structures is also used in application paradigm demonstrated in Chapter 7, in

order to obtain direct functional communication with high performance and convenient

administration based on Web server.

3.3 Point-to-Point Communication Structure

3.3.1 CORBA-Based Point-to-Point Structure
CORBA facilitates the development of distributed systems by enabling transparent

access to the distributed objects on different locations, written in different languages,

on different operating systems. It is based on client/server architecture and can support

the direct communication in point-to-point model. A client is a process that wishes to

perform an operation on a distributed object. A server is a process that provides this

object to the client. CORBA enables the client to transparently invoke operations on

such distributed objects without any regard of their physical location, the programming

35

Chapter 3 Overview on Architectures o f Distributed System

languages they were written in, or the operating system they were running on. The

client accesses such objects in the same manner as if they would reside on its own

machine.

The main part of CORBA is the Object Request Broker - ORB. The ORB is the

middleware that establishes the client-server relationships between objects. Using an

ORB, a client can transparently invoke a method on a server object, which can be on

the same machine or across the network, as shown in Figure 3.3. The ORB intercepts

the call and is responsible for finding an object that can implement the request, pass it

the parameters, invoke its method, and return the results. The client does not have to be

aware of where the object is located, its programming languages, its operating system,

or any other system aspects that are not part of an object’s interface. In so doing, the

ORB provides interoperability between applications on different machines in

heterogeneous distributed environments and seamlessly interconnects multiple object

systems.

CORBA Architecture

Object
ImplementationClient

RequestClient IDL lnterfa< erver IDL Interface

Object Request Broker (ORB)

Figure 3.3 CORBA based point-to-point communication

Client is the process that wishes to perform an operation on an object and the Object

Implementation is the code and data that actually implements the object (the object

implementation resides on the server). The ORB is responsible for all of the

mechanisms required to find the object implementation for the request, to prepare it to

36

Chapter 3 Overview on Architectures o f Distributed System

receive the request, and to communicate the data making up the request. The interface

the client sees is completely independent of where the object is located, what

programming language it is implemented in, or any other aspect that is not reflected in

the object’s interface. The client does not know anything about the object’s internal

structure or how the object is implemented; it only knows its interface. This describes

the basic principle of CORBA: the separation of object’s interface from its

implementation.

In CORBA, an object’s interface is defined with a single platform independent

language - the Interface Definition Language (IDL). This interface definition is

independent of the object’s implementation, and programmers can choose the most

appropriate operating system, execution environment and programming language for

each object (component of the system). This enables the object owners keep their

favourites to the language, platform and operating systems, protect their intellectual

property and only offer the objects invocation. On the other hand this also makes the

client-side developers not bothering to enter the object implementation details.

Moreover, CORBA also allows the integration of existing components into a

distributed system; the programmers just have to write some wrapper code that

translates between the old application interfaces and the CORBA interface.

The main features of CORBA are:

• ORB Core

• OMG Interface Definition Language (OMG IDL)

• Interface Repository

• Language Mapping

• Stubs and Skeletons

• Dynamic Invocation and Dispatch

• Object Adapters

• Inter-ORB Protocols

Most of these are illustrated in Figure 3.4, which shows the components of CORBA

relate to one another. Each component is described in detail in appendix B

37

Chapter 3 Overview on Architectures o f Distributed System

CORBA Architecture - Components

Object
Implementation

Client

ORB
Interface

Skeleton ObjectStubsD ll

ORB Core

Figure 3.4 Common Object Request Broker Architecture

3.3.2 Comparison of CORBA and Other Distributed
Technologies

Some distributing tools have certain functions similar to CORBA such as, Remote

Procedure Calls (RPC), Distributed Component Object Model (DCOM), and Java

Remote Method Invocation (RMI). However, despite certain progress, they are rather

limited in comparison to CORBA as summarised below:

• RPC:

o Does not provide object abstractions, message passing, or dynamic

invocation

o Does not address inheritance of interfaces

• DCOM:

o Platform dependent (Windows)

o Does not support heterogeneous distributed computing

• Java RMI:

o Language dependent (Java)

Web Services technique is an emerging distributed middleware in addition to CORBA.

The communication protocol for building Web Services is known as the Simple Object

Access Protocol (SOAP). SOAP is a lightweight, XML-based, and platform and

language independent protocol that allows applications to exchange structured

information across the Web, usually over HTTP. SOAP consists of three parts: an

38

Chapter 3 Overview on Architectures o f Distributed System

envelope that defines a framework for describing what is in a message and how to

process it, a set of encoding rules for expressing instances of application-defined data

types, and a convention for representing remote procedure calls and responses. SOAP

codifies the existing practice of using XML and HTTP as a method-invocation

mechanism [113].

Compared with CORBA, Web Services/SOAP has both advantages and limitations

due to some of its import characteristics (+ represents advantages, - represents

limitations):

• It uses XML-encoded plain text to send data.

+ More widely adopted

+ Easier for developers to read and debug

Large message size requires much more network bandwidth

Complex XML parsing and marshalling needs more CPU time

• It uses HTTP protocol for communication.

+ Can pass through firewalls

• Its interface is Web Services Description Language (WSDL).

- Lower level interface description language

- More difficult to create and understand for humans (compared to

CORBA/IDL)

• It is a simple and lightweight protocol.

- No standardised transaction and security context

CORBA is not a markup language like SOAP. CORBA works as a go-between,

making the connection and communication between heterogeneous distributed and

object-oriented applications possible. CORBA offers a solid and comprehensive

development platform for large-scale projects in which managing complexity and

ensuring reliability are major concerns. It also ensures excellent transaction rates and

fail-over capabilities. Although CORBA is powerful, it is difficult to develop and

deploy. The choice of CORBA for small projects may not justify its performance

benefits because it requires considerable code development.

39

Chapter 3 Overview on Architectures o f Distributed System

In contrast, SOAP is built from two simple and well-known standards, HTTP and

XML, and is furnished with the smallest possible XML vocabulary to package the

essential data for RPC. It is easy to learn and implement. The use of the two textual

protocols makes network data transfer heavy, requiring more bandwidth, but testing

and debugging become easier.

SOAP is wire protocol. SOAP lacks the activation elements, security, and state

management that CORBA provides. The XML data inside the SOAP envelope must be

extracted and parsed, thereby degrading the performance. In comparison to CORBA’s

binary data, SOAP’s text-based data consume significantly more bandwidth.

Finally, the Object Management Group has taken important steps to ensure

compatibility between CORBA and new communication protocols. There are a number

of bridges, including open-source projects, capable of translating SOAP requests into

CORBA invocations. Thus, by utilizing SOAP, CORBA can still remain as the first

choice for large-scale projects where performance and reliability are critically

important.

3.4 CORBA-Based Server-Centralised Infrastructure
The server-centralised distributed environment, consisting of three tiers: User tier,

Web server tier, and back-end database tier, as shown in Figure 3.5.

(1) User tier — Valid customers of the environment are allowed to visit and load

the HTML pages, with Java applet, located on the Web server tier over the

Internet. On the user side, a Java plug-in Web browser is enough and what the

user needs to know is just how to operate the graphic interface, and does not to

have to be aware of any CORBA technical details behind it.

(2) Web server tier — This consists of HTTP server used as the collaborating

server and CORBA object server. From a common HTML page, CORBA

objects could not be visited. Java applet can include IDL-generated client stubs,

which let it invoke objects on the CORBA server. Through HTTP protocol and

the linkage mechanism between HTTP Server and CORBA Server application

objects can be invocated from the HTML page. CORBA ORBs are in charge

40

Chapter 3 Overview on Architectures o f Distributed System

of linking and finding the essential server side CORBA application objects. All

these applications are not only dispersed geographically and also written in

different languages, working on different platforms and operating systems, and

encapsulated into components that CORBA service facilities can find. The

interface of each application is separated from the implementation written by

the respective language the partner chooses to use. All these applications

consist of rich resources for conducting collaborative design tasks such as

different computing programs, various kinds of PDM (Product Data

Management), CAD and CAM software, accessing and searching applications

for back-end database resources, and other resources from customer services.

(3) Back-end database tier — This tier is a database server that gathers and stores

historical and real-time data received in the process of design and manufacture.

The databases can be of different types such as JDBC, DBMS, SQL, etc.

Web Client Tier

HTML Page with
Applet

■— Wr
1 — ■ —

—

CORBA
iio p

Web Server Tier Database Tier

HTTP Server
A —

HTTP
pages

v - w m m□ □ 330
Applet

CORBA Server

4 - ORB >
I S 9 9 [

i 99 9 \
Application objects

□

o

Figure 3.5 Architecture for the Internet based design environment

Such a server-centralised structure is used for remote invocation of singular large-scale

program as presented in details in Chapter 6 and for on-line worm design from browser

as presented in details in Chapter 7.

41

Chapter 3 Overview on Architectures o f Distributed System

3.5 Hybrid Structure
The Web-based design architecture developed by this research is mainly based on the

concept of combining a Web-server-centralised system and peer-to-peer approach.

Figure 3.6 illustrates the architecture consisting of four types of components. There

exists at least one Web server, i.e., the collaborating server, which acts as a central unit

and manages the interaction between users on the one side and application providers

(e.g. servers) on the other side. Design services such as computing, and analysis tools

are provided by numbers of object servers, which form the functional basis of the

distributed network design system. Client procedures allow users to access available

design applications and thus, utilise the tool’s functionality. Finally a Naming Server is

employed so components can identify each other’s locations.

Client2 Client3
Designer2 Designer3

Client 1
Designer 1

Function
Oriented

► Service
Oriented

Naming
Service

Event
Service

Server 1
Apps & DBs

Server 2 \ t

Apps & DBs \ /

\v_A
System
Manager

Server 4
Apps & DBs

Server 5
Apps & DBs

Server 3
Apps & DBs

Figure 3.6 The hybrid architecture

42

Chapter 3 Overview on Architectures o f Distributed System

The communication between all components is based on the CORBA middleware

system with its transport protocol HOP (the Internet Inter-ORB Protocol). In the

CORBA-based distributed system, existing resources are encapsulated into objects, e.g.

components that can be found and invoked between each other. HOP an underlying

mechanism of CORBA, is the standard protocol that specifies how objects

communicate across TCP/IP (Transmission Control Protocol/Internet Protocol), the

standard connection-oriented transport protocol for the Internet. In the client/server

distributed architecture, a client is a process that wishes to perform an operation on a

distributed object, and while a server, an object provider, hosts a process that provides

this object to the client. The system allows a client to find, further connect and invoke

the selected object that a server hosts. With the standard interface sequent new objects

and new clients could work along with the already existing components. As the system

augments there may be a need of one or more managers to perform the collaboration

tasks. A collaborating server provides a set of server-centralised services such as user

authentication, object selection, and data-related operations.

Moreover, the CORBA facilities such as Name service and Event service are utilised

so components can be located and foimd easily.

This structure is used in distributed design optimisation application and presented in

Chapter 4 and Chapter 5.

3.6 Encapsulation of Legacy Applications
There are many existing heterogeneous legacy applications used for engineering

design and product development. Turning these applications into distributed

components to make them reusable is an effective way to reduce development costs.

CORBA eases the transition from standalone legacy applications to more flexible

object-oriented distributed components. Here in this project the legacy software

applications refer to those application software designed and implemented with

traditional technologies (that is, without distributed concepts and object-oriented

system development technology), that are still valuable to perform crucial work, and

43

Chapter 3 Overview on Architectures o f Distributed System

usually represent a significant investment and years of accumulated experience and

knowledge.

According to Sneed [5], there may be three strategies for encapsulating legacy systems,

e.g. redevelopment, reengineering and wrapping. The redevelopment strategy is to start

from scratch and redevelop all o f the applications with the distributed object concepts.

This approach frees the developers from any consideration of the existing systems. But

every function must be re-implemented and tested in a new language and in a new

environment, which is expensive and time consuming.

The reengineering strategy is to convert the existing programs to object-oriented

programs and distributed objects appropriately. This approach is a promising method

since it is not necessary to re-implement functions whose functionalities are the same

as the functionalities of the older systems. However, code conversion is not easy and

few tools and methods are available.

The third strategy is to wrap components of the existing systems so that they can be

invoked from the distributed environment by object-oriented method. Wrapping is a

method of encapsulation that provides clients with well-known interfaces for accessing

server applications or components. The advantage of wrapping is that legacy systems

become part of the new generation of applications without discarding the value of the

legacy applications. Wrapping is a compromise approach. The construction of object-

oriented distributed systems with the first or second approach is maybe the ultimate

goal. But the explosive increasing demand for applications based on Internet

technology and object-oriented distributed enviromnents does not permit unpredictable

time delay. Wrapping is a realistic approach, since it can be accomplished easily and

rapidly with current technologies.

To use the wrapping techniques well, application developers must have a good

understanding of the wrapping structure and implement the interfacing techniques to

the legacy systems. The wrapping structure based on CORBA model is described in

Section 4. 3.

44

Chapter 3 Overview on Architectures o f Distributed System

3.7 Combination of Java with CORBA
Java is an object-oriented programming language developed by Sun Microsystems.

Since its introduction, Java has quickly become a standard language for writing

Internet applications. Java language was designed to be small, simple, and portable

across platforms and operating systems, both at the source and at the binary level,

which means that Java programs (applets and applications) can run on any machine

that has the Java virtual machine installed.

Java is usually mentioned in the context of the World Wide Web, where browsers such

as Netscape’s Navigator and Microsoft’s Internet Explorer claim to be “Java enabled”.

Java enabled means the browser can download and play Java programs, called applets,

on the clients’ system. Applets appear in a Web page much the same way is images do,

but unlike images, applets are dynamic and interactive. Applets can be used to create

animation, figures, forms that immediately respond to input from the reader, games, or

other interactive effects on the same Web pages among the text and graphics.

3.7.1 Platform Independence
Platform independence — that is, the ability of a program to move easily from one

computer system to another - is one of the most significant advantages that Java has

over other programming languages, such as C++, particularly if software needs to run

on many different platforms. In the development for the collaborative design systems

over the World Wide Web, it is crucial to be able to run the same program, for

example, the client-side applications, on many different systems. Java programs can

run on any system for which a Java virtual machine has been installed. This is given in

details in Appendix C.

3.7.2 Java Servlets
A servlet is a small piece of Java code that a Web server loads to handle client requests.

Unlike a CGI application, the servlet code stays resident in memory when the request

terminates. In addition, a servlet can connect to a database when it is initialised and

then retain its connection across request. Servlets do not provide the full power of

distributed object interfaces, however, it is precisely this constraint that convenient for

45

Chapter 3 Overview on Architectures o f Distributed System

simple applications. For example servlets make good replacements for CGI-bin scripts,

used as Web server extension. In the server-centralised applications they are good at

accepting from input, interacting with a single database, and then dynamically

generating an HTML response page. So there may still be a place for servlets in the

Java server-side arsenal. In this project, servlet-based application is used for invocation

of single large size of program.

3.7.3 CORBA and Java
Java itself is not client/server oriented, nor is writing client/server applications in Java

easier than for example in C++. Introducing CORBA to the Java environment means

that Java applets are no longer restricted to simple interaction with the user, but are

instead capable of taking part in complex interactions with backend services. A

combination of the Java programming language with the CORBA standard for

application integration presents a good solution for application components capable of

accessing multiple, shared backend services located across the Internet.

CORBA provides network transparency and Java provides implementation

transparency. CORBA reciprocates by enabling Java to interface with different

programming languages and extends Java by providing a framework for distributed

object communications. CORBA provides an intergalactic distributed object

infrastructure over the Internet, and guarantees inter-operating ability between vendors,

which is essential for Internet applications, where different sites’ objects,

implementations, need to be able to communicate with each other.

CORBA also benefits from the combination of Java. Java simplifies code distribution

in large CORBA systems— its bytecodes make it possible to ship object behaviour

around. Java enables CORBA clients to be easily distributed to remote machines,

regardless of platform, via applets and browsers. Java is an ideal language for writing

the client and server CORBA objects. Java’s built-in multithreading, garbage

collection and error management make it easier to write robust networked objects.

Chapter 3 Overview on Architectures o f Distributed System

The combination of Java and CORBA provides a robust platform for Internet based

applications.

3.8 Summary
There have been numbers of existing product design applications in engineering,

which lead in the challenges of development of effective integrative environments.

This research utilises the CORBA technology and Java to address the challenges.

Standard interfaces CORBA provides are important to develop sharable applications

over heterogeneous systems. CORBA not only provides the direct communication

mechanism in peer-to-peer between heterogeneous applications, but also supports

plug-in working model from web pages based on the server-centralised model.

In the direct point-to-point architecture clients could contact application servers

without going through a central station and thus it would avoid a central bottleneck.

This leads to the effective communication structure. On the other hand, server-

centralised system would provide administrative services and controls all interaction,

where the server acts as a mediator to bring together application all providers and

interested clients. In this research, these two architectures are used in different

application paradigms. Multiple structures are used in the integrated environment in

order to provide a more flexible framework for different working models. Especially in

the open distributed system to support flexible design collaboration over the Internet,

hybrid architecture of multiple structures is applied to provide the powerful

environment to facilitate different application integration requirements.

Java provides the client side GUI developing tools and server-centralised server

extension tools to enhance the platform-dependent functions in distributed systems.

Java applets are not only capable of simple interaction with the user, but also capable

of taking part in complex interactions with backend services in CORBA-based

distributed system. A combination of Java with CORBA for application integration

presents a good solution for application components capable of accessing multiple,

sharing backend services located across the Internet.

47

Chapter 3 Overview on Architectures o f Distributed System

CORBA and Java are complementary to ensure high source portability and robust

platforms for Web-based applications.

For the knowledge gap between distributed technology and design resources, CORBA

technology provides seamless access to distributed computation and data resources,

and CORBA-based collaborative environment systems facilitate distributed

collaboration and reuse of design resources.

From the perspective of gear design, the hybrid CORBA based framework will bridge

the knowledge gap where heterogeneous gear design applications and tools needs to be

integrated and communicated with each other for the integrated gear design in a

distributed way over the Internet.

Chapter 4 Distributed Gear Design Optimisation

Chapter 4 Distributed Gear Design Optimisation

4.1 Introduction
Globalisation has resulted in more distributed, decentralised design resources including

design teams and computer-aided software. A product design, such as gear design,

needs to be implemented using diverse design tools by multiple design members via

the Internet. Collaborative engineering enables multiple specific domain experts and

their computerised software tools to work together to search one design space and

obtain a common solution. However, most design problems are difficult and complex,

and affections of the models from different specialists to the design solution are

comprehensive. Therefore, in the collaborative design environment, a resolution

strategy to such a complex situation is inevitable for an active designer (or main

designer) to leverage multiple interests.

The optimal or rational design of gears is a good example to study such kinds of

problems. As described in Appendix C, gear design includes a large number of

variables, limitations and performance objectives. The compromise between the

various objectives is not easy to find because the optimisation criteria are often

contradictory. In addition, the design space is massive and multi-dimensional and it is

impossible to manually generate and examine every potential gear design. For example,

10 values of each of the four design parameters: pressure angle, module, tooth number,

and profile modification coefficient can result in as many as 10,000 candidate designs.

Furthermore, majority of these variables take discrete values, hence it is not easy to

fully optimise a design using traditional optimisation methods, which mostly need the

implementation of a gradient. Moreover, the problem of the optimisation of gears, like

many other engineering designs, admits many solutions and often the one selected is

the one that adapts best to a given environment.

49

Chapter 4 Distributed Gear Design Optimisation

Genetic algorithm (GA) is an ideal solution to the gear design optimisation. The nature

of GA meets the requirements in this research in two aspects. Firstly, GA does not

have much mathematical requirement about the optimisation problems and can handle

any kind of objective functions and any kind of constraints (i.e. linear or nonlinear)

defined on discrete, continuous, or mixed search spaces. It would accommodate any

complex consideration from multiple domains. On the other hand, the ergodicity of

evolution operators makes genetic algorithms very effective at performing global

search (in probability). It would benefit from a broad region of search and retrieve a

wide class of alternative design solutions [100]. The GA approach and relevant

optimisation technique details are presented in Chapter 6.

Affections of different specialists’ specific knowledge on the design results are

formulated as optimisation objectives or constraints. In the optimisation procedure,

calculations or analyses related to these pieces of specific knowledge would be

implemented as needed. In the computer-aided design world, they might be included in

some forms of resources such as pieces of program, autonomous CAD software,

knowledge database, or a database file.

Many engineering tools, such as CAD tools, calculation software tools, engineering

databases and knowledge-based systems, which have been used in engineering and are

still playing important roles, are mostly standalone and completely autonomous.

Therefore it is important to develop a proper mechanism enabling invocation between

design resources over the Internet.

CORBA is utilised to develop a distributed framework to integrate all the design

applications and implement the interoperation between these distributed and

heterogeneous applications. In order to help designers to conduct collaborative design

among multiple experts, a design optimisation mechanism, i.e. optimiser is needed to

balance multiple design interests to achieve rational or optimal solutions.

This chapter is organised as follows. Section 5.2 describes the development,

integration and communication of distributed components. Section 5.3 presents the

50

Chapter 4 Distributed Gear Design Optimisation

distributed system architecture of the gear design optimisation, stressing the Web

technologies used for this system. Section 5.3 introduces the working procedure of

distributed gear design optimisation. Section 5.4 discusses automatic gear tooth

generation. Section 5.5 is about implementation of GUI on Windows. Section 5.6

gives implementation of evaluation programs as CORBA application object on Linux.

Section 5.7 presents implementation of algorithm application as CORBA client on

Windows. The chapter ends with summary Section 5.8.

4.2 Development, Integration and Communication of

Distributed Components

4.2.1 Wrapping Structure Based on CORBA
The major purpose of this research is to enable open interconnection of a wide variety
of languages, implementations, and platforms by utilising CORBA technology.
CORBA is the technical solution for building an integrated design system over the
WWW.

Software development in CORBA environments is performed at two sides: client-side
and server-side. The server-side application developer implements object
implementations for services, and then describes the interfaces to the provided services
with IDL (Interface Definition Language). A client-side application developer makes
reference to the IDL written by a server-side developer, and implements client
applications. The interface of a service (or an object) is always separated from the
implementation.

The wrapping structure using CORBA technology is shown in Figure 4.1. It hides
differences in programming language, location, and operating system with the
interface defined in IDL (Interface Definition Language). Server-side application
developers only need to understand the services of legacy systems and to describe
them in the interface with IDL. A legacy application can be partitioned and
componentised to facilitate to CORBA based distributed environments. Each
component can be encapsulated separately, and then integrated together by using
object-based communications.

51

Chapter 4 Distributed Gear Design Optimisation

IDL IDL IDL IDL

App3 App4Appl App2

PerlC++ C++ Java

GUIGUI

ClientClient

Unix Window Window OS/2

Figure 4.1 Encapsulating structure

The IDL is used to define interfaces in CORBA. An IDL interface file describes the
data types and methods or operations that a server provides for an implementation of a
given object. IDL is not a programming language; it describes only interfaces and it
has no implementation-related construction. The CORBA does specify mapping from
IDL to various programming languages, including C, C++, Smalltalk Ada, COBOL
and Java. IDL is used to show interfaces to many CORBA objects. In this research
IDL is used to show interfaces for the Java and C++ objects.

4.2.2 Developing Procedure of Distributed Components
Taking the advantages of CORBA, the distributed applications within the system can

be inter-operated between applications, regardless of what language they are written in

or where they reside on. In this project, communication of Java-to-Java, C++-to-C++,

Java-to-C++, Linux -to-Windows are implemented based on CORBA.

Figure 4.2 illustrates the whole procedure from IDL to the establishment of final

client/server structure. A server side application written in C++ is ported on a Linux

system, while a client side program written in Java locates on Windows system. Both

sides communicate with each other through HOP protocol. The implementation

procedures are described as below.

52

Chapter 4 Distributed Gear Design Optimisation

IDL-C++
compiler

IDL-java
compiler

C++
compiler/linker

Java
compiler/linker

 r"

Client program

Site 1Site 2 LinuxWindows

SkeletonsStubs Add object
implementation

Add client
program Code

Object specification in IDL

Server
ORB

 ©
Object program

HOP

Figure 4.2 Procedure from IDL to the establishment o f final client/server structure

4 .2 .2 .1 D e f i n i t i o n o f O b j e c t I n t e r f a c e

The first step to create a distributed application with CORBA is to specify all of

objects and their interfaces using the Interface Definition Language (IDL). The IDL

can be mapped to a variety of programming languages, such as C++ and Java as shown

in this example.

Taking a gear stress calculation package as an example, Figure 4.3 shows how to

define the interface by IDL for an existing application.

The lower part of Figure 4.3 is the IDL definition of interface for the GearStress.

Three interfaces: \nputdata(), main_function() and outputdata() are mappings of the

three operations: data input user interface, the main calculation program and the results

output user interface in the standalone gear stress calculation package respectively.

53

Chapter 4 Distributed Gear Design Optimisation

Standalone Gear Design Package

^ Data Input |

Rd^ult Output]

IDL Definition oft Interface

Calculating
program /

/

Write /

Output
Data

ffc j e . t r S t i * s s ni l

//Gear Calculation package
\ x 1

Interface Sear^ress /

< ' \ ;void inpi^data (/n String datatext);
void main function(in string usernane);
string outputdata();

Figure 4.3 Interface definitions for the existing stress application

4 .2 .2 .2 G e n e r a t i n g C l i e n t S t u b s a n d S e r v e r S k e l e t o n s

The server skeletons and client stubs are generated from the IDL interface definition

file by using appropriate compilers. The compiler type depends on what kind of

programming language to be used for the CORBA object development. Corresponding

to C++ and Java, the two most popular programming languages used for CORBA

object development, idl-to-cpp and idl-to-java are the two most popular compilers used

for generating stubs and skeletons. Considering the situation in Figure 4.2, an idl-to-

cpp compiler is used to produce C++ skeletons, e.g. server-side ORB files, while the

Java stubs, e.g. client-side ORB files, are generated by an idl-to-java compiler.

4 .2 .2 .3 I m p l e m e n t i n g t h e C l i e n t
A client side developer needs to write a GUI-oriented client program for a user to

invoke remote objects. The client program, ClientJava written in Java, is designed for

54

Chapter 4 Distributed Gear Design Optimisation

implementing the client side tasks, including passing the parameters, invoking a design

program, and retrieving the results. In order to implement these procedures, the client

program performs the following tasks:

1. Initialising the ORB.

2. Binding to a Gear design object.

3. Invoking inputdata(), main Junction() and outputdata() on the Geardesign

object.

4 .2 .2 . 4 D e v e l o p i n g t h e S e r v e r a n d t h e O b j e c t I m p l e m e n t a t i o n

Just as with the client, many of the classes used in implementing the server are

contained in the server side header files generated by the idl-to-cpp compiler.

On the Linux side, the Server. C file is a server implementation, which normally the

server-side programmer would create. This file implements the Server class for the

server side. The seiver program does the following tasks:

1. Initialises the Object Request Broker.

2. Creates a Portable Object Adapter with the required policies.

3. Creates the Geardesign servant objects.

4. Activates the seivant objects.

5. Activates the POA manager (and the POA).

6. Waits for incoming requests.

The Geardesign.C is the object implementation program. The essential codes in the

existing programs are placed in this program.

4 . 2 .2 . 5 B u i l d i n g

Object implementation program along with its server-side ORB files and client

program along with its client-side ORB files are built respectively in their own specific

development environment.

55

Chapter 4 Distributed Gear Design Optimisation

Once the built object program is activated and gets ready to be called, a client side

program could invoke the server-side program through ORB routines and HOP

protocol, as though invoking a method of the program itself.

4.2.3 Integration Model of Distributed Objects

4 .2 .3 .1 D i f f e r e n t F o r m a t s o f J a v a C l i e n t s S h a r i n g a n O b j e c t
In engineering design practice, it is quite a common requirement for designers to

invoke and share a remote service (e.g. an object) within their own programs. These

programs may be designed in different program languages. Even written in the same

program language, such as Java, the programs may exist in different forms. Figure 4.4

shows a distributed model based on multi-clients sharing an object.

Command line command

Client

Web page with Java Applet

Client

Object implementationJava application

Client

Figure 4.4 Different clients sharing an object

Every client program is designed for a certain purpose with a user’s favourite format.

The client routine may be designed respectively as command-line execution, plug-in

56

Chapter 4 Distributed Gear Design Optimisation

Java Applet and Java application. In this research, all the three types of client

programs are applied to explore more possibilities for providing more flexible client

program developing models. The clients may also be a VC++, or Python program.

A command line program or a Java application can be implemented by the developing

procedures as described in Section 4.3. However, in the case o f Java Applet, where the

Applets are inserted in the Web page on the server, and downloaded to the client side

machine, additional considerations have to be taken into account. Java sandbox

security prevents unsigned Java applets from communicating with other servers except

for the Web server from which the applets were downloaded. A special technique is

investigated and applied to solve the problem. Chapter 8 provides more details on this

issue.

With regard to the command-line format, client program, as described in Section 4.3.3,

itself includes CORBA-specific routines such as ORB initialisation and binding or

reference to a specific remote object, and invoking the methods on the object just as

invoking local functions.

With regard to the Java application, it has a common routine e.g. Graphical User

Interface in addition to the CORBA-specific routine. The CORBA client either may be

handled into a process added in the common routine GUI program or included in it.

The former is easier and can make CORBA-related development separated from

common programming. However the efficiency of execution will be reduced.

Any format of Java program can be ported and executed on any platform and operating

system since it is platform-independent. The client program, linking to certain remote

objects with certain purpose, can be pre-developed, ported on Web server and

downloaded when a user needs it. CORBA ORB programs have to be downloaded

together onto the user machine, for the command-line program and Java application

GUI. With the Java Applet, the user machine does not need any setup for CORBA in

advance.

57

Chapter 4 Distributed Gear Design Optimisation

4 .2 .3 .2 A C l i e n t A p p l i c a t i o n I n v o k e M u l t i p l e O b j e c t s
A purpose of collaborative design is to enhance the designer’s individual ability and

thus a designer could need to invoke multiple remote objects to co-making design.

Figure 4.5 illustrates how one common client GUI program to invoke multiple objects.

Ob 1-1
Ob 1-1

Ob 2-1
Ob 2-1
Ob 2-1
Ob 2-1

Ob 3-1
Ob 3-1
Ob 3-1

Figure 4.5 One common client GUI program invoking multiple objects

The objects may be remotely located in different computers with different operating

systems such as windows, UNIX, or OS2, and written in different languages, such as

C++, Python or Perl. The client is designed for implementing one single complex

design task that needs to invoke multiple objects to join in.

In this project, a multiple objective design optimisation program is linked to multiple

remote objects, which are a set of evaluation functions for design solutions and

separately ported on Linux and Windows operating systems. During one design

procedure, the remote objects can be invoked thousands of times. The user of client

program does not need to be aware of any details about remote invocation. It seems

that a local program is invoking local functions.

Client
Server 2

Server 3

User 1 Server 1

58

Chapter 4 Distributed Gear Design Optimisation

4.2.4 Management of Objects
There might be many client programs, and objects and their CORBA servers integrated

in the distributed system. Methods for a client program to find the required object

based on CORBA are presented in this section.

4 .2 .4 .1 T h e N a m i n g S e r v i c e
The CORBA Naming Service is utilised in the system to help to find objects by name.

It is the principal mechanism for objects on an ORB to locate other objects. Names are

humanly recognizable values that identify CORBA objects. The naming service maps

these names to object references. A name-to-object association is called a name

binding. A naming context is a namespace in which an object’s name is unique. Every

object has a unique reference, and it is necessary to define the name relative to its

naming context.

A program or an application is defined as a CORBA object in the system, which can

be referenced using a sequence of names that form a hierarchical naming tree, as

shown in Figure 4.6.

Name Context

Worm Helical O Object Name

Figure 4.6 Objects hierarchical naming

In the figure, each dark node is a naming context in the naming space. An object’s

name consists of a sequence of names (or components) that form a context name. The

last component is the object’s simple name. For example, the whole name of the object

Helical is Design Web/NTU/Mech Eng/Helical, where Design Web/NTU/Mech Eng

59

Chapter 4 Distributed Gear Design Optimisation

represents fo r the context o f the Design Web. Helical represents for the name of

distributed helical and spur design application objects. NTU represents fo r the

Nottingham Trent University, HIT fo r Harbin Institute o f Technology and CU fo r

Chongqing University.

A client obtains information about the object it seeks, through using the object

references in the naming service. An object reference uniquely identifies a local or

remote object instance. Figure 4.7 shows how clients and servers interact with a name

server, and how an ORB enables a client to invoke on a remote object through the

naming server, which is described as below.

Namespace

<name 1, object_ 1 >
<name 2, object 2>

Name Server

ORB <name x, object x>

Server HostClient Host

Ob

ORBORB

Network

Figure 4.7 Clients and servers interact with a name server

1. When a server starts, it creates one or more objects and publishes their object

references in a naming service. A naming service uses simple names to make

object references accessible to prospective clients. The object server invokes

function bind (name, obj ref) to associate a logical name with an object

reference.

2. The Name Server adds this obj r e f / name binding to its namespace database.

60

Chapter 4 Distributed Gear Design Optimisation

3. The client application invokes resolve (name) to looks up the object reference

by this name in the namespace. The naming service returns the server’s object

reference.

4. The client uses the object reference to invoke methods on the target object.

The Name Server services both clients and servers. Servers export name/object

bindings to the Name Server; client then find these objects.

4 .2 .4 .2 P o r t a b l e O b j e c t A d a p t e r (P O A)
The Portable Object Adapter (POA) is another approach to manage access to server

objects. A POA is the intermediary between the implementation of an object and the

ORB and maps object references to their concrete implementations on the server, or

servants. Given a client request for an object, a POA can invoke the referenced object

locally.

A POA can divide large sets of objects into smaller, more manageable subsets. It can

also group related objects together. For example, in a design application, one POA

might handle computing objects, while another POA handles analysis objects. Figure

4.8 shows how the POA connects a client to a target object. In this instance, the server

has two POAs that each manages a different set of objects.

Servers differentiate between several POAs assigning them unique names within the

application. The object reference published by the server contains the complete or fully

qualified POA name and the object’s ID. The client request embeds the POA name and

object ID taken from the published object reference. The server then uses the POA

name to invoke the correct POA. The POA uses the object ID to invoke the desired

object, if it exists on the server.

61

Chapter 4 Distributed Gear Design Optimisation

Name Server Process

Objects
Objects

ORB
Obj

Obj

Process POAPOA

Client

ORB
ORB

Network

Figure 4.8 A POA’s role in Client-Object communication

4.3 Distributed System Framework of the Gear Design

Optimisation

4.3.1 Basic Requirements
To develop the Web-based system for gear design optimisation, it is necessary to

consider the following basic requirements:

1. A designer wants to conduct gear design to find the rational tuning parameters

in consideration of multiple aspects in design and manufacture, within limited

time without augmenting his own system. Thus the designer might use remote

design resources to enhance his own design ability.

2. The program providers who have design and analysis services available might

prefer their own programs to be only invoked and executed remotely rather

than downloaded. The analysis codes should reside with the experts, i.e.

providers, and the analysis program should execute on providers’ computers.

62

Chapter 4 Distributed Gear Design Optimisation

3. The program may be developed in diverse program languages and run on

diverse platforms or in an old environment but needs to be used continually.

4. The analysis experts possess a new version of analysis software and hope

others will use it.

5. Designers need to invocate remote resources dynamically according to the

design objectives.

4.3.2 Architecture of the Distributed System
In order to meet the above-mentioned requirements, a layered approach is adopted in

the framework, where there are four layers, namely, the interface layer, the application

layer, the data layer, and the Web server, as shown in Figure 4.9.

