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Abstract. Glaucoma is a leading cause of visual disability. Confocal scanning laser 

tomography (CSLT) yields reproducible three-dimensional images of the optic nerve 

head and is widely used in the assessment of the disease. The real promise of this 

technology may be in evaluating progressive structural deterioration in the optic 

nerve head (ONH) associated with glaucoma over a patient’s follow-up. This might 

be possible as the measurements from the technology have been shown to be 

sufficiently reproducible. The purpose of this thesis is twofold: to investigate 

statistical techniques for detecting progressive structural glaucomatous damage; and 

to investigate techniques which improve the repeatability of images obtained from 

the technology. Proven quantitative techniques, collectively referred to as statistic 

image mapping (SIM) are widely used in neuro-imaging. In this thesis some of 

these techniques are adapted and applied to series of ONH images. The pixel by 

pixel analysis of topographic height over time yields a ‘change map’ flagging areas 

and intensity of active change in series of ONH images. The technique is compared 

to the Topographic Change Analysis (TCA supeipixel analysis) and to change in 

summary measures of the three-dimensional ONH (‘stereometric parameters’). The 

comparisons are made using a novel computer simulation developed in this thesis 

and farther tested on clinical data. A false-positive rate was recorded using test- 

retest data obtained from 74 patients with ocular hypertension (OHT) or glaucoma. 

A true-positive rate was estimated using a longitudinal dataset of 52 OHT patients 

classified as having progressed by visual fields during follow-up. Maximum 

Likelihood (ML) deconvolution is an image processing technique which estimates 

the original scene from a degraded image using maximum likelihood probability. 

This technique has been used in other confocal applications to remove ‘out-of-focus’ 

haze and noise in 3D confocal data. In this thesis the approach is applied to test- 

retest series to evaluate if the technique improves the repeatability of image series. 

Computer simulation indicated that SIM has better diagnostic precision than TCA in



detecting change. The stereometric parameter analyses have prohibitively high false- 

positive rates as compared to SIM. In the longitudinal data SIM detected change 

significantly earlier than the stereometric parameters (P<0.001). ML Deconvolution 

produced an improvement in both intra- and inter-scan repeatability with particular 

gains in scans that exhibit poor image quality. The techniques developed in this 

thesis may prove to have real clinical utility in managing patients with glaucoma.
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Figure 1 (a) Confocal optical setup (b) A schematic diagram illustrating 11 '•
the 3D confocal stack obtained from a scanning laser tomograph, (c) The
3D confocal stack of an optic nerve head illustrated as an 8 x 4 grid of 2D j
images going in sequence from top left («==1) to bottom right (n=32). 1
Each 2D optical section represents a different focal plane (Courtesy of 
Heidelberg Engineering, reproduced from the ‘HRT tutorial’, available at
www.heidelbergengineering.com) ,4

i
Figure 2 (a) The distribution of light intensity at a signal pixel location 12
(x,y\ referred to as a confocal z-profile. (b) The topography image which ;
consists of 256 x 256 height measurements produced by calculating the
position of the reflective surface at each pixel location (x,y) in the 3D .*[
confocal image stack |

Figure 3 Pair of topography and reflectance images for a normal (a) and 13 
glaucomatous (b) eye. (Courtesy of Heidelberg Engineering)

Figui’e 4 HRT output showing the rim and cup for a normal (a) and 13
glaucomatous (b) eye. The red colour represents cup, while the green and 
blue represent rim. (c) Shows a one-dimensional section through a 
topography image. Anything below the reference plane is cup (marked as 
red), while anything above the reference plane is rim (marked and green 1
and blue). Courtesy of Heidelberg Engineering

Figure 5 TCA output from the HRT Eye Explorer software (version 19
1.4.1.0). The red (green) clusters overlaid on the image represent 
statistically significant depressed (elevated) superpixels which were 
confirmed as significant in three consecutive visits after comparing the 
baseline visit with the follow-up visits. (Courtesy of Heidelberg 
Engineering)

Figure 6 A 3D plot of a topography image showing the transformations 24 
x ’, y , ’z ’ and <rx ay \ gz ’

Figure 7 Computer simulation of a patient’s image series. A topography 25
image is replicated 30 times to represent 10 visits with 3 scans acquired at 
each visit. Then ‘movement’ and Gaussian noise are added

Figure 8 The result of calculating standard deviations of the topographic 26 
height at each pixel(ij) in an image series of a simulated stable patient.
The darker pixels (seen along blood vessels) indicate areas of high
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variability; this pattern would be expected in a real series

Figure 9 The permutation distribution of test statistics at pixel(i,j) is 32 
calculated by generating 1000 unique permutations, see the computation 
paradigm in section 3.2 for further details. The observed (•) and the first 
two unique permutations (□, A) are marked on the distribution. The 
probability that pixel(ij) is statistically significant is defined as a value 
which exceeds the 95th percentile in the permutation distribution (marked 
by the dashed line). As the observed test statistic is very unusual (a P- 
value less than 0.05) pixel(i,j) is marked as statistically significant on the 
statistic image

Figure 10 (a) An example of a typical patients topographic image series. 34
Three images are typically acquired at each visit, (b) A statistic image is 
generated by calculating a statistic at each pixel location. In this case 
linear regression is performed, each statistic is comprised of a slope 
divided by the standard. For display purposes the statistics are represent 
in a colour coded form, red represent a small statistic through to yellow 
representing a larger statistic

Figure 11 Simulated change: active (changing) pixels whose slopes are 36 
negative are shown in grey, with the largest cluster highlighted in black.
We show the observed statistic image and two of the 1000 permutations.
The distribution of maximum cluster sizes is created by recording the 
largest cluster of active pixels in the statistical image for each unique 
permutation. In this case one cluster in the observed statistic image (•), 
generated by simulating a progressing patient, is very unusual (P-value 
smaller than 0.01), therefore the virtual patient is classed as progressing

Figure 12 Illustrates the computation of the pseudo test statistic on an 38
fMRI image, (a) Shows the slope and standard error at each pixel 
location. The test statistic plot is a result of dividing the slope by the 
standard error terms. In this example the test statistic image appear 
highly variable, (b) To calculate the pseudo test statistic the standard 
error term are first spatially smoothed. The resulting pseudo test statistic 
plot appears less variable. (Courtesy of Dr Holmes: permission sought to 
use these figures through private communication)

Figure 13 Schematic of the SIM computational paradigm. The details 43 
shown in grey will be referenced in chapter 4

Figure 14 Computer simulation results comparing the diagnostic 47 
precision of Statistical Image Mapping (SIM) and the Topographic 
Change Analysis (TCA) superpixel method, (a) The specificity of SIM 
and TCA at MPHSDs of 15, 25 and 35pm. (b)(c)(d) The ability of SIM 
and TCA to detect gradual (linear) and episodic (sudden) loss at a cluster
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of 480 pixels to the neuro-retinal rim area at MPHSD of 15pm (b), 25 pm 
(c) and 35 pm (d)

Figure 18 The Tippet combining function probability distributions. In 58
case 1 (a-b) damage of high intensity and small spatial extent is 
simulated; In case 2 (c-d) damage of low intensity and large spatial extent 
is simulated (as shown previously in Figure 16). The observed 
combining functions score (b and d) show that significant change is 
detected for both types of change, cases 1 (P=0.012) and case 2 (P=0.004)

Figure 19 Schematic represents the computational details of the 61 
probability of the intensity of change Tjnax

Figure 20 Schematic illustr ating the computation of the Tippet combining 62 
function

Figure 21 Computer simulation results comparing the specificity. Note 64
that the specificity range is scaled between 90% and 100%. The 
specificity of cluster size, T-max and combining function Tippet are
shown by simulating stable image series at different noise levels: (a)
MPHSD 15, (b) MPHSD 25 and (c) MPHSD 35
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Figure 15 Detection rates of SIM and TCA on real clinical data 48
I

Figure 16 (a,b,c,d) Case 1 -  OHT converter: the statistic image generated 50 
using SIM which has been overlaid on a mean reflectance image for visits 
4 to 7 inclusive, (e, f, g, h) The TCA output (HRT Eye-Explorer software 
vl.4.1.0) corresponding to the same subject. Case 2 -  OHT converter:
SIM output (i, j, k, 1) and TCA output (m,n,o,p). Note that two clusters 
have been flagged in the SIM analysis, since both are beyond what would 
be expected by chance as defined by the permutation distribution

Figure 17 Detection of spatial extent and intensity of change. 56 
Longitudinal series of topography images were simulated, mimicking 
change over time in glaucomatous patients (see chapter 2). Two types of 
damage were simulated: in case 1 (a-c) damage of high intensity and 
small spatial extent and in case 2 (d-f) damage of low intensity and large i
spatial extent. Panels a & d are schematics illustrating the types of 
change applied. Panels b & e show the distribution of the largest cluster 
sizes i.e. the spatial extent of damage. Panels c & f  show the distribution 
of maximum test statistics: this method provides a global probability 
value based on the depth (intensity) of topographic change. The 
distribution of the maximum test statistics for case 1 (c) indicates change 
of significant intensity (P = 0.013). Conversely in panel (e) the 
distribution of largest cluster sizes shows case 2 to have change of 
significant spatial extent (P = 0.028)
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Figure 22 Computer simulation results comparing sensitivity. The 65
sensitivities of cluster size, T-max and combining function Tippet are 
shown after simulating unstable patient series: (a) with high intensity and 
small spatial extent and (b) with low intensity and large spatial extent

Figure 23 The parameter analysis available on the HRT software. The 67
parameters are normalized to quantify the difference between normal 
controls and patients with advance glaucoma (see section 5.1 for details). 
Progression is confirmed if there is a difference of -0.05 or more on three 
consecutive occasions. In this example progression would be confirmed 
using global rim area (red line) at the visit corresponding to the position 
of the third arrow (Courtesy of Heidelberg Engineering)

Figure 24 SIM ‘change map’ images overlaid on a patient’s HRT image 70 
series from visit 4 through to visit 12. This OHT patient progressed to a 
diagnosis of glaucoma by visual field criteria (AGIS) during follow-up 
(note: a minimum of four visits is required to evaluate a ‘change map’).
The colour represents the depth of change which occurs; yellow through 
to red representing shallow through to deep change respectively

Figure 25 Kaplan-Meier plots comparing the performance of the SIM 74 
Tippet and the SIM cluster size statistic in 52 patients that have been 
defined as progressing based on visual field criteria. The results show 
that SIM Tippet flags change earlier than the SIM cluster-size statistic

Figure 26 Kaplan-Meier plots comparing the performance of stereometric 75 
parameter analysis against SIM Tippet in 52 patients that have been 
defined as progressing based on visual field criteria. The comparison is 
made with the false positive rates anchored as described in the methods.
This provides overwhelming evidence that SIM detects more true 
progression events and significantly earlier than the stereometric 
parameter analysis

Figure 27 Case 1: An OHT patient who converted to glaucoma based on 77 
visual field testing (AGIS criteria) and PLR during the follow-up period.
(a) A ‘change map’ with the scale bar showing topographic change 
(yellow to red representing optic disc deepening). The area of statistically 
significant change detected by SIM is overlaid onto HRT reflectance 
images. Change occurred mostly in the temporal superior position of up 
to -450 microns (a rate of loss of -70 microns per annum). Stereometric 
analysis (b): the corresponding normalized stereometric parameters are 
plotted for each patient. The ± 5%  deviation line is represented by the 
dashed lines. CSM detected change after 4.0 years whereas the other 
measures did not detect change, (c) A greyscale of the baseline visual 
field, (d) a visual field obtained at the end of the follow-up period, (e)
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Ail image from PROGRESSOR showing the cumulative output from 
pointwise linear regression at each test point in the visual field. Each test 
location is shown as a bar graph in which each bar represents one test in 
the series. The length of the bars represents the depth of the defect. The 
colour of the bars relates to the p-value summarizing the significance of 
the regression slope with colours from yellow to red to white representing 
p-values of low to high statistical significance. Whereas stable points with 
low sensitivity are displayed as long bars and grey represent flat non­
significant slopes. The patient’s visual field shows progression occurring 
mostly in the lower nasal area

Figure 28 Case 2: An OHT patient who converted to glaucoma based on 78 
visual field testing (AGIS criteria) and PLR during the follow-up period.
(a) A ‘change map’: change occurred mostly in the inferior and superior 
poles of up to -850 microns (a rate of loss of -180 microns per annum).
SIM detected change after 2.5 years, (b) Stereometric analysis: none of 
the parameters detected change, (c) The baseline visual field, (d) a visual 
field obtained at the end of the follow-up period, (e) Output from 
PROGRESSOR. The visual field grey scales look remarkably similar but 
PROGRESSOR shows modest, but highly sigiificant, superior 
paracentral arcuate progression

Figure 29 Case 3: An OHT patient who converted to glaucoma based on 79 
visual field testing (AGIS criteria and PLR) during the follow-up period.
(a) A ‘change map’: change occurred mostly in the inferior temporal 
sector of up to -850 microns (a rate of loss of 130 microns per annum).
SIM detected change after 4.3 years (b) Stereometric analysis: none of the 
parameters detected change, (c) The baseline visual field, (d) a visual 
field obtained at the end of the follow-up period, (e) Output from 
PROGRESSOR. This patient has extensive visual field progression in the 
upper nasal to upper temporal areas

Figure 30 Images taken of Pluto (www.nasa.org). (a) An  image of Pluto 85 
taken from an earth based observatory in Hawaii, in this image it is 
difficult to distinguish Pluto’s moon ‘Charon’, (b) An image of Pluto 
obtained from the Hubble Space Telescope, in this image it is possible to 
differentiate Pluto from its moon. These two images illustrate the blur 
induced by the atmosphere

Figure 31 The raw confocal stack of optic nerve head acquired by HRT is 90 
on the left-hand column and the confocal stack after 30 iterations of ML 
deconvolution is on the right-hand column. The maximum projections in 
vy-plane of the raw data, otheiwise known as reflectance images for the 
original image (a) and deconvolved image (b). The maximum projection 
in the xz-plane: original image (c) and deconvolved image (d) show axial 
smearing associated with confocal scanning laser tomography in the
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original image. There is better discrimination between slices in the 
deconvolved image. Slice number 15 in the original (e) and deconvolved 
(f) shows a reduction in high frequency noise. Two z-profiles, pre (g) and 
post (h) deconvolution, are shown at a position in the rim area (marked by 
the arrow in (a))

Figure 32 Effect of deconvolution on intra-scan repeatability of 92 
topographic height measures. The plot shows the difference in average 
MPHSD against the difference in MPHSD before and after 
deconvolution. An improvement in repeatability is represented by a point 
above the ‘zero line’. An improvement in repeatability occurred in 38 of 
the 40 images (P<0.001)

Figure 33 Effect of deconvolution on the inter-scan repeatability of 92 
topographic height measures. An improvement in repeatability occurred 
in 33 of the 40 images (P<0.001)

Figure 34 The setup installing SIM software 99

Figure 35 The SIM software user interface rendering a mean reflectance 101
image

Figure 36 The ‘Add Patient’ dialog box 101

Figure 37 The ‘Import HRT Image Series’ dialog box. This dialog allows 103
the patient, HRT image fonnat (HRT 1 or HRT 2) and the topography 
image series to be selected

Figure 38 Visualisation of reflectance and topography images with the 104
SIM software, (a) Mean reflectance image, (b) top elevation of the 
topography image, (c) side elevation and (d) front elevation

Figure 39 Image series alignment: The images contain two quadrants 105 
from the baseline image shown in the top-right and bottom-left quadrants; 
and two quadrants from the follow-up images shown in the top-left and 
bottom-right quadrants, (a) A follow-up image which has translation and 
rotation misalignment between the follow-up image and the baseline 
image, (b) a follow-up image which has magnification error, and (c) a 
follow-up image which is well aligned

Figure 40 The position of the contour line control is determined using five 105
‘handles’. A handle on the contour line becomes red when it has been 
selected or moved. The position of this contour line is used for follow-up 
images in the patient series. Only pixels bound within this contour line 
are process by the SIM paradigm (see sections 3.2 and 4.2)
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Figure 41 Creating, viewing and executing batch files is controlled by 106 
selecting (multiple) patient series using the ‘Create Batch’ dialog box

Figure 42 ‘Change map’ showing the intensity and spatial extent of 107 
depressed morphological change which has occurred during a patients 
follow-up

Figure 43 The ‘Filter Results’ dialog box outputs patient details and SIM 108 
parameters

Table 1 The number of eyes determined to be progressing with Statistic 48 
Image Mapping (SIM) and Topographic Change Analysis (TCA) applied 
to real longitudinal HRT series: 20 normal subjects (controls) and 30 
OHT patients that converted to a diagnosis of glaucoma by VF criteria 
(converters)

Table 2 Instrument guidelines categorizing MPHSD (courtesy of 95
Heidelberg Engineering, Heidelberg, Germany)

Table 3 Header and C++ files required to compile and link SIM_DOS 111

Table 4 DLLs required at run-time to execute SIM_DOS 111

Table 5 Files required to execute SIM DOS 112

Table 6 Files created by SIMJDOS during execution (* represents the 113
visit number)

Table 7 Header and C++ files required to compile and link SIMGUI 116

Table 8 DLLs required at run-time to execute SIM_GUI 119

Table 9 Files and directory structure required to execute SIM_GUI 119

Table 10 Files created by SIM GUI (f files created when HRT data is 120 
impoited, see Figure 36)
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Outline

This thesis will primarily be of interest to a researcher in retinal imaging or 

clinicians using the technology. This thesis will be of interest to any researcher 

interested in statistical techniques for detecting change in longitudinal series of 

imaging data. This thesis applies statistical and image processing techniques, but 

knowledge of these subject areas is not assumed.

Chapter 1 sets the scene: it introduces glaucoma, its risk factors, prevalence and 

treatment of the disease. Methods used for evaluating glaucoma are discussed, 

chiefly measuring pressure within the eye, measuring changes to visual function 

(visual field) and assessing the optic nerve head. Confocal scanning laser 

tomography (CSLT), the focus of this thesis, is described; an exemplar of a 

technique for assessing the ONH and posterior segment of the eye and its role in 

measuring structural damage synonymous with glaucoma. Current literature 

describing the use of the technology for measuring glaucoma progression is 

reviewed. Finally the objectives of this thesis are presented.

Chapter 2 describes a computer simulation which is developed here to test 

quantitative methods used to detect progressive damage to the optic nerve head. The 

simulation is designed to mimic ‘stable’ and ‘unstable’ patient series. The 

simulation is used in subsequent chapters 3 and 4. The chapter explains how noise 

and change is simulated and the assumptions made within the model.

Chapter 3 describes statistic image mapping (SIM), a proven technique used in 

neuroimaging to flag significant areas of activity in three-dimensional images of the 

brain. SIM provides a ‘change map’ which identifies areas of activity within the 

image, and a global probability value of the extent of change. This chapter adapts 

and applies SIM to longitudinal series of ONH images. SIM is evaluated by 

comparing it to the Topographic Change Analysis (TCA), a method on the
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Heidelberg Retina Tomograph (HRT) software (a commercially available CSLT). 

The comparison uses extensive computer simulation. It concludes that SIM has a 

better diagnostic precision in separating ‘stable’ and ‘unstable’ patient series than 

the TCA.

Chapter 4 investigates the global probability value output by SIM to infer 

significant change. Thus far, the method used to infer significant change makes 

assumption as regards the nature of glaucomatous damage. This chapter challenges 

this assumption and introduces ‘combining functions’, a simple mathematical tool 

that provides a more flexible mechanism to infer significant change. The 

assumptions are tested using computer simulation. This chapter concludes that 

combining functions are better at separating ‘stable’ and ‘unstable’ patient series.

Chapter 5 evaluates a range of summary measures of the ONH, called ‘stereometric 

parameters’. The chapter examines these parameters using an ‘event analysis’ 

available on the current HRT software; the analysis flags a patient series as changing 

by making comparison between baseline and the follow-up examinations. The 

performance of SIM and the ‘stereometric parameters’ is compared using a ‘time to 

event’ analysis. Also, SIM and the parameter analysis are compared in some case 

studies. This chapter concludes that using summary measures to detect change 

results in loss of sensitivity. It also shows that ‘change maps’ as output by SIM 

provide important information on intensity, spatial extent and location of change 

which is clinically meaningful.

Chapter 6 applies ML deconvolution to confocal scanning laser tomography. This 

image processing technique estimates the original scene from a degraded one. This 

technique has been used in other applications of confocal scanning laser microscopy 

to remove ‘out-of-focus’ haze and noise. In this chapter the technique is applied to a 

test-retest series. This chapter concludes that deconvolution significantly improves 

the repeatability of ONH images.

xvi



Chapter 7 sums up the work in the thesis, noting the novel contributions to the field 

of work and gives suggestions for future work.

Appendix A -  In this thesis quantitative techniques to detect changes in images of 

the ONH have been developed, evaluated and optimized (chapters 2, 3, 4 and 5). An 

outcome from this thesis has been the development of a windows based program 

entitled SIM. This appendix is a self-contained tutorial written to enable a user to 

install SIM, export ONH images from the Heidelberg Eye Explorer software, setup a 

patient record and import images into SIM. It describes SIM’s functionality to 

check images for alignment, magnification error before processing patients using the 

automated batch file generator. Export functions are described which output 

parameters from the combining functions and partial tests (chapter 4).

Appendix B -  The objective of this section is to describe in sufficient detail the SIM 

program to enable a researcher to append or modify the source code. The SIM 

software was developed using the C++ programming language and benefits from the 

use of application programming interfaces (API) and libraries which C++ can utilize. 

The section explains how the SIM source code exploits numerical methods, image 

processing, visualization and graphical user interfaces, API’s and libraries. It 

documents the files which SIM needs to compile and link, as well as the dynamic 

link libraries (DLL) required by SIM at run-time. It provides a description of the 

inputs and outputs used in SIM. The section finally documents limitations and 

suggest improvements for the current code.



1. Background and aims
This chapter gives an introduction to glaucoma and the clinical need to detect and 

monitor the disease. Confocal Scanning Laser Tomography, the subject of this 

thesis, is introduced as a technology which can help detect and monitor the disease. 

The aims of this thesis are then described.

