FS. PhD. 31

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10290264
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

QUENCH CORRECTION IN LIQUID SCINTILLATION COUNTING

A thesis submitted to the Council for National Academic Awards in partial fulfilment of the degree of Doctor of Philosophy.

I. LILLEY

Department of Physical Sciences Trent Polytechnic, Nottingham.

Abstract

QUENCH CORRECTION IN LIQUID SCINTILLATION COUNTING

I. Lilley

Quench correction in liquid scintillation counting has been investigated. A detailed comparison of the curve fitting routines compatible with a microcomputer has been made for the quench calibration curve and concludes that a cubic spline with natural end conditions is most suitable. The effect of colour/chemical quenching on the calibration curve and the choice of regions for dual and triple radionuclide counting is studied.

A new computer simulation of the LS counter has been created and proven to be a useful tool in LS counting. Modelling of the LSC has led to the invention of several novel quench correction techniques which are independent of colour and/or chemical quench for homogeneous solutions. A fully worked example of the use of one of the techniques (the SumDiff quench correction method) is presented. The successful application and modular design of the simulation has established a LS research program from which future discoveries are anticipated.

I would Iike to take this opportunity to express my thanks, firstly to Dr John Crookes at Trent Polytechnic for reviewing this thesis and for his many helpful suggestions over the preceding years; secondly to Mrs Amanda Richards for typing and assisting with the preparation of the thesis; and finally to my wife, friends and colleagues for their help and patience.
Chapter 1
Introduction
1.1 Liquid Scintillation Counting Theory 1
1.1.1 Basic Physical Processes in LSC 2
1.1.2 Macroscopic Properties of LSC Systems 18
1.1.3 Theoretical modelling of the LSC 24
1.2 LSC Materials and Equipment 28
1.3 LSC Problems 30
1.3.1 Sample Preparation 30
1.3.2 Counting Vials 31
1.3.3 Backeround 32
1.3.4 Quenching and Quench Correction 33
1.3.5 Dual and Triple label Counting in LSC 46
1.3.6 Other Problems 49
Chapter 2
Quench Correction Problems 50
2.1 Curve Fitting and LSC Calibration Data 52
2.1.1 Introduction 52
2.1.2 Experimental 54
2.1.3 Results and Discussion 57
2.1.4 Conclusions 62
2.2 The Effect of Quench on Background 64
2.2.1 Introduction 64
2.2.2 Experimental 65
2.2.3 Results and Dissussion 66
2.3 Multilabel DPM Determinations - Quenchine 68
Limitations
2.3.1 Introduction 63
2.3.2 Experimental 72
2.3.3 Ressults 75
2.3.4 Conclusions 83
Chapter 3
Simulating the LSC 84
3.1 The Colour-Chemical Quench Correction Problem 35
3.2 LSC Model Design 69
3.2.1 Model Geometry 89
3.2.2 The Model Scintillator and Detector 91.Processes
3.2.3 Model Logic Design 98
3.2.4 Model Implementation 99
3.2.5 Numerical and Logical Testing of the 101 Model
3.3 Model Input Data Sources 103
3.3.1 Introduction 103
3.3.2 Materials and Methods 104
3.3.3 Results and Discussion 103
3.4 Model Validation and Performance 115
3.4.1 Introduction 115
3.4.2 Experimental 116
3.4.3 Results and Discussion 121
Chapter 4
Quench Correction Independent of the Type of Quench 126
4.1 Application of the LSC Model to the Colour- 127
Chemical Quench Correction Problem
4.1.1 Introduction 127
4.1.2 Results and Discussion 129
4.2 Quench Correction Independent of the Type of 133
Quench
4.2.1 Introduction 133
4.2.2 Experimental 135
4.2.3 Results and Discussion 136
4.3 Future Work 140
Collected Figures 141
F1. 1 - 142
F2. 1 - 151
F3.1- 162
F4. 1 - 205
Collected Tables 228
T2. 1 - 229
T3.1- 246
T4.1- 268
References 305
Bibliography 319
Appendix A
Detection of Driftt in Radioactive Counting using the 321
cusum technique
Introduction 321
Cusum Method 322
Simulated Data 326
Instrument Tests 329
Conclusion 330
Figures 332
Table 336
Appendix B
Program Listings 337
(i) LSC Simulation 339
(ii) Polya Statistios 362
(iij) MCA Pulse Height Spectra Transfer and 363Analysis
(iv) Fluorescence and Absorption Spectra Capture 384
(v) Curve Fitting 387
(vi) Data Capture of 300 Printer Output 401

Chapter 1

INTRODUCTION

Since the discovery that organic solutions could be induced to fluoresce upon excitation by nuclear radiations the development of materials and methods for liquid scintillation counting (LSC) has been rapid. LSC is now well established for the counting of low energy B-emitting isotopes such as ${ }^{*} \mathrm{H}$ and ${ }^{14} \mathrm{C}$.

With any assay of a radioisotope the knowledge of the activity is essential. This thesis deals with specific aspects of activity determination which have been difficult in the past but receive a novel treatment given modern electronics and computer technology.

1.1 Liquid Scintillation Counting Theory

Theoretical work important to the understanding of LSC can be divided into that dealing with the basio physical processes at work in a LS counter and that dealing with the global properties of the LSC system, i.e. into the microscopic and the macroscopic. Topies of the prior type of work are typified by the photophysics of aromatic molecules and mechanisms of molecular energy transfer, whereas topics of the latter are typified by LSC simulation models and techniques of radioactive assay.

1.1.1 Basic Physical Processes in LSC

Nuclear radiations interact with the molecules of organic solutions in many ways. Along the track of a nuclear particle large numbers of molecules are given energy and form ions, excited molecules, free radicals and secondary particles. The concentrations of these excited and ionised molecules in the wake of the ionising radiation determines the types of secondary processes (chemical and physical) that may occur. Neutralisation, excimer production, X-ray emission, fluorescence, phosphorescence, and excitation energy migration are examples of such processes. In liquid solutions these secondary reactions occur in or near the track of the particle where the concentration of the reactants is the highest. The probability of these secondary reactions is related to the concentration of the reactants which in turn is related to the specific ionisation of the exciting particle. A certain fraction of the ions and excited molecules produced in the organic solution leads to luminescence. The creation and detection of this luminescence forms the basis of liquid scintillation counting. The photo-production process is dependent on the efficient conversion of nuclear energy into optical energy. The photo detection processes then depend on the efficiency of photon collection and their conversion into electrical energy.

The photo-production process (after Birks)"4 in a liquid scintillator solution $X Y Z$ where X is the solvent, Y is the primary scintillator and Z is the secondary scintillator (if present), consists of: (a) radiation physical processes; (b) internal conversion processes; (c) solvent excitation migration and solvent-solute energy transfer processes; (d) the primary to secondary solute-solute energy transfer process; and (e) solute fluorescence.
(a) Radiation physical processes are those in which the particle energy is converted into molecular ionisation energy or otherwise dissipated. They are comprised of:
(1) ${ }^{1} X+E \longrightarrow{ }^{1} X^{* * *}$
(2) ${ }^{2} X+E \longrightarrow{ }^{2} X *$
(3) ${ }^{-1} X+E \longrightarrow \sigma^{* *}$
(4) $\quad{ }^{4} \mathrm{X}+\mathrm{E} \longrightarrow \mathrm{X}^{-+}+\mathrm{e}^{-}$
(5) ${ }^{a} X+E \longrightarrow \mathrm{~F}^{+1}+\mathrm{F}^{+\cdots}$
where

```
    * X = ground state molecule
        \mp@subsup{}{}{*}}\mp@subsup{X}{}{*** = excited singlet \pi-electronic state molecule
            **** = excited triplet \pi-electronic state molecule
        \sigma*** excited \sigma-electronic state
        se+* = molecular ion
F-+}\mathrm{ and }\mp@subsup{F}{}{-->}=\mathrm{ free radiculs
    e"= slow electron
```

The slow electrons from (4) can produce further reactions:
(6) $\quad=\mathrm{X}^{-+}+\mathrm{e}^{-\cdots} \longrightarrow{ }^{+\quad \mathrm{X}^{* * *}}$
(7) $\quad \mathrm{xa}^{++}+\mathrm{e}^{--} \longrightarrow \mathrm{X}^{* *}$
(8) $\quad \mathrm{X}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{q}^{+\cdots}$
(9) ${ }^{3} X+e^{-\cdots} \longrightarrow$
(10) $\quad \mathrm{F}^{+1}+\mathrm{e}^{--} \longrightarrow \mathrm{F}$
and the ions from (4) and (9) can produce the reactions:
(11) $\quad{ }^{2} \mathrm{X}^{+}+\mathrm{ma} \mathrm{X} \longrightarrow{ }^{1} \mathrm{D}^{* *}$
(12) $\quad \mathrm{X}^{+1}+\mathrm{x} \rightarrow \mathrm{X} \longrightarrow \mathrm{D}^{\cdots}$
(13) $\quad \mathrm{X}^{1}+{ }^{1} \mathrm{X} \longrightarrow \mathrm{D}^{+1}$
(14) $\mathrm{an}^{+}+\mathrm{e}^{-} \longrightarrow{ }^{1} \mathrm{D}^{* *}$
(15) $\quad \mathrm{ma}^{+\cdots}+\mathrm{e}^{-\cdots} \longrightarrow \mathrm{D}^{\mathrm{m} \cdot \mathrm{M}}$
where ${ }^{1} \mathrm{D}^{* *}$ is a singlet state excited dimer (or
 ${ }^{2+1}$ is a dimer cation.

Processes (1), (6), (11) and (14) yield ${ }^{*} X^{* *}$ and ${ }^{x} D^{* * *}$ the scintillation emission of which occurs within a few nanoseconds (and is known as the fast scintillation component); and processes (2), (7), (12) and (15) yield $\mathrm{X}^{\mathrm{X} *}$ and ${ }^{*} \mathrm{D}^{* *}$ - the resulting emission from which occurs over a few microseconds (and is known as the slow scintillation component). ${ }^{13}$.å
(b) Internal conversion proeessess are radiationless transitions between states of the same multiplicity e.g.
 with intersystem erossing (radiationless transitions between states of different multiplicity), vibrational relaxation, excimer formation, and solute-solute energy transfer. The main processes that occur in aromatic molecules after excitation are (Fig. F1.1):
(16) $\mathrm{S}_{\mathrm{rr}} \longrightarrow \mathrm{S}_{\mathrm{r} 7} \cdots$ internal conversion
(17) Su \longrightarrow So \quad fluorescence
(18) $S \rightarrow$ So internal conversion
(19) $\mathrm{Sa}_{\mathrm{n}} \longrightarrow \mathrm{T}_{\mathrm{n}} \quad$ intersystem orossing
(20) $\mathrm{T}_{\mathrm{r}} \longrightarrow \mathrm{T}_{\mathrm{rn}} \longrightarrow \mathrm{M}$. internal conversion
(21) $\mathrm{T} \longrightarrow \mathrm{So}$ phosphorescence
(22) $\mathrm{T}_{\mathrm{a}} \longrightarrow$ So intersystem crossing
(23) $\mathrm{Sr} \longrightarrow \mathrm{So}$ internal conversion
where So...Sr and Ta...Tr, are the singlet and triplet T-electron excited state manifolds

(o) Two theories are currently being debated regarding the actual solvent--solvent excitation migration process. One theory ${ }^{3}=4,9$ involves the formation of solvent excimers which upon dissociation find the excitation energy on the previously unexcited solvent molecule. This excimer forming and breaking is fast $\left(* 10^{-14} \mathrm{~g}^{-177}\right.$ compared to the fluorescence emission time thereby allowing the energy to migrate through the solution:

Accordingly, the processes leading to the formation, dissociation and fluorescence of excimers are:
${ }^{4} X^{* * *}+{ }^{x} \mathrm{X} \longrightarrow{ }^{2} D^{* *}$
(25) ${ }^{1} \mathrm{D}^{\text {wn }}$ dissociation
${ }^{1} \mathrm{D}^{*+*} \longrightarrow{ }^{2 \cdot} \mathrm{X}^{* * *}+{ }^{\mathrm{a}} \mathrm{X}$
(26) ${ }^{1} \mathrm{D}^{* \cdot h}$ dissociation
${ }^{2} \mathrm{D}^{+*+} \longrightarrow \mathrm{X}^{*+*}+{ }^{\mathrm{a}} \mathrm{X}$
(27) ${ }^{2}$ D* dissociation
${ }^{4} \mathrm{D}^{\mu *} \longrightarrow 2^{4} \mathrm{X}$
(28) " $\mathrm{D}^{\cdots * *}$ internal conversion ${ }^{n} \mathrm{D}^{* * *} \longrightarrow{ }^{*} \mathrm{D}^{*}$
${ }^{4} \mathrm{D}^{*}$ formation $\quad{ }^{*} \mathrm{X}^{*}+{ }^{\mathrm{x}} \mathrm{X} \longrightarrow{ }^{4} \mathrm{D}^{*}$
(30) ${ }^{4}$ D dissociation
${ }^{1} \mathrm{D}^{+*} \longrightarrow{ }^{3} \mathrm{X}^{*}+{ }^{2} \mathrm{X}$
(31) Excimer fluorescence $\quad{ }^{*} \mathrm{D}^{*} \rightarrow 2^{2} \mathrm{X}$
(32) ${ }^{3} \mathrm{D}^{*}$ dissociation ${ }^{4} \mathrm{D}^{*} \longrightarrow{ }^{*} \mathrm{X}^{*}+{ }^{4} \mathrm{X}$
(33) ${ }^{3} \mathrm{D}^{*}$ dissociation
${ }^{3} \mathrm{D}^{*+} \longrightarrow 2^{3} \mathrm{X}$
where $2^{*} X,{ }^{4} D^{*},{ }^{4} D^{* *}$ are the ground state, first excited singlet state and higher excited singlet state excimers. $=D^{*}$ and $D^{* *}$ are normally dissociated. These processes are summarised in Fig. F1. 2.

A second theory proposed by Furst and Kallmann wn wn and Voltase of the energy transfer between solvent molecules involves energy migration between adjacent solvent molecules:

Laustriat and Voltz and Klein ${ }^{17}$ also propose a further energy transfer via a similar resonant proeess for higher excitation states:

$$
X_{m}^{* *}+X_{\mathrm{t}} \rightleftharpoons X_{\mathrm{an}}+X_{\mathrm{H}}^{*}{ }^{*} \quad \text { mechanism }(\mathrm{C})
$$

Also, Volta ${ }^{* 4}$ has given a description of energy migration encompassing diffusion, resonance type energy transfer and excimer type energy transfer.

Together, these mechanisms explain the observed evidence of energy transfer between solvent molecules. ${ }^{14.4 .79}$ Evidence of diffusion playing a role in solvent-solvent energy transfer has been obtained by the introduction of diluters (e.g. cyclohexane) to scintillator solvents.ew The diluters do not participate in the energy transfer process either as an energy quencher or as a transfer medium and the result is that energy transfer efficiency decreases. This is due to the increased solvent separation and implies that solvent-solvent energy transfer is in part diffusion controlled. Evidence of the existence of excimer formation and their importance in the scintillation process has been given by Birks. ${ }^{17}$, wn wem Evidence for mechanism (B) has been supplied by Voltz et al for the lowest excited energy states in a study of energy transfer and quenching in various liquid scintillators excited by UV light.n7, and by

Voltzaッ，Laor．ック and Kallmann－Oster ${ }^{47}$ Eor mechanism（C）．

According to Horrockss it is unlikely that contact will be made with solute molecules，which are present in concentrations of about 5 to 10 g 1^{-11} ，as energy is passed between solvent nolecules．The energy is，however， quantitatively transferred from solvent molecules to solute molecules．The transfer is non radiative since solvent emission has a decay time of approximately 30×10^{-9} s whereas the observed solvent－solvent transfer occurs in 10 wis． Nor is it diffusion controlled which occurs in approximately $10^{-4} s$ ．The energy transfer occurs by Forster type resonance transfer process．The strength of the interaction is related to the degree of overlap of the fluorescence spectrum of the solvent and the absorption spectrum of the solute and the distance over which the transfer takes place is related to the extinotion coefficient of the solute molecules over the region of the overlap of the two spectra．The Forster radius，Ro，which is defined as the distance between solute molecule and solvent molecule such that the probability of transfer is equal to the probability of all other processes of energy release by the solvent，has been calculated to be $2-3 \mathrm{~nm}$ for many organic molecules used in LSC．${ }^{\text {mas }}$ This contrasts with the 0.6 nm approximate collision distance．Experimental support for the evidence of Forster type resonance transfer being the mechanism for energy transfer between solvents and solutes in LSC has been obtained by Voltz．${ }^{17}$

Thiss view of solvent-solute energy transfer is not universally accepted and evidence that supports collisional solvent-solute energy transfer has been presented by Birks et alm in a comparison between the rates of solvent-solute energy transfer using fluors and quenchers as the solute. However, the solvent-solute interaction is more complex for fluors than for quenchers because of the importance of the $\mathrm{S}_{n-1} \longleftarrow$ So transition dipole moments and because of competing backprocesses such ass $F_{r r}+S_{o} \longrightarrow F_{o}+S_{r r}$ (as opposed to $F_{r} \longrightarrow F_{\text {, }}$. and fluorescence) whereas solvent-quencher energy transfer often involves the formation of charge transfer complexes resulting from molecular collissions. More experimantal data is necessary to remove the uncertainties surrounding energy trapping by fluorescent solutes.
(d) Energy may also be transferred between solute molecules. Low solute concentrations make diffusion controlled energy transfer improbable and result in fluorescence being the most probable energy transfer process.me There is also some long-range dipole-dipole interaction between like solutes which is monoenergetic and involves the same energy levels of each solute. Energy transfer between unlike solutes iss also monoenergetic but is usually accompanied by vibrational relaxation in the acceptor molecule. \cdots, \ldots
(e) Fluorescence is a spin allowed radiative transition between states of the same multiplioity. It usually ocours between the first excited state (S_{s}) and the ground gtate of the molecule over a time of $10^{-w}-10^{-12} \mathrm{~s}$ and is not mononergetic. The energies of the photons correspond to the energy difference between the aero vibrational level of the S_{i} state and the many vibrational levels of the ground state (So). The fluorescence spectrum reflectis the probability of the transitions between S. and the vibrational levels of the ground state. Spin forbidden transitions between states of different multiplicity describe phosphorescence. Phosphorescence is not usually observed in LSC due to its long lifetime (>10"ws) which renders it susceptible to quenching or other triplet energy transfers.

The photodetection process can be subdivided into the photon collection process and the photoeleotric conversion process. Photon collection includes the passage of photors through the LS cocktail, the vial and the counting chamber.

Since the common scintillator solutes emit photons of energy corresonding to the wavelengths between 300 and 600 nm it is required that the LS cocktail and the vial be transparent over that region. If the LS solution is not transparent over that region then self absorption is said to occur. Self absorption is present to some extent in most LS solutions and is a feature of both the primary and
secondary solutes. It is dependent on the overlap between the emission and absorption spectra of the solute, the molar extinction coefficient and the concentration of the solute. Also an important factor in the amount of self absorption is the path length for the photons before they escape from the LS solution.

In addition to the solvent and solute other materials forming the sample in the LS solution may have an absorption band which overlaps the solute emission spectrum. If this is the case then colour quenching is said to occur*. Colour quenching is dependent on the absorptivity and concentration of the quenching molecule, and on the path length which the photons must travel before escaping the solution. It can be seen that self absorption may be regarded as a particular case of colour quenching. Further sources of photon losses in the LS cocktail arise at the cocktail-air interface and the cocktail-vial interfaces. These are the result of reflections which cause the reflected photons to undergo the chances of self-absorption and colour quenching within the LS cocktail once more. The probability of photon reflection iss dependent on the difference between the refractive indicess of the two materials forming the interface according to Fresnel's equations. It is greater for greater differences and hence is greater for the liquir-air interface than for the liquid-vial interface.

[^0]As with the LS cocktail, photons may be absorbed or reflected in the vial. Absorption constitutes another form of colour quenching, but since the vial path lengths traversed by the majority of photons from a single event are approximately equal (assuming uniform wall thiokness) the resulting effect resembles chemical quenching". Reflection at the vial-air interface may ultimately result in the photon re-entering the LS cocktail or in the photon taking a path leading to total internal reflection in the vial wall and subsequent absorption in the vial, the vial cap or the vial base.

The fate of photons once they have left the vial is largely machine dependent. Usually, counting chambers consist of highly polished reflectors which fit closely to the vial and the face of the photomultiplier detector in an attempt to minimise both scintillation-photon loss and ambient light input. Although oils and greases have been used in the past as optical couplers between the vial and the PMT face, most ourrent LSC's use reflective air-filled chambers. With these chambers, photons may be lost through absorption by the reflecting materials or on reaching the PMT face may be reflected back into the chamber and/or vial. These photon pathways are summarised together with the photon collection processes in the cocktail and vial in Fig. F1.3. ${ }^{40}$

* Refer to section 1.3.4a

The final stages of the photodetection processs - the conversion of signal photons into an electrical pulse occurs within the photomultiplier tubes (PMT) of the LSC. There are three main parts of a PMT which are critical in the determination of its efficiency and response. Thesse are (a) the photocathode, which converts the photons into a number of electrons defined by the wavelength of the photons, the number of photons, the quantum efficiency of the photocathode, and the geometry and type of material of the photocathode; (b) the dynodes, which multiply the number of electrons by means of secondary emission; and (c) the anode, which collects electrons from the dynodes and converts them into a pulse of amplitude proportional to their number.