Optimiser

User Requirements
Inmit SoeecL

Concept Feature
Form

Quality
Constraints

Design
optimisation

Application
Constraints

Material
Selection

Fabrication
Constraints

Model

USER Intertace

0 Application objects

□ DB

Web server

Internet

Figure 4.9 Architecture o f distributed collaborative design optimisation

63

Chapter 4 Distributed Gear Design Optimisation

The front layer is the interface layer, a unified graphical user interface. Using the

interface, users can interact with the design environment in a natural way. A design

optimiser is included in the user interface to invoke remote applications.

The application layer is a distributed computing environment (DCE) based on CORBA.

Programs used for computing, modelling, analysis, manufacture, and so on are

encapsulated as application objects and linked to the CORBA communication bus, and

then can be recognised and invoked within the GUI and optimiser program.

The data layer forms a data warehouse making up of database (DB), knowledge base

(KB) and corresponding management programs. It provides data information, status

information and control information of the system, including geometry data, and

engineering data produced in the evolving process. The technique standards, criterion

and generic data used in the whole design period are stored in the knowledge base. The

local data could be retrieved by the relative application while global data lies where it

can be accessed with each application.

The Web server provides the Web services such as member registration, resources

management, and so on.

In the framework, a distributed environment is built upon the Web infrastructure. To

provide a generic support for all different applications executed under different

platforms and designed by different application programmers, cross-platform CORBA

standard is employed as the underlying unifying implementation framework. CORBA

supports seamless integration of modules, which are written in different languages and

built upon different platforms. In the CORBA-based framework, the client-side

application in the front layer may invoke the server-side objects that stand for gear

design resources in the application layer. The client application, used as user interface,

is an application on Windows while design applications may be ported on different

platforms such as Linux, Windows or others. Through the CORBA communication

bus the User Interface program cannot only directly invocate heterogeneous

64

Chapter 4 Distributed Gear Design Optimisation

applications in a point-to-point model, but also obtain general management

information through a Web server.

Actually, the user interface program communicates with remote applications through

an optimiser mechanism included in it. The optimiser is designed and developed to

help the user (i.e. designer) to obtain optimal design.

4.3.3 Remote Invocation Mechanism
The graphical user interface is designed as a CORBA client program and linked to all

the essential gear design applications or service objects. CORBA HOP and ORB

makes it possible for the interface program to invoke remote application service

objects, across all the boundaries in geographical, platforms, operating systems, and

programming language aspects. The remote invocation based on the distributed system

is implemented as shown in Figure 4.10.

Interface partner A {
Void stressA 1 (double paral double para2);
String stressA 2 (string paral);

}; Interface partner B {
Void lubrication B 1 (int paral);

};

Client Application

Skeleton App Obj

stressA 2

lubricationB 1

designPtrl->stressA 1(1.2 5.0);*
designPtr2->lubricationB 1 (4);
designPtr3->stressA 2(wang);
designPtr4->stressA 1 (8.2 12.5);

Figure 4.10 Remote invocations based on the distributed system

Interface Client Obj

The interface definitions for gear application service objects, s tre s sA l for gear

contact stress calculation, stressA_2 for gear bending stress calculation, and

lubricationB1 for lubricating feature calculation, are implemented in IDL. The

65

Chapter 4 Distributed Gear Design Optimisation

interface definition program contains only the input and output parameters, operation

name of an object other than the essential code in details. What a client program

developer needs to know about the remote object is only what the object is for,

reference name, and input and output parameters. The invoking requests for the remote

objects are sent in the graphical user interface program through client side ORB (stub)

to server side ORB (skeleton) that bounds to the objects. The objects execute on their

original environment and the results are retrieved by the client procedure. The system

facilitates many forms of parallel mechanism. The system allows multiple users from

different sites to simultaneously invoke the same objects.

4.4 Working Procedure of Distributed Gear Design

Optimisation
The gear design is abstracted into a design optimisation set, namely design variables,

design objectives, and design constraints. The design engineers must make the design

services available over the Internet through the CORBA-ware approaches. The design

variables are improved by the design optimisation procedure including multiple criteria

evaluation and constraints violation inspection from multiple concerns. During the

design evolving process, the distributed gear design optimisation (DGDO) system

might invoke local and remote calculation programs for the analysis and evaluation of

the every candidate design solution.

The variable dimension mechanism of the optimisation algorithm in this system allows

a designer to select any variable set among up to 9 design variables. Multiple

objective optimisation structure, as a decision maker aid, helps the designer to find

multiple feasible solutions within a broad region of solution space. Every objective is

linked to the local or remote calculation routine. According to the design objectives,

the decision maker aid, included in the client program i.e. GUI, will automatically call

the corresponding calculation operation locally or remotely. In addition to normal

output data, a CAD data file parameterised by the improved variables can be

automatically generated for visualisation and further utilisation.

66

Chapter 4 Distributed Gear Design Optimisation

The working procedure of the DGDO system is shown in Figure 4.11. GA is used as

the evolution algorithm, and multi-disciplinary service tools are used as the evaluation

mechanism. The model runs recursively till the best designs are identified. All possible

design evolutions can be visualised and their performance can be predicted. All the

activities are functionally divided into four groups: parameter input and identification,

design evolution, performance evaluation and constraint penalty, and design view.

Optimiser

<dP

Design Evolution by
Genetic Algorithm

Objective and Constraints
evaluations check

Design Visualisation

Remote
Evaluation
Programs

Figure 4.11 Working procedure o f DGDO

4.4.1 Design Parameters Input
To start a gear design process, a designer needs to input design parameters to specify

design objectives, the design variables, and basic design requirements, in the

corresponding data input dialogues. To help a user to fully and exactly understand the

meaning of so many parameters in these data input dialogues, an on-line help function

is facilitated in the system so that the definition and specifications about every

parameter can be found in the pop-up help dialogue by pressing the FI button.

4.4.2 Design Evolution by Genetic Algorithm
After finishing the parameters input and product data preparation, the system proceeds

to the design evolution stage. The optimiser is then activated and carries out the design

evolution. This application relates to helical gears, of which spur gears may be

considered a special case. Besides computing basic spur and helical geometrical

67

Chapter 4 Distributed Gear Design Optimisation

parameters, tooth cutting tool tip design in the manufacturing process and complicated

design on addendum modification for spur and helical gears have been included in this

application. The optimiser is implemented in C++, which is ported on the Windows

system.

Since this is a mixed continuous - discrete variable problem, GA is used to explore the

design space. A set of variables is represented as an individual (chromosome), coded in

binary in the GA program. The first generation of individuals (chromosome) is

generated randomly over the whole search space. The evolution runs recursively

through three evolutionary operations, e.g. selection, crossover, and mutation, till the

best designs are identified. The details about GA-based optimisation technique and the

results analysis are presented in Chapter 5.

4.4.3 Objective and Constraints Evaluation
Every individual in every generation is evaluated with the fitness function. The fitness

calculation involves not only objectives but also a penalty function related to the

constraints. The gear design evolution model is designed to address the synthesis

design from multiple disciplines. The objectives and constraints are calculated

according to the formulas, knowledge, standard and experience in the domain. There

are up to six design objectives and twenty-four inequality constraints. All the relevant

calculations are illustrated in detail in Section 5.1 and in Appendix C. The design

optimisation procedure invokes the objective and constraint evaluation programs to

calculate the fitness function to evaluate every set of solutions, in terms of the CORBA

commmiications mechanism, as shown in Figure 4.12.

In the optimisation process, the optimiser invokes the remote evaluation service

procedures. This kind of communication in the CORBA-based distributed system is

transparent, just as a local function invocation, no matter in which language, it is

written, or running in which platforms. The stress analysis procedure and manufacture

constraint procedure are ported in Linux and written in C/C++. The other quality

calculation procedures are located on another Windows system and written in Java.

68

Chapter 4 Distributed Gear Design Optimisation

The implementation of the communication mechanism provided in the system is

described in Section 5.2.3.

CORBA IIOP

Helical Gear Opt — \
Create Initial

„ Population ,

Stress
Analysis

Calculate
The Fitness

Quality
Control

iatisfied
Material

KnowledgeSelection

Crossover

Mutation Manufacture
Constraints

Figure 4.12 Optimisation procedure and remote evaluation programs invocation

4.4.4 Design Visualisation
The system facilitates a 2-D model generation service tool to assist users in the design

process by visualising the best design. Once the designer changes design

configurations and parameters, the system has the ability to rapidly recalculate and

redesign the gear system to reach the desired design configuration.

The automatic gear tooth generation tool is developed to establish an intelligent design

environment. The tool, written in C++, covers a complete design procedure that

exports DXF files to a DXF-aware CAD tools such as AutoCAD, or Free Viewer, as

shown in Figure 4.13. The 2-D gear tooth profile is calculated using the formulas

provided in Dudley [102].

69

Chapter 4 Distributed Gear Design Optimisation

Figure 4.13 An example o f an automatically generated 2-D gear profile

Based on the generated 2-D DXF file the 3-D modelling and structural design can be

produced using most commercial CAD software, such as AutoCAD or Pro-E. The 3-D

solid model of gears is shown in Figure 4.14.

Figure 4.14 A 3-D solid model o f gears

4.5 Automatic Gear Tooth Generation

4.5.1 Gear Profile Calculation Formula
In this application it is necessary to generate the exact 2-D gear tooth profile. The gear

profile can be split into three distinct regions, as shown in Figure 4.15. The first part of

the gear tooth profile is the working portion (involute), cut by the linear flank of the

rack cutter. The second part is the root circle, generated by the tip of the rack. The

third portion, the trochoidal fillet, connects the working portion and the root circle.

70

Chapter 4 Distributed Gear Design Optimisation

A d d e n d u m c i r c l e

-------- h

•* D e d e n d u m c i r c l e

X

Figure 4.15 Gear tooth profile

The following formulas are used for gear profile calculation, where the symbols have

their usual meanings as defined for example in Dudley [102].

1. Involute profile

[0: - tan a, - a
ri - rh / cos a.

f x = rj sin 0,.

l>7 = r, cos Qi

2. Fillet profile

(n - S P ^ Z l
cos a

/const//

y f = x s - (K - P o d - P a A n a

(4-1)

(4-2)

(4-3)

3. Root circle

rf = r ~ K f (4-4)

71

Chapter 4 Distributed Gear Design Optimisation

4. Tooth tip thickness

sa ~ da (----- *" inva ~ inv a a) (4-5)mz

4.5.2 DXF Data File Format of the Gear Tooth Profile
The 2-D gear tooth profile generation is designed to export a DXF file. DXF is an

abbreviation of Data Exchange File, a two-dimensional graphics file format supported

by virtually all PC-based CAD products. AutoDesk created it for the AutoCAD system,

but it can be also viewed in other popular commercial CAD software such as UG and

Pro-E or even free software such as FreeViewer, or QCad on Linux.

The DXF format is a tagged data representation of all the information contained in an

AutoCAD drawing file. Tagged data means that each data element in the file is

preceded by an integer number that is called a group code. A group code's value

indicates which type of data element follows. This value also indicates the meaning of

a data element for a given object (or record) type. Virtually all user-specified

information in a drawing file can be represented in DXF format. The profile curve is

represented by numbers of polyline entity.

4.6 Implementation of GUI on Windows
In modem software development, an algorithm program and its service GUI are often

separately developed by different developers, and even on different sites, on different

platforms and different languages. In this project, the GUI is developed in VC++ and

running on Microsoft Windows. The GUI provides a unified interface for users to

conduct design virtually. The GUI also includes an optimiser routine, which is a

designed CORBA client invocating remote CORBA objects, i.e. evaluation programs.

The user does not need to know any technical details about CORBA-based remote

communication.

4.6.1 Design Objectives Identification
There are six design objectives, in this gear optimisation system, to be selected. A user

can identify the design objectives and relevant weighting coefficients by using the

72

Chapter 4 Distributed Gear Design Optimisation

interface, as shown in Figure 4.16. Each of the objectives is associated with a local or

remote evaluation program.

Optimisation Objactivas W eighting Selection

F ace W idth % [53 _ _ e j _ J _Ll

Centre D ietence % f / 0 j J 1 \

Equal Slide/Roll % [s 5 _«J _ J

Bending S tre s s % (100 < \ J j J

Equal S tre s s % j s 5 _*J __ |

C ontact S tre s s % p 3 __|

< Back | Ne*t> j Caned | H* !
1

Figure 4.16 Design objectives identification

4.6.2 Design Variables Configuration
There are in total up to 9 optimisation variables defined in this gear design application.

In order to provide the user with more flexible design spaces, the system supports the

dynamical design for less than 9, or up to 9, of the variables, e.g. dimension variation.

In the case of fixed centre distance, the variables zx and x 2 are not independent, and are

determined from other variables in the calculation program.

For different design circumstances, a user may select different design variables from

these nine variables. The selected variables will be included in the optimisation process,

therefore, the user does not need to input values for them in the Geometry Parameters

data input dialogue. However for any unselected variables, a user must provide proper

constant values for them in the data input dialogue. In the actual design example

shown in Figure 4.17, Face Width, Module and Addendum Coefficient are three

selected variables, so their input columns are disabled, while the other six variables are

unselected variables, so their input columns are enabled.

73

Chapter 4 Distributed Gear Design Optimisation

P F ace W idth

P Module

1170 F ace W idth (m m) |6U Pinion Shaft Diameter (m m)

| r. Module (m m) P Crowning

P Addendum Coefficient

f” P ressu re Angle

r* Helix Angle

r Rach Tip Radius Coe

P Add8n^ um Coefficient P End Relief

[f l 3 P r«*®ure Angle (D e g) r Fixed Centre D istance

[30 Helical Angle (0 - 3 0 Deg) [~ Centre D ietance (mm)

| l Rach Tip Radius Coefficient (0.0S - 0 .3 0)

C Pinion Addendum M fo Pinion Addendum Modification Coefficient

f“ W heel A ddendum
.--------------
|0 W heel Addendum Modification Coefficient

Pinion Teeth Nurr
r_________
|22 Pinion Teeth Number

< B < Back [Ne*T> | Cancel | Help |

Figure 4.17 Selected and unselected optimisation variables

4.6.3 Specify Other Design Requirements
In addition to the design objectives and design variables, the user still needs to specify

other basic design requirements, including application parameters, quality parameters

and material parameters. Application parameters include Power, Input Speed, Gear

Ratio, etc, in total 14 parameters. Quality parameters include Material Quality,

Manufacturing Accuracy, Flank Surface Roughness and Root Surface Roughness for

both pinion and wheel gears. Material parameters include Material Type, Hardness

Process, Surface Hardness, etc, in total 10 parameters for both pinion and wheel gears.

Application, quality and material parameters data input dialogue is shown in Figure

4.18.

Input

|b M»x.

(30 M ix

(go G tafj

i— _|2l«J Sp«1

Pmior

IT-
SB

F
[700

[o 32

[2260

[950

psr
|240

[1397

[300

! [700

|0 45
|Sir

[555-
[1727

[300

a
Material Type

Hardness P ro te a s

Surface Hardness

Effecitve C ase Depth

Ultimate Tensile Strength (MN/mA2)

Core Tensile Strength (MNrtm*2)

Surface Residual S tre s s (MN/m*2)

Core Residual S tre ss (MNtov*2)

Yield Strength for Bending S tre ss (MN/m*2)

0 2% Proof S tre e t < MN/m-2)

Figure 4.18 Application, quality and material parameters data input

74

Chapter 4 Distributed Gear Design Optimisation

4.6.4 On-line Help
To help users to fully understand every menu item in each dialogue, and input so many

parameters correctly, an on-line help is provided. During the input process, pressing

the FI button, or the Help button on the bottom of each dialogue, can activate the on­

line help to see the relative knowledge about the current dialogue and the knowledge

about these parameters, as shown in Figure 4.19.

Figure 4.19 Pop-up on-line help

4.6.5 Input Data Selection
As mentioned above, there so many design parameters, to be given in certain values or

in certain options, required for user to input, that it is not a straightforward task to

input all these parameters. To facilitate a user to input these parameters correctly and

quickly, the application program provides four flexible data input selections, include

User Default Design Parameters, System Default Design Parameters, New Design

Parameters, and Retrieving Existing Design Parameters, as shown in Figure 4.20.

Select Input Date Source

Ueer Default Design Param eters

f* S ystem Default Design Param eters

New Design Param eters

**' Retrieve Existing Design Param eters

Figure 4.20 Input data selection

75

Chapter 4 Distributed Gear Design Optimisation

If the “Retrieving Existing Design Parameters''' option is chosen, a File Open system

pop up dialogue will appear for the user to retrieve these design parameters from an

existing file saved before, as shown in Figure 4.21.

I l ip u t Drtlrt SOUK I* O p t im a

Select Inp

rsyd
r Nev

Look irv j l(aa My Documents —3 «* ® df ra*
Bluetooth

OBluetooth
iMy eBooks
My Music
My Pictures

IC5 My Received Files

>uJMy Scans
tij^My Shapes
O M y Skype Pictures
O M y Skype Received Ffles
OPGP
iuiUleedCDftDVDPictureShovr Trial

Fie* at type: |g<?« Optimtsationlnput Data Flet (" got) 3 Cancel |

P" Open a* ieed-only

Retrieve Existing Design Param eters

Figure 4.21 Retrieve Existing Design Parameters file open dialog

4.6.6 Calling Optimiser Program
The Optimiser, i.e. optimisation algorithm program, is implemented separately from

the GUI procedure. Pressing the “Optimisation Start” button, as shown in Figure 4.22,

will cause the algorithm program to be invoked. The optimisation algorithm execution

is encapsulated within the “Process” and managed in the GUI program running on a

Windows application environment.

S p u r a n d l ln l lc .i l (in .ir O p tim is .i t io n D oslp.n P .i rk .ig i . X

Select Working Folders

Optimisation S tages

|V;\JSY_PHD_THESIS\Gear Optimisation\GearDosOpt\Debug C hang. 1

|V \JSY_PHD_THESIS\Geai OptimisallonVGearOesOptVDebug Change |

PARAMETERS

INPUT

OPTIMISATION

START

Figure 4.22 Calling algorithm program

76

Chapter 4 Distributed Gear Design Optimisation

Within the optimising process, the optimiser program is needed to invocate evaluation

programs that might be local or remote. In this distributed system, the optimiser is

designed as a CORBA client while all the evaluation programs are encapsulated as

CORBA objects. Therefore the optimiser program can communicate with all the

evaluation programs in a client-server model, based on a CORBA communication

mechanism, as required. The communication mechanism is illustrated in Section 4.3.3

while the development issues about remote evaluation object implementation and the

optimiser client are described in the following sections.

4.7 Implementation of Evaluation Programs as CORBA

Object on Linux
In this project, the optimiser application, which is used as decision maker aid, is

developed separately from the GUI program. Both of them are ported on the same

Microsoft Windows machine. During the process of running the algorithm, the

evaluation functions for calculating fitness of GA will be invoked a large number of

times. These programs or procedures might be located on different platforms at other

sites. In order to invoke these programs ported on different machines over the Internet,

each evaluation program needs to be wrapped as a CORBA object. Technical details

about the wrapping procedure of turning an evaluation program into a CORBA object

on Linux are presented in this section while the implementation of the client process

on Windows is described in Section 4.8.

The general procedure for developing a distributed CORBA application is described in

Chapter 4. In this application paradigm, ‘OmniORB5 is used as a tool for developing a

CORBA client on Windows and evaluation object program on Linux (RedHat Linux

9.0). Calculations on the specific sliding ratio of gears, related to the anti-wearing

properties, are implemented on Linux. These are written in C/C++ and debugged by

GCC and Qt developing environment.

'OmniORB' is an Object Request Broker (ORB), which implements the Common

Object Request Broker Architecture (CORBA). It is freely available under the terms of

the GNU free project on Linux. It is one of only three ORBs to have been awarded the

77

Chapter 4 Distributed Gear Design Optimisation

Open Group's Open Brand for CORBA. It supports the C++ and Python language

bindings, is fully multithreaded, uses HOP as the native transport, and comes complete

with a COS Naming Service. OmniORB is possibly the fastest available C++ ORB.

This is the main reason that it is chosen in this project.

OmniORB requires Packages Python for building the developing enviromnent because

OmniORB is downloaded on Linux in the form of source code. After running a proper

configuration file especially for the Linux platform, the source code of OmniORB is

built using GCC, a compiler o f C++ 011 Linux, and Python, a kind of programming

language. The makefiles in the OmniORB package is executed so that the installation

is implemented, with the setting up for the lib path and bin path.

Configuring the Naming service, a facility of CORBA services, is another important

part of setting up for the developing and deploying of CORBA objects. ‘OmniNames’

is the command of starting the Omni ORB Naming service. The file omniORB.cfg, is

produced for recording all the information of the Naming service. An enviromnent

variable is set for pointing to the location of the omniORB.cfg.

Just as all the other CORBA-based applications, interface definition for the object is

first written. It contains the input and output data, and name of an object, i.e. an

operation. ‘OmniidP is an IDL compiler for creating ORB files: Functionname.hh and

Functiomiame.cc. Implementation codes of the object need to be written and it

contains the essential code of a legacy program.

Compiling and linking for all the ORB files and the object implementation files could

be implemented by a makefile that is predefined by developers themselves.

4.8 Implementation of Algorithm Application as

CORBA Client on Windows
On the client side of Windows, OmniORB can be downloaded in the Win32 binary

distribution and installed without building. The remaining work in the developing

environment is only the Naming service setting up. Running the tool REGEDT.EXE

78

Chapter 4 Distributed Gear Design Optimisation

for opening Windows “Registry Editor” is to set the location of the Naming service. In

this application, the value of the registration key for OmniORB is set in the machine

number hosting the remote object, e.g. Linux machine’s IP address number as shown

in Figure 4.23.

As a CORBA client procedure, it should contain the initiation of ORB and binding of

remote object. The remote Naming service on the Linux platform is started and the

object is running and getting ready for invocation while the client program could

invoke the remote object by using the registration value for the remote Name service,

including the referencing information of the object, which will further point to the

object.

[’3EBEBDQZSS3
R«gMty Ed* Vfe* _______ _ _ _ _ _ Vlpw PavoHH. Halp

Neman
E0- S J NVIDIA Corporation$ SI ooec
B C l omniORB

SlIm tR af
W C | ORL
& £ j Policies
it! S | PovsierQuest

C l Program Groups
5 C l R ealN etw orks ep Ci RKhPx

d Secure
It] C l Sun Microsystems, Inc.
»1- I d SUPERSTAR

C l T.T.JSS**
[fl C l The SRcon Realms Toolworks
ER S | tmp

C l TopbarZ.O
ST S J t t o d
9) C l VERITAS
W C-J Vlstgonk Software Inc
6 Cj vob
ffl ■Cl Voice
iS u j Windows 3.1 Migration Status
m (U Xing Technology Corp.

Q j SYSTEM
HKEY.USERS
HKE Y.CURRENT .CONFIG

LsJ . A±r

(value not set)
NameService-corbaname:: 152.71.18.26

Ply Computer\HKEY J o c A ElPIArlHlNEASO tTWAREtomrVORWntR

Figure 4.23 Registration o f remote naming server

In addition to the basic setting up of the CORBA Naming service, another key issue is

how to combine the CORBA client procedure with the legacy code. There are three

ways to do this.

1. A CORBA client procedure is developed separately from the algorithm program.

The execution file of the client procedure is inserted into the algorithm program in the

form of Windows “Process”, as shown in Figure 4.24.

In this way, the CORBA client development could be separated from the development

of an algorithm. However starting a new process could affect the execution speed of

the entire application procedure.

79

Chapter 4 Distributed Gear Design Optimisation

^ OnButlonStail

: C r e a t e P r o c e s s
("D:Vs. . .NSFunci tonNaneCliont
N U L L.
N U LL.
N U LL,
F A L S E .

W w k tp ace ■GeaiOatOpt' 1 pcoject(t)

Fr) f j i i Source Fte*

I

GearDesOpt tc
GearDesOptDoc.cpp
GearDesOptView cpp
InputApplication. cpp
I nputG eomelry. cpp
InptrtM atonal. cpp
InputQuaWycpp
I nputS av©0 ptiom. cpp
Inputsour ceOpt tons cpp
M anFcmcpp
Opt Char actor cpp
OptknisationO Ig. cpp
0 ptO bjectivos. cpp
0 ptVariables. cpp
Rosultft cjvr>

4cS tar tup Inf o ,
&ProcessInfo)j

COptinisationDlg dlg(m_InputFolder. a_RosultFoldei
if (dig DoModalO -- IDCAHCEL) {

: T o r» i na t oProcess

Figure 4.24 Client procedure is added in a “Process'

2. The algorithm procedure is inserted into a CORBA client program and debugged in

command line through CORBA-ware makefiles.

3. A CORBA client program is inserted into an algorithm application and debugged in

the VC++ environment with the project setting up for the CORBA special procedure.

In both of the latter ways, a new process is avoided which means better execution

speed. Which form is chosen depends on the developer’s expertise and preferences and

the application features.

This chapter presents a distributed system based on CORBA for multiple objective

design optimisations of gears. The system consists of four layers: user interface layer,

application layer, data layer, and the Web server layer. All the program resources are

encapsulated into CORBA-ware distributed components i.e. objects, which are located

on the application layer. The user interface layer is a unified user interface, designed as

a CORBA client, through which any remote objects can be invoked. The Web server is

used for providing resource administrative services. The data layer contains backend

data resources, which are linked to the design applications, i.e. CORBA objects, or

directly linked to the client program through the CORBA communication bus.

4.9 Summary

80

Chapter 4 Distributed Gear Design Optimisation

A user o f the system merely interacts with the unified interface to conduct complex

gear design and does not need to know any technical details about communications

between the interface and remote resources.

In order to conduct complex gear design optimisation, the user needs to collaborate

with the collocated models or programs that represent the different domain interests. A

GA-based design optimisation mechanism is facilitated to help a user to leverage the

different interests to obtain rational solutions. The optimisation mechanism is designed

as a CORBA client procedure, through which the interface may invoke multiple design

resources, located at different sites, ported on different computer platforms (such as

Windows and Linux) and written in different languages (C/C++ and Java).

Through the integrated design environment a user (engineering designer) can conduct

all the design activities: inputting design parameters activating optimiser (i.e. design

maker) that further invokes remote resources, and viewing design results both in text

data and graphics.

In this chapter, the developing techniques about the communication implementation

between Linux and Windows are also presented, including environment setting up,

communication approach, combination methods between CORBA-related procedure

and legacy codes, etc.

81

Chapter 5 Gear Design Optimisation using Genetic Algorithms

Chapter 5 Gear Design Optimisation Using

Genetic Algorithms

5.1 Introduction
In the distributed gear design optimisation system presented in Chapter 4, a design

optimisation mechanism, i.e. an optimiser is designed to help the user to conduct the

design optimisation, as a design aid. In this chapter, the design optimisation

approaches and calculations are presented in detail.

In the real world, product design is commonly subjected to many different interests. In

gear design, examples of interests are less space size, lower bending and contact

stresses, high performance for resistance to friction, as described in Appendix C. In an

ideal case, geometrical parameter specification of gears should involve considerations

of all engineers’ interests; however, this is impossible because some of these interests

conflict with each other. Consequently, the design decision must reach a compromise

between the different considerations. Designers within the field of gear design are thus

facing a complex decision problem involving tremendous calculations of objective

evaluations and conflicting interests based on economic, structural, manufacturing or

application criteria.

The main goal of the work in this chapter is the implementation and validation of a

design optimisation mechanism, which can be used to support spur and helical gear

design optimisation. More especially the following work will be done:

1. Gear design optimisation problem is modelled.

2. Genetic algorithms are identified and investigated.

3. Multiple objective optimisations are implemented.

4. Simulated annealing is employed to construct a variable penalty function.

5. Resultant analysis of gear design based on the above techniques.

82

Chapter 5 Gear Design Optimisation using Genetic Algorithms

5.2 Gear Design Optimisation Model
Gear design is one of the classical topics of mechanical engineering design. The

classical route followed for the design of gears is to appeal to standards, such as BS,

AGMA, DIN or ISO [92-98]. These standards are based on extremely large collections

of results and empirical rules from practical experience in a vast range of engineering

applications. They provide a set of formulae, rules and charts to design the gearing

taking into account various working conditions and several aspects of their

performance, such as the power level, noise, lubrication conditions, wear rate,

likelihood o f impact, pitting, and corrosion. Nevertheless, actual gear design involves

very difficult and complex calculations and trial and error, and thus often requires an

iterative process to determine those design parameters that would satisfy performance

and strength requirements, which would result in an efficient and reliable operation for

gear transmission system.

In this project, a gear design problem is used as case study to explore the possibility of

the proposed collaborative system for improving design efficiency. In this section,

relative formulae, and experience in gear performance, gear strength, and wear

resistance used in this research are presented. Gear geometrical design with rack shift

(addendum modification) and its relevant considerations are identified. The

calculations use procedures, algorithms and data from standards ANSI, ISO, DIN, BS

and specialised literature.

This application relates more specifically to helical gears, of which spur gears may be

considered as a special case. In addition to the basic design, a complicated design

addendum modification of spur and helical gears is also included in this application.

5.2.1 Addendum Modification Design

5 .2 .1 .1 A d d e n d u m M o d i f i c a t i o n

When gears are produced by a typical generating process, the datum line of the basic

rack need not necessarily form a tangent to the reference circle. The tooth profile can

be formed by shifting the datum line from the tangential position. The radial

83

Chapter 5 Gear Design Optimisation using Genetic Algorithms

displacement from the tangential position is termed addendum modification, i.e. rack

shift. Four different instances of addendum modification are shown in Figure 5.1.

datum line

nee circle

5.1a No addendum modification

datum line

reference circle

5.1b Favourable positive addendum modification

>0

5.1c Excessive positive addendum modification

r - x'm < 0

5.1 d Negative addendum modification

Figure 5.1 Four instances o f addendum modification

datum line

reference circle

84

Chapter 5 Gear Design Optimisation using Genetic Algorithms

The displacement is considered positive when in the direction away from the centre of

the gear and negative when nearer towards the centre. Regardless of positive or

negative displacement, the involute shape of the tooth profile is retained. The tooth

profile, however, may use a different form of involute curve in different cases of

displacement. For positive displacement, the part further from the origin of the same

involute is used, while for the negative displacement, the part nearer to the origin of

the same involute is used.

The load carrying capacity of the teeth without addendum modification shown in

Figure 5.1a can be improved by the positive addendum modification shown in Figure

5.1b. However, an extremely large addendum modification results in an unsuitable

tooth form with pointed teeth, as shown in Figure 5.1c. A negative addendum

modification is shown in Figure 5.Id.

The addendum modification coefficient x is the amount of the addendum modification

divided by the module. Thus, the amount of the addendum modification is equal to

x * m .

5 .2 .1 .2 E f f e c t o f A d d e n d u m M o d i f i c a t i o n o n t h e T o o t h F o r m a n d

i t s A p p l i c a t i o n
Firstly, the effect of addendum modification on the tooth form is particularly

significant for its load carrying capacity. The load carrying capacity of gears with

appropriate addendum modification could be improved by over 20% with respect to a

standard gear, with no need for special machine tooling, cutting tools or process

technology. The following characteristics are the factors of the effect of addendum

modification on load carrying capacity.

a) The profile angle a , because of the relationship between the mean radius of

curvature of the tooth flanks and the contact load capacity. If x • m > 0 then the

profile angle a is greater than pressure angle a on the reference circle of

standard gear.

b) The tooth root thickness, because of the relationship between the modulus of

section and bending strength at the root of the tooth.

85

Chapter 5 Gear Design Optimisation using Genetic Algorithms

c) The fillet radius at the critical point for bending, as at this point a rapid change

in cross-section results in stress concentration.

d) The crest width, as excessive shear stress at the tip is undesirable, particularly

in surface hardened gears.

In addition to the effect on the load carrying capacity, the addendum of modification is

also utilised in the following application circumstances:

a) To avoid the cutter interference at the root of gear. In the case of 2 < zmin,

correct positive addendum modification avoids cutter interference.

b) To fit a given centre distance. In the case of zx and z1 given, it is possible to

adapt to the given centre distance by adjusting the addendum modification

coefficients x x, x2.

c) To repair the worn gear pair. In gear power transmission, if both the pinion

(smaller one) and the wheel (bigger one) have been worn, the common solution

to this problem is to repair the wheel and replace a new pinion. The new pinion

with positive addendum modification can mate with the repaired wheel with

the renewed profile of negative addendum modification. In this way, the

manufacturing cost for a new wheel can be saved.

d) Improve the performance in other aspects. The transmission with positive

addendum modification leads to the improvement of contact and bending

strength. Choosing appropriate addendum coefficients could reduce the specific

sliding ratio, and the lower specific sliding ratio could be beneficial to the

micropitting resistance.

5 .2 .1 .3 C o n s i d e r a t i o n o f D e t e r m i n i n g t h e A d d e n d u m M o d i f i c a t i o n

C o e f f i c i e n t s

Determination of gear addendum modification coefficients is a complex process. It

affects geometric, kinematic and strength characteristics as well. Many practical

graphs and tables for fulfilling some functional requirements have been applied to

conduct the modification coefficient design [101, 102]. However most of these address

only some aspects of consideration, such as a requirement of high resistance against

86

Chapter 5 Gear Design Optimisation using Genetic Algorithms

wear, requirement for a high contact loading capacity, protection from undercutting of

the teeth, or protection from tapering of the teeth.

It is difficult to determine the addendum modification coefficients simultaneously

considering functional requirements and limiting conditions. The common way to do

this is by firstly making the initial design option according to an experienced table,

graphs or formula, and then, conducting analysis of strength and stress, repeating re­

option and then re~analysis until receiving the satisfied results.

In this project, determination for the addendum modification coefficients and other

parameters is implemented by the design optimisation to satisfy multiple functional

objectives under multiple constraint conditions to determine if it is possible to obtain a

quick and precise design.

Possible relative functional requirements for choosing the addendum modification

coefficients are

a) Minimising the bending stress and the contact stress for high load capacity

b) Minimising the difference between the maximum of specific sliding ratio at

both the pinion and wheel for high resistance against wear

Under the following constraint conditions:

a) Preventing undercutting of teeth during manufacturing

b) Preventing interference o f gearing.

c) Checking the minimum of tooth thickness on the tip diameter

d) Checking the minimum of total contact ratio

5.2.2 Gear Design Optimisation Model Considering Addendum
Modification

The gear design optimisation model consists of six objectives, nine design variables,

and twenty-four inequality constraints. The formulas in this section have been taken

from MAAG Gear Design [101], Dudley’s Gear Handbook [102] and British Standard

87

Chapter 5 Gear Design Optimisation using Genetic Algorithms

436 [98]. More details about the gear knowledge and calculations are given in

Appendix C.

5 .2 .2 .1 D e s i g n v a r i a b l e s

Up to 9 of the variables for the design of spur and helical gears are taken into

consideration:

• Face width coefficient <j)d : The ratio of face width to pitch diameter of the

pinion

• Module m: Standard value list

• Addendum coefficient hap: Standard value list

• Pressure angle a : Standard value list

• Helical angle (3

• Rack Tip Radius coefficient p]P : the product of p fP and m is the rack tip

radius

• Pinion Addendum Coefficient x,

• Wheel Addendum Coefficient x2

• Pinion Tooth Number z,

In the case of fixed centre distance, the Wheel Addendum Coefficient x2 and Pinion

Tooth Number zx are not independent variables any more. x2 is determined by the

Pinion Addendum Coefficient x, and the fixed centre distance, z, is determined by the

Module m and the fixed centre distance.

5 .2 .2 .2 O b j e c t i v e s

The optimisation process adjusts parameters that have effects on the characteristics of

the gear to fulfil the following criteria:

1. Minimising face width

f (<pcl,m ,f3,Zl) = B = <j>d (5-1)
cos p

where f (<pd, m, (3, Zj) is the face width function.