1.1 Glaucoma

Glaucoma is a group of progressive optic neuropathies that have in common a slow 

progressive degeneration of retinal ganglion cells (RGC) and their axons, resulting 

in a distinct appearance to the optic nerve head (ONH), often called ‘cupping’ 

(Weinreb and Kliaw, 2004). Glaucoma is the third leading cause of blindness, yet 

amongst those with the disease it is relatively rare to be registered blind according to 

World Health Organization criteria, as central vision is often preserved until late in 

the disease despite disabling loss of peripheral vision. This damage is often linked 

with elevated intraocular pressure. This damage to the ONH causes partial to full 

loss of the visual field , which is the portion of space in which objects are 

simultaneously visible in the steadily fixating eye (Harrington, 1976). Damage to 

the visual field is irreversible; however, the loss can be transitory in the early stages 

of glaucoma. If the condition is untreated the damage to the affected visual field 

usually worsens and spreads until eventually complete loss of vision can occur.

To understand glaucoma it is important to consider aqueous humor, the clear watery 

fluid that circulates through the anterior chamber. This fluid is not related to tears, 

or to the dense jelly-like substance called vitreous humor that is contained in the rear 

chamber. The function of aqueous humor is to nourish the area around the iris and 

the cornea and it exerts pressure to maintain the shape of the eye. The fluid is 

continuously produced causing pressure known as intraocular pressure (IOP). To 

maintain an intraocular pressure this inflow is offset by an outflow by drainage 

between the iris and cornea, primarily (80-90%) through a sponge like substance 

known as the trabecular meshwork, the remaining fluid drains independently
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through the uveoscleral pathway. Previously it was believed that glaucoma was 

always a result of elevated intraocular pressure and definitions for glaucoma 

historically included this. Ocular hypertension (OHT) is a condition in which IOP is 

greater than 21 mmHg, which is 2 standard deviations above the mean IOP 15.5 

mmHg (Colton and Ederer, 1980). However, Sommer and colleagues (Sommer, 

Tielsch et al, 1991) showed that only 10% of patients with OHT developed 

glaucomatous visual field damage, but it did show an increased prevalence of 

glaucoma with increased IOP. It is now understood that glaucoma can occur in eyes 

with normal intraocular pressure (<21 mmHg). Thus it is best to understand that 

IOP is a risk factor for glaucomatous damage and that some eyes are more 

susceptible to the effects of IOP and sustain damage at a lower level. Thus reducing 

the IOP remains the focus of glaucoma treatment.

Glaucoma can be broadly categorized as primary open angle glaucoma (POAG), 

closed angle glaucoma (CAG) or congenital. Glaucoma can also be defined as 

secondary in which the glaucoma is a result of some other condition perhaps an 

ocular or orbital disease. Normal tension glaucoma (NTG) is a subdivision of POAG. 

The definition of NTG is an IOP below 21 mmHg. Outside Japan, 30%+ of newly 

diagnosed cases are NTG. However, the condition may be underdiagnosed in 

Western countries because of the nature of case-finding for glaucoma. In Japan 

NTG is the most prevalent form of Glaucoma (Hitchings, 2000). In CAG the iris is 

pushed against the trabecular meshwork, sometimes sticking to it, closing off the 

drainage angle. It may occur suddenly resulting in an immediate rise in pressure 

(‘acute angle closure’). CAG may account for up to 50% of glaucoma worldwide as 

it has a higher prevalence amongst Asians. Congenital glaucoma is a rare sub-group 

of glaucoma typically characterized by malformation of the aqueous drainage route. 

This thesis has focused on the assessment of POAG.

POAG is the most common form of glaucoma in European and North American 

populations. To summarise recent studies the prevalence was reported at 1.5-2.4% 

in Caucasians and 6-8% in Afro-Caribbean’s (Tielsch, Sommer et al, 1991; Klein,
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Klein et al, 1992; Coffey, Reidy et al, 1993; Dielemans, Vingerling et al, 1994; 

Leske, Connell et al, 1994; Mitchell, Smith et al, 1996).

To understand glaucoma first consider how the eye functions: the eye gathers and 

converts light information into neuronal signals, when light enters the eye it travels 

to the retina and stimulates cells called cones and rods allowing vision to operate 

over an enormous range of brightness levels. The rods become active at low levels 

of luminance while cones are active at high levels. RGCs process signals from the 

cones and rods before relaying them to the brain via their axons which exit the eye 

via the ONH. In humans there are over a million RGC. In mammals these cells are 

guided to the ONH during embryonic development, however in fish and frogs axons 

continue to develop during adulthood (Oster, Deiner et al, 2004). The centre of the 

retina (macula) has a higher concentration of RGCs, where vision resolution is better 

(Bemiett and Rabbetts, 1998). The axons of RGCs comprise the innermost layer of 

the retinal nerve fibre layer. These axons converge on the ONH and exit the eye 

after traversing the lamina cribrosa (a series of perforated connective tissue layers). 

The convergence of the axons forms a rim of neural tissue and central depression in 

the optic disc, known as the cup (Weinreb and Khaw, 2004).

POAG is an optic nerve neuropathy which is characterised by changes to the ONH 

and the visual field; these changes might be associated with elevated IOP. Typically 

the IOP is elevated because the tiny channels in the trabecular meshwork become 

clogged, and the subsequent increase in outflow resistance leads to the need for a 

higher intraocular pressure to maintain fluid flow through the anterior chamber. 

While the pathophysiology of glaucomatous nuerodegeneration is not fully 

understood, it is thought that when IOP exerts a force onto the back of the eye, the 

IOP indirectly leads to the apoptosis of RGCs. This mechanical theory hypothesizes 

that over time, this force causes ‘strangulation’ of the RGC axons at the ONH. 

Axons leave the eye at the ONH through a sieve-like structure called the lamina 

cribrosa. The IOP produces shear forces in the tissues of the lamina cribrosa, 

obstructing to-and-fro transportation of neurotrophic factors and leading to the death
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of the cell (Crawford, Harwerth et al, 2000). Animal models of short-term pressure 

rise show that as IOP increases, pressure gradients across the lamina cribrosa 

increase. Histology has shown the structure does not return to its original state when 

the pressure is reduced (plastic deformation) and the structure becomes less rigid 

(hypercompliant deformation) when pressure is reapplied (Bellezza, Rintalan et al,

2003). An alternative vascular theory hypothesizes that changes within the 

microcirculation of the ONH capillaries are the cause of the damage. The 

concurrence of glaucoma and splinter haemorrhages at the ONH supports this theory, 

as a primary reason or co-factor for increased susceptibility to glaucomatous damage 

(Bathija, 2000). The result of RGC apoptosis and loss of axons, together with 

deformation of the lamina cribrosa, is a change in the surface topography of the 

ONH. The neuroretinal rim decreases in size with concurrent enlargement of the cup. 

The neuroretinal rim is of specific interest in the evaluation of disease state. 

However, optic disc and rim size are known to have large inter-individual variation. 

This physiological variability makes glaucoma identification difficult. 

Understanding the features of the neuroretinal rim is important for assessment: the 

rim is usually broadest in the inferior disc region, followed by the superior, then 

nasal and finally temporal (Jonas and Garway-Heath, 2000). This follows the so- 

called ‘ISNT’ rule. Glaucomatous damage to the rim has regional preferences 

depending on the stage of the disease. It typically starts with loss in the 

inferotemporal and superotemporal regions, then followed by temporal and lastly in 

the nasal region (Airaksinen and Drance, 1985; Jonas, Budde et al, 1999). Optic 

disc haemorrhages and retinal neive fibre layer defects are also associated with the 

disease (Jonas and Garway-Heath, 2000). Therefore examination of the ONH has 

always been of importance in both diagnosis and detection of progressive damage.

Several risk factors predispose an individual to POAG. The risk factors reported 

highlight POAG to be multi-factorial in nature and it is likely that a combination of 

factors increase an individual’s risk. Early work showed that the higher the 

presenting IOP, the greater the percentage of patients with optic nerve head damage 

(Pohjanpelto and Palva, 1974). Leske (Leske, 1983) suggests that overall risk of
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developing POAG is five times higher with IOP > 21  minHg. In a recent large 

population study of OHT patients, baseline IOP remains a leading risk factor 

(Gordon, Beiser et al, 2002). Population studies have shown that age is one of the 

most important risk factors (Tielsch, Sommer et al, 1991; Klein, Klein et al, 1992; 

Coffey, Reidy et al, 1993; Dielemans, Vingerling et al, 1994; Leske, Connell et al, 

1994; Mitchell, Smith et al, 1996). These studies reported prevalence rates four to 

ten times higher in the oldest age groups compared to the baseline (usually subjects 

in their forties). Studies into racial risk factors show that being of African, African 

American or African Caribbean origin put one at a four fold increased risk of 

developing POAG (Tielsch, Sommer et al, 1991; Klein, Klein et al, 1992; Coffey, 

Reidy et al, 1993; Dielemans, Vingerling et al, 1994; Leske, Connell et al, 1994; 

Mitchell, Smith et al, 1996). Little data are available regarding POAG in other 

racial groups, such as those from the Indian sub-continent, Eastern Europeans or 

from Hispanic origin. There is little doubt that a positive family history of the 

disease puts an individual at greater risk, however POAG does not usually exhibit 

Mendelian inheritance. The disease appears to be multifactorial and POAG may 

represent a collection of clinically indistinguishable disorders (Weinreb and Kliaw,

2004). Recent advances in genetics have lead to the mapping of glaucoma genes, 

however, these genes only account for a small portion of diagnosed glaucoma. A 

mutation in one of these genes, myocilin, is found in 3% of late-onset POAG and in 

greater proportion of juvenile open angle glaucoma cases (Libby, Gould et al, 2005). 

Other risk factors for POAG include diabetes (Leske, 1983), while another study 

reports a relationship between elevated blood pressure and elevated IOP (Tielsch, 

Katz et al, 1995). A risk factor for NTG, a sub-group of POAG, includes being of 

Japanese descent (Shiose, Kitazawa et al, 1991). Risk factors for CAG include 

being of Asian or African descent and the disease has a higher prevalence in women 

than men (Foster and Johnson, 2000). A complete review of risk factors in 

glaucoma can be found in (Hitchings, 2000).

Most treatments for glaucoma, including NTG, are aimed at reducing IOP and its 

fluctuation. Treatment can be categorized as medical, laser and fistulising surgery.
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Various medical treatments are available, and their pharmacological actions vary. 

Beta-blockers inhibit aqueous secretion, cholinergic agents cause ciliary muscle 

contraction which stretch the trabecular meshwork (Krieglstein, 2000), alpha 

agonists and topical carbonic anhydrase inhibitors also inhibit aqueous production, 

and prostaglandin analogues increase outflow through the uveoscleral pathway 

(Hitchings, 2000). As the actions of the various groups of drugs are different, 

combinations of these agents can be applied. These treatments have side effects 

(local to the eye and systemic) and the side effects of the agents apply to any 

combination. Side effects vary in severity, in one study treatment was linked to 

respiratory impairment (Diggory and Franks, 1997). Argon laser trabeculoplasty 

reduces IOP by improving aqueous humor outflow. The treatment applies laser 

burns, usually to one hemisphere of the circumference of the trabecular meshwork at 

a time. The treatment is simple and cost-effective but long-term follow-up has 

shown IOP tends to rise over time in many patients (Schwartz, Love et al, 1985). 

Fistulising surgery, typified by trabeculectomy, is a standard practice for surgery in 

adults. Studies have shown it to be more efficient than medical and laser treatments 

at lowering IOP and in preserving visual function in the long-term (Jay and Allan, 

1989; Migdal, Gregory et al, 1994). The procedure creates a passageway for 

aqueous to escape. The escape route is not directly to the external surface of the eye 

as this would have the potential for infection. The drainage of fluid from inside the 

anterior chamber of the eye to a “pocket” created between the conjunctiva, the 

outermost covering of the eye, and the sclera, the underlying fibrous wall of the eye. 

In the last decade some clinical trials have reported on the affect of treatment over 

long term follow-up. The early manifest glaucoma trial (Heijl, Leske et al, 2002) 

compared the effects of lowering IOP verses no treatment or later treatment, where 

treatment involved trabeculoplasty plus medication. The study showed treatment 

significantly delays visual field progression. The advanced glaucoma intervention 

study (AGIS, 2000) studied the association of visual field deterioration and control 

of IOP by surgical intervention by both argon laser trabeculoplasty and 

trabeculectomy. After 6 years of patient follow-up, the study showed lowering 

pressure reduces progression rates in the visual field. Weinreb and Khaw (Weinreb

6



and Kliaw, 2004) provide a review of methods and outcomes from other clinical 

trials, including those of OHT patients. These studies support the view that lowering 

IOP reduces the rates of progression in visual fields and damage to the optic disc.

Diagnostics

Diagnosis of glaucoma no longer relies on the presence of elevated IOP alone, but 

requires the additional assessment of the visual field and the ONH. However, 

elevated IOP (together with subject age) remains the most important single 

prognostic risk. Physicians determine the IOP using tonometry. This technology 

measures the force necessary to applanate or indent the cornea. The instrument can 

be categorized as contact or non-contact. While non-contact remains the most 

popular and is often called the ‘air-puff test; contact tonometry has been shown to 

have better inter-observer agreement (Tonnu, Ho et al, 2005). In normal individuals 

diurnal variation of IOP varies from 3-6 mmHg. A diurnal variation of >10 mmHg 

is suggestive of glaucoma, while some glaucomatous eye have reported diurnal IOP 

fluctuation of >30 mmHg (Newell and Krill, 1964). Cornea thickness may be an 

important source of error in tonometry (Tonnu, Ho et al, 2005). Thick corneas are 

linked to high measured IOP and patients with thin corneas may therefore have 

higher IOP than that reported by tonometry (Yagci, Eksioglu et al, 2005).

Perimetry is a diagnostic technique for measuring the visual field (light sensitivity at 

various retinal locations). It remains central to monitoring visual function in 

glaucoma, as it determines what the patient can actually see (Hitchings, 2000). The 

technique can therefore help addresses important issues such as quality-of-life and 

fitness-to-drive. Normally automated perimetry measures the central 25-30° visual 

field and has become a clinical standard. Perimetry, typified by the commercially 

available Humphrey Field Analyzer [Carl Zeiss Ophthalmic Systems, Dublin, CA], 

measures the light-difference sensitivity across the visual field. A stimulus of a 

certain size and intensity is presented at set test positions and the patient indicates 

when they have seen the stimulus (Haley, 1987; Werner, 1991). Using a full- 

threshold algorithm, the stimulus intensity is stepped in fixed increments until a final
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sensitivity value is recorded. This process is repeated at each test position. An 

alternative testing strategy, known as SITA, has been introduced to reduce 

examination time (Bengtsson, Olsson et al, 1997). Perimetry technology detects 

fixation errors, false positive and false negative events which all give a measure of 

the reliability of the test. The output from the machine includes a map of the visual 

field and ‘global indices’ (summary values) indicating if the field has a low 

sensitivity or deviates from an age matched normal visual field. Known sources of 

variability include changes in pupil size, refractive error, ocular media opacities, 

subject learning, fatigue effects and fixation errors (Henson, 2000).

The ability to detect changes in the ONH morphology in follow-up assessments 

depends on the reproducibility of the method employed; if the method is highly 

reproducible then small changes in the disc can be detected. Optic disc drawing 

from stereoscopic examination has been an important part in examination. Serial 

drawing of the ONH have been able to demonstrate progressive changes over time. 

However, few patients are followed by a single clinician and it is known that 

variation between different observers is large (Garway-Heath, 2000).

Optic disc photography provides a high-resolution permanent record of ONH 

appearance. Flicker-chronoscopy and stereochronoscopy allows detection of very 

small changes between two photographs, but a false-impression can be generated by 

magnification error and parallax (Garway-Heath, 2000). It has been demonstrated 

that simultaneous and sequential stereoscopic ONH photography is capable of 

detecting progressive glaucomatous changes (Linner and Stromberg, 1967; Sommer, 

Pollack et al, 1979; Pederson and Anderson, 1980; Odberg and Riise, 1985). 

Planimetry is the term given to measurements made from photographic images. 

Some software programs allow viewing of digitised ONH photographs. This 

therefore enables quantitative assessment of the ONH but is limited by subjective 

interpretations of the boundaries of the ONH and neuroretinal rim (Garway-Heath, 

2000). Scanning laser polarimetry and confocal scanning laser tomography are 

imaging technologies capable of measuring the posterior segment of the eye.



Scanning laser polarimetry uses a polarized infrared laser with the aim of measuring 

the thickness of the retinal nerve fibre layer (RNFL). The birefringence properties 

of RNFL cause a change of state to the polarization of reflected light (known as 

retardation). However, a light beam emerging from a living eye contains 

information on the polarization properties of all ocular structures (i.e. cornea, lens, 

humours and RNFL); the cornea in particular has birefringence properties (Bueno, 

2004). To compensate for this, a variable corneal compensator has been developed. 

This technology shows promise in separating normal and glaucomatous eyes (Reus 

and Lemij, 2004; Da Pozzo, Iacono et al, 2005). CSLT obtains 3D topographic 

images of the ONH or other posterior segments of the eye. This technology is 

introduced in section 1.2.

1.2 Confocal Scanning Laser Tomography

Scanning laser ophthalmoscopy, introduced in the 1980’s, developed as an 

alternative method to image ocular features such as the retina, macular and optic 

nerve head (Webb and Hughes, 1981). Since its launch, hosts of new applications 

have spawned, such as scamiing laser polarimetry, scanning laser Doppler flowmetry, 

scanning laser fluorescein angiography, scanning laser corneal microscopy and 

confocal scamiing laser tomography (CSLT). Ciulla and colleagues (Ciulla, Regillo 

et al, 2003) provide a review of these technologies and their application in 

ophthalmology. CSLT, typified by the commercially available Heidelberg Retina 

Tomograph (HRT) [Heidelberg Engineering, Heidelberg, Germany], is the subject of 

this thesis. What follows is a description of how the HRT acquires images and 

reviews how the technology is typically used for diagnosis of glaucoma and for 

detecting progression.

One distinction between digital fundus photography and confocal scanning laser 

tomography is that the scanning illumination system samples the retina point by 

point rather than capturing the image as a whole. This illumination set-up enables
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the device to image eyes through undilated pupils. A low-energy laser is focused on 

a point on the retina which reflects light back to a detector. A deflector mirror then 

moves the laser beam horizontally so an adjacent point can be imaged. When one 

line has been acquired a second deflector mirror moves the beam vertically before 

acquiring another horizontal line. A 2D image is built up in this raster-like fashion 

in approximate 32 milliseconds (a total of 256 x 256 pixels), a second CSLT called 

the HRT II has been developed which acquires a total of 384 x 384 pixels. The 

image acquisition is based on confocal optics, a system in which a pinhole in front of 

the detector is optically conjugate to the focal plane of the object being imaged (see 

figure 1(a)). This ensures that only light from the imaged focal plane reaches the 

image sensor. Reflected light from in front, or behind, the focal plane is prevented 

from reaching the detector by the pinhole. The position of the focal plane can be 

moved and during acquisition it is moved from anterior to posterior to obtain a total 

of 32 two-dimensional images. This 3D (256 x 256 x 32 voxel) image obtained is 

typically called a confocal stack (see figure l(b & c)). On the HRT II the number of 

scans acquired is automated and depends on the depth of the ONH, the number of 

scans acquired varies from 16 to 64. Images can be prone to artefacts and noise for a 

number of reasons. The eye tends to lose fixation during the scan, this results in 

translation and rotation shifts between images in the stack; the proprietary HRT 

software image alignment algorithms attempt to compensate for this effect. 

Chauhan and McCormick (Chauhan and McCormick, 1995) studied the effect of the 

cardiac cycle on images and found it to be a source which increases variability. 

Zangwill and colleagues (Zangwill, Irak et al, 1997) studied the effect of pupil size 

and cataract on the reproducibility of the technology. They showed, in the presence 

of cataract, pupil dilation improved reproducibility, a step typically not performed in 

a clinical setting, and also reported a significant correlation between both subjective 

and objective grading of cataract and image quality. Sihota and colleagues (Sihota, 

Gulati et al, 2002) reported that uncorrected astigmatism and poor visual acuity 

resulted in images with a higher variability. Orgul and colleagues (Orgul, Croffi et 

al, 1997) reported that the proprietary HRT inter-image alignment software reduced
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the reproducibility of the technology. Chapter 6 examines the utility of the 

technology in imaging patients with cataracts.

(a) Detector

Confocal

Pinholes Lens

Laser

Beam Splitter

Scanner Focal Plane

(b)
Y

n=32 (c)

Figure 1 (a) Confocal optical setup (b) A schematic diagram illustrating the 3D confocal stack 

obtained from a scanning laser tomograph, (c) The 3D confocal stack of an optic nerve head 

illustrated as an 8 x 4 grid of 2D images going in sequence from top left («= 1) to bottom right 

(n=32). Each 2D optical section represents a different focal plane (Courtesy of Heidelberg 

Engineering, reproduced from the ‘HRT tutorial’, available at www.heidelbergengineering.com)

A 2D topography image is formed by calculating the position of maximum 

reflectivity at each z-profile, a two dimensional profile of 32 signal intensity values 

parallel to the optical axis (see figure 2(a)). The topography image represents the
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surface height of the optic nerve head and surrounding papillary retina (see figure 

2(b)). Therefore, the intensity at each pixel within the image represents a height in 

microns. Typically three topography images are acquired at each visit (and this is 

automated with the HRT II) and in most applications averaged to calculate a mean 

topography; this became the convention after an early study into the effect of 

repetitive imaging (Weinreb, Lusky et al, 1993). Image registration algorithms 

within the HRT software align the topography images for the within visit and 

between visit differences in scan positions. A further description of the technology 

is provided by Zinser, Wijnaendts-van-Resandt et al, 1989; Chauhan, 1996. The 

technology has been shown to obtain reproducible topography images of the ONH 

(Chauhan, LeBlanc et al, 1994; Rohrschneider, Burk et al, 1994).

Z-Profile (b)

S lice  Number

Figure 2 (a) The distribution of light intensity at a signal pixel location referred to as a

confocal z-profile. (b) The topography image which consists of 256 x 256 height measurements 

produced by calculating the position of the reflective surface at each pixel location (jt.y) in the 

3D confocal image stack

The repeatability of topography images is typically quantified using mean pixel 

height standard deviation (MPHSD). This metric is a gauge of the variability of each 

pixel height measurement across the three topographies used to make up the mean 

topography (Dreher, Tso et al, 1991). It is calculated from the standard deviations at
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each pixel across the mean topographic image, i.e. the MPHSD is the mean of 256 x 

256 pixel height standard deviations in HRT I images.