The conversion of photons into electrons (photoemission) consists of photon absorption and transfer of its energy to an electron in the photocathode material, migration of the electron to the surface of the photocathode, and, escape of the electron into the vacuum by overcoming the potential barrier (work function) of the photocathode. The theory for photoemission stems from Einstein's photoelectric effect equation:

```
    E=hv-\phi=\frac{1}{2}mv\mp@subsup{v}{}{2}
where E = kinetic energy of the emitted electron
    h = Plancks constant
    v = frequency of incident photon
    \phi= work function of photocathode material
```

Experimental evidence supporting thiss quantum theory of photoemission hass been given by Sommer and Brady among others. al Ideal photocathodes have quantum efficiencies of 100\%, i.e. every incident photon releases a photoelectron. Practical photoemitters have less than 100% quantum efficiency because of energy losses due to photon reflection or transmission, due to electron scattering and photon scattering of photoelectrons as they migrate to the surface, and due to prevention of photoelectron release by the potential barrier. Quantur efficiencies of the alkali metals in the visible region are only 0.1% but deliberate modification of the energy band structures of semiconductors has led to negative electron affinity materials4.".as which allow greater photocathode thickness and produce greater photoelectron escape depths and has resulted in quantum efficiencies up to 26%.

The photoelectrons are accelerated and focused by potential differences between the photocathode and first dynode and the field created by the focusing electrodes. The first dynode collection efficiency ranges from 85% to $98 \% .{ }^{44}$ The efficiency is less than 100% because some photoelectrons are released with velocities that cause imperfect focussing. Those electrons which do strike the first dynode have enough kinetic energy to produce a number of secondary electrons. The physical procenses involved in secondary emission are similar to those in the production of photoelectrons at the photocathode except that electrons rather than photons comprise the incident particle. Three
steps ean ooeur:
(i) incident electrons excite electrons in the dynode material
(ii) some of the excited electrons move to the surface, and,
(iii) those electrons with energy greater than the surface barrier are emitted.

The secondary electrons that escape from the fixst dyrode are aocelerated by a p.d. to the next dynode and the same processes occur again.

The secondary emission yield is defined as the average number of secondary electrons emitted per number of primary electrons incident on the surface. The yield is dependent on the primary elertron energy (and hence on the PMT operating voltage) and a theory for the dependence has been given by Simon and Williams "se for GaP:Cs dynodef which is corroborated by experimertal data. mat The statistical variations in the yield are most signifioant for the first and second dynodes. This is because after the first two dynodes the number of secondary electrons will not be enough to affect the final gain of the PMTube. The variations in the yield in the first two dynodes may, in some circumstances, result in loss of counts in LSC. m

The anode collects the electrons leaving the last dynode. Its response is limited by its current eapacity. If the number of electrons is too great a space charge builds up between the last dynode and the anode leading to nonlinear
response at high currerts. (This may be caused by high count rates and/or high energy radionuclides;. The electron collection by the anode produces a voltage which iss converted into a voltage pulse through a capacitor. The amplitude of the pulse is proportional to the number of electrons collected at the anode, which are proportional to the number of photoelectrons(an), which are proportional to the number of photons(se), which are proportional (ω) to the energy of the original ionising particle in the LS cocktail.

This proportionality may vary from sample to sample due to interference with the energy transfer process, namely quenching. The major aim of the project is to devise a method which takes acoount of the type of quenching in each sample with particular reference to chemical and colour quenohing. A detailed explanation of the quenching process is given in 1.3.4(a).
(an) if numbers not small, "由 only approximately ${ }^{2}$.

1.1.2 Macroscopic Properties of LSC systems

Theories and techniques assooiated with the properties of LSC systems have been developed from observations of the variations of these properties (such as counting efficiency or pulse height spectrum channels ratios under different counting conditions. The developments in theoretical techriques have been dependent on the progress made by LSC equipment manufacturers - an example being the use of spectrum parameters for quench correction, as demonstrated by Ring et alw, which was impracticable before the advent of LSC's with integral multi-channel pulse height analysers. Of course, many of the equipment improvements have been directed towards user convenience and these, along with the technical advances, are summarised in section 1.2.

The primary function of a LSC system is to estimate the true disintegration rate (DPM) of a radioisotope. The theoretical techniques used to accomplish this function essentially rely on the estimation of just two variables the apparent sample activity (CPM) and the efficiency (E) with which the sample was counted. The true rate is then given by the expression DPM $=$ CPM/E. If the counting efficiency remained constant for all samples then the variations in the calculated DPM would depend only on variations in the sample activity resulting from the random nature of radioactive decay, from the decay rate of the radioisotope and possibly from external chemical and
physical influences on the radioactive decay process. The latter source of variation is negligible in LSC and the former two sources can usually be satisfactorily overcome. It is unfortunately the case, however, that the efficiency is not constant for all samples.

As a prerequisite for the determination of counting efficiency reference must be made to a standard. This may be an internal standardm, an external standarde or a quenched sample or series of samples, all of known activity. The choice of standardisation is often related to quench correction (section 1.3) although no single method is capable of correcting for all the sources of efficiency variation.

LSC efficiency varies with the type of nuclear radiation, the type of chemical constituents in the sample and their relative proportions, scintillation detector performance, and, the method of counting. The variation in the counting efficiency with the nature of the ionising particle iss related to the specific ionisation of the particle and has
 The composition of the solution (solvent, solutes and quenching materials) may affect the scintillation efficiency which in turn affects the detection efficiency or may affect the detection efficiency directly hence affecting the counting efficiency - these changes being different for different types of quencher. For example, chemical quenching (which is the scavenging of LS solvent
excitation energy by impurities or added samples in competition with the fluorescent solutes) and colour quenching (which is the molecular absorption of the fluorescent solutes' emissions) give rise to changes in the measured pulse height spectrum as shown in Fig. F1.4.12m Correlation of the counting efficiency with the amount of quench but independent of the type of quench has been a goal of LSC for many years. The most recent quench indicating parameters to be used, such as H^{+4}, SIE, SH^{2} and ESPA: all fail in this respect. A typical plot of efficiency vs SIE even with AEC is shown in Fig. F1.5. Quenching is considered further in section 1.3.

Detector performance variables are shared between the PMTubes and the electronic analyser circuitry. LSC stability is one of them and has been studied by Galloways and Crookes \& Lilley: Although it can be a source of efficiency variation it is usually small enough to be neglected. PMT response and performance may by affected by
 plateroo, by exterral magnetic and electric fields ${ }^{14}$, by ambient light levels and by vibration or shock. Any such changes in the $P M T$ response will be reflected in the counting efficiency. Dead time <especially with intense sources; and spectral matching of PMT to the fluorescent species may also affect the efficiency. So too will changes in the electronic thresholds and pulse height analyser discriminators of the analyser oirouitry. Geometry is often an important aspect in the determination
of activities of radionuclides and LSC is no exception. The effects of relative changes in sample and external standard position on the counting efficiency and of variations in sample volume on the external standard counting efficiency, and other 'volume effects' has been

Despite such a list of possible sources of error reliable counts are obtained from LSC's. This is because the magnitudes of the variations are small in everyday applications. The major sources of error in efficiency determination are usually (a) quenching and (b) the method of counting employed.

The method of counting can affect the counting efficiency in many ways even under conditions of constant quench. Most LS counters employ two photomultiplier tubes and a coincidence counting system although there are some single tube counters. ${ }^{49}$ Coincidence counting provides a marked reduction of background count rates due to the randomiy generated pulses in each PMT as a result of thermal noise and spurious light sources (e.g. chemiluminescence). This advantage must be balanced against the main disadvantage of coincident systems which is an inherently lower counting efficiency, especially for low energy isotopes. This is due to the requirement of at least one photon being detected at each PMT in a coincident system whereas a single photon may suffice in a non-coincident system. In
practice, the reduction in efficiency iss not excessive and even theoretically the difference is only about 6% for an average energy tritium B-particle for PMT's operating with a 30% quantum efficiency. ${ }^{6}$

Also, with two PMT's there are alternatives to the way the PMT pulses can be handled which can result in changes to the measured counting efficiency. One of the PMTubes may be utilised for pulse height analysis with the other acting as a coincidence monitor only. ${ }^{7 \%}$ This techmique has been superceded by pulse summation prior to pulse height analysis which gives increased resolution between events of different energy and a slight improvement in counting efficiency for low energy emitters by increasing the number of coincident events capable of passing low level noise thresholds. The only other 'front end' pulse handing technique to have been proposed (by Laneywa), iss lesser pulse height analysis, which represents an attempt to minimise crosstalk. ${ }^{124}$ Further work by Laney in this area shows the information value inherent in the individual PMT signals.". Although concentrating on the rejection of background, two-parameter pulse height spectra of colour and chemically quenched ${ }^{4} \mathrm{C}$ samples were presented. These results are reproduced in Fig. F1.6. The sonclusion that the two-parameter pulse height analysis can distinguish between colour and chemically quenched sample:s is drawn by Laney but no methods to attempt to quantify the differences; are proposed. This subject of 'front end' pulse handing and pulse information value in relationship to quench
correction has been largely neglected in LSC. It forms however an integral part of this thesiss and iss disoussed at length in chapter 3.

The recorded counting efficiency can be substantially altered by the method of analysing the coincidence-gated pulses. Most modern machines now have integral Multichannel analysers (MCA) for pulse height storage and microprocessors/microcomputers for spectral analysis. They allow user selection of regions of interest, or pulse height windows, and thus are prone to reduced counting efficiency resulting from poor choice of counting regions.

Assumptions of constant quench are almost always invalid and thus in addition to the above sources of efficiency variation there are those resulting from the various types of quench. Indeed, the need to correct for quench has been responsible for most of the methodological developments over the past two decades. The developments are detailed in the section on quenching (1.3).

The determination of the true disintegration rate is not the only function of a LSC system. LSC's may be used to provide relative counts only, or assess the purity of radiolabelled materials irrespective of the total countw, or to check for chemiluminescence, or perhaps perform radioisotope identification - a task which is gradually becoming more feasible owing to improvements in LSC resolution.

1.1 .3

Theoretical Modelling of the LSC

For whichever mode of operation, correct use of the LSC requires an understanding not only of all the separate processes at work but also of how they interrelate. To achieve such an understanding a systems rather than an analytic approach is necessary. Theoretical work which has been conducted with a view to predicting the global properties of LSC's has been tackled by few authors. Kaczmarczyk ${ }^{1 o m}$ has presented a detailed model of chemical quenching at the spectral level but has not included any optical considerations such as PMTube response or even colour quenching. A one dimensional and simple three dimensional model of a LSC has been proposed by ten Haaf. ${ }^{175, y y}$ The first model qualitatively explains the broader pulse height spectrum obtained with colour quenched samples rather than with chemically quenched samplesian by suggesting that light produced in different parts of a sample will take paths (to the detectors) of different length. The second model represents an improvement by extending the analysis to cover a three dimensional (3D) cylinder of scintillation material but still suffers from many drawbacks: the vial base and top are assumed to be perfect mirrors; no allowance is made for the spectral nature of light emission or absorption; the pulse height and B-Energy relationship is assumed to be linear; all statistical fluctuations are ignored; and the scintillator is surrounded by perfect detectors. A more detailed model

stochastic approach which accumulates "counts" resulting from events considered at the photon level. For my model to be useful as a predicitive tool it must be able to closely reproduce known experimental data and it was the approach used by Stanley and Malcolm that best simulated the properties of an LSC system. Work for thiss model commenced in 1972 and although still under development was first presented at the International Symposium on LSC in 1973. ${ }^{120}$ It is summarised below but a full description may be found in the aforementioned references.

The model simulated a two PMT coincidence LSC by computer generation of a B-event of random energy, according to the Fermi distribution of the isotope, at a random 3D position within the solution in an idealised vial. This energy was then converted to an appropriate number of photons of random wavelength (following the fluorescence spectrum of the phosphor solution), which were assigned random directions in 3D. Each of these photons was traced to its extinction through the solution and vial (which was assumed to be optically continuous) and up to the PMTube, although the actual geometry of the vial was greatly simplified and any counting chamber effects were bundled with the PMT response. See Fig. F1.7.

Colour quench was simulated by celculating the absorbance of the solution for each photon according to its wavelength and an experimentally obtained absorption spectrum, and escape distance with the probability of absorption
following the Beer-Bouguer Law. Self (colour) quenching by the fluor was also modelled.

PMT response was simulated in a probabalistic fashion according to the photocathode quantum efficiency and wavelength of the incident photon. Thiss response was scaled according to the point at which the photon left the vial. This approach was taken to avoid the further complicated geometrical analysis required to trace photons through the counting chamber.

Once all the available energy was exhausted in terms of photon production and these photons traced, the number of photoelectrons at each PMTube represented the pulse amplitude for each PMT. These were coincidence selected to produce summed and lesser pulse height spectra.

The model was subject to the following additional assumptions and restrictions:
(i) B-particle path lengths were zero (only $\# H$ and ${ }^{44} \mathrm{C}$ modelled)
(ii) isotopes followed the theoretical distribution (iii) only one B-event was processed at any one time (no dead time losses and no time dimension in the model)
(iv) scintillation efficiency variation with energy followed the results given by Horrocks ${ }^{\text {gem }}$
(v) chemical quench was independent of energy of the B-particle
(vi) vial and solution were optically continuous, and were in the form of a perfect cylinder
(vii) optical dispersion and polarigation-related phenomenon wexe negligible with Snells Law dictating photon behaviour at interfaces (viii) vial cap and vial base were perfect absorbers.

Despite these restrictions, the matching of modelled $\Rightarrow \mathrm{H}$ and ${ }^{144} \mathrm{C}$ colour or chemically quenched sample counting efficiencies with their experimantally obtained counterparts was achieved with some degree of success and Malcolm and Stanley were able to conclude that the model's behaviour was in accordance with that observed in the laboratory. $2 \mathrm{xan}, 171$

The materials and equipment used in LSC may be be split into hardware and 'wetware'. Wetware includes the solvents, solutes, cocktails and nuolear labelled compounds that are available for LSC. The variety of nuclear labelled compounds is as endless as that of unlabelled compounds even when only considering the commonly used isotopes ($\mathrm{WH}, \mathrm{AC}, \mathrm{FP}$) and no attempt is made to categorise them. Liquid scintillation solvents are typified by molecules that have low energy levels and nonbinding π-electrons, which require little excitation. Many such candidates have been investigated by Birks ${ }^{n+1.0}$,

 solutes have been studied by many workers including

 and Wirthies. Also, various aspects of solute-solvent systems and LS cocktails (i.e. solute-solvent and emulsifiers and/or solubilisers) have been reported by
 and Spolders ${ }^{147}$ and Stanley 170 .

A detailed review of the developments in LSC hardware from 1950 to 1971 has been given by Rapkin. 148 Stanley has reviewed the developments in LSC generally"? (including
hardware features) for the period 1964 to 1979. A more recent study of modern LSC's has been oonduoted by Price. ${ }^{14 \%}$ Since that time few major changes in LSC design have ocourred.

1.3 Liquid Scintillation Counting Problems

1.3.1 Sample Preparation

Sample preparation for LSC depends on the nature of the sample to be counted and may be a very simple or very complicated procedure. The counting of aqueous, gaseous or heterogeneous sample in the aromatic organic solvents used in LSC present special problems.

General reviews of sample preparation techniques have been given by Parmentier and ten Haafse and Horrockse and collections of sample preparation papers can be found in "Liquid Scintillation Counting" vol. 2, "Liquid Scintillation Counting" vol. 4, "Liquid Scintillation Courting" vol. 5, "Liquid Scintillation Science and Technology" and "Liquid Scintillation Counting Recent Applications and Developments".

The labelled materials and quenching agents in this thesis have been chosen to facilitate sample preparation, although it is recognised that for the majority of LSC users this iss not possible.

1.3.2 Counting Vials

There are several types of vials available commercially. Thess inolude low cost soda lime glass, low backeround glass (borosilicate glass low in 40 K), quarta, polythene, nylon and teflon. The choice of vial depends on cost, background rate requirements, [J.V. transmission requirements, re-usability, solvent absorption characteristics and solute asorption characteristics. Problems arisinc from poor choice of vial can include vial
 permeability, background count ratew,wn: variations, efficiency variations due to vials of variable thickness and geometrys, photoluminescence. ${ }^{3 . m}$ and sample leakage. ${ }^{3.4}$

A very useful review of choice of counting vials with B5 further references has been given by Painter in "Liquid Scintillation Counting - Recent Developments". ${ }^{13}$

1.3.3 Background

There are many sources of backeround counts in LSC all of which may impair DPM determinations especially with samples of low activity. A good discussion of background is given by Horrooks in chapter 9 of "Applications of Liquid Scintillation Counting" with a table which neatly sumnarises the various sources of backeround.

Other references include those of Noakes ${ }^{1 \times \infty}$ and Hartley and Church and Calf and Pol ach who each concentrate on low level counting and ${ }^{14} \mathrm{C}$ dating, Laney".4. who proposes a method to reduce the crosstalk component of background with various types of aqueous solutions in several different vials and cocktails and Scalesist, Alessio et al ${ }^{1, *}$ and Horrocks who have each studied the effect of quenching on LSC background.

1.3.4 Quenching and Quench Correction

(a) Quenching

Quenching is any energy transfer process which interferes with the efficient conversion of the ionising radiation into a measurable electron pulse. As explained in section 1.1, the LSC process may be held as a logical sexies of subprocesses. Each subprocess is susceptible to quenching (see Fig. F1.8).

Nuclear quenching, in the case of B emitters such as $=\mathrm{s}$ and ${ }^{4 .} \mathrm{C}$, is inherent to the nuclear decay process. The available nuclear energy after disintegration is shared by the B-particle and an antineutrinow and the energy that is carried away by the antineutrino is lost to the LSC (since the probability of interaction is negligible).

Ionisation quenching covers those processes by which the B-particle energy is dissipated through the solution and/or vial via mechanisms that do not lead to the formation of excited π-electronic states of the solvent. Strictly speaking, the term should also exclude exoitation of the solvent to σ-excited states but since these are wasteful states so far as energy transfer to the fluorescent solute is concerned, I include them here. (Processes (3), (5), (8) and (10) of section 1.1.1, pages 4 and 5). Not restricjtng attention to $\beta^{-\prime}$ emitters alone, Birks." investisated the scintillation response of anthracene and propossed a theory to relate the specific scintillation
response, dL/dr, with the specific particle energy loss $\mathrm{dE} / \mathrm{dr}:$

$$
(\mathrm{dL} / \mathrm{dr})=\frac{\mathrm{S}(\mathrm{dE} / \mathrm{dr})}{1+\mathrm{kB}(\mathrm{dE} / \mathrm{dr})},
$$

where

$$
\begin{aligned}
S= & d L / d E=\text { scintillation yield } \\
B d E / d r= & \text { concentration of ionising events } \\
k= & \text { relative rate constant (for equations } \\
& \text { giving ionisation) }
\end{aligned}
$$

This theory has been experimentally supported by several
 make the response of the sointillator non-linear with particle energy type. 64,03

Chemical quenching (also known ass impurity quenching) has been defined by Neary and Buddysa as
"any process, active within the sample, which reduces the energy transfer efficiency of some member or members of the set of compounds essential to the scintillation process:"
and by Peng.40 and Gibson as a decrease in the fluorescence quantum yield caused by the presence of non-fluorescent molecules which compete with fluor molecules for the excitation energy of solvent molecules. The essential points of the definitions are (a) the assumed existence of excited solvents capable of transferring energy to the solutes and (b) the possible presence of
materials in solution apart from the solvent and solute whether as impurities (eg Oa) or as a labelled sample. Chemical quenching thus covers all those processes by which energy is taken from excited solvents but which does not result in photon emission. Gibson and Galeses have shown that the relative chemical quenching factor (which is the ratio of available fluorescence to actual fluorescence from a quenched solution) is independent of energy. Mechanisms of chemical, or impurity, quenching have been presented by Birksian and Laustriat et aliar amongst others.

Colour quenching is the absorption of the fluorescent radiation by substances which have an absorption band within the emission spectrum of the liquid scintillation fluors. Colour quenching is a function of the absorptivity and concentration of the quenchers and also of the path length the photon must traverse in order to escape the solution. It is this latter feature of colour quenching that affects the counting efficiency and pulse height spectra in a way that is quite different to chemical quenching (see Fig. F1.4). Simple models to explain the differnces have been given by ten Haafiven ary and Neary \& Budd. ${ }^{122 m}$

Optical quenching is the loss of photons on leaving the scintillation solution prior to interaction with the photocathode of the PMTubes. It includes photon absorption in the vial material (glass or plastic), the vial base, the vial cap, the counting chamber reflectors, the PMTube
faceplate, and any dirt or condensation that may be present. It also includes direct photon escape through the narrow gaps around the vial in the counting chamber. These effects are normally small but are not negligible. Stanley has shown, for instance, that around 9% of all photons are lost through the anular gaps around the vial although many of the other instrument design-dependent losses remain unquantified (at least publicly).

The quantum efficiency of a photocathode is defined as the probability that a photoeleotron is released per incident photon. It depends on the wavelength of the incident photon as shown in Fig. F1. 10 for an RCA 4501/V3 PMTube. Photoelectric emission involves three stages. Firstly, the photon must be absorbed and its energy transferred 20 an electron; secondly, the electrons must move to the material-vacuum surface; and thirdly, the electron must escape past the surface potential barrier. As explained in section 1.1.1 energy losses or quantum quenching may occur at each stage and so reduce the quantum efficiency to well below 100\%.