Chapter 5 Gear Design Optimisation using Genetic Algorithms

2. Minimising the centre distance of a gear pair for a variable centre distance. If the

centre distance of a gear pair is given, then the following expression is considered

as an equality constraint

f 2 (im, a 9 p 9 x,, x2) = a = “ - ^ r (l + u) (5-2)
2 cos p cos a t

where tan a t = -------- , inva' = inva, +—M ^ tan or, with u , representing the
cos p z,(l + w)

transmission ratio, being given.

3. Reducing the bending stress of the pinion

f 3{m,hap,a >(],pJP,x l,x 2,z l)=crbl (5-3)

4. Reducing the difference in bending stresses between the pinion and wheel teeth

f A{m,hap,a ,/3 ,p fP,xv x2,z x)=AcTb =|<rM-c rA2| (5-4)

5. Reducing the contact stress

fs (W> hap Pjp ^H

6. Reducing the difference in the tooth tip sliding ratio of the pinion and wheel

f A m’K ’a ’P ’PjP'X' ’Xl ’Zl) =^ r = |Sri - S ,2| (5-6)

S .2 .2 .3 C o n s t r a i n t s
The parameters presented in this section, which would be utilised in a conventional

gear design approach, and have the same symbols as normally used [14].

1. Constraints on strength

Contact strength

g , = l - ^ i O (5-7)
(J,

g 2 = l - ^ ^ < 0 (5-8)

Bending strength

g 3 = l - b > U < 0 (5-9)
FI

l _ k £ a] < 0= 1 — 9 (5-10)
<y,F 2

89

Chapter 5 Gear Design Optimisation using Genetic Algorithms

Ss = KP + — r * zi sin2 a < ~ xi ~ ° (5-11)

S 6 = K p + ^ — ' n Z 2 S i n 2 « / ~ X 2 ^ 0 (5 - 1 2)

The permissible contact strength ̂ 1 should be greater than actual contact

strength °'H ; and the permissible bending strength [crF] should be greater that

actual bending strength orF .

2. Cutter interference condition

1
2 cos [5

J_
2 cos/?

3. Tooth tip thickness

g n = 0 3 m - S a} < 0 (5-13)

g 8 = 0.3m - S a2 < 0 (5-14)

4. Interference at the roots of mating gear teeth

g9=g,nV- g L ^ Q (5-15)

£io = ga2- t f #s in« / ' ^0 (5_16)

= 1 a— 0

& 12 = 1 E— ^

5. Slide/roll ratio for the gear tooth tip

* ” - 3 - l 5 7 s o

6. Rack tip fillet radius coefficient limit checking

(5-17)

(5-18)

S 13 0 (5-19)

(5-20)

0.25
g 15= / V ~ — — < 0 (5-21)

1 - sin a

7. Increasing the contact ratio

Sis = s = s a +e fi >1.2 (5-22)

8. Limitations on each variable

g]7:0.2<<f>d <1.4 (5-23)

g 18: \ < m < 50 (5-24)

90

Chapter 5 Gear Design Optimisation using Genetic Algorithms

m is obtained from the predefined list of 35 discrete standard values

g,9 : 0.75 <hap<1.25 (5-25)

discrete standard values (0.75, 1,1.25)

g 20: 17.5 <a <22.5 (5-26)

discrete standard values (17.5, 20, 22.5, 24)

g 2\ • 0 S /) < HelixLimit, (5-27)

where the Helix Limit is dependent on the force

g 22:0.05 < Pjr<0.4 (5-28)

£ 23:-1 < X i <1 (5-29)

g 24: - l < x 2 < l (5-30)

g 25: l < z , <127 (5-31)

5.3 Implementation of Genetic Algorithms Program
Genetic Algorithms (GAs) differ from traditional optimisation algorithms and search

procedures in four important respects:

• They work using an encoding of the control variables, e.g. solution set, rather

than the variables themselves.

• They search from one population of solutions to another, rather than from

individual to individual.

• They use only objective function information, not derivatives or other auxiliary

knowledge.

• They use probabilistic, not deterministic, transition rules.

As general optimisation heuristics, GAs can be used to optimise a wide variety of

problems. The only requirements are an encoding of the problem, an evaluation

function for the encoding and the problem property that neighbouring solutions have

similar fitness to guide the search. In gear design optimisation, the generality of GAs

allows spatial relations to be taken into account without the requirement of linearity or

continuity of the evaluation function.

91

Chapter 5 Gear Design Optimisation using Genetic Algorithms

5.3.1 Basic Concepts of Genetic Algorithms

5 .3 .1 .1 G e n e r a l P r o c e d u r e o f G e n e t i c A l g o r i t h m s

Genetic Algorithms are stochastic search techniques based on the mechanism of

natural selection and natural genetics. The following list shows the general procedure

of a genetic algorithm as described by Mitsuo Gen and RunWei Cheng [103].

Procedure: Genetic Algorithms
begin

initialise P(t);

t=0;

while (not termination condition) do

Evaluate fitness of P(t) of each individual;

Selection operation to P(t);

Crossover operation to P(t);

Mutation operation P(t);

P(t+l)=P(t);

end while

end

Differing from conventional search techniques, Genetic algorithms start with an initial

set of random solutions called population. Each individual in the population is called a

chromosome, representing a solution to the problem at hand, e.g. geometrical

parameters o f a gear. A chromosome is a string of symbols; it is usually, but not

necessarily, a binary bit string. The chromosomes evolve through successive iterations,

called generations. During each generation, firstly, the fitness of chromosomes are

evaluated. Then the selection operator is used to select the chromosomes for the next

generation according to the fitness values. Fitter chromosomes have higher

probabilities o f being selected. In order to create the next generation, new

chromosomes, called offspring; are formed by either merging two chromosomes from

the current generation using a crossover operator, or modifying a chromosome using a

mutation operator. Some of the parents are rejected and an equal number of offsprings

are accepted as the replacement of these parents so as to keep the population size

92

Chapter 5 Gear Design Optimisation using Genetic Algorithms

constant. After several generations the algorithms converge to the best chromosome,

which hopefully represents the optimum, or at least suboptimal, solution to the

problem.

5 .3 .1 .2 O p e r a t i o n s o n C h r o m o s o m e

During each generation of evolution, the following three operators are used to create

the new chromosomes for the next generation:

• Selection which equates to survival of the fittest;

• Crossover which represents mating between individuals;

• Mutation which introduces random modifications.

1. Selection operator

Chromosomes are selected from the population to be parents for crossover and

mutation. According to Darwin's theory of evolution the best ones survive to create

new offspring. The probabilistic method determines the probability of reproduction for

each chromosome based upon its fitness in relation to the rest of the population. The

better the chromosomes are, the more chances to be selected they have. The selection

process is based upon the associated probability of the genomes and a random factor.

There are many methods in selecting the best chromosomes, which are roulette wheel

selection, Boltzman selection, tournament selection, rank selection, steady state

selection and some others. The selection method used in this study is roulette wheel

selection.

2. Crossover and mutation operators

After implementing the roulette wheel method of selecting the parent chromosomes for

the next generation, crossover and mutation operations will be undertaken. The level of

crossover and mutation is a set based upon experience with GAs and trial and error. In

this study, the region is generally from 70% to 95%. Multiple random crossover points

are used in this research during reproduction of the chromosomes, due to the large

numbers of the chromosomes and their non-uniform size.

93

Chapter 5 Gear Design Optimisation using Genetic Algorithms

The purpose of the mutation is to increase the search area and prevent local

optimisation. The rate of mutation is varied, ranging from 0.0001-0.1 in an attempt to

increase the repeatability of the results. Determining the level of mutation is achieved

by trial and error.

In addition to the evolutionary operations including selection, crossover and mutation,

population and convergence conditions are also the factors controlling the optimisation

process. Further details about this are presented in Appendix D.

5.3.2 The Cascaded Genetic Algorithm
The cascade procedure applied in this study is depicted schematically in Figure 5.2. In

this approach, the entire solution space has a sub-region, which in turn may have

further sub-regions. The sizes and number of sub-regions, referred to as tiers, depends

on the final desired accuracy for the solution. The length of the chromosome is set

accordingly and remains constant till termination of the algorithm. In the first tier the

GA is used to undertake searching over the entire solution space. In subsequent tiers,

the GA is utilised for finer searching as the search space is reduced. Each chromosome

of constant length thus represents a higher accuracy solution. The solution is obtained

when the program has cascaded through the selected number of tiers.

In the cascaded GA, although the chromosome length remains constant, the solution

space is redefined and re-initialised at the start o f each tier. At the first coarse

searching tier, the solution space is defined as the global space. At the finer searching

tier, the result from the previous tier is used as the warm value, where upper and lower

bounds are obtained through making the warm value plus or minus the deviation value.

Tier 1
Intermediate
Warm-Values

GA
Optimiser

(Warm value
± Deviation)

GA
Optimiser

(Global
searching)

I Solution I
 1

Tier 2

Figure 5.2 Schematic diagram o f the proposed Cascaded GA approach

94

Chapter 5 Gear Design Optimisation using Genetic Algorithms

If the upper (or lower) bound calculated at the finer tier exceeds (or less than) the

upper (or lower) bound given at the first tier, then upper (or lower) bound at the first

tier is used as the upper (or lower) bound.

5.3.3 Chromosome Representation
Chromosome is a basic element that Genetic Algorithms deal with. In order to tackle a

problem using a GA, candidate solutions must be encoded into chromosome in a

suitable form.

The most common way of encoding is a binary string. A binary string represents a

chromosome. Each bit in the string can represent some characteristics of the solution.

A binary string of a chromosome consists of several sub strings, and each of them is

called a gene. A gene represents a variable, and all of these variables together construct

a candidate solution.

In addition to the binary methods, there are many other ways of encoding. For example,

a chromosome can be encoded directly into integers or float numbers, and sometimes it

is useful to encode a chromosome into some permutations. The encoding method

mainly depends on the characteristics of problem to be resolved.

5 .3 .3 .1 C h r o m o s o m e E n c o d i n g o f G e a r O p t i m i s a t i o n A p p l i c a t i o n

In this gear optimisation application, the binary chromosome representation has been

utilised. A binary string of a chromosome consists of several sub strings, and each of

them is called a gene. A gene represents a variable, and all of these variables together

construct a candidate solution. There are 9 design variables in this gear optimisation

application, so that a chromosome could be encoded like this:

101011 i 101010 | 0011 | 11 | 0100 | 101 j 1001101 | 011100 | 110101

*i x 2 fid fy>p Pjp a P m 2 1

The bit number of each gene depends on the value range of each real variable and the

required design accuracy. The variable ranges can be established according to the

knowledge of the design problem area. The constraint conditions given by g l7 to g 25

95

Chapter 5 Gear Design Optimisation using Genetic Algorithms

can be used as the initial upper and lower bounds for each variable. In this cascaded

framework described in Section 5.3.2, the genes with a constant length are decoded as

different real value ranges at each tier (stage). At tier 1, some variables have a larger

value range and lower resolution, whereas, at tier 2, smaller value range and high

resolution. The encoding and decoding values of the gear design variables in both tiers

are shown in the Table 5.1.

Table 5.1 Encoding and decoding values o f gear design variables

Variable Binary
bits

Encoding
value

Decoding
value (tier 1)

Decoding value
(tier 2)

Xj 6 0-63 -1-1 X]0 ± 0.25

x 2 6 0-63 -1-1 X20 ± 0 .2 5

4 0-15 0.2-1 .4 (j)do ± 0.3

^ap 2 0-3 0-3 0-3

P fp 4 0-15 0.05-0.4 P j p o ± 0 -09

a 3 0 -7 0 -7 0 -7

p 7 0-127 0-helixlimit J30 ± 15%

m 6 0-63 0-35

+1o

z \ 7 0-127 1-127 Z10 — 'I

These design variables fall into two categories: x ,, x2, <j>d , p jP and f3 are continuous,

and m , a , hap and zx are discrete. For those continuous variables, the encoding value

can be directly mapped into the real value by the following formula:

n i r i> «. Upper lim it-Lower limit _ .. ,Real value -L ow er limit 4 x Encoding value
Maximum encoding value

For those discrete variables, the encoding information refers to a list of pre-defmed

values from a standard list. The encoding value represents a position in the pre-defmed

list, and the real value of the variable is retrieved from that position in the pre-defined

list.

With regard to the discrete variables m , a and h , there are redundant places in the

pre-defined list. The gene length of m is 6, hence the maximum places in the pre­

96

Chapter 5 Gear Design Optimisation using Genetic Algorithms

defined list for m is 64 (0-63). The total number of standard value of m is 35 and that

means there are 29 redundant places in the list. These redundant places cannot be

empty, because for each encoding value, there must be a real value in the

corresponding place of the list. To tackle this problem, some more widely used

standard values are used to fulfil these redundant places, so that these values have a

higher probability of being used. This method is also used for a and hap.

With regard to the discrete variable zx, the real value of z, can be calculated by the

same formula as the continuous variables. The tooth number z] must be an integer,

and thus the result of the calculation must be rounded.

5 .3 .3 .2 C + + B i t s - f i e l d S t r u c t u r e f o r C h r o m o s o m e E n c o d i n g
In this gear design optimisation program, the number of chromosomes is set by the

population, which ranges from 100 to 10000, while the generation, another variable

used to control the process of evolution, sometimes can reach a very large number, e.g.

10000 or even more. During each generation, every chromosome in the population

must be the encoded and decoded, which means a substantial amount of computation is

involved especially when the population and generation are in their upper limit.

Therefore, the design of the program data structure of a chromosome has a vital effect

to the execution efficiency of the program.

Normally, each bit in the binary string is expressed as an integer, and the whole

chromosome is expressed as an integer array in the C++ program. So, for the 45-bit

chromosome, an integer array with 45 elements is used to express one chromosome.

Assume the short integer is used and each integer is two bytes long, the whole

chromosome needs 90 bytes of computer memory. When the population is big enough,

the computer memory used for the chromosome is considerable.

The memory problem is not the only problem of this approach. Another problem of

this approach is the computing speed. To decode a variable value form the

97

Chapter 5 Gear Design Optimisation using Genetic Algorithms

chromosome, the program must loop through all those binary bits in a corresponding

gene and do several multiplying mathematic calculations.

To overcome the memory and computing speed problems mentioned above, in this

study, a built-in C/C++ feature, called a bit field structure, is used to allow program

access with a single bit of a chromosome. Every digit in a genotype can be represented

by a binary bit instead of two bytes. So for the 45-bit chromosome, only three bytes,

which include 48 binary bits, rather than 90 bytes are needed. The definition o f the bit

field structure is as below:

typedef struct tagGeneFields

{

//First 16 Bits

unsigned short XI : GENESIZE_Xl;//6

unsigned short X2 : GENESIZE_X2;//6

unsigned short PHID : GENESIZE_PHID; //4

//Second 16 Bits

unsigned short HAP : GENESIZE_HAP;//2

unsigned short RHO : GENESIZE_RHO;//4

unsigned short ALPHA : GENESIZE_ALPHA;//3

unsigned short BETA : GENE SIZE JBETA;//7

//Remain 13 Bits

unsigned short MODULE : GENESIZE_MODULE;//6

unsigned short Z1 : GENESIZE_Zl;//7

} GENE_FIELDS

This bit field structure is used in the following template class definition (because the

definition is veiy long, most of the program lines are ignored):

template <size__t _N> class mybitset {

typedef unsigned long _Ty;

public:

Chapter 5 Gear Design Optimisation using Genetic Algorithms

public:

enum {_Nb = 8 * sizeof (_Ty),

_Nw = _N —= 0 ? 0 : (_N - 1) / _Nb};

union {

_Ty _A{_Nw+ 1];

GENE_FIELDS GeneFields;

};
private:

};

In this template class definition, a union has been used in above template class

definition. A union is a memory location that is shared by two or more different

variables, generally of different types. In above list, the bit field variable GeneFileds

shares the same memory with the unsigned long integer variable _A. The variable _A

provides the storage places for the chromosome, while the variable GeneFields provide

a convenient way to retrieve the encoding value from every gene.

This template class has an argument _N, which means that the template class describes

an object that stores a sequence of _N bits. In this gear design application, the

chromosome length is 45, so the chromosome is defined in the program using the

template class by following C++ statements (In the actual C++ program, these

statements are not adjacent):

const CHROMOLENGTH = 45;

typedef mybitset<CHROMOLENGTH> CHROMO;

chromo = new CHROMO [Population];

In this way, retrieving the genotype value of all the nine gear design variables is

straightforward as shown below:

int TempVal;

99

Chapter 5 Gear Design Optimisation using Genetic Algorithms

CHROMO* chromo 1;

TempVal = chromo l->GeneFields.MODULE;

TempVal = chromo l->GeneFields.Zl(;

TempVal = chromo l->GeneFields. ALPHA;

TempVal = chromo 1 ->GeneFields.HAP\

TempVal = chromo l->GeneFields .XI;

TempVal = chromo l->GeneFields.X2;

TempVal = chromo l->GeneFields.BEATA;

TempVal = chro]mol->GeneFields.RHO;

TempVal = chromo 1 ->GeneF ields .PHID;

Using this bit field structure for the definition of chromosomes, not only the memory

storage is saved and the execution speed is improved, but also the program source code

is more concise.

5.3.4 Variable Dimensional Problems
In the usual optimisation task a fixed number of variables corresponds to the number

of degrees of freedom of the system modelled by the objective fimction, i.e., the model

is fixed with respect to the structure of the problem. In practical application, however,

some of parameters are sometimes given, so their values remain constant during the

evolution of genetic algorithm, which means they are not variables any more. In other

words, the variable dimension of the application has been changed. This kind of

application is called variable dimensional application.

/I
For the gear optimisation application, it is not always necessary to select all of the 9

variables at the same time, and therefore, this gear optimisation application is a typical

variable dimensional application.

The most common way to tackle this variable dimensional problem is using a fixed set

of genes which is combined to form a nine-gene genome, as shown in Table 5.2. Even

though hap, a and m are unselected, i.e. they have fixed values, it is the whole

chromosome of 9 gene segments rather than part of them that undertakes the

100

Chapter 5 Gear Design Optimisation using Genetic Algorithms

evolutionary operations. The corresponding genes of the unselected variables are

involved in the evolution, but their values are still kept at the given values in decoding,

instead of being mapped from the genome undertaken evolutionary operations. That

may causes redundant gene segments and mapping deceiving.

Table 5.2 A chromosome with all 9 gene segments

Design variable X, x 2 <!>d K = 1 £l6 a - 20 P m = 5

Number of bits 6 bits 6 bits 4 bits 2 bits 4 bits 3 bits 7 bits 6 bits 7 bits

Position of bits 0-5 6-11 12-15 16-17 18-21 22-24 25-31 32-37 38-44

In order to resolve this redundant gene segments and mapping deceiving problem, this

study puts forward a new concept of dynamic and variable length chromosome. This

dynamic chromosome only consists of the gene segments of the selected design

variables. For those unselected design variables, their corresponding gene segments

will not be included in the dynamic chromosome and, consequently, these gene

segments will not be involved in the evolution process. In this way, the redundant gene

segments and mapping deceiving problem can be overcome.

As described in Section 5.3.3.1, a chromosome is defined by a template class, which is

impossible to be defined dynamically. Therefore, the definition of the chromosome

remains unchanged in this approach. The dynamic chromosome is implemented by

using a dynamically created mapping array. The length of the mapping array is equal

to the sum of bits number o f all selected gene segments. Also the value of each array

element is a record of an available bit position. For example, for the chromosome

shown in Table 5.2, x ,, x2, <j)d, p jP, /3 andz, are selected variables, and the sum of

bits number is 34. The available bit positions are: 0-16, 18-21, 25-31 and 38-44.

Therefore, the mapping array is an integral array of 34 elements. The content of the

mapping array and its relation to the chromosome is shown in Table 5.3.

At the beginning of the program, the dynamic integral array is created according to a

user’s variable selection. During the evolution, the program will loop through this

mapping array to map the operations to the correct bit position of the chromosome.

101

Chapter 5 Gear Design Optimisation using Genetic Algorithms

Table 5.3 Dynamic mapping array and its values

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18
Index 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Value 19 20 21 25 26 27 28 29 30 31 38 39 40 41 42 43 44

The dynamic mapping array m_ActiveGene.Array[J is defined as a class member

variable and initialised inside the optimisation_setup() friction as follows:

void CGearOpt: :optimisation_setup()

{

// Build up m_ActiveGeneArray to map active genes

pos = 0;

for(n = 0; n < NUMGENES; n++)

{
if(Gene[n] ==1)

{
for(i = 0, j = GenePositionArray[n]; i < GeneSizeArray[n]; i++, j++)

m_ActiveGene Array [pos++] = j ;

}
}
m_ActiveGeneSize = pos;

}

The variable m_ActiveGeneSize represents the length of the dynamic mapping array,

which is used for loop control during the evolution operations. The following listing is

part of the C++ programs for mutation operation, which explains how to use the

mapping array in the evolution operations:

void CGearOpt: :mutation(int tier)

{

do

{

102

Chapter 5 Gear Design Optimisation using Genetic Algorithms

MutBit = int(rand() * m_ActiveGeneSize / ANDM AX);

TotRand += MutBit;

if (TotRand < m_ActiveGeneSize)

chromo 1 ->flip(m_ActiveGeneArray [TotRand]);

}
while (TotRand < m_ActiveGeneSize);

}

5.4 Multiple Objective Optimisation

5.4.1 Definition of Multiple Objective Optimisation
Most realistic optimisation problems, particularly those in design, require the

simultaneous optimisation of more than one objective function. For example, gear

design requires simultaneous optimisation of minimum weight and maximum strength.

In the multiple objective cases, it is unlikely that the different objectives would be

optimised by the same alternative parameter choices. Hence, some trade-off between

the criteria is needed to ensure a satisfactory design. This kind of optimisation is the

so-called multiple objective optimisation.

As described in [100], a general constrained multiple objective optimisation problem

can be defined as in equation (5-32)

Minimise F { X) = {/, (X) (X)... . , /„, (X)} (5-32)

Subject to X e D

D = { X : g j (X) < 0, j = hk(X) = 0, £ = l , . . . , jQ

where X is an n x 1 variable vector, F{X) is an w x 1 vector o f objectives that are at

least partly conflicting, gj (A) is the j - th inequality constraint and hk (X) is the

k - th equality constraint. The set of design vectors that satisfies both equality and

inequality constraints constitutes the feasible domain D .

103

Chapter 5 Gear Design Optimisation using Genetic Algorithms

Mathematically, a design solution X* e D is said to be Pareto optimal if there does

not exist another solution X e D such that f , (X) < f f (X*) for all / = 1, ... , m with

strict inequality for at least one i . Any other feasible solution X e D with

^ f j {X) for all / = 1, . . . , m, is an inferior solution, also known as efficient, non­

dominated solution. Multi-objective optimisations are actually to retrieve rational

solution in multiple Pareto solutions, i.e. inferior solutions.

In this gear design application, X represents for a 9 x 1 vector consisting of 9 design

variables as described in Section 5.2.2.1. F (X) is a 6x1 vector consisting of 6

optimisation objectives as shown in equation (5-l)-(5-6). D represents the feasible

domain which satisfies all constraints defined by equation (5-6)-(5-31).

5.4.2 The Weighted Sum Solution

5 .4 .2 .1 T h e W e i g h t e d S u m A p p r o a c h .

Decision makers in gear design are faced with a multiple objective optimisation

problem when considering different and often-conflicting groups of interests and their

demand for resources. When GAs is applied to single objective problems, the function

value is used directly to determine the quality of individuals. However, in multiple

objective problems, the quality comparison between different candidate solutions is

not that simple. In implementing GAs for multiple objective problems, one must

decide on how to assign fitness to the individuals (based on multiple function values)

and how to maintain diversity in the population to avoid premature stagnation.

In this study, the weighted sum approach is utilised to turn the multiple objective

problem into a single scalar objective problem, whose solution is a Pareto optimal

point for original multiple objective optimisation, by using a weighted sum of the

different objective functions. According to weighted-sum-based optimisation, the

fitness for this problem is transferred into a scalar function through the equation (5-33):

F (X) = f i w ,fM (.X) (5-33)
/=1

104

Chapter 5 Gear Design Optimisation using Genetic Algorithms

where f scakd̂ is objective f . normalised to [0,1] by equation (5-34) and W = (w,.)f=]5

is the weights vector where the sum of the weights equals 1. It is easy to prove that the

minimiser of this combined fitness function using the weighting sum approach is

Pareto optimal [100].

A major difficulty lies in the setting of the weights in terms of the relative importance

of the objectives especially where results are particularly sensitive to the weighting

ratio. Another task for obtaining the fitness is to determine the maximum and

minimum to normalise the individual objective fitness values. Since the maximum and

minimum are not known beforehand, both are determined at each generation and

varied during the implementation of the algorithm.

In addition to the weighted approach, other techniques such as Homotopy techniques,

Goal programming, Normal-boundary intersection and multilevel programming have

been developed for the multiple objective optimisation [104].

5 .4 .2 .2 F i t n e s s N o r m a l i s a t i o n
In order to calculate each normalised objective function value in equation (5-33), f good

and f bad are used to scale the objective functions, as shown in equation (5-34) to unify

the maximising and minimising problem into a common formula. Therefore all

objectives are of the same order of magnitude and also convert the problem to a

maximisation type.

f — (f ~ f b a d) (S -3 4 4
J scaled ~ f \ ̂ J

\ J good J bud)

If an objective is to be maximised (minimised), then f good would be greater (smaller)

than f had. Therefore the scaled objective function values (f scakd) lie in a range of [0, 1],

and the greater the value of the scaled objective function, the better the solution is.

This function is applied in conjunction with the deviation in fitness, thus providing

greater resolution to the selection roulette wheel. The effect o f this is to define a

105

Chapter 5 Gear Design Optimisation using Genetic Algorithms

noticeable ranking order without encouraging super convergence, caused by

excessively biased scaling of fit genomes.

5 .4 .2 .3 M u l t i p l e O b j e c t i v e O p t i m i s a t i o n R e s u l t s o f G e a r D e s i g n
How to choose appropriate weighting factors depends on the users’ design purpose. In

the gear design application, for example, when both the centre distance and the contact

stress are used as optimisation objectives, the weighting factor for the centre distance

and the contact stress depends on importance of space size and strength. If the space

size is more important than strength, than the centre distance should have a greater

weighting factor, and vice versa. But normally a trade-off has to be done between them

when both are taken into account for the design purpose.

The overall Pareto solutions for the centre distance and the contact stress are obtained

by changing the two weighting values, as shown in Figure 5.3. When the weighting

value for centre distance is set 100 percent and the one for contract stress is 0 percent,

the centre distance, as the main objective, reaches its minimum mean while the actual

contact stress reaches its maximum, and vice versa. In order to consider both the two

controversial objectives, a trade-off point between the two extreme situations could be

achieved, hence the designer can choose an appropriate one out of these solutions.

p ro *

AddMod2 ContactRai T e m p R a tio PerContl
1210.54

PerC ont2
1315.81

ActCont2:tCont'

1 Bi6pa

PerBendl

Actual Contact Stress (N/mm2)
BOO

1400
1 20 0

non

925 215
933.914
966 989
952.571
97/.077
978.559
931 446
910 705

979.556
919.776

5^ 1099 9 1247 5 3 : 1
■ m M H I

Centre Distance (N/mm2)

Figure 5.3 Pareto solutions o f centre distance and actual contact stress

106

Chapter 5 Gear Design Optimisation using Genetic Algorithms

Each point in the front graphics represents a pair of values of centre distance and

contact stress, and the corresponding design solution parameters are recorded in the

Excel sheet.

Likewise, changing the weighting values of the actual contact stress and actual pinion

bending stress yields the entire Pareto solutions of actual contact stress and actual

pinion bending stress, as shown in Figure 5.4. In this case, minimising the bending

stress difference between pinion and wheel is also used as a design objective and its

weighting value is set to 100 percent and kept constant.

C o n ta c tR a
2 .61 9 1 0

C en treD istiT em pR atio jP erC on tl
3301 51 1014 32

P e rC o n l2
1102 .52

;A ctC ont2 I
' 296 799

292 905
I 2 92 6 35

P e rB a n d l
; 9 1 1 .3 2 5 j

9 1 3 0 6 8
I 9 1 2 7 8 9

Actual Bending Stress

w~w

Actual Contact Stress

Figure 5.4 Pareto solutions o f actual contact stress and actual pinion bending stress

The Pareto solutions as shown in Figures 5.3 and 5.4 help designers to choose a final

solution from a wide range of feasible solution collections.

5.5 Variable Penalty
Gear design involves many design constraints problems from different domains. In this

study, a variable penalty approach for dealing with the constraint violation is

investigated and presented in this section.

It was found that tuning of the penalty function dramatically affected the process of

convergence and the quality of the result [103]. If a set of penalties is too harsh, then

the few solutions that do not violate constraints will quickly dominate the mating pool

107

Chapter 5 Gear Design Optimisation using Genetic Algorithms

and yield sub-optimal solutions. A penalty that is too lenient can allow infeasible

solutions to flourish as they can have higher fitness values than feasible solutions.

Often, the algorithm must be rerun several times before a combination of penalties is

found that allows infeasible solutions to die and feasible solutions to flourish. The

main difficulty in applying penalty functions is that they are problem dependent.

In this study the idea of Simulated Annealing [105] is employed to construct a variable

penalty function that is tuned during the genetic algorithm process [100], In the early

stages of the algorithm, infeasible solution kept in the population can be important to

the genetic process as an aid to searching for the globally optimal solution. Since the

cooling temperature function attenuates during a given run, so the penalty gets

gradually harsher to make it possible to finally come closer to the global feasible

solution. On the other hand, the penalty values are not related to the weighting of each

constraint factor, even though they are related to the amount of each constraint

violation and time of the convergence process.

5.5.1 The Variable Penalty Function
In the proposed approach, the simulated annealing idea is employed to cope with

constraints to provide a variable fitness function, which is related to the constraints at

hand and the temperature schedule used in simulated annealing algorithms. The

variable fitness function is calculated in equation (5-35).

t) = a{M, T)F(X) (5-35)

The final fitness function equals the product of F (X) and F(X)

denotes the normalised objectives (as elucidated in detail in (5-32) - (5-34) in Section

5.4), to be maximised, which must have a positive (or zero) value throughout its

domain. a (M , T) is the attenuation factor, which depends on two parameters, M and

T . M (M > 0) is the measure of constraint violation and equals zero in the case of no

constraint violation. T is the temperature schedule parameter, which is a function of the

running time o f the algorithm, and the initial temperature parameter. The following

function has been chosen for the attenuation factor since it has the required properties.

a (M , T) - Qxp(-M/T) (5-36)

108

Chapter 5 Gear Design Optimisation using Genetic Algorithms

As execution proceeds, T tends to 0 (or small values), and then a tends to 0 as well

and hence, by equation (5-35), the fitness tends to zero too. This means that the

individual is penalised harshly and should be excluded from the populations at the end

of a run. In contrast, at the beginning of the algorithm, T is large and a «1 in order to

make the penalty of constraint violation less harsh and utilise infeasible states as

needed to find the global maximum. The calculation of T is presented in Section 5.5.2,

and M in Section 5.5.3.

5.5.2 The Temperature Schedule for Variable Penalty
T(t) , used for calculating the attenuation factor, denotes the cooling schedule from

high temperature to lower temperature at a time t (a generation). It can be described in

one o f the following ways:

where T0 is the initial iteration temperature.

For these three schedules, T = T0 /log(/ + l) is most generally used.

5.5.3 Constraint Calculation
In this application, the value for the amount of constraint violation is calculated by the

following equation:

where g JJt is the /-th inequality constraint value given by equation (5-7) - (5-22) for

the /-th individual, and hk j is the k-th equality constraint value for the /-th individual.

M is one of the two parameters used for the attenuation factor calculation in equation

7X0 = r„/log(; + l)

m = T 0/{t+1) (5-38)

(5-37)

m = T0 / y [f c I) (5-39)

j K

popsize ,/ popsize K
(5-40)

(5-36).

109

Chapter 5 Gear Design Optimisation using Genetic Algorithms

The initial estimate for the temperature parameter T , i.e. T0, depends on the actual

application being considered and is determined by trial and error. As a rule of thumb,

the starting temperature can be estimated to be the same value as the mean constraint

violation M .

5.5.4 Instances of Calculation and Results Analysis
Many instances of optimisation utilising this variable penalty approach are illustrated

in this section. The results of these instances are used not only to verify the

performance of variable penalty approach, but also to analyse the influence of the

temperature schedule and the initial temperature.

The temperature schedule and the initial temperature parameter, in the above-presented

variable penalty function, have a crucial influence on the optimisation process and the

results. How to select effective temperature schedule and initial temperature parameter

is a key technique to the variable penalty approach. The analysis of the results in this

section is helpful for a user to make a correct choice.

All o f the results in this section are based on the following gear design specifications:

Power lOOkW, speed 960 rpm, speed ratio 5, maximal helix angle 35°, gear hardness

825 HV. The algorithm running parameters were: Population 2000, crossover rate 0.8,

and mutation rate 0.05

5 .5 .4 .1 E f f e c t i v e n e s s o f V a r i a b l e P e n a l t y A p p r o a c h

To verify the effectiveness of variable penalty approach, the convergence profiles of

10 optimisation instances are demonstrated in Figure 5.5. The conditions of this

experiment are list below:

• Temperature schedule: T(t) = T0/ log(t + 1)

• Initial temperature: TQ = M

• Objective: Centre distance

110

Chapter 5 Gear Design Optimisation using Genetic Algorithms

7 0 0 -

6 0 0 -

<DO 500-

H3<D
<DU

40 0 -

3 0 0 -

2 0 0 -

246.224 (Non variable penalty1 0 0 -

500 1000 1500 2000 2500

Generati

Figure 5.5 Variation o f the calculated centre distance with generation, ten runs

The centre distances calculated from 10 runs are: 246.336, 246.336, 246.224, 246.336,

261.396, 293.725, 221.626, 246.329, 246.336, 246.324. These results are compared

with the value 246.224 calculated, for the same example, by using a conventional non

variable penalty approach, where the constraints are handled according to the formulas

given above, but with a constant weighting factor for each constraint. Seven of them

are closely similar to the value determined from the non variable penalty approach,

which is represented by the dashed line.

Figure 5.6 is an enlarged portion of the first experiment, which shows that a reasonably

close estimate to the optimum value is obtained in just under 100 generations, and that

there is no further change in the estimated value after about 150 generations.

800n

T(t) = ro /log(? + l), T0=M
O' G00-
O 500-<DO
§ 400-

. c o

^ 300-<D
§
3 2 0 0 - u 246.336

246.224 (Non variable penalty result)
1 0 0 -

a 50 100 150 200 250

Generation

Figure 5.6 Variation o f the calculated centre distance with generation, one run

111

Chapter 5 Gear Design Optimisation using Genetic Algorithms

5 .S .4 .2 E f f e c t o f T e m p e r a t u r e S c h e d u l e
The influence o f different temperature cooling schedules has also been investigated.

The most common alternatives from the literature, equations (5-37) and (5-38), have

been used for investigation. M , which is automatically calculated by program to every

generation, is still used as the estimate for T0. Figure 5.7 shows the convergence

profile for the centre distance using (5-38). It can be seen that convergence occurred

more quickly than with equation (5-37), comparing with Figure 5.6. The average value

o fM for 10 runs was 48.23, and the average centre distance was 273.272.