O

Figure 3 Pair of topography and reflectance images for a normal (a) and glaucomatous (b) eye. 

(Courtesy of Heidelberg Engineering)

In Figure 3(a) a topography image (left) and reflectance image (right) are shown for 

a normal subject’s right eye. Figure 3(b) shows a topography and reflectance image 

for a glaucoma patient’s left eye. In this example the difference in size and shape of 

the ONH cup is obvious.

(a) (b) (c)

T •*" N

cup

Figure 4 HRT output showing the rim and cup for a normal (a) and glaucomatous (b) eye. The 

red colour represents cup, while the green and blue represent rim. (c) Shows a two- 

dimensional section through a topography image. Anything below the reference plane is cup 

(marked as red), while anything above the reference plane is rim (marked and green and blue). 

Courtesy of Heidelberg Engineering

The HRT software quantifies structural features of the ONH in glaucoma by 

calculating a number of 3D descriptive parameters known as stereometric 

parameters. A contour line is first defined. This is a closed elliptical shape drawn 

manually using a subjective assessment of the location of the boundary of the optic
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disc (inner margin of Elschnig’s ring). Note that although this input is subjective, its 

position has been shown to have good inter-operator agreement (Hatch, Flanagan et 

al, 1999). A “reference plane” (see Figure 4c) is calculated. This is a plane parallel 

to, and set below, the retinal surface and is used to divide the optic disc into rim and 

cup (Burk, Vihanninjoki et al, 2000). RA measurements from stereophotographs 

have been shown to correlate with visual function (Balazsi, Drance et al, 1984) 

CSLT, RA measures the area bound within the contour line which is above the 

reference plane. In Figure 4(a&b) RA is simply the sum of the green and blue area. 

In this example there is a clear difference in RA between the normal and 

glaucomatous eye. Rim Volume (RV) is a measure of the volume bound within the 

contour line and above the reference plane (Hatch, Flanagan et al, 1997). Cup Shape 

Measure (CSM) is a measure of the three-dimensional shape of the cup, also called 

the third moment. In mathematical terms, a second moment represents variance, the 

square root of the second moment as known as the standard deviation, and the third 

moment, here called CSM, represents the skewness of the distribution. A deeply 

cupped disc will have many outliers and a flat cup will have fewer outliers (Burk, 

Rohrschneider et al, 1990). Height Variation Contour (HVC) is the retinal surface 

height variation around the disk contour line (Hatch, Flanagan et al, 1997). Retinal 

Nerve Fiber Layer (RNFL) thickness, as calculated on the HRT, is the mean distance 

between the reference plane and the retinal surface (Iester and Mermoud, 2005). As 

well as yielding a global stereometric parameter, when applicable, the HRT provides 

values in six predefined segments: temporal, temporal superior, temporal inferior, 

nasal, nasal superior and nasal inferior.

Stereometric parameters have been used with some success to discriminate between 

normal optic discs and those with glaucoma. It is worth noting that the known large 

inter-subject variability of optic disc size, rim size and depth of cupping makes this 

task non-trivial. A variety of statistical and quantitative techniques applied to the 

stereometric parameters have been used for this task. Wollstein and colleagues 

(Wollstein, Garway-Heath et al, 1998) examined the best parameters that separated 

patients with early glaucoma from normal subjects. They reported the highest
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separation using the 99% prediction interval from linear regression between the 

optic disc area and the log of the RA. Uchida and colleagues (Uchida, Brigatti et al,

1996) applied neural networks to CSM. Linear discriminant analysis combines 

parameters to achieve separation. Studies have typically used CSM, HVC and RV 

(Mikelberg, Pafitt et al, 1995; Iester, Mikelberg et al, 1997; Bathija, Zangwill et al,

1998). Another approach divides RA into sectors and computes “ranked sector 

distribution curves” (Asawaphureekorn, Zangwill et al, 1996; Gundersen and Asman, 

2000).

The main subject of this thesis has been to develop statistical techniques to detect 

glaucomatous progression. As HRT measurements have been shown to be repeatable, 

it is hoped that progressive glaucomatous damage can be identified by repeated 

scanning of an individual patient over years of follow-up. In this thesis techniques 

were developed and tested on HRT I images (but are equally applicable to HRT II 

images).

1.3 Progression

Why measure optic disc progression? In the management of glaucomatous patients 

preservation of vision is the principal objective. At the mid-point of the 20th century, 

the amount of psychological and physical damage to the health of Americans caused 

by treatment of glaucoma was probably greater than the damage done by glaucoma 

itself (Hitchings, 2000). This was because treatment was based on a definition of 

glaucoma based solely on an elevated IOP. It was not until the natural history of 

OHT had been studied that it became recognized that only 5-10% of patients with 

ocular hypertension developed visual field loss (Linner and Stromberg, 1967). 

Therefore, it is considered ideal in the follow-up of OHT and glaucoma patients to 

combine tonometry, visual field tests and assess damage to ONH. However, merely 

performing these tests may not be enough. For example, it has been shown that 

subjective assessment of follow-up series of visual fields by experts has poor 

agreement in detecting progressive visual field loss (Werner, Bishop et al, 1988; 

Viswanathan, Crabb et al, 2003). Statistical techniques have been developed to
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improve this agreement: a trend analysis known as PROGRESSOR (Fitzke, 

Hitchings et al, 1996; Viswanathan, Fitzke et al, 1997), and an event analysis known 

as Statpac 2 (Heijl, Lindergren et al, 1991). Clearly, it would also be worthwhile to 

develop similar techniques to help clinicians assess ONH damage occurring during 

follow-up examination. This is the primary objective of this thesis.

The thesis develops statistical techniques to quantify change across a whole image 

space; to do this some statistical problems need to be accounted for. If, for example, 

a patient has five HRT images acquired at his/her first visit (called the baseline visit) 

and after a period of follow-up another five topography images are acquired, the 

goal is to compare these images and investigate if statistically significant change 

occurs to the ONH during the time elapsed. To do this, a statistic could be 

calculated at each pixel location; this would give an image made up of statistic 

values (known as the univariate statistic image). In this image we would expect that 

the values with highest intensity would occur at the locations where the greatest 

structural change has occurred to the ONH. The question is to determine if 

statistically significant structural change has occurred to the ONH, thereby inferring 

if significant change occurred across the whole image. To answer this question it is 

necessary to account for the many thousands of statistic values in the univariate 

statistic image. For now lets imagine that we are only interested in testing to 

determine whether change has occurred at one specific pixel location. Does the 

change at this pixel location provide convincing evidence of structural change? To 

answer this question, a two-sample t-test could be performed to determine if the 

average height of the five topographic values from the follow-up visit is significantly 

less than the average of the five baseline values. Lets say the t-test returns a test 

statistic of 2.9. The t value is then tested against the null hypothesis, which is the 

hypothesis that there is no effect. To do this the t value is compared against the null 

distribution of t statistics, which is the distribution of t statistics that would be 

expected if there was no difference. This mathematically derived distribution tells 

us that the probability of obseiving a value greater than 2.9 is 0.01 if there is no 

effect. In this case we reject the null hypothesis with a 1% risk of type I  error, which
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is the likelihood that the result has in fact arisen when there is in fact no change. 

The situation is unfortunately more complicated: there are approximately 65 

thousand pixels locations in a topography image. If a t-test was performed at each 

pixel location, is there any evidence to suggest that change has occurred across the 

whole image? Simply put, this means that approximately 650 t statistics in the 

image are likely to be greater than 2.9 by chance (0.01 x 65,000 = 650). This is 

known as the multiple comparison problem. To solve this statistical problem, a new 

threshold is needed so that in an image of 65000 statistics there is only a 1% 

probability of there being one or more test statistic values above this threshold. One 

method for solving this problem is to use the Bonferroni correction. A Bonferroni 

correction can be applied to keep the type I error rate of 1% from before. To do this 

the required probability at a single pixel location will need to be equal to or more 

extreme than (0.01/65000) 0.00000015. The corresponding test statistic for this 

probability value is 15.5. If any pixel’s test statistic is equal to or greater 15.5, then 

it can be concluded that this statistic has only a 1% chance of have arisen anywhere 

in the image by chance. Unfortunately, in many cases in imaging data using the 

Bonferroni correction for calculating Type I error rates is too conservative. This is 

because images have some degree of spatial correlation’, at each pixel there is a 

correlation between a pixel and its neighbouring pixel values. This means, in the 

case of topography images, there are fewer independent values than there are pixels 

in the image. Some degree of spatial correlation is almost universally present in 

imaging data. This phenomenon is called the point spread function (explained in 

more detail in chapter 6). Also, spatial smoothing often used to improve the signal 

to noise ratio by definition increase spatial correlation. Developing a statistical 

technique which accounts for the multiple comparison and spatial correlation 

problems is the main subject of this thesis. Brett and colleagues (Brett, Penny et al,

2003) provides a detailed review of the issues of applying statistical techniques to 

imaging data. What follows in this section is a review of current methodologies for 

detecting glaucomatous progression using the HRT.
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To date, few statistical tools have been developed which use stereometric parameters 

to detect glaucomatous progression. Studies have measured the test-retest variability 

of each parameter (Mikelberg, Wijsman et al, 1993; Rohrschneider, Burk et al, 

1994); if change exceeds this variability, it is proposed that this represents true 

morphological change (Kamal, Viswanathan et al, 1999; Kamal, Garway-Heath et al,

2000). Tan and Hitchings (Tan and Hitchings, 2003) developed a technique using 

30 degrees segments of rim area and an experimental reference plane. Strouthidis 

and colleagues (Strouthidis, White et al, 2005) showed rim area to be the most 

repeatable parameter, both with inter-visit and inter-operator variability. 

Stereometric parameters are summary measures, i.e. they are quantified by 

averaging data over parts of the topography image. This is a highly data reductive 

process and any statistical technique may, by definition, have reduced sensitivity in 

detecting localised change. However, statistical techniques which use summary 

measures do not need to account for the spatial correlation and multiple comparison 

problems which arise when quantifying change at pixel by pixel level.

Chauhan and co-workers were the first to develop a statistical technique which 

looked for change within the image (Chauhan, Blanchard et al, 2000). The 

Topographic Change Analysis (TCA), now included in the HRT software, divides 

the image into a 64 x 64 superpixel array (each superpixel contains 4x4, or 16 

pixels). An ANOVA is conducted to measure the extent of a constant shift in the 

topographic height over all 16 pixels within each superpixel from one set of images 

(3 replicates at baseline) to another (3 replicates at the follow-up visit, see Figui*e 5). 

The significance of change at each superpixel is evaluated using the F-distribution 

where the degrees of freedom are adjusted via a correction to account for spatial 

correlation within each superpixel. It is worth highlighting that this correction is 

used within a superpixel and does not correct for the spatial correlation across the 

whole image. The authors established an empirical criterion for ‘significant’ change 

of 20 or more statistically significant superpixels bound within the ONH contour line, 

and when this topographic change occurred at the same superpixels in 3 consecutive 

sets of follow-up images, compared with baseline (Chauhan, McCormick et al,
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2001). This criterion for change was introduced to set the specificity at a particular 

level, the limits being derived from empirical data (longitudinal data from normal 

subjects). In a subsequent publication, three criteria for change where presented to 

demonstrate the variation in overlap of patients with VF and ONH progression at 

different levels of criterion stringency: least conservative (6% area of depressed 

significant superpixels within the contour line), intermediate (10%) and most 

conservative (18%) (Artes and Chauhan, 2005). The technique therefore has no 

intrinsic mechanism to account for the multiple comparison problem. The TCA 

result is also based solely on comparing the three most recent follow-up images with 

the baseline image, thus detecting change is highly dependant on the quality of the 

baseline image.
P rogression  Analysis Details: G laucom a, progression  (HRI c la s s ic ) , and visual field . IX

Height change:

Pooled standard deviation 

Change probability

Basefcne Exam 05/Oct/I994 (53)

< ► ►!
FoHowup E xam 18/Apc/2000 (65)

Figure 5 TCA output from the HRT Eye Explorer software (version 1.4.1.0). The red (green) 

clusters overlaid on the image represent statistically significant depressed (elevated) superpixels 

which were confirmed as significant in three consecutive visits after comparing the baseline 

visit with the follow-up visits. (Courtesy of Heidelberg Engineering)

This thesis develops and tests techniques to address the issues of applying standard 

statistical technique across an image space for detecting glaucomatous damage.
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1.4 Objectives

The objectives of this thesis were to improve the analysis of ONH images from the 

CLST. hi particular, this thesis aims to:

• Develop a novel technique for detecting structural change in ONH images.

• Develop a simulation for evaluating the specificity and sensitivity of 

techniques aimed at detecting glaucoma progression.

• Validate glaucoma progression techniques on simulated and clinical datasets.

• Investigate techniques for improving the repeatability of CSLT ONH 

images.
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2. S im ula tion  of se ria l optic n e rv e  h e a d  (ONH) im a g e s

The major aim of this thesis is to evaluate and implement new methodologies for 

detecting change in the ONH associated with the morphological changes that occur 

due to glaucoma. The aim is to apply these techniques to serial images of the ONH 

acquired using confocal scanning laser tomography. In this chapter we discuss the 

issues of measuring the sensitivity and specificity of techniques aimed at measuring 

these changes. These issues lead to the necessity of developing a fair, reliable and 

unbiased testing procedure for comparing methods for detecting change to the ONH.

2.1 Previous work

One ‘traditionally’ held viewpoint infers that optic disc changes (structural changes) 

precede the onset of defects in the visual field (functional changes). There is a body 

of work which supports this theory. Histological results report a reduction in the 

number of RGC at retinal locations known to have visual field defects (Quigley, 

Dunkelberger et al, 1989; Kerrigan-Baumrind, Quigley et al, 2000). Quigley and 

colleagues (Quigley, Dunkelberger et al, 1989) have shown 20% and 40% of RGCs 

were gone in locations with 5 dB and 10 dB visual field sensitivity loss, respectively. 

Kerrigan-Baumrind and colleagues (Kerrigan-Baumrind, Quigley et al, 2000) report 

at least 25% to 35% of RGC loss is associated with statistical significant 

abnormalities in automated visual field testing. Another study measures RNFL 

defects from photo graphs of 1344 eyes using two masked observers (Sommer, Katz 

et al, 1991). In the sub-sample with visual field defects the most sensitive observer 

of the two observers identified RNFL defects in 88% of the photographs at the time 

in which a visual field defect had first occurred. The same observer reports RNFL 

defects in 11% of normal eyes and 26% of OHT eyes.

With the advent of confocal scanning laser tomography, studies compared structural 

changes measured at the ONH against changes to the visual field that occur during 

patient follow-up. Chauhan and colleagues (Chauhan, McCormick et al, 2001) report 

on a population of 77 glaucoma patients examined at regular intervals. This study
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shows 40% progress with ONH change only, while 4% progress with visual field 

only. However, of the 29% who progressed with both techniques, 45% first 

progressed with ONH changes and 41% first progressed with visual field changes. 

Artes and Chauhan (Artes and Chauhan, 2005) later reported that perimetry 

techniques and scanning laser tomography provide largely independent measures of 

progression. This work has contested the ‘traditionally’ held viewpoint and implies 

that it cannot be assumed that though a patient’s visual field has changed to a 

diagnosis of glaucoma over the course of the patient’s follow-up, that the 

corresponding topography images of the ONH will not necessarily have developed a 

structural glaucomatous defect. This means that there is no surrogate measure to 

confirm glaucomatous damage may have occurred to the ONH. This issue is 

compounded by the wide variability in appearance of the normal optic disc. 

Medeiros and colleagues (Medeiros, Zangwill et al, 2005) have suggested using 

traditional examination of the optic disc by expert assessment of serial photographs 

and drawings as a gold standard to evaluate the diagnostic accuracy of imaging 

instruments for detecting glaucoma progression. However, previous studies have 

shown poor inter-expert agreement in diagnosing progression based on drawing or 

photographs (Coleman, Sommer et al, 1996).

To resolve these issues it is necessary for this thesis to develop a simulation 

mimicking serial images obtained from ‘stable’ and ‘unstable’ patients. To date 

there has been no published research in this area. However, in perimetry computer 

simulations were used to mimic series of VFs (Gardiner, 2003). Also an optimized 

VF testing strategy has been implemented after initial validation on computer 

simulation (Bengtsson, Olsson et al, 1997). Simulations of ONH images have been 

used to test the ability of new techniques to separate glaucomatous from normal 

ONH (Swindale, Stjepanovic et al, 2000; Adler, Hothorn et al, 2004). In this chapter 

a novel method is presented which simulates both stable and unstable series of 

topographic images.



2.2 Simulation of ONH images

The simulation models ‘stable’ and ‘unstable’ patients. Each longitudinal virtual 

patient series comprised of 30 topography images. This mimics a patient being 

scanned over 10 visits with 3 images obtained at each visit. To model both stable 

and unstable patients it was also necessary to model between-image and within- 

image topographic variability characteristics of a patient’s image series.

Each stable patient series is simulated by simply first creating 30 identical copies of 

a HRT image. Then noise is applied to each image. Simulating ‘unstable’ patients 

proceeded by applying either gradual or episodic topographic change to longitudinal 

series of images. Unstable patient series’ with gradual change (linear) were 

simulated by creating 30 identical images and then applying change to a cluster of 

pixels at the cup border in the shape of an irregular polygon. For each image change

is applied (v -1) x  ̂ in depth, where v is the visit, d is total depressed change

and n is the total number of visits. Progressing patient series’ with sudden (episodic) 

change were also simulated by introducing a height decay of d x n applied to the 

entire cluster at a randomly selected visit between visit 2 and visit 10 inclusive.

Between-image variability had two elements: ‘misalignment noise’ and background 

noise. ‘Misalignment noise’ was simulated by applying a series of transformations to 

each image in translations (x y  \ z ’) and rotations about each axis (crx <7y (Jz ’) as 

illustrated in Figure 6.

23



30  plot of Topographic Image

feVUtlV,,

Figure 6 A 3D plot of a topography image showing the transformations jO y ,’ s ’ and cr/, oy\ oz’

Geometric transformations to the images are applied at a subpixel level using 

bicubic interpolation algorithms. Lehmann and colleagues (Lehmann, Gonner et al,

1999) provide an extensive review of image processing interpolation algorithms. 

The magnitude of each of the 6 transformations was made unique in each simulation 

by using a random number sampled from a Normal distribution where the mean of 

the size of the transformation is set at zero and a variance fixed for each 

transformation. To mimic background noise, Gaussian noise is added to each pixel 

with variance v and mean zero. A proven non biased random number generator was 

used to sample from a normal distribution (Press, 2002). Figure 7 shows the 

computational sequence used to mimic a patient series.
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Visit 1 Visit 2
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Visit 1 Visit 2

MOVEMENT + GAUSSIAN NOISE

Visit 1 Visit 2

Visit 10

Visit 10

Visit 10

Figure 7 Computer simulation of a patient’s image series. A topography image is replicated 30 

times to represent 10 visits with 3 scans acquired at each visit. Then ‘movement’ and Gaussian 

noise are added

The MPHSD was mimicked using a trial and error approach by varying the spread of 

the normal distribution used to simulate each of the movement parameters (x y  ’ z 

<f, (f, c?) and the Gaussian noise.
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The resultant between-image variability demonstrated characteristic noise patterns 

previously reported in literature (see Figure 8), with higher variation in areas of high 

gradient change, such as across blood vessels and the cup border (Brigatti, 

Weitzman et al, 1995; Chauhan and McCormick, 1995).

Standard Deviation 
of an Image Series

Figure 8 The result of calculating standard deviations of the topographic height at each pixel(ij)  

in an image series of a simulated stable patient. The darker pixels (seen along blood vessels) 

indicate areas of high variability; this pattern would be expected in a real series

There are many solutions to finding an acceptable noise pattern. This thesis 

(chapters 3 & 4) reports the results from computer experiments which use this 

simulation to test new techniques ability to distinguish between ‘stable’ and 

‘unstable’ patient series. The reader should however be aware of the assumptions 

made by the simulation as any simulation might not be truly representative of the 

true data. The spread of the normal distribution which is randomly sampled to apply 

translation and rotation to mimic movement noise was estimated by trial and error. 

This is because it is impossible to measure the remaining movement error that 

remains after the HRT alignment algorithm are applied to image series. Also, the 

simulation randomly samples from a normal distribution which results in the within 

and between visit variability being consistent. Chauhan and MacDonalds (Chauhan 

and MacDonald, 1995) results support this assumption in finding no statistically
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significant difference between scans taken 011 the same day and those acquired on 

separate visits. The simulation assumes no auto-correlation in time. This means that 

a single pixel location will be represented by 30 topographic height values (10 visits 

with 3 scans per visit), the simulation assumes that these values are independent of 

each other (knowing one value does not provide you with any information of another 

value). Auto-correlation has however been reported in RA measurements obtained 

from the HRT (Crabb, Owen et al, 2006).

In the proceeding chapters (3 and 4) computer experiments use this simulation to 

replicate the repeatability of topographic height measurements typical of real patient 

data.
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3. SIM: a new technique for detecting change in 

series of ONH images

The real promise of the HRT may lie in objectively measuring progressive structural 

damage, or stability, in patients being followed over time. This is possible because 

the local height measurements at each of the pixels of a topography image are 

sufficiently reproducible (Chauhan, LeBlanc et al, 1994; Rohrschneider, Burk et al, 

1994). However, to date research in this area has used stereometric parameters, 

summary measures of the ONH, to detect change. Alternately, the TCA (see section 

1.3) developed by Chauhan and colleagues and available on the current HRT 

software identifies areas of change at a supeipixel level ( 4 x 4  array of pixels) on the 

ONH. As discussed previously this technique fails to handle the multiple 

comparison problem, spatial correlation across the image and has no specific 

mechanism to detemiine if an area of damage is statistically significant.