PMTube quenching covers losses of energy due to imperfect focussing of photoelectrons between the photocathode to the first dynode and between successive dynodes and losses encountered in secondary emission. These losses se.dom contribute to a reduction in the recorded countirig efficienoy under normal operating conditions but do alter the shape of the pulse height spectrum. \quad a

Electronic quenching is the reduction in height or loss of the PMTube pulses due to electronic thresholds (and discriminators) of the counting system, and may affect the counting efficienoy and/or the shape of the pulse height spectrum.

In this scheme of quenching in the LSC process it iss assumed throughout that the LS solution is homogeneous. This is not always the case. Many samples are counted in LSC 'cooktails' containing emulsifiers or solubilisers such as Triton $X-100$, in solid gels, or on solid supports immersed in scintillator solutions. With such mixtures, B-particles can be lost in nonscintillating micelles of an emulsion, in particles in a gel, in the solid supports or in the vial walls. Apart from the vial wall effect such energy losses are diffioult to assess and no method of quench correotion can ourrently be applied irrespective of the phase of the sample, although phase ohanges during counting may be flagged, ate to avoid the compounded problems of mixed colour and chemical quenching in heterogenous systems Ewer and Harding suggest the incorporation of the whole sample in the micellar phase where possible. Further references concerning the counting of heterogenous samples may be found in the bibliography.

(b) Quenoh Correction

Quenching can cause gross changes in counting efficiency and thus must be monitored to enable the count to be corrected. This task, quench correction, is complicated by the different types of quenching that may be present. Many attempts have been made to achieve quench correction but none can be applied uncritically. They are listed below:
(i) Internal Standardma, $7,1,3,4,4$
(ii) Samples Channel Ratio (SCR)"ッツ
(iii) External Standard Count (ESC) ${ }^{41,051,7 e, ~ E x ~}$
(iv) External Standard Channel Ratio (ESCR)*
(v) Relative Pulse Height (RPH) ${ }^{\text {anan }}$. a Methods
$-\mathrm{H}^{+*}$, SIE, ESP
(vi) Balance point counting
(vii) Gain Overrestoration an, wan, ama
(viii) Double Count Channels: an
(ix) Efficiency stick ${ }^{4 x}$
(x) Optical filteren

(xii) Extrapolation.4., wat. 345
(xiii) Double channels ratioso
(xiv) Tracer ${ }^{\text {ane }}$
*. no known reference except Horrocks says it was a commercial feature on Beckman LS200 in 1965

The Internal Standard (IS) teohnique involves the addition of a known amount of the labelling nuclide to the sample. The added activity should be high in relation to the sample activity to reduce the uncertainty in the efficiency determination. The efficiency determination iss baser on the subtraction of the sample count from the sample + standard count, and division of the resultant standard count rate by its known activity. The standard and sample should be chemically similar and the standard should not introduce large changes in quench. If this iss possible, the method has the advantage that it eliminates the necessity to count a series of quenched standards. However, recovery of the sample may be impossible and samples cannot be recounted. Opening of vials taken from refrigerated systems leads to condensation of moisture in the vial (and water is a strong quencher). The technique canot be applied to heterogeneous samples unless the standard goes into the same phase as the sample or is of the same form as the sample on a solid support. The technique is difficult to apply to dual label assays in presence of the above drawbacks and iss difficult to automate. Also it is prone to operator error and repeated use can cause a gradual increase in the backeround. These disadvantages have led to the reduced use of the is technique.

The $S C R$ method of quench correction gives a measurement in the change in the differential pulse height spectrum with the amount of quench. It is based on the ratio of counts belonging to the two fixed pulse height channelg/windows. The method has the advantages that no additions must be made to the sample and recounts are possible. However its accuracy is limited by the activity of the sample and by working with fractions of the total count - especially in the prescence of high quenching. The method requires the production of a standard quench curve - i.e. a series of known activity samples with increasing amounts of quench similar to the samples to be measured are counted and the efficiency vs SCR for each are plotted. Unknown sample efficiencies are then interpolated from this curve. The dynamic range of the method is dependent on the discriminator settings which define the two channels. The low discriminator rejects low level background noise and the high level discriminator is set to just include the maximum energy possible for the sample isotope. The middle discriminator determines the relative channel widths. If it is set low then the dynamic range is increased at the expense of the low quench sensitivity and if it is set high then the dynamic range is poor. Another feature of the SCR method is the generation of widely different calibration curves for colour and chemical quenchers. ${ }^{177}$

Automatic external γ-standards are the most commonly used standards for quench correction. They are convenjent and easy to use and can have a wide dynamic range. Half-life
and availability considerations have mainly limited the
 exposed to such standards by means of a shutter or by moving the standard close to the vial. The former method requires higher activity sources and greater shielding and the latter requires reproducible positioning. The γ-rays interact with the sample, the processes of Compton scattering and internal conversion and provide an energy continuum of electrons.

One method of quench correction which utilises external γ-ray standards is the External Standard Count (ESC). It involves the courting of a quenched series of known activity samples without and then with the presence of the external standard. If part of the sample counts are within the external standard count channel the external standard count is corrected. A calibration curve of efficiency vs external standard count is thus prepared. Samples with unknown quench levels are then counted with and without the external standard and the calibration curve is used to give the sample counting efficiency. There are various limitations to this method which may include sample volume dependency, a dependency on the sample to external standard relative position, half-life of the γ-source and changes in electron density from sample to sample. The ESC method is insensitive to the colour to chemical quench ratio whereas the sample count is not.

Another method is the ESCR which is equivalent to the SCR method mentioned above with the exception that the external standard is used to produce the efficiency vs quench calibration eurve. ESCR represents an improvement over ESC since taking a ratio of counts reduces errors associated with sample volume, source half-life, sample electron density and source positioning. ESCR is insensitive to the colour to chemical quench ratio for appropriately ohosen counting channels. As with the SCR method the ESCR method necessitates a compromise between high resolution (narrow window) and wide dynamic range (wide windows) and ESCR cannot be applied after phase separation. a

Improvements in instrumentation have enabled pulse height spectrum storage through the incorporation of analogue to digital converters (ADC) and MCAs in LSCs and has led to several recent developments in quench correction methods. These methods involve analysis of either the whole spectrum or of local spectrum features. The first of these is the $\mathrm{H}^{* \prime \prime}$ number method. The $\mathrm{H}^{* 1}$ number is the difference in the location of the inflection point of the Compton edge of a $1 \% \mathrm{Cs}$ external standard for unquenched and experimental samples after logarithmic amplification of the summed PMTube pulses. It is thus a ratio of the quenched Compton edge pulse height relative to an unquenched Compton edge pulse height. A second method the SIF, uses the mean summed-pulse height of the external standard spectrum relative to the mean summed-pulse height of an unquenched external standard spectrum (although not quite all the
spectrum is used for the computation due to wall effect discriminator). A third and similar quench indicating parameter (QIP) is the ESP. The ESP value of a sample iss the mean lesser pulse height of an unquenched external standard spectrum divided by the mean lesser pulse height spectrum obtained with the sample (and with a small correction for the quantum efficiency).

The common feature of these methods, irrespective of the use of lesser or summed spectra, is the concept of relative pulse height (RPH). SIE and $H^{* \prime \prime}$ are related to the RPH and ESP to the reciprocal of RPH and all three methods have been shown to be linearly related by the expressionsw:

$$
\begin{aligned}
& \mathrm{H}^{4+}=225 \log (\text { ESP })-6.35 \\
& \mathrm{H}^{4 \prime \prime}=-475 \log (\mathrm{SIE})-1391,
\end{aligned}
$$

the log term being present only because of the use of logarithmic amplification in the Beckman LSC and linear amplification in the Packard and Tracor LSCs. All these RPH methods make the problems of channel settings redundant, they have a wide dynamic range, are applicable to multilabel dpm deteminations, are insensitive to structured pulse height distributions (e.g. anewi), can be used with a wide range of sample count rates and are reasonably independent of volume and electron density. They are not, however, suitable for heterogeneous samples and are insensitive to the colour to chemical quench ratio.

The idea of using RPH for quench correction is not restricted to external standards. Reference samples (e.g. ${ }^{14} \mathrm{C}$ B-emitterss) may be used to construct calibration curves which provide a direot relationship with the unknown samples rather than the indirect relationship obtained with the Compton electrons of a scattered external standard γ-ray. The main disadvantage of this is the ereater effeot that quench has on the efficiency of detection of lower energy isotopes which necessitates longer counting times to provide a reliable measure of the sample based QIP.

The rest of the quench correction methods listed above have not gained general acceptance and popularity for various reasons. Methods (vi), (vii) and (viii) are all designed to produce a constant counting efficiency (and hence not require a calibration curve). Balance point counting achieves this by measuring counts in a middle section of the spectrum. As quenching shifts the spectrum to lower pulse heights the number of counts dropping below the middle section is balanced by the number of counts coming in from above the middle section. The method only works well for small quench changes and high count rate samples. Gain overrestoration involves the changing of amplifier gain in response to a QIP measurement (e.E. ESCR) such that a fraction of the pulses from below a low level discriminator (as set for an unquenched spectrum) are amplified into the counting region. This technique has a limited dynamic range and is restricted to high energy isotopes. The double-count channels method is similar to
the balance point method except that the middle section is rot counted and the higher and lower sections are. This reduces the efficiency of all the samples to that of the most quenched and thus only usess a fraction of the total count. Descriptions of the other minor methods of quench correction may be found in the literature.

A common failure of many of these quench correction methods is the need to create a calibration curve of counting efficiency vs a quench indicating parameter. Curve fitting in LSC is another possible source of error. It is dealt with in chapter 2.

1.3.5 Dual and Triple Label Counting in LSC

The simultaneous counting of two isotopes using a LSC results in the superpositioning of the pulse height spectra associated with each isotope. Three possible cases arise: (a) no speotral overlap, (b) partial overlap, (c) total (or near total) overlap. An example of case (a) is the dual-label counting of the $5.1 \mathrm{MeV} \alpha$-emitter mp and the 21 keV B-emitter ${ }^{2 n} \mathrm{Pu}^{94}$, and no problems are encountered in resolving the counts due to each isotope. Case (c) dual label counting is only feasible if some other feature of the radiation can be utilised to separate the contributions of each spectrum. One such feature may be the respective halflives of the isotopes. The difference in counts when the sample is counted at two different times is used in conjunction with the decay equation to give the activity of each isotope. Other features may be the use of Cerenkov radiation ${ }^{* s}$ or local pulse height features.

Case (b) is the most common example of practical dual label counting and the ${ }^{4.4} \mathrm{C}-{ }^{\mathrm{m}} \mathrm{H}$ dual label is the most common representative of this case. Both isotopes decay by emission of $a \in$ continuum from 0 to 18.6 keV for $=\mathrm{H}$ and 0 to 156 keV for ${ }^{1.4} \mathrm{C}$. A window (B) set above the pulse height corresponding to 18.6 keV events will count a fraction of the ${ }^{14} \mathrm{C}$ events and no ${ }^{2} \mathrm{H}$ events. (See Fig. F1.9). A second window (A) spanning the pulse heights from 0 up to window B will count all the F events and the remainder of the ${ }^{14} \mathrm{C}$ events. Dual label DPM determination
is achieved by counting similar composition known activity single label ${ }^{34} \mathrm{C}$ samples and ${ }^{3} \mathrm{H}$ samples using the same LSC settings. The single label reference samples provide the efficiency of counting ${ }^{14} \mathrm{C}$ in window; B (Era) and A (Erts) and the efficiency of counting ${ }^{7} \mathrm{H}$ in window A (Ent), whence the DPMs of the ${ }^{5} \mathrm{H}$ and ${ }^{1.4} \mathrm{C}$ in dual label samples may be found.

As with single label sampless quenching presents a major problem and quench correction calibration ourves must be established for each of the isotopes in each window. "a C wh dual label counting has been reported by numerous researchers. Assailly et al investigated the counting of ${ }^{*} H$ in the prestence of ${ }^{14} \mathrm{C}$ using ESC. Everett ${ }^{46}$ reports ${ }^{1.4} \mathrm{C}$ - $\quad \mathrm{H}$ dual label counting using SIE with AEC (or automatic efficiency correlation) whereas Kolbuo discusses optimal choice of windows in ${ }^{14} \mathrm{C}-\mathrm{H}$ counting. Smith \& Hodgson ${ }^{24} \mathrm{~m}$ examine the effect of quench on the dual label performance of two different LSCs utilising $\mathrm{H}^{1 "}$ and SIE QIPs. Perg.4o and Reuter and Trefnys. have included ${ }^{44} \mathrm{C}-\mathrm{H}$ dual labels in their investigations of several dual label sources which
 and ${ }^{14} \mathrm{C}-1 \mathrm{me} \mathrm{I}$, and $=\mathrm{H}-\mathrm{Na}$ and ${ }^{44} \mathrm{C}-\mathrm{Na}$ respectively. De Filippisio, also, has reported results of dual label counting of ${ }^{w} \mathrm{H}-{ }^{n} \mathrm{a}$. An unusual form of dual label counting which utilised "detector ratio" analogue of LSC channels ratio by means of a Geiger-Muller tube and solid scintillation counter has been reported by Gringorten. 47 A more recent technique to compute dual label radionuclide
activity has been presented by De Filippis. ${ }^{40}$ The technique employs just one region and iss dependent on the relationship between sample based QIP and external standard QIP for each isotope. It requires single isotope sample based QIP and external standard QIP calibration curves. The proportion of counts attributable to each isotope in a dual label sample is then derived from the relative position of the sample data between the calibration curves. The technique is an extension of the isotope contamination detection method proposed by Peng. "ac

LSC pulse height spectra have been accessible for over a decade on commercial machines but the number of channels open to the user has been limited to two or three. This restricts multi-label counting to dual or triple label counting and is perhaps one of the reasons why triple label counting has been performed rarely. Horrocks ${ }^{\circ}$ reports the triple label counting of ${ }^{2} \mathrm{H},{ }^{12 m} \mathrm{I},{ }^{14} \mathrm{C}$ and the triple label counting of ${ }^{3} \mathrm{H},{ }^{14} \mathrm{C},{ }^{3} 4 \mathrm{Cl}$ is reported in chapter 2.
1.3.6 Other Problems

There are a number of other problems that are often encountered in LSC. These include saturation of the counter due to high count rate samples and/or high energy isotopes 110 , the interference of external standard or ambient UV light induced photoluminescencena,
 a 4 en, wa from reactions in the solution in the vial, static electricity interference ${ }^{30}$, temperature effectsix on the LS solutions and durability of the quenched standards. ${ }^{\text {as }}$

QUENCH CORRECTION PROBLEMS

Accurate quench correction is essential for the true assay of radioisotopes. Of all the common methods which attempt to accomplish this task only the internal standard method does not require the construction of a calibration curve relating counting efficiency to a quench indicating parameter (QIP). For the particular case of the sIE RPH-based technique certain general shapes of curves are obtained for the different isotopes counted. Since the correct choice of curve fitting routine is dependent on the data set a study of curve fitting to LSC calibration data was made. Another problem area in quench correction involves the background count rate. For low activity or highly quenched samples variations in the background with quench may become significant and thus were investigated. A problem though not often encountered in quench correction, and LS counting generally, is the limitations set by multilabelled radioassay. As an example of this the SIE RPH technique was extended to perform a ${ }^{3} \mathrm{H} /{ }^{4 \pi} \mathrm{C} / \mathrm{Be} \mathrm{Cl}$ triple label dpm determination. These distinct but interrelated investigations are detailed below in sections 2.1, 2.2 and 2.3.

A further problem in quench correotion involves oolour and chemical quenching. The different quenching mechanisms result in the need to produce separate calibration curves for colour, chemically and mixed colour/chemically quenched samples. This major problem is considered in detail in chapter 3.

2.1 Curve Fitting and LSC Calibration Data

2.1.1 Introduction

Modern liquid scintillation counters (LSC's) allow many useful functions, such asi batch handing of samples, counting efficiency vs quench calibration and multilabelled radioassay, to be performed automatioally. However, the advances in machine design which have led to the provision of such facilities tend to remove the user from the analysis of the basic data which iss obtained and the results are presented as a fait accompli. The most important stage in the analysis of results is the generation of the standards' counting efficienoy vs quench calibration curves from which the activity of subsequently counted samples can be calculated. This applies whichever parameter is ussed to indicate the degree of quench in a sample, whether it is based on internal or external standards, $H^{* n}$ es numbers or spectral indicess ${ }^{5}$, and whether the quenching is colour or chemical in nature. am

Since different curve fitting routines are better matched to some data sets than others, the fitting of curves through efficiency vs quench calibration data should be dependent on the form of the data set for best results. This availability of a choice of curve fitting routines is not provided on commercial liquid scintillation counters with manufacturers choosing one particular procedure, e.g. Packard use double fixed point least squares quadratic
interpolations and Beckman use cubic spline with natural end conditions. This is reasonable with the good and almost equispaced data provided by commercial calibration standards but the more frequently produced inhouse standards are often less regular.

There are a multitude of algorithms to whioh recourse may be made in order to fit a curve to LSC efficiency vs quench calibration data. Some are very complicated and form part of large data handing packages requiring large computational processing installations. In this work a restriction is made to those algorithms which could be installed in a modern stand-alone counter and/or dedicated microcomputer.
(a) Hardware and Software

All samples were counted with a United Technologies Packard $300 C$ model liquid scintillation counter and the data was stored on disk via a $3 D$ GPIB, Series 4000 CBM microcomputer and CBM 4022 disk drive. Data was obtained on this equipment through use of a BASIC program which recognised the number of the internal program commenced by the LSC and began data capture on identification of the correct batch of samples. Disk storage of results allowed repeated use of data sets for comparison purposes.

Post counting analysis was performed by a BASIC and 6502 machine code program offering a menu of curve fitting routines with screen plotting, screen dumps and printed output. When fitting to known functions or exact data the program allowed point by point comparisons and when fitting to experimental calibration data it allowed comparisons of the resulting assayed activities with samples of known dispensed activity. The types of curve fitting offered by the program are listed below:

1. Lagrangian Polynomial (using Newtons Method)"p
2. Piecewise Linear (piecewise polynomials of degree >2 unsuitable)
3. Quadratic Splines (end conditions linear, spline slope \equiv lagrangian quadratic slope, or spline $2 n d$ derivative \equiv lagrangian quadratic 2nd derivative)
4. Cubic Splines (end conditions natural, parabolic, cantilever, Forsythe's, Swarta \& Varga's, or spline 2 nd dervative \equiv lagrangian cubic 2nd derivativess)w, 4.4
5. Tension (Cubic) Splinemo
6. Stineman Interpolation $1>2$
7. Bezier Blending
8. Linear least squares polynomials of degree 2, 3, 4 or $5^{1 / 7 e}$
(b) Sample and Standards Preparation

The standards used to compare the curve fitting routines were either theoretical or real. Theoretical standards were points chosen from functions which resembled typical LSC calibration curves. This facilitated observation of the effects of choosing many differently grouped calibration standards without having to physically produce them. For tritiated hexadecane in Fisons Fisofluor II chemically quenched with chloroform the function $y=1 / 120(16 / 495 * x+$ $0.51515)^{2} \exp (-(16 / 495 * x+0.51515))$ was used to approximate the efficiency vs quench curve, with 100%
efficiency normalized to 1 and $0 \leq \operatorname{SIE}(A E C) \leq 650$. For the ohemically quenched ${ }^{14} \mathrm{C}$ standards supplied by Amersham the function $y=1.24-\exp \left(-x^{2} / 39900\right)$ for $100 \leq S I E(A E C) \leq 1000$ was used to approximate the efficiency vs quench curve.

Real standards were prepared by acourately weighing out quantities of a 10° g 1^{-1} solution of $b-P B D$ in p-Xylene (Fisons 'Scintran' grade), and quantities of CCla or disperse Orange-7 as chemical and colour quenchers respectively. Weights were taken to ± 0.0002 g. All liquids and glassware were purged of oxygen using a vacuum and freesing degassing technique*. The dye was recrystallised from acetone and dried prior to dissolving in the same batch of $b-P B D / p-X y l e n e$ solution used throughout the sample preparation.

* refer to section 2.3.2

2.1.3 Results and Discussion

The results for the various methods of fitting curves to LSC eficiency vs quench calibration data are shown in Tables T2.1 to T2.10. The effect of regular and irregular spacing of the standards on the SIE axis is investigated. Tables T2.1 to T2.4 show the results for the theoretical tritium standards. The key to the spacing of standards is given in Fig. F2.1. In all cases the comparison between the fitted curve and the standards function was made at equispaced intervals along the SIE axis from zero to 650. The use of $\Sigma_{i} A B S\left(X_{i}-Y_{i t}\right)$ and $\Sigma_{i}\left(X_{1}-Y_{i}\right)^{2}$, where $X_{t}, Y_{i t}$ are the function efficiency values and the curve-fitted efficiency values respectively, introduces a bias against least squares or other non-interpolatory routines due to the coincidence of some of the comparison points with the interpolated standards points. This is evidenced by taking a ratio of the $\Sigma_{: t} A B S\left(X_{i}\right.$ - $\left.Y_{i l}\right)$ for an interpolatory method (e.g. Stineman) and a least squares method (e.g. Least squares third order polynomial) (Table TZ.3a) for 65 and 650 comparison points. These ratios are 0.10548 and 0.10100 to 5 D respectively for the interpolated region (SIE 150 to 600) of the H -efficiency vs SIE function. Also, the use of smooth functions to represent data which iss usually scattered can be biased against least squares methods and to some extent the piecewise methods. This iss shown by the obvious superiority of the langrangian polynomial curve fitting routine with the theoretical standards used. Tables T2.5 to T2.7 give the results for
the theoretical carbon-14 standards and in all cases the comparisons were made at equispaced interval along the SIE axis from 100 to 750 .