000-|

700

r - s BOO

j [BOO
4)o
g 400-

Ĵ
 300-(1)

BS 200o
100

0-

r (o = r 0/(?+ i), t0 = m

273.272

246.224 (Non variable penalty result)

BO 100 150 200 250
Generation

Figure 5.7 Effect o f varying the function for the cooling schedule

5 .5 .4 .3 E f f e c t o f I n i t i a l T e m p e r a t u r e P a r a m e t e r

To verify the effect of the initial temperature parameter, the alternative approach of

setting a fixed value for T0 has also been studied. The temperature schedule function

used for this study is still T(t) = T0 /(t + 1), i.e. the same as the function used in Figure

5.7, but the initial temperature parameter T0 is no longer M . Several values have been

tested for T0, and the results are used for comparison in Figure 5.7. For T0 = 100, there

was no significant difference, but setting TQ =1000, the convergence value for the

centre distance is lower than for the previous two cases, and closer to the non variable

penalty result, as shown in Figure 5.8. There is no further improvement in the optimal

estimate for the centre distance on setting T0 - 10000 .

112

Chapter 5 Gear Design Optimisation using Genetic Algorithms

BOO-i
T(t) = T0/(t + 1), r 0 = io o o700-

w 500-<uo

246.336

246.224 (Non variable penalty result)
1 0 0 -

150 200100
Generation

Figure 5.8 Effect o f varying the initial temperature parameter

It can be seen that the results obtained using equation (5-37) were similar to those for

(5-38). It would appear therefore that it is better to manually adjust the value for T0,

using the value of M as the initial estimate.

5 . 5 .4 . 4 E f f e c t o f F i x e d T e m p e r a t u r e

As a further test of the effectiveness of using equations (5-37) - (5-39) to adjust the

cooling schedule, some results were obtained with constant values for T of 100, 500

and 1000. Figure 5.9 shows the resultant profiles. It can be seen that using T = 100,

gives the most rapid convergence to a stable constant value, which is also close to the

non variable penalty result. However, in this case the converged values for the centre

distance are much more strongly dependent on the selected value of T than those

obtained using any of the time dependent estimates for T, i.e. equations (5-37) - (5-39).

Thus, in this case it is preferable to use any of these schedules, rather than using an

arbitrary fixed value for T, which may produce inappropriate results.

113

Chapter 5 Gear Design Optimisation using Genetic Algorithms

OQO-i

G00- 464.434
OU
|

500-

<D
I<UU

300-

200-
246.224 (Non variable penalty result)

1 0 0 -

100 150 200 250

Generation

<D
CJ 500-

I 346.2985
•3(D
Io 2 0 0 -

246.224 (Non variable penalty result)1 0 0 -

50 100 1.50 200

Generation
800-,

aa,
(DO

600-

500-

4-»

*■3

1Ch(UU

400-

246.325

2 0 0 -

246.224 (Non variable penalty result)
1 0 0 -

100 150 200 250

Generation

Figure 5.9 Effect o f using a fixed temperature on the convergence process

5 . 5 .4 . 5 C a s c a d e d S t r u c t u r e

The effects associated with using the two tier cascaded structure, rather than just a

single tier, are considered in this section. Taking the results obtained at the first stage

as the warm value for the second stage, a narrower area around the warm value is

searched in order to obtain a more precise solution. Figure 5.10 shows examples of the

114

Chapter 5 Gear Design Optimisation using Genetic Algorithms

results obtained using this approach. It was found that the cascaded method gave more

precise results, with very few exceptional instances.

flOQ-j

?och

ono<
| son-
o
o aOD-

.a aop*rXD<D
<u
U IP*

i0*>

T (0 = r„ /log(/ + l),

246.224 (Non variable penalty result)

. 246.336

itxxm

lad isaa

202.059

Generation

Figure 5.10 Convergence process for two tiers cascaded structure

The results from the cascade structure GA and variable penalty method are compared

with that from non cascade structure GA and non variable penalty method, as listed in

Table 5.4. In this case a cascade structure GA, with T ~ T Q / log(f + l), T0 = M , and

two tiers were implemented. It was found that the results for the centre distance are

improved because of the cascade structure.

Table 5.4 Result comparison o f cascade and non cascade structure

Results Non cascade structure and
non variable penalty

Cascade structure and variable penalty
First tier Second tier

a (mm) 246.224 246.336 202.059

<f>d 1.399 1.399 1.099

m(mm) 2.5 2.5 2.5

K 1.25 1.25 1.25

a(Deg.) 20 22.5 22.5

P(Deg.) 4.271 4.166 3.419

Pi? 0.2596 0.3496 0.3496

x} (mm) 0.238 0.224 0.119

x 2 (mm) -1 -0.936 -0.436

33 33 27

115

Chapter 5 Gear Design Optimisation using Genetic Algorithms

B (mm) 115.739 115.723 74.3148

£ 3.27464 3.09328 2.5638

A ct, (%) 0.06 5.507 0.034

AS r (%) 0.17094 0.001185 0.612393

5.6 Summary
An optimiser is designed to help a designer to perform multiple objective design

optimisation based on the distributed system described in Chapter 5. This chapter

presents the key issues for designing the optimises

First of all, the gear design optimisation model, which includes 9 design variables, 6

design objectives, and 25 design constraints, is defined based on addendum

modification design. To help with the understanding and implementation of this model,

basic concepts and general knowledge about addendum modification in gear design is

introduced briefly.

Next, the genetic algorithm implementation utilised for gear design optimisation is

described. The basic concept of a genetic algorithm, i.e. the general procedure of

genetic algorithms and operations on chromosomes, is introduced. In order to improve

the performance of traditional genetic algorithms, some innovative approaches,

including cascade structure, bit field representation of a chromosome, and dynamic

mapping method of variable dimension problem, are fulfilled. The cascaded structure

with two tiers is used for the whole optimising process to obtain higher efficiency of

optimisation and more precise results. The C++ Bit field structure in conjunction with

union data type is used to provide a highly efficient data structure for chromosome

representation, which simplifies the transformation calculation between binary data

and encoding value so that the running efficiency of the program is greatly improved.

A dynamic mapping array is created to obtain the dynamic combination of genes

according to a user’s variable dimension requirements.

Furthermore, multiple-objective optimisation is studied and the weighted sum solution

is given. Changing the weighting factors is employed to obtain the entire collection of

116

Chapter 5 Gear Design Optimisation using Genetic Algorithms

solution for a user to select a final solution from a wider region. The methods of j

choosing appropriate weighting factors are discussed and, the gear optimisation results

obtained by applying these methods are illustrated. $

Finally, a variable penalty function based on a simulated annealing algorithm is 4

constructed to deal with the constraints, which provides another approach to tune the

process parameters of convergence instead of tuning the penalty function weighting

coefficients. Many instances of optimisation utilising this variable penalty approach
■it

are illustrated and the results of these instances are used to verify the performance of

variable penalty approach and analyse the influence of the temperature schedule and 4

the initial temperature parameter. i

■£,

J

117

Chapter 6 Remote Invocation o f Single Large Size o f Program

Chapter 6 Remote Invocation of Single Large

Size of Program

6.1 Introduction
In the engineering design domain, there are many large-size computing programs.

Most of these computing applications deal with much parameter input and output data,

and have time-consuming execution. For these programs, basically it is ideal to be

located and executed on the owner’s computer with response to the client request to

make sure thin-client requirement. More importantly, such time-consuming programs

should not be interrupted during their execution. Furthermore, in a collaborative

environment, it is probably better to make such a large-scale and time-consuming

program to be invocated singularly, otherwise the collaboration with other partners

may mean waiting for too long a time to retrieve the results.

Therefore a Web-based system should be designed to support singular large-scale

program execution without interruption due to network comiection, and to provide an

interface for a user to do convenient parameter input and result visualisation.

The typical application style for this problem is to let a Web server process the user

input, run the program and serve dynamic contents in response to client requests. In

order to do this several methods have been devised such as Common Gateway

Interface (CGI) and Java Servlet. CGI programs can be written with different

languages such as C/C++ or Perl, while the Java Servlet is written in the Java language

only.

The speed problem caused by the CGI itself, however, has been explored and has

affected the package’s utilisation for multiple users. In order to resolve the problem,

118

Chapter 6 Remote Invocation o f Single Large Size o f Program

another technology for Web server extension, Java Servlets, is chosen as a solution and

implemented in this PhD project. Java Servlets are used not only to improve the

performance in the multi-user situation, but also to provide a greater capability when

combined further with CORBA.

A servlet is a small piece of Java code that a Web server loads to handle client requests.

It is a platform independent Java sever-side module that fit seamlessly into a Web

server framework and can be used to extend the functionalities of a Web server.

Servlets receive a request from a client, dynamically generate the response, and then

send the response containing an HTML or XML document to the client. This provides

more forms of dynamic computing results to the client request. Servlets provide a

component-based, platform-independent method for building Web-based applications,

without the performance limitations of CGI programs. Servlets have access to the

entire family of Java APIs, including the JDBC API to access enterprise databases,

which simplify rapid application development. Therefore Servlets are ideal to provide

server-side services such as accepting data from users, writing data to or retrieving

from databases, and returning data in dynamic pages.

Applets are client-side of Java code that can be inserted in a HTML page. They are

downloaded along with Web pages on a client machine. Applets are used in this

application in combination with Servlets, in order to provide graphical resultant data.

Servlets can also use CORBA to access an application server and further invoke an

application object that is located on the same machine with few possibilities to

interrupt. Programs ported on a Web server might be written in different languages

and therefore CORBA can be used to establish a bridge between Servlets and

application programs.

From the above description it can be inferred that Applets, Servlets and CORBA. are

used in the remote execution of a single large size program. A Servlet makes it

possible to change the front end for the application entirely to HTML and thus it can

be used for sending and retrieving complex data. The large size of program might be a

119

Chapter 6 Remote Invocation o f Single Large Size o f Program

non-Java application and then CORBA is the most effective mechanism to establish

the communication between a Web server and application server. Applets are used for

demonstrating the resultant data in graphics. To design such a system, a Web server-

centralised model can be considered to construct the architecture, as described in

Chapter 3.

In this chapter, the process for implementation of the Web-based design system using

Java Applets, Java Servlets and CORBA is described. The utilisation of other relevant

techniques such as HTML, JavaScript, Web server and protocol are also presented. In

addition, an example is provided to demonstrate how these techniques are applied in

this application.

6.2 Internet Solution for Executing a Singular Large

Program

6.2.1 Standalone Design Application Package
The package is used to optimise the design of external spur and helical gears with

involute tooth profile. The original gear design software was developed in Visual

BASIC and C++. It is a Windows platform specific executable program and consists of

the following two parts:

• A friendly graphical user interface (GUI)

• An algorithm program

The GUI was developed using Visual BASIC while the algorithm program was written

in C++. The GUI is used for design data input, setting-up optimisation specifications

(goals, weight factors, population size and number of tests), and displaying the results.

The algorithm program conducts the design optimisation. Both of parts are fully

integrated into a single software enviromnent.

Up to nine gear design parameters can be optimised, including tooth face width,

module, pressure angle, helix angle, rack tip radius, addendum coefficient, two

addendum modification (tooth profile shift) coefficients, and number of pinion teeth.

120

Chapter 6 Remote Invocation o f Single Large Size o f Program

There are six optimisation objectives including minimizing face width, minimizing

centre distance, reducing the difference in tooth root bending stresses between the

pinion and wheel, reducing the difference in tooth tip specific sliding ratio between the

pinion and wheel, minimizing bending stress at the tooth root and minimizing contact

stress at the pitch circle.

Some constraints from motion requirement, manufacturing limitations and cost

consideration are considered during the optimisation, including that the maximum

tooth root bending stress cannot exceed the allowable stress, tooth contact stresses

cannot exceed the allowable stress, the sliding/rolling speed ratio cannot exceed 3, and

so on.

The execution structure of the software is shown in Figure 6.1. The GUI is used for the

user to input the necessary information including application conditions (power to be

transmitted, speed ratio, etc.), algorithm running parameters (individual number, test

number, etc.) and requirement parameters (quality, life, and so on). These values are

then written into the input files. The Visual BASIC program then calls the algorithm

program to perform the design optimisation. This first reads the data from the input

files and then starts the algorithm procedure, with searching, evolving and obtaining

rational solution out of the design space. After the execution is completed, the results

are written into output files, which are then displayed to the user.

Input files Output files

Algorithm ,__ ' f y "

Program J

Figure 6.1 Structure o f the original gear optimisation software

121

Chapter 6 Remote Invocation o f Single Large Size o f Program

The optimisation process may be time-consuming because the multiple parameter

design problem is computationally expensive. The time it takes to execute depends on

the given size of the population, the given number of tests and the selected number of

parameters to be optimised.

6.2.2 Internet Solution
The gear design optimisation could not be conducted on the Internet unless the

following problems have been resolved:

• How to remotely invocate a large sized software package over the Internet.

• How to pass the user’s inputs data to the executing package and to send the

results back to the user.

• How to allow multiple users to run the package at the same time.

• How to allow users to implement the invocation of software program from any

machine over the Internet.

In addition, the copyright and security problems for the package have to be considered.

To accomplish this, in this application, the combined module of Java Servlets, Java

Applets and CORBA is used as an alternative of the CGI. The complete structure of

the system is shown in Figure 6.2.

The gear optimisation package is located on the server side. A user on the client side

wishes to conduct gear design by invocating remote design resources. What the user

needs to do is only to interact with a Graphical User Interface (GUI) in a Web page

from a Web browser.

A registered user could access the main page for design, after authentification by

entering their username and password within a welcome page. The user could give all

the optimisation parameters through the interface in the HTML page. Then the

parameters are sent to the server which calls the server-side extension such as Servlets.

When the user clicks on the submission button, a Servlet program, which is located on

the server, is activated by the HTML code. It parses the data and writes them into the

122

Chapter 6 Remote Invocation o f Single Large Size o f Program

input files and invokes a C++ algorithm program located on the server through the

CORBA communication bridge. An applet along with a dynamic page downloaded on

the client side is for the user to view the execution progress of the algorithm program.

A flag data representing the status of program execution is produced by the program

and retrieved by the applet procedure that keeps updating the state of progress bar.

Therefore the user can view the execution progress state of the program. When the

execution is completed and output files are created, Servlets would pass the results

back to the client in the preferable form, in a data table in HTML file, graphics, excel

data or XML data.

Client
I HTTP
I

Server

(Start)I— Welcome Page Login — ► Login Servlet

user page

Input dataOptimisation
Main page Main Servlet

Return page

Input files

l 1CORBA ̂ ^ A lg o n th n T ^ N ,
Program J

Flag data sx

HTML pages Result Servlet 11
Applet Graphics

1
| Or Result Servlet 2

1 ° r Result Servlet 3

1 Or 1 Result Servlet 4

Output files

Figure 6.2 Hybrid architecture o f the system

The gear optimisation package resides and runs on the server machine. This is

considered to be a secure approach since the program is not downloaded to the user’s

machine and the client has no access to the source code. From the view of the user,

there is no special requirement except for a Java-enabled Web browser.

123

Chapter 6 Remote Invocation o f Single Large Size o f Program

The existing gear optimisation package is of large size, time-consuming and platform-

dependent. The execution of it on the server depends only on the power and platform

on the server-side, and is not relative to the client-side machine. On the other hand,

HTML pages and even Applet along with them are platform- and operating system-

independent. It is possible for users to run the package from any machine whether it is

of UNIX or Windows system over the Internet.

A HTML file, instead o f the Visual Basic program of the original optimisation package,

is used to pass the data from the client to the server which in turn invokes the servlet

programs to process them, to call the package and to send back the result to the user.

The utilisation of the servlet program improves the speed in response to the client

request, which will be further described in Section 6.3.2 in more detail.

The multi-thread feature of Servlets makes it possible to support multi-user requests at

the same time. In order to support this, the gear design optimisation program has been

modified. For example, a flag has been used as a symbol when the program is

completed and outputs the status information during the running of the package, in

order for the servlet programs to control it. User information, such as name and

address, has been used as the ruiming parameters in order for the servlets to manage

multiple users. Further details will be described in Section 6.3.

6.3 Development of the System

6.3.1 HTML File
The user interface is written in HTML, which is platform-independent and the codes

are interpreted locally, i.e., on the client’s machine. The interface of the original gear

optimisation software was created using Visual Basic and C++, which is platform-

dependent and hence is not suitable for the Internet application.

Another important function of the HTML is its features called form that makes it

possible to send information such as design parameters from the user to the server.

After the user inserted the data and pressed the submission button, all the data within

124

Chapter 6 Remote Invocation o f Single Large Size o f Program

the form will be transferred to servlets located in the server. The servlet programs then

perform the processing and send the results back in response to the user. The parameter

input form is shown in Figure 6.3.

Hrttofy

Population Sute f i t

N um ber ofT e*ts f ?

Initial D esign - Application
(I Introduction

Mpxmataon

Q ptifBMfe M aximum Helix
Angle

L oad Distribution
F acto r

Results

Figure 6.3 Parameter input form

JavaScript, included in the HTML, has been used to offer the HTML dynamical

behaviour. Because HTML documents are static and plain-text files, they do not have

the ability to perform any calculation or validity to check the data submitted to the

server. To make the Web page more dynamic and user-interactive and to perform the

data validation, JavaScript is used. JavaScript is a scripting language which can be

embedded into the HTML code in a text format and interpreted and run by the Web

browser whenever the user retrieves the Web page, and it does not need to be compiled

into program.

The main task of the JavaScript used in this project is to check the data before passing

them to the server. If there is an invalid data, i.e., any of the data being wrong, missing

or out of the permitted range, the JavaScript would prevent transfer of the data to the

server and display a message box informing the user what the error is. The JavaScript

code is embedded into the HTML document using the SCRIPT tag. The user name and

password have to be entered in the welcome page of the HTML file to be sent to the

login Servlet before data input.

125

Chapter 6 Remote Invocation o f Single Large Size o f Program

6.3.2 Servlets

6 .3 .2 .1 S e r v l e t V s C G I

CGI, the dominant interface for extending Web servers for years, is defined to allow

Web servers to process user input and serve dynamic contents, and to connect to the

external program. CGI programs can be developed in any script or programming

language, such as Perl, and C/C++. Because CGI support was built into every Web

server on the market, CGI was a popular choice for development tools and applications

that could add dynamic capabilities to a Web site. However CGI has drawbacks, which

have been experienced during this project. A new process needs to be created for each

request. This leads to performance problems at popular Web sites that handle requests

from multiple users. In addition, this package requires significant time for execution.

Java Servlets are small, platform-independent server-side programs that also extend the

dynamical function of the Web server. Servlets run on a Java-enabled Web server and

can provide the Web service in the module of request-response. Generally they could

implement the same functions as CGI, but they have their own properties. The main

property of Java Servlets is to improve the speed issues of CGI. Servlets solve the

performance problem by executing all requests as threads in one process. It starts a

new thread (rather than a new process) with each client request.

The so-called processes are different programs, such as Word and Excel, running in

the same computer system, which have different addresses and spaces. Context

switching between different processes and changing currently running process are

complicated. The communication between different processes is expensive and limited.

Even though many processes can be running simultaneously, only one process can be

communicated with.

A thread is a control stream with one order in a process, also called lightweight

process. Threads share the same address and space and construct one big process. The

communication between threads is simple and effective, and context switching is fast

and is part of the whole program. Threads could be executed separately. Running

several threads simultaneously in one process could be used to different tasks. Multiple

126

Chapter 6 Remote Invocation o f Single Large Size o f Program

threads provide the interactive power of the program, more GUI and more powerful

server functions.

The essential reason why the Java Servlets could have a better performance than CGI

is that Servlets are multithreaded and run within the process of the Servlet server. A

process context switch is not required to handle each Servlet request. When the first

time that a servlet is requested, it is loaded into the Web server’s memory space.

Subsequent client requests for the servlet result in calls to the servlet instance in

memory.

Servlets offer many other added benefits to the developer, including ease of

development, fast throughput and response, inter-server communications, and all of the

features inherent in Java.

6 .3 .2 .2 S e r v l e t R u n n i n g E n v i r o n m e n t
A Servlet is a Java class and therefore needs to be executed in a Java VM by a service

that is called a Servlet engine. The Servlet engine loads the Servlet class the first time

the Servlet is requested, or optionally when the Servlet engine is started. The Servlet

then stays loaded to handle multiple requests until it is explicitly unloaded or the

Servlet engine is shut down.

Getting the Servlet engine is either by obtaining a Servlet-enabled server, which has a

built-in Servlet engine, or by obtaining a Servlet engine add-on that will be added to a

common server. Some Web servers, such as Sun’s Java Web Server (JWS), W3C’s

Jigsaw and Gefion Software’s LiteWebServer (LWS) are implemented in Java and

have a built-in Servlet engine.

Other popular Web servers, such as Netscape’s Enterprise Server, Microsoft’s Internet

Information Server (IIS) and the Apache Group’s Apache, require a Servlet engine

add-on module. The add-on intercepts all requests for Servlets, executes them and

returns the response through the Web server to the client. Examples of Servlet engine

add-ons are Gefion Software’s WAICoolRunner, IBM’s WebSphere, Live Software’s

Jrun, New Atlanta’s ServletExec and Apache’s Tomcat.

127

Chapter 6 Remote Invocation o f Single Large Size o f Program

In this project Apache Tomcat is chosen as Servlet running environment. Apache

Tomcat is the Servlet container that is used in the official Reference Implementation

for the Java Servlet and JavaServer Pages technologies. The Java Servlet and Java

Server Pages specifications are developed by Sun under the Java Community Process

[http ://j akarta. apache. org/tomcat/].

All Servlet API classes used to create Servlets code and a simple Servlet-enabled Web

server are combined into the Java Servlet Development Kit (JSDK), available for

download at Sun’s official Servlet site.

6 .3 .2 .3 I m p l e m e n t a t i o n o f S e r v l e t s

Servlets are some Java classes located on the server and can accept the request in a

HTML file from a user. They retrieve the data in the format of a long string from the

form and subsequently process the data and send the results back to the user. The

following types of servlets are developed in this project:

• Login servlet is designed to check the user identity, including username and

password, to ensure that only a legal user is allowed to access the optimisation

package form the Web page.

• User management servlets are designed to maintain user information, and to

add or delete the user from the list of the registered users. If a user’s

registration has expired, the servlet will delete the user name automatically

from the list. This servlet is only accessible for a system administrator of the

server other than for users.

• Main servlet. The main tasks of the servlet are: (1) to accept the request

information by the specific protocol and to retrieve the data from the user, for

which the data is sent via the HTML form using the POST method and is

extracted using the getParameterQ method; (2) to execute some necessary pre­

processing calculations for the data using Java API; (3) to create input data files

for the gear design optimisation using File Writer and PrintWriter classes of

Java; (4) to run the optimisation program, using the CORBA communication

mechanism between Servlet client and program object, as described in detail in

128

Chapter 6 Remote Invocation o f Single Large Size o f Program

Section 6.4; (5) to return a HTML page with a progress bar showing the

optimisation progress, as shown in Figure 6.4. The progress bar is controlled by

a Java Applet program, which is inserted into the HTML page returned by the

servlet. It reads the status data produced by the optimisation program

dynamically and displays the graphical process stripe which shows the progress

of the execution.

mi iini' mil H m n iiiMMii i i n i in

Figure 6.4 Progress bar o f the remote program execution

http: 7/1 52 71 17 151 /jefvtet/GeafOptLognSefvW

O ptim um #

It is optimizing now. The time to perform the optimization varies and depends upon the
population size and the raabmer o f test tunes you selected I f you don't want lo wait few the
results, you can leave and shut down the internet connection

You can get the results by push the Results button on the left column now or later.

• Result servlets When the user presses the button Result on the left hand side of

the screen, if the optimisation program is not completed, then the progress bar

is displayed, otherwise the result page, as shown in Figure 6.5, will appear on

the user’s screen. The result servlets, linked to the buttons Result and

Comparision on the top, first read the results from the output files created by

the executing program, using FileReader and BufferedReader, conduct post­

processing calculation and then send the results directly back to the user, using

response.getWrite, or create result file in the HTML file using FileWriter and

PrintWriter. The Applet program, linked to the buttons Graphicsl and

Graphics2 on the top, is in charge of processing the data files and displaying

the result curve graphically to the client side, as shown in Figure 6.6. The detail

about the applet will be described in the next section.

129

Chapter 6 Remote Invocation o f Single Large Size o f Program

htlp://152 71.17.151 /*« vtel/G MrO ptLoginS wvlel

hubs! Resultant Difference

Tooth Creet Thicknets ■ Pinion |3 / 3t)u" J jb jO lt

Tooth Creet Thickness - Wheel (TaTbTt j<t 0513/

Figure 6.5 Text results shown by the result servlet

f - * *

w *— I c — — ■» I < -« ■ » « > ' J C M ^ e s t u |

m. a -t- a> m]

ra^—••!

OpttmlftHan of PwmiiMi

“ L L .Mm n m t V...........

” 7
Optinnl*«tton ef C*n*r» Dlrtanr*

A — —

tuned

M M n U C m k m m ft•

■ - i f c s E * i f ^ ^

* jm ii
il-ii

Figure 6.6 Graphical results shown by the result servlet

6.3.3 Applets

6 .3 .3 .1 F e a t u r e s o f A p p l e t s
An applet is a program written in the Java programming language that can be included

in a HTML page. They are defined in HTML language using the <applet> tag. When a

Java technology-enabled browser is used to load and view a HTML page that contains

an applet, the applet's code is transferred to the user’s system along with the HTML

page and executed by the browser's Java Virtual Machine (JVM).

130

Chapter 6 Remote Invocation o f Single Large Size o f Program

Since applets can be downloaded from any site on the World Wide Web and run on a

user’s system, some security issues have been taken into consideration. Some

restrictions have been implemented to prevent malicious applets that contain viruses or

Trojan horses, which can cause system damage. The restrictions on applets include the

following:

• Applets camiot read or write to the client’s file system, which means they

cannot delete files or test to see what programs have been installed on the hard

drive.

• Applets cannot run any programs on the client’s system.

• Applets cannot load programs native to the local platform, including shared

libraries such as Dynamic Link Libraries.

However, these restrictions do not limit the process. Applets are needed to

communicate with the server and to read the data files in the server. This is permissible,

since the files are located on the server where the applets have been downloaded from.

6 .3 .3 .2 D a t a R e t r i e v a l

All the data files that are produced by the optimisation program are saved 011 the server.

A Java applet running on the client’s machine needs to access these files either for the

progress bar or the graphs. The URL class has been used to encapsulate a uniform

resource locator. This allows the applet quickly and easily to access the file system on

the remote server. The URL class specifies the TCP/IP protocol to use either ‘http’ or

‘ftp’, the port number (usually 80 for the Web servers), and the exact location of the

remote object.

Relative URLs have been used rather than the hard coded URL address to locate the

output files on the server. By using the getDocumentBase() method of the URL class,

the file is searched for within the original location of the Web page that contained the

applet. This is very useful if for any reason the site needs to be moved, and then the

Java code will not need to be recompiled.

131

Chapter 6 Remote Invocation o f Single Large Size o f Program

6 .3 .3 .3 T h e P r o g r e s s B a r A p p l e t
The optimisation programs are mostly computationally expensive. The time taken to

perform the optimisation process varies and is dependent upon the population size and

the number of times that the process is to be repeated. The results will only be output

when the optimisation process is completed. In this situation, if for any reason the

connection is lost between the client and the server, it will not cause a problem, since

the program is running on the server independent of the client. A flag has been used to

check if the optimisation is completed.

In such an environment, it is necessary for the users to know the execution progress of

algorithm throughout the whole process. A graphical progress bar is used to achieve

this. It is designed to check the progress of the execution continuously and display the

progress graphically on a user’s screen. Java Applet has the capability of

accomplishing the desired task

A status data file is created by the optimisation package on the server. Data within this

file indicates the progress of the optimisation in converging on a solution. While the

optimisation program is being executed, the data within this file is continuously being

updated. The data is utilised along with the number of tests to estimate the time for the

process to converge on a solution. They must however be scaled down to the size of

the progress bar, before the object is redrawn.

A feature in Java called thread has been employed to control the accessing of the data

file every second, each time reading and updating data into the progress bar. Anything

that runs continuously should run in its own thread. This would help in the reduction of

the processing time.

In order to use the thread, the applet must be defined as runnable, by adding

“implements Runnable” to the applet class. An instance variable must be defined to

hold the applet’s thread object. The start() method will create a new method and start it

running. The actual activities occur in the run() method. This is where the data file is

read, the necessary calculations to determine the status of the progress bar is done and

Chapter 6 Remote Invocation o f Single Large Size o f Program

the progress bar is repainted. As mentioned earlier, the content of the progress bar is

updated every second, i.e. the content of the data file is read every second. To make

the activity wait for 1 second before accessing the data file another time, the

Thread.sleep() method is called within the run() method, as shown below:

try{ Thread.sleep (1000); }

catch (InterruptedException e) {}

In the stop() method, the thread is stopped from executing. The stop() method is

activated whenever the user leaves the page. If the user returns to the page the start()

method would restart the thread.

If for any reason, the connection with the server is lost, there would not be any

disturbances in the overall functionality of the progress bar. This is due to the fact that

the optimisation program is running on the remote server, and the value of the data file

that determines the progress of the optimisation is being updated, since it is working

independently of the power on the client’s machine or the connection between the

client and the server. When the connection is established again, the progress bar would

jump ahead into the new position.

6 . 3 .3 . 4 G r a p h i c s A p p l e t

When the execution of the optimisation program is completed, in addition to accessing

the resultant data, the user has the option of displaying the resultant graph of the

optimisation. The performance of the designs is given in the graphs, indicating the

trend of the search and the levels of performance. The result traces also provide a

means of evaluating the convergence of the genetic algorithm that is indicated by a set

of graphics of the objective functions and evolutionary generation. An example of the

graph for Facewidth and Centre Distance is shown in Figure 6.6.

6.3.4 Invoking the Application Object from the Main Servlet
As described in chapter 3 and chapter 4, CORBA is used in this project to establish the

communication environment between client programs and application object programs.

133

Chapter 6 Remote Invocation o f Single Large Size o f Program

In this application paradigm, a servlet on the Web server side is designed as a CORBA

client to invoke a CORBA object that is encapsulated from the C++ algorithm program.

6 .3 .4 .1 D e f i n i n g t h e I D L I n t e r f a c e
The first step in developing a CORBA service is defining an IDL interface that

specifies the type of operations the server will support. In this case, the operation is the

whole gear design optimisation procedure.

Figure 6.7 shows the IDL interface for Gear Design Optimisation object, on which

there is one method (i.e. operation) spur design that has one input string parameter for

user path management.

$ INI 11 D e s i q n l e n t r e . i d l

Module Nottinham_Trent_University_DesignCentre {
Interface Gear_Design_Optimisation {

Void spur_design (in string username);
m }'

Figure 6.7 NTU DesignCentre.idl

6 .3 .4 .2 C o m p i l i n g t h e I n t e r f a c e i n t o J a v a O R B a n d C + + O R B
In this application, Visibroker for Java and Visibroker for C++ of Borland are used as

CORBA developing tools. The compiler id/ to Java is used on Servlet client side to

produce Java client ORBs (i.e. stubs) while the compiler idl to cpp is used on object

server side to produce C++ server ORBs (i.e. skeletons).

Server-side ORBs:

• N TU D esignC entres. hh: Contains the definitions for the

Gear Design OptimisationPOA servant class.

• NTU DesignCentre s. cpp\ Contains the internal routines used by the server

Client-side ORBs:

• Gear Design OptimisationStub.java: Stub code for the

Gear Design Optimisation object on the client side.

134

Chapter 6 Remote Invocation o f Single Large Size o f Program

• Gear_Design_Optimisation.java: The Gear_Design_Optimisation interface

declaration.

• Gear_Design_OptimisationHelper.java\ Declares the

Gear_Design_OptimisationHelper class, which defines helpful utility methods.

• Gear_Design_OptimisationHolderJava: Declares the

Gear_Design_OptimisationHolder class, which provides a holder for passing

Gear Design Optim isation obj ects.

• Gear_Design_OptimisationOperationJava: This interface provides declares the

method signatures defined in the GearJDesignjDptimisation interface in the

NTUJDesignCentre.idl file.

• Gear DesignjDptimisationPOA Java: POA servant code (implementation base

code) for the Gear Design Optimisation object implementation on the server

side.

• GearJDesignjOptimisationPOATie Java: Class used to implement the

Gear Design Optimisation object on the server side using the tie mechanism.

6 . 3 .4 .3 D e v e l o p i n g t h e C O R B A A p p l i c a t i o n S e r v e r a n d t h e O b j e c t

I m p l e m e n t a t i o n |
On the server-side there are at least two fdes to be developed by developers. One is for

object implementation, and another is for the CORBA application server. The object i

implementation file NTUJDesignCentrelmpl.hh contains all the implementation code

of the object, i.e. the legacy code of the algorithm program. The CORBA application

server program implements the server class for the server side to invoke the object. It \
l

is written in C++ and should do the following tasks: 5;

• Including NTU_DesignCentreImpl.hh.

Initialises the Object Request Broker (ORB).

Creates a Portable Object Adapter (POA) with the required policies.

Creates the spur design servant object.

Activates the servant object.

Activates the POA manager (and the POA).

Waits for incoming requests.

135

I

Chapter 6 Remote Invocation o f Single Large Size o f Program

6 .3 .4 .4 D e v e l o p i n g t h e C l i e n t
Instead of a Java application client, as described in Chapter 4, a Java Servlet is

developed to act as a CORBA client. In this application, the main servlet is designed to

perform the invocation of CORBA object, in addition to doing common things such as

accepting parameters, pre-processing the data, writing data files and returning resultant

data to the user as described in section 6.3.2.3. Therefore the servlet client must have

the following CORBA-related procedures.

• Initialising the VisiBroker ORB.

• Binding to an NTUJDesignCentre object.

• Conductng gear design by invoking method spur_design on the

NTUJDesignCentre object.

6.4 Multi-users Environment
Java servlets are threads that run within a single Java process, which runs alongside the

Web server. For the multi-user environment, the Java processes are started and located

into the Web server’s memory space the first time the Java servlets are requested. It

receives all servlet requests from different users and hands each to an appropriate

single servlet instance as a thread. Because Java servlets use this multithreaded model

within a Java process, there is no need to create a new process for each request and

many more requests can be handled.

If the Java process is a simple process without reading the input files and writing the

results files, there is no interference between different users in the system described in

Section 6.2. The gear optimisation program, however, needs to read input files and to

write results to series of output files. Even though the different users are handled by

different servlet instances, these input and output files are normally stored in a same

default directory. The optimisation program invocated by different servlet instances to

serve different users may read from the same input files and write to the same output

files. This causes the problem of data file conflict between different users if they are

using the system simultaneously, as shown in Figure 6.8.

136

Chapter 6 Remote Invocation o f Single Large Size o f Program

Main Servlet
Input Files

Instance I

Instance 2Userl

Optimizing

User2 Result Servlet

Instance 1
Output Files

Instance 2

Figure 6.8 Data file conflict between different users

To resolve this data file conflict problem, separate user-specific folders are created for

different users on the Web server. Each time the servlet process starts a new instance

for a user, it automatically selects the working directory for the gear optimisation

program as the user’s own folder. When two users, Userl and User2, are using the

system simultaneously, all data files for Userl are placed in Userl folder, and for

User2 in \Jser2 folder. In this way, there would be no data file conflicts between

different users, as shown in Figure 6.9.

Server

Main servlet Userl folder

Instance 1 Input files

Instance 2 Output filesUserl

Optimisation

User2 Result servlet User2 folder

Instance 1 Input files

Output filesInstance 2

Figure 6.9 Solution for data file conflicts in multi-user situation

The first time the users log in, they are required to input their username and password.

If permission is given, then the servlet creates a user-specific folder on the Web server.

137

Chapter 6 Remote Invocation o f Single Large Size o f Program

This is where all the interactions occur for this user. The input files for and output files

from the optimisation program, HTML files and other information relative to the user

are placed in this folder. There is no need to copy servlets and optimisation programs

to each user-specific folder.