In neuroimaging, PET (positron emission tomography) or MRI (magnetic resonance 

imaging) scans yield a sequence of three dimensional images of the subject’s brain 

from which the temporal and spatial characteristics of neuronal activity can be 

deduced. In the case of fMRI (functional MRI) for example, this is done by 

measuring changes in cerebral blood oxygenation related to brain activity. The 

images are complex and high-dimensional, typically containing as many as 100,000 

measured volume elements or voxels (3 dimensional pixels). Consequently the 

neuroimaging research community has developed an extensive suite of techniques to 

register, align, process and analyse arrays of imaging data (Frackowialc Richard,

1997). This thesis exploits this work, specifically the techniques collectively 

referred to as Statistic Image Mapping (SIM) sometimes referred to as (Statistical 

Parametric Mapping - SPM) which are used for determining areas of activity and 

change in MRI and PET type images, and by applying them to series of retinal and 

ONH topography images. In particular, we use a lion-parametric version of these 

techniques; these are intuitive to understand and assessment of change in the image
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is based solely on the subject’s own data and within-subject image variability, rather 

than any a priori information or patient population characteristics.

This chapter describes and applies SIM techniques to HRT images. The performance 

of this new statistical approach is evaluated by comparing it to the TCA method. 

This is done with an extensive series of computer simulation experiments. SIM is 

then applied to longitudinal sets of real HRT data Rom patients and normal subjects 

to make comparisons with the TCA method.

The work in this chapter has formed a paper published in Investigative 

Ophthalmology and Visual Science (Patterson, Garway-Heath et al, 2005). It was 

also presented at the International Perimetric Society conference in Barcelona, Spain 

on June 29 - July 2, 2004; at Moorfields Eye Hospital Bicentenary meeting, London, 

UK on 16-19 March 2005; and at Image Moiphometry and Glaucoma in Europe 

Meeting, Milan, Italy on April 4-5, 2005. The results in this chapter have also been 

described in part at the American Academy of Ophthalmology meetings New 

Orleans, USA, on Oct 23-26, 2004 and Chicago, USA, on Oct 15-18, 2005.

3.1 Methods
As described in Chapter 1 a known characteristic of progressing glaucoma patients is 

increasing optic nerve head (ONH) excavation and nerve fibre layer thinning with 

time, often called structural progression (Drance, 1975; Schwartz, 1976; Spaeth, 

Hitchings et al, 1976). The ideal clinical tool for assessing a longitudinal set of 

these HRT images would highlight this structural progression as localised areas of 

the ONH that are ‘changing’ beyond the natural ‘within test’ and ‘between test’ 

variation in the images. What follows is the description of a quantitative statistical 

techniques developed for such a purpose. Here it was applied to series of HRT 

images, but these methods are applicable to several of the retina imaging modalities.
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Statistic Image Mapping

The methods take advantage of proven statistical techniques that have been 

developed to analyse series of MRI and PET images. These analyses usually proceed 

by computing a statistic at the pixel level (or 3-D pixel, voxel, in the case of MRI 

and PET images), indicating evidence for the observed effect of interest, and 

resulting in an ‘image of statistics’, or a statistic image map. Each pixel in this 

statistic image is simply a number (or statistic) indicating the level of change. The 

entire statistic image must be assessed for significant effects, using a method that 

accounts for the inherent multiplicity involved in testing all the pixels at once (see 

section 1.3 for a description of the statistical problems encountered when applying 

standard statistical methods to imaging data). This analysis can be accomplished in a 

classical parametric statistical framework (Worsley, Evans et al, 1992; Friston, 

Holmes et al, 1995), but we use an alternative that is based on permutation testing. 

The latter is conceptually simple, does not rely on any theoretical probability models 

that may or may not be appropriate for the HRT data, deals with the multiple 

comparison problem of testing a vast image space and, critically, derives 

significance limits for change based only on the individual patient’s series of data. 

These specific techniques and the mathematics that underpin them, as applied to 

PET and MRI data, are extensively described elsewhere (Arndt, Cizadlo et al, 1996; 

Holmes, Blair et al, 1996; Everitt and Dunn, 1998; Bullmore, Suckling et al, 1999; 

Nichols and Holmes, 2002; Hayasaka and Nichols, 2003; Hayasaka, Phan et al,

2004). What follows is a description of three component parts of this approach, and 

how we apply them to a series of HRT data.

Permutation testing at individual pixels

Consider that three HRT images, at each patient visit, are acquired at regular 

intervals over a clinical follow-up. After registration of the image series, the 

topographic height at each individual pixel is considered in turn. Visually this could 

be done by plotting the topographic height at each pixel as a time series (see Figure 

9). Next a suitable statistic is derived for summarising the change, or stability, of the 

topographic height at that pixel over time: the line of best fit (slope) derived from

30



ordinary least squares regression. The standard error of this slope gives an indication 

of how well the data fits the linear trend, with relatively high values indicating a 

poor fit or a noisy series of observation. Our test statistic at each pixel is simply the 

absolute value of the slope divided by the standard error: a relatively large test 

statistic would be evidence of clear linear change of topographic height at that pixel. 

This process is performed at all of the pixels, and the patient’s series of data is 

reduced to a statistic image; this is no longer a physiological image but a 256 x 256 

map of statistics ‘summarising’ change within the image (see Figure 10).
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Figure 9 Tire permutation distribution of test statistics at pixel(ij) is calculated by generating 

1000 unique permutations, see the computation paradigm in section 3.2 for further details. The 

observed ( • )  and the first two unique permutations (□, A) are marked on the distribution. The 

probability that p ixel(ij)  is statistically significant is defined as a value which exceeds the 95th 

percentile in the permutation distribution (marked by the dashed line). As the observed test 

statistic is very unusual (a P-value less than 0.05) pixel(ij) is marked as statistically significant 

on the statistic image

The next step is to determine whether the observed test statistic at each pixel is 

‘unusual’, or more extreme, than would be expected by chance. This testing of the
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significance of the test statistic is not completed in the conventional manner, by 

considering the observed test statistic as a random variable from a probability model, 

but uses a permutation test. We randomly ‘shuffle’, or re-label, the order of the 

observed data and recalculate the test statistic for all possible permutations of the 

order of images. If we let N  denote the number of all possible labellings, tt the 

statistic corresponding to labelling i, then the set of U for all possible re-labelling 

constitutes the permutation distribution. For example, there would be 369600 (12!/(3! 

x 3! x 3! x 3!)) of these in a series of four clinical visits with three scans at each visit 

(see the computational paradigm in section 3.2 for more details of this calculation). 

We then assume that all of the tt are equally likely and determine the significance of 

the observed test statistic by counting the proportion of the permutation distribution 

as or more extreme than our observed value, giving us our p-value; if this is, for 

example, less than 5% we label the pixel as being active or ‘changing’. We 

therefore assume that images acquired at the same visit are no more correlated than 

images acquired between visits; previous work on the influence of time separation 

on inter-image topographic variability support the intuition behind this approach 

(Chauhan and MacDonald, 1995). This permutation test is done ‘pixel by pixel’ and 

the statistic image becomes ‘thresholded’ at the 5% level with pixels flagged if they 

are ‘significant’ or not (see Figure 9). In practice, a sample of 1000 randomisations 

(drawn without replacement from all the possible labellings) are used to generate the 

permutations distribution (Manly, 1991; Good, 2000). This eases the computation 

burden but still allows for a statistically exact test at standard levels of significance 

testing (Manly, 1991). It is worth noting, however, that larger samples would be 

needed to accurately model the tail of the probability distribution for smaller p- 

values such as 0.1%.
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(a) Patients Topography Image Series

0 months 6 months 12 months 18 months

(b) Statistic Image

Figure 10 (a) An example of a typical patients topographic image series. Three images are 

typically acquired at each visit, (b) A statistic image is generated by calculating a statistic at 

each pixel location. In this case linear regression is performed, each statistic is comprised of a 

slope divided by the standard. For display purposes the statistics arc represented in a colour 

coded form, red represent a small statistic through to yellow representing a larger statistic

Permutation testing to threshold clusters

Thus far we have considered a separate analysis at each of the 65356 pixels within 

the HRT image, with no attempt to take account of the multiplicity of testing. 

Statisticians refer to this as the multiple comparisons problem and the construction 

of a corrective analysis for high dimensional MRI and PET data has occupied many 

authors, with ideas ranging from the simple use of Bonferroni adjustments to other

34



mathematical solutions (Nichols and Holmes, 2002). In this work we again exploit 

an intuitive approach, once more using a permutation test, which has been 

successfully applied to sequences of MRI and PET images, and out-perfonns other 

approaches when there are few images involved (or experiments with low degrees of 

freedom). Once we have thresholded the statistic image pixel by pixel (see Figure 

11), we are left with an image that will contain clusters of contiguous, significant or 

active pixels. An active pixel is defined as part of a cluster if one or more of the 

pixels nearest neighbours are active; there are 8 pixels in each pixels neighbourhood 

and a pixel is therefore part of a cluster if any of the 2 nearest horizontal pixels, 2 

vertical pixels or 4 diagonal pixels are active. The size of the largest cluster in the 

observed image is recorded. To ascertain whether the spatial extent of the clusters in 

the observed image is unusually large by chance alone, we set about ‘shuffling’ the 

images again, re-compute the statistic image, calculate the cluster sizes and record 

the size of the largest cluster. (In fact the ‘shuffling’ for the pixel by pixel analysis 

and the cluster testing is all done in one ‘sweep’ in the computational algorithm). 

This is repeated to generate a permutation distribution of the maximum cluster size 

(see Figure 11); hence, we assess the significance of the observed result by 

considering only the patient data itself, and no knowledge of the probabilistic 

behaviour of the topographic heights at image pixels is required. This is particularly 

useful because of the spatial correlation that exists within the image (i.e. the 

topographic height of neighbouring pixels will be more similar in some part of the 

image than others) and, in part, this cluster testing accounts for this. The threshold 

value generated to determine progression will be unique for each patient and will 

vary depending on the patients signal to noise ratio. The criteria for progression 

included only depressed clusters (a continuous set of active pixels whose slopes are 

negative) bound within the contour line for the optic disc. Section 3.2 contains the 

computational details.
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Figure 11 Simulated change: active (changing) pixels whose slopes are negative are shown in 

grey, with the largest cluster highlighted in black. We show the observed statistic image and 

two of the 1000 permutations. The distribution of maximum cluster sizes is created by 

recording the largest cluster of active pixels in the statistical image for each unique permutation. 

In this case one cluster in the observed statistic image (• ) , generated by simulating a 

progressing patient, is very unusual (P-value smaller than 0.01), therefore the virtual patient is 

classed as progressing

Pre-processing: the pseudo test-statistic

A prerequisite for any pixel by pixel analysis of a series of images is that any given 

pixel represents precisely the same anatomical region across the series. Even after 

the HRT software alignment procedures this is a considerable leap of faith. A
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proven solution to this problem is available and this involves the generation of a 

pseudo test statistic. Rather than divide the 256 x 256 matrix of individual slope 

values by the 256 x 256 matrix of individual standard error values to yield the test 

statistic, the slope values are divided by a spatially filtered standard error value (see 

Figure 12). The latter is the matrix of standard error values smoothed with a 

weighted, Gaussian kernel. Thus a pseudo test-statistic image is formed by dividing 

the slope matrix by the smoothed standard error matrix. Hence all the analyses, 

including the permutation cluster testing, proceeded with these pseudo-test statistics.
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Figure 12 Illustrates the computation of the pseudo test statistic on an fMRI image, (a) Shows 

the slope and standard error at each pixel location. The test statistic plot is a result of dividing 

the slope by the standard error terms. In this example the test statistic image appear highly 

variable, (b) To calculate the pseudo test statistic the standard error term are first spatially 

smoothed. The resulting pseudo test statistic plot appears less variable. (Courtesy of Dr Holmes: 

permission sought to use these figures through private communication)
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In essence the noise from the variance image (the matrix of standard error values) 

has been smoothed but not the signal. Statistic image maps constructed with 

smoothed variance estimates have been shown to substantially improve the power of 

the approach and can only be used in the non-parametric or permutation setting 

outlined here (Arndt, Cizadlo et al, 1996; Holmes, Blair et al, 1996; Bullmore, 

Suckling et al, 1999; Nichols and Holmes, 2002).

3.2 Computational paradigm

The aim of this section is to allow the reader to directly replicate the computational 

paradigm behind SIM. The order of the three components of SIM has been changed 

to reflect the computational sequence. Figure 13 provides a schematic of the entire 

SIM paradigm.

Permutation testing at individual pixels

A feature of permutation tests is the number of combinations required for testing a 

probability limit, hi practice a sample of 1000 randomisations (drawn without 

replacement from all the possible labellings) are used to accurately model the tail of 

the permutations distribution at P=0.05 (Manly, 1991).

The number of possible unique permutations is expressed as:

(S X ft) ^
  — where s — number of scans per visit and n = number of visits

(S\ y

For example, with 4 visits and 3 scans per visit there are:

(3x4)!
  j -  = 369600 unique permutations.

(3!)

The following steps represent the computational paradigm to compute a permutation 

distribution and test statistical significance

1. At each pixel(i,j) calculate by least squares linear regression the slope b(i,j), 

standard error se(i,j) and absolute test statistic t(i,j) of time (dependant 

variable) against topographic height (independent variable).
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2. Shuffle the order of the dependant variable (time) to generate a unique 

permutation and recalculate b, se and t.

3. Perform step 2 above, in total 1000 times calculating a unique permutation 

each time. As each permutation must be unique the algorithm must perform 

sampling without replacement.

4. We reject the null hypothesis at a significant level of P<0.05; thus, for the 

mechanics of the permutation distribution we reject the null hypothesis if the 

observed test statistic is greater than or equal to the 95%ile of the 

permutation distribution. Therefore, sort the array of test statistic t produced 

at each pixel(i,j) into ascending order and test if the absolute observed test 

statistic is > to 950th (0.95 x 1000) value of t. Define this value as tcrmCaU 

Note that we retain the sign of the observed test statistic to indicate the 

direction of change i.e. a negative sign indicates a depression in topographic 

height values over time, whereas a positive sign indicates an elevation in 

topographic height values over time.

In practice a computer program was developed to calculate a lookup table of unique 

peimutations, a separate lookup table was then created for each visit. Therefore an 

example of a unique permutation at visit 4 could be (2 10 11)(1 3 12)(4 5 8)(6 7 9) 

and at visit 5 could be (2 10 13)(1 3 12)(4 5 8)(6 7 9)(11 14 15). Generating these 

lookup tables and saving them to disk saves considerable computer time, as each 

time the SIM paradigm is executed it does not require evaluating 1000 unique 

permutations at each visit.

Pre-processing: Pseudo test-statistic

The pseudo test statistic tstat(ij) is calculated by dividing slope b(i,j) with a spatially 

smoothed standard error se(i.j). The smoothed standard error is calculated by 

convolving the standard error se(i,j) with a Gaussian kernel. We used a square 

Gaussian kernel of symmetrical full-width half maximum of 11 and size 17 by 17 to 

smooth the standard error se(i,j). Chapter 3 in (Gonzalez and Woods, 2002) 

provides details on the computational method required to generate Gaussian kernels

40



and perform spatial convolution. The pseudo test statistic is calculated for the 

observed case and for each unique permutation.

Permutation testing to threshold clusters

The following paradigm is a computational method for thresholding clusters: -

1. Compute the observed pseudo test statistic.

2. Compute the pseudo test statistic for each unique pennutation.

3. Compute an observed statistical image s(i,j) by setting s(i,j) = 

active depressed or active elevated if the observed absolute pseudo test 

statistic is > the 95th percentile of the pennutation distribution of absolute 

pseudo test statistic at pixel(ij). Record the size of the maximum depressed 

and elevated clusters within the observed statistic image, bound within the 

contour line (defined as the ‘area-of-interest’). An active pixel within a 

statistical image s(i,j) is part of a continuous cluster if one of the eight pixels 

within its neighbourhood is also active i.e. 8 - connectivity.

4. Compute a statistic image at each of the 1000 unique permutations. Record 

the size of the maximum depressed and elevated clusters for each unique 

pennutation, bound within the contour line.

5. Sort the anay of maximum clusters into ascending order.

6. A depressed or elevated cluster (or clusters) within the observed statistic 

image is statistically significant if it (or they) are larger than the 99%ile of 

the maximum depressed and elevated cluster distributions. Progression is 

defined if a depressed cluster is larger than the 99%ile of the maximum 

depressed distribution.

An ‘area-of-interest’ was set as mentioned in step 3 above as the area bound within 

the contour line. To determine if a pixel is bound within the contour line draw either 

a horizontal (or vertical) line in a fixed direction from the pixel, a pixel is bound 

within the contour line if it passes the boundary of the contour line an odd number of 

times (e.g. 1 or 3) and is outside the contour line if it passes zero or an even number 

of times.
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Visit 1 Visit 2 Visit 3 Visit 4

Time between visits eg. (0, 180, 382, 510 days)

Input topography 
images of patient 
series and 
elapsed time 
between visits

Reorder sequence of topography images, 
for example let

k — \ —>(1 2 3)(4 5 6)(7 8 9)(10 11 12) 
k = 2 (1 4 5)(3 8 11)(6 9 12)(2 7 10)
Ar= 3 —► (1 2 7)(3 8 12)(4 10 11)(3 6 9)

k —\ 000 —>(7 9 11)(4 5 12)(2 8 10)(1 3 6)

thus, calculate the test statistic for the 
observed order and for each of the 999 
unique permutation permutations

Calculate slope bijjc=j and standard error 
by linear regression at each pixel 
location i,j and permutation k

i
Smooth standard error values (spatial 
convolution using a Gaussian kernel)

i
Calculate absolute pseudo test statistic t 
at each pixel location

abs(b(i,j)/smoothed_standard_error(i,j))

Copy t and at each pixel location i,j sort test statistic values into 
ascending order

Calculate t_critical(i,j) as the 950lh value of k (representing a p-value of 
0,05) at each pixel location i,j
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Repeat calculating 
statistic image at 
each unique 
pennutation 
k=2,3,...1000

Repeat calculating 
the size of the 
largest cluster in 
the statistic images 
generated at each 
unique pennutation 
k=2,3,...1000

Repeat ranking 
S maxi 2..1 ,/fA-rf/ 
ca iculating the p~ 
values of
s ign i 11 ca n ee c 11 as i ge 
at each unique 
permutation />s

Calculate size of largest continuous cluster Sjnax in observed 
statistic image s(i,j,k=l) where a continuous cluster is the area 
of active_depressed elements bound within an area of interest.

probability of the significance of change F 5-

For example, if Sjnaxi is equal to the 950th value in Sjnax, 
then the probability to change p s~Mnx — 0.05

Copy and sort Sjnax into ascending order, rank the observed 
largest cluster Sjnaxj against Sjnax to calculate the

"  M ax

Calculate statistic image s at each pixel location i,j by 
comparing observed test statistic value t(i,j,k=l) to 
t_critical(i,j) and accounting for the direction of slope b

if{t(i,j,k=l) greater than t_critical(i,j) and b(i,j,lc) is negative) 
{set s(i,j,k=l) = active depressed}

if\t(i,j,k=l) greater than t_critical(ij) and b(i,j,k) is positive) 
{set s(ij,k=l)  =  active_elevated)

Figure 13 Schematic of the SIM computational paradigm. The details shown in grey will be 

referenced to in chapter 4

3.3 Testing the new approach

The performance of SIM was tested against the TCA method in a computer ‘virtual 

patient’ simulation described in chapter 2. The TCA method was replicated in 

consultation with the authors of the technique (David Hamilton, Department of
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Mathematics and Statistics, Dalhousie University, Canada, private communication, 

2004). To do this C++ software was written to replicate the TCA algorithm and 

visualise the TCA output. (The TCA technique is described in section 1.3.) hi this 

experiment we used a criteria for change implemented in a previous publication 

(Chauhan, McCormick et al, 2001): any ‘virtual patient’ who showed a cluster of 20 

or more significant superpixels bound within the contour line for the optic disc, 

where the topographic change compared with baseline occurred in 3 consecutive sets 

of follow-up images, was considered to have confirmed progression.

Progressing patients-series’ with gradual change (linear) were simulated by applying 

a cumulative decay of 5|iim per visit to a cluster of 480 pixels to the neuro-retinal 

rim. Progressing patients-series’ with episodic change (sudden) were simulated by 

applying a height decay of 50pm to the cluster at a randomly selected visit between 

visit 2 and visit 10, inclusive. To replicate the repeatability of topographic height 

measurements seen in clinical data, groups of virtual subjects were simulated having 

a mean pixel height standard deviation (MPHSD) of 15, 25 and 35 pm. Chapter 2 

provides full details of the simulation. Each simulated series was stored to computer 

disk allowing the specificity and sensitivity of both techniques to be evaluated on 

identical image series.

Computer experiments

Specificity was examined in our first set of experiments by generating 300 stable 

‘virtual patient’ series. Three groups of 100 virtual patients were generated with a 

MPHSD of 15, 25 and 35pm respectively. We then applied our new SIM technique 

to these data, using the criteria for change specified in section 3.2, recording for each 

patient series the visit at which (false-positive) change was first detected. We then 

applied the TCA method to the same dataset, again recording for each patient series 

the visit at which (false-positive) change was first detected.

The sensitivity of the techniques was tested in 6 separate experiments: for gradual 

(linear) change and sudden (episodic) change; with change applied to a cluster of an
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area of 480 pixels; and with a MPHSD of 15, 25 and 35p.m. The same progression 

criteria were used as for the specificity experiment. The follow-up visit at which 

change was first detected was recorded for both the SIM and the TCA analysis.

The SIM technique, the replicated TCA method, the simulations and the computer 

experiments were all developed in purpose written software using C++.

Real longitudinal HRT series

The techniques were further tested on a selective sample of clinical data: OHT 

patients which were selected from the OHT clinic at Moorfields Eye Hospital 

(London) and normal age-matched controls. The patient group were selected from a 

subset of OHT patients who had developed reproducible visual field loss while 

under observation. The control group were typically spouses, friends and family of 

the OHT patients. The study groups are described in detail elsewhere (Kamal, 

Viswanathan et al, 1999; Kamal, Garway-Heath et al, 2000); these adhered to the 

declaration of Helsinki and local ethical committee approval was obtained. In short, 

OHT patients had an intraocular pressure (IOP) of > 22 mmHg on two or more 

occasions, two initial reliable visual fields with AGIS score of 0 (AGIS, 1994; AGIS, 

2000), absence of other significant ocular disease that would effect visual field 

performance and age > 35 years. The eligibility criteria for the normal subjects 

included IOP consistently <21 mmHg, baseline reliable visual fields with an AGIS 

score of 0, no significant ocular disease, no family history of glaucoma and age >35 

years. A reliable visual field was defined as <25% fixation errors, <30% false 

positive errors and <30% false negative errors. The normal subjects were followed 

concurrently with the OHT patients.