A brief investigation of the effect of near coincident standards data was made since this is a comon ocourrenoe particularly in undergraduate laboratories. The values of $\Sigma_{\text {: }} A B S\left(X_{i}-Y_{i .}\right)$ for curves with near coincident points at low and medium QIP are given in Table T2.8 along with subjective comments on the calibration curves obtained. In practice, such standards would be regarded as poor calibration data.

Some of the routines require the setting of variables to suit the form of the data to be fitted. This is the case for the tension parameter of the tension spline and the weighting coefficient for the least squares fitting and Beaier blending. Unless otherwise stated these were set to unity. The results for Beaier blending are not tabulated because the routine was observed to give much poorer fits than the others. The tension spline proved to be useful in situations where the ordinary splines began to show severe oscillations (setting the tension parameter >1 'pulls out' the oscillations, see Table T2.8). However, in all other situations the tension spline was inferior to the other splines ir terms of accuracy and time requirements and so further results are not tabulated.

With the function generated calibration data acting as perfect standards Tables T2.1 tu T2.3 and T2.4 to T2.7 can be grouped to compare the relative acouracies of the routines. A simple ranking procedure taking the average E.ABS(Xi - Yi) over the various data groups lists the routines in order of preference as :

Lagrangian polynomial (Newtons Method)
Cubic spline, natural end conditions
Cubic spline, Swartz end conditions
Cubic spline, $L^{\prime \prime}=S^{\prime \prime}$ end conditions
Cubic spline, Forsythe end conditions
Cubic spline, parabolic end conditions
Quadratic spline, $S^{\prime}=L^{\prime}$ end conditions
Quadratic spline, linear end conditions
Least squares 4° ploynomial
Stineman
Least squares 3° polynomial
Piecewise linear

To extend the study using theoretical standards the standards could be made more similar to experimentally obtained standards by superimposing random scatter on the function generated data. This would allow a comparison of the routines under conditions of different count precision. Repeated counting of real standards over different count times would also achieve a similar result however.

Tables T2.9 and T2.10 give the results for the real. standards and samples prepared experimentally. Those entries marked X were not computed because of the observed ocourrence of grossily inaccurate resultss. Chemioally quenched and colour quenched tritium standards and/or samples of known activity range from SIE of 685 down to an SIE of 130 corresponding to H detection efficiencies of approximately 55% to 0.1%. The carbon-14 samples were taken only from the region of rapid change of the efficiency curve gradient and the region of very high quench, SIE < 500 (Fig. F2.1). The calculation of the error bounds associated with each curve-generated dpm value iss based on the errors in the count, the SIE and the dispensed DPM of the standards used for calibration curve production and the errors in the count and the SIE of the samples (of supposedly unknown sctivity). The experimental procedure used resulted in emror bounds of $\pm 0.06 \%$ and $\pm 0.02 \%$ for the dispensed $D P M s$ of w and ${ }^{14} \mathrm{C}$ respectively with the manufacturers absolute uncertainties of $\pm 3 \%$ and $\pm 1.5 \%$ being constant throughout the samples. The errors associated with the standards and samples counts are related to the magnitude of the counts accumulated by the expression $\sigma \geqslant \operatorname{JCOHNT}$ with the \% deviation automatically calculated and printed by the Packard 300C. The SIE valuess were assumed to be correct to the nearest integer value (error range of ± 0.5, and letting $3 s \approx 100 \%$ of range then (f $* 0.17$ for SIE number probability constant from $X-0.5$ to $X+0.5)$, but the effect of this error on the efficiency value is dependent on the slope/form of the calibration
curve. The efficiency error e $z q(d E / d Q)$, where q is the error in the $S I E$ value and $d E / d Q$ is the rate of change of efficienoy with respect to SIE at an SIE value of Q, Fig. F2.1 These errors are all combined using the expression:

Fractional dpmumemen error, dan $=\left\{(\% d e v u m / 100)^{2}+\right.$
 s lopearwor $\left.) / 100)^{2}\right\}^{1 / 2}$

The listed values of average $\%$ difference refer to the difference between the dispensed dpms and caloulated dpms.

Selection of the best curve fitting routine for LSC efficiency vs quench calibration data depends on the judgement criteria used. For example, if the resultant curve is to be smooth (with continuous first derivatives) then piecewise linear fitting is ruled out. Calibration curves are normally based on ten reasonably well spaced real standards, and so the results of the routines used for assay of real samples (Tables T2.9 and T2.11) are taken to be the final judgement criteria.

It may be concluded that cubic spline interpolation with natural end conditions is the best of the LSC efficiency vsi quench curve fitting routines tested, but also noted that cubic splines with Forsythe's or parabolic end conditions and Stineman interpolation give good results for tritium and carbon-14 efficiency curve respectively. This assertion follows from the rankings of the routines (see Table T2.11). Indeed, Stineman interpolation has an additional advantage of being more robust and better at fitting ourves with sharply changing gradients, i.e. ${ }^{41} \mathrm{C}$ and more energetic B-sources.

The superior performance of the Lagrangian in the theoretical standards is not maintained in the practical situation. The introduction of noise into the system causes oscillations to occur to some extent in the splines but is excessive in the lagrangian and even within the high accuracy of the standards produced it is inferior to piecewise linear.

The currently used LSC machine routines are therefore found to be acceptable, but it should be emphasised that if calibration standards are poorly spaced the curve fitting by interpolation introduces large errors (even with perfect standardss) and visual display of the resultant calibration ourve is essential unless some mechanism for rejecting the fit is triggered. This may be accomplished by setting a
data spacing tolerance limit or switching to a generally less acourate but more universally applicable least squares fitting routine as a back-up.

2.2.1 Introduction

The effect; of quenching on the recorded background count have been studied previousiy by Alessio et al, Scales and Horrocks. In an early study on the effects of colour and chemical quench on background Scales found the background count rate to decrease with the counting efficiency as Established by an SCR method after spiking with an internal standard. Conversely, using a non-standard LSC Alessio found the background increased with quench for both \cdots and ${ }^{14} \mathrm{C}$ samples. Horrocks has demonstrated and explained these effects by considering the changes to the background pulse height spectrum undex conditions of varying quench.

This work complements these studies and assesses the significance of background quenching in routine single \% ${ }^{44} \mathrm{C}$ and dual label $\mathrm{FH}^{44} \mathrm{C}$ and triple label $\mathrm{B}_{\mathrm{H}}{ }^{4+1} \mathrm{C} / \pi \mathrm{Cl}$ counting. Owing to the long counting times used in thiss study a supporting investigation into the detection of drift in LS Counters was performed. In this subsidiary investigation a comparison was made between the Cusum method and Kurtosis as indicators of drift. It is detailed in appendix A.

2.2.2 Experimental

A quenched series of 10 ml samples comprising $10 \mathrm{~g} \mathrm{l}^{-1}$ butyl-PBD in scintillation grade p-Xylene and varying amounts CCla as a chemical quencher was counted in standard 20 ml glass vials using a United Technologies Packard 300C LSC. All liquids and glassware were first purged of air by the technique described in section 2.3.2. The samples were left to temperature stabilize overnight in the refrigerated 300C prior to counting.

SIE with AEC was chosen to monitor the quench level using the integral ans Raternal Standard of the 300C. Counting conditions were set to pre-programmed values of $0-19,0$ 156, $0-714,0-12,12-156,12-90$ ard $90-714$. This assured compatability with results for single $\left({ }^{m} \mathrm{H}, \mathrm{A}_{\mathrm{a}} \mathrm{C}\right.$,
 counting using AEC. Results are shown in Table T2. 12.
 quench under normal counting conditions for " Hf , ${ }^{4} \mathrm{C}$ and
 label are depioted in Figs. F2.2, F2. 3 and F2. 4 (Table T2.12). The coefficients of the least squares cubic polynomials used to fit and interpolate the data are given in Table T2. 13.

Fig. F2. 2 shows that the background deoreases with increasing quench for all the single windows $0-19,0-156$, and O-714 when counting using EIE with AEC. Thus use of SIE with AEC avoids the problem of inoreasing background with increasing quench noted by Alessio et al who used a fired upper disciminator to select either a m or ${ }^{4} \mathrm{C}$ counting window. Figs. F2.3 and F2. 4 show the curves obtained for dual label and triple label regions and indicate the presence of a high energy component which is quenched into the windows despite the use of $A E C$. (AEC is tailored to suit the effects of quench on ${ }^{*} \mathrm{H}$ and ${ }^{4} \mathrm{C} B$ " type isotopess and not on, say, external standard γ rays). This effect can be better explained by reference to the background pulse height spectra, Fig. F2.5. It is the changing ghape with quench of the spectrum relative to the counting regions which explains the background ourves obtained.

It would appear generally that background is highly dependent on the counting conditions and the environment and must be fully investigated when low activity and/or highly quenched samples are being used.

2.3.1 Introductiom

The incorporation of microprocessors and anologue to digital converters (ADC) into LSCs has led to an expansion of counting capabilities oulminating in the development of machines capable of spectral analysis. Terminology has changed to describe the newer techniques (e.g. from windows to regions of interest) but the underlying processes remain unchanged. Radioactive decay in the counting vial causes scintillations to which the PMTubes respond and an electrical pulse is produced. Usually, two PMTubes are used and the pulses are coincidence gated. The selected pulses are then sorted or counted according to one of numerous criteria. These criteria involve the setting and scaling of discriminators which are related to the radionuclide's energy to provide information about the total count and the associated quench. For example, with summed PMTube pulses the resultant shaped and amplified pulse may be analysed as being within one of two preset siaes related to the radionuolide energy. This is the basiss of the sample channels ratio method (described in Chapter 1) and is simple enough to realise using analogue techniques. With dual, triple, quadruple and higher label applications however, the pulse analysiss requirements become more complicated and are best met by digital methods.

The ADCs of the never counters eftectively provide N chanmels for pulse analysis. These may be 'grouped' to form counting regions (e.g. two for an SCR measurement) and analysed for spectral features such as mean pulse-height. With an SIS type measure of quench a minimum of one counting region is required for single label counting, two for dual label counting, three for triple and $s p$ on. Assuming suitable isotopes can be selected, an N-region counter could allow N-label dpm determination. The resultant counts for each region C. ($i=1$ to N) can be solved for the dpm contributions ds ($i=1$ to N) from the set of simultaneous equations:
where eft (i,j=1 to N) represent the counting efficiencies for each single isotope in each region (and need to be found by prior oounting). The equations may be solved using gaussian elimination with partial pivoting, although pivoting is usually unnecessary since the regions are chosen so that the efficiency matrix is diagonally dominant, (and AEC or AQC type techniques are designed to maintain this situation over a wide quench range).

Currently, commercially produced machines provide up to three counting regions and thus allow single, dual and triple label counting - triple label counting of ${ }^{3} \mathrm{H},{ }^{14} \mathrm{C}$ and $x=$ I being recently reported by Horrockt. With these machines, higher label applications require either repeated use of the three output regions by recounting the samples after resetting the region limits or the inspection of the counters $A D C$ output with external apparatus.

The complexity of the analysis and the amount of computation increases with the number of labels and necessitates acourate calibration data. However, the propagation of errors through matrix computations can produce poor results even with sood data if the matrix is unstable. In a diagonally dominant matrix the gaussianreduotion ooeffigients are <1 and so tend to reduce the effects of roundoff errors. This is not necessarily the case in LSC. Referring to Fig. F2.6, visual inspection shows that ex > ex > en, ena < em > ewn and en < em < ews and hence that the matrix is diagonally dominant. For a poor choice of counting regions such ass (A), (B) and (C) of Fig. F2.5 eas is now greater than ens and diagonal dominance is lost. Thus optimal selection of counting regions gives the additional advantage of reduced computational error propagation.

Of course, the total error in the final dpm solutions generally depends much more upon the experimental counting conditions. Jtiliaing chemically quenched calibration standards to determine colour quenched sample activity would be useless for levels of quench giving rise to significant differences in the en values for instance.

In this work a multilabel dpm determination for the particular case $N=3$ for colour and chemically quenched samples has been performed.

2.3.2 Experimental

The materials used in the preparation or the colour quenched series and the ohemically quenched series if single label ${ }^{*} \mathrm{H}, \quad{ }^{44} \mathrm{C}$ and ${ }^{36} \mathrm{Cl}$ standards and ${ }^{*} \mathrm{H} /{ }^{44} \mathrm{C} /{ }^{4} \mathrm{Cl}$ triple label samples were Fisons Sointran grade p-Xylene, butyl-PBD (United Technologies Packard), BDH carbon tetrachloride and disperse orange 7 dye

from acetone, Triton-K100, and wh n-hexadecane (batoh 61) standard, ${ }^{44} \mathrm{C}$ n-hexadecane (batch B75) standard and ${ }^{30} \mathrm{Cl}$ as HCl from Amersham International.

Two 1 litre batches of 10 E $1^{-1} \quad b-P B D$ in $p-X y l e n e$ wexe produced and from which a 500 ml solution of 0.225 g of disperse orange 7 dye and the 10 g $1^{-1} \quad b-P B D$ in $p-\mathrm{Xylene}$ was made. This solution was used as the colour quencher.

Accurately weighed amounts of the labelled chemicals wexe measured into separate clean, dry 100 ml twin neoked round bottomed flasks. 100 ml of the colour quercher, 100 ml of the chemical quencher $\left(\mathrm{CCl}_{4}\right)$ and the remainder of the 10 E l-i b-PBD/p-Kylene were put into clean twin necked round bottomed flasks. All these materials were then purged af oxygen using the following technique. (Fig. F2.7).

Standard 20 ml LSC vials were amended by drilling 9 mm holes through the centres of the vial caps replacing the plastic seals with PTFE coated silicon septa (Pierce and Warriner, Tuf-bond Teflon laminated disos). These were then placed opened in an air tight container and repeatedly evacuated with an Edwards model $N^{\prime \prime} 5$ vacuum pump and flushed with nitrogen. These were then held in the container under silight positive nitrogen pressure. The flasks of the various cocktail constituents were evacuated and flushed with nitrogen three times and then frozen by immersion in a dewar of liquid nitrogen. The flasks were slowly brought back to room temperature whereupon the gasses which came out of the solution were drawn off by evacuation and replaced with nitrogen. The whole procedure was repeated three times, further cycles not appreciably affecting the QIP of the material (10 g 1-3 p-Xylene). Each twin necked flask was sealed by the use of a Mininert ptfe resealable septum and glass/ptfe T-valve (Pierce and Warriner). The resealable septa provided a means for insertion of fine bore needle tipped stainless steel tubing into the flask and hence for pumping out the contents, using the pressurised nitrogen supply, into the amended LSC vials. This operation was carried out under positive nitrogen supply and with repeated evacuation and flushing of all interconnecting parts. Upon completion of the dispensing of quantities of labelled chemicals, quenchers, scintillators and solvents the vial caps were replaced under nitrogen with standard vial caps. This procedure allowed the addition of colour and/or ohemical quencher
from a relatively low quench base.

To minimise the $\%$ weighing errorg the labelled chemjoals were diluted with some of the purged 10 g 1^{-1} b-PBD in p-Xylene solution prior to dispensing, (50\% Triton-X100/10
 stages acourate weighings (to ± 0.0002 g) were made and the activites of the new and/or diluted solutions were determined. The amended vials were weighed before and after the dispensation of each labelled solution, each quencher and were topped up to $\% 10 \mathrm{ml}$ total volume (checked by weight) with $10 \mathrm{~g} \mathrm{l}^{-1} \mathrm{~b}-\mathrm{PBD}$ in p -Xylene. A seriess of 20 chemically quenched and 20 colour quenched single label standards were prepared for each isotope and a series of 40 ohemically quenched and 10 colour quenched triple jabel standards of various constituent activity ratios were also prepared. In addition, 10 quenched background standards were prepared using $C C 14$ and $b-P B D$ in p-Xylene only.

The standards were placed in the refrigerated chamber of a Packard $300 C$ model LSC for several hours prior to counting. Samples were counted using AEC until the Packard 300C 20% terminators reached 0.2%.

The selection of counting regions for the new nuclides presented a problem. They were programmed manually to be 0-12 KeV for region $A, 12-90$ KeV for region B and $90-714$ KeV for region C. These regions were chosen after obtaining spectra ${ }^{3} \mathrm{H},{ }^{4} \mathrm{C}$ and ${ }^{* \infty} \mathrm{Cl}$ and backeround with a NE 4694 MCA and established diagonal dominanace in the efficiency matrix.

Since the 300 C is not equipped to automatically produce a triple label assay, all results were stored and analysed externally. Thisi was achieved by echoing the printer output to a series 4000 CBM microcomputer via a 3D GPIB and storing on disk. All counts were quenched-background corrected by refereace to a least squares "3 polynomial fit to the quenched series of background standards (see section 2.2). All efficiency vg quench oalibration curves for each isotope in each region were generated using cubic spline interpolation with natural end sonditions (see seotion 2.1). The solution of the resultine simultaneous equations was accomplished using gaussian elimination and back substitution.

The calibration curves used for the triple label determination of ${ }^{3} \mathrm{H},{ }^{44} \mathrm{C}$ and m Cl are shown in Figs. F2.8, F2. 9 and F2.10. Differences arising from the different types of quench become more important as quenching increases becoming notable for SIE values of approximately 500 (equivalent to an H^{+1} of 109). This fact is reflected in the tabulated results for the sample dpm determinations. Referring to Tables T2.17 and T2.18, the use of colour quenched calibration standards with chemically quenched triple label samples produces poor results for SIE values less than approximately 500 and fails for SIE values of approximately 460 whereas the use of chemically quenched calibration standards give satisfactory results down to SIE values of approximately 330 .

Tables T2. 14 to T2. 17 illustrate the effect of varying the ratios of the activity of the labels $\# \mathrm{H},{ }^{4} \mathrm{C}$ and $\approx \mathrm{Cl}$. The tritium activity determination is the first to fail in all cases as quench increases, failing for $S T E$ values less than approximately 300 for higher ratios. This is expected and is due to the effect of quenching which reduces the total counting efficiency and reduces the mean energies of the B-spectra thereby causing an increase in the $\%$ of counts of the higher energy radionuclides in the lower counting regions. The effect on the counting matrix is shown graphically for quench levels of X and X in Figs. F2.8, F2. 9 and F2. 10.

For $X_{1}, \quad e_{1} \approx 50 \%>e_{11} \approx 5 \%>e_{1}=0$ exs * $15 \%<$ eme $\approx 70 \%$ > eme $\approx 15 \%$

For $X=$, ex. $\# 15 \%>$ exu $=3 \%>e x=0$

At $X_{\text {a }}$ the matrix is diagonally dominant but at X it is not, although the submatrices become so as the gaussian elimination proceeds, indicating good choice of counting regions and reduced computational error propagation. Errors associated with the accuracy of each count, each SIE, and hence each efficiency remain present of course and are combined using the expression (see section 2.1.3):

The fractional errors in the counts accumalated in each resion ($\delta \mathrm{C}_{\mathrm{i}}$, $i=1$ to 3) may be directly determined from the \% deviation of each count. These error bounds may be used to determine the confidence limits on the resulting dpm's by application of the expression:

For i, $j=1,2,3:-\quad s(d p m)_{a}=\left(\Sigma_{i a}\left(d(d p m)_{a} / d e_{i n}\right)^{m} e_{i n}+\right.$

and this necessitates differentiation of each dpm expression by each of the es. and each cpm..

Given the matrix equation

$\left[\begin{array}{l} e_{1} \\ e=n \\ e x \end{array}\right.$	en Ex: Ens	$\left.\begin{array}{l} \mathrm{e}_{1} \times \\ \mathrm{e}_{\mathrm{m}} \\ \mathrm{e}_{\mathrm{m}} \mathrm{~m} \end{array}\right]$	$\left[\begin{array}{l}\text { dpmis } \\ \text { dpma } \\ \text { dpmen }\end{array}\right.$	$=$	$\left[\begin{array}{c}\text { cpmis } \\ \text { cpmes } \\ \text { cpmes }\end{array}\right]$

gaussian elimination reduces the equation to

from which

If it assumed that each exs has a confidence limit of ens and each cpm. has a confidence limit of cpma at a certain probability level then the confidence limits on the dpm* (sdpm.t) may be found using equation (1).