After the optimisation program is completed, the results are written into output files in

that folder. So when the user presses the result button, the system will call the output

servlet, which reads the correct files in the folder and displays the data results on the

returned page. If the user presses the appropriate button resultant graphics will be

displayed by an applet, on the page returned by the graphic result servlet. The specific

username information is passed by the graphic result servlet to the applet.

6.5 Summary
Java Servlets are small programs that execute on the server side of a Web comiection

and dynamically extend the functionality of a Web server. Java Applets are small

programs that execute on the client side of a Web connection and dynamically extend

the functionality of a Web browser. CORBA is used as a mediate mechanism for the

communication between a servlet and an existing program.

A Web server-centralised system was developed with combination of Servlets, Applets

and CORBA, which enables the existing large design program run remotely on the

Internet such that geographically dispersed designers can implement a design on a

Web browser and obtain the multiple formats of result from any part of the world.

The utilization of Java Servlets improved the performance in response to the multi-user

environment. This study investigated the essential differences between Java Servlets

and CGI. The successful application of Java Servlets instead o f CGI provides a wider

application region. As demonstrated in this chapter, various tasks can be implemented

based on Web server by Java Servlets, such as sending different kinds of existing

design resources onto the Internet and implementing the remote design of cross-region,

communicating commercially with engineering design resources and enlarging the

Internet service of a design site, and so on. Multiple-user management mechanism

138

Chapter 6 Remote Invocation o f Single Large Size o f Program

enables different users utilise the system simultaneously without the data file conflicts

and retrieve the latest design results any time.

The combination of Java Servlets and applets and the necessaiy modification of the

gear design program make it possible to master the execution of such a large-sized and

time-consuming program, to provide the powerful processing of the results and to

display the results graphically to the user.

CORBA aims to provide a communication between heterogeneous applications. In this

application, a C++ legacy algorithm application could be invoked by a Java servlet.

The servlet program is designed as CORBA client to invoke the CORBA object that is

wrapped from the existing C++ program. The connection between servlet client and

object is based on same machine and the execution of the program is not affected due

to network problem.

139

Chapter 7 Applet / CORBA Based Worm Gear Design

Chapter 7 Applet I CORBA Based Worm Gear
Design

7.1 Introduction
111 engineering there are many existing design programs that are stand alone and can

only be executed locally. These programs are ported on the program owner’s Web site,

which is facilitated with a Web server for providing Internet common services. Design

engineer who does not possess design software wants to do the design remotely over

the Internet. From the view of a designer, it would be ideal to conduct the design from

a common Web browser without any setup work on the client machine. Therefore the

designer needs to use a client program with friendly user interface to invoke a service

program and further call the design resources.

The Servlet-CORBA system based on Web server-centralised model, described in

Chapter 7, is one of approach for this requirement. In this chapter, another approach

based on Web server-centralised model is presented, where an Applet-CORBA

structure is used to construct the client-server architecture.

A worm gear design program is firstly designed and implemented in C++, and then is

wrapped as a legacy program into distributed object based on CORBA infrastructure

without rewriting the essential codes. Java Applet can be used as client procedure to

invoke the C++ object. Java Applet can be embedded in an HTML page and

downloaded in a client machine.

CORBA enables the Applet client to invoke methods on the remote objects at the host

server independent of the language that the objects have been written in, and their

location. The interaction between client and server is mediated by Object Request

140

Chapter 7 Applet/ CORBA Based Worm Gear Design

Brokers (ORBs) on both the client and server sides, communicating typically via HOP

(Internet Inter-ORB Protocol).

The Applet client model could benefit from the following Java characteristics:

• Client applets can be downloaded from a Web server and run in any Web

browser on any computer worldwide.

• It is not necessary to install clients on users’ computers in advance. What is

needed is a computer attached to the Internet running any Applet-enabled Web

browser or even only an applet viewer.

• There is no need of dedicated client computers for running client-side ORBs

(stubs). It provides a stubless client model to keep a thin client.

In this chapter, an applet client based CORBA application for remote worm design is

presented, in order to provide a hybrid application sample of CORBA and other

WWW technology.

7.2 Architecture of the System
CORBA allows distributed applications to interoperate with each other, regardless of

what language/tools are used for the implementation and where these applications

reside. In the proposed system, a Java applet is designed as a CORBA client, which

communicates with a remote service program written in C++, as shown in Figure 7.1.

The communication is transparent. The client program does not need to know the

implementation details of the internal object with respect to the object locations (either

local or remote). In the system, the client program only needs to know the object’s

name and how to invoke the object’s interface. The ORB takes care of the details of

locating the objects, routing the request, and returning the results. The ORBs for a

client side is predefined in the Web server side, downloaded along with the client

applet and HTML page, and executed in a client machine. Once an invocation session

is finished, the memory space in the client machine is released. There is no need to

set up for CORBA on a client machine.

141

Chapter 7 Applet / CORBA Based Worm Gear Design

Windows

Web Browser

Windows

Java applet with
CORBA ORB

Unix

Web Browser

Java applet with^
CORBA ORB

Macintosh

Web Browser

Java applet with
CORBA ORB

CORBA
HOP

CORBA
IIOP

CORBA
IIOP

CORBA ORB

CORBA server
servant

C++ object

Database

Figure 7.1 Overview o f the proposed system

Users of the system can connect a CORBA applet server through browsers. After

entering a set of key parameters, browsers automatically download applets from the

server to clients. Then the applets run on Java virtual Machine (JVM). Through client’s

ORB A and server’s ORB, clients can connect and access the server, and further invoke

the C++ object. The C++ object is the service program, which is connected to the

Access database file through ODBC (Open Database Connectivity), a standard

database access method developed by SQL.

Clients are Java Applets embedded in browsers, which enables the clients with the

independence of platform and security, and so on. Users of the system can use the

clients on any platform, such as Linux, at any site.

7.2.1 CORBA IIOP and WWW HTTP
Based on the CORBA IIOP, an underlying protocol, normally a client program, can

access remote objects directly without any interference from servers. However Java

applet clients cannot directly access the remote object because of Web browser

security restrictions placed on Java applets, i.e., the so-called Java sandbox security.

142

Chapter 7 Applet / CORBA Based Worm Gear Design

This is not a problem for a Java application client other than an applet client. Also it is

not a problem when a Java applet client and server run on the same computer.

However this is a problem when a Java applet and CORBA server run on different

hosts over the Internet.

On the other hand, in the presence of firewalls, setting up a CORBA IIOP connection

probably fails, because most firewalls block every communication, except for some

well-known ports like those for HTTP or FTP, which the Web server is based on.

Therefore there is a need for a gateway between CORBA IIOP and WWW HTTP to

enable this applet client to access remote CORBA objects. Visibroker offers such a

gateway named Gatekeeper.

7.2.2 Visibroker Gatekeeper
Visibroker GateKeeper, Borland’s product, can be configured to enable Visibroker

CORBA applets to communicate with object servers across networks while still

conforming to the security restrictions imposed by Web browsers and firewalls. The

Gatekeeper serves as a gateway from applet to server objects even if a firewall is

restricting access. In case of firewalls, Gatekeeper automatically switches from IIOP

protocol to HTTP implementing so-called HTTP tunnelling mechanism.

Without requiring any additional development work, Visibroker Gatekeeper works

within the network and security constraints to extend Visibroker CORBA application

to the Web and beyond, as shown in Figure 7.2. Clients’ requests are firstly sent to

Gatekeeper, as IIOP agent, and then gatekeeper transmits the requests to the CORBA

object server.

Gatekeeper serves two main purposes: acting as a sandbox proxy and as an HTTP

Tunnelling Proxy (for firewalls). As sandbox proxy, Gatekeeper implements the

following work:

• Applet communicates with Gatekeeper which then acts as a universal client.

• It takes on responsibility for UDP broadcasting and locating appropriate object

servers.

143

Chapter 7 Applet / CORBA Based Worm Gear Design

• It receives results and sends them back to client.

• This also allows applets to receive callbacks.

Web Server
IIOP

[TTP
YES

Web Browser | Gatekeeper
Client
Applet

HOP

NO YES YES
YES

IIOP

Internet
Client IIOP

Internet Client’s
Enterprise Firewall

CORBA Object

CORBA Object Server

Figure 7.2 CORBA application extends across the firewall with maintaining
the integrity and security o f the network

As HTTP Tunnelling, Gatekeeper accepts and decodes the HTTP requests. IIOP

requests from clients are wrapped in HTTP so that they can get through firewalls.

What is more, the Gatekeeper can be used as a Web server.

7.3 Development of the System

7.3.1 IDL Interface Definition
Clients and server use the same IDL interface: WormDesign.idl. The IDL file

describes the interfaces implemented by the remote objects. Once the IDL file is

created, one can use an IDL compiler to generate the client stub code and the server

skeleton code. In clients, idl2java compiler generates client’s stub code by compiling

144

Chapter 7 Applet / CORBA Based Worm Gear Design

WormDesign.idl. Clients will use the stub code that implements the methods definition,

according to WormDesign.idl, to resolve long-distance CORBA objects. On the server

side, idl2cpp compiler generates skeleton code by compiling the same IDL file

WormDesign.idl. The skeleton code will be used to transfer clients’ service requests.

The compiling process of WormDesign.idl is shown in Figure 7.3.

Skeleton CodeStub CodeApplet

C++ CompilerJava Compiler

idl2cpp Compilerid!2java Compiler

Server Binary CodeClient Bytecode

WormDesign.idl

Object Implementation

Service Program

Figure 7.3 The compiling sketch map o f client and server interface definition WormDesign.idl

When a client makes a request, the client’s ORB locates the object implementation,

activates the object if necessary, delivers the request to the object service program and

further to the object, and returns the response to the client. The client is unaware if the

object is on the same machine or across a network. A client program uses a remote

object by obtaining a reference to the object. Object references are usually obtained

using a Naming service. Then the object’s reference will be passed to the stub code.

With the help of the stub code and ORB, the client can transfer the request to the

skeleton code and service program, then to the target service object.

145

Chapter 7 Applet / CORBA Based Worm Gear Design

7.3.2 Applet Client
As a CORBA-enabled client, the applet binds to the WormDesign object. In order to

do this, ORB initialisation must be done in the init() method of the applet. A client user

could run the applet to pass the input parameters, do the design calculation method,

obtain the resultant data and view the automatically generated 2D drawing, through

invoking the remote methods such as getData(), GADesign(), returnDataQ on the

remote object WormDesign and the 2DjDrawing() method on the applet.

In the HTML Web page that embeds the applet, as shown below, the parameter

org.omg.CORBA.ORBClass within the <applet> tag causes Visibroker ORB to be

downloaded. The value of parameter vbroker. orb.gatekeeper, ior points to Gatekeeper

IOR (e.g. http://gatekeeper_host:8088/gatekeeper.ior).

<applet code="WormDesign.class" w id th -'200" height-'80">

<param name-'org.omg.CORBA.ORBClass”

value="com.inprise.vbroker.orb.ORB">

<param name-'vbroker.orb.alwaysTunnel" value="true">

<param name-'vbroker.orb.gatekeeper.ior"

value="http://l52.71.15.221:8088/gatekeeper.ior ">

</applet>

7.3.3 Object Server
The server side mainly includes the entry of the server side ORB, a server main

program, the implementation of objects’ methods, and the activation of an ODBC

driver. The server side ORB, i.e. skeleton program WormDesign_s.cc and its head file

WormDesign_s.hh are generated automatically by the mapping tool idl2cpp. The client

stub WormDesign_c.cc and its head file WormDesign_c.hh are also generated by

idl2cpp, as shown in Figure 7.4. In this application the client C++ procedures are

replaced by Java procedures: Applet.

The server program WormDesign_ServQV. C file is normally developed by the server-

side programmer. The server implementation includes the procedures such as

initialising the ORB, creating a persistent POA named worm_agent_poa, creating an

146

http://gatekeeper_host:8088/gatekeeper.ior
http://l52.71.15.221:8088/gatekeeper.ior

Chapter 7 Applet / CORBA Based Worm Gear Design

instance of the wormdesign servant, activating that servant on the worm_agent_poa

and then starting and waiting for client requests.

GADesign

Visibroker id!2cpp

C++ C++ C++

WormDesign_c.hh WormDesign_c.cc WormDesign_s.ee WormDesignjs.hh

ServerClient

Figure 7.4 The C++ files generated by the idl-to-C++ compiler.

7.3.4 Object Implementation
The WormDesign.C is the object implementing programs. The method codes on the

object are put in these programs. The method getData() is designed accept the input

parameters from the user. The GAWormOpt() is a Genetic Algorithm procedure for

minimised design of stress and for recoding the output data into a database file and the

returnDataQ is for returning the resultant data in the database file to the client side.

7.4 Deploying and Running the Programs
The following are the steps to deploy and run the programs:

1. Compile the IDL and the generated Java classes in the usual way.

2. Place the applet, the html file and the ORB class files (both client-side and

server-side classes) to a directory on the Web server.

3. Start servlet container Tomcat.

4. Start the Visibroker Smart Agent (OSAGENT).

147

Chapter 7 Applet / CORBA Based Worm Gear Design

5. Start the server application.

6. Start the Gatekeeper.

7. Point a client browser to the URL for the application HTML file.

Gatekeeper provides a combined HTTP and IIOP server stack; this allows the applets

to interact with object implementations on hosts other than the Web server. It also

allows IIOP messages to be transported through firewalls disguised as HTTP packets

(HTTP tunnelling). When starting the gatekeeper, please be aware of:

• Gatekeeper should be started in the same directory as the server application

• If gatekeeper is being used as a Web server, then the URL should contain the

port used by gatekeeper.

A user could do the design from the Applet GUI in the HTML page, as shown in

Figure 7.5. Firstly, necessary parameters need to be input on the left area. The input

parameters include the upper limits and lower limits of the design space, and user

name input. By pressing “start design ” button on the right area, the resultant data will

be displayed on the right data area. A 2D worm gearing drawing will be automatically

created and displayed on the middle area by pressing the drawing button on the right

area. The erase button helps to clear the drawing area. Parameter modifications will

yield different resultant data and different sizes of drawings.

The session between the applet client and remote worm gear design object keeps until

deliberately stopping the page in this Applet-CORBA model. Therefore the user could

easily do multiple trial designs without interrupting the session, while the session is

ended with a returning dynamic page on the Servlet model.

148

Chapter 7 Applet / CORBA Based Worm Gear Design

Web page URL

http://152.71.15.221:6068/

http://152.71

lacKB Qulck/Shuyan Ji

draw ing

rv-s-rr—

Data input area Resultant 2D drawing Resultant data

Figure 7.5 The GUI o f the worm gear design application from the Web browser

7.5 Summary
In this chapter, Applet-CORBA combination provides a thin client model to enable a

user do the remote invocation from a Web browser. As a user of this application, a

designer does not need to know anything about CORBA knowledge. The rich features

of applet make client developers to design various forms of Web browser application,

such as dynamic data, dynamic drawing and picture, animation, and so on.

149

http://152.71.15.221:6068/
http://152.71

Chapter 7 Applet / CORBA Based Worm Gear Design

CORBA itself relies on the IIOP binary protocol to establish the communication

between the client and the server. Applet client is not allowed to deal with the coming

connection due to the security problem such as Applet sandbox and firewall. In order

to fulfil this type of application, Visibroker Gatekeeper is used to establish an IIOP-

HTTP bridge by which the CORBA applet acts as a universal applet to deal with the

IIOP message wrapped in HTTP. Therefore the barriers of applet sandbox and firewall

could be got through.

In this Applet-CORBA based system, the session between a client and an object is not

interrupted until deliberately exiting, and this facilitates users to conveniently use the

system. How to deploy and run the programs has been demonstrated at the end of this

chapter, taking the worm gear design as an example.

150

Chapter 8 Results and Discussions

Chapter 8 Results and Discussions

8.1 Introduction
The increasing complexity of modem products, the cruel competition pressure and the

globalisation of product development necessitate a collaborative design environment

where different computer programs and distributed experts in similar or different

domains need to be collaboratively involved on a common design activity, in order to

obtain high quality and low cost product design. This project aims to construct a Web-

based system at lower cost, to support collaborative design over the Internet and

thereby shorten the product development lead-time.

From the investigation and review of current collaborative systems and current

implementation technologies, it can be found that the latest Web technologies could be

used to establish an open architecture based on the existing Web infrastructure for

communication to facilitate collaborative design activities. Most of the current systems

are still under proof-of-the-concept prototype development stage. Even though some

CAD/CAM packages, such as Windchill for ProEngineer, enable the users to

collaborate over the Internet, the Internet-based collaboration can only be operated

with the same software in the same type of platform and operating system. It is clear

that challenges in these areas will remain as a research opportunity.

Dispersed design applications may use different programming languages, such as

C/C++, Python, Java, Perl, or Cobol, and run in different computing platforms such as

UNIX, Microsoft Windows, IBM OS/2, or Apple Macintosh. This needs to be taken

into account to enable these heterogeneous applications to be integrated at lower cost

and work together smoothly.

151

Chapter 8 Results and Discussions

System development cost is another inevitable problem to be taken into consideration.

Reuse of legacy systems is a methodology for reducing the cost of software

development and maintenance. It is necessary to build an environment to

accommodate many existing design and manufacturing applications without rewriting

the essential codes.

Gear design is a typical topic in engineering design area. A gear design, especially

addendum modification design of spur and helical gears involves multiple design

objective evaluation and multiple constraints check such as gearing intervene check,

undercutting check, and so on. Several systems have been developed and implemented

to increase design productivity in the gear industiy [123-128]. Most are standalone and

not designed based on the distributed structure.

For a complex product design such as a gear design, there may be a need for

invocation of multiple programs during a complex design procedure. These

applications should be invocated dynamically according to the user requirement.

In a collaborative enviromnent, affections to a design from multiple design domains

should be leveraged to retrieve rational or optimal design solution. A proper

mechanism needs to be designed to help designers to balance multiple design interests.

In the engineering field, there are many large-sized computing applications for product

design and analysis. These programs are not convenient to be downloaded on the thin

client machine and likely run on the owner’s previous machine. System design needs

to facilitate the parameters input, program execution and monitoring, and result

viewing.

The solution lies in the combination of distributed object technology, Internet-oriented

language Java and Genetic Algorithms. A collaborative environment, which integrates

a combination of these technologies with engineering design to help diverse designers

to conduct design over the Internet have been developed. In the developed system,

heterogeneous and distributed design applications can be wrapped into Web-enabled

152

Chapter 8 Results and Discussions

component to be invocated remotely. Based on the Web-based architecture, not only

can multiple users share an identical design application or design data, but also an

active designer might use multiple design resources simultaneously. The resultant

Web-based architectures have identified and addressed three main features:

collaborative distributed design optimisation, remote execution and monitoring of

singular large-size and time-consumed programs, and session-oriented on-line design

with parametric drawing.

8.2 Development of the Web-based Architecture
It is necessary to investigate the distributed technologies to develop a Web-based

system. In Section 3.3.2, CORBA and other Web technologies are compared. RMI

addresses the remote method invocation across platforms but only between Java

applications. DCOM is the distributed component object model for Windows and thus

not for platform-independent circumstances.

In this research the heterogeneity is one of the main factors to be taken into account to

construct a collaborative environment for integrated gear design. Therefore CORBA is

thus utilised to develop a distributed collaborative environment, where it is possible to

invocate heterogeneous distributed design applications, which might be written in

different languages or running in different platforms, to enable collaborative design

over the Internet.

An emerging distributed middleware technology Web Services technique, in addition

to CORBA, is also investigated. Even though it can be applied for almost all the

situations CORBA is used for, Web Services aims to obtain more flexible and more

common features because using XML to send data through HTTP protocol. However,

another of the main factors to be taken into account in this research is efficiency.

CORBA HOP communication protocol ensures the communication efficiency because

its binary mechanism.

Integration and communication of different applications are presented in Section 4.7

and 4.8 (C++ on Linux and C++ on Windows), Chapter 7 (Java Applet and C++),

153

Chapter 8 Results and Discussions

Chapter 6 (Java Servlet and C++). All the aspects relevant to the integration and

communication of these applications are revealed, including the integration

architecture, the interface implementation, the underlying communication mechanism,

the programming issues on client side and server side, and case study(in Chapter 4,

Chapter 6, and Chapter 7).

In addition, legacy system reusability, openness and scalability are necessary elements

to be considered. Using CORBA, it is easy to implement these features because of its

IDL the interface definition.

The wrapping structure and developing procedures of legacy programs are described in

Chapter 4. The wrapped legacy object based on CORBA could work together with new

CORBA-ware applications as all the distributed objects have the identical interface

definition, i.e. IDL. Therefore the system is open and scalable. New object is added in

dynamically and worked together with previous ones without changing original system.

This research also investigates the distributed system architectures and explores the

possibilities in supporting collaborative design. There are two kinds of system

architectures for distributed collaborative systems, i.e. the centralised model and point-

to-point structure.

In the centralised model, it is easier to facilitate design services such as administration,

registration, searching, resource storage, etc. Collocated designers could download

design information or design model from the server and edit the information or model

using local design programs. The collocated designers could also invocate the

applications on the central server side using proper mechanisms instead of

downloading the applications onto the client machine. The key advantage of the

centralised model is that it is easier to ensure data consistency, as there is only one

master copy saved in the central database. However, all the activities are conducted

through the central station and thus it leads to a central bottleneck. Implementing

collaborative work using this model typically requires high network bandwidth.

Chapter 8 Results and Discussions

In the point-to-point model clients could contact applications owned by partners

without going through a central station and thus it would avoid a central bottleneck.

This leads to an effective communication structure. Each node has equivalent

capabilities as well as responsibilities that either request or provide service, differing

from the centralised model where the central database is dedicated to serving the others.

The distributed applications could be easily invocated synchronically to implement a

common task according to a proper procedure. Therefore collaborative work on this

model does not need high network bandwidth.

In order to develop a powerful and robust system with high efficiency and easy-to-

managing features to support different design circumstances, in this research, not only

two basic structures but also hybrid architecture of these two structures are used to

construct collaborative design environment. The systems based on Web server

structure are developed and described in Chapter 6 and Chapter 7 while the point-to-

point communication mechanism and convenient Web server-centralised management

are combined to be used in the distributed gear design systems, as seen in Chapter 4.

Java, an Internet-oriented language, is considered to combine with CORBA in this

research. Java provides the client side GUI developing tools and server-centralised

server extension tools to enhance the platform-dependent functions in distributed

systems. Java applets are not only capable of simple interaction with the user, but also

capable of taking part in complex interactions with backend services in CORBA-based

distributed system. A combination of Java with CORBA for application integration

presents a good solution for application components capable of accessing multiple

backend services distributed across the Internet. CORBA and Java are complementary

to ensure high source portability and robust platforms for Web-based applications. All

these features are revealed in Chapter 6 and Chapter 7.

155

Chapter 8 Results and Discussions

8.3 Paradigm 1: Distributed Gear Design Optimisation

Using Web Technology and Genetic Algorithms
Gear design involves multiple considerations from many domain experts.

Collaborative engineering enables multiple specific domain experts and their

computerised tools to be integrated to work together for a common design task.

From the studies [123-128], it is not difficult to find that there is still short of a Web-

based, fully-integrated, distributed spur gear design system that comprises all the

necessary components for integrated gear design, including user requirement

specification, design optimisation, stress analysis, 2D/3D modelling, graphical file

output, and so on. In order to support the cooperative design over the world based on

the Internet, there is a need to make all the gear design resources including gear design

experts, their design tools, and databases work collaboratively together in a platform

over the Internet.

A Web-based infrastructure is explored and developed using CORBA, where all the

heterogeneous design applications can be recognised and invocated remotely. Based on

the architecture, gear design applications, for stress calculation programs, undercutting

check, gear interference, etc, can be wrapped into Web-enabled objects to be accessed.

Gear design, like most design problems, is difficult and complex, and affections of the

models from different specialists to the design solution are comprehensive. Therefore,

in the collaborative design environment, a resolving strategy to such a complex

situation is inevitable for an active designer (or main designer) to leverage multiple

interests. In this research, gear design is treated as a design optimisation model.

Considerations from different domains are thought as design objectives or design

constraints. Genetic Algorithms (GA)-based mechanism is developed to help users

(designers) to conduct gear design optimisation based on the distributed system.

In the development for the distributed gear design optimisation system, the following

achievements are obtained.

• The architecture of the system

156

Chapter 8 Results and Discussions

• Heterogeneous application communication implementation

• Unified Graphical User Interface (GUI) design

• Optimiser implementation

o Cascaded GA algorithms design

o Bit field structure and union for encoding

o Variable dimension problem

o Variable penalty function using Simulating Annealing

o Multiple objectives optimisation

• Automatic 2D gearing gears profiles generation tool

8.3.1 The Architecture of the System
To develop the Web-based system for gear design optimisation, it is necessary to

consider basic requirements from the views of the system users, i.e. designers, program

providers and developers (Section 4.3.1). Designers wish to use remote resources as

much as required without enlarging their own systems. The developers like to use their

own favourite languages to develop relevant interface. Program owners want the

design application to run on previous machines and previous operating systems. The

system developed using CORBA can meets all the requirements. All the gear design

application programs, written in C++ and Java and run on Windows and Linux, are

wrapped into distributed components to be used remotely by other experts using IDL.

Through ORB and HOP communication mechanism, these applications can be

communicated with each other. The system structure and its working mechanism are

described in Sections 4.3, 4.4. As a distributed system it has the following functions:

• A unified graphical user interface (GUI) — A user of the system merely

interacts with the unified graphical user interface (GUI) to conduct all the

design activities and does not need to know any technical details about

communications between the interface and remote resources. The unified GUI

provides an integrated design environment that has design variables and design

objectives set-up, application circumstance identification, monitoring design

optimisation process, viewing and analysing multiple solution sets, gearing

movement simulation, and graphical file output.

Chapter 8 Results and Discussions

• An optimiser helping to conduct multiple objective design optimisations —

An optimiser is included in the GUI program and designed to help users to

conduct multiple objective design optimisation in the collaborative

environment. The optimiser procedure is designed based on Genetic Algorithm.

To each solution of design variables, evaluation according to multiple design

objectives and design constraints needs to be done through invocating relevant

objective calculation and constraint evaluation programs, which might are

located remotely. By using the optimising procedure the optimiser provides, the

user could implement the gear design optimisation among multiple design

interests from different design experts.

• Design data visualisation in graphics — Through the integrated design

environment a user (designer) can view design results both in text data and

graphics. A 2D gear profile can be generated automatically according to the

design data.

• A designer could conduct integrated gear design at limited time - A

designer could conduct gear design to find the rational tuning parameters in

consideration of multiple aspects in design or manufacture, within limited time

without augmenting his own system. Therefore the distributed collaborative

design system enables the development cycle of product reduced.

• Supporting multiple user environment - All the objects are implemented in

multiple-thread model and thus multiple clients could synchronically share the

same objects.

• System openness - Any new application components can be integrated

together with previous objects, recognised and invocated as long as they are

wrapped into CORBA objects.

8.3.2 Heterogeneous Application Communication
Implementation

In the presented distributed gear design optimisation system, Windows and Linux

platforms, Java and C/C++ languages are used for exploring the possibility of

platform-independent and language-independent features.

158

Chapter 8 Results and Discussions

In the engineering field, there are some computing programs ported on the Linux

operating system. Windows are a popular operating system for common users. In this

research, communication between C++ stress computing programs on Linux and

VC++ GUI program with an optimiser on Windows is implemented. The developed

communication mechanism enables C++ program on Windows to invoke C++ 011

Linux without correcting the essential codes. Programs on Linux are wrapped as

CORBA objects and still ported in previous operating system and debugged in

previous developing tools GCC. VC++ program on popular Windows can be designed

as CORBA clients to invoke C++ program on Linux.

The achievements of this research can be summarised as follows:

• Selection of proper tool - There are many CORBA developing tool for

implementing the communication between two heterogeneous applications.

Different tools are used for different circumstances. For example, OmniORB is

used for C++ and Python applications on Linux and Windows. Visibroker for

C++ and Visibroker for Java are used to develop the communication procedure

between Java and C++ on Windows and Unix. To Linux, there is another

Visibroker package to implement it. Since the communication speed between

the optimiser and remote objects is crucial to the whole system OmniORB is

used as the developing tool because it is the fastest available C++ ORB and

completely free. It can be used to implement the communication between C++

on Windows and C++ on Windows, C++ on Linux and C++ on Linux, and C++

011 Linux and C++ on Windows (Chapter 4).

• Objects interface definition - CORBA IDL is used to define the object

interface, only including object name, method name, and input and output

parameters. The interface program can be mapped into client ORBs and server

ORBs, which is in charge of communication (Chapter 4).

• Development on Linux server side - On the server side, object

implementation and server program are written. The object implementation is

for gears contact and bending stress computing. Server program includes ORB

initialisation and bounding to the object. Server program, object

159

Chapter 8 Results and Discussions

implementation and the automatically generated ORB procedures are compiled

and built using C++ tool GCC on Linux, as described in Section 4.7.

• Development on Windows client side (Chapter 4)- Developers on client side

need to write C++ client program on Windows. The optimiser procedure is

designed as the CORBA client, included in a GUI program. The optimiser

program contains the ORB initialisation routines and referencing mechanisms

for the invocation of the remote objects. There are three approaches to integrate

and debut the VC++ optimiser program pieces and CORBA routines, a) The

optimiser is separately developed and included in CORBA routines as a

process; b) One program combining CORBA routines with the optimiser

procedure is debugged in VC++ environment with CORBA-related setting up;

and c) One program combining the optimiser procedure with the CORBA

routines is debugged in command line makefile of CORBA. The above b) and c)

provide a higher running efficiency model than the process model provided in

a).

8.3.3 Unified Graphical User Interface (GUI) Design
As a user of the gear design system, a designer wishes to conduct integrated design in

a visual environment. As described in Section 4.6, the system provides a unified

graphical user interface, written in VC++, with the following functions:

• Design objectives identification - There are six design objectives to be

selected in the gear design system. Each objective can be appointed by a

weighting coefficient according to design intentions. Each of the objectives is

associated with a local or remote evaluation program.

• Design variables configuration - There are up to 9 optimisation variables

defined in the system. The system supports the flexible design for the less than

9 or up to 9 of the variables, e.g. dimension variation. The un-configured

variables need to be appointed by a given value.

• Specify other design requirements - In addition to the design objectives and

design variables, users need to specify other design requirements, including

application parameters, quality parameters and material parameters.

160

Chapter 8 Results and Discussions

• On-line help - During the input process, pressing FI button, on-line help

dialog can be activated to provide the relative knowledge information about the

current activities. The on-line help is developed using Microsoft Visual Studio

tool, which is involved into the VC++ developing project.

• Input data selection - There are many design parameters to be entered. To

facilitate users to input these parameters correctly and quickly, the application

program provides four flexible data input selections, including user default

design parameters, system default design parameters, new design parameters,

and retrieving existing design parameters.

• Calling optimiser program - The optimiser program is implemented

separately from the GUI procedure. Pressing the “start” button, the optimiser

program can be invoked.

• Viewing design results - After finishing the optimisation procedure, pressing

“result” can display the data results and graphical results.

8.3.4 Optimiser implementation
In the distributed design system, an optimiser is developed as a design making aid to

help the designer to do multiple objective design optimisations over the Internet. The

optimiser is designed based on Genetic Algorithms (GAs). Gear design optimisation

involves the high number of variables, objectives, and constraints. Variables take

continuing and discrete values. Genetic Algorithms (GAs) is utilised as the optimising

approach to fulfil the design optimisation. GAs allow spatial relations to be taken into

account without the requirement of linearity or continuity of the evaluation function.

They use only objective function information, not derivatives or other auxiliary

knowledge. GAs search from one population of solutions to another, rather than from

individual to individual.

In the development of the optimiser, this research has received the following

achievements:

o Gear design optimisation model

o Cascaded GA algorithms design

o C++ bits-field and union structure for chromosome encoding

161

Chapter 8 Results and Discussions

o Variable dimensional problem

o Variable penalty function using Simulating Annealing

o Multiple objectives optimisation

8 .3 .4 .1 G e a r D e s i g n O p t i m i s a t i o n M o d e l
Gear design is one of the classical topics of mechanical engineering design. The

classical route followed for the design of gears is to appeal to standards, such as BS

AGMA, DIN or ISO [92-98]. These standards are based on extremely large collections

o f results and empirical rules from practical experience in a vast range of engineering

applications. They provide a set of formulae, rules and charts to design the gearing

taking into account various working conditions and several aspects of their

performance, such as the power level, noise, lubrication conditions, wear rate,

likelihood of impact, pitting, and corrosion. In this project, addendum modification

design problem of spur and helical gear design is used as case study to explore the

possibility of the proposed collaborative system for improving design efficiency, as

presented in Section 5.2.

The addendum modification design problem of spur and helical gears is modelled in

up to 9 design variables, up to 6 design objectives and 24 design constraints. The

design variables includes the geometrical information such as module, face width

coefficient, pressure angle, helical angle and pinion tooth number; addendum

modification information; and manufacturing tool information such as addendum

coefficient and rack tip radius coefficient. The design objectives involve spatial

considerations including minimising face width and minimising the centre distance,

performance considerations including reducing the bending stress, contact stress, the

difference in bending stresses between the pinion and wheel teeth, and the difference

in the tooth tip sliding ratio of the pinion and wheel. The constraints includes the

considerations of bending and contact strength, cutting interference condition, tooth tip

thickness, interference at the roots of mating gear teeth, slide/roll ratio for the gear

tooth tip that is designed to evaluate the lubricating feature, rack tip fillet radius

coefficient limit, contact ration, and so on.

162

Chapter 8 Results and Discussions

8 . 3 .4 . 2 C a s c a d e d G A A l g o r i t h m D e s i g n
Calculation efficiency of GA Algorithm is one of the most important factors to be

taken into consideration. Cascaded genetic algorithm structure is designed to gain high

efficiency of coarser search in global space and high accuracy of finer search in

smaller space, as presented in Section 5.3.2. The solution gained from the first tier is

used as the warm value set at the second tier. The smaller space around the warm value

set is used as the search space at the second tier.

8 . 3 .4 . 3 C + + B i t s - f i e l d S t r u c t u r e f o r C h r o m o s o m e E n c o d i n g
In this gear design optimisation program, population ranges from 100 to 10000.

Generation sometimes need to reach a veiy big number, e.g. 10000 or even more.

During the evolution process, every chromosome in the population must be the

encoded and decoded, which means a huge amount of computation is involved.

Therefore, the program design of chromosome data structure has a vital effect to the

execution efficiency of the program.

C++ Bit field structure in conjunction with union data type is used to provide an

advanced data structure for chromosome representation, in order to save computer

memory units and improve computing efficiency.

A union is a memory location that is shared by two or more different variables,

generally of different types. The union structure is used for the bit field variable

sharing the same memory with the unsigned long integer variable. The bit field

represents binary code for a chromosome while the long integer variable represents the

encoding value for each gene in the chromosome. This structure using bit field and

union provides a convenient way to retrieve the encoding value from eveiy gene

saving the calculation from the binary expression to encoding value, consequently, so

that the running efficiency of the program is greatly improved. Section 5.3.3 illustrates

the detail in bit-field design.

163

Chapter 8 Results and Discussions

8 .3 .4 . 4 V a r i a b l e D i m e n s i o n a l P r o b l e m s
In this research, the gear design optimisation is defined as up to 9 variables. However,

in practical applications, it is not always necessary to select all o f the 9 variables at the

same time; some of variables are sometimes given by a certain value and not variables

any more. The dimension o f the application has been changed.

Normally, in the representation for a chromosome, a fixed binary string represents the

fixed number of variables. The corresponding genes of the unselected variables are

involved in the evolution, and their values are still kept in the given values in decoding,

instead of being mapped from the evolutionary operations. That may causes redundant

gene segments and mapping deceiving.