Thirty OHT eyes that ‘converted’ to a clinical diagnosis of glaucoma (converters) 

during the follow-up and 20 eyes of 20 normal subjects were randomly selected. A 

converter was defined as an eye with an initial AGIS score of 0 and follow-up AGIS 

scores of > 1 on three consecutive reliable visual fields. The reader should be aware 

that the AGIS scoring system may suffer from a low sensitivity in detecting visual

45



field deterioration as the criteria was developed to determine progression in patients 

with advanced glaucoma. Both groups (converters and normals) were imaged at 

regular intervals; the converters follow-up period ranged from 2.8 to 7.3 years and 

the controls ranged from 2.8 to 7.3 years. Twenty-one topography images 

(representing 7 visits with 3 scans per visit) were selected from each subject, taking 

the images from the baseline and last visit and images from 5 interim visits. Image 

quality was not a factor in the selection of subjects.

The topography images were extracted from the Moorfields HRT database using the 

scientific features of the HRT Eye-Explorer software vl.4 (Heidelberg Engineering, 

Heidelberg). The image data were exported as aligned for analysis by the HRT 

software and then subjected to SIM analysis exactly as described for the simulation 

experiments (using the same progression criteria at visits 4 to visit 7). TCA was 

performed using the HRT software.

3.4 Results

Computer Simulation

In the 300 stable ‘virtual patients’, under the conditions of these computer 

experiments, the TCA method flagged 16%, 17% and 17% at MPHSD of 15, 25 and 

35pm, respectively, at some point in the follow-up series (false-positives). These 

values are closer to 10% in the first half of the follow-up but worsen as more visits 

are considered. SIM had much better specificity, with 6%, 5% and 5% flagged at the 

different levels of noise (see Figure 14a).

In the simulations of progressing patients, the TCA method identified progression at 

some point in follow-up in 95%, 31% and 28% with linear change, and 82%, 47% 

and 42% with episodic change, for the MPHSD of 15, 25 and 35pm conditions, 

respectively. SIM identified 100%, 68% and 62% with linear change, and 86%, 57% 

and 55% with episodic change (see Figure 14(b,c,d)). For these experiments, the 

TCA had slightly better or similar sensitivity as compared to SIM at detecting 

gradual (linear) change up to about visit 6 or visit 7, with SIM outperforming TCA
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as more data became available. A similar pattern emerged when episodic loss was 

specified, but with equal sensitivity when the noise was low (MPHSD 15 pm).

(a)
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-  36 ♦ ------------*

a  15 B .............-O
TC A-M PH SD  =  25  A .............*

« 3 5 0 .  — - O

— r— t— i— i— i— i— i— i— i 

2 3 4 5 6 7 8 9  10

Visit

(b)

B> oUQ

Visit

Cumulative Plot of Sensitivity /^v
W  (MPHSD*25 microns) W

Cumulative Plot of Sensitivity 
(MPHSD *1 5  microns)

SIM -  Episodic a ---------- a
SIM - Linear * -----------*
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TCA - Episodic A ............ a
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Figure 14 Computer simulation results comparing the diagnostic precision of Statistical Image 

M apping (SIM) and the Topographic Change Analysis (TCA) superpixel method, (a) The 

specificity of SIM and TCA at MPHSDs of 15, 25 and 35pm. (b)(c)(d) The ability of SIM and 

TCA to detect gradual (linear) and episodic (sudden) loss at a cluster of 480 pixels to the neuro- 

retinal rim area at MPHSD of 15pm (b), 25pm (c) and 35pm (d)

Real longitudinal HRT Series

The results are summarised in both Figure 15 and Table 1. Examples of the 

similarity and differences between the SIM and TCA results are illustrated in Figure
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16. Cases 1 and 2 are both OHT converters: in case 1 both SIM and TCA confirmed 

progression at visit 4; in case 2 SIM identified progression at visit 6 whereas the 

TCA did not detect progression at all.

O*13
u<D
<D
Q

o
TCA

o

4 7

time (year

Figure 15 Detection rates o f SIM and TCA on real clinical data

SIM TCA

n % (Cl) n % (Cl)

Controls 2 10.0(2.8-30.1) 3 15.0(5.2-36.0)

Converters 22 73.3 (55.6-85.8) 16 53.3 (36.1-69.8)

Table 1 The number of eyes determined to be progressing with Statistic Image Mapping (SIM) 

and Topographic Change Analysis (TCA) applied to real longitudinal HRT series: 20 normal 

subjects (controls) and 30 OHT patients that converted to a diagnosis o f glaucoma by VF  

criteria (converters)
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Although SIM is computationally intensive, by developing the algorithms in a low- 

level programming language and designing the code to reduce function calls and 

variable passing, the computer burden is not prohibitive. Analysis of a patient 

having 10 visits (30 images with 3 scans per visit) takes less than 3 minutes on a PC 

with a Pentium IV 3GHz processor. Shorter series take less time to analyse, but even 

a very long series of patient records could be handled on a standard PC during a 

patient visit. Further improvements to the computer code are likely to reduce this 

time further.
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Case 1 SIM Output
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Figure 16 (a,b,c,d) Case 1 -  OHT converter: the statistic image generated using SIM which has 
been overlaid on a mean reflectance image for visits 4 to 7 inclusive, (e, f, g, h) The TCA output 
(HRT Eye-Explorer software v l .4.1.0) corresponding to the same subject. Case 2 -  OHT 
converter: SIM output (i, j, k, I) and TCA output (m,n,o,p). Note that two clusters have been 
flagged in the SIM analysis, since both are beyond what would be expected by chance as defined 
by the permutation distribution
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3.5 Discussion
Reproducible scanning laser tomography images of the optic nerve head may present 

an objective method for measuring disease progression in glaucoma. This chapter 

presented and evaluated new statistical procedures for the analysis of these images. 

Techniques primarily developed for neuroimaging data were exploited and applied 

to longitudinal series of HRT images on a pixel by pixel level.

Serial analysis using trend analysis or statistical tests comparing baseline and 

follow-up images of stereometric parameters have been used to measure change to 

the ONH (section 1.2 & 1.3 provides a review). This thesis considers the hypothesis 

that these methods may be subject to similar inadequacies associated with using the 

global indices to summarize progression in VFs: chiefly loss of spatial information 

and poor sensitivity to identify the localized damage (Chauhan, Drance et al, 1990; 

Smith, Katz et al, 1996). This hypothesis is explored in detail using an array of 

stereometric parameters on real clinical data in chapter 5.

The computer simulation and analysis of real longitudinal HRT data provide 

evidence that SIM has better sensitivity at detecting localized change than the TCA 

method. This is achieved while reducing the number of false-positives flagged. The 

TCA analysis originally reported with results from computer simulation, but these 

were different to those reported here as they centered on a single superpixel rather 

than results across the whole image (Chauhan, Blanchard et al, 2000). They reported 

a high level of sensitivity and specificity in detecting change. When the technique 

was applied to real longitudinal data three confirmation tests and a requirement for a 

certain cluster size were required to lower the false-positive rate. A statistical 

adjustment (the Satterthwaite correction) is used in the TCA to correct for similarity 

(correlation) of the topographic height within a superpixel (Neter, Wasserman et al, 

1985), but no real account was made for the multiplicity of testing across the whole 

image. The empirical solution to the problem of multiplicity of testing included the 

requirement for clusters of pixels to be above a certain size, based on observed series 

of normal subjects (Chauhan, McCormick et al, 2001). The results in this chapter
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suggest that SIM is better equipped at handling false positive because it inherently 

corrects for the multiple comparison problem: handling this aspect of imaging data is 

one of the key features of the SIM approach.

SIM uses permutation testing: tailoring the analysis to the data itself without 

incorrectly assuming that topographic heights, across the whole image, follow the 

behavior of a random variable from a known probability distribution, or without 

reliance on some reference patient population database. Pennutation methods are 

known to be both flexible and exact (Manly, 1991). Historic objections to the 

widespread application of permutation methods seem irrelevant with cheaper and 

faster modern computational resources.

An additional reason why SIM had a better diagnostic precision than the TCA 

technique in computer experiments is simply the use of the whole series of the data: 

the TCA method only ever uses the baseline images and three follow-up images. 

This may be reasonable when the follow-up is short, but when the available series of 

data lengthens beyond 4 visits this will result in considerable data redundancy. This 

is illustrated in Figure 14 when the difference between the two methods appears 

about half way through the potential follow-up of 10 visits. It is also interesting to 

note that there is no discernible difference between the power of the methods when 

episodic or sudden loss is specified (Figure 14). This aspect of the results is 

reassuring because our choice of pixel by pixel test statistic is essentially a rate 

(trend) parameter which might not be considered sensitive to detecting a ‘sudden 

change’. However, it has been previously reported, for threshold measurements in 

the visual field, that linear regression adequately identifies sudden change unless a 

series of data becomes very long (Crabb, Fitzke et al, 1999). In later chapters we 

show that the real advantage of using a rate parameter as this may provide clinically 

interpretable information once the technique has identified a significant region of 

change. Of course, there is no firm evidence about structural loss in glaucoma being 

either gradual or sudden, but it seems the new technique that we have described here 

will be sufficiently sensitive to both types of deterioration.
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One limitation of SIM is that by definition it requires a minimum of four visits to 

detect progression. This may not suit some clinical circumstances: for example 

patients showing rapid change should not be denied therapy until such a time when 

sufficient data becomes available. There is therefore a need to develop event-based 

analyses which don’t require a confirmation test to be used in cases when limited 

data is available. Another limitation of SIM might be in how it has been designed to 

detect progression. The technique detects progression based on the size of the 

largest cluster of active change. This may not be ideal for detecting diffuse change 

of low intensity or for detecting a number of small clusters. Detecting change based 

on the size of the largest cluster does however correspond with how glaucomatous 

ONH damages occurs; it is known that damage occurs with regional preferences 

(localised to individual sectors) depending on the stage of the disease (Airaksinen 

and Drance, 1985; Jonas, Budde et al, 1999). Readers should also be aware of the 

exchangeability assumptions made by SIM. This assumption requires the intra-test 

and inter-test variability to be the same.

The main value of SIM is in the output: it provides the clinician with a much needed, 

reliable method of visualising, quantifying and assessing rates of glaucomatous 

change in small localised areas in series of retinal images, rather than binary 

progression or stable classifications that rely on topographic summary parameters. 

In chapter 4 we explore assumptions made in assessing if change is significant and 

introduce an optimized strategy for detecting change. In chapter 5 the techniques are 

tested on a larger set of clinical data by comparison to summary measure 

(stereometric parameters) of the ONH.
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4. SIM: optimizing technique for combining spatial 
extent and intensity of change
SIM as presented in the previous chapter provides an image of changing pixels, but 

also a probability value of global change, or deterioration in the image overall. This 

value was derived by comparing the largest cluster of active pixels to those which 

occurred by chance. The method measures the significance of the spatial extent of 

the glaucomatous damage. This provides a value for the global significance of 

change based 011 the patient’s own data and the variability of the image series, while 

correctly accounting for the multiple comparison problem which occurs by 

calculating test statistics at each pixel location in the ONH. However, up till now it 

is assumed that glaucomatous damage is large by spatial extent. This begs the 

question, what if glaucomatous damage is small by extent but has high intensity 

(deep change)? What follows is a solution to this problem which uses a 

mathematical technique called a combining function. This technique is capable of 

detecting change which is either significant by spatial extent or intensity, or a 

combination of both. This chapter demonstrates using computer experiments that 

combining functions increase the sensitivity to detect change while maintaining the 

same false-positive rate.

4.1 Methods

What follows is a description of how the permutation framework can be modified to 

allow the technique to be more flexible in detecting change:

Combining the Intensity and Spatial Extent of Change

In this section we test a technique from functional MRI which provides a mechanism 

to assess both the intensity and extent of change in blood oxygenation levels (Poline, 

Worsley et al, 1997; Bullmore, Suckling et al, 1999). Specifically we exploit a 

recently developed solution which uses a permutation framework (Hayasaka and 

Nichols, 2004). This technique uses a simple mathematical method (combining 

functions) for flagging change based on either the area of damage or the intensity of
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damage. The technique uses two partial tests: the cluster size statistic (chapter 3) 

provides a solution for flagging change which is large by spatial extent; and the 

maximum test statistic provides a solution for flagging change of high intensity. 

This maximum test statistic, referred to here as T-max, derives a probability value by 

comparing the intensity of change which occurred in the observed series, to those 

which occurred by chance (Nichols and Holmes, 2002). Computationally this is 

accomplished by comparing the maximum test statistic which occurs in the observed 

series of images (see Figure 10) to the distribution of maximum test statistics which 

occurs at each unique reordering. Figure 17(c&f) illustrate the maximum test 

statistic distribution. The computational details are explained in more detail in 

section 4.2. There are however limitations of using either method to detect change. 

The cluster size statistic does not account for the depth of glaucomatous damage. 

For example, a cluster of depressed and significant change which occurred during a 

patients follow-up of area 2000 microns2 and with 200 microns excavation will by 

assigned the same probability value as a cluster the same size but with a deeper 

excavation of 1000 microns. Conversely, the maximum test statistic (T-max) does 

not account for the spatial extent of change. For example, a glaucomatous eye with 

significant change 1000 microns deep which occurred during a patients follow-up 

would be assigned the same probability value if the change was clustered in an area 

of 10 microns2 or 500 microns2. This point is illustrated in Figure 17; here 2 patient 

series are simulated using the simulation described in Chapter 2. In case 1, an 

‘unstable’ or progression patients image series is simulated with high intensity and 

small spatial extent. In this case the observed intensity of change (T-max) is in the 

tail of the distribution (p=0.013); however, the observed largest cluster size does not 

appear to be significant (p=0.129). In case 2, change is simulated with low intensity 

and large spatial extent. Here the observed cluster size appears to be significant 

(p=0.028), but T-max does not (p=0.31). The figure illustrates the limitations of 

both techniques: the sensitivity of each technique depends on the nature of damage 

which has occurred.
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Figure 17 Detection of spatial extent and intensity of change. Longitudinal series of topography 

images were simulated, mimicking change over time in glaucomatous patients (see chapter 2). 

Two types of damage were simulated: in case 1 (a-c) damage of high intensity and small spatial 

extent and in case 2 (d-f) damage of low intensity and large spatial extent. Panels a & d are 

schematics illustrating the types of change applied. Panels b & e show the distribution of the 

largest cluster sizes i.e. the spatial extent of damage. Panels c & f show the distribution of 

maximum test statistics: this method provides a global probability value based on the depth 

(intensity) of topographic change. The distribution of the maximum test statistics for case 1 (c) 

indicates change of significant intensity (P = 0.013). Conversely in panel (e) the distribution of 

largest cluster sizes shows case 2 to have change of significant spatial extent (P = 0.028)

This section assumes that it is unknown if glaucomatous damage is significant by 

intensity or spatial extent, instead the objective is to develop a flexible solution for
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detecting either type of change. This thesis describes and evaluates a solution using 

computer experiments (this chapter), before applying the technique to real data 

(chapter 5). What follows is a description of a combining function known as Tippet. 

Hayasaka and Nichols (Hayasaka and Nichols, 2004) reported that Tippet was able 

to detect change which is significant by either spatial extent or intensity. The Tippet 

function inputs the cluster size and T-max probability distributions and uses a simple 

mathematical function to determine which is most significant (see equation 1, page 

61). Figure 18 shows the results of applying this equation to cases 1 and 2. The 

figure shows the new permutation distributions generated. In this instance the 

observed Tippet scores are in the tail of the distribution in both cases: case 1 

(p=0.012) and case 2(p=0.004). In section 4.3 computer experiments are devised to 

measure the specificity and sensitivity of this new technique.
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Figure 18 The Tippet combining function probability distributions. In case 1 (a-b) damage of 

high intensity and small spatial extent is simulated; In case 2 (c-d) damage of low intensity and 

large spatial extent is simulated (as shown previously in Figure 17). The observed combining 

functions score (b and d) show that significant change is detected for both types of change, cases 

1 (P=0.012) and case 2 (P=0.004)



4.2 Computational paradigm

The aim of this section is to allow the reader to implement the computational 

paradigms behind the cluster size, T-max and Tippet probability distributions. This 

section appends the methods described in section 3.2:

Calculate the probability distribution of cluster sizes p$-M(tx

The following paradigm calculates the distribution of largest cluster sizes (a

schematic of the computational paradigm is shown in Figure 13):

1. Compute steps 1 to 4 as per section 3.2 in “permutation testing to threshold 

clusters” and define the distribution of maximum depressed clusters S. In 

this form Si represents the observed maximum depressed cluster and S2.1000 

represents the size of the observed maximum depressed clusters at each 

unique permutation

2. The probability value of the observed maximum cluster can be obtained by 

sorting a copy of S  into ascending order and determining the rank of the 

observed largest cluster in the distribution. This probability value represents 

F i
3. Repeat step 2 but instead compare the size of the largest cluster at each 

unique permutation S2.1000 to the sorted copy of S and therefore calculate the 

rank and probability of each unique permutation Ps2-1000

4. Ps 1 is the probability of the spatial extent of the observed cluster (used in 

chapter 3 to define change)

Calculate the probability distribution of maximum test statistic (T-max) J>r- Max 

The following paradigm calculates the distribution of maximum test statistics (a 

schematic representing the computational details in shown in Figure 19).

1. Compute steps 1 and 2 as per section 3.2 in “permutation testing to threshold 

clusters” and define the pseudo test statistic T_stcit(i,j,k), where i j  are pixel 

locations within the topography image and where k  represents each 

reordering. In this form T_stat(i,j,l) are the observed pseudo test statistic
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values and T_stat(i,j,k2->iooo) represents the pseudo test statistic at each 

reordering

2. Find the maximum pseudo test statistic in T_stat(i,j,l), whose slope was 

negative and let i j  be a pixel location bound within the contour line. Define 

this value Tjnax i

3. Repeat step 2 finding the maximum pseudo test statistic at each reordering 

T_stat(i,j,Ic2->iooo) ■ Define this the distribution of maximum test statistics 

Tjnax

4. Calculate the rank and probability of the observed maximum test statistic by 

comparing its value to the distribution of maximum test statistics Tjncix

5. Repeat step 4 comparing Tjnax  at each unique reordering calculating the 

rank and probability at each reordering. Define this the probability values P*
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Input test statistic and slope
Test statistic t(i,j,k) and slope 
b(i,j,k)

Repeat, ranking Tjnaxt=2,3 woo
calculating p-values at each unique 
permutation

Repeat, recording the maximum 
test statistic within t at each unique 
permutation i.e. k=2,3,...,1000

Within t(i,j,k=l) find the 
maximum test statistic bound 
inside the ‘area of interest’, 
define this value as Tjnaxk-i

Copy and sort Tjnax  into 
ascending order, rank observed 
Tjnaxk^i in the distribution, 
calculating probability of the 
intensity of change, p T-Max

Figure 19 Schematic represents the computational details of the probability of the intensity of 

change T jn a x

Calculate the Tippet probability distribution P T

The following paradigm calculates the Tippet probability distribution, a schematic 

showing the computational details is shown in Figure 20.

1. Apply the probability distribution of largest cluster sizes Ps and maximum 

test statistic Pt to the following equation, and calculate WT for the observed 

case and for each unique reordering:

W j — 1 ~ min(log Pt*, log P:s) (1)
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2. Compare the observed Tippet value W/ to the Tippet distribution WT to find 

the rank and probability

Probability of the spatial extent 
(cluster size) Ps-Max

Probability of the intensity of 
change PT-Max

S  M a x  j  t \T  M a xInput p*-max and P

Repeat, calculating the 
(Tippet) combining function 
at each unique permutation 
i.e. k=2,3,...,1000

Calculate the observed (Tippet) 
combining function value

Wtm  = 1 -m in(logP/:r "“ ,logP/,r M“ )

Copy and sort combining function 
values WT into ascending order, rank 
observed W/=i in distribution to 
calculate the combining function 
Tippet p-value, p T

Figure 20 Schematic illustrating the computation of the Tippet combining function

4.3 Testing the combining function

The performance of the combining function is tested using the ‘virtual patient’ 

simulation described in chapter 2. The specificity is tested by generating 300 stable



virtual patients; three groups of 100 virtual patients are generated with a MPHSD of 

15, 25 and 35pm respectively. The objective is to replicate the computer 

experiments which measured specificity in chapter 3 to compare the specificity of 

the combining function Tippet with the cluster size and T-max statistics. These 

techniques are applied as they are described in section 4.2. For each patient series 

the visit at which (false-positive) change is first detected is recorded.

The sensitivity of the combining function Tippet is tested using 200 unstable virtual 

patients; two groups of 100 virtual patients. The first group had gradual change 

simulated by applying a cumulative decay of 15pm per visit to a cluster of 240 

pixels on the neuro-retinal rim. This group is designed to mimic change with high 

intensity and small spatial extent. Movement and Gaussian noise is then applied to 

each image series to simulate a MPHSD of 25 pm. The second group had gradual 

change simulated by applying a slower cumulative decay of 5 pm to a larger cluster 

of 640 pixels on the neuro-retinal rim. This simulation is designed to mimic change 

with low intensity and large spatial extent. Movement and Gaussian noise is again 

applied to simulate a MPHSD of 25 pm. The same criteria for detecting change are 

used as in the specificity experiments. The follow-up visit at which change is first 

detected is recorded for each technique.