So:


```
                                    \(\left.\left.-P \cdot e \mathrm{e} / \mathrm{Q}^{2}-\mathrm{P} \cdot \mathrm{e}=/ \mathrm{Q}\right)\right] / \mathrm{V}^{2}\)
```



```
\(\frac{d(\text { dpmw })}{d e_{a}=}=W\left(e_{1}-S \cdot e_{n} / Q\right) / V\)
\(\frac{d(\text { dpms })}{d e_{n}}=\left[V S\left(T \cdot e_{1}=-Q \cdot c m_{n}\right) / Q-W S\left(P \cdot e_{1}-Q \cdot e_{x}\right) / Q^{2}\right] / V=\)
\(\frac{d(d p m=}{d e_{m}}=\left[V\left(S T \cdot e_{1.2} / Q^{2}\right)-W\left(S P \cdot e_{1} / Q^{2}\right)\right] / V^{2}\)
\(\frac{d(\mathrm{dpmw})}{\mathrm{dem}}=-\) WS. en \(x / \mathrm{QV}^{2}\)
\(\frac{d(d p m x)}{d e_{x}}=V\left(T \cdot e_{1}=/ Q-c p m\right)-W\left(S \cdot e^{w} / Q-e_{1}=/ V^{2}\right.\)
\(\frac{d(d p m w}{d e m=}=W P \cdot e_{x}+Q-V T \cdot e_{x} / Q\)
\(\frac{d(d p m e)}{d e w s}=-\) W. en. \(/ \mathrm{Vm}\)
\(\frac{d(\text { dpme })}{d(\text { cpm. })}=S . e x / Q V-e x / V\)
\(\frac{\mathrm{d} \text { (dpms })}{\mathrm{d}(\text { cpman })}=-\mathrm{SQ} . \mathrm{en}_{\mathrm{n}} / \mathrm{V}\)
\(\frac{d(\text { dpme })}{d(\text { cpm })}=e_{1.1} / \mathrm{V}\)
```

and also, noting that the dpmw is not treated as an
independent variable,

P. Ema) / Q
$\frac{d(d p m a)}{d e n=}=-P\left(Q \cdot \frac{d(d p m s)}{d e_{n}}+(d p m \cdot e n) / Q\right.$

$$
\begin{aligned}
& \frac{d(d p m i z)}{d e m e}=\left((d p m=) e_{1}-Q \cdot \frac{d(d p m=)}{d e a} P / Q^{2}\right. \\
& \frac{d(\text { dpme })}{d e a s}=-P\left(\frac{d(\text { dpms })}{\text { deas }}+e_{n, 2}(\mathrm{dpms})\right) / Q \\
& \frac{d(d p m a)}{d e w}=-P \cdot \frac{d(d p m s) / Q}{d e s} \\
& \left.\frac{d(d p m e}{d e w}\right)=-P \cdot \frac{d(d p m s)}{d e w} \\
& \frac{d(d p m s)}{d e s s}=-P \cdot \frac{d(d p m s)}{d e s} / Q
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{d(\text { dpma })}{d(\text { cpma })}=e_{i n}-P \cdot \frac{d(d p m m)}{d(c p m a}\right) / Q \\
& \frac{d(\mathrm{dpma})}{\mathrm{d}(\mathrm{cpm})}=-\mathrm{P} \cdot \frac{\mathrm{~d}(\mathrm{dpm})}{\mathrm{d}(\mathrm{c} \mathrm{~mm})} / \mathrm{Q} \\
& \text { and these equations now permit determination of the dpm. } \\
& \text { derivatives: }
\end{aligned}
$$

In this work the cpm. were determined with typical
confidence limits of 0.5% and the efficiences with typical
confidence limits of $0.4 \%, 4 \%, 20 \%$ for $e_{1} ; ~ i=1,2,3$ and
$0.5 \%, 0.2 \%, 1 \%$ for eus; $i=1,2,3$ and $0.75 \%, 0.45 \%, 0.25 \%$ for
ens i=1,2,3. Thus with the efficiency matrix
$\left[\begin{array}{lll}0.50 & 0.15 & 0.05 \\ 0.05 & 0.70 & 0.15 \\ 0 & 0.10 & 0.75\end{array}\right]$
ass an example and cpmi of $\left[\begin{array}{l}10,000 \\ 10,000 \\ 10,000\end{array}\right]$ the estimated confidence
limits on the dpm. beoome sdpm. $=129$, sdpme $=81$, sdpm: $=$ 204 for actual dpms of $\mathrm{dpm}_{\mathrm{a}}=15,623$, dpmes $=10,616$, dpms $=$ 11,918. Comparison of these results with those in Tables T2. 14 to $T 2.17$ for dpm ratios of (approx.) 1娄:1:1 with light/moderate ranges of quench (equivalent to the efficiency matrix given) largely accounts for the observed scatter.

With unquenched and lightly quenched triple labelled samples there is evidence in Tables T2.14-19 that the "cl activity is overestimated. (This may be in part due to a systematic error in the 'known' dpm of the $¥ \mathrm{Fl}$ which was a nonstandard labelled source standardised against a FACl standard (suppled by Amersham). The source was of a similar level of quench to the standard.)

It is interesting to note, however, that this situation is not maintained as quenching increases. This may be caused by the AEC although further work would be necessary for verification. If $A E C$ is not selected the calibration curves for ${ }^{2} \mathrm{H},{ }^{4} \mathrm{C}$ and ${ }^{3} \mathrm{Cl}$ counted in regions $0-12 \mathrm{keV}$, $12-90 \mathrm{keV}$ and $90-714 \mathrm{keV}$ are substantially altered, stee

Fig. F2.11. Examination of the solution matrix for a triple label detemination at a quench level of X . shows that

```
ex. # 9% >0 >0
    ema * 59% > erex * 16%>0
    ema * 21%<eme * 61% > esw * 6%
```

and is not diagonally dominant. At first sight the presence of the aero efficiencies may seem advantageous in that no matrix reduction is necessary. However, the backsubstitution process is worsened by the development of coefficients with small denominators. Also, and of ereater significance is the larger uncertainties associated with the lower counting efficiencies. It can thus be seen that the AEC feature provides a useful function.

2.3.4 Conclusions

Multilabel dpm determinations using liquid scintillation counting techniques are feasible provided the selection of counting regions is based on a thorough knowledge of the pulse height spectra of the labelling radionuclides.

It remains important to differentiate between colour and ohemical quench in multilabel dpm determinations.

AEC type electronic quench compensation remains a useful technique for multilabel dpm determinations.

This chapter describes the design, development and implementation of an original simulation of the LSC. The input data necessary for the correct functioning of the model was partly researched in the literature and partly experimentally determined.

A stochastic approach was chosen because of the physically discontinous nature of the sequence of processes in LSC. Monte Carlo methods are well established and have been applied successfully in many branches of Nuclear physics. Modelling at the photon level gives advantages over modelling at the spectral level by avoiding the compounding of complex spectral and geometrical equations, by encouraging logical program development and by facilitating independent manual testing of the program. Since the basic stages of B decay \longrightarrow chemical quenching \longrightarrow fluorescence \longrightarrow colour quenching and photon detection are universally accepted, parts of this model must be similar to that of Stanley. However, extensive improvements to the modelled geometry and modelling of the PMTube response together with an independently developed program serve to (a) corroborate the earlier work and (b) provide a closer representation of a specific LSC. The latter point is important in the linking of the model to reality for the purposes of developing new counting techniques.

3.1 The Colour-Chemical Quench Coxrection Froblem

The essential differences between the colour and chemical quenching effects that are observed in LSC are a consequence of the geometrical dependence of colour quenching and geometrical independence of ohemical quenching. A typical two PMTube LSC is illustrated schematically in Fig. F3.1. After certain B-decay some energy is ultimately converted into useful photon production. Assume that an equal large number of monoenergetic photons is emitted in each direction (to PMTi and PMT2) parallel to the x-axis. If no colour quencher is present the pulses at each PMTube will be of equal height. If a colour quencher is present, however, and the probability of absorption follows an exponential curve accordine to the Beer-Bougoter Law then PMT2 will produce a smaller pulse than PMT1. This is generalised in Fig. F3. 2 for events of different position x.

In all current LSC machines the two pulses y. and yw are either summed or lesser-gated prior to pulse height analysis and storage. The net effeet is a pulse which iss still dependent on position x as shown in Fig. F3.3, where
 "lesser" pulses. It iss evident that ylu varies less with event position than does ys. This explains why lesser pulse height counting gives calibration ourves that are more alike for colour and chemically quenched samples than
does summed pulse height counting, and also why the resolution is worse (owing to the consistently smaller pulses generated).

This simple analysis indicates two approaches to overcome the colour chemical quench differences:
(a) find a combination, y_{c}, of pulses y_{1} and $y=$ which makes $y c$ independent of x (i.e. conceal the colour quench effect), or
(b) find a new indicator of the event position and use it to indicate the amount of colour quench present (i.e. exaggerate the colour quench effect).

To pursue the simple analysis further let A represent the chemical quench coefficient (where $0 \leq A \leq 1$ and $0=100 \%$ quenched; $1=n o$ quench), E be the energy available from the B-event, and B represent the colour quench coefficient such that

$$
\begin{align*}
& y_{1}=E A e^{-\max _{x}} \tag{1}\\
& \text { and } \quad y=E E A e^{-m a\{1 \ldots m\rangle} \tag{2}\\
& \text { Then the sum } \tag{3}
\end{align*}
$$

$$
\begin{align*}
& \text { and the lesser } \tag{4}
\end{align*}
$$

These are not the only way that equation (1) and (2) may be combined:

$$
\begin{align*}
& \text { e.g. Difference: } y_{0}=\operatorname{EA}\left(e^{-E x}-e^{-m(1-x)}=y_{x}-y_{z}\right. \tag{5}\\
& \text { Product } \quad: y_{F}=(E A)^{2} e^{-m} \quad=y_{11} \cdot y_{z} \tag{6}
\end{align*}
$$

It is noticed immediately that y in is independent of x and thus iss an example of approach (a) whereas y, which varies substantially with x (see Fig. F3.1), is an example af approach (b). At first sight the pulse multiplication seems an ideal approach. However, this $1 D$ model is not a very good representation of the processes at work in a LSC. Extension of the model to allow for 2D photon trajeotoriess bounded by a rectangle (Fig. F3.4) shows yw becomes weakly position dependent. (e.g. Assuming $\mathrm{H}=1, \mathrm{~h}=\mathrm{H}, \mathrm{r}=0.5$ and all photons travel by mean path lengths \bar{L} or $\overline{\text { La }}$ then as x varies from 0 to $0.5, \overline{\mathrm{~L}}+\overline{\mathrm{L}}$ varies by up to 8.9%. Since
 position x). Further extension of the model to cover a 3D cylinder of height $=1$ and radius $=0.5$ showed that for 1000 randomly positioned events each of 1000 monoenergetic photons emitted in random directions the function $\bar{L}+\overline{L a}=0.912$ and has a standard deviation of 0.201 and hence represents a worsening of the dependence of y_{m} on event position. Obviously too much reliance must not be placed on simple models.

Caution must also be exercised in the use of equations (1) to (7). The basic elements of the system in terms of pieces of information rest with the fact that there are two PMTubes. For any given B event we know a pulse height ya, from PMT1, and a pulse height yw from PMTZ, i.e. two pieces of information. Current summed and lesser pulse height techniques are wasteful because only one piece of information is used ($y s$ or y y...). The approach (b) stated
above is feasible because there is scope for another pulse based parameter. The simultaneous use of $y_{e r}$ and y_{p} is an example.

To accomplish simultaneous summed and differenced pulse height analysis experimentally requires careful modification of the pulse handing circuit. Investigation of a large variety of pulse handling techniques to optimise selection of the colour-chemical quench indicating parameter becomes time prohibitive experimentally. If a reliable model of the LSC were developed such constraints would no longer apply. A highly detailed model of the LSC has been developed and applied to the colour-chemical quench correction problem. It is described in the succeeding sections.

3.2.1 Model Geometry

In section 3.1 the geometry dependence of colour quenching was stressed. For this model to approach a good simulation of the LSC the $3 D$ geometry of the whole counting system must be as detailed as possible. This model is applied specifically to a Packard 300C LSC so far ass the counting chamber and PMTubes are concerned although the modular design of the program allows future expansion to eater for alternative counting ohamber gemetries and materials.

A schematic diagram of the vial and counting chamber geometry used in the model are shown in Fig. F3.5. Dimensions have been chosen in accordance with United Technologies Packard Drawing No. D-5070871 and on measurements made on the standard glass vials used experimentally. The small differences between the vial length and chamber diameter nay be adjusted in the model by the incorporation of a g-axis offset. The plane mirrors simulate the silightly curved photon-directing mirrors of the real counting chamber. The vial inner and outer walls are perfect cylinders and are concentric unless otherwise stated and the solution forms a 90° contact angle with the vial inner wall at the menisous. The orosshatched PMT faces have the properties of pyrex glass (Corning 7740). The pyrex is of zero thickness so that all non-reflected photons interact with the photocathoode.

The coordinate system adopted in the model is cartesian and the Right Hand axis convention is obeyed. The axes are also illustrated in Fig. F3.5.

3.2.2 The Model Scirtillation Detector Processes

In addition to the geometrical constraints of seotion 3.1 the model is further characterised by the following description:

A B-event is defined by choosine an event position which is random 3 dimensionally in the volume occupied by the solution. The event position is fixed for m and ${ }^{14} \mathrm{C}$ simulated decays for the duration of the photon production and photon tracking stages which result from the B-decay. The B-energy, En, is randomly selected according to the modified Fermi distribution for each particular isotope.

The B-energy which ist released as useful for photon production iss determined by application of a scintillation efficiency function and a chemical quench coefficient. The scintillation efficiency is a function of E and has been experimentally determined by Horrocks. Malcolm \& Stanley have made the point, however, that the data represents the sointillation efficiency as a function of average \mathbb{R}^{3} whereas the mode] requires the scintillation efficiency as a function of a monoenergetic Ers. ${ }^{* 2 . t}$ The chemical quench coefficient is independent of $E a$ and hence is simulated as a simple multiplicative variable between 0 (fully quenched) and 1 (unquenched).

Photons are generated with random $3 D$ direction vectors and with wavelengths according to the solute fluorescence spectrum. They are also assigned a random electric field vector which is perpendicular to the photon direction vector i.e. they are assumed to be plane polarized. The B-energy available for photon production, $F_{\text {m }}$, allows the repeated production of photons with random directions and random wavelengths until E_{p} is exhausted. If the amount of energy left is between the upper and lower limits of energy for photons of the solute (corresponding to wavelengths of 300 nm and 600 nm in the model) the Monte Carlo decision is based on the truncated fluorescence spectrum. Any residual energy of E_{F} which is less than that corresponding to a 600 mm photon is assumed lost. All the photon direction vectors start at the B-event coordinates and the photons are traced in turn until the fate of all is known.

Colour quenching is simulated by assigning to the solution an absorption spectrum and a concentration of the absorbant (or colour quench coefficient). The distance that the photon must travel from the B-event coordinates to the point of escape from the solution is calculated. The probability of a photon being colour quenched along its path is assumed to follow an exponential distribution according to Beers law. Hence the Monte Carlo decision to quench or transmit a particular photon is based on the exponential

```
distribution defined by:
    Prob. of escape = e-mect
    where a = abs. spectrum prob. (0\leqa\leq1)
    c = colour quench concentration
    d = path length of photons
```

The behaviour of photons at solution-vial interfaces and solution-air interfaces is determined by another Monte Carlo decision. Reflection or refraction is assumed to obey Fresmel's equations:

$$
\begin{aligned}
& \frac{R_{\text {n }}}{E_{\text {п }}}=\frac{-\operatorname{Sin}\left(\varnothing-\emptyset^{\prime}\right)}{\sin \left(\emptyset+\emptyset^{\prime}\right)} \quad, \quad \frac{R_{/ /}}{E_{/ /}}=\frac{\operatorname{Tan}\left(\varnothing-\emptyset^{\prime}\right)}{\operatorname{Tan}\left(\emptyset+\emptyset^{\prime}\right)}
\end{aligned}
$$

where E, R, T, are incident, reflected and transmitted amplitudes of the light electric vector and h, // are perpendicular or parallel to the plane of incidence. From these equations the reflectances ($\left.\mathrm{R}_{\mathrm{H}} / \mathrm{E}_{\mathrm{I}}\right)^{\mathrm{a}}$, $\left(R_{/ /} / E_{/ /}\right)^{2}$ may be determined. In the model the total reflectance $\langle R / E)^{=}$of a single photon is assumed to be a weighted average of the parallel and perpendicular reflectances of the photon. These parallel and perpendicular reflectancess are computed by resolving the electric vector of the photon into components which are parallel and perpendioular to the plane of incidence (in 3D space). The Monte Carlo decision iss thus based on the ourve between the $100 \% \mathrm{E} / /$ and $100 \% \mathrm{E}_{\text {n }}$ reflectance vs angle of incidence curves. A simpler method to decide the photon's reflection or refraction
may have been to resolve the electric field vector into the parallel and perpendicular components and then make the photon obey either the $100 \% \mathrm{E} / /$ or the $100 \% \mathrm{E}$ n curves weighting the choice to a random decision weighted by the electric field vector components. The former method is used in the model and the cumulative result satifies Fresnel's equations and Snell's law. The refractive index, n, is wavelength dependent and is determined by application of a 3 point Cauchy equation at each interface:

$$
n=A+B / \lambda^{=2}+C / \lambda^{4}
$$

where A, B and $C=$ constants

$$
\lambda=\text { wavelength }
$$

This equation adequately accounts for dispersion in isotropic nonconducting noncolloidal homogeneous materials in the visible region, and is discussed in many standard optics texts.

The new direction vectors of reflected or refracted photons are calculated. If the photon is reflected the point of reflection becomes the new photon origin for the purposes of new path length calculations, colour quenching decisions, and new solution-air or solutionglass interface decisions (or direct loss in the vial base). If refracted it enters a new medium - air or glass. If it enters the air space it will either reach the vial top (and be absorbed) or the vial glass where a new reflection/refraction decision is made. If the photon enters the vial glass it is further traced with
yet more reflection/refraction decisions. These processes are repeated as often as necessary to trace each photon with the model allowing photons to re-enter any medium any number of times.

The path tracing of photons is continued after leaving the vial and entering the air filled counting chamber. Decisions on reflection or absorption at either the cylindrical or plane mirrors are made by a Monte Carlo method using the absorption spectrum of polished aluminium.

At either of the PMTubes photons may be reflected by the glass face-plate or transmitted through it. If transmitted they interact with the photocathode by absorption, reflection or transmission according to the wavelength dependent quantum efficiency of the photocathode. It is incorrect at this stage to continue treating the photons as independent objects. The real world photocathode receives multiphoton pulses ass its input signal and integral numbers of photoelectrons are emitted within a time that is short with respect to the resolution time of the PMTube. Thus in the model, as photons arrive at each photocathode they are stored (wavelength and arrival number) until the energy for photon production, E_{p}, and the whole B-event is exhausted. On completion of photon tracing for the B-event the batch of photons at each PMTube are analysed. If all the photons were nonoenergetio the
number of photoelectrons produced could be determined from a simple Poisson distribution. However, they are not monoenergetic and moreover the batch wavelength spectrum varies from B-event to B-event and especially with low energy emitters. Precise work at this stage requires the construction of a full binomial distribution for every event and each PMTube. Owing to the large time constraints that this would entail an approximation was developed. In the model a wavelength is chosen at random from the stored wavelength data. This choice is naturally weighted according to the incident batch distribution. All photons in the batch are assigned the quantum efficiency of the chosen wavelength and the number of photoelectrons is determined by a Monte Carlo method based on the resulting poisson distribution. The poisson distributions vary from batch to batch and in the long term approximate the effect of using the binomial distribution.*

The number of photoelectrons arriving at the first dynodes of each PMTube is dependent on the collection efficiency and the probability of collection is applied to each photoelectron. The numbers of secondary electrons from the first dynodes resulting from the incident primary photoelectrons is determined by a. Monte Carlo decision based on a Polya distribution. ${ }^{44}$

[^1]This procedure is repeated for the second dynodes and the resulting numbers of electrons from each is taken to represent the pulse heights of PMT1 and PMT2. These pulses are then analysed and stored by whichever method the programmer has selected.

3.2.3 The Model Logic Design

The logical processes inherent in the model are best described by means of a flowchart. A simplified flowchart is presented in Fig. F3.6.

The program is written in VAXPASCAL version 73.0 under a VAX VMS version V4.0 operating system. The program is approximately 1200 lines long and occupies 76 blocks of memory on a VAX 785. Run times vary greatly with isotope and quench. Typical CPU times are 6 hours for the accumulation of 1000 counts for an unquenched ${ }^{14} \mathrm{C}$ sample and around one tenth of this for a $\# \mathrm{H}$ sample. Output consists of header information, set-up data and pulse height spectra. Status reports on the batch runs are logeed in separate files. Analysis and formatting of the model generated data is performed by ancillary programs which are not detailed here.

The program is listed in appendix B. It is acknowledged that from a computer programing point of view the program is not optimised in terms of storage or runtime. This iss largely because the program is still very much a researoh tool and is liable to modification for a variety of reasons. Originally the output was limited to six types of pulse height spectra (sum, difference, ratio with coincidence or noncoicidence). Modifications have since been made to produce product and other pulse height spectra. A better procedure would be to simply store the whole sequence of pulse pairs from PMT1 and PMT2 for each quenched sample so that an extensive hunt for optimal quench parameters could be made by repeated post-analysis using the data pairs. Batch running of the program
prohibited interactive initialization of program variables and so the initialization part of the program was spilt into separate compilation modules. This also reduced compilation times. The external mathematics functions which have been used are those belonging to the DEC FORTRAN maths reference library as maintained by the Computer Services Department at Trent Polytechnic.

3.2.5 Numerical and Lopical Testing of the Model

A vitally important part of the implementation of the model is program validation. To this end each modular procedure was tested and correct functioning proven. All absorption spectra, fluorescence spectra, B-spectra, Polya distributions, poisson ditributions and other sources of input data error have been manually compared with separately obtained results or data. Over twenty 3D vectors which cover most types of photon behaviour (e.g. total internal reflection in glass wall, and reflection and refraction at ourved or plane surfaces at several 3D incident angles; have been manually calculated and fully manually traced. This extremely tedious and time consuming execise resulted in agreement with the models' caloulation in all cases. (N.B. a real physical paper mock up of the vial and counting chamber greatly assisted 3D visualiastion of the photon paths).