In order to resolve this redundant gene segments and mapping deceiving problem, in

this study a new concept of dynamic and variable length chromosome is devised, as

described in Section 5.3.4. The dynamic chromosome consists of the gene segments of

the selected design variables. For those unselected design variables, their

corresponding gene segments will not be included in the dynamic chromosome and,

consequently, these gene segments will not be involved in the evolution process. In

this way, the redundant gene segments and mapping deceiving problem can be

overcome. Dynamic mapping array is created to obtain the dynamic combination of

genes according to user’s variable dimension requirements.

8 .3 .4 . 5 V a r i a b l e P e n a l t y F u n c t i o n U s i n g S i m u l a t i n g A n n e a l i n g
The gear design optimisation involves huge number of design constraints. Penalty

function to constraint violence dramatically affects the process of convergence and the

quality of the result. If a set of penalties is too harsh, then few solutions that do not

violate constraints will quickly dominate the mating pool and yield sub-optimal

solutions. A penalty that is too lenient can allow infeasible solutions to flourish as they

can have higher fitness values than feasible solutions. Often, the algorithm must be

rerun many times before a combination of penalties is found that allows infeasible

solutions to die and feasible solutions to flourish. The main difficulty in applying

penalty functions is that they are problem dependent.

164

Chapter 8 Results and Discussions

Variable penalty function based 011 simulating annealing algorithm is constructed to

deal with the constraints, which provides another approach to penalise the constraint

violence. The variable penalty function contains an attenuation factor that is related to

the constraints and the temperature schedule in the simulating annealing algorithm.

The attenuation factor makes the penalty to the constraint violence from gentle to harsh

over the convergence process, so that some infeasible individuals can be kept in the

population at the early stage of the evolutionary process to avoid the process to stop

prematurely. The construction of the variable penalty function is described in Section

5.5.1-5.5.3.

Many instances of optimisation utilising variable penalty approach are illustrated and

the results of these instances are used to verify the performance of variable penalty

approach and analysis the influence of the temperature schedule and the initial

temperature parameter (Section 5.5.4).

8 . 3 .4 . 6 M u l t i p l e O b j e c t i v e O p t i m i s a t i o n
Multiple-objective optimisation is investigated and the weighted sum solution is given.

Changing the weighting factors is employed to obtain the entire collection of solutions

for user to select final solution from wider region. The methods of choosing

appropriate weighting factors are discussed and, the gear optimisation results obtained

by applying these methods are illustrated.

The weighted sum solution provides a simple but effective approach to obtain rational

design solution collection stead of an optimal solution, which is actually impossible to

obtain when multiple controversial objectives are involved in the problem. It is proved

that each solution by using this approach is Pareto solution.

In the distributed gear design system, multiple objective optimisation provides a

underlying technique to design the optimiser as a design making aid, in order to help

designer to leverage the interests from different domain experts.

165

Chapter 8 Results and Discussions

8.3.5 Automatic 2D Mating Gears Profiles Generation
In the development of distributed gear design optimisation, a 2D gearing gears profiles

generation tool is developed. To each solution of design optimisation, a corresponding

2D can be produced by the generation tool according to the resultant data. The involute

profiles of the gearing gears can be precisely drawn and displayed (Section 4.5.1).

Meanwhile, by using the generation tool a corresponding DXF file can be also output.

The DXF file, as an exchange graphics file, can be displayed in popular CAD software.

This tool is written in VC++. The details are given in Section 4.5.

8.4 Paradigm 2: Remote Invocation of Singular Large-

scale Computing Program Using Servlet and

CORBA
The distributed gear design optimisation provides an integrated model with multiple

programs. In engineering, there are many computing programs, which are large-scale

and time-consuming, and then not convenient in multiple programs working

environment. Therefore it is necessary to design a communication mechanism for the

remote invocation of singular large-scale computing program.

There is legacy design application package, which includes a GUI written in VB and

an algorithm program written in C++. To each calculation, the package produces input

and output files. The algorithm program is large scale and time-consuming. This

project aims to make this existing package Web-enabled to execute remotely over the

Internet. Chapter 6 describes the details on the development of this system.

A Web server-centralised system was developed with combination of Servlets, Applets

and CORBA, which enables the existing large design program run remotely on the

Internet such that geographically dispersed designers can implement a design on a

Web browser and obtain the multiple formats of result from any part of the world.

166

Chapter 8 Results and Discussions

A user, i.e. a design engineer could conduct the gear design including inputting

parameter, activating calculation program, monitoring the progress of the program

execution, and viewing resultant data and data analysis, within the Web browser, just

as visiting common pages.

Java Servlets, small programs that could execute on the server side of a Web

connection, are developed to dynamically extend the functionality of a Web seiver.

The developed Servlet programs could retrieve the data passed in the page, parsing

them and further passes to the execution program when they activate the program. Java

Applets, small programs that execute on the client side of a Web connection, are

developed to dynamically extend the functionality of a Web browser. The developed

applets that are included in the response page returned by Servlets could implement the

display of resultant text data, resultant graphics, and program execution progress bar.

CORBA is used to provide a communication between the Java Servlet program and the

large-scale programs on the server side. In this application, a C++ legacy algorithm

application could be invoked by a Java servlet. The servlet program is designed as

CORBA client to invoke the CORBA object that is wrapped from the existing C++

program. The connection between servlet client and object is based on the same

machine and the execution of the program is not affected due to network problem.

The session Servlets provides, between two computers, could not stay but stop with the

response page by the servlet. The model Applet/CORBA provides is session oriented.

The Applet/CORBA session between two computers could be kept unless the

connection is deliberately stopped, which is used for the development of on-line worm

design system.

8.5 Paradigm 3: On-line Worm Design Using

Applet/CORBA
By using CORBA and Java applet, a plug-in running model of remote program for

worm gear design is given. A session established between point-to-point can be kept

167

Chapter 8 Results and Discussions

linking until stopped manually. This model is used for the flexible need for parameter

modification repetitively. The development of this system is described in Chapter 7.

Applet-CORBA combination provides a thin client model to make user do the remote

invocation from a Web browser. As a user of this application, a designer does not need

to know anything about CORBA knowledge. The rich features of applet make client

developers to design varieties forms of Web browser application, such as dynamic data,

dynamic drawing and picture, animation, and so on.

CORBA itself rely on the HOP binary protocol to establish the communication

between the client and the serve. Applet client is not allowed to deal with the coming

connection due to the security problem such as applet sandbox and firewall. In order to

fulfil this type o f application, Visibroker Gatekeeper is used to establish an IIOP-

HTTP bridge by which the CORBA applet acts as a universal applet to deal with the

HOP message wrapped in HTTP. Therefore the barriers of applet sandbox and firewall

could be got through.

An applet could be linked to multiple CORBA objects with the same ORB. This

provides another integration model of multiple programs, without any setting up for

CORBA on the client machine.

Collaborative product design may involve a number of software applications that run

on geographically distributed computers. For example, designers, material specialists,

manufacturing engineers, and structural analyses of a product may reside in different

locations and use separate computer systems and software packages for design and

analysis.

168

Chapter 9 Conclusions and Future Work

Chapter 9 Conclusions and Future Work

9.1 Conclusions
In this section the conclusions have been based upon the aims and objectives of the

research as outlined in Section 1.3. The Web-based technologies and Genetic

Algorithms have been applied to develop the collaborative environment for integrated

design. The following specific conclusions can be drawn from this work.

1. CORBA was found to be appropriate to construct a distributed infrastructure to

develop Web-based systems for integrated design. The developed Web-based

infrastructure based on CORBA facilities with many necessary features:

• Heterogeneous application integration and communication - Based on

the CORBA-based system, many different applications, in engineering area,

that might be ported in different computers, running on platforms and

different operating systems, and written in different languages, can be

integrated together and interoperated by each other. Using correct CORBA

developing tools these heterogeneous applications can be encapsulated with

a unified interface and then recognised and invocated with each other. The

deployed objects can be integrated in flexible model for different

application circumstances and therefore it is possible to develop distributed

application systems for collaborative design over the Internet. For example,

multiple designers could share a remote application (in Chapter 6, Chapter

7) through client programs or a main designer could use multiple remote

applications for complex and integrated design through a unified user

interface (Chapter 4).

• Reusing legacy applications - In engineering area, there are many

applications that are traditional, stand-alone, single-user computer-aided

applications that are still valuable to perform crucial work, and usually

169

Chapter 9 Conclusions and Future Work

represent a significant investment and years of accumulated experience and

knowledge. It is found that functionalities of these legacy applications can

be extended by employing modern distributed object computing technology

CORBA. CORBA IDL is used to define the unified interface for all the

applications including legacy applications regardless of their languages and

platforms. Without rewriting the essential codes, a legacy application can

be wrapped into CORBA object implementation. The wrapping structure,

interface definition, and combining model and debugging approaches

regard to the essential codes with communicating procedure, are

demonstrated (in Section 4.2.1 and Section 4.2.2). Turning legacy

applications into distributed components to make them reusable is an

effective way to reduce development costs. CORBA eases the transition

from standalone legacy applications to more flexible distributed

components to be used over the Internet.

• Scalability and openness — Additional resources can be incorporated into

the system as required. This capability should be possible without

disrupting the links previously established. In this research, CORBA IDL is

used to define all the applications, regardless of the languages, or platforms.

CORBA ORB and HOP make it possible to communicate these applications

with the unified interface with each other. New applications with IDL

interface could be emerged into the system and work together with previous

applications with the same interface. The scalability and openness of the

system can easily be extended to various fields.

2. The distributed gear design optimisation system based on the Web-based

infrastructure has been developed to provide an integrated gear design

environment for distributed integrated gear design across the Internet. Hybrid

architecture of the point-to-point structure and the server-centralised model has

been developed using CORBA in order to provide a powerful and robust

system with the high efficiency and easy-to-manage features. The system has

four layers: a user interface layer, application layer, data layer, and the Web

server layer. All the gear design programs are encapsulated into CORBA-ware

distributed objects, which are located on the application layer. User interface

170

Chapter 9 Conclusions and Future Work

layer is designed as a unified user interface, through which any remote

application objects on the application layer can be invoked. The Web server is

used for providing resource administrative services. The data layer contains

backend data resources, which are linked to the design applications. The system

can be used to integrate distributed computing and design resources across the

Internet for distributed computing and collaborative design. The system enables

multiple specific domain gear experts and their computerised tools to be

integrated to work together. Through the unified graphical user interface,

designers can conduct all the integrated design activities including design

requirement specification, design optimisation with multiple design interests

and multiple design constraint check, viewing the text data and graphical data,

and generating the graphical file in exchange format. The system could achieve

the strength and fundamental features emphasised in distributed computing:

reliability, transparency, interoperatability (among heterogeneous

environments), scalability, and portability.

3. An optimising tool based on Genetic Algorithms is designed and facilitated in

the distributed gear design optimisation system to help designers to leverage

multiple design interests. Genetic Algorithms is found to be an appropriate

method for conduct complex design optimisation including a large number of

variables, multiple design objectives, and numbers of design multiple

constraints. It is designed as a CORBA client program through which remote

evaluation applications that are designed as CORBA objects can be invoked for

the evaluation to each design solution during the evolution procedure. The low

level communication between programs provided by CORBA ensures the high

efficiency of the system.

4. A 2D gearing gear profiles generation tool is developed and facilitated in the

distributed gear design optimisation system. To each solution of design

optimisation, a corresponding 2D gearing gear profiles can be produced by the

generation tool according to the resultant data. The profiles of the gearing gears

can be precisely modelled to further conduct 3D model design and analysis. By

using the generation tool a corresponding DXF file can be output. The DXF file,

as an exchange graphics file, can be displayed in popular CAD software. In the

171

Chapter 9 Conclusions and Future Work

integrated design environment, the gears’ profiles generation tool helps

designer view the design result in time and redesign if it is not ideal.

5. OmniORB is used for implementing the communication between two C++

applications or between a C++ program and a Python program on Linux and

Windows. It is found to be the fastest available C++ ORB and completely free.

It can used to implement the communication between C+ on Windows and

C++ on Windows, C++ on Linux and C++ 011 Linux, and C++ on Linux and

C++ on Windows.

6. The system provides an integrated environment for resource suppliers to post

and share their resources and resource demanders to acquire necessary

resources to perform applications in a distributed framework. Design

application owners could benefits from the distributed application model.

Design program providers who have design and analysis services available

could keep their own programs to be only invoked and executed remotely other

than downloaded. The application can be used as design services for more users

to use. The application codes still reside with owners and the programs execute

on previous computers. Only the names of the service objects, the names of the

methods on the objects, and input and output information for the methods are

published to the clients’ developers.

7. The integrated environment is also used for resource demanders to acquire

necessary resources to perform extended design applications in a distributed

framework. Using the distributed gear design system a designer could conduct

gear design through invocate remote design resources to find the rational

tuning parameters in consideration of multiple aspects in design and

manufacture, within limited time without augmenting his system. The system

supports the designer dynamically to choose design objectives that are

associated with remote applications. A variable dimensional optimisation

allows users to conduct design optimisation of less than or up to 9 variables.

8. The distributed application-developing model CORBA enables it easily to

develop the complex distributed design application. The package including

integrated gear design optimisation GUI and the optimiser is a sample of

complex distributed design application. Heterogeneous design applications that

172

Chapter 9 Conclusions and Future Work

have been wrapped into CORBA objects can be used as available programming

elements within the GUI package. The GUI is deliberate for design

visualisation, data analysis, and design collaboration.

9. Optimisation efficiency and optimisation accuracy must be considered.

Cascaded Genetic Algorithm mechanism is employed in the GA-based

optimising procedure. The solution gained from the first tier is used as the

warm value set at the second tier. The smaller space around the warm value set

is used as the search space at the second tier. It is found to be a structure to

obtain efficiency o f coarser search in global space and high accuracy of finer

search in smaller space.

10. Bit-field and union structure is used for the encoding of chromosome. It is

found to provide a highly efficient data structure for chromosome

representation, which simplifies the transformation calculation between binary

data and encoding value so that the running efficiency of the program is greatly

improved.

11. A new concept of dynamic and variable length chromosome is devised to

resolve variable dimensional problems. For those unselected design variables,

their corresponding gene segments will not be included in the evolution process.

Dynamic mapping array is created to obtain the dynamic combination o f genes

according to user’s variable dimension requirements.

12. Variable penalty function based on simulating annealing algorithm is

constructed to deal with the constraints, which provides another approach to

penalise the constraint violence. The variable penalty function contains an

attenuation factor that is related to the constraints and the temperature schedule

in the simulating annealing algorithm. The attenuation factor makes the penalty

to the constraint violence from gentle to harsh over the convergence process, so

that some infeasible individuals can be kept in the population at the early stage

of the evolutionary process to avoid the process to stop prematurely. This work

provides an approach to deal with the constraints through tuning the process

parameters o f convergence instead of tuning the penalty function weighting

coefficients.

173

Chapter 9 Conclusions and Future Work

13. A Web-based system based on the server-centralised structure has been

developed, with combination of Servlets, Applets and CORBA. It enables a

singular large design program run remotely on the Internet such that the

geographically dispersed designers can implement a design on a Web browser

and obtain the multiple formats of results from any part of the world. A chain

of Servlets are developed, as the extension on Web server side, to retrieve

client requirements, activate the large program, monitor the progress of

program execution, and view results displayed in multiple formats. A flag data

that represents for the status of program execution and Java applet are used to

implement the monitoring of the program. CORBA is used to provide the direct

communication between C++ legacy algorithm application program and Java

Servlet client program. The execution of the program is not affected due to

network problem. Multiple user management mechanism enables different

users utilise the system simultaneously without the data file conflicts and

retrieve the latest design results any time.

14. On-line worm design is developed using Applet/CORBA to provide a plug-in

running model of remote program for worm gear design. In this model, a

session established between point-to-point can kept linking until stopped

manually. Visibroker Gatekeeper is used to establish the communication bridge

between CORBA HOP and HTTP to enable CORBA applet acts as a universal

applet to deal with the HOP messages. This model is used for the flexible need

for repetitive parameter modification and interactions with users. Visibroker for

C++ and Visibroker for Java are used to develop the communication procedure

between Java applet and C++ application on Windows. Java applet could be

downloaded on any platform.

9.2 Contributions to Knowledge
The main contribution of this thesis is in constructing a distributed infrastructure to

develop Web-based systems for integrated gear design. The resultant Web-based

architectures have identified and addressed three main application paradigms.

174

Chapter 9 Conclusions and Future Work

The development of the infrastructure includes several structural and technical

contributions. These contributions can be summarised as follows:

9.2.1 Conceptual Contributions for Web-based Structure
• Heterogeneity of the developed environment enables many different gear

design applications, in engineering area, which might be ported in different

computers, ruiming on platforms and different operating systems, and

written in different languages, can be integrated together and interoperated

by each other. It is possible to develop complex distributed application

systems for collaborative design over the Internet.

• Reusability of legacy applications provided in the developed system makes

those traditional, stand-alone, and single-user computer-aided gear design

applications, which are still valuable to perform crucial work, and usually

represent a significant investment and years of accumulated experience and

knowledge, can be extended for the Web applications using the developed

infrastructure without rewriting the essential codes. It is an effective way to

reduce distributed application development costs and to ensure the reliable

of components.

• A distributed design optimising tool is employed in the Web-based gear

design optimisation system where different domain experts and their design

applications are distributed. The GA-based tool helps designers to conduct

multiple interest evaluations to each solution during the design evolution.

This approach of employing a Genetic Algorithms into a Web based

enviromnent ensures the effectiveness in collaborative design environment.

The low level communication between programs provided by CORBA

ensures the high efficiency of the system.

• A Servlet/Applet/CORBA based system in this thesis is developed for a

singular large computing program to run remotely on the Internet such that

the geographically dispersed designers can implement a design on a Web

browser and obtain the multiple formats of results from any part of the

world. A flag data that represents for the status of program execution and

Java applet are used to implement the monitoring of the program. CORBA

175

Chapter 9 Conclusions and Future Work

is used to provide the direct communication between C++ legacy algorithm

application program and Java Servlet client program. The execution of the

program is not affected due to network problem. Multiple user management

mechanism enables different users utilise the system simultaneously

without the data file conflicts and retrieve the latest design results any time.

• On-line worm design is developed using Applet/CORBA to provide a plug­

in running model of remote program for worm gear design. In this model, a

session established between point-to-point can kept linking until stopped

manually. Visibroker Gatekeeper is used to establish the communication

bridge between CORBA HOP and HTTP to enable CORBA applet acts as a

universal applet to deal with the HOP messages. This model is used for the

flexible need for repetitive parameter modification and interactions with

users. Visibroker for C++ and Visibroker for Java are used to develop the

communication procedure between Java applet and C++ application on

Windows. Java applet could be downloaded on any platform.

9.2.2 Technical Contributions
• Cascaded Genetic Algorithm mechanism is employed in the GA-based

optimising procedure. It is found to be an effective method to obtain

efficiency of coarser search in global space and high accuracy of finer

search in smaller space.

• Bit-field and union structure in C++ language is used for the encoding of

chromosome. It is found to provide a highly efficient data structure for

chromosome representation, which simplifies the transformation

calculation between binary data and encoding value so that the running

efficiency of the program is greatly improved.

• A new concept of dynamic and variable length chromosome is devised to

resolve variable dimensional problems. For those unselected design

variables, their corresponding dimension requirements.

176

Chapter 9 Conclusions and Future Work

• Variable penalty function based on simulating annealing algorithm is

constructed to deal with the constraints, which provides another approach

to penalise the constraint violence. This work provides an approach to deal

with the constraints through tuning the process parameters of convergence

instead of tuning the penalty function weighting coefficients.

9.3 Future Work
The work presented in this thesis provides a basis for future research in the Web-based

collaborative environment for integrated product design. There are many areas within

this research that need further research before the overall goal of developing powerful

and robust system for efficiently and effectively supporting total product design via the

Internet.

9.3.1 Improving Infrastructure Based on Emerging Web
Technologies

In the fast developing IT world, there are some emerging technologies for enlarging

the application domain of Web-based architecture. In addition to further implementing

the CORBA-based system, exploiting new architecture and new model for design

resource integration and communication would be necessary for improving the current

collaborative systems.

Web Services

As the extension of this research, a new model utilising the emerging Web Services

technology need to be investigated and developed. In Appendix E, a brief overview

about Web services, comparison between Web Services and the existing CORBA

technology, and an application paradigm of Web Services are presented.

In the future, it is necessary to further exploit the possibilities of CORBA technology

and Web Service model applied in design engineering and to develop a hybrid

structure for constructing a powerful environment, in order to facilitate the high-

efficient features of CORBA and the high-flexible features of Web Service. CORBA’s

well-coupling model provides a high efficient structure for the need of tightly linked

177

Chapter 9 Conclusions and Future Work

applications. Web Services technique provides a loosely coupling model for linking

those commercial CAD software systems. On the other hand, for the developed

CORBA-based system, proper tools can be investigated for the convenient

transformation to Web Services.

Grid Technology

Grid computing infrastructures aims at allowing the programmer to aggregate powerful

and sophisticated resources scattered around the globe. To achieve this goal, Grid

computing community has been making efforts for the creation of advanced services

that allow access to high-end remote resources such as batch systems at

supercomputing centres, large-scale storage systems, large-scale instruments, and

remote applications. The efforts have resulted in the development of Grid services that

enable application developers to authenticate, access, discover, manage, and schedule

remote Grid resources, but they are often incompatible with commodity technologies

[120].

CORBA targets distributed environment and provides transparency on many levels

including languages, operating systems, networks, and protocols. It is a possible

candidate for applications programmers to develop Grid-based applications.

Combination of CORBA structure and Grid domain will allow an easy integration of

additional Grid services and functionality within these applications. This model

application will be implemented in the future.

XML

The underlying feature behind the flexible-oriented model of Web Seivices is XML

technology, as described in Chapter 9.

As an extension of this work, XML is investigated and studied by the author [121]

[122]. CORBA is an enabling technology for creating sophisticated, distributed object

systems on heterogeneous platforms. XML is a technology for conveying structured

data in a portable way. CORBA allows users to connect disparate systems and form

object architectures. XML will allow users to transmit structured information within,

178

Chapter 9 Conclusions and Future Work

between and out of those systems, and to represent information in a universal way in

and across architectures. Both technologies are platform-, vendor- and language-

independent. CORBA ties together cooperating computer applications, invocating

methods and exchanging transient data that will probably never be directly read by

anyone, while XML is intended for the storage and manipulation of text making up

humane-readable documents like Web pages. In addition, portable data storage and

exchange in XML will relieve CORBA-based systems from low efficiency much data

causes in.

In the future work, this model of application will be implemented to provide an

environment for integration, communication and dynamic management.

9.3.2 Multiple Disciplinary Optimisations Based on Distributed
System

Integrated product development involves collaborative design among multiple

disciplinary experts. The interests from these multiple disciplines are comprehensive.

The GA-based multiple objective mechanism presented in this thesis provides

fundamental structure for solve this problem. All the interests are abstracted into

formulised expressions.

However, practical design activities are more complex. Different experts might use

different commercial systems (e.g. ANYSIS for FEA, Pro-E for Modelling, Matlab for

mathematical computing, etc.) and most modelling processes and impacts on design

results are complex. An advanced mechanism for supporting design optimisation needs

to be further developed, which might contain a smooth link to those commercial CAD

systems through parameterisation of complex modelling processes. This hybrid

structure enables it possible to construct an intelligent environment.

9.3.3 Semantic CAD Environment
Data exchange technologies such as IGES, DXF and more recently STEP, have

significantly helped enable collaboration among disciplines through transferring data

across the heterogeneous systems, but this is still a very chunky communication with

179

Chapter 9 Conclusions and Future Work

low efficiency due to data description at low level of description. Data transferring

activities are still ones between low levels of representations and thus causes low

efficiency of process flow. Current CAD systems functionally are still at the level of

‘drafting’ and ‘manufacture operation’ only.

With the increasing demand in industrial performance improvement, the next

generation of collaboration, among CAD/CAM systems, should be highly efficient and

support collaborative design. Future research into such a new environment is based on

semantic web and high level of representation to the objects, which will be defined in a

semantic maimer. Intelligent characters received by combining decision-making

system will be another differentiating feature to improve the collaborative performance

over heterogeneous systems and further improve the design efficiency.

9.3.4 Adaptation of Graphical Data
The system should modify complex data for use in diverse environments including

mobile systems with respect to the actual context including device (mobile devices

with PDA—Personal Digital Assistant, situation, location etc.). The adaptation is

context sensitive and thus each user involved in the collaboration may get data with

different representation. It involves the research domains: mobile system structure,

variety of expressions and adaptive transformation between them, flexible

communication mechanism, and etc.

180

References

References

1. K. T. Ulrich and S. D. Eppinger, 2000, Product Design and Development, 2nd

edit, McGraw-Hill.

2. H. R. Parsaei and W. G. Sullivan, 1993, Concurrent Engineering, Chapman &

Hall.

3. S. C-Y. Lu, 2004, Beyond concurrent engineering: a new foundation for

collaborative engineering, CE2004: The 11th ISPE International Conference on

Concurrent Engineering Research and Applications, 26-30 July, Beijing, P. R.

China.

4. A. Mills, 1998, Collaborative Engineering and the Internet, Society of

Manufacturing Engineers Dearborn, Michigan.

5. L. Hartley, 1992, Concurrent Engineering, Cambridge, MA: Productivity Press.

6. R. M. Hauch, S. W. Jacobs, S. W. Prey, and Heather L. Samsel, 1999, A

distributed software environment for aerospace product development,

AIAA/ASME/ASCE/AHS/ASC Structures Struct Ural Dynamics & Materials

Conference, April 12-15, St. Louis Mo USA, 2:1385-1394.

7. S. E. Chrysler, 1992, Concurrent engineering challenge, Manufacturing

Engineering, 108(4): 35-42.

8. L. Wang, 1999, An approach to collaborative design and intelligent

manufacturing, Proceedings o f International Joint Conference of SCI’99

(Systemics, Cybernetics and Informatics) and ISAS’99 (Information systems

Analysis and Synthesis), 7:431-437.

9. M. J. Chung, P. Kwon and B. Pentland, 2000, MIDAS: a framework of

integrated design and manufacturing process, Proc. Of SPIE Int. Soc. For Optical

Eng. Intelligent Systems in Design & Manufacturing, 4192:348-355.

10. D. Sriram, R. Logcher and S. Fukuda, 1989, Computer aided cooperative

product development Berlin: Springer.

181

References

11. C. Q. Huang and K. L. Mak, 1998, Web-based collaborative product

development. 1st International Seminar and Workshop on Engineering Design in

Integrated Product Development, 8-10 October, Wroclaw, Poland.

12. J. W. Erkes, K. B. Kenny and J. W. Lewis, 1996, Implementing shared

manufacturing services on the World Wide Web. Communications o f the ACM,

39(2): 78-87.

13. RaDEO Program Home Page, http ://radeo .nist. gov/radeo/ (accessed on

15/07/2005).

14. AIMS, http://aims.parl.com/ (accessed on 15/07/2005).

15. TEAM, http://cewww.eng.ornl.gov/team/home.html (accessed on 15/07/2005).

16. GEN, http://urobe.uni-paderborn.de/GEN/ (accessed on 15/07/2005).

17. PRODENT, http://www.uninova.pt/~prodnet/ (accessed on 15/07/2005).

18. WCIDM, http://www.admec.ntu.ac.uk/asia-itc/home.html (accessed on

15/07/2005).

19. C. S. Smith, P. K. Wright, 1996, CyberCut: A World Wide Web based design to

fabrication tool, Journal o f Manufacturing Systems, 15(6): 432-442.

20. M. R. CutKosky, J. M. Tenenbaum and J. Glicksman, MADEFAST:

collaborative engineering over the Internet. Communications o f the ACM, 39(2):

34-45.

21. L. Wang, W. Shen, IT. Xie, J. Neelamkavil and A. Pardasani, 2001, Collaborative

conceptual design—state of the art and future trends, Computer-Aided Design 34:

981-996.

22. S. Rajagopalan, R. Rajamani, R. Krishnaswamy, and S. Vijendran, 2002, Java

Servlet Programming Bible, Hungry Minds, Inc., New York, USA.

23. P. C. Muller, R. dePooter, J. de Jong, J. M. L. van Engelen. 1996, Using the

Internet as a communication infrastructure for lead user involvement in the new

product development process. Proceedings o f WET IC E ’96, pages 220-225.

24. A. I. Anton, E. Liang. A Web-based requirement analysis tool. Proceedings o f

WET ICE ’96, 1996, pages 238-243.

25. D. S. Kelley, 2001, Web-centric product data management, Journal o f Industrial

Technology, 18(1).

182

http://aims.parl.com/
http://cewww.eng.ornl.gov/team/home.html
http://urobe.uni-paderborn.de/GEN/
http://www.uninova.pt/~prodnet/
http://www.admec.ntu.ac.uk/asia-itc/home.html

References

26. G. Toye, M. Cutkosky, J. Tenenbaum and J. Glicksman, 1993, A methodology

and environment for collaborative product development, Proceeding o f Second

Workshop on Enabling Technologies: Infrastructure fo r Collaborative

Enterprises, IEEE Computer Society Press, pages 33-47.

27. M. R. Cutkosky, R. S. Engelmore, R. E. Fikes, M. R. Genesereth, W. S. Mark, J.

M. Tenenbaum and J. C. Weber, 1993, PACT: An experiment in integrating

concurrent engineering systems. IEEE Computer, 26(1): 28-37.

28. B. Prasad, 1996, Concurrent Engineering Fundamentals: Integrated Product and

Process Organization, Vol. 1, Prentice Hall, NJ.

29. M. Rezayat, Knowledge-based Product Development using XML and KCs,

Computer-Aided Design 32(2000a): 199-309.

30. F. Bsharah, M. Less, Requirements and Strategies for the Retention of

Automotive Product data, Computer-aided Design, 32: 145-158.

31. F. Wang, J. J. Mills, Venkat devarajan, 2002, A conceptual approach managing

design resource, Computers in Industry, 47: 169-183.

32. Y. X. Xue, 2003, Web-based distributed system and database modelling for

concurrent design, Computer-Aided Design, 35: 433-452.

33. S. B. Yoo, Y. Kim, 2002, Web based knowledge management for sharing

product data in virtual enterprises, International Journal o f Production

Economics, 75(1); 73-183

34. M. J. Chung, P. Kwon and B. Pentland, 2000, MIDAS: A framework of

integrated design and manufacturing process, Proc. O f SPIE Int. Soc. For Optical

Eng. Intelligent Systems in Design & Manufacturing, 4192: 348-355.

35. C. C. Madni and A. M. Madni, 1998, Web-enabled collaborative design process

management: application to multichip module design, IEEE Internatinal

conference on Systems Man & Cyberneti Cs, 11-14 Oct., SAN DIEGO, CA USA,

3(5): 2625-2630.

36. R. Wanger, G. Castanotto, K. Goldberg, SPIE 1995, 2596:192-195

37. M. J. Bailey, 1995, Tele-manufacturing: rapid prototyping on the Internet. TEEE

Computer Graphics and Applications 1995, 20-26 November.

38. IC. L. Krause, 1998, Global product data management. In: Proceedings o f 2nd

International Conference on Concurrent Engineering: Methods and Tools.

183

References

39. C. Wang, C. Chu and C. Yin, 2001, Implementation of remote robot

manufacturing over Internet, Computers in Industry, 45(2001):215-219.

40. E. V. Name, G. Eagelstein, 2001, Taking a look at Internet-based design in the

year 2001. Electronic Design, January, pages 42-50.

41. U. Roy, B. Bharadwaj, S. S. Kodkani, M. Cargian, 1997, Product development in

a collaborative design. Concurrent Engng: Res Appl 1997, 5(4): 347-65.

42. J. Li, H. Zhang, J. Wang, and G. Xiong, 2000, Collaborative design method on

network, JNL. OfTsinghua University, 40(9):93-96.

43. H. Wu, H. Zhang, H. Xie and D. Chen, 2000, Web based remote collaborative

design system (Cdesign), Journal o f Tsinghua University (Sci & Tech), 40(5):

62-65.

44. I-G. Chun and I-S. Hong, 2001, The implementation of knowledge-based

recommender system for electronic commerce using Java expert system library,

IEEE Int Symp. On Industrial Electronics Proc., 12-16 June, Pusan, pages 1766-

1770.

45. A. Ballaminut, C. Colonello, M. Donszelmann, E. van Herwijnen, D. Koper, J.

KorhonenM. Litmaath, J. Perl, A. Theodorou, D. Whiteson, E. Wolff, 2001,

WIRED - World Wide Web interactive remote event display, Computer Physics

Communications, 140(1): 266-273.

46. R. Raje, M. Boyles, and S. Fang, 1998, CEV:Collaborative Environment for

Visualization Using Java RMI, ACM Workshop on Java fo r Science and

Engineering Computation.

47. http://www.informatilc.imi-boim.de/~alda/docs/paperICCCBEX.pdf25/01/2005.

48. R. Orfali, and D. Harkey, 1998, Client/Server Programming with Java and

Corba. Canada: John Wiley & Sons Inc. ISBN 0-471-24578-X.

49. H. Kim, S-B. Yoo, and H-C. Lee, 2000, Web-enabled collaborative design

environment, ETRL JN L 22(3): 27-40.

50. J. Li, H. Zhang, J. Wang, and G. Xiong, 2000, Collaborative design method on

network, JNL. OfTsinghua University, 40(9): 93-96.

51. U. S. Ong, H. B. Gooi, S. F. Lee, 2001, Java-based applications for accessing

power system data via intranet, extranet and internet, Int. Jnl. O f Electrical

Power & Energy Systems, 23(4): 273-284.

184

http://www.informatilc.imi-boim.de/~alda/docs/paperICCCBEX.pdf25/01/2005

References

52. C.C. Madni and A. M. Madni, 1998, Web-enabled collaborative design process

management: application to multichip module design, IEEE Internatinal

conference on Systems Man & Cyberneti Cs., 11-14 Oct, SAN DIEGO, CA USA,

5(3): 2625-2630.

53. D. W. Denbo and C.R. Windsor, 1999, Oceans MTS/IEEE-Riding the crest,

International Ocean the 21st Century Conference, 13-16 Sept, SEATTLE USA,

2:1076-2079.

54. K. J. Farrar and J. S. Hwang, CEE Interfacing for Khoros; Visual interactive

programming for enterprise research (VIPER), Proceedings- SPIE The

International, Enabling Technology fo r Simulation Seen CE IV, 25-27 April,

ORLANDO, FL USA, 4026:247-256

55. S. B. Yoo, Y. Kim, 2002, Web based knowledge management for sharing

product data in virtual enterprises, International Journal o f Production

Economics, 75(1): 173-183

56. R. M. Hauch, S. W. Jacobs, S. W. Prey, and H. L. Samsel, 1999, A distributed

software environment for aerospace product development,

AIAA/ASME/ASCE/AHS/ASC Structures Struct Ural Dynamics & Materials

Conference, 12-15 April, St. Louis Mo USA, 2:1385-1394

57. K-T. Lee, M-L. L. Roh and S. Cho, 2001, Multidisciplinary design optimisation

of mechanical systems using collaborative optimisation approach, International

Journal o f Vehicle Design, 25(4):353-368.

58. J. Sang, G. Follen, C. Kim, I. Lopez and S. Townsend, 2001, CORBA wrapping

of legacy scientific applications using remote variable scheme, International

Conference o f Parallel & Distributed System, 26-29 Jun, Kyongju

59. http://www.w3.ore/ accessed on 01/Feb/2005

60. Y. Ouyang, M. Tang, J. Lin and J. Dong, 2004, Distributed collaborative CAD

system based on Web Seivice, Journal o f Zhejiang University SCIENCE SCI,

5(5): 579-586.