4.4 Results

In the computer experiments of 300 stable virtual patients at visit 10 in the follow-up 

series, the cluster size statistic detected 5% in all three groups of noise levels 

(MPHSD of 15, 25 and 35 pm), while T-max detected between 4% and 1%, and the 

combining function Tippet detected between 3% and 1%. Figure 21 shows a 

cumulative plot of the specificity at each noise level. The graph shows that the 

specificity of Tippet (solid line) is never worse than the specificity of the cluster size 

statistic (dotted line).
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(a) Cumulative Plot of Specificity - MPHSD 15 (b) Cumulative Plot of Specificity - MPHSD 25
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Figure 21 Computer simulation results comparing the specificity. Note that the specificity 

range is scaled between 90% and 100%. The specificity of cluster size, T-max and combining 

function Tippet are shown by simulating stable image series at different noise levels: (a) 

MPHSD 15, (b) MPHSD 25 and (c) MPHSD 35

In the simulation of progressing (‘unstable’) patients with high intensity and small 

spatial extent ‘cluster size’ detects 12% by visit 10, while ‘T-max’ flagged 99% of 

the patients. This is illustrated in Figure 22, here the cluster size statistic (dotted line) 

fails to detect change of high intensity, while T-max (dashed line) detects almost all 

of the series with high intensity change. However in the simulation of patients with 

low intensity and large extent this situation is reversed, ‘cluster size’ detects nearly 

half (52%), while ‘T-max’ detects only 11%. In these computer experiments the
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combining function Tippet (solid line) detects 92% in the first sensitivity computer 

experiment (Figure 22a) and 46% in the second experiment (Figure 22b).

(a) Cumulative Plot of Sensitivity 
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Figure 22 Computer simulation results comparing sensitivity. The sensitivities o f cluster size, 

T-max and combining function Tippet are shown after simulating unstable patient series: (a) 

with high intensity and small spatial extent and (b) with low intensity and large spatial extent

4.5 Discussion
The results from these experiments suggest that when two different types of change 

are simulated the combining function Tippet is nearly as sensitive at detecting 

change as the best performing cluster size or T-max statistic. This is not surprising 

as the combining function inputs both these distributions and each element in the 

combining function distribution is simply the most extreme probability value of 

either cluster size or T-max which arises at each permutation. What is reassuring 

from the results is that these benefits are achieved without a reduction in specificity. 

This work is novel in that the TCA does not have a specific mechanism of 

incoiporating depth of glaucomatous damage; the TCA flags significant change if a 

cluster of 20 superpixels are confirmed as significant over three consecutive visits. 

With the Tippet combining function SIM seems to be able to accommodate the
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detection of change whether it is large by spatial extent or large by intensity. 

However, the results presented in this chapter are limited by the specific computer 

experiments which were performed.

In chapter 5 the Tippet combining function is incorporated into the SIM technique to 

optimize the detection of change in real patient data.
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5. A comparison of SIM and global parameters
Currently an event-based analysis (comparison of most recent image with a baseline) 

using normalized stereometric parameters is used in the HRT software (HRT Eye 

Explorer v 1.4.1.0) to help detect glaucomatous progression in series of images (see 

Figure 23).
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Figure 23 The parameter analysis available on the HRT software. The parameters are 

normalized to quantify the difference between normal controls and patients with advance 

glaucoma (see section 5.1 for details). Progression is confirmed if there is a difference of -0.05 

or more on three consecutive occasions. In this example progression would be confirmed using 

global rim area (red line) at the visit corresponding to the position of the third arrow (Courtesy 

of Heidelberg Engineering)

In this chapter we compare SIM to this ‘stereometric analysis’ for structural 

progression in patients with glaucoma and ocular hypertension (OHT). Additionally, 

we demonstrate how SIM can be used as a clinically useful tool for visualizing and 

highlighting suspected localized areas of structural progression not detected by 

monitoring stereometric parameters during the follow-up period.

Stereometric parameters effectively condense all the information contained within a 

topography image into a single number. This is a highly data reductive process but 

by definition will not encounter the spatial correlation and multiple comparison 

problems discussed in section 1.3. However, as a result of this global parameters 

may suffer from low sensitivity in detecting localised areas of change, in the same
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way that global indices in automated permetry fail to detect subtle glaucomatous 

progression. The objective of this chapter is to compare SIM against the stereometric 

parameters. A further objective is to evaluate if the combining function Tippet 

increase the sensitivity of SIM. The work in this chapter serves to test these 

hypotheses.

Some of the work in this chapter has formed a paper submitted to the British Journal 

of Ophthalmology (Patterson, Garway-Heath et al, 2005). The results in this chapter 

have also been presented in part at the American Academy of Ophthalmology 

meetings Chicago, USA, on Oct 15-18, 2005 and as a paper read before the UK and 

Eire Glaucoma Society Meeting in Nottingham on Dec 2, 2005.

5.1 Methods

This section first describes how the visual output of SIM was changed to allow 

interpretation of intensity of ONH progression. Then the ‘stereometric analysis’ 

available on the HRT is described, before describing how both techniques were 

compared.

Visualization of Topographic Change

Given a series of HRT images, SIM provides a map of areas of activity or 

progressive change that can be superimposed on the images. Thus far, change was 

flagged as significant or not with no information on the intensity of change which 

has occurred at a single pixel. In this chapter a ‘change map’ is presented which 

shows the statistically significant depressed change; also a scale-bar is generated to 

link colour to the total magnitude of change which occurred over the course of the 

follow-up, in microns, pm. Figure 24 provides an example of a patient’s image 

series. The figure was generated by developing purpose written software using the 

C++ programming language to run in a windows environment (see Appendix A and 

B). The depressed change is colour coded from yellow, representing shallow 

excavation, to red, representing deeper excavation.
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The change map is produced as follows: at each pixel the topographic change is 

quantified as the product of the rate of change times the time elapsed between 

baseline and the follow-up examination. As the spatial resolution of the method is 

so high, and the individual slope values at each pixel will be subject to error, we 

smooth the topographic change which has been extrapolated (from the rate and 

duration). This smoothing is done solely for visualisation; it does not affect the 

quantitative results returned by SIM. The topographic change values are smoothed 

using spatial convolution with a Gaussian kernel with a full width half maximum of 

1 and size 3x3. The ‘change map’ is produced by showing depressed active change 

using colour lookup tables, with yellow through to red representing ‘depressed’ 

change. These maps are the first of their kind since they attempt to delineate both 

spatial extent and intensity or rate of change -  both critical in evaluating structural 

progression.
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Figure 24 SIM ‘change map’ images overlaid on a patient’s HRT image series from visit 4 

through to visit 12. This OHT patient progressed to a diagnosis of glaucoma by visual field 

criteria (AGIS) during follow-up (note: a minimum of four visits is required to evaluate a 

‘change map’). The colour represents the depth of change which occurs; yellow through to red 

representing shallow through to deep change respectively

Stereometric Parameters

Previous studies have quantified the utility of stereometric parameters for 

monitoring progression (Mikelberg, Wijsman et al, 1993; Rohrschneider, Burk et al, 

1994; Kamal, Viswanathan et al, 1999; Kamal, Garway-Heath et al, 2000; Tan and 

Hitchings, 2003). Section 1.3 provides a review of work in this area. In this study 

we consider five stereometric parameters: RA, RV, CSM, HVC and RNFL. Section

1.2 explains the features of the ONH that these parameters represent.
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HRT software stereometric parameter analysis

HRT Eye Explorer software (vl.4.1.0) incorporates an event-based analysis 

comparing the most recent value for a stereometric parameter in an image series 

against the baseline value. Burk and colleagues (2000) classified subjects as having 

normal or early, moderate or advanced glaucoma by VFs (unpublished work). The 

averages for the various stereometric parameters were calculated for each group and 

are defined as Pn0rmai and Padvmced. Then the following equation is used to detect 

change

P - P^ p   fo l lo w -u p  baseline ( ' f \

P ~ Pnorm al advanced

Pfoiiow-up and Pbaseline are the values of the measured stereometric parameters for the 

patient. AP is essentially a coefficient of variation; simply, if the eye is stable at the 

follow-up visit AP is 0, and if a patient changes from normal to advanced glaucoma 

over follow-up AP is -1. The HRT literature accompanying the native software 

defines progression if AP is equal to or greater than -0.05 confirmed in 3 consecutive 

visits (www.heidelbergengineering.com). These values seem rather arbitrary but are 

worthy of investigation as they are recommended in the user manual of the HRT 

software.

Clinical Data

The techniques were applied to a group of test-retest HRT data and longitudinal 

HRT data. The data adhered to the Declaration of Helsinki, had local ethical 

committee approval and informed consent was obtained. All patients were attendees 

of clinics at Moorfields Eye Hospital, London.

Test-Retest Data

Seventy-four patients (43 OHT, 31 POAG) were recruited. OHT patients had an 

intraocular pressure (IOP) of > 22 mmHg on two or more occasions, two initial 

reliable visual fields with AGIS score of 0, absence of other significant ocular 

disease that would affect visual field performance and age >35  years. A reliable
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visual field was defined as <25% fixation errors, <30% false positive errors and 

<30% false negative errors. POAG was defined as above, but inclusive of visual 

field defects quantified as AGIS scores of > 1 on three consecutive reliable visual 

fields (AGIS, 1994; AGIS, 2000). The data were originally collected to evaluate the 

test-retest variability of the HRT and HRT II (Strouthidis, White et al, 2005; 

Strouthidis, White et al, 2005). Patients were not excluded by ONH appearance but 

were excluded by myopia greater than 12 dioptres of spherical power or any history 

of intra-ocular surgery. One eye was selected at random. In total five mean 

topographies were obtained by two experienced operators on two separate visits 

within a six-week period.

Longitudinal Data

Two hundred and seventeen OHT patients have been scanned regularly (median 

follow-up period 6 years, range 2.3 to 7.2 years). This study group is described in 

detail elsewhere (Kamal, Viswanathan et al, 1999; Kamal, Garway-Heath et al, 2000; 

Kamal, Garway-Heath et al, 2003). Fifty-two of the 217 OHT patients were 

categorized as progressing to POAG during follow-up based on a visual field 

analysis using AGIS, a global analysis for visual field progression used in several 

other studies (Kamal, Garway-Heath et al, 2003; Strouthidis, White et al, 2005; 

Strouthidis, White et al, 2005) or by pointwise linear regression (PLR) using 

PROGRESSOR software (Fitzke, Hitchings et al, 1996; Viswanathan, Fitzke et al, 

1997; Viswanathan, Crabb et al, 2003). For the latter we defined progression with a 

highly specific PLR criteria (called 3 omitting); this is described in detail elsewhere 

(Gardiner and Crabb, 2002), and has been used in other studies (Nouri-Mahdavi, 

Hoffman et al, 2004).

Comparison

The SIM combining function Tippet and the SIM cluster-size statistic were both 

applied to the real data. The SIM combining function Tippet is compared with the 

stereometric parameters.

72



SIM and the stereometric parameter analyses were applied to the test-retest dataset 

to yield a false positive rate for each method. The image sequence was randomly 

reordered to compensate for any ordering effects in the study design. The 

techniques were first applied at ‘visit’ four and then ‘visit’ five in the series of 

images. The stereometric analyses were performed twice, first following guidelines 

from the HRT literature with AP set to 0.05 (see “How to interpret progression”, 

www.heidelbergengineering.com) and second with AP varied so that the false- 

positive rate matched that of SIM.

SIM and the stereometric analyses were then applied to those patients in the 

longitudinal data categorized as having progressed to POAG. In order for the 

sensitivity (true positive rate) of all the techniques to be compared, it is important 

that the false-positive rate of each technique is identical. It is not meaningful to 

compare the sensitivity of different tests unless their respective specificity is 

matched; this is done to avoid one technique flagging a greater percentage of 

patients as progressing to glaucoma by chance, and follows an approach adopted by 

(Ford, Artes et al, 2003) when examining the diagnostic precision of the HRT. AP 

(see Equation 2) was altered for each individual stereometric parameter to anchor the 

false-positive rate to that yielded by SIM in the test-retest data (2.7%; 2 out of 74 

test-retest patients progressing). Progression was recorded in the longitudinal data if 

the limit for AP was exceeded in three consecutive visits. For each technique the 

time to progression in the longitudinal data was recorded and plotted using Kaplan- 

Meier curves. The log-rank test was used to compare the time to progression 

between techniques; this is a non-parametric method for testing the null hypothesis 

that the detection rates of each technique are samples from the same population. 

This overcomes the problem of comparing the methods at a single time-point. The 

log-rank test is used to assess the significance of any differences in times to 

detection of progression.

5.2 Results

Test-retest data
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Both SIM Tippet and SIM cluster-size falsely identified 2 (2.7%) patients as having 

progressed. Using the stereometric parameter analysis recommended in the HRT 

literature, RA (falsely) flagged 6 (8.1%), RV 19 (25.7%), CSM 19 (25.7%), HVC 22 

(29.7%) and RNFL 16 (21.6%) patients as progressing.

Longitudinal data

Figure 25 shows Kaplan-Meier curves comparing the SIM Tippet and the SIM 

cluster-size statistic. Tippet performs better, the median time for Tippet to detect 

progression was 3.9 years, whereas cluster size was 6.8 years. By the end of the 

follow-up Tippet had flagged 78.8% as progressing, whereas cluster-size flagged 

51.9%. The log-rank test comparing both showed that Tippet detected change 

significantly earlier (P<0.001).
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Figure 25 Kaplan-Meier plots comparing the performance of the SIM Tippet and the SIM  

cluster size statistic in 52 patients that have been defined as progressing based on visual field 

criteria. The results show that SIM Tippet flags change earlier than the SIM cluster-size 

statistic
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The false-positive rate of stereometric analyses was anchored by varying AP (see 

Equation 2) so each parameter flagged 2 of the 74 patients (2.7%). Figure 26 shows 

Kaplan-Meier curves which compare SIM Tippet and the stereometric parameters. 

With the false-positive rates anchored, the stereometric parameters failed to detect 

50% of the patients as progressing over the course of the follow-up. By the end of 

the study RA detected only 25.0%, RV 0%, CSM 40.4%, HVC 1.9% and RNFL 

5.8% as progressing. The log-rank test comparing SIM Tippet to each of the 

parameters showed that in each case SIM Tippet detected change significantly 

earlier (PO.OOl).
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Figure 26 Kaplan-Meier plots comparing the performance of stereometric parameter analysis 

against SIM Tippet in 52 patients that have been defined as progressing based on visual field 

criteria. The comparison is made with the false positive rates anchored as described in the 

methods. This provides overwhelming evidence that SIM detects more true progression events 

and significantly earlier than the stereometric parameter analysis
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Cases 1 to 3 in this section (see Figure 27 through to Figure 29) show illustrative 

examples of SIM ‘change maps’ for 3 patients from the longitudinal dataset. The 

normalized stereometric parameters (following Equation 2) were plotted for the 

patients over the follow-up period as they look in the output of the HRT software 

and the visual field changes are also shown in the figure. All three patients had 

OHT and progressed to a definition of glaucoma by two visual field criteria, AGIS 

and PLR, over the course of the follow-up. Figure 27 shows a patient where SIM 

detected a focal loss in the temporal sector. SIM detected significant change after 

3.0 years and the only stereometric parameter that detected change (CSM) did so 

only later, after 4.0 years. In Figure 28 SIM detected diffuse loss occurring with the 

highest intensity at the inferior and superior poles. SIM detected change first after 

2.5 years and none of the stereometric parameters detected change. In Figure 29 

SIM detected diffuse change with a large intensity between the inferior and temporal 

regions. SIM detected change first after 4.3 years but again the stereometric 

parameter analyses failed to detect change.
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Figure 27 Case 1: An OHT patient who converted to glaucoma based on visual field testing 
(AGIS criteria) and PLR during the follow-up period, (a) A ‘change map’ with the scale bar 
showing topographic change (yellow to red representing optic disc deepening). The area of 
statistically significant change detected by SIM is overlaid onto HRT reflectance images. 
Change occurred mostly in the temporal superior position of up to ~450 microns (a rate of loss 
of -70  microns per annum). Stereometric analysis (b): the corresponding normalized 
stereometric parameters are plotted for each patient. The ± 5% deviation line is represented by 
the dashed lines. CSM detected change after 4.0 years whereas the other measures did not 
detect change, (c) A greyscale of the baseline visual field, (d) a visual field obtained at the end 
of the follow-up period, (e) An image from PROGRESSOR showing the cumulative output 
from pointwise linear regression at each test point in the visual field. Each test location is 
shown as a bar graph in which each bar represents one test in the series. The length of the bars 
represents the depth of the defect. The colour of the bars relates to the p-value summarizing 
the significance of the regression slope with colours from yellow to red to white representing p- 
values of low to high statistical significance. Whereas stable points with low sensitivity are 
displayed as long bars and grey represent flat non-significant slopes. The patient’s visual field 
shows progression occurring mostly in the lower nasal area
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Figure 28 Case 2: An OHT patient who converted to glaucoma based on visual field testing 

(AGIS criteria) and PLR during the follow-up period, (a) A ‘change map’: change occurred 

mostly in the inferior and superior poles of up to ~850 microns (a rate of loss of ~180 microns 

per annum). SIM detected change after 2.5 years, (b) Stereometric analysis: none of the 

parameters detected change, (c) The baseline visual field, (d) a visual field obtained at the end 

of the follow-up period, (e) Output from PROGRESSOR. The visual field grey scales look 

remarkably similar but PROGRESSOR shows modest, but highly significant, superior 

paracentral arcuate progression
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Figure 29 Case 3: An OHT patient who converted to glaucoma based on visual field testing 

(AGIS criteria and PLR) during the follow-up period, (a) A ‘change map’: change occurred 

mostly in the inferior temporal sector of up to -850  microns (a rate of loss of 130 microns per 

annum). SIM detected change after 4.3 years (b) Stereometric analysis: none of the parameters 

detected change, (c) The baseline visual field, (d) a visual field obtained at the end of the follow- 

up period, (e) Output from PROGRESSOR. This patient has extensive visual field progression 

in the upper nasal to upper temporal areas
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5.3 Discussion
The main finding of this chapter is that maps of structural change, in this case 

derived from SIM, are better at detecting progression than current statistical 

approaches for monitoring stereometric parameters. Moreover, the analysis of 

stereometric parameters suggested in the current HRT proprietary software exhibits 

very poor specificity, which suggests it has limited clinical utility. SIM had the 

highest true-positive rate, detecting significantly more patients as progressing when 

compared to the stereometric parameters, detecting 50% of the patients after 3.9 

years; the parameter analysis failed to detect 50% of the patients over the entire 

course of the follow-up.

This work showed that SIM Tippet increases the sensitivity of the technique whilst 

flagging the same number of false-positive events when applied on real clinical data. 

Moreover, incorporating information on the intensity of change improves sensitivity.

SIM provided a useful alternative for detecting and visualizing progressive damage 

in the ONH as compared to the data reductive process of simply monitoring 

stereometric parameters over time. As discussed in chapter 1.3 the visualization of 

change is critical in the management of glaucoma where experienced clinical 

observation of the ONH, remains paramount to the diagnosis of disease progression. 

This is illustrated in cases 1 -3 where a range of structural damage, varying in extent 

and intensity, is delineated by SIM but is not detected (or at best detected later in the 

follow-up) by the monitoring of the stereometric parameters for change. In Figure 

27 the extent and intensity of structural damage is moderate, while a notable visual 

field defect is detected by pointwise linear regression. In Figure 28 a modest visual 

field defect is detected but the structural change is extensive. In Figure 29 both the 

visual field and structural defects are extensive. The main advantage of SIM may be 

as a method which provides a ‘change map’ flagging areas of optic nerve head 

damage resulting from glaucoma. By using the visual output, it is possible to
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quantify the rate of loss (microns per annum). It is hoped that this may be a valuable 

tool in assessing a patient’s response to treatment.

Current evidence has been interpreted as suggesting that visual field loss and 

structural progression can occur independently, or at least may not be 

simultaneously detectable over the course of a follow-up period (Artes and Chauhan, 

2005) This hampers the experimental design of any study that uses visual field 

changes as the gold standard for glaucomatous progression, and this limitation 

applies also to this study. Further work will apply SIM to larger datasets with the 

hope of providing rates of morphological loss for normal subjects followed over 

time, OHT with stable and unstable visual fields, and for the glaucomatous 

population at different stages of the disease. Only after such studies will it be 

possible for SIM to become a clinical standard by which structural change in 

longitudinal series of optic disc images can be assessed. In the meantime SIM offers 

a new way of looking at structural change beyond the use of summary measures of 

the ONH, such as the stereometric parameters.
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6. Deconvolution: Improving the repeatability of ONH 

images
This chapter examines a technique to improve the repeatability of confocal scanning 

laser tomography. This chapter diverges slightly from the main theme of the thesis 

thus far in developing techniques to detect glaucomatous progression. However, 

section 1.1 makes the point that the ability of a technology to measure small changes 

to the ONH is a function of the reproducibility of the technology. Therefore, any 

improvement in the repeatability of ONH images will improve longitudinal analyses.

A recent large population study using scanning laser tomography (HRT II) reported 

that satisfactory images (defined as average repeatability of topographic height > 68 

microns) could not be obtained in 10% of a normal elderly population (Vernon, 

Hawker et al, 2005). A test-retest study of the HRT in an ocular hypertensive (OHT) 

and glaucomatous population indicated similar results, 11% > 68 microns 

(Strouthidis, White et al, 2005). This simply means that with HRT image acquisition 

as it stands a considerable amount of data is simply lost or disregarded. Computer 

simulations reported in chapter 3.3 demonstrate the intuitive point that improving the 

repeatability of image series will increase the sensitivity of techniques in detecting 

glaucomatous damage (both SIM and TCA).

To recap and complement the introduction to confocal scanning laser tomography in 

chapter 1.2, the technology is in essence a special application of confocal 

microscopy which regards the ocular fundus as the object. The resolution of the raw 

three-dimensional images obtained by the technology is roughly ‘pencil’ shaped, 

with a lateral resolution of -10 microns in diameter and a depth resolution of -300 

microns. A topography image is generated by determining the position of peak 

reflectance in the confocal stack at each pixel. Reflecting layers within the retina 

(pigment epithelium, nerve fiber layer, inner limiting membrane, etc.) vary in 

thickness from between 200 to 500 microns. Due to the limited depth resolution (300
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microns) of the technology, the topography image can be thought of as the position 

of the mean depth of the interfaces between these layers (Gaida, 1990).

In an ideal imaging system, the image acquired would be an identical scaled version 

of the true object being imaged. Image restoration algorithms are a collection of 

image processing techniques used to estimate the true object of interest given the 

image obtained and information of the nature of the blurring and noise in the 

imaging system (Gonzalez and Woods, 2002). Image restoration algorithms can be 

classified as linear and non-linear. Non-linear techniques, based on computationally 

intensive methods have increasingly gained acceptance, with (Jansson, 1997) finding 

they deliver superior results to linear methods in a broad spectrum of applications. 