This left the problems associated with accumulation and calculation errors. Under certain conditions, due to the random nature of the selected input data and cumulative computational errors, incorrect ray tracing conditions were discovered. These were corrected by the use of computational tolerances put around the geometrical surface intersections. Vectors calculated as being just outside the system were slightly rescaled to lie on the edge of the system. Even so, one error which resulted in underfiow ocourred approximately once or twice in a series of ten

1000 count ${ }^{4} \mathrm{C}$ runs (i.e. $10,000,000$ photons). Thig rare but oatastrophio programming event was treated as a photon loss and was the only case of avoiding rather than correcting program errors.

3.3 Model Input-Data Souroes

3.3.1 Introduction

A wide range of input data is required to operate the model. Fig. F3.7 shows a list which summarises the data aotually used in the model. A significant proportion of the data has been self ascertained and how this was achieved is detailed overleaf.

3.3.2 Materials and Methods

(a) Fluorescence Spectra

Equipment : Perkin Elmer model 3000 Fluorescence Spectrometer.

Perkin Elmer model 561 chart recorder.
Apple IIe Microcomputer + disc drives + printer.

XAD2 A to D Card.
TDI psystem Apple Pascal Software.
Gould model 4040 Storage oscilloscope.
Rockwell Aim 65 micro.
Quartz sample and reference cells + $10 \mathrm{~g} \mathrm{l}^{-\mathrm{a}} \mathrm{b}-\mathrm{PBD}$ in p -Xylene +
either n-hexadecane
or Orange 7
or CCl_{4}

Method : Equipment was set up in accordance with Fig. F3. 8 so that depression of the PE3000 scan button synchronised the commencement of the spectra capture program on the Apple IIe. The spectra were abtained by passing the PE3000 chart recorder output through the XAD2 A to D card to the Apple ITe using self written assembly language subroutines to handle the binary coded data. Storage of the data on floppy disk facilitated the latter incorporation of the data in the model on the VAX network.

Four separate samples were measured. One was unquenched, one was quenched with CCl_{4} and two wexe quenched with 07 dye. The samples were counted using a Packard 300C LSC to determine the relative quenching present in each prior to fluorescence speotra capture. The unquenched sample was counted twice - once with little 0 as present and once after opening to the atmosphere and allowing the sample to become air saturated.

Spectrometer machine settings were $60 \mathrm{~nm} / \mathrm{min}$ scan speed, 10 mm excitation slit width, 5 mmemission silt width, 300 nm gtart wavelength, 600 nm stop wavelength and auto PMT correction was used.
(b) Absorption Spectra

Equipment : As for fluorescence spectra + CHCls non fluorescing solvent.

Method : The method employed is largely the same as that for the fluorescence spectra sapture. In this experiment the sample was disperse 07 using chloroform as the common solvent. A full soan on the solvent and solvent reference cell allowed background subtraction to be performed. The experiment was performed twice with settings of transmission mode selected, excitation and emission slit widths on 1 mm , a 600 nm to 300 rm scan range and scan speeds of $60 \mathrm{~nm} / \mathrm{min}$ and $15 \mathrm{~nm} / \mathrm{min}$ respectively for the two runs.

Equipment : Bellingham and Stanley model 60 Abbe refractometer.

LKB Multitemp Circulator model 2209.
Sodium lamp.
Mercury lamp.
Optical filters: Evans Electroselenium Ltd. types 601 and 603, and a Helium-Neon laser filter ($\lambda=632.8 \mathrm{~nm}$).

Method : The temperature of the refractometer was maintained at $16^{\circ} \mathrm{C}$ to match the (overnight) measured temperature of the Packard LSC refrigerated sample chamber. In an optical dark room refractive index readings were taken for the four filtered wavelengths $435.8 \mathrm{~nm}\left(\lambda_{v}\right), 491.4 \mathrm{~nm}\left(\lambda_{\mathrm{a}}\right), 589.2 \mathrm{~nm}\left(\lambda_{\varphi}\right), 632.8 \mathrm{~nm}$ ($\lambda_{\text {ra }}$). Materials measured, in sequence, were p-Xylene, 10 E $1^{-n} \quad b-P B D$ in $p-X y l e n e, C C l a t a n d n-h e x a d e c a n e$, with thorough cleaning and drying between each measurement.
(d) PMTube Photoelectron Distribution

Equipment : Apple IIe computer + disks + printer.
TDI pSystem Apple Pascal software.
Method : A program was created to compare the binomial and multipoisson approximation distribution for small and moderately sized batches of photons with wavelengths chosen at random and weighted according to the fluorescence spectrum of $10 \mathrm{~g}^{-1} \mathrm{~b}-\mathrm{PBD} / \mathrm{p}-\mathrm{Xy}$ lene.

Quantum efficiencies of the photons wexe calculated from a quadratic equation whioh was fitted to the manufacturers quantum efficiency curve for a RCA model 4501/V3 PMTube.
(e) Vialti

Vial dimensions shown in Fig. F3. 5 are the average of ten measurements on randonly selected low potassium borosilicate glass vials. Vial heights were taken from base to the elass shoulder. It may be noted that the vial (and counting chamber) dimensions may be treated as variables in the model.
(f) PMTube Dynode Shape Factor

Owing to the uncertainty in the appropriate value for the dynode shaqe factor, the Polya distribution was calculated for a dynode of gain 3.94 for a range of shape factors.
(a) The spectral distribution of light from a LS cocktail when excited by a soft B source will include both fluorescence and phosphorescence in the absence of oxygen. The phosphorescence of the ox-degassed samples in a LSC iss not counted because of the fast response of the LSC (2100 ns for Packard 300C). Fluorescence ocours in $<10^{-*}$ s whereas phosphorescence gocurs in $>10^{-m}$ s and a typical count rate of 60,000 cpm, itu unformly spread in time and corresponding to 1 event per millisecond, indicates that counting or 'doubling up' of phosphorescent events is unlikely within the LSC resolving time. The LSC is thus a fluorescence-only monitor. The PE3000 is not necessarily a fluorescence-only monitor however. With the unquenched sample, the storage soope and Aim micro were used to capture PMT pulses from the PE3000. These pulses were shown to be comprised of a fast and a slow component and the integration of these componentss suggested a method of determining the phosphorescent and fluorescent parts of a composite emission spectrum, but how much the pulses were a function of the PE3000 PMTube switching was not further investigated.

Oxygen iss a very strong quencher of phosphorescent states in a LS cooktail. The spectrum obtained with O: present wasi used to provide the fluorescence
spectrum for the model. The further samples were measured to illustrate the effects of colour and chemical quenchers on the fluorescence spectrum. The spectra are plotted in Fig. F3.9. N.B.: different scaling factors were used for each spectrum to maximise usage of the A to D resolution. The choice of CCl_{4} as a chemical-only quencher appears to be a good one since the relative distributions are identical within experimental error. The distortion to the fluorescence spectrum is illustrated by the heavy and light colour quenched samples.

A further point to note is that the fluorescence spectrum as used in the model incorporates the effects of any absorbers present in the ow quenched sample. This includes self absorption by the solute. The solute concentration is the same for all the samples used in this study and hence a separate experiment to assess the absorption spectrum (as carried out by Stanley) was not performed.
(b) With the absorption spectrum of 07, the 10 nm step spectra were thought to be of sufficient resolution for the broadband spectra obtained. The 10 nm step spectrum is shown in Fig. F3. 10.
(c) The Cauchy dispersion equation $n(\lambda)=A+B / \lambda^{*}+C / \lambda^{n}$ Was used with the four repractive indices used for each substance. The red and yellow refractive indices were chosen for two of the three simultanecus equations required to oompute A, B and C since thesse were more accurate. The third value was decided by comparing the results for the blue and violet indioes (Table T3.1).

The Cauchy equation was also applied to the estimation of dispersion in the vial glass. For borosilicate glass $N_{w}\left(H=\right.$)blue/green=1.5158, $N_{\text {a }}$ (Hz) yellow=1.50970 and $\mathrm{N}_{\mathrm{c}}\left(\mathrm{H}_{\mathrm{n}}\right)$ red=1.50627 corresponding to wavelengths of $486.1 \mathrm{~nm}, 587.6 \mathrm{~mm}$ and 656.3 nm.

The constants then become $A=1.49788933, B=4061.10397$ and $C=5804367.75$.

The variation of refractive index is small over the range of wavelengths examined. The range doesn't extend to the 300 nm higher limit of the stored fluorescence and absorption spectra, but thiss is relatively unimportant because (a) the fluorescence spectrum high wavelength out off is around 350 nm and (b) the refractive index is a siowly varying function with wavelength for regions not near an absorption band.

Dispersion of the PMTube glass is not incorporated in the model as yet (a fixed value of $n=1.52$ is used), nor are changes in the cooktail composition due to the addition of samples and quencherss. The modelled solution is based on the results for $10 \mathrm{~g}^{-1} \mathrm{~b}-\mathrm{PBD}$ in p-Kylene.
(d) Figs. F3. 11 to F3. 21 show the distributions for the binomial and multipoisson approximation modelled photocathode. Ter randomly chosen puisson distributions were constructed and averaged from the same input batch in each case. The cumulative effects of using the poisson approximation with batches of photons typified by the 10 g $1^{-3} b-P B D$ in $p-$ Kylene fluorescence spectrum are seen to be almost identical to those using the lengthy full combinatorial binomial distribution for small numbers of incident photons. (For large numbers of incident photons the poisson distribution approximates the binomial distribution as may be shown in many statistics texts).

A further check was made by comparing ten randomiy chosen poisson distributions based on different input batches of photons. See Figs. F3.20, F3.21. The cases for $m=4$ and $m=9$ are plotted. The great similarity between the distributions is evident.
(e) Vial dimensions have been given in section 3.1.1. The outer radius of the standard glass vial has been extended to 14.7 mm in the model to cover the tolerance gap encountered between the vial and the counter chamber. Although the increased photon losses in the vial top and base in the area of the vial wall annulus will not be identical to losses by refraction and escape through the tolerance gap, the treatment is believed to be adequate for the relatively small \% of photons affected. Increased rigour here would demand increased rigour in dealing with other more complex problems - the rounded shoulders of the glass vials and the screw threads for example.
(f) The effects of varying the dynode statistical shape factor on the secondary electron distribution for a dynode with an expected gain of 3.94 iss shown in Table T 3.2. The gain of 3.94 is derived from the total gain of 1.4×10^{7} (at 2 kV applied voltage) for a 12 stage BeO PMTube of type 4501 V 3 (RCA Corporation). The distributions were obtained using program POLYA. PAS which is listed in appendix B. According to the manufacturers Beo dynodes do not exhibit pure poissonian behaviour due to irregularities in the dynode surface. In the absence of specific information a shape factor of 0.2 is arbitrarily selected in the first instance. The effects of varying the shape factor on the model output iss examined in the next chapter.
(g) For completeness, the data obtained from the literature is include below:
(i) Aluminium reflection data is linearly interpolated from Table T3.3. The normal incidence reflection underestimates the true multi-angled incidence of the model. The increased losses may in part be offset be neglect of such sources of absorption as surface dirt and dust and imperfect vial and chamber surface.
(ii) Quantum efficiencies were calculated by use of a quadratic equation fitted to the curve shown in Fig. F1.10. Coordinates chosen for the fit were $(260,4),(380,25)$ and $(580,3)$ and resulted in the quadratic

$$
Q(\lambda)=-0.0008906 \lambda^{2}+0.745 \lambda-129.49375
$$

It is known that the quantum efficiency is not constant over the surface of the PMTube and may vary by as much as 20%. The quoted curve with a maximum of $\approx 26 \%$ efficiency is used in the model and may therefore be a slight overestimate.
(iii) The scintillation efficiency of the solution in the model is chosen to follow the same curve that Horrocks established for a PPO/POPOP/ Toluene cocktail. The curve iss shown in Fig. F3. 22 normalized to give a value of 5.2% at 50 keV. The effects of varying this curve on model output is investigated in the next chapter.
(iv) The B-spectra for $=\mathrm{H}$ and ${ }^{14} \mathrm{C}$ were obtained from Fano (National Bureau of standards). ${ }^{\text {am }}$ The data is included in the listing of the model program. It may be noticed that the spectra include correction for screening.

Other forms of data input, such as the colour or chemical quenching coefficients or electronic threshold levels are treated as variables and are stated with the output results which are described in the next chapter.

3.4 Model Validation and Performance

3.4.1 Introduction

The ultimate criterion for success of the model is to produce - without arbitrary adjustment of model variables simulated pulse height spectra which are the same as those obtained with real LSCs over a wide range of quenching conditions. This model has been eiven the properties of a Packard $300 C$ LSC and hence the oriteria relates to spectra obtained on such a machine. Tho comparison of sequences of spectra is aided by selection of some spectral parameter such as the mean pulse height of the pulse height speotrum. This choice of parameter has the additional advantage of allowing direct comparison with the SIE and SIS of the 300C and as these QIPs are derived from the mean pulse height. However, because increased flexibility in analysis of the spectra was deemed necessary, provision was made to accumulate the speotra on equipment exterral to the 300 C .

3.4.2 Expeximental

A schematic diagram of the equipment used for pulse hejght spectra capture is shown in Fig. F3.23. LSC signals (pulses) were taken prior to the A / D because (a) the complex digital circuit logic was protected by Packard Instruments Ltd. and (b) access to the raw coincidence gated analogue signal allowed flexibility in further pulse prooessing.

The line driver was constructed after tests showed the effects of coaxial cable loading of the 300C - see Table T3.4. The performance of the line driver was tested by comparing its input and output pulses. Input pulses were provided by means of a Bradley Model 233 Pulse Generator. T-piece coaxial cable connections to a Gould Digital Oscilloscope 4040 and a MEI millivolt calibrator were used for pulse waveform observation and for pulse amplitude calibration. The pulses used were of 1 to $10 \mu s e c$ duration and up to $6 V$ amplitude, (corresponding to the maximum amplitude pulses of the 300 C , , and were shaped to resemble the LSC pulses as displayed on the scope.

Timed acoumulation of the spectra were controlled by the NE4625 olook NIM unit. These speotra were then rapidly transferred via a 3D GPIB to a PET 4000 series microcomputer. This was accomplished using a 6502 machine code program which optimized storage by packing the numerical contents of each MCA channel in $2 \frac{1}{2} 8$-bit words.

Interleaving of these channel contents allowed a full 1023 channel spectrum to be stored in just 2.5 K memory and for numbers exceeding the six digits of the MCA. A suite of ancillary programs allowed (i) dumping of the spectra onto disk or reloading them back into memory, (ii) VDU display with cursor control of soreen displayed upper and lower disoriminators and (iii) integration over the region of interest together with computation of the mean pulse height (i.e. MCA channel "height"). These programs are listed in appendix B.

The storage scope was used with all spectrum gathering experiments and was particularly useful when the initial pulse handling circuit was changed from the summed configuration. The scope was ussed to monitor the pulses taken from the LSC. At certain combinations of amplification and time constant settings on the $N E 4658$ Amplifier a sharp spike was produced in the MCA spectrum which corresponded to either regular low level noise or overamplified 'ringing' associated with the valid LSC pulses. A careful (and tedious; watch during spectrum capture ensured correct spectra were accumulated for each sample.

The pulse handing unit labelled SUM/DIFF* in Fig. F3.23 consisted of the standard 300 C arrangement for the summed configuration, Fig. F3.24a.

[^2]With the DIFFerence configuration luse was made of the good A.C. and transient properties of isolation transformers. A 16-pin RS Data Bus Isolator (stock No. 208-355) was fitted with coaxial cable connectors and housed in a shielded box. Two of the four isolators were set to produce non-inverted output, one was set to produce inverted output and one was unused. Pulses of $10-20$ nsee duration and $u p$ to 0.3 V amplitude and which were shaped to resemble the LSC pulses were used to test the isolators. These test pulses were passed through the isolators in single, summed and difference configurations. Little or no distortion was produced by the isolators. When in the summed configuration the output was observed to be the arithmetio sum of the inputs and when difference mode the output was observed to be the arithmetis difference of the inputs together with a little ringing caused by mismatching the experimantal test circuit. The difference configuation using the isolation transformers in the LSC is shown in Fig. F3.24b.

The second non-inverting transformer was used in place of the inverter to reproduce the summed configuration in the LSC but this time with the extra components present. Investigation of any effects of the additional components resulted in little or no detection of changes in the output ssee Figs. F3. 25 and F3.26. Propagation delays on these isolators is less than 5 ns and is well within the delay loop (of approx 150 ns) incorporated in the 300C. No attempt was made to adjust the delay loop.

Other pulse handing configurations such as ratios ($\mathrm{P}_{\mathrm{a}} / \mathrm{Pa}$) or products ($P_{1} P_{m}$) were not implemented experimentally. They could be readily installed by means of logarithmic amplification of each PMT pulse separately prior to summing or differencing.

Being satisfied with the experimental technique used for the experimental pulse height spectra capture, a variety of colour and chemically quenched $\approx \mathrm{H}$ and ${ }^{1.4} \mathrm{C}$-labelled samples were counted. These samples were those used previously for triple-label dpm determination in chapter 2 . The resultant spectra were then used to obtain calibration curves and hence assess model performance.

In assessing this performance the model variables used to generate the simulated data were as follows:

and the quantum efficiencies, fluorescence speotra, absorption spectra, scintillation efficiencies, collection efficiencies, B-spectra, refractive indices and dispersion are all as defined in section 3.3. The chemical and colour quench factors QCHEM and QCOL are stated with the results. The above model settings are henceforth called the standard model settings and apply to all results unless otherwise stated.

3.4.3 Results and Discussion

Tables T3.5 to T3.8 and Figs. F3. 27 and F3. 28 show the results obtained experimentally for $\mathrm{H}-$ and ${ }^{4} \mathrm{C}-$ labelled colour and/or chemically quenched samples. The experimentally obtained calibration curves demonstrate the differences between coloured and chemically quenched samples using the mean summed RPH as a QIP. The results agree with numerous other workers mentioned previously.

The associated results for the model are shown in Tables T3.9 and T3. 10 and Figs. F3. 29 and F3. 30.

The modelled curves show the same trends ass found praotically, with the model correctly changing its output spectra and resultant calibration curves with changes in both type of quench and issotope energy.

Closer inspection reveals some differences between the experimental and modelled results. The tritium modelled efficiencies reach 67% approximately for an unquenched sample whereas the most unquenched experimental efficiency was approximately 52%. One reason for this is the presence of quenching materials in even the least quenched of the experimental samples. When originally prepared, for triple label work, the samples reached efficiencies approaching 60\% as can be seen in Fig. F3.31 although in this case SIE (AEC) was used as the QIP. Results of further runs with the model using a greater number (5000) of counts and with
mixtures of colour and chemical quenchers are shown in Tables T3. 11 and T3. 12 and Fies. F3. 32 and F3. 33.

The 5000 count samples give sinjlar calibration curves to the 1000 count samples but with more precision. The modelled colour and chemical quench calibration curves separation is observed to be slightly smaller than that observed experimentally. The absence of electronic thresholds or the choice of $\operatorname{BSF}[1]=0.2$, $\operatorname{BSF}[2]=0.2$ may be responsible for this. With the mixed colour/chemical quenched samples, the modelled addition of colour quench to chemically quenched samples shifts the calibration point towards the colour quenoh curve ass expeoted. Quantification of this shift for ${ }^{3} \mathrm{H}$ does not appear to be feasible for speotra based on 5000 counts or less using the summed pulse height spectra although the results indicate a discernable separation at high quench levels.

With limits of 1000 or 5000 counts being set by time constraints a cheok on the repeatability of the results was made using modelled ${ }^{44} \mathrm{C}$: Tables T 3.13 (a) and (b).

Overall, the results are encouraging and the effects of other variables of the model were briefly explored in the limited time available.

The effect of imposing a threshold on the PMTube outputs prior to spectral storage is shown in Tables TS. 14 (a) and (b) and Figg. F3. 34 and F3.35. The results indicate that a
threshold of 1 should perhaps be used in the model. However, in the absence of experimentally determined electronic thresholds the use of the standard model settings was continued and the matohing of threshold levels is left as a future develoment of the model. Known amplitude pulses from a pulse eenerator could be fed into the LSC in place of the PMTube pulses and the coincidence pulses. Variations in pulse amplitude and observations of the resulting LSC output would lead to estimation of the threshold. Careful matching of impedances of the equipment to resemble the PMTube output impedence would, of course, be necessary.

Since the model is capable of utilizing purely colour quenched samples, the effects of a series of hypothetical quenchers wexe compared. One of the colour quenchers has a uniform absorption speotrum over the range 300 nm to 400 m and the other three had step response absorption spectra from 300 nm to 600 nm , from 400 nm to 500 nm and from 500 nm to 600 nm respectively. These are shown along with the O7 absorption speotrum colour quenching results in Table T3. 15 and Fig. F3.36. It is observed that although different amounts of the colour quencher are needed to reduce the counting efficiency by comparable degrees, (as expected from the differences in spectral matching to the solute fluorescence spectrum), the resultant calibration curves follow the same trend. A single general colour quenching curve could be used for all the different colour quenchers measured. Of course, practical colour quenchers
also have an associated chemical quench when added to a LS cocktail and it is the colour to chemical quench ratio that requires determination.