61. T. Kostienko, W. Mueller, A. Pawlak, T. Schattkowsky, 2003, An advanced

infrastructure for collaborative engineering in electronic design automation, CE:

The Vision fo r the Future Generation in Research and Applications, R. Jardim-

Goncalves et al. (eds) Sets & Zeitlinger, Lisse, ISBN 90 5809 622 X.

185

http://www.w3.ore/

References

62. K. Hodota, 1997, Product and information life-cycle with product configuration

database system on Internet, in 21 st Century Commerce & CALS EXPO

International Conference '97.

63. A. McKay, F. Erens, and M. S. Bloor, , 1996, Relating product definition and

product variety, Research in Engineering Design, 2:63-80.

64. O. A. Suarez, J. L. A. Foronda, and F. M. Abreu, 1998, Standard based

framework for the development of manufacturing control system, International

Journal o f Computer Integrated Manufacturing System, 11:401-415.

65. J. K. Wu, T. H. Liu, and G. W. Fischer, 1992, An integrated PDES/STEP based

information model for CAE and CAM applications, The Second International

Conference on Automation Technology, pagesl79-187.

66. Y. M. Chen and Y. T. Hsiao, 1997, A collaborative data management framework

for concurrent product and process development, International Journal o f

Computer Integrated Manufacturing System, 10:446-449.

67. R. Jordim-Goncalves et al., Implementaiton of computer integrated

manufacturing systems using SIP: CIM case studies using a STEP approach,

International Journal o f Computer Integrated Manufacturing systems using SIP:

CIM case studies using a STEP approach, International Journal o f Computer

Integrated Manufacturing System, 10.

68. Y. V. R. Reddy et al., 1993, Computer support for concurrent engineering,

Computer, 26:12-16.

69. G. L. Smith and J. C. Muller, 1994, PreAmp—a pre-competitive project in

intelligent manufacturing technology: an architecture to demonstrate concurrent

engineering and information sharing, Concurrent Engineering: Research and

Applications, 2:107-115.

70. M. S. Bloor, J. Owen, 1991, CAD/CAM product-data exchange: the next step,

Computer-aided Design, 23:237-243.

71. NIST, Industrial Automation Systems — http ://www.nist. gov/ (accessed on

15/07/2005).

72. M. P. Bhandarkar, B. Downie, M. Harwick, R. Nagi, 2000, Migrating from IGES

to STEP: one to one translation of IGES drawing to STEP drafting data,

Computers in Industry, 41:261-277.

186

http://www.nist

References

73. P-Y. Chao and Y-C. Wang, 2001, A data exchange framework for networked

CAD/CAM, Computer In Industry, 44:131-140.

74. Y. Oh, S-H. Plan, H. Suh, 2001, Mapping product structures between CAD and

PDM systems using UML, Computer-Aided Design, 33(2001):521-529.

75. Y. P. Zhang, C. C. Zhang, H. P. B. Wang, 2000, An Internet based STEP data

exchange framework for virtual enterprises, Computers in Industry, 41(2000):51-

63.

76. M. Hardwick, D. L. Spooner, T. Rando, IC. C. Morris, 1996, Sharing

manufacturing information in virtual enterprises, Communications of ACM 39

(1996) 46-54.

77. W. C. Regli, 1997, Internet-enabled computer-aided design. IEEE Internet

Computing, January.

78. E. Ly, 1997, Distributed JAVA applet for project management on the Web, IEEE

Internet Computing, 2(1997) :21-26.

79. D. Brown, K. Wersprille, 1997, The OCAI initiative (open Cax architecture and

interoperability), Proceedings o f CALS Expo. International 1997, Tokyo, pages

37-41.

80. T. Kimuro IT. Akasaka, Y. Nishino, New approach for searching distributed

databases by agent technology, Proceedings o f the CALS Expo. International

1997, Tokyo, pages 13-22.

81. P-Y. Chao, Y-C. Wang, 2001, A data exchange framework for networked

CAD/CAM, Computers in Industry, 44(2001): 131-140.

82. K-S. Chin, Y. Zhao and C. K. Mok, 2002, STEP-based multiview integrated

product modelling for concurrent engineering, The International Journal o f

Advanced Manufacturing Technology, 20:896-906.

83. Y. X. Xue, Web-based distributed system and database modelling for concurrent

design, Computer-Aided Design, 35:433-452.

84. H. V. Leong, K. S. Ho, and W. Lam, 2003, Web-based Workflow Framework

with CORBA, Concurrent Engineering: Research and Applications, Vol 2.

85. S. C. F. Chan, T. Dillon and V. T. Y. Ng, 2003, Exchanging STEP Data Through

XML-based Mediators, CE CONCURRENT ENGINEERING: Research and

Applications, March, 11(1).

187

References

86. H. Kim, J-Y. Lee, S-B. Han, 1999, Process-centric distributed collaborative

design, Proceedings o f 1999 ASME DETC, DETC99/EIM-9081, Las Vegas,

Nevada.

87. H. Kin, S-B. Yoo, and H-C. Lee, 2000, Web-enabled collaborative design

environment, ETRI Journal, 27-40 September, 22(3).

88. M. P. Case, S. C. Y. Lu, 1996, The discourse model for collaborative engineering

design, Computer-Aided Design 28(5):333-345.

89. X. Li, X. Zhou and X. Ruan, 2001, Research on key techniques of collaborative

design system, High Technology Letters, 7(2):51-53.

90. A. M. Malkawi, R. S. Scrinivasan, Y. K. Yi and R. Choudhary, 2003,

Performance-based design evolution: the use of genetic algorithms and CFD,

Eight International INPSA Conference, August 11-14, Eindhoven, Netherlands.

91. F. Hoffmann and G. Pfister, Automatic Design of Hierarchical Fuzzy Controllers

Using Genetic Algorithms, http://www.nada.kth.se/~hoffmann/eufit94.pdf,

02/Feb/2005.

92. AGMA 2101-C95, 1995, Fundamental rating factors and calculation methods for

involute spur and helical gear (Metric version), American Gear Manufacturers

Association.

93. DIN 868, publication: 1976-12 General definitions and specification factors for

gears, gear pairs and gear trains.

94. ISO 6336-1: 1996 Calculation of load capacity of spur and helical gears—Part 1:

Basic principles, introduction and general influence factors.

95. ISO 6336-2: 1996 Calculation of load capacity of spur and helical gears—Part 2:

Calculation of surface durability (pitting).

96. ISO 6336-3: 1996 Calculation of load capacity of spur and helical gears—Part 3:

Calculation of tooth bending strength.

97. ISO 6336-5: 1996 Calculation of load capacity of spur and helical gears—Part 5:

Strength and quality of materials.

98. BS 436: Part 3, 1986, Method of Calculation of Contact and Root Bending Stress

Limitations for Metallic Involute Gears, British Standards Institution.

99. http://www.engineersedge.com/gear_design.htm, 05/Jun/2005

188

http://www.nada.kth.se/~hoffmann/eufit94.pdf
http://www.engineersedge.com/gear_design.htm

References

100. I. C. Parmee, 2001, Evolutionary and Adaptive Computing in Engineering

Design, Springer-Verlag London Limited.

101. MAAG Gear Company LTD. MAAG Gear Book CH-8023 Zurich, Switzerland.

102. D. W. Dudley, 1992, Dudley’s Gear Handbook McGraw-Hill Book Company,

Inc., New York.

103. M. Gen and R. Cheng, 1997, Genetic Algorithms and Engineering Design, John

Wiley & Sons, Inc. Canada.

104. J. H. Holland, 1992, Adaptation in Nature and Artificial Systems. MIT Press.

105. A. Kurpati, S. Azarm and J. Wu, 2002, Constraint handling improvements for

multiobjective genetic algorithms, Structural and Multidisciplinary Optimisation,

23:204-213

106. httn://www.w3.org/TR/2002/WD-ws-arch-20021114/#roles (accessed on

15/07/2005).

107. http://en.wildpedia.org/wiki/Inter-process communication (accessed on

15/07/2005).

108. http://www.oasis-open.org/home/index.php (accessed on 15/07/2005).

109. http://www.w3.org/ (accessed on 15/07/2005).

110. http://www.ws-i.org/ (accessed on 15/07/2005).

111. http://en.wikipedia.org/wilci/Simple Object Access Protocol (accessed on

15/07/2005).

112. http://iava.sun.com/xml/iaxrpc/index.isp (accessed on 15/07/2005).

113. http://www.xmlrpc.com/ (accessed on 15/07/2005).

114. http://www.webopedia.eom/TERM/X/XML.html (accessed on 15/07/2005).

115. http://www2002.org/CDRQM/alternate/395/ (accessed on 15/07/2005).

116. http://www.capeclear.com/ (accessed on 15/07/2005).

117. http://www.idc.co.za/ (accessed on 15/07/2005).

118. G. Laszewski, M. Parashar, S. Verma, J. Gawor, K. Keahey and N. Rehn, A

CORBA commodity Grid kit, http: //www. caip .mtgers. edu/T AS SL/Paper s/

corbacog-ccpe-gceOl .pdf (accessed on 15/07/2005).

119. S. Ji and D. Su, 2005, A heterogeneous collaborative design environment with

dynamic management features, Proceeding o f the 9th International Conference

189

http://www.w3.org/TR/2002/WD-ws-arch-20021114/%23roles
http://en.wildpedia.org/wiki/Inter-process
http://www.oasis-open.org/home/index.php
http://www.w3.org/
http://www.ws-i.org/
http://en.wikipedia.org/wilci/Simple
http://iava.sun.com/xml/iaxrpc/index.isp
http://www.xmlrpc.com/
http://www.webopedia.eom/TERM/X/XML.html
http://www2002.org/CDRQM/alternate/395/
http://www.capeclear.com/
http://www.idc.co.za/

References

on Computer Supported Cooperative Work in Design, Coventry, 24-26 May,

United Kingdom

120. S. Ji, D. Su and J. Li, 2005, Integration, management and communication of

heterogeneous resources based on Web technologies, Lecture Notes in computer

Science (accepted).

121. Andrews, G.G. and Argent, J. D. (1992). Computer-Aided Optimal Gear Design,

International Power Transmission and Gearing Conference, vol. 1, ASME.

122. EL-Bahloul, A.M.M. (1992). CAD for Gears: Spur, Helical and Double Helical

Gears, Mansoura University Journal 17(3).

123. Jau regui, J.C. and Sanalvador, R. L. (1992). Software for Optimimum Gear

Design, Mechanical Design and Synthesis, DE-Vol. 46, ASME.

124. Metwalli, S.M. and El-danaf, E.A. (August 1996). CAD and Optimisation of

Spur and Helical Gear Set. Proceedings of ASME Design Engineering Technical

Conferences and Computer in Engineering Conference, Irvine, California.

125. Yiu-Wing, C. and Siang-Kok, S. (1998). An Expert System for Gearing Design

Application, International Journal of Computer Applications in Tech ology, Vol

11-26.

126. El-Sayed Aziz and C. Chassapis, Knowledge-based Geometry Generation for

Spur and Helical Gears, Concurrent Engineering: Research and Applications, Vol

10 (3): 251-261.

127. K. Mehlhorn, 1999, LEDA-a platform of combinatorial and geometric computing,

Cambridge University Press.

128. A. Riedl, 2001, A CORBA/XML-based architecture for distributed network

planning tools, ICEIS 2001, Juli, Setubal.

190

Appendix A The Main Features o f CORBA

Appendix A The Main Features of CORBA

The main features of CORBA are:

• ORB Core

• OMG Interface Definition Language (OMGIDL)

• Interface Repository

• Language Mapping

• Stubs and Skeletons

• Dynamic Invocation and Dispatch

• Object Adapters

• Inter-ORB Protocols

Most of these are illustrated in Figure 3.4, which shows the components of CORBA

relate to one another. Each component is described in detail below.

A.1 The Object Request Broker (ORB)
ORB is the central component in CORBA. It acts as a mediator between client requests

and object implementations. ORB provides mechanisms for invoking methods on local

or remote objects. These mechanisms automate the search for object location, object

creation, activation and object management. Besides that, ORB also provides means

for message exchange between objects. ORB is defined as a logical set of processes.

Any ORB implementation that provides the appropriate interface is acceptable.

Different ORBs may have different implementations extending from client-resident

ORBs to server-based ORBs, ORBs that are part of an operating system or simple

library-based ORB.

191

Appendix A The Main Features o f CORBA

As can be seen in Figure 3.3, an ORB has two different interfaces; it communicates

with the client through the client interface and with the server through the server

interface. If a client wants to make a request, it can do so through the ORB’s client

interface. Similarly, when the ORB passes this request to the server (object

implementation), it uses its server interface.

The key feature of the ORB is the transparency of how it facilitates client/object

communication. Ordinarily, the ORB hides the following: object location, object

implementation, object execution state, and object communication mechanisms.

A.2 The Interface Definition Language (IDL)
The development of flexible distributed applications on heterogeneous platforms

requires a strict separation of interfaces from implementations. Such separation ensures:

• Platform independence and

• Language independence

An Interface Definition Language (IDL) helps to accomplish this separation. OMG

IDL is an object-oriented language used for defining interfaces to objects in CORBA.

These interfaces are then used by clients to access object implementations.

An interface definition written in OMG IDL completely defines the interface of an

object and fully specifies the parameters of each object’s method (operation). An OMG

IDL interface provides the information needed to develop clients that use the object’s

operations. Clients (and servers) are not written in OMG IDL, which is purely a

descriptive language, but in languages for which so-called “mappings” from OMG

IDL have been defined. There are many mappings already available, such as the

mappings to C, C++ and SmallTalk, Java, Ada95, COBOL, Modula 3.

A.3 Static Stubs and Skeletons
In addition to generating programming language types, OMG IDL language compilers

and translators also generate client-side stubs and server-side skeletons. A stub is a

192

Appendix A The Main Features o f CORBA

mechanism that effectively creates and issues requests on behalf of a client, while a

skeleton is a mechanism that delivers requests to the CORBA object implementation.

After an IDL file is written, it is passed to an IDL compiler that creates source code for

both the client and the server.

The OMG has specified official language mappings for IDL to Java, C, C++, Smalltalk,

and COBOL. Thus, the IDL compiler supplied by the vendor does the work of

appropriately mapping the IDL definitions to their appropriate languages types.

A.4 Dynamic Invocation and Dispatch
In addition to static invocation via stubs and skeletons, CORBA supports two

interfaces for dynamic invocation:

• Dynamic Invocation Interface (DII) - which supports dynamic client request

invocation;

• Dynamic Skeleton Interface (DSI) - which provides dynamic dispatch to

objects.

Static stubs and skeletons must be generated at build time and compiled in with your

source code. With the DII and the DSI, it is not necessaiy to use IDL to generate static

stubs and skeletons. Rather, the DII provides clients an interface by which they can

dynamically query the ORB’s Interface Repositoiy for available objects and construct

method requests on-the-fly. The Interface Repositoiy is a standard CORBA component,

a container of CORBA interfaces that are implemented by servers in the current

enviromnent. Similarly, the server object does not need to be compiled in with a static

skeleton to receive requests. The DSI automatically enables new objects to receive

request without having inherited from the IDL generated skeleton.

A.5 Object Adapters
The final subcomponent of CORBA, the Object Adapter (OA), serves as the glue

between CORBA object implementations and the ORB itself. It is the main way by

193

Appendix A The Main Features o f CORBA

which Object Implementations access services via the ORB. The OA serves the

following several important functions for the object implementation:

• Generation and mapping of object references to their implementations

• Registrations of implementations

• Activation and deactivation of object implementation

A.6 Inter-ORB Protocols
The General Inter-ORB Protocol (GIOP) and the HOP are protocols specified in

CORBA to provide the interoperability between the different ORBs provided by

different ORB vendors. GIOP specifies the format of the messages and a common

representation of the data that will be transferred among the ORBs. This protocol was

designed to run over a connection-oriented transport layer protocol, as in the case of

TCP/IP. HOP defined how GIOP messages are to be transmitted over the TCP/IP

protocol. In addition, HOP also provides the means to use the Internet as a powerful

communication mechanism between ORBs since this protocol allows interaction

among remotely distributed ORBs.

194

Appendix B Java Platform Independence

Appendix B Java Platform Independence

Java is platform independent at both the source and the binary level. Platform

independence at the source level means that you can move Java sources files from

system to system and compiled and executed cleanly on any systems. Java compiled

binary files are also platform independent and can run on multiple platforms (if they

have a Java virtual machine available) without the need to recompile the source.

Normally, when a program written in C++ or in most other languages is compiled, the

compiler translates the program into machine code or processor instructions. Those

instructions are specific to the processor the computer is running - so, for example, if a

program code is compiled on an Intel-based system, the resulting program will run

only on other Intel-based systems. If the same program is needed to use on another

system, the developer has to go back to the original source code, get a compiler for that

system, and recompile the code so that the program is made specific to that system.

Figure B .l shows the result of this system: multiple executable for multiple systems.

In contrast, things are different when source code is written in Java. The Java

development environment actually has two parts: a Java compiler and a Java

interpreter. The Java compiler takes the Java program and, instead of generating

machine codes from the source files, it generates bytecodes. Bytecodes are instructions

that look a lot like machine code, but are not specific to any one processor.

To execute a Java program, it is needed to run a program called a bytecode interpreter,

which in turn reads the bytecodes and executes the Java program (see Figure B.2). The

Java bytecode interpreter is often also called the Java virtual machine or the Java

runtime.

195

Appendix B Java Platform Independence

The C++

Binary File
(Pentium)

Compiler (Pentium) Binary File
(SPARC)

Compiler (SPARC)
Binary File
(PowerPC)

Compiler (PowerPC)

Figure B. 1 Traditional compiled programs

The C++
Java Bytecode
(platform-
independent)

Java Compiler

Java Interpreter
(Win32)

Java Interpreter
(Solaris^

Java Interpreter
(MacOS)

Figure B.2 Java programs

In this application, Java applications and Java applets are used for the development of

client-side user interfaces in the client/server system, and Java Servlets are used for the

development of the service in the server-side.

196

Appendix C Involute Spur and Helical Gear Design

Appendix C Involute Spur and Helical Gear
Design

A gear is a toothed wheel that is usually, but not necessarily, round. The teeth may

have any of an almost infinite variety of profiles. The purpose of gearing is to transmit

motion from one shaft to another. This motion transfer may be accompanied by

changes in direction, speed, and shaft torque.

Gear design is one of the classical topics of mechanical engineering design. The

classical route followed for the design of gears is to appeal to standards, like BS,

AGMA, DIN or ISO [92—98]. These standards are based on extremely large

collections of results and empirical rules from practical experience in a vast range of

engineering applications. They provide a set of formulae, rules and charts to design the

gearing taking into account various working conditions and several aspects of their

performance, such as the power level, noise, lubrication conditions, wear rate,

likelihood of impact, pitting, and corrosion. Nevertheless, actual gear design involves

very difficult and complex calculations and trial and error, and thus often requires an

iterative process to determine those design parameters that would satisfy performance

and strength requirements, which would result in an efficient and reliable operation for

gear transmission system.

In this project, gear design problem is used as case study to explore the possibility of

proposed collaborative system for improving design efficiency. In this chapter,

overview of basic knowledge of gears is first given, and then relative knowledge,

formulae, and experience to gear performance, gear strength, and specific sliding are

presented. Especially gear geometrical design with rack shift and its constraint

197

Appendix C Involute Spur and Helical Gear Design

conditions are identified. The calculations use procedures, algorithms and data from

standards ANSI, ISO, DIN, BS and specialised literature.

C.1 Basic Knowledge of Gears

C.1.1 Gear Type
In general, gears may be divided into three classifications based on the arrangement of

the axes of the gear pair, e.g. parallel (spur, helical, and Internal spur or helical),

perpendicular (crossed helical, cylinder worm gearing) or intersect (bevel), for the

different requirement of application. Table C.l gives features and their application

environment of the common gears [99].

Table C .l Gears applications

Type Precision
rating Features Applications Comments

regarding precision

Spur Excellent Parallel
shafting,
high speeds and
loads,
highest
efficiency

Broadly applicable to a
variety o f applications
and wide range o f
velocity ratios

Simplest tooth elements
offering maximum precision.
First choice, recommended
for all gear meshes, except
where veiy high speeds and
loads or special features of
other types, such as right -
angle drive, cannot be
avoided.

Helical Good Parallel
shafting. High
speeds,
high loads

Most applicable to
high speeds and loads.
Also used wherever
spurs and are used.

Equivalent quality to spurs
except for complication o f
helix angle. Recommended
for all high - speed and high
- load meshes. Axial thrust
component must be
accommodated.

Internal
(spur &
helical)

Fair Parallel shafts
High speeds
High loads

Internal drives
requiring high speeds
and high loads; offers
how sliding and high
stress loading; good
for high capacity, long
life. Used in planetary
gears to produce large
reduction ratios.

Not recommended for
precision meshes because o f
design o f design, fabrication,
and inspection limitations.
Should only be used when
internal features is
necessaiy.

198

Appendix C Involute Spur and Helical Gear Design

Bevel Fair to
good

Intersecting
shafts
High speeds
High loads

Suitable for 1:1 and
higher velocity ratios
and for right - angle
meshes (and other
angles)

Good choice for right -
angle drive, particularly low
ratios.
However, complicated tooth
form and fabrication limits
achievement o f precision.

Crossed
helical

Poor Skewed
shafting
Point contact
High sliding
Low speeds
Light loads

Relatively how
velocity ratio; low
speeds and light loads
only.
Any angle skew shafts.

To be avoided for precision
meshes.
Point contact limits capacity
and precision.
Suitable for right - angle
drives if light load.
A less expensive substitute
for bevel gears. Good
lubrication essential because
o f point contact and high
sliding action.

Cylindrical
Worm

Gearing

Fair to
good

Right - angle
skew shafts;
high velocity
ratio; high
speeds and
loads; low
efficiency; most
designs;
nonreversible

High velocity ratio
Angular meshes
High loads

Worm can be made to high
precision, but worm gear has
inherent limitations.
To be considered for average
precision meshes, but can be
o f high precision with care.
Best choice for combination
high velocity ratio and right
- angle drive. High sliding
requires excellent
lubrication.

In this project, involute spur and helical gears, as shown in Figure C .l, are used as the

case of collaborative design.

Figure C .l Spur and helical gears

C.1.2 Properties of Involute
An involute is the locus of a point on a straight line which rolls without slipping round

the circumference of a stationary circular disc, see Figure C.2. The stationary circular

199

Appendix C Involute Spur and Helical Gear Design

disc represents the base circle for the involute tooth profile. The parametric equations

for the polar coordinates of the involute are:

rk =rb /c o sa k (C-l)

0k - invak = tan a k - a k (C-2)

a k is the pressure angle at a point K on the involute, angle between the force F and

velocity v k . rb is the radii of the base circle.

i n v o l u t e b a s e c i r c l e

Figure C.2 Involute curve o f gear profile

C.1.3 Basic Geometrical Parameters of Gears
The design of the geometry substantially affects a number of other parameters such as

functionality, safety, durability or price. In this section, basic parameters of gears are

identified.

The involute is used for most spur and helical gears. As shown in Figure C.3, the basic

geometrical parameters of a spur gear with involute profile are described below.

Number o f teeth z

200

Appendix C Involute Spur and Helical Gear Design

Determination of the optimal number of teeth is not an unambiguous task and cannot

be solved directly. Numbers of teeth affect mesh conditions, noise, efficiency and

production costs. Therefore, the number of teeth is chosen and specified according to

qualitative and strength indices.

Invot.u'te

Roo-t FiUe-t

Figure C.3 Spur gear geometry

A generally applicable rule states that increasing the number o f teeth (with the same

axis distance) leads to:

• increase in loading capacity of the surface (contact, seizure, wearing)

• improvement in the gearing coefficient

• decrease in loading capacity in bend

• reduction in production costs

The rule is that higher numbers of teeth are chosen for higher output powers and lower

transmission ratios.

Normal pressure angle a

Pressure angle represents the angle at which the force is transmitted between the teeth.

The normal pressure angle is measured from the tangent of the reference circle. This

angle also determines parameters of the basic profile and is standardised to an angle of

201

Appendix C Involute Spur and Helical Gear Design

20°. Other normal pressure angles are also employed for special applications, e.g. 15°,

17.5°, 22.5° and 25°.

a - 15° is for certain printing machinery and kinematically exacting gear drives, such

as for the movement of telescopes or radar reflectors.

a =17.5° is for marine gears with deep teeth where particularly quiet running is

required.

a = 22.5° and 25° is for cased where the flanks are subjected to extremely high contact

stresses.

Changing the angle has a variety of effects upon the tooth and the stresses acting upon

it. Increasing the pressure angle makes the tooth thicker and increases the radii of

curvature at the pitch line. The effects of this will be to improve the bending strength,

increasing loading capacity in contact and wear. An additional effect of the increasing

the pressure angle is that it reduces the contact ratio.

Module (m or mn):

The module represents the ratio of the reference circle diameter to the number of teeth

on the gear and therefore, defines the size of the teeth. The lower the module, the

smaller the teeth and thus the higher the stresses acting on them for the same power

transfer. It is generally applicable that for a higher number of teeth it is possible to use

a smaller module and vice versa.

The module has been standardised. The standard modules could be selected from BS

436-2:1970, as shown in Table C.2. The standard modules to the helical gears are the

normal modules. Series 1 represents preferred modules, and series 2 the second choice

modules.

Table C.2 Standard normal modules

202

Appendix C Involute Spur and Helical Gear Design

Series 1 1 1.25 1.5 2 2.5 3 4 5 6 8 10 12 16 20 25 32 40 50

Series 2 1.125 1.375 1.75 2.25 2.75 3.5 4.5 5.5 7 9 11 14 18 22 28 36 45

The module is one of basic parameters of gears, which is used to calculate other

geometrical size. In the following formulas, module is used to calculate other

geometrical parameters.

Diameter o f reference circle

d = m * z (C-3)

Pitch on reference circle

p ~ n m (C-4)

Base diameter

d b = mz cos a (C-5)

Addendum o f the generated gear

ha = h ’m (C-6)

Dedendum o f the generated gear

h j - (ha* +c*)m (C-7)

where h* - Addendum coefficient o f the generated g ear , tia - h*aP

h*aP - Rack addendum coefficient

Helix angle p

The helix angle is the inclination of tooth to the direction rotation. The range of the

angle is practical up to a limit of 45°. Increasing the angle has the effect of increasing

the contact ratio. However increasing the helix angle also ahs the effect of increasing

the axial load possibly to a point where the deflection of the shaft is intolerable or the

size of bearings will be too great.

Spur gear (/? = 0) is used with slow speed and highly loaded gearing. Helical gear

(p > 0) is used with high speed gearing; it is characterised by lower noise and higher

loading capacity, enabling the use of a lower number of teeth without undercutting.

203

Appendix C Involute Spur and Helical Gear Design

For the helical gear, as shown in the Figure C.4, all the calculations of the tooth profile

on the transverse section are the same as on spur gear, but the normal parameters such

as mn , h*m ,or a n are standardised. The relationship between transverse and normal

parameters is given by the below.

Figure C.4 Geometrical parameters o f helical gear

m ~ m n = mt cos /3 (C-8)

K " =K n= K ,< lc °sP (C-9)

c = c * = c* / cos/? (C-10)

tan a - tan a n ~ tan a t cos /? (C-11)

Face width ratio

b bcosB
t d = — = ------- P- (C-12)

ax mzx

Face width ratio is the ratio of the width of the gear to the diameter (<j)d - b i d) and

determines the load distribution across the gear face. The upper limit of this ratio can

be determined according to the Table C.3, relating to material properties, heat

treatment and application.

Table C.3 Face width ratio

Gear Surface
Gear mounting relative to bearings
Symmetric Asymmetric

204

Appendix C Involute Spur and Helical Gear Design

H a r d n e s s < 1 8 0 H B < 1.0 < 1.0

H a r d n e s s > 1 8 0 H B < 1.0 < 1.0

I n d u c t i o n o r C a s e H a r d e n e d < 1.0 < 0 .9

N i t r i d e d < 0 .8 < 0 .6

C.1.4 Basic Rack Profile
The basic rack profile is fundamental to the specification of involute gears. It

determines the tooth profile on the gear, the generating rack profile and associated rack

shaped tools. The relationship between them is shown in Figure C.5.

Rack sh a p ed to o l
e n e r a t in g r a c k p r o f i le) Datum p lane

S pur g e a r R e f e r e n c e cy lin d er B asic r a c k p r o file

Figure C.5 Relation between spur gear, basic rack and rack shaped tool

With the standard rack profile, the tooth thickness is equal to the tooth space width at

the profile datum line and hence equal to half the pitch, gear and mating gear can be

cut with the same tool. The entire dimensions for defining the basic rack profile must

be contained in the tooth data. The parameters relevant to rack are listed as below.

Rack addendum haP

Rack dedendum hjp h™ - (h*aP +c*P)m

The fillet radius coefficient p*/fp

The fille t radius pjp p jV - p*fP m

205

Appendix C Involute Spur and Helical Gear Design

The rack tip radius is related to the root profile of the generated tooth and is used

during calculation of the tooth’s performance. The root profile is positioned within the

clearance region of the dedendum between the root circle and the involute of the tooth,

as shown in Figure C.3.

The bottom clearance Cp determines the greatest possible fillet radius Pjpimxm . The

fillet radius p jpmaxm however must not be greater than that resulting in a full fillet

root. The condition for this is:

f .

<
1 - sin#

j l ffi \

P f P r m x ^ T ^ — - “ 7 —
(C-13)

C.2 Addendum Modification

C.2.1 Addendum Modification
When gears are produced by a generating process, the datum line of the basic rack

need not necessarily form a tangent to the reference circle. The tooth form can be

shifting the datum line from the tangential position. The involute shape of the tooth

profile is retained, and the effect is merely to use parts further from or nearer to the

origin of the same involute. The radial displacement from the tangential position is

termed addendum modification. The displacement is considered positive when in the

direction away from the centre of the gear and negative when nearer towards the centre.

C.2.2 Application Types of Addendum Modification
a) Standard gearing = x l = x 2 = 0)

This can be thought of as a specific case of addendum modification, as shown in

Figure C.6a, with the gearing angle a equalling to the pressure angle on the reference

circles and the centre distance a equalling to standard centre distance a .

This type of transmission has the features of simple design, convenient usage and easy

-to-wear due to the weak gear root.

206

Appendix C Involute Spur and Helical Gear Design

b) Height profile shift = xx + x2 - 0, Xj = - x 2)

As shown in Figure C.6b, with this type of transmission the centre-distance remains

the same as for the standard gears and is not affected by the profile shift and gearing

angle a is equal to the pressure angle on the reference circle a . Only addendum and

dedendum height is changed.

*1 5=5 “*2
a1- a
a - a.
y — 0
k = 0

x i + x 2 >0
a > > a
a > a .
y > 0
'* > 0

Xj + x2 < 0

a ' < a
a < a ,
y < Q
k > 0

d)

Figure C.6 Application types o f addendum modification

K \ = :(K + x i) m hn ={h’a +c - x x)m

ha2 = (hl - x i) m hf i ={h*a +c + x l)m

(C-14)

(C-15)

As = 0 , The positive shift the one gear (usually the pinion, as it has the lower

number of teeth and will therefore, reduce the possibility for undercutting) is equal to

the negative shift of the mating gear, - x l + x2 = 0.

This is generally suitable for the need of smaller structural size. Meanwhile the load

carrying capacity of the pinion is improved and the balance distribution of pinion and

wheel strength can be achieved.

207

Appendix C Involute Spur and Helical Gear Design

c) Angle profile shift — positive gearing ~ x { +x2 > 0)

As shown in Figure C.6c, the working angle a\ is greater than the pressure angle 011

the reference angle of standard gears, e.g. the generating pressure angle a t , and the

centre distance is greater than the standard centre distance a > a . The amount by

which the centre distance deviates from the sum of the reference circle radii is known

as the centre distance modification y • m and the working pressure angle a\ is given

by the formula below and is shown in Figure C.7. y is called as the centre distance

modification coefficient.

Figure C.7 Mating gears with centre distance modification y.m

d , + d 2 xos a,y - m = a - a = — —(L- l)
2 cos a t '

where tan a, = iana ; a/ - arctan
cos /?

^tan
vcos f t j

, . 2(x, + x 7) , ^inva. =inva, + —M-----^-tana , a = arcinv
z fy + u) v

2(x« + x 9)
w v a (+ —M -----— tan a

z i (1+ u)

(C-16)

u = z 2 / z l9 representing the transmission ratio.

208

Appendix C Involute Spur and Helical Gear Design

For mating external spur and helical gears, the centre distance modification is always

smaller than the sum of the addendum modifications. An addendum shortening of

k • m is necessary to maintain is therefore necessary to maintain the basic rack profile

bottom clearance cP . k is called as the addendum shortening coefficient. In the case of

positive transmission, because of > 0, then y > 0 , k > 0 .

. (z ,+ z 2) inva .'-inva , (z, + z 7\ (cos a, „k = - y - — ---— * ---- ------- - - --- LL * L _ l
2 ta n a 2cos J3 ^ c o sa /

(C-17)

This type of modification allows for a fixed centre distance to be achieved when

different to the standard and achieve the smaller structural size, the slighter wearing of

gear teeth, and the improved load carrying capacity.

d) Angle profile shift — negative = xx + x2 < 0)

As shown in Figure C.6d, with this type of modification both the reference circles are

crossed, a t < a t , a < a , y < 0 , but k > 0 . This is used for the fixed centre distance

with certain degree of decrease on the load carrying capacity.

C.2.3 Necessary Calculations for Addendum Modification

C . 2 .3 . 1 A d d e n d u m c o e f f i c i e n t A*

Addendum coefficient, A*, defines the length of the tooth in terms of the module, as

illustrated in Figure C.3. The addendum (ha) is taken as the region from the reference

circle to the tip of the tooth and the dedendum (Ay) as the region from the reference

circle to the root of the tooth.

For the gears with profile shift the addendum and dedendum are given by the formula

below.

. (z i + z j) invoct '-in va t (z, + z0). (cosa, ^Ic = x T - y = U. 12* L L_AJ IL * ------I— i (C-18)
2 tan a 2 cos /? vcosa,

209

Appendix C Involute Spur and Helical Gear Design

tan <2
where tan a , = ----- - , a , =arctan

mva, = mva, +

cos J3

2(x, + x2)

^ tan a N
cos J3

ta n a , a\ —arcinv
z,(l +u

u - z 2 / z x, representing the transmission ratio.

K \ = ™ t (K t + x t i) - k * m t

hf\ =™t (K<t+c * ~ x a)

K i = m t (h*a t+ X t2)-k* m t

hf2 - mt (h*at + c* - x t2)

where m, = mn / cos f5 = m l cos (d

K l = K n C O S/? = A* COS/S

* * n * nct = cn cos fd = cn cos fd

Xl\ - Xn\ cos P = Xl cos P

Xl2 =X„2 COS/? = X2 COS/?

invat + + *2)
Zj (l + w)

\
ta n a

(C-19)

(C-20)

(C-21)

(C-22)

Generally, c - 0.25, ha = h*aP - 1 is standard and used for certain applications. In

this project, K = K e = (0.75, 1.25) are another two options.

h * - h*aP = 0.75 is for stub teeth for gear tooth couplings.

ha - h*aP =1.25 is for marine gears with deep teeth.

C . 2 .3 . 2 C e n t r e D i s t a n c e

a = db l+ db2 _ (dx + d2)cosa(1 m z .

2 * co sa , 2 * co sa , 2 cos/?

^ ta n a ^
cos j3

(1 + w)
cos a
cos a

where tana, = ----- - , a , =arctan

mva, = m va , +

cos fd

2(xx + x 2)
tan a , a ' = arcinv

l C1 + u)

u = z 2 / z x, representing the transmission ratio.

m va , +
2(x} + x2)

zi(i + “)
tan a

(C-23)

210

Appendix C Involute Spur and Helical Gear Design

If the centre distance of a gear is given, then the following expression is considered as

an equality constraint. The variable x2 is not independent variable but determined by

the variable x{ and given a .