Maximum-likelihood (ML) deconvolution is an example of these techniques: this 

estimates both the true image and the blur from the degraded image using partial 

information about the imaging system (Dempster, Laird et al, 1977; Holmes, 1992). 

Holmes and colleagues (Holmes, Bhattacharyya et al, 1995) were the first to apply 

the techniques to images obtained in confocal microscopy. In this study ML Blind 

Deconvolution is applied to series of images obtained from a test-retest study of the 

HRT. Our motivation is to investigate if this technique can improve the repeatability 

of topographic height measurements and hence increase the utility of the HRT as a 

technique to assess the ONH.

The work in this chapter has formed a paper which has been accepted and is 

currently in press at Investigative Ophthalmology and Visual Science (Patterson, 

Garway-Heath et al, 2006). The results within this chapter have been presented at 

Image Morphometry and Glaucoma in Europe Meeting, Milan, Italy on April 4-5, 

2005.
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6.1 Methods
To recap MPHSD is a gauge of the variability of each pixel height measurement 

across the three topographies used to make up the mean topography (section 1.2). In 

this chapter we use MPHSD to report intra-scan (within-scan) repeatability. 

Previous studies have used this metric to evaluate the repeatability of the technology 

in normal subjects and glaucoma patients (Chauhan, LeBlanc et al, 1994; 

Rohrschneider, Burk et al, 1994). It has been show that MPHSD is influenced by 

lens opacity, age and degree of astigmatism (Strouthidis, White et al, 2005). In this 

study MPHSD is also used to report the repeatability of mean topographies, referred 

throughout this chapter as inter-scan repeatability.

Confocal scanning laser tomography has known limitations; for example, although 

the optical setup is designed to reject most light from outside the focal plane, it by 

no means rejects all of it and an out-of-focus haze remains (Pawley, 1990; Vieira, 

Manivannan et al, 1999). The resolution in the confocal images is higher in the x and 

y  directions compared to poorer resolution along the optical axis (z-axis). The 

resolution obtained is also limited by the optics of the eye, aberrations are generated 

by the cornea and the lens (Artal, Guirao et al, 2001). These limitations result in 

axial smearing: for example, if a spherical point object is being imaged with constant 

reflectivity properties, the resulting image obtained will appear elongated in the z- 

axis, therefore the data obtained will have an ‘American football’ type appearance. 

Another limitation of the technology is that the detector in the optical setup, is prone 

to Poisson noise primarily due to quantum variations in the number of photons 

recorded (Nourrit, Vohnsen et al, 2005). This noise obscures real data and randomly 

creates impossible features such as high intensity data only one pixel in size 

(Holmes, Bhattacharyya et al, 1995). A discussion on the principals and limitation of 

imaging systems is given by (Goodman, 1996).

Deconvolution is an example of an image restoration algorithm that models the 

imaging system with:
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g(x) = h(x)*f(x) + n(x)

where g(x) is the image obtained, f(x) is the true image, h(x) is the point spread 

function (PSF), n(x) is noise, and where x is 3D Euclidean space. The PSF describes 

how much a single point source of light is spread over the focal planes. The image 

formed by a system g(x) is a combination of the PSF covering all the area where the 

geometrical image should be (Figure 30 provides a real world example of this 

phenomena). This process, is called convolution (“*” indicates convolution). The 

wider the PSF the more blur the image will contain. In CSLT the PSF is assumed to 

have a three dimensional hour-glass shape, orientated along the optical axis and of 

highest intensity in the central ‘narrow’ area (Holmes, Bhattacharyya et al, 1995). 

The objective of image restoration algorithms is to obtain an estimate of the true 

image f(x) given the image obtained g(x). In classical linear deconvolution, the PSF 

h(x) is assumed to be known explicitly prior to the procedure. A long list of these 

techniques is available, such as the inverse filter and Wiener filter (Andrews and 

Hunt, 1977; Gonzalez and Woods, 2002). Unfortunately, in our situation the blur h(x) 

is unknown, along with much information about the true image f(x). Blind 

deconvolution refers to the task of separating two convolved signals f(x) and h(x), 

when both signals are either unknown or partially known.

H

Figure 30 Images taken of Pluto (www.nasa.org). (a) An image of Pluto taken from an earth 

based observatory in Hawaii, in this image it is difficult to distinguish Pluto’s moon ‘Charon’, 

(b) An image of Pluto obtained from the Hubble Space Telescope, in this image it is possible to 

differentiate Pluto from its moon. These two images illustrate the blur induced by the 

atmosphere
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ML Deconvolution

The ML estimation is a mathematical optimization strategy designed to produce the 

best guess of the true data which has been corrupted by random noise (Van-Trees, 

1968). Here the ML paradigm is an adaptation of the ‘Richardson-Lucy’ 

optimization strategy (Richardson, 1972; Lucy, 1974). The ML deconvolution 

approach is however known to fail unless strong constraints can be applied to the 

properties of the PSF. Holmes and colleagues (Holmes, Bhattacharyya et al, 1995) 

published suitable constraints for data obtained by confocal microscopy, using 

assumptions about the shape of the ‘hour-glass’ PSF and optimized for the 

mathematical nature of the noise present. Previous studies evaluated ML 

deconvolution in confocal microscopy on simulated and real data (Kempen, Vliet et 

al, 1997; Rooms, Philips et al, 2003). In this study ML deconvolution is applied 

using software developed by Holmes and colleagues, with the commercially 

available suite AutoDeblur (version 9.3.6) [Autoquant, NY, USA].

The deconvolution software requires input of the optical setup and image medium to 

allow it to approximate and iteratively constrain the solution of the PSF. The 

numerical aperture of the lens (0.08 mm), wavelength of the laser beam (680 nm), 

refractive index of the medium being imaged (assumed to be close to water, 1.333) 

and spacing of the image obtained is input. For a 10° scan, the x  and y  spacing are

11.4 microns. With the HRT, the depth of scan can be varied from 2 mm to 4 mm 

whilst always acquiring 32 scans. The z spacing must therefore be set appropriately 

(as the scan depth 32).

Clinical Data

The techniques were applied to the test-retest dataset described in section 5.1. To 

recap briefly (Strouthidis, White et al, 2005) originally collected the data to evaluate 

the test-retest variability of the HRT and HRT II. The images were obtained over a 

six-week period in two visits to the clinic. On the first visit, three mean topographies
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were obtained and in the follow-up visit a further two were obtained. All subjects 

had previous experience in scanning laser tomography having been imaged at least 

three times previously.

Comparison

This study investigated whether ML deconvolution would result in an improvement 

in intra-scan (within-scan) and inter-scan (between-scan) topographic height 

measurement repeatability. For this objective, 40 patients’ image series (HRT 

‘Classic’) were randomly selected from the test-retest dataset.

The association between lens opacity and the effect deconvolution had on 

repeatability was investigated. The lens opacity was measured subjectively using the 

Lens Opacity Classification System (LOCS) III grading system. Nuclear 

opalescence (NO), nuclear colour (NC), posterior subcapsular (PS) and cortical (C) 

scores were recorded.

Measuring intra-scan repeatability

The mean topography on the first visit was obtained and the MPHSD was recorded 

from the HRT software (version 2.01b). Three confocal stacks used to generate the 

mean topography images were deconvolved. The images were then re-input into the 

HRT software and three single topographies were calculated. It was observed that 

deconvolution had induced an artefact at the border of the single topographies. This 

is a known phenomenon, Gonzalez and colleagues (Gonzalez, Woods et al, 2004) 

suggest using a edge taper function to blur the edge of this image to minimize this 

effect. As a local spatial filter may affect the result, the artefact was removed using 

an image processing erosion algorithm (Gonzalez and Woods, 2002). The mean 

topography was then calculated and the MPHSD was recorded for comparison with 

the pre-processed data.
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Measuring inter-scan repeatability

Three mean topographies were randomly selected for each patient. To measure the 

repeatability across scans the mean topography images were input into the HRT 

database as single topographies. The proprietary image registration algorithms 

spatially aligned the mean topographies and the computed MPHSD was recorded. 

The nine confocal images associated with the three mean topography images were 

deconvolved. Nine single topographies were then generated and the edge artefact 

was removed as before. Three mean topographies were generated and input into the 

HRT software as single topographies and the MPHSD quantifying the inter-scan 

repeatability was recorded.

A paired non-parametric (Wilcoxon) test was performed to determine whether the 

average improvement in repeatability was statistically significant because the 

distributions of differences in MPHSD had a positive skew. Spearman’s rank 

correlation test was used to detect whether there was an association between the 

average MPHSD and the improvement in repeatability before and after 

deconvolution. The association between improvement and lens opacity was also 

quantified in this way.
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6.2 Results
An example of a pre-processed and post-processed confocal image from different 

viewing perspectives is shown in Figure 31. The raw confocal image is in the left- 

hand column, while the deconvolved image is the right-hand column. Figure 31(c & 

d) compares the maximum reflectance images from the xz-plane, this viewing 

perspective can be thought of as a side elevation of the 3D confocal stack. The 

reduction in axial smearing is apparent after deconvolution. An individual slice in 

Figure 31 (e & f) suggests a reduction in high frequency noise. Two z-profiles, before 

and after deconvolution, are plotted in Figure 31(g & h). The two z-profiles 

represent a pixel located in the neuro-retinal rim (marked by an arrow in Figure 31a), 

an area of the image that typically has low light reflectance. In this patient with lens 

opacity of NO = 2.7 and NC = 2.2 (as marked subjectively on a scale between 0 and 

6), a high amount of noise is seen in the raw z-profile, while the deconvolved z- 

profile shows low noise. Deconvolution appears to improve the resolution, most 

apparent along the optical (z) axis, and reduces high frequency noise.
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Figure 31 The raw confocal stack of optic nerve head acquired by HRT is on the left-hand 

column and the confocal stack after 30 iterations of ML deconvolution is on the right-hand 

column. The maximum projections in .xy-plane of the raw data, otherwise known as reflectance 

images for the original image (a) and deconvolved image (b). The maximum projection in the 

xz-plane: original image (c) and deconvolved image (d) show axial smearing associated with 

confocal scanning laser tomography in the original image. There is better discrimination 

between slices in the deconvolved image. Slice number 15 in the original (e) and deconvolved (f) 

shows a reduction in high frequency noise. Two z-profdes, pre (g) and post (h) deconvolution, 

are shown at a position in the rim area (marked by the arrow in (a))
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The effect deconvolution had on intra-scan repeatability is summarized in Figure 32. 

The figure shows the average MPHSD plotted against the difference between 

MPHSD before and after deconvolution. An improvement in repeatability after 

deconvolution results in a point being above the zero line parallel to the x-axis. An 

improvement in MPHSD occurred in 38 of the 40 images. The median improvement 

of 2.5 microns (inter-quartile range 2.19) was statistically significant (P<0.001). The 

figure also demonstrates that the improvement is greater for subjects with higher 

MPHSD. There is a statistically significant association between average intra-scan 

MPHSD and the improvement in repeatability Spearman’s r = 0.45 (P=0.004). The 

association between LOCS III scores and improvement in repeatability was NO (r = 

0.37, P = 0.019); NC (r = 0.33, P = 0.040); C (r = 0.22, P = 0.162) and PS (r = 0.10, 

P = 0.526).

In Figure 33 the same figure format shows the effect deconvolution had on inter- 

scan repeatability. An improvement in inter-scan repeatability of topographic height 

measurements occurred in 33 of the 40 images, with a mean improvement 1.80 

microns (P<0.001). There was an association between average inter-scan MPHSD 

and the difference in MPHSD before and after deconvolution Spearman’s r -  0.49 

(P=0.002). The association between LOCS III scores and improvement in 

repeatability was NO (r = 0.25, P = 0.125); NC (r = 0.18, P = 0.254); C (r = 0.15, P 

= 0.358) and PS (r = 0.12, 0.459).

It takes approximately 3 minutes of computer processing to deconvolve a single 

HRT image (256 x 256 x 32 pixels) using a standard desktop computer (Pentium IV 

1.6 GHz).
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Figure 32 Effect of deconvolution on intra-scan repeatability of topographic height measures. 

The plot shows the difference in average MPHSD against the difference in MPHSD before and 

after deconvolution. An improvement in repeatability is represented by a point above the ‘zero 

line’. An improvement in repeatability occurred in 38 of the 40 images (P<0.001)
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Figure 33 Effect of deconvolution on the inter-scan repeatability of topographic height 

measures. An improvement in repeatability occurred in 33 of the 40 images (P<0.001)
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6.3 Discussion
Previously ML deconvolution has been used in confocal microscopy, wide-field 

epiflourescence microscopy and transmitted light brightfield microscopy (Holmes, 

Bhattacharyya et al, 1995). Nourrit and colleagues (Nourrit, Vohnsen et al, 2005) 

recently reported an improvement in high resolution images obtained using 2D ML 

deconvolution; this study applied deconvolution to raw data obtained from confocal 

scanning laser ophthalmoscopy and compared the improvement to that obtained with 

adaptive optics. Other examples of ML deconvolution in astronomy are described by 

(Hanisch, White et al, 1997). ML deconvolution has also solved one-dimensional 

problems in digital signal processing. In one application it was used to reconstruct a 

speech source recorded in a noisy, reverberant environment (Attias, Platt et al, 2001). 

To our knowledge, this study is the first to demonstrate the utility of image 

restoration algorithms in scanning laser tomography ONH images. We found ML 

deconvolution improved the resolution and the repeatability of HRT images.

In this study image restoration algorithms were applied to 3D confocal images 

before estimating the position of the peak reflectance to construct a topography 

image. A recent application of the HRT has been in imaging macular edema in 

diabetic retinopathy; here a more complex model for the z-profile, the ‘edema index’, 

is calculated by Gaussian curve fitting (Guan, Hudson et al, 2004). The 

improvement obtained by Deconvolution may have more affect in this area where 

the model fitted is more involved.

Previously, Burk and Rendon (Burk and Rendon, 2001) evaluated the impact of a 

new subpixel image alignment algorithm on series of HRT images and reported an 

improvement in intra-scan MPHSD. An average improvement from 22.9 ±8.2(SD) 

microns with the standard alignment procedure to 15.46 ±6.8(SD) microns with the 

new algorithm was reported on 132 eyes. The study did not report on the 

improvement in inter-scan repeatability. Note that although the average gain was
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smaller by comparison, it is an increment improvement to that already shown by 

improved image registration algorithms.

All forms of cataract result in light scattering, reducing the repeatability of 

measurements made from scanning laser tomography images. Both cataract and 

glaucoma occurs within the same age range and the two conditions frequently 

coexist. It is recognized that glaucoma surgery is often followed by a speeding up of 

a pre-existing cataract (Hitchings, 2000). The image restoration techniques presented 

in this study may be particularly applicable to glaucoma patients and especially in 

series of data where cataract might develop during follow-up. Strouthidis and 

colleagues (Strouthidis, White et al, 2005) previously reported an association 

between lens opacity and MPHSD using NO and NC. Siik and colleagues (Siik, 

Chylack et al, 1999) reported a statistically significant association between NO, NC 

and white light scatter. We report a low association between grading of lens opacity 

and improvement in MPHSD which, however, was stronger for the intra-scan, than 

the inter-scan, improvement. This is perhaps due to the improvement afforded by 

deconvolution getting ‘swamped’ by noise induced by misalignment present after 

applying HRT image registration algorithms. Z-profiles at the rim area are shown 

after data exploration of the image in Figure 31. This important area of the image for 

monitoring glaucoma and detecting damage during follow-up has low light 

reflectance properties. In cases with high noise, there will be inherit difficulties in 

accurately determining the position of maximum reflectance, and hence calculating 

the topographic height (see Figure 31g). However, the deconvolved z-profile (Figure 

3 lh) clearly shows the position of maximum reflection.

The problems of screening a normal elderly population (aged 65 to 89 years) with 

scanning laser tomography has been highlighted in a recent study which reported 

that 10% had a MPHSD above 68 microns, and a mean MPHSD of 26.8 ±13.3(SD) 

microns with the worst 10% removed (Vemon, Hawker et al, 2005). Strouthidis and 

colleagues (Strouthidis, White et al, 2005) reported in an OHT and POAG 

population which was deliberately enriched with cataract cases by scanning the eye
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with the highest LOCS score; over a mean of 5 visits, MPHSD had mean 33.5 

±23.6(SD) microns, range [12 to 130 microns]. Table 2 summarises the instrument 

guidelines on how to interpret MPHSD.

MPHSD

<10 Excellent

10-20 Very good

20-30 Good

30-40 Acceptable

40-50 Look for way to improve

>50 Low quality (do not use as baseline image)

Table 2 Instrument guidelines categorizing MPHSD (courtesy of Heidelberg Engineering, 

Heidelberg, Germany)

The results highlighted in Figure 32 and Figure 33 suggest that the improvement 

obtained by deconvolution was greater in the least repeatable images. For example 

the mean improvement in the five patients with an original MPHSD greater than 60 

microns was 10.4 microns. Therefore, these techniques might have a real clinical 

impact in the use of images that are of a poor quality.
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7. Conclusions and future work
Chapter 2 describes a computer simulation which mimics series of patient images. 

The simulation attempts to replicate the repeatability of image series observed in real 

clinical data. It is also designed to replicate the changes that occur in unstable 

patient series. This is used in later chapters to assess quantitative techniques for 

detecting structural changes in longitudinal series of ONH images. These 

simulations of longitudinal HRT data are the first of their kind.

Chapter 3 describes a statistical technique (SIM) which has previously been used by 

the neuro-imaging community for detecting localised areas of activity in images of 

the brain. This chapter describes how the technique has been adapted and applied to 

ONH images. The method is compared with the TCA technique using simulation 

and clinical data. The computer experiment suggests the TCA false-positive rate is 

high. The experiments also suggest the sensitivity to detect progression is better 

with SIM as compared to TCA as the series of data gets longer. The results from 

simulation, clinical data and individual case studies suggest SIM has a better 

specificity and sensitivity than the TCA. However, the ‘truth’ can only be 

established on unselected longitudinal data.

Chapter 4 describes how the global result defining progression from the SIM 

analysis can be adjusted with a combining function to allow detection of 

morphological change with different characteristics. Computer experiments are 

designed which simulate change of high intensity with small spatial extent and low 

intensity with large spatial extent. The experiments suggest that the use of 

combining functions in SIM can help detect different types of change, while still 

flagging the same number of stable patients.

Chapter 5 tests SIM against a statistical technique available on the current HRT 

software which uses ‘stereometric’ parameters of the ONH to detect change. The 

techniques are tested using real clinical data. The false-positive rate is recorded by
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applying the techniques to a test-retest dataset and the true-positive rate is evaluated 

using a survival analysis on a subset of longitudinal OHT patients which developed 

visual field defects during follow-up. SIM is significantly more sensitive at detecting 

change, and the combining function improved the performance of the technique. The 

chapter also shows that the HRT guidelines for the ‘stereometric’ parameters 

analyses result in high false-positive rates.

Chapter 6 applies an image restoration algorithm (ML deconvolution) to test-retest 

series of HRT images and examines if this technique improves the repeatability of 

ONH images. One motivation for this work is that computer experiments suggest 

SIM and TCA will detect change in image series with low MPHSD (higher 

repeatability) with more success. ML deconvolution significantly improved both 

intra-scan and inter-scan repeatability and the improvement was greater in the least 

repeatable images. It is hoped that this technique may be able to use images which 

would otherwise be unused. These images typically occur in patients with cataracts, 

a prevalent disease that often coexists with glaucoma.

The key contributions to work in this field are:

A novel simulation of realistic longitudinal HRT data was developed 

mimicking series of stable and unstable patients

- Quantitative techniques from neuro-imaging (SIM) were adapted and 

applied to series of ONH images. Results from simulation and real data 

suggest these techniques have better specificity and sensitivity than those 

currently available.

The new quantitative techniques which have been developed have been 

incorporated into a windows based program (see Appendix A and B)

- ML deconvolution, an image restoration algorithm, has been shown to 

improve the repeatability of ONH images.

Potential future work includes:
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Apply SIM to other longitudinal datasets. Establish if age-related change 

in normal controls can be detected and quantified. Investigate the 

position of the changes by region: inferior, temporal, superior and nasal 

to investigate if age related change follows similar patterns to 

glaucomatous damage. To achieve separation between normal controls 

and damage resulting from glaucomatous progression; it may be 

necessary to examine if the results obtained are larger than age-related 

changes.

Apply SIM to data obtained from other retinal imaging modalities such 

as optical coherence tomography and scanning laser polarimetry 

Assess if ML deconvolution can improve the HRT algorithms used for 

diagnosing glaucoma and detecting change
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Appendix A - SIM software tutorial
This following appendix is a self-contained tutorial to enable a user to install SIM, 

and describes the steps necessary to process a patient. This section assumes the 

reader is familiar with the Heidelberg Eye Explorer software version 1.4.1 or later:

Installing SIM software

Double click on setup.exe. The installation program automatically copies the 

required files to the hard-drive (Figure 34). The installation by default loads three 

examples patient series with the SIM analysis already performed.
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Figure 34 The setup installing SIM software

At the time of writing SIM uses the Matrox Imaging Library (MIL). To run SIM a 

copy of MIL version 7.1 or later will need to be installed. MIL requires a user 

license to enable its functionality.
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Exporting images from Heidelberg Eye Explorer software

This section assumes a copy of Heidelberg Eye Explorer software version 1.4.1 or 

later is installed. Exporting images using the function described below aligns the 

patient series to compensate for differences in scan positions which occur both 

within visit and between visits using a proprietary HRT software alignment 

algorithm.

To enable exporting of HRT 1 images add the following code anywhere in 

c:\heyex\plugins\HRTS.ini. To enable exporting HRT 2 images add code 1 to file 

c: \heyex\plugins \HRT. ini.

[progression] 
ppath=c:\pmaps 
tpath=c:\topos

Then create a directory c:\topos. To export a patient series drag the required mean 

topography images into the light box. When all the required images are in the 

lightbox, highlight the images, then right click and select ‘include into progression’. 

Then highlight and right-click the progression tab which was created and select 

‘export raw data’. The images will be exported to directory c:\topos

Creating a patient record

Double click on file C:\SIM\sim.exe, or the SIM icon that appears in the start menu 

and desktop. The SIM program will now launch (see Figure 35).
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VtSff: 1 NUMBER.VISITS 5 In c lu d e d
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Figure 35 The SIM software user interface rendering a mean reflectance image

Select Database and 'Add Patient' and fill out the required fields in the dialog 

(Figure 36). The date of the baseline examination must be entered at this point as 

this information is not exported from the Heidelberg Eye Explorer software.