Also briefly examined was the effect of varying the PMTube quantum efficiency and PMTube dynode shape factor, (Tables T3. 16 and T3.17 and Figs. F3.37 and F3.38), and the sointillation efficienoy (Table T3.18 and Fig. F3.39). The choice of an exponential shape factor is seen to degrade the PMTube resolution so much that the effects of colour and chemical quenchine are indistinguishable. This doesn't present a method of quench correction independent of the colour/chemical ratio however because of the larger scatter associated with the poorer resolution. A move to a more poissonian shape factor than 0.2 would not appear to lead to much greater colour or chemical quench curve separation. The reduced quantum efficiency was chosen to be 21.5% on the basiss of Persyk's comments on the quantum efficiency variation over the surface of a PMTube. The results more closely resemble the experimental curves. The PMTube face is an area which requires further modifications including the variation of quantum efficiency of the surface and the curvature of the face glass. Changirg the scintillation efficiency from Horrocks data to a constant 4.5% caused an increase in efficiency and in mean pulse heights but in such a way as to make the calibration curve more bowed in the direction seen for isotopes of increasing energy. This implies that selection of a constant 4.5% scintillation efficiency for all $=\mathrm{H}$ B-particle energies is incorrect and
too high. Future runs with the model may shed further light on the effects of scintillation efficiency as a function of β-particle energy.

One last study shows the effects of varying the solution volume. Results are shown in Table T3.19 and Fig. F3. 40 and agree with results obtained experimentally.

It is evident that the model opens several avenues of research, but the main reason for its developement was to provide a tool for the investigation of new quench correction techniques. This subject is dealt with in the next chapter.

Chapter 4

QUENCH CORRECTION INDEPENDENT OF THE TYPE OF QUENCH

This chapter summarises the results of the application of the LSC Model to the colour-chemical quenoh correotion problen. A practical method of quench correction which is independent of the type of quench for homogeneous systems is presented and experimentally confirmed.

4.1 Application of the LSC Model to the Colour-Chemical Quench Correction Problem

4.1.1 Introduction

Recalling the comments made in section 3.1 there are two approaches to solve the colour-chemical quench correction problem. Simultaneous summed-pulse-height analysis -differenced-pulse-height analysis and simultaneous summed and ratioed pulse-height analysis are representative of the approach to quantify the colour/chemical ratio, whereas product pulse height analysis, singly-applied upperdiscriminator pulse-height analysis and modified-product pulse height analysis are representative of the approach to produce a single calibration curve which is applicable to both colour and chemically quenched samples. The difference, ratio and product pulse height spectra have been defined previously.

The singly-applied upper-discriminator approach simply involves the use of an ordinary summed pulse height spectrum, but for pulses where both are less than an upper discriminator which is applied to each pulse prior to summation. Events which produce pulses exceeding the discriminators are used only to provide the total count and not as part of the spectrum upor which the QIP is based. The discriminators are decreased with increasing quench. The basic idea behind the method can be regarded as an inverted case of Laneys' crosstalk eliminator
discriminators. The modified-product spectrum is a development of the product spectrum. It consistss of a product spectrum which is linearly stored for events corresponding to approximately $1 / s$ mean B-particle energy with the rest of the spectrum linearly compressed into a few channels. (See Fig. F4.1).

All counts are used for the efficiency determination provided coincidence is achieved and the mean chanel is taken over the whole modified spectrum to give the QIP.

The results of the application of all these methods using the model are described below.

4.1.2 Results and Discussion

Tables T4.1, T4.2 and T4.3 present model generated results for simultaneous coincidence sum, difference and ratio pulse height spectra for ${ }^{14} \mathrm{C}$ and ${ }^{*} \mathrm{H}$ respectively. (Plots of counting efficiency vs mean summed pulse height have been presented in section 3.4).

For difference pulse height spectra and ratio pulse height spectra to be useful as second parameters for colour/ chemical ratio quantification the variation in these pulse height spectra must be different from that of the sum pulse height spectra under conditions of varying colour or chemical quench. That this is, in fact, the case, as first supposed in section 3.1, is shown in Figs. F4.2 to F4.8. With ${ }^{14} \mathrm{C}$ the mean difference pulse height vs mean summed pulse height curves for colour and chemical quench are widely different, thus indicating that these parameters may be used for colour-chemical ratio quantification. The form of the divergence between the curves may be explained by considering typical pulses (P_{n} and P) produced with colour and with chemical quenched samples. With coloured samples P_{1} and Pa are more often dissimilar (and by larger margins) than with chemical quenched samples. The difference between the two pulses will thus, on average, be greater for coloured samples than for chemical quenched samples. Without the distortions caused to the relative pulse heights P_{n} and $P=$ by colour quenching the relationship between the mean of the summed pulse heights to the mean of
the differenced pulse heights is approximately linear. With ${ }^{H}$ the same general trend is observed but is smaller owing to the smaller energy range (and hence pulse heights) involved.

The use of ratio pulse height spectra as a route to quantification of the colour-chemical ratio met with only limited suceess. The colour quenched samples result in a curve which is greater than that for chemical quenched samples because the ratios of the more dissimilar colour quenched pulses deviate more from the mean. The ratio pulse height spectra as modelled ranges from 0 to 1 with the mean value being 0.5 for all samples and colour quenching be characterised by greater spread. The standard deviation, σ, was used as a measure of the spread and it is because of the reliance on the $2^{\text {ne }}$ moment of a distribution that the ratio σ approach suffers more from scatter than does the difference-mean. Whether the ratio σ method would be good enough experimentally depends on the relative benefits of using full pulse heights and not differences in the prescence of machine noise, thresholds and background. A simpler technique relying on the $1^{m t}$ and $2^{\text {ma }}$ moments of a distribution is measurement of the mean and standard deviation of the ordinary summed pulse height spectra and use of efficiency vs sum pulse height and sum σ vs mean sum as calibration curves. However, Fig. F4.6 shows no calibration curve separation is achieved for $* H$. This is not so surprising since the sum pulse height spectra does not exaggerate colour and chemical quenching effects, as
explained previously.

The efficiency vs product pulse height spectra quench indicating parameter calibration curves for ${ }^{*} \mathrm{H}$ and ${ }^{4.4} \mathrm{C}$ are shown in Figs. F4.9 and F4.10. (Tables T4.4 and T4.5). As explained in chapter 3 , colour quenched product pulses are weakly dependent on the B-event position in the vial. By analogy to the summed pulse height case this results in the colour quenched product pulse height spectra being broader (and thus having a greater mean) than the chemically quenched product pulse height spectra for samples of equivalent efficiency. As quenching increases, this effect becomes more pronounced until quenching is so great that the statistical variation in the (small) numbers of photons destined for each PMTube begins to contribute significantly to the pulse height spectra and thus mask the effect. Also, the product spectrum reduces the differences between the two types of quench because of the logarithmic transformation of the individual pulse heights before summation. Small pulses are little affected, in contrast to larger pulses, and because of the relative sizes of the $=\mathrm{H}$ and ${ }^{1 \times 4} \mathrm{C}$ pulses the effect of the logarithmic transformation is more pronounced with ${ }^{1 \times 4} \mathrm{C}$. It iss suggested that within the limitations imposed by the amount of data obtained, the combination of the above effects accounts for the efficiency vs mean product pulse-height calibration ourves. The modified pulse height spectrum for $=\mathrm{H}$ gives the desired single calibration curve for colour and chemically quenched samples. (Fig. F4.11 and Table T4.6). ${ }^{44} \mathrm{C}$ results are not
available.

Although more data on the product-based pulse height spectra is needed before any firm conclusions oan be drawn, it would be interesting to further check the model predictions and perhaps put the product-based techniques into practice. The methods would have the advantages over the sum + difference method in (i) not relying on small difference pulse heights and (ii) using just one calibration curve for each isotope.

The singly-applied upper discriminator approach failed to produce a uniform quench calibration curve for colour and chemically quenched samples, (see Fig. F4. 12 and Table T4.7), and was thus not studied further.

From the above model-based studies the sum + difference, the sum + ratio and product and modified product methods all seem capable of quench correction independent of the colour-chemical quench ratio and are all worthy of experimental investigation. However, the sum + difference method wass selected ass the most promising to put theory into practice. The experimental performance of this quench correction technique is desoribed in the next section (4.2).

4.2.1 Introduction

The technique of quench correction independent of the colour-chemical quench ratio using the summed pulse height spectra and differenced pulse height spectra, (the SD technique) involves the following stages:
(a) accumulate the summed pulse height spectra simultaneously or sequentially
(b) accumulate the differenced pulse height spectra simultaneously or sequentially
(c) use the mean difference pulse height and mean sum pulse height to determine the F re ratio
(d) use the F ratio and the F ra calibration curve to derive F and hence the corrected efficiency.

The ratios F_{a} and F are defined in Fig. F4. 13 and are the fractional distances between the chemically quenched and colour quenched calibration curves of efficiency vs mean sum pulse height and mean difference pulse height vs mean sum pulse height respectively.

So far, only results based on the spectra obtained with isotopes which are internally dissolved in the LS solution have been modelled and experimentally verified. However, a common disadvantage of all internal-isotope quench correction techniques is their poor performance with low activity and/or low energy isotopes.

For the sum + difference quench correction technique (or SD technique) to be universally accepted it must be practicable with a high activity, high energy external standard. Extension of the SD technique to cover the use of external standards, although earmarked as a future development, presents problems which lie outside of the scope of the first generation of the LSC simulation.

It was believed however that the same distance dependency with colour quenched samples should be observed with the external standard as a source unless the distribution of events was randomly spread throughout the vial solution. If there existed a non-symetrical distribution of external standard fluorescence-events in the solution the difference pulse height spectra, which is specifically designed to exaggerate colour quenching effects, should vary in a manner similar to that obtained with internally dissolved B-emitters.

The $m a$ Ra external standard of the Packard 300C is pneumatically driven to a point close to the outside of the vial which is nearer to one PMTube than the other and hence gives a fluorescent event distribution which is nonsymmetrical in relation to the two PMTubes. This feature was exploited to investigate the plausability of the SD technique.

4.2.2 Experimental

$=\mathrm{H}$ and ${ }^{14} \mathrm{C}$ colour and chemically quenched samples were those previously used in section 2.3 and 2.2. A series of ten of each isotope and type of quench were reserved for efficiency vs mean sum pulse height calibration curves and mean sum pulse height vs mean difference pulse height calibration curves. To the remaining samples random amounts of disperse orange dye 07 and carbon tetrachloride colour and chemical quenchers were added such that the total volume was within 10% of 10 ml and within the efficiency range $>90 \%$ to $<1 \%$ for ${ }^{14} \mathrm{C}$, and 50% to 1% for $=\mathrm{H}$. All the samples were counted using the equipment and methods described in section 3.3. Although simultaneous counting of the sum and difference pulse height spectra was performed during simulation and is desirable commercially, the spectra were obtained sequentially in these experiments.

When using external standards short counting times were used in keeping with currently accepted practices. The samples used were those containing ${ }^{4} \mathrm{C}$ and ${ }^{*} \mathrm{H}$ described above. All pulse height spectra were stripped of the ${ }^{14} \mathrm{C}$ or ${ }^{3} \mathrm{H}$ contribution by suceessive equal timed counting with and without the external standard present.

Tables T4.8 and T4.9 and Figs. F4. 14 and F4.15 give results obtained for the ${ }^{44} \mathrm{C}$ - and H -labelled colour and chemically quenched samples. With the ${ }^{14} \mathrm{C}$ samples the form of the variation of the mean of the difference pulse keight spectra with the mean of the sum pulse height spectra for colour and chemically quenched samples is in accord with the model predictions. This promotes even greater confidence in the model which now correctly acoounts for sum and difference pulse height behaviour with colour or chemical quench and ${ }^{\mathrm{H}}$ or ${ }^{14} \mathrm{C}$ isotopes. With ${ }^{3} \mathrm{H}$ the general trend of greater mean difference pulse heights for colour quenched samples is demonstrated but is almost obscured by the large scatter associated with taking differences of small pulses in the presence of noise. The noise factor was not incorporated into the model and seems the most likely explanation of the results obtained. An interesting feature of the ${ }^{14} \mathrm{C}$ results is the fact the the difference between the two calibration curves is larger than that predicted. This occurred to some extent with the efficienoy vs mean sum pulse height calibration curves and may be a feature of the chosen variables in the model. Another possible cause, and one not present in the model, may be mismatching in the response of the two PMTubes plus the counting circuit. This would be equivalent to having unever electronic thresholds in the model. The possibility of mismatching was investigated by means of a vial (containing an unquenched cocktail of $10 \mathrm{~g}^{-1} \mathrm{~b}-\mathrm{PBD}$ in
p-Xylene) which was half coated with red tape such that the full length and half circumference of the curved surface was covered. This vial was counted in the presence of the external standard for various rotational orientations with each PMTube individually. Results are shown in Table T4. 10 and Fig. F4.16. The different levels of recorded external standard activity for each PMTube indicate that some mismatching was present. The actual form of these curves shows the effect that a non symmetrical colour quench distribution has on the recorded external standard aotivity using single pulse height spectra and encouraged the investigation of the external standard $S D$ technique (ESSD technique).

The insensitivity of the mean sum pulse height of the external standard to type of quench has been reported by many authors and is confirmed here - the colour and chemical quenched samples following an identical curve (Fig. F4.17 and Table T4.11). (N.B. The external standard counting efficiencies are quoted as relative to that obtained with the least quenched sample).

The variation of the mean differenced pulse height with mean summed pulse height is observed to follow the general pattern predicted by the model for internal isotopes of increased energy and confirms the expected colour-chemical dependence for a non symmetrically positioned external standard. The colour chemical dependence can even be shown with just the coincidence single PMTube pulse height
spectra (see Table T4.12 and Fig. F4.18). The very positive results of Tables $T 4.11$ and $T 4.13$ which are shown in Fig. F4. 19 validates the use of the $S D$ technique over the same wide range of homogenous samples currently counted using external standards.

Results of the implementation of the ESSD technique are given in Tables T4.14 to T4.18. The ${ }^{14} \mathrm{C}$ efficiency vs External Standard mean sum pulse height spectra and the efficiency vs ES mean sum pulse height spectra calibration curves for colour, chemical and mixed colour and chemical quenched samples are shown in Figs. F4. 20 and F4.21. From these curves suitable candidates (part way between the pairs of curves) were chosen to determine the relationship between position relative to the colour and chemical curves of Figs. F4. 20 and $F 4.21$ for ${ }^{3} \mathrm{H}$ and ${ }^{14} \mathrm{C}$ respectively and position relative to the colour and chemical ourves of Fig. F4.19. To do this natural cubic splines were fitted to the curves of Figs. F4. 20 and F4.21 in accordance with the conlusions of section 2.3 and least squares cubic polynomials were fitted to the curves of Figs. F4.19. The F_{1} and F ratios were then plotted for the selected mixed colour and chemical quenched standards (see Figs. F4.22 and F4. 23 and Tables T4.16 (a) and (b)).

Owing to the large scatter of the Friw plots a simpler least squares quadratic was fitted to the data. It is noted that the relative variation in the Fas ratios is similar and appears largely independent of the isotope.

An approach using distance below the chemical quench curve (and not limited to the mean sum pulse height range of the colour quench curve) gave a series of colour-chemical calibration curves dependent on the combined total amount of quench and was therefore rejected.

The efficiencies predicted by the ESSD technique are presented in Table T4. 17 for ${ }^{*} \mathrm{C}$ and Table T 4.18 for F_{H} and are compared with the efficiences calculated from the known dispensed activity of each sample. For the ${ }^{14} \mathrm{C}$ samples which do not require extrapolation of the colour quenched efficiencies vs mean sum pulse height calibration curve, efficiencies are determined to within 2.5% down to counting efficiencies of 60%. Also, even with extrapolation, results are still within 3.5% down to counting efficiencies of only 30%. For $=\mathrm{H}$ sample efficiencies are determined to within 1.5% over the range of cocktail, colour quencher and chemical quencher composition used.

In view of the use of non-optimal external standard position and samples with up to 10% volume variation and only 20 s external standard counting times these results are excellent. They prove that a significant improvement in LSC can be achieved by adoption of the ESSD (and SD) method. The success of the method also completely vindicates the use of simulation in LSC and increases confidence in the likely suceess of the other methods proposed in this chapter.

4.3 Future Work and Recent Developments

Future work which promises to be of practical benefit includes experimental investigation of product based pulse height spectra, and extension of the model to include the effects of noise and bankground and alternative vialcounter geometries. More challenging extensions would be to inolude the external standard option and to include nonhomogeneous micellar solutions. A second generation model should attempt to incorporate the time dimension. Thiss would greatly enhance the usefulness of the model, allowing such techniques as pulse shape discrimination to be studied in detail and hopefully lead to the development of new α, β and γ counting and quench correction techniques.

The importance of attempts to attain a widely applicable quenoh correction method is not lost on the LSC industry. Recently, LKB-Wallac OY of Finland have introduced a new LSC (the LKB Spectral) which is claimed to be capable of quench correction independent of the colour-chemical quench ratio. No data has yet been published describing the actual techniques used in the Scientific Literature, although a source from within the industry has indicated that two pulse height spectra are jointly used.

Addendum

Since the completion of this thesis a Product News Bulletin from LKB-Wallac has been obtained.* In it there is a description of the quench correction technique used by the model "1219 Spectral". The essential point is that use is made of a simultaneously gathered summed-coincidence pulse height spectrum (p.h.s.) and a pulse height spectrum dependent on the ratio of the individual PMTube pulses (from a two PMTube system). Unfortunately, the exact form of this p.h.s is not stated nor whether the external standard is used for the determination of the colour quench parameter.

However, the basis of the technique is apparently similar to one of the methods proposed in this thesis. This adds yet further support for the (anticipated) utility of those methods and for the use of simulation in Liquid Scintillation Counting.

[^3]COLLECTED FIGURES

Fig. F1.1 Modified Jablonski diagram showing the various processes that can occur upon excitation of an organic molecule

Fig. F1.2 Excimer photophysical processes
Lines with // through them are not
implemented in my model

Fig. F1.3 Photon pathways from Scintillation Liquid to PMP

Colour versus chemical quenching of ${ }^{14} \mathrm{C}$; differences between spectra at same levels of efficiency.

Fig. F1. 4

Colour versus chemical quenching of 3 H ; differences between spectra at same levels of efficiency.

FIG F1.5: TYPICAL EFFICIENCY v SIE(AEC) COLOUR/CHEMICAL QUENCH CALIBRATION CURVES

MPT 2 Pulse Height y
${ }^{14} \mathrm{C}$ chemically quenched to 70% efficiency

MPT 2 Pulse Height y ${ }^{14} \mathrm{C}$ colour quenched to 70% efficiency

Fig. F1.6 Two parameter pulse height spectra

Fig. F1.7 Diagram comparing experimental and simulated vials in Stanley's Model

Fig. F1.8 Quenching and the LSC Process

Relative pulse distributions for single-labeled 3_{H} and singlelabeled ${ }^{14}$ C containing sample (a) compared with sample labeled with both 3_{H} and ${ }^{14} \mathrm{C}$ (b).

Window settings for counting 3 H - and ${ }^{14} \mathrm{C}$-containing samples with optimization of separation of ${ }^{14} \mathrm{C}$ - and 3_{H}-produced pulses, showing settings for (a) unquenched sample and (b) quenched sample.

Fig. F1.9 Dual label windows for 14 C and 3 H

Fig. F1. 10 Typical Photocathode Responsivity Characteristics

Fig. F2. $\begin{gathered}\text { Typical } \\ \text { types }\end{gathered}{ }^{14}$ C Efficiency v QIP curve showing data group

FIGF2.2 : BACKGROUND COUNTRATE vs SIE(AEC) - Single label Regions

FIGF2.3 : BACKGROUND COUNTRATE vs SIE(AEC)

- DUAL LABEL REGIONS

FIGF2. 4 : BACKGROUND COUNTRATE vS SIE(AEC)

- TRIPLE LABEL REGIONS

Fig. F 2.5 Triple Label Counting Regions

$$
\left[\begin{array}{lll}
e_{11} & e_{12} & e_{13} \\
e_{21} & e_{22} & e_{23} \\
e_{31} & e_{32} & e_{33}
\end{array}\right]
$$

where $e_{i j}=e_{\text {region, nuclide }}$

Fig. F2.6 Triple Label Efficiency Matrix

Fig. F2. 7 Oxygen Purging Apparatus

FIG F2.8: 3H QUENCH CALIBRATION CURVES -TRIPLE LABEL REGIONS.

FIG F2.9: 14C QUENCH CALIBRATION CURVES - TRIPLE LABEL REGIONS

FIG F2. 10 : 36CL QUENCH CALIBRATION CURVES - TRIPLE LABEL REGIONS

FIG F2.11: 3H,14C,36CL CALIBRATION CURVES -TRIPLE LABEL REGIONS (NO AEC)

Fig. F3. 1 The Two P.M.Tube ISC System
$Y_{1}=$ plot of pulse heights from PMT 1 against position in vial (colour quench present)

$Y_{2}=$ polt of pulse heights from PMT 2 against position in vial (colour quench present)

Fig. F3. 2 The Two P.M.Tube LSC System

SUMMED

$Y_{3}=P_{1}+P_{2}$
Chemical Quench

$\mathrm{Y}_{4}=\mathrm{P}_{1}+\mathrm{P}_{2}$
Colour
Quench

DIFFERENCED

LESSER

$Y_{7}=P_{1}, P_{1} P_{2}$
$P_{2}, P_{2} P_{1}$
Chemical Quench

$Y_{8}=P_{1}, P_{1} P_{2}$ $P_{2}, P_{2} P_{1}$

Colour
Quench

Chemical
Quench

Colour
Quench

PRODUCT

Chemical
Quench
Colour Quench

Fig. F3. 3 The two P.M.Tube LSC System

Fig. F3. 4

SECTION

Fig. F3.5 Model Geometry

Fig. F3.6 Flowchart of LSC Model

DATA	SOURCE	VALUE
Pi	Casio Calculator (Japan industrial stds) (JIS Z.8202-1978)	3.141592654
Plancks Constant	"	6.6262E-34
Charge on electron	" "	1.60219E-19
Speed of light	" "	2.997925E8
β particle $E_{\text {max }}$ for ${ }^{3} \mathrm{H}$		18.6 keV
β particle $E_{\max }$ for ${ }^{14} \mathrm{C}$		156 keV
Fermi β spectrum for ${ }^{3} \mathrm{H}$		-
Fermi β spectrum for ${ }^{14} \mathrm{C}$		-
Scintillation Efficiency Curve	D. L. Horrocks ${ }^{88}$	-
Colour quencher Absorbtion spectrum - 07 dye	Self measured	-
RCA 4501/v3 PMTube dynode (BeO) shape factor	RCA Handbook (book B17)	0.2
RCA 4501/v3 PMTube dynode (BeO) gain	D. E. Persyck ${ }^{145}$	3.94
PMTube collection efficiency	RCA Handbook (book B17)	0.85
Aluminium Absorbtion spectrum	CRC Handbook (book B20)	-
b-PBD Fluorescence spectrum	Self measured	-
Dispersion of b-PBD + pXylene	Self measured	-
Dispersion of vial glass (borosilicate)	Tables of Physical and Chemical Constants (book B19)	-
Dispersion of PMI glass (pyrex)	Tables of Physical and Chemical Constants (book B19)	-
Vial height	Self measured	0.047 m
Vial radius	Self measured	0.0147 m

Fig. F3. 7 Data used in the LSC Model

DATA	SOURCE	VALUE
Liquid height	-	0.02 m
Liquid radius	Self measured	0.0125 m
Chamber height	Packard Instruments Inc.	0.04374 m
Chamber radius	Packard Instruments Inc.	0.02286 m
Low wavelength cut-off for spectra	Self measured	600 nm
High wavelength cut-off for spectra	Self measured	300 nm
PMTube Quantum efficiency	Packard Instruments Inc.	-

Fig. F3.7 (contd.) Data used in the LSC Model

Fig. F3.8 Block diagram of equipment used for Fluorescence and Absorption spectra capture.

FIG F3.9 : FLUORESCENCE SPECTRUM USED
in MODEL

FIG F3.10 : ABSORPTION SPECTRA USED IN MODEL

FIG F3. 11 : PMTUBe STATISTICS
For 4 photons

FIG F3. 12 : PMTUbe STATISTICS
for 5 photons

FIG F3. 13 : PMTUBe STATISTICS
for 6 phatons

FIG F3. 14 : PMTUbe STATISTICS
for 7 photons

FIG F3. 15 : PMTube STATISTICS
for 8 photons

FIG F3. 16 : PMTube STATISTICS
For 9 photons

FIG F3. 17 : PMTUbe STATISTICS
For 10 photons

FIG F3. 18 : PMTUBE STATISTICS

$$
\begin{array}{r}
\text { For } 20 \text { photons } \\
181
\end{array}
$$

FIG F3. 19 : PMTUbe STATISTICS
for 50 photons
182

FIG F3. 20 : PMTube Poisson distribution batch to batch variation for 4 photons

FIG F3. 21 : PMTUbe Poisson distribution batch to batch variation for 9 photons

FIG F3. 22 : SCINTILLATION EFFICIENCY vs BETA PARTICLE ENERGY (HORROCKS' DATA)

$\begin{aligned} & \text { Fig. F3. } 23 \text { Block Diagram of Equipment used for Pulse Height Spectra } \\ & \text { Capture and Analysis }\end{aligned}$

(a) Summed pulse handling circuit

(b) Differenced pulse handling circuit

Fig. F3. 24 Summed and Differenced pulse handling circuits

FIG F3.25: EFFICIENCY vs SIE(AEC) CURVE -EFFECT OF INSTALLED DIFFERENCE CIRCUIT 188

FIG F3.26: 14C EFFICIENCY v SIE(AEC) CURVES WITH COLOUR/CHEMICAL QUENCH \& TRANSFORMER IN/OUT

FIG F3.27: 14C QUENCH CALIBRATION CURVES

- EXPERIMENTAL DATA

FIG F3. 28 : H3 QUENCH CALIBRATION CURVES

- EXPERIMENTAL DATA

FIG F3. 29 : H3 QUENCH CALIBRATION CURVES

- model generated data

FIG F3.30: C14 QUENCH CALIBRATION CURVES - model generated data

FIG F3.31: ORIGINAL EFFICIENCY v SIE(AEC) CURVES FOR TRITIUM

FIG F3.32: MODEL GENERATED H3 CALIBRATION
CURVES WITH MIXED COL/CHEM QUENCH (5000 pts)

FIG F3.33: MODEL GENERATED C14 CALIBRATION CURVES + MIXED COL/CHEM QUENCH (5000 pts)

FIG F3.34: MODEL GENERATED 3H CALIBRATION CURVES - THRESHOLD EFFECT

FIG F3.35: MODEL GENERATED 14C CALIBRATION CURVES - THRESHOLD EFFECT

FIG F3.36̈: MODEL GENERATED 3H CALIBRATION CURVES- VARIOUS COLOUR QUENCHERS(5000pts)

FIG F3.37: EFFECT OF SHAPE FACTOR B ON 3H MODEL OUTPUT

FIG F3. 38: EFFECT OF PMT QUANTUM EFFICIENCY ON $3 H$ MODEL OUTPUT

FIG F3.39: EFFECT OF CONSTANT SCINTILLATION
EFFICIENCY ON 3 H MODEL OUTPUT

FIG F3.40a: VOLUME EFFECT ON 3H MODEL OUTPUT - 'GEOMETRY QUENCHING'

FIG F3.40b: VOLUME EFFECT ON 3 H MODEL OUTPUT
Total No. MCA channels $=8000$; Width of first $4000=1$ unit

Fig. F4. 1

FIG F4.2: MODEL GENERATED MEAN SUM PULSE-HEIGHT vs MEAN DIFFERENCE PULSE-HEIGHT FOR 14C

FIG F4.3: MODEL GENERATED MEAN SUM PULSE-HEIGHT vs STD.DEV OF RATIO PULSE-HEIGHT SPECTRUM (14C)

FIG F4.4: MODEL GENERATED MEAN SUM PULSEHEIGHT vs MEAN DIFFERENCE PULSEHEIGHT FOR $3 H$

FIG F4.5 : MODEL GENERATED MEAN SUM PULSEHEIGHT vs STD.DEV OF RATIO PULSEHEIGHT SPECTRUM FOR 3H 209

fig F4.6 : MODEL GENERATED MEAN SUM PuLSEHEIGHT vs STD.DEV OF SUM PULSEHEIGHT SPECTRUM FOR $14 C$ 210

FIG F4.7 : MODEL GENERATED MEAN SUM PULSEHEIGHT vs MEAN DIFFERENCE PULSEHEIGHT FOR $3 H$ (5000 pts)

FIG F4.8 : MODEL GENERATED MEAN SUM PULSEHEIGHT vs STD.DEV OF RATIO PH-SPECTRUM FOR $3 H$ (5000 pts)

FIG F4.9: MODEL GENERATED EFFICIENCY vs MEAN PRODUCT PULSEHEIGHT FOR 3H

FIG F4.10: MODEL GENERATED EFFICIENCY vs MEAN PRODUCT PULSEHEIGHT FOR 14 C

FIG F4. 11 : MODEL GENERATED EFFICIENCY vS MEAN MODIFIED-PRODUCT PULSEHEIGHT FOR $3 H$

FIG F4. 12 : MODEL GENERATED EFFICIENCY vs MEAN SUM PULSEHEIGHT FOR 3H WITH SAU DISCRIMINATORS

Fig. F4. 13 Definition of F_{1} and F_{2} ratios

FIG F4.14:EXPERIMENTAL MEAN SUM PULSE-HEIGHT vs MEAN DIFFERENCE PULSE-HEIGHT FOR 14C 218

FIG F4.15:EXPERIMENTAL MEAN SUM PULSE-HEIGHT vs MEAN DIFFERENCE PULSE-HEIGHT FOR $3 H$

FIG F4. 16 : ExtStd MEAN SINGLE PULSE HEIGHT USING HALF COLOURED VIAL

FIG F4. 17 : EXT.STD. NORMALISED
EFFICIENCY vs MEAN SUMMED PULSEHEIGHT

FIG F4. 18 : EXT.STD. NORMALISED
EFFICIENCY vs MEAN Single PULSEHEIGHT

FIG F4. 19 : EXT.STD MEAN SUMMED PULSEHT vs EXT.STD MEAN DIFFERENCED PULSEHEIGHT

FIG F4.20: EXPERIMENTALLY OBTAINED
EFFICIENCY vs MEAN SUM PULSEHEIGHT FOR $3 H$

FIG F4.21: EXPERIMENTALLY OBTAINED
EFFICIENCY vs MEAN SUM PULSEHEIGHT FOR $14 C$

FIG F4. 22 : MIXED COLOUR/CHEMICAL QUENCHED C14 STANDARDS F1-F2 PLOT

Fig F4. 23 : MIXED COLOUR/CHEMICAL QUENCHED 3H STANDARDS F1-F2 PLOT

COLLECTED TABLES

Table T2.1

Function type: ${ }^{3} \mathrm{H}$
Number of standards: 10
Data group: A
Number of comparison points: 65

FIT TYPE	LOW QIPEXTRAPOLATED		INTERPOLATED		HIGH QIP EXTRAPOLATED	
	$\operatorname{LABS}\left(\mathrm{Y}-\mathrm{Y}_{\mathrm{i}}\right)$	$\Sigma\left(Y-Y_{i}\right)^{2}$	$\operatorname{LABS}\left(Y-Y_{i}\right)$	$\Sigma\left(Y-Y_{i}\right)^{2}$	$\Sigma \operatorname{ABS}\left(\mathrm{Y}-\mathrm{Y}_{\mathrm{i}}\right)$	$\Sigma\left(Y-Y_{i}\right)^{2}$
Piecewise linear	$2.07 \mathrm{E}-1$	$6.12 \mathrm{E}-3$	$9.46 \mathrm{E}-2$	$4.44 \mathrm{E}-4$	$8.06 \mathrm{E}-3$	$1.95 \mathrm{E}-3$
Least squares 4° polynomial	$1.98 \mathrm{E-1}$	$4.82 \mathrm{E}-3$	$7.40 \mathrm{E}-3$	$1.52 \mathrm{E}-6$	$6.64 \mathrm{E}-3$	$1.15 \mathrm{E}-5$
Least squares 3° polynomial	$5.13 \mathrm{E}-1$	$2.92 \mathrm{E}-2$	$4.44 \mathrm{E}-2$	$5.66 \mathrm{E}-5$	$7.98 \mathrm{E}-2$	$7.75 \mathrm{E}-5$
Quadratic spline $S^{\prime \prime}=\mathrm{L} "$ end conditions	$1.71 \mathrm{E-1}$	$4.43 \mathrm{E}-3$	$1.52 \mathrm{E}-3$	$4.52 \mathrm{E}-8$	$6.21 \mathrm{E}-4$	$1.34 \mathrm{E}-7$
Quadratic spline $S^{\prime}=L^{\prime}$ end conditions	$1.72 \mathrm{E}-1$	$4.43 \mathrm{E}-3$	$1.52 \mathrm{E}-3$	$4.52 \mathrm{E}-8$	$6.21 \mathrm{E}-4$	$1.34 \mathrm{E}-7$
Quadratic spline Linear end conditions	$4.46 \mathrm{E}-2$	2.56 E-4	$6.67 \mathrm{E}-3$	$1.46 \mathrm{E}-6$	$8.06 \mathrm{E}-3$	8.95 E-5
Stineman	$2.07 \mathrm{E-1}$	$6.12 \mathrm{E}-3$	$4.62 \mathrm{E}-3$	$1.36 \mathrm{E}-6$	$8.63 \mathrm{E}-3$	$2.20 \mathrm{E}-5$
Cubic spline Forsythe's $L^{n \prime}=S^{\prime \prime \prime}$	$7.69 \mathrm{E-2}$	9.21 E-4	$1.44 \mathrm{E}-3$	$9.34 \mathrm{E}-3$	$9.86 \mathrm{E}-2$	$1.56 \mathrm{E}-4$
Cubic spline $L^{\prime \prime}=S^{\prime \prime}$ end conditions	5.31 E-1	$4.02 \mathrm{E}-2$	$1.57 \mathrm{E}-3$	$9.04 \mathrm{E}-3$	9.36 E-6	$1.95 \mathrm{E}-11$
Cubic spline Swartz L' = ${ }^{\prime}$	$2.50 \mathrm{E}-2$	$1.12 \mathrm{E}-4$	$1.57 \mathrm{E}-3$	8.75 E-8	$1.00 \mathrm{E}-2$	$3.68 \mathrm{E}-3$
Cubic spline Parabolic end conds.	$1.89 \mathrm{E-1}$	$5.26 \mathrm{E}-3$	$1.43 \mathrm{E}-3$	$9.85 \mathrm{E}-8$	$1.97 \mathrm{E}-2$	3.41 E-4
Cubic spline Natural	$2.88 \mathrm{E-1}$	$1.20 \mathrm{E}-2$	$1.43 \mathrm{E}-3$	$9.26 \mathrm{E}-8$	$1.97 \mathrm{E}-2$	$3.41 \mathrm{E}-4$
Lagrangian polynomial	$1.51 \mathrm{E-5}$	4.70 E-9	$3.16 \mathrm{E}-7$	$5.12 \mathrm{E}-12$	$6.02 \mathrm{E}-7$	$1.55 \mathrm{E}-13$

Table $\$ 2.2$
Function type: ${ }^{3} \mathrm{H}$
Number of standards: 10
Data group: B
Number of comparison points: 65

FIT TYPE	LOW QIP EXTRAPOLATED		INTERPOLATED		HIGH QIP EXTRAPOLATED	
	$\operatorname{LABS}\left(\mathrm{Y}-\mathrm{Y}_{\mathrm{i}}\right)$	$\Sigma\left(X-Y_{i}\right)^{2}$	$\Sigma \operatorname{ABS}\left(\mathrm{Y}-\mathrm{Y}_{\mathrm{i}}\right)$	$\Sigma\left(Y-Y_{i}\right)^{2}$	$\Sigma \operatorname{EABS}\left(\mathrm{Y}-\mathrm{Y}_{\mathrm{i}}\right)$	$\Sigma\left(\mathrm{Y}-\mathrm{Y}_{\mathrm{i}}\right)^{2}$
Piecewise linear	$1.67 \mathrm{E-1}$	$4.49 \mathrm{E}-3$	5.26 ER 2	$1.04 \mathrm{E}-4$	$2.60 \mathrm{E}-2$	$1.74 \mathrm{E}-4$
Least squares 4° polynomial	$2.06 \mathrm{E}-1$	$5.26 \mathrm{E}-3$	$8.44 \mathrm{E-3}$	2.51 E-6	$5.87 \mathrm{E}-3$	$9.51 \mathrm{E}-6$
Least squares 3° polynomial	$5.18 \mathrm{E}-1$	$3.00 \mathrm{E}-2$	$4.84 \mathrm{E-2}$	7.62 E-5	$1.73 \mathrm{E-2}$	$7.42 \mathrm{E}-5$
Quadratic spline $S^{\prime \prime}=L^{n}$ end conditions	$3.82 \mathrm{E}-1$	$1.79 \mathrm{E-2}$	$8.58 \mathrm{E}-3$	$3.62 \mathrm{E}-6$	$5.09 \mathrm{E}-3$	6.16 E-6
Quadratic spline $S^{\prime}=L^{\prime}$ end conditions	$3.82 \mathrm{E-1}$	$1.79 \mathrm{E}-2$	$8.58 \mathrm{E}-3$	$3.62 \mathrm{E}-6$	$5.09 \mathrm{E}-3$	$6.16 \mathrm{E}-6$
Quadratic spline Linear end conditions	$7.59 \mathrm{E}-2$	$7.24 \mathrm{E}-4$	$7.11 \mathrm{E}-2$	$1.66 \mathrm{E}-4$	$2.60 \mathrm{E}-2$	$1.75 \mathrm{E}-4$
Stineman	$4.44 \mathrm{E-1}$	$2.34 \mathrm{E}-2$	$3.38 \mathrm{E}-2$	$7.34 \mathrm{E-5}$	3.50 Em	3.30 E-4
Cubic spline Forsythe's ["=S"'	$2.35 \mathrm{E}-1$	$7.11 \mathrm{E-3}$	$1.28 \mathrm{E}-2$	$1.30 \mathrm{E}-5$	$2.29 \mathrm{E}-2$	$1.43 \mathrm{E}-4$
Cubic spline L" ${ }^{4}=5$ " end conditions	$4.67 \mathrm{E}-2$	$4.12 \mathrm{E}-4$	4.61 E-3	$1.59 \mathrm{E}-6$	$1.52 \mathrm{E}-3$	$6.54 \mathrm{E}-7$
Cubic spline Swartz L'=S'	$2.70 \mathrm{E}-1$	$9.18 \mathrm{E}-3$	$9.03 \mathrm{E}-3$	4.32 E-6	$1.26 \mathrm{E-2}$	$4.38 \mathrm{E}-5$
Cubic spline Parabolic end conds.	$4.02 \mathrm{E}-1$	$1.95 \mathrm{E}-2$	$1.54 \mathrm{E-2}$	$1.28 \mathrm{E}-5$	$1.84 \mathrm{E}-2$	$9.30 \mathrm{E}-5$
Cuobic spline Natural	$1.55 \mathrm{E}-1$	$3.35 \mathrm{E}-3$	$9.74 \mathrm{E}-3$	8.32 E-6	$1.84 \mathrm{E}-2$	9.30 E-5
Lagrangian polynomial	$4.33 \mathrm{E-4}$	$3.18 \mathrm{E}-8$	$7.28 \mathrm{E-7}$	$4.33 \mathrm{E}-14$	$3.66 \mathrm{E}-6$	$4.33 \mathrm{E}-12$

Table T2.3
Function type: ${ }^{3} \mathrm{H}$
Number of standards: 10
Data group: C
Number of comparison points: 65

FIT TYPE	LOW QIPEXTRAPOLATED		INTERPOLATED		HIGH QIP EXTRAPOLATED	
	$\operatorname{EABS}\left(\mathrm{Y}-\mathrm{Y}_{\mathrm{i}}\right)$	$\Sigma\left(Y-Y_{i}\right)^{2}$	$\operatorname{LABS}\left(\mathrm{X}-\mathrm{Y}_{\mathrm{i}}\right)$	$\Sigma\left(Y-Y_{i}\right)^{2}$	$\operatorname{EABS}\left(\mathrm{Y}-\mathrm{Y}_{\mathrm{i}}\right)$	$\Sigma\left(Y-Y_{i}\right)^{2}$
Piecewise linear	$2.02 \mathrm{E}-1$	$5.93 \mathrm{E}-3$	$2.47 \mathrm{E-2}$	$1.97 \mathrm{E-5}$	$1.56 \mathrm{E}-2$	$6.61 \mathrm{E}-5$
Least squares 4° polynomial	$2.00 \mathrm{E}-1$	$4.96 \mathrm{E}-3$	$7.48 \mathrm{E-3}$	$1.57 \mathrm{E}-6$	$6.39 \mathrm{E}-3$	$1.08 \mathrm{E}-5$
Least squares 3° polynomial	$5.27 \mathrm{E}-1$	$3.05 \mathrm{E}-2$	$4.00 \mathrm{E}-2$	$4.53 \mathrm{E}-5$	$2.03 \mathrm{E}-2$	$9.68 \mathrm{E}-5$
Quadratic spline $\mathrm{S}^{\prime \prime}=\mathrm{L} "$ end conditions	$2.61 \mathrm{E-1}$	$9.11 \mathrm{E}-3$	$1.69 \mathrm{E-3}$	$9.10 \mathrm{E}-8$	$2.26 \mathrm{E}-3$	$1.47 \mathrm{E}-6$
Quadratic spline $S^{\prime}=L^{\prime}$ end conditions	2.61 E-1	9.11 E-3	$1.69 \mathrm{E}-3$	$9.10 \mathrm{E}-8$	$2.26 \mathrm{E}-3$	$1.47 \mathrm{E}-6$
Quadratic spline Linear end conditions	$5.97 \mathrm{E}-2$	4.57 E-4	$2.31 \mathrm{E-3}$	$1.54 \mathrm{E}-5$	$1.57 \mathrm{E}-2$	$6.61 \mathrm{E}-5$
Stineman	$3.19 \mathrm{E}-1$	$1.30 \mathrm{E-2}$	$4.05 \mathrm{E}-3$	$1.97 \mathrm{E}-6$	$1.99 \mathrm{E}-2$	$1.04 \mathrm{E}-4$
Cubic spline Forsythe's $L^{\prime \prime