C . 2 .3 . 3 A s s e s s m e n t o f B e n d i n g S t r e s s
Bending stress calculations

f . . T 2o-F„(crB -o-R)YNYR
J 4 - FP ~ 7 ; v v v \ c, s

V7 B + <7FOr NrRr xPFmin

Actual calculated bending stress

(JF = ~ t r * YFYs YpK AK v K FaK Fp (C-25)

The permissible torque

= 60*103 * Pfp_ (C-26)
2 n nx

Peak torque capacity for bending stress

^Fmax _ jy y ®FY^M^S^Sstat rr\ nn\— - K aK v * ((--27)
J-FP CTpP^F min

Permissible core bending stress

_ ipBcore ®’ Rcoref t . X //~i no\
° FPc°r' (}

Actual core bending stress

1 Fcore = (7 k *

' 2 r ^ 1 Z C eff

\ J
* ^Sred

‘ Ys

Permissible power capacity and torque based on bending stress

bdlnlm}1 1 1 1 1 1 1
P = L_L * -----*---- * ------ *----- *-----*------------- * CTpP (C-30)

60 * 10 / t t Yf Ys Yp Ka Kv

Nominal tangential force for bending stress

(C-29)

FF, ~ - ™ f ^ (C-31)
1

211

Appendix C Involute Spur and Helical Gear Design

(C-32)
V

where, mn , normal module; Ft , nominal tangential force at reference circle;

^F,s,B,FY,M,s,ssta<,M,N,x,sred > factors related to tooth properties and working condition;

YF,s,B,FY,M,s,sstat,M,N,x,Sred> l°ad factors; <j fo , bending endurance limit; crB, ultimate

tensile strength; crR , residual stress; S F , minimum demanded safety factor.

C . 2 .3 . 4 C o n t a c t s t r e s s
Permissible contact stress

crhp — < J LZ VZ RZ MZ WZ XZ N / SHmin (C-33)

Actual contact stress

a H = Z HZ EZ l j * - * ± — + * K AK vK HaK H/l (C-34)\Fm ̂ (w + 1)
h

Permissible power capacity and torque based on contact on contact stress Php and Thp

p _ M f a i 1 t 1 t 1 . 1_____

60*106 (* + 1) Z f,Z i K a
(C-35)

T 6 0 * l o3 php

h p ~ ~ t P T (C ' 3 6)

Peak torque capacity for contact stress

TH max _ rr Jf
— - k ak v

1 HP

r _ 7 -\2

V ̂ HP SH min J
(C-37)

_ 20007^1
PHt (C-38)

d j

F - 1000P" rrPHl - (C-39)
v

C . 2 .3 . 5 S p e c i f i c C o e f f i c i e n t a t B o t h t h e P i n i o n a n d W h e e l G e a r
Gear teeth both roll and slide on one another. Rolling velocity is beneficial because it

entrains lubricant between contact areas, increases oil film thickness, and reduces

212

Appendix C Involute Spur and Helical Gear Design

severity of asperity contacts. Sliding velocity on the other hand generates heat from

friction and increases asperity distress.

The specific sliding ratio is the ratio between the sliding velocity and the absolute

velocity in the tangent plane at the contact point:

m = (vl2 - » n) / >Ja (C-40)

r]1 ={vn - u a) lu n (C-41)

The specific sliding ratio ranges from zero at the rolling point to a negative value in the

addendum and to a positive value in the dedendum, as shown in Figure C.8.

addendum'

dedendum

Figure C.8 Slide specific sliding ratio

tfl.

;72i

ta n a a2 “ tan a
(l + z , / z 2) ta n a - tanaa2 V u)

u +1

tanaal - tan a
(l + Z j /z ,) ta n a ' - t a n a al

(u + l)

(C-42)

(C-43)

Experiments show areas with positive specific sliding ratio are significantly more

prone to micropitting than areas with negative ratio, and a low specific sliding ratio is

beneficial to micropitting resistance.

213

Appendix C Involute Spur and Helical Gear Design

From the figure if actual action line Bx B2 is moved left through addendum shift

modification, ijlmax could be reduced, through choosing a proper addendimi

modification coefficient, rjUmx and /;2max will be equal.

C . 2 .3 . 6 C o n s t r a i n t C o n d i t i o n s
Determination o f the geometry of the gear and tooling teeth for functional design

objectives must be constrained under some conditions otherwise will cause the failure

of design. These constraint conditions includes the check for the mating interference,

the undercutting check of tooling rack, calculation of tooth thickness at the tip, bending

strength and contact strength analysis, and so on.

1. Constraints on strength

Contact strength crHP > crH , (C-43)

Bending strength, crFP > a F (C-44)

Permissible contact strength (thp should be much than actual contact strength crH ,
permissible bending strength orFP should be much that actual bending strength crF .

2.Cutter interference condition

Cutter interference, as shown in Figure C.9, results when during its exit from the tooth

space the end point of the straight of the straight flank of the generating rack profile

generates a trochoidal fillet, which intersects the involute. Part of the involute is cut

away thereby with consequent reduction in the usable profile.

Figure C.9 Undercutting occurring

214

Appendix C Involute Spur and Helical Gear Design

The minimum addendum modification coefficient x which avoids cutter interference

on spur gears is given by:

4. Interference on mating external spur and helical gears

Interference is caused by contact with non-involute parts of the tooth flank of the

mating gear with consequent severe shocks in the transmission. The most frequent

cause is faulty design geometry of the mating gears. If the design follows the guide

lines for external spur and helical gears given below, a subsequent check for

interference is not necessary.

Interference at the roots of mating external gear teeth

2 cos/3
1

(0 4 5)

3. Tooth tip thickness

Saij2 > 0.3m (C-46)

' - g < 0 ,mv o inv » (CAT)

[h*jp - p*jp (l - sin a) - Jwhere h,*tan a,

Sim =a*sm oct ~ g a2, where g a2 * tan a,

Interference at the tips of mating external spur and helical gear teeth

g a2 - a • s in a] < 0 ,

^ - 1 < 0 ,

k e~ \ < 0

(C-48)

(C-49)

(C-50)

5. Slide/roll ratio fo r the gear tooth tips

Slide/roll ratio at pinion tooth tip - < 3
1 - K a

(C-51)

KSlide/roll ratio at gear tooth t i p — < 3
1 ~ K e

(C-52)

215

Appendix C Involute Spur and Helical Gear Design

where K E =
tan a,

con a,
u y tan a al J

tana,
cona,

u + l f tana] '

Rack tip fillet radius coefficient limit checking

6. Variables x l x2 andfixed centre distance a

If a fixed centre distance is given, x1 and x2 are not independent any more. During the

evolution procedure, x2 is determined by the evolution parameter x] and the fixed

centre distance. The calculation is given by the below.

7. Rack tip radius coefficient p jF and a

c * m
Because p ^ . m ^ —- ------ , where cP is taken as 0.25 (typical standard value), p w is

1 -s m a J

dependent on the pressure angle a .

a) If a is to be optimised, then pjp cannot be given a fixed value and must be

optimised.

b) If the value of a is given, then pjp must be given in a proper value, determined by

the above equation. In the program developed, the associate relationship of a and pjp

has been predefined.

8. Total contact ratio s

This is the sum of transverse contact ratio sa and overlap ratio s p

x, + x2 = — — * ------ ------
2 tan a

zx + z2 invat — invai
tan a

x 2 - (xj +X2)-Xj

216

Appendix C Involute Spur and Helical Gear Design

s — sa + s B = — [(zj (tan a alX - tan a \) + z2 (tan a atl - tan a't)] + B sin jB / mnn (C-54)
2/r

For smooth meshing of gears, it is necessary that the other pair of teeth enters in

meshing before the first pair is released. The contact ratio in the face plane says how

many teeth are in meshing simultaneously. With the value s - 1 this corresponds to a

limit case when only one pair of teeth is in meshing at the given moment. With the

value e - 2 , there are two teeth in meshing simultaneously. In case the value is

between 1 < s < 2 , the meshing will include partly one pair of teeth and partly two

pairs. The transverse overlap ratio is applicable in the case of helical gearing (angle

p > 0). Contact ration must always be higher than 1.2.

f >1.2 (C-55)

C.3 Summary
Geometry design of gear with addendum modification (profile addendum) involves

strength analysis, cutting check when manufacturing, motion interfere check, contact

ratio check, specific sliding calculation, and so on. Multiple design criteria involved

causes in the design difficulty.

217

Appendix D Basic Methods Controlling the GA Process

Appendix D Basic Methods Controlling the GA

Process

D.1 Chromosome Representation
In order to tackle a problem using a GA, candidate solutions must be encoded in a

suitable form. The most used way of encoding is a binary string. A chromosome then

could look like the below:

Chromosome 1 1101100100110110

Chromosome 2 1101111000011110

Each chromosome is represented by a binary string. Each bit in the string can represent

some characteristics of the solution.

Of course, there are many other ways of encoding. The encoding depends mainly on

the solved problem. For example, one can encode directly integer or real numbers,

sometimes it is useful to encode some permutations and so on.

D.2 Selection, Crossover and Mutation
Selection operator

Parents are selected according to their fitness. Therefore the calculation of the fitness is

a critical stage within the GA and has the greatest effect upon guiding the search. The

fitness is the measure of how successful the information encoded within the genome

has been toward achieving an optimum solution. The calculation that determines the

fitness of the parameters within the genome is termed the fitness function and consists

of a single or combination of calculations, depending upon the optimisation

requirements. It is these requirements that govern the type and nature of the fitness

218

Appendix D Basic Methods Controlling the GA Process

function, which is unique to the application the GA is being applied to. The aims and

requirements of the search must be clearly identified and the functions modelled to

simulate these goals.

Chromosomes are selected from the population to be parents for crossover. The

problem is how to select these chromosomes. According to Darwin's theory of

evolution the best ones survive to create new offspring. The probabilistic method

determines the probability of reproduction for each chromosome based upon its fitness

in relation to the rest of the population. The better the chromosomes are, the more

chances to be selected they have. The selection process is based upon the associated

probability of the genomes and a random factor. There are many methods in selecting

the best chromosomes, which are roulette wheel selection, Boltzman selection,

tournament selection, rank selection, steady state selection and some others. Examples

in this study are roulette wheel selection.

Imagine a roulette wheel where all the chromosomes in the population are placed. The

size of the section in the roulette wheel is proportional to the value of the fitness

function of every chromosome - the bigger the value is, the larger the section is, as

shown in Figure D.l.

Chromosome 2

Chromosome 1

Chromosome 4

Figure D .l Parent selection roulette wheel

Crossover operator

Crossover operates on selected genes from parent chromosomes and creates new

offspring. The simplest way how to do that is to choose randomly some crossover

219

Appendix D Basic Methods Controlling the GA Process

point and copy everything before this point from the first parent and then copy

everything after the crossover point from the other parent.

Crossover can be illustrated as follows: (| is the crossover point):

Chromosome I 11011 100100110110

Chromosome 2 11011 | 11000011110

Offspring I 11011 | 11000011110

Offspring 2 11011 | 00100110110

The number of chromosomes participating depends upon some preset crossover

probability which establishes the percentage of the population that will be selected as

parents.

There are other ways to make crossover, for example in this project more crossover

points are chosen. Crossover can be quite complicated and depends mainly on the

encoding of chromosomes. Specific crossover made for a specific problem can

improve performance of the genetic algorithm.

Multi-point crossover uses two or more points to divide up the genome. The number of

the points can be fixed, while the location of these points can be set randomly, as

shown below

Chromosome 1 011 | 001 | 010111011010010

Chromosome 2 011 | 011 | 01010010| 101001

Offspring 1 011 | 011 | 01011101 | 101001

Offspring 2 Oil I 001 1 01010010 I 010010

The crossover rate (denoted by p c) is defined as the ratio of the number of offspring

produced in each generation to the population to the size (usually denoted by

pop size). This ratio controls the expected number p c x pop size of chromosomes

to undergo the crossover operation. A higher crossover rate allows exploration of more

of the solution space and reduces the chances of settling for a false optimum; but if this

220

Appendix D Basic Methods Controlling the GA Process

rate is too high, it results in the wastage of a lot of computation time in exploring

unpromising regions of the solution space.

Mutation operator
The action of mutation is relatively simple. In a binary representation mutation merely

flips the randomly selected binary digit from zero to one or vice versa, as shown below

01100101011101010010

01100101010101010010

In genetic algorithms, the mutation operator introduces new genetic material into the

population thereby avoiding stagnation of the genetic pool whilst constantly sampling

widely varying areas of the search space. Its purpose is to maintain diversity within the

population and inhibit premature convergence.

A random mutation probability is pre-set at the beginning of the GA run. The

mutation rate (denoted by p m) is defined as the percentage of the total number of

genes in the population. The mutation rate controls the rate at which new genes that

would have been useful are never tried out; but if it is too high, there will be much

random perturbation, the offspring will start losing their resemblance to the parents,

and the algorithm will lose the ability to learn from the history of the search.

The level of crossover and mutation is decided on the basis o f experience with GAs

and trial and error. However the region is generally from 70% to 95%. Multiple

random crossover points have been used in this investigation during reproduction of

the chromosomes, due to the large numbers of chromosomes and their non-uniform

size. The purpose of the mutation is to increase the search area and prevent local

optimisation. The rate of mutation is varied, ranging from 0.0001~0.1 in an attempt to

increase the repeatability of the results. Determining the level of mutation is achieved

by trial and error.

Appendix D Basic Methods Controlling the GA Process

D.3 Population
In addition to the crossover rate and the mutation rate, another factor of the GA that

has a dramatic effect upon the optimisation route and success is the size of the

population. The size of the population represents the number of search cases that are

being performed with combinations of parameter values. Therefore, the larger the

population is, the more comprehensive the cover of the search area. However, there

must be a limit to the maximum and minimum sizes of the population. Calculable

methods for determining the population size for any application have not been found

and are therefore, set through trial and error and with consideration of two factors;

computational speed and minimum cover. The maximum size of population has no

limit, except for the limitations of the computational speed, the larger the population

the more calculations to perform and the longer the convergence, due to the wider the

population size. The minimum cover takes into consideration the number of

optimisation parameters and their ranges. The outcome of which, will be a population

size that will offer enough variation within the initial genes to adequately cover the

search area.

D.4 Termination of the Optimisation Process
An important part of the genetic algorithm is the termination criteria i.e. when to stop

reproducing the individuals. Frequency of testing for termination criteria is situational

and set according to individual preference. There are two methods of terminating the

GA that have been identified and investigated for their application to this project, fixed

length, a specified fitness of the population, and individual identity.

The process towards convergence is driven by fitness and there is a convenient

termination criterion. In fact, after many generations of evolution via the repeated

application of reproduction, crossover, and mutation, the individuals in the population

will often begin to look alike. At this point, the GA typically terminates because

additional evolution will produce little improvement in fitness. Many termination

criteria may be used, in which the most simple is to just stop after some predetermined

number of generations, i.e. the fixed length method.

222

Appendix D Basic Methods Controlling the GA Process

This is a crude method of control as the process may either continue unnecessarily

after the optimum has been achieved or more importantly terminate prematurely.

Using this method requires extensive trial and error testing and analysis of the results

to determine a suitable length increasing development time considerably. However,

this method can be used to limit the optimisation process when convergence upon a

single solution is not necessary.

Another termination criteria can be a specified average fitness of the population. When

the specified fitness becomes the average fitness of the population the genetic

algorithm can be terminated.

Convergence criteria form an adaptive approach to the termination of the optimisation

process. This method compares the parameters of each genome with others from

within the population. The comparison will identify if the population’s genomes are

identical. If this is the case, convergence has been achieved and the process terminates.

The principle behind the method is based upon the survival of the fittest process that

the GA applies. As the generations increase and the optimum solution develops the

stronger genes will pass through crossover more frequently due to the weak genes

being removed from the population. Therefore, the number of identical genomes

within the population will increase. Once the entire population is identical the

optimum achievable solution and convergence will have been obtained. It is not

practical to continue the generations until the population total converges. For this

reason and to decrease the time taken, a convergence limit is set. The convergence

limit corresponds to the percentage of the population that must be identical before

termination of the optimisation process. Setting the limit to allow for the maximum

percentage o f mutations prevents the possibility of an infinite loop developing.

However, the higher the convergence level setting, the longer the process will take.

Therefore, it is necessary to trade off the possibility of achieving a global maximum

against process time. This compromise is achieved through experience and trial and

error and has been determined from their use in this research as between 50% and 80%.

223

Appendix D Basic Methods Controlling the GA Process

The process of comparing the genomes can be performed in two ways, one relating to

the structure of the genome (with respect to the bit formation), the other relating to the

decoded information that is contained within each gene. The first method checks each

bit within the genome, basing the convergence check on the complete genome

composition being identical. This method comprehensively covers the search space

irrespective of if limits have been imposed on the parameters during decoding. The

second method checks the decoded parameters extracted from the genome enabling

limits that are imposed.

224

Appendix E CORBA Model Transition towards Web Services

Appendix E CORBA Model Transition towards

Web Services

E.1 Introduction
Distributed object computing has become increasingly popular as more complex

products are written using a multi-tier architecture. A number of products and

protocols are available for facilitating communication, and many developers have

trouble deciding which ones to use in a given situation. Many of communication

methods work well together, and each has its strengths and weaknesses.

As the extension of this research, a new emerging developing model, Web Services

technology, has been investigated and studied. In this chapter, a brief overview about

Web services is first given, followed by the comparison between Web Services and the

existing CORBA technology, and an application paradigm of Web Services is finally

presented.

E.2 Web Service
Web Service is an emerging distributed middleware technology, regarded as a

competing middleware technology of CORBA, which uses simple XML-based

protocols and standards to allow applications or systems to exchange data across the

Web [108]. Software applications written in various programming languages and

miming on various platforms can use Web services to exchange data over computer

networks like the Internet in a manner similar to Inter-process communication (IPC) on

a single computer [109]. This interoperability (e.g., between Java and Python, or

Windows and Linux applications) is due to the use o f open standards. OASIS

(Organization for the Advancement of Structured Information Standards) [110] and the

W3C (The World Wide Web Consortium) [111] are the steering committees

225

Appendix E CORBA Model Transition towards Web Services

responsible for the architecture and standardization of Web services. To improve

interoperability between Web service implementations, the WS-I (Web Services

Interoperability Organisation) [112] has been developing a series of profiles to further

define the standards involved.

All data to be exchanged is formatted with XML tags. Services are described in terms

of the messages accepted and generated. The encoded message is transmitted through a

transport protocol such as SOAP (Simple Object Access Protocol) [113], JAX-RPC

(Java API for XML-based RPC, RPC means Remote Procedure Calling) [114] or

XML-RPC [115]. Users of such services do not need to know anything about the

details of the implementation (object model, programming language, etc.); they only

need to be able send and receive messages.

Web services aims to give a new computing paradigm based on a loosely coupled

service-oriented architecture. Direct machine to machine interaction that was hitherto

deemed infeasible is now possible due to the rapid technological advances in XML and

SOAP technologies. There have been, however, much confusion about die Web

services paradigm and many arguments about if it is a real alternative of CORBA.

Web Services technologies are based on open standards recommended by the World

Wide Web Consortium (W3C). A Web service is a software system identified by a

Uniform Resource Identifier (URI), whose public interfaces and bindings are defined

and described using XML. Its definition can be discovered by other software systems.

These systems may then interact with the Web service in a manner prescribed by its

definition, using XML based messages conveyed by Internet protocols [108].

The core components of Web Services standards are WSDL (Web Services

Description Language), SOAP (the Simple Object Access Protocol), and UDDI

(Universal Description, Discovery and Integration), which are all based on XML

(extensible Markup Language). The component architecture for Web services is

illustrated in Figure E.l.

Appendix E CORBA Model Transition towards Web Services

UDDI

Search

Client

FEE II 1
= ! □ Service

Description

------ V - 1ilium.......imi^mii^ „ • 1

_
Service

Description

WSDL

Register/Publish
WSDL

Interact

SOAP

Service
Description

Service

Service ProviderService Requester

Figure E. 1 Component architecture in a Web Service

The specifications (i.e., interface) of services can be described using WSDL, a

metadata language that defines how service providers and service requesters

communicate with Web Service applications. It is an XML schema that describes

where a service is located, what operations are supported, and the format of the

messages to be exchanged based on how the service is invoked, regardless of what

message formats or network protocols are used for communication.

SOAP is a communication protocol for exchanging information in a decentralised,

distributed environment. It defines a mechanism to pass commands and parameters

between clients and services. Like Web Service as a whole, SOAP is independent of

the platform, object model, and programming language being used. In addition to

SOAP, there are other transport protocols such as JAX-RPC and XML-RPC.

A UDDI server provides a “meeting place” for Web Services, an information database

of Web Services, which stores descriptions about service owners and the services they

offer in a common XML format. Just as businesses list their products and services in a

227

Appendix E CORBA Model Transition towards Web Services

telephone directory, UDDI is used for providers to register and publish their services

that requesters can then discover and invoke. Web-based applications interact with

UDDI registries, which are kept in sync.

The Extensible Markup Language (XML) is a pared-down version of SGML (Standard

generalised Markup Language), designed especially for Web documents. It allows

designers to create their own customised tags, enabling the definition, transmission,

validation, and interpretation of data between applications and between organizations

[116]. It is the key to all the other Web Service standards and promises to simplify and

lower the cost of data interchange and Web publishing.

E.3 Comparisons between Web Services and CORBA
In both CORBA and Web services, the interactions between a client process and an

object server are implemented as object-oriented RPC-style (Remote Procedure

Calling) communications. For a typical RPC structure, to invoke a remote function, the

client makes a call to the client stub. The stub packs the call parameters into a request

message, and invokes a transport protocol to ship the message to the server. At the

server side, the transport protocol delivers the message to the server stub, which then

unpacks the request message and calls the actual function on the object. In DCOM,

CORBA, and Web services, the client stub and the server stub are referred as different

name. Table E.l illustrates these different names for the concepts.

Table E. 1 Client and server components in different RPC architecture

RPC Architectures CORBA DCOM W eb Services

Client Stub Stub Proxy Service Proxy

Server Stub Skeleton Stub Service Implementation Template

With respect to the main transport protocols of Web services, the corresponding

CORBA components are shown as in Table E.2.

228

Appendix E CORBA Model Transition towards Web Seiyices

Table E.2 Transport protocol components o f CORBA and Web Services

CORBA Web Services

Protocol HOP, GIOP SOAP, HTTP, XML
Schema

Location
Identifiers IORs, URLs URLs

Interface spec IDL WSDL

Naming,Directory Naming Service, Interface Repositoiy, Trader
service UDDI

E.3.1 WSDL & IDL
Similar to CORBA IDL, The XML-based WSDL contains the abstract definition for a

service, which defines both types and messages. WSDL also contains a concrete

section that defines how the service is contacted, for example, protocol, encoding, and

URI details.

E.3.2 HOP & SOAP
The CORBA HOP specification defines a very efficient binary protocol. SOAP is text-

based and optionally includes type information as part of the message, which

simplifies debugging and traffic monitoring because the message content is human-

readable text. The CORBA IDL type system camiot accommodate certain requirements,

such as DOC or PDF files as part of message. The SOAP with attachment specification

allows MIME attachments to be included as part of the message content.

CORBA IDL is bound to HOP as a transport mechanism, whereas WSDL uses SOAP,

which is not tied to any transport protocol. Typically, SOAP uses HTTP (Hypertext

Transport Protocol) protocol, but commercial SOAP implementations already support

other protocols such as HTTPS (Secure Hypertext Transport Protocol), SMTP (Simple

Mail Transfer Protocol), and JMS (Java Message Service).

E.3.3 CORBA Services & UDDI
A UDDI registry closely corresponds to the CORBA Trader Service and CORBA

Naming Service, yet there are plans for another of UDDI that resembles the CORBA

Naming Service and will offer a simplified view of its data.

229

Appendix E CORBA Model Transition towards Web Services

E.3.4 Developing Model
The mechanisms for generating client and server components for Web-Services are

similar to that for CORBA, as illustrated in Figure E.2. When auto-generated client-

side stubs (service proxy) are used for Web Services, the development processes and

the code are virtually identical for Web Service and CORBA solutions. Typically one

starts with an interface definition (WSDL) for the service. A client-side stub (service

proxy) is auto-generated from this interface. On the server-side, the interface is

processed to yield a base class for the implementation class of a service that must be

written by the developer with respect to the Web services. In terms of CORBA, the

interface is mapped into server skeletons that invoke the object implementation

through the server program that is also written by the developer in addition to the

object implementation.

CORBA Web Service

IDL Compiler WDSL Processing

Service
Implementation

Template

Server
Skeletons

Client
Stubs

Service
Implementation

Object
Implementation

WSDLIDL

Client
Program

Service
Proxy

Client
Program

Figure E.2 Generation o f client and server components from interface for Web Services and CORBA

E.3.5 Advantages and Disadvantages
CORBA, as a typical distributed application framework, has been around for a while

and successfully applied to build complex services in a number of areas, ranging from

telecommunications, finance, e-commerce, healthcare, to the graphical user interface

230

Appendix E CORBA Model Transition towards Web Services

of Linux desktop (GNOME). There is, however, an unprecedented hype surrounding

the new paradigm Web Services. In reality, the Web services paradigm lacks a precise

definition. Furthermore, one of conclusion from some observations concerning

CORBA and Web services is that whatever can be accomplished by CORBA can be

accomplished using Web service technologies and vice versa, although the amount of

efforts required would be noticeably different [117]. Nevertheless, there are still more

attentions to try to apply the new programming paradigm Web services while many

articles that evaluate and compares the features offered by each. In this section the

main features of each surveyed in this research are provided and some possible

applying models are presented.

Advantages of Web services:

• Web seivices provide interoperability between various software applications

ruiming on disparate platforms.

• Web services use open standards and protocols. Protocols and data formats are

text-based where possible, making it easy for developers to comprehend.

• By utilizing HTTP, Web services can work through many common firewall

security measures without requiring changes to the firewall filtering rules.

• Web services easily allow software and seivices from different companies and

locations to be combined easily to provide an integrated seivice.

• Web seivices allow the reuse of seivices and components within an

infrastructure.

Disadvantages of Web services:

• Web services standards for features such as transactions are currently

nonexistent or still in their infancy compared to more mature distributed

computing such as CORBA.

• Web seivices suffer from poor performance compared to other distributed

computing approaches such as RMI, CORBA, or DCOM. This is a common

trade-off when choosing text-based formats. XML explicitly does not count

among its design goals either conciseness of encoding or efficiency of parsing.

231

Appendix E CORBA Model Transition towards Web Services

• By utilizing HTTP, Web seivices can evade existing firewall security measures

whose rules are intended to block or audit communication between programs

on either side of the firewall.

The main addresses Web seivices are used seem to be that they rely on HTTP over

TCP (Transmission Control Protocol) port 80. Many enterprises have protected

themselves by using firewalls that filter and block much Internet traffic for security

reasons. In this environment, typically many (almost all) ports are closed to incoming

and outgoing traffic, and the administrators of these firewalls are not eager to open

them up. Port 80, however, is always open because it is used for Web browsers. Web

services tunnel everything through port 80, making the technology veiy appealing.

Another main reason of utilising Web services is that they can provide a very loose

coupling between an application that uses the Web service and the Web seivice itself.

This should allow either piece to change without negatively affecting the other. This

flexibility may become increasingly important as software is built by assembling

individual components into a complete application.

The technical differences between CORBA and Web Services are mainly due to the

different origins of them. CORBA focuses on a solution for industrial-strength

applications within private or corporate networks. While Web services focus on

lightweight, internet-based services, which can be reused and combined as required,

decoupling clients from the service implementation. As much, Web services offer a

great opportunity to reuse and extend CORBA systems.

According to the above comparisons between CORBA and Web Services, it can be

concluded that there are some reasons to combine CORBA and Web Services to

provide a more powerful distributed application. One of them is CORBA’s high

performance feature. In CORBA, there is a tight coupling between the client and the

server. Both must share the same interface and must run an ORB at both ends. What’s

more, the interaction between client and server can be done directly, with no need for

further intermediation (except from the ORB). In Web services, everything is

Appendix E CORBA Model Transition towards Web Services

decoupled. The client sends a message and receives a message. The response does not

give an immediate access to the next step. Web service implementations support

different client-side application programmer interfaces.

From the view of engineering, there are many applications required to provide a high

performance to make multiple applications work together. CORBA has been

successfully used in engineering area in its high tight coupling and high performance

features. The combination of CORBA objects and Web services can be one of best

solution to provide a powerful application paradigm in distributed systems.

E.4 Building Web Services from CORBA
CORBA developers typically want to expose existing CORBA-based logic as one or

more Web Services interfaces. This requires the IDL-to-WSDL tool to provide full

support for complex data-types and user-defined data constructs. It is not feasible to

modify the IDL, because this requires changes to the existing business logic. Cape

Clear Studio development tool and Cape Clear Server runtime platform can be used to

integrate Web Services with CORBA logic works in practice [118]. With a specific

CORBA ORB provided in Cape Clear Studio and Cape Clear Server, new and existing

components deployed in the CORBA ORB as Web Services, as depicted in Figure E.3.

The development details can be found in [117].

Orbix

Visibroker
SOAP

CWeb Services
C lient

CAPE CLEAR
SERVER WebLogic

Enterprise

TAO

Figure E.3 Exposing deployed CORBA ORB components as Web Services

Optimistic visionaries predict a day when “millions of Web Services” are

commercially available to businesses for use as the building blocks for modem

software systems, and are used internally or externally. According to IDC (Industrial

Development Corporation), a global market intelligence firm in the information

233

Appendix E CORBA Model Transition towards Web Services

technology industry, approximately 3,300 Web services-based projects were

implemented in North America in 2002 alone. IDC estimates that spending on Web

services hardware, software, and services will reach $15.2 billion by 2007 [119].

However, a more practical approach for an initial project involves the reuse of existing

CORBA logic, along with Web Services technology to expose these systems in a new

way. Web services can be used as middleware for middlewares such as CORBA.

The strategy exposing CORBA in Web services enables original CORBA-based

applications deployed across firewalls: SOAP (over HTTP or HTTPS) can be used to

integrate applications across firewalls. In this pattern, mainstream developers (such as

JSP or Visual Basic programmers) develop the client-side application, while specialists

CORBA programmers write the back-end logic.

CORBA is not only regarded as a legacy system to be wrapped into a Web service, but

also can be used as a complement in nature with Web services. CORBA provides a

mature middleware infrastructure, with robust and scalable features and services, for

building mission-critical systems.

E.5 Intelligent Engineering Design Web Services
Collaborative product design may involve a number of software applications that run

on geographically distributed computers. For example, designers, material specialists,

manufacturing engineers, and structural analysts of a product may reside in different

locations and use separate computer systems and software packages for design and

analysis.

It is inevitable to build distributed infrastructure based on the Internet and Web to

integrate collocated and distributed design resources for collaborative product design.

The Web services model is becoming a potential approach for integrating business

applications in that the model can improve the flexibility and extend the functionalities

of a software application by making it interoperable with other software services.

234

Appendix E CORBA Model Transition towards Web Services

The proposed framework is a collaboration model based on the Web service. The

framework has three layers: user layer, design service broker layer, and design service

layer, as shown as in Figure E.4.

User Layer Design Service Broker Layer Design Services Layer

WS
CAD3UDDI

WS
CAM I

WS
CADI

Internet WS
CAD4

WS \ I
CAD2) !

Design Task Models

Figure E.4 Framework o f intelligent engineering design Web services

The user layer provides public client interfaces for engineering designers to access the

available services. Distributed and collocated engineering designers can access

services from any Web-enabled device. The design service broker layer acts as a

service broker, supporting service registration and publication. Each service is

registered to the agency by publishing its service location, service type. Each service

can be represented as a service component, and thus another process can call it. This

enables any combination among multiple design activities to fulfil a complicated

design task. The broker provides a design task model warehouse where each model of

service represents a design process map with certain design objective. The service

layer consists of engineering service components designed by Web services. These

235

Appendix E CORBA Model Transition towards Web Sei-vices

services are published through UDDI and can be communicated with their legacy

applications.

When a user invokes a design service via the public interface provided in a ubiquitous

environment, a request is sent to the design service broker, which then performs

searching and matching an appropriate design service model by looking up the services

warehouse. When an appropriate task model is found, the broker binds each activity in

the model to an appropriate design service available, calls a corresponding client-side

interface and returns it to the user. From the client interface, the user could fulfil

design via invoking remote services. Whether client program or each service is

designed comply by the protocols, i.e. WSDL/UDDI/SOAP.

E.6 Developing Issues

E.6.1 Definition of Each Web Service
WSDL is used to define the interface of a Web service. It defines the syntax, the

semantics, and all the various administrative aspects to a Web service procedure call.

The service might be a new application, or even an existing application. Specifically

WSDL provides a number of key pieces of information:

• A definition of the format of the messages that are passed between two

endpoints using its <types> and <message> elements and appropriate schema

definitions.

• The semantics of the service: how it might be called to make a synchronous

request/reply, synchronous reply-only or asynchronously communicate.

• The end point and transport of the service via the <service> element: that is,

who provides the service.

• An encoding via the <binding> element, that is how the service is accessed.

E.6.2 Intelligent Design Broker
In order to actually use a service, a user on client side must first find that service,

retrieve information about how to use the service, and understand who might provide

the service. The Universal Discover and Description and Integration specification, or

236

Appendix E CORBA Model Transition towards Web Setyices

UDDI, defines a number of lookup services aimed at allowing clients to look up and

retrieve the required information to access a Web service.

UDDI actually provides three specific services:

• Traditional white pages for looking up a Web service by name.

• Traditional yellow pages for looking up a Web service by topic.

• Green pages for more generic searches based on the characteristics of a Web

Service.

In this application, a user request is sent to the service broker, which is also used as a

client to forward it to UDDI. As an actual application model, the design broker is an

intelligent agent to assess the user primary needs, processing the request, optimising

the objectives and then provide an appropriate task model corresponding to the

dynamic request. The task model includes the workflow map binding to the essential

services. It might be a linkage to a service or multiple services. The design broker itself

is represented as a Web service component and is attached to the task model that links

to the function services at service layer.

Any aspects of design process control and management could be designed as a broker,

for example, conversation broker, collaborative broker, dynamic binding broker, and

so on. Flexible communication between the broker service and function services

enables the implementation for any design intention corresponding to any combination

of function services. To a developer of distributed environment, available Web

services can be used as elements for constructing more complex applications.

Application design is not only based on the code programming but also based on the

functional software service integration.

E.7 Summary
Web services, as a new approach in distributed computing, aims to build flexible

architecture to enable the communication over ubiquitous text-based protocols between

disparate resources. More and more attentions have been drawn to this new distributed

computing model.

237

Appendix E CORBA Model Transition towards Web Services

CORBA provides high performance communication in its binary protocol even though

it suffers from the limitation of ubiquitous environment. CORBA can be combined

with Web services to obtain a more powerful distributed computing model.

The CORBA objects can be wrapped as Web service according to Web service

specification, without modification of original code. This makes it easier to incorporate

CORBA as a complement of Web services.

Comparing and contrasting between CORBA and Web services help CORBA

developers to understand Web seivices and fast turn the CORBA object into a Web

service. In an environment based on Web services, the CORBA objects wrapped into a

service can be registered, searching, or binding according to the Web seivice

specification.

The application paradigm is illustrated by a collaborative design environment based on

the Web services over the Internet. The advanced intelligent broker is a mediator

between service users and seivices. The user’s design intention can be parsed,

processed and transformed into a dynamic task model linking to essential services to

fulfil the design task.

238