Add Patient Dialog

Homer [Simpson

Female

Figure 36 The ‘Add Patient’ dialog box
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Import images into SIM

Select Database and Import Image Series ’ (or press ctrl+I). The dialog box shown 

in Figure 37 appears. Select the patient, HRT image format and the corresponding 

image series in the correct sequential order. The filenames output by the HRT 

software contains the following information: 

sssfeyyyymmdd-i. raw 

where:

sss = First three letters from the patients surname

/  = First letter from the patient first-name

e ~ eye (L or R)

yyyy = year
mm = month

dd = day

i = increments if a duplicate image was taken on a single day.

The filename therefore enables the user to select the correct topography files which 

correspond to the patient.
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Import HRT Image S er ies  D ialog

OK

C:\topos\HomSL19941011 -0.RAW 
C:\lopos\HomSL19961001 -0.RAW 
C:\topos\HomSL19970104-0.RAW 
C:\topos\HomSL19991025-0.RAW

Filename

□  301
□  302
□  303
□  304
□  305
□  306
□  307
□  308
□  309 
0 3 1 0

Pat ID Surname

non_con
non_con
non_con

non_con
non_con

Simpson

non_con
non_con
non_con

non_con

Homer

Number Visits a

m-

Figure 37 The ‘Import HRT Image Series’ dialog box. This dialog allows the patient, HRT 

image format (HRT 1 or HRT 2) and the topography image series to be selected

Select OK and the images are imported into the SIM database.

Viewing patient series

Select View and ‘Load Patient ’. The load patient dialog appears, select the record 

which corresponds to the patient you wish to load. By default the mean reflectance 

image of the baseline examination is rendered on the screen (Figure 35).

To view the next or previous image in the series select View and ‘Next/Previous 

Image’ (or alternate press ‘O’ or kP’). To view a single reflectance image select 

View and ‘Single Reflectance Image’. The topography images can be viewed in 3D
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to the correct scale by selecting View and ‘Single Topography Image’ or ‘Mean 

Topography Image ’. Press the left mouse button and position the mouse to rotate 

the 3D view. Press the right button and position the mouse to control zooming in 

and out. This visualization functions produced the images shown in Figure 38.

Figure 38 Visualisation of reflectance and topography images with the SIM software, (a) Mean 

reflectance image, (b) top elevation of the topography image, (c) side elevation and (d) front 

elevation

Check images for alignment and magnification error

The function ‘check-board’ was written to enable the user to subjectively test if 

images in the patient series are correctly aligned. The check-board function 

simultaneously renders the baseline and a follow-up image from the series. To do 

this select View and '"Check-Board. Then select View and ‘Next/Previous image’ to 

scroll through the follow-up images in the series. Select Process and 

‘Exclude/Include examination ’ to state which images in the series to process.
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Figure 39 Image series alignment: The images contain two quadrants from the baseline image 

shown in the top-right and bottom-left quadrants; and two quadrants from the follow-up 

images shown in the top-left and bottom-right quadrants, (a) A follow-up image which has 

translation and rotation misalignment between the follow-up image and the baseline image, (b) 

a follow-up image which has magnification error, and (c) a follow-up image which is well 

aligned

Selecting an area-of-interest

An area-of-interest needs to be defined for each patient. To do this select Process 

and ‘Draw Contour Line’, then move the five ‘handles’ to position the contour line 

(see Figure 40). Then select Process and 'Accept Contour Line ’ to store the position 

of the contour line.

Figure 40 The position of the contour line control is determined using five ‘handles’. A handle 

on the contour line becomes red when it has been selected or moved. The position of this 

contour line is used for follow-up images in the patient series. Only pixels bound within this 

contour line are process by the SIM paradigm (see sections 3.2 and 4.2)



Creating a batch file to process patient series

SIM software uses batch files to process multiple patient series. Select Process and 

Batch and the dialog shown in Figure 41 appears. Select the patients to be processed 

and use the options shown to control processing patient series. After ‘Create Dialog’ 

is selected, the batch file ‘c:\SIM\SIM_batch.bat’ is created or replaced. This batch 

file can be viewed in a text editor program or executed at a later date by double 

clicking on the batch file.

C reate B atch  D ialog

Create Batch

If PatJD Surname Firstname Numt A  1
0 1 test_retest test_retest 5
0 2 test_retest test_retest 5
0 3 test_retest test_retest 5
0 4 test_retest test_retest 5

I 0  5 test_retest test_retest 5
□  6 test_retest test_retest 5
□  7 test_retest test_retest 5
□  8 test_retest test_retest 5
0 9 test_retest test_retest 5

1 0 1 0 test_retest test_retest 5
' 0 1 1 test_retest test_retest 5
0 1 2 test_retest test_retest 5
0 1 3 test_retest test_retest 5
0 1 4 test_retest test_retest 5
□  15 test_retest test_retest 5
n  ir R

V

< ’ 1 i i i

Figure 41 Creating, viewing and executing batch files is controlled by selecting (multiple) 

patient series using the ‘Create Batch’ dialog box

Viewing ‘change maps’

When patient image series are processed ‘change maps’ are generated showing the 

intensity and spatial extent of change which has occurred during follow-up. The
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first change map is produced at visit 4 (i.e. a minimum of 4 sets of visits are required) 

and for every subsequent visit after this. To view a change map select View and 

‘Change Map\ Use ‘Next/Previous image ’ to scroll through a patient series.

Igg

"

Figure 42 ‘Change map’ showing the intensity and spatial extent of depressed morphological 

change which has occurred during a patients follow-up

Exporting SIM parameters

To obtain the patient details, examination dates and the corresponding parameters 

such as size and significance of cluster size statistic, T-max statistic or combining 

functions for both significant depressed and change select Analyze and Filter. Then 

select the patients and parameters you wish to output (Figure 43). The results are 

output as a tab delimited file located at c:\SIM\results.txt.
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OK J

B S e le c t  All

0  Patient ID 
El Surname 
El Firstname 

| Number_Visits 
0  DOB 
El Eye 
0  Sex
0 Cluster Size P-Value Depressed ai

Pat ID I Surname I Firstname _ |  Number_Visits I D OI^
0 1 test_retest test_retest 5 117 —
0  2 test_retest test_retest 5 057
0  3 test_retest test_retest 5 137
□  4 test_retest test_retest 5 137
□  5 test_retest test_retest 5 307
□  6 test_retest test_retest 5 027
□  7 test_retest test_retest 5 117
□  8 test_retest test_retest 5 147
□  9 test_retest test_retest 5 2 9 7 #
<imsm ^ B l mi

Figure 43 The ‘Filter Results’ dialog box outputs patient details and SIM parameters
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Appendix B - SIM software design and development 

issues

The objective of this appendix is to provide sufficient detail to allow a research to 

append or modify the SIM source code. The researcher reading this appendix and 

intending to modify SIM would benefit from knowledge of the C++ programming 

language and the principals behind object orientated programming. The appendix 

also includes terminology associated with graphics software programming, 

numerical methods and GUIs. There is an abundance of literature on these topics. 

Woo and colleagues (Woo, Neider et al, 1997) explain the concepts behind graphics 

programming. Avila and colleagues (Avila, Barre et al, 2003) give examples and 

source code of graphics programming relevant to 2D and 3D medical images. 

Vetterling and Press (Press, 2002; Vetterling and Press, 2002) provide source code 

and examples of numerical methods. Bates and Tompkins (Bates and Tompkins, 

1999) provides tutorials and examples to develop GUIs. Jones (Jones, 1999) 

explains GUI programming from an object orientated prospective.

The SIM software contains two executables called SIMDOS and SIM GUI. 

SIM_DOS runs in a dos shell (windows dos prompt) and implements the 

computational paradigms explained in section 3.2 and 4.2. SIM_GUI contains a 

user interface and provides the functionality documented in Appendix A.

SIM DOS inputs a set of command line arguments. At run-time SIM DOS inputs 

topography images, patient information, the time elapsed between patient visits, a 

Boolean vector to indicate whether to include or exclude visits from the analysis and 

a binary image of the area of interest to process (the area bound within the contour 

line). The executable checks if the files are located at the pathname specified by the 

command line arguments, if any files are missing the program exits and prints an 

error message. SIM_DOS has no GUI as the program was designed to be ‘light­

weight’ to increase computation time.
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SIMJDOS uses two C++ libraries, the numerical recipes C++ library (www.nr.com) 

and the matrox imaging library (www.matiox.com). SIM DOS outputs binary files 

of the ‘change map’ (see Figure 42) and the cluster size, T-max and the combining 

function Tippet statistics. Table 3 contains a list and description of the files needed 

to compile and link SIM_DOS.

Name

Vector.h/cpp

Matrix.h

Matrix3D.h

Ptr.h

Binary.h

MathFunctions.h

Input.h

Output.h

nr.h, nrutil.h,

nrutilnr.h,

nrtypes.h,

nrtypes_nr.h

MIL.h

Progression.h

DIP.h

SIM_Stat.h 

shell, cpp

main.cpp

Description

Template container class for one-dimensional array 

Template container class for two-dimensional array 

Template container class for three-dimensional array 

Utility class used by Vector, Matrix and Matrix3D 

Class contains functions to input 1-byte and 2-byte binary 

images

Static class of maths and statistics functions 

Inputs one/two/three-dimensional arrays from ASCII files 

Outputs one/two/three-dimensional arrays to ASCII files 

Numerical recipes header files

Matrox imaging library header file

The progression class containing the SIM paradigm (see 

sections 3.2 and 4.2)

Perform two dimensional spatial convolution and generates 

Gaussian kernels

Container class stores SIM parameters

Numerical recipe which sorts arrays into ascending/descending 

order

Contains function main written to input command line 

arguments, main function also inputs image data and calls

1 1 0
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progression class to compute SIM paradigm 

Table 3 Header and C++ files required to compile and link SIM DOS

Table 4 contains a list DLLs needed to execute SIM_DOS at run-time; these files 

need to be placed in the same folder as SIM DOS at run-time or in a systems 

directory.

Name

mil. dll

Milblob.dll

milcal.dll

milcode.dll

miledge.dll

milim.dll

milmeas.dll

Milmod.dll

milocr.dll

milpat.dll

milvga.dll

Milvhook.dll

Table 4 DLLs required at run-time to execute SIM_DOS

The files listed in Table 5 are read by SIM_DOS at run-time. SIM DOS initially 

checks the state of each file listed in the table and prints an error message to the 

screen and exits if it cannot locate these files.

Name Description

t o p *  .raw A 2 byte binary files (binary format is signed short). Each

where * is 1 —> 12 file represents a single topography, a minimum of 12

single topographies (4 visits x 3 scans per visit) are
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window.raw

x.txt

exam.txt

c_* _3.txt 

where * is 

12,15,18, ...,75

required for the SIM permutation framework.

A 1 byte binary file (binary format is unsigned char).

Each pixel in the file is either 0 which represents a pixel 

outside the contour line or 255 representing pixels inside 

the contour line.

Text file contains a vector of the time which has elapsed 

between visits in days

Text file contains a vector of Boolean values which state 

whether to include or exclude an examination from the 

analysis

Text file contains lookup tables where each row represents 

a unique permutation.

Table 5 Files required to execute SIMJDOS

Table 6 contains a list of the files created by SIM_DOS during execution. These 

files are input by SIM_GUI and used to render ‘change maps’.

Name Description

_sim_*.txt Text file contains the cluster size, T inax and combing

function Tippet statistics 

stat_*.raw 1 byte binary file (format unsigned char) containing the

univariate statistic image. Pixel locations without 

statistically significant change are represented by 0, 

elevated statistically significant change is represented by a 

value of 1 and depressed change is represented by a value 

of 2 and.

tippet_dep_* .raw, 2 byte binary file (format signed short) containing a

tippet_ele_*.raw ‘change map’ (as described in chapter 5). Pixel locations
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without statistically significant change are represented by 0 

and positive values represent the intensity of change which 

has occurred between baseline and follow-up calculated by 

the rate of change times the time which has elapsed.

Table 6 Files created by SIMJDOS during execution (* represents the visit number)

SIM GUI is the second executable which rims in a windows environment (tested on 

WindowXP and Windows 2000). The executable is a GUI which provides fimctions 

to allow a user to input data from Heidelberg Eye explorer software (tested on v 1.4.1 

and later versions), check image alignment quality, determine an area of interest (by 

defining a contour line), and generate batch files which the SIM DOS executable 

processes. The SIM_GUI can visualise imaging data in a 2D and 3D mode, view 

‘change maps’ and output global parameters. The functions are shown in a step by 

step manner in the tutorial in Appendix A.

The SIMGUI  is a merger of two programming technologies: the visualisation 

toolkit (VTK, (www.vtk.org)) and microsoft fomidation classes (MFC, 

(www.msdn.com)). The VTK contains high level functions to rendering points, 

lines, scale-bars and has specific functions suitable for visualising 2D and 3D 

medical images. The VTK default behaviour gives an application controls for 

panning, zooming or rotating the scene being rendered. The VTK library contains 

examples, source code and online documentation. SIM_GUI is based on a VTK 

example called VTK_SDI which is a merger of the VTK and MFC technologies. 

The MFCs is best described as the ‘glue’ which allows a user to interact with a 

program allowing the developer to write code which will be executed after a user 

presses a specific key or selects a menu item from the menu bar.

Table 7 contains a list of header and C++ files needed to compile and link SIM_GUI.
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Name

VTKJHeaderFiles.h

vtkAJPViewSingleReflectance.hycpp

vtkA JPContourLine .h/cpp 

vtkAJPGrid.h/cpp

vtkAJPHeatMapStatisticImage.h/cpp

vtkAJPScaleBar.h/cpp

vtkA JPS etCamera.h/cpp 

vtkAJPUnivariateStatisiticImage.li/cpp

vtkAJPViewCheckBoard.h/cpp

vtkAJPV iewMeanReflectance.li/cpp 

vtkAJPViewMeanT opography.li/cpp

Description

Includes all require VTK header files 

Reads and renders a single reflectance 

image

Renders a contour line in a default position 

and allows a user to manipulate the contour 

line position.

Renders a grid

Renders a ‘change map’ overlaid on top of 

a mean reflectance image, this class colour 

codes intensity of change from yellow to 

red representing shallow through to deep 

excavation.

Renders a scale bar used to link the colour 

in the ‘change map’ with the intensity of 

change

Sets the camera position to a default two 

dimensional view (as seen at start-up) 

Renders a statistic image overlaid on top of 

a mean reflectance image, this class colour 

codes depressed change as a monotone red 

colour and elevated change as a monotone 

green colour.

Renders a baseline and a follow-up image 

simultaneously, the baseline image is 

rendered in the bottom left and top right 

quadrants with the follow-up image 

rendered in the other two quadrants.

Reads and renders a mean reflectance 

image

Reads and renders a mean topography
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vtkA JP ViewP atientlnfo .h/cpp

vtkA JPViewSIMIiifo .h/cpp

vtkA JP V iewSingleT opo graphy. h/cpp

Prelude.h, sfl.h, version.h 

sfldate.h/c

Sflprint.h/c, sflstr.h/c, sflsymb.li/c, 

sflenv.h/c, sflfmd.h/c, sflmem.h/c 

DataExtraction.h/cpp

geometry.h/cpp

Utils.h/cpp 

Patient.h/cpp 

S IM_Result. h/cpp

StereometricParameters .h/cpp 

Vector, h/cpp

Ptr.h

DialogAddPatient.h/cpp, 

DialogCreateB atch. h/cpp, 

DialogDeletePatient.h/cpp,

image, the image is rendered as a surface in 

three dimensions.

Displays patient identification, name, date 

of birth, sex, and number of visits.

Displays p-values for cluster size, T-max 

and the combining function Tippet 

Reads and views a single topography 

image, the image is rendered as a surface in 

three dimensions.

Header class used by SFL (standard 

function library, (www.imatix.com) 

Provides functions to perform numerical 

operations to dates 

Required by SFL

Inputs HRT files and saves the image 

information in a directory structure 

Contains functions to determine if a point 

is inside a closed polygon (require to 

calculate area-of-interest)

Required by geometry.h/cpp 

Container class for patient information 

Utility class for reading SIM results from 

text files

Container class for SIM results 

Template container class for one­

dimensional array 

Utility class used by Vector.h/cpp 

Control dialog boxes and data validation, 

each class inherits the MFC CDialog class
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DialogFilterSIMResults.li/cpp,

DialoglmportlmageSeries.h/cpp,

DialoglmportParameters .h/cpp,

DialogLoadPatient.h/cpp,

DialogSIMSettings.il/cpp,

DialogStatisticImageSettings.h/cpp

MainFrm.cpp

StdAfx.li/cpp, vtkSDI.il/cpp 

vtkSDI.rc

vtkSDIDoc.cpp

vtkSDIView.cpp

Controls the rendering and state of the 

frame, a windows frame typically has 

functions to minimize, maximize and 

restore the application window size as well 

as displaying the applications name in the 

titlebar.

Utility files generated by MFC 

Includes information on the appearance of 

the GUI, such as the size of the dialog 

boxes and position of edit boxes within 

each dialog box.

The file contains the document class 

(inherits CDocument)

This file contains the view class which 

inherits CView. This class contains a 

function called pipelineQ which is called 

every time a user forces the GUI to update.

Table 7 Header and C++ files required to compile and link S IM G U I

The following section provides two examples of code taken from the SIM_GUI 

source code. The objective is to illustrate how MFCs has been used to control the 

execution of compiled binary code at run-time. It is hoped that this will allow other 

researchers to append functionality to the SIM software in the same style.
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The view class (class vtkSDIView) controls the behaviour of SIM_GUI. Each menu 

function is typically linked to a Boolean variable which is initialised to a default 

state at start-up. The pipeline function contains a series of if() statements. When a 

user selects for example “View Single Topography” from the menu bar, the Boolean 

member variable bjsingle topography is changed state from false to true. This 

causes the following code within the pipeline function to render a single topography, 

for the patient and visit currently selected.

Pipeline()
{

if (b__single_topography == true)
{

vtkAJPViewSingleTopography::ViewSingleTopography(patient, 
visit);
//comment: call view single topography function 
//from class vtkAJPViewSingleTopography
}

}

A user can also select an item from the menu bar such as “Add Patient” which 

prompts a dialog box to be rendered to the screen (see Figure 36). The default 

behaviour of a dialog box is to appear in front of the application in focus (which 

makes the rest of the application inactive until the dialog box is closed). In this 

application the dialog boxes are called from within the view class (class vtkSDIView) 

by first initializing a dialog object and then calling the domodalQ member function 

of the dialog object. The dialog box prompts a user to input the required data. One 

advantage of the MFCs is that it incorporates data validation. For example, the date 

is rejected if it is outside defined limits, in this case the month in the date of birth 

field must be between 1 and 12 inclusive. If the user inputs the required data which 

is valid and then presses the ‘OK’ button the domodalQ function returns a true state.
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The data is then typically processed within the application as shown in the example 

below.

OnMenuAddPatient()
{

//Initial an AddPatient dialog object 
CDialogAddPatient AddPatient;

if(AddPatient.domodal()==false)
{

//comment: if the user closes the dialog or 
//enters invalid data the return statement 
//forces the function to close 
return;

}
else
{

//comment: otherwise the data is added to the 
//database

}

}

The files listed in Table 8 are the DLL which need to be located in the same 

directory as the SIM_GUI executable or in a systems directory at runtime.

Name

vtkCommon.dll

vtkexpat.dll

vtkFiltering.dll

vtkfreetype.dll
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vtkftgl.dll

vtkGraphics.dll

vtkHybrid.dll

vtklmaging.dll

vtkIO.dll

vtkjpeg.dll

vtkParallel.dll

vtkPatented.dll

vtkpng.dll

vtkRendering. dll

vtktiff.dll

vtkzlib.dll

Table 8 DLLs required at run-time to execute SIM GUI

SIM_GUI is linked to a database and directory structure which is documented in 

Table 10. The directory structure enables SIM_GUI to locate and render the correct 

patient series and image at run-time.

Name Description

database, txt f  SIM_GUI needs a database file to link a patient name with the

directory number. By default the file c:/sim/data/database.txt is 

the database file. SIM_GUI also accepts a command line 

argument, for example you can create a desktop shortcut and set 

the shortcut to reference the SIM_GUI executable, then enter 

-c:/sim/data/moorfields_nonnals.txt as a command line 

argument. This allows the SIM software can have multiple 

databases.

c:/sim/patients/*/ SIM automatically creates a new directory each time a patient 

record us successfully entered using the ‘add patient’ dialog
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box. The software creates new directories in an ascending 

numerical order. When HRT data is imported, the image data is 

placed in the directory associated with the patient record.

Table 9 Files and directory structure required to execute SIM GUI

Table 10 contains the list of files which can be generated by SIM_GUI.

Name

__x.txt f

exam.txt

m_ref_*.rciw f,

* is the visit number 

m_top_*.raw f, * is the 

visit number 

ref_*.raw f, * is the 

sequence in which the 

images were obtained 

top_*.raw f, * is the 

sequence in which the 

images were obtained 

c:/SIM/results, txt

C:/SIM/sim batch.bat

Description

Text file containing vector of the tune in days between 

each follow-up visit

Text file containing vector of visits to include or 

exclude from the analysis (0 = exclude) and (1 = 

include)

Mean reflectance image stored as 1 byte binary file 

(unsigned char) containing 384 x 384 pixels 

Mean topography image stored as 2 byte binary file 

(signed short) containing 384 x 384 pixels 

Single reflectance image, stored as 1 byte binary file 

(unsigned char) containing 384 x 384 pixels

Single topography image stored as 2 byte binary file 

(signed short) containing 384 x 384 pixels

Text file of results is created by the ‘Filter Results’ 

function (see Figure 43)

Batch file is created by the ‘Batch’ function (see Figure 

41)

Table 10 List of files created by SIM_GUI (f  files created when HRT data is imported, see 

Figure 37)

Limitations and suggestions for future improvements
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The SIM_DOS executable currently uses image processing functions from the 

Matrox Imaging Library. During run-time SIM_DOS initialises functions from the 

Matrox Imaging Library which requires a commercial license (in the form of a USB 

or serial dongle). To make SIM freely available SIM DOS needs to be developed 

using a freely available image processing library.
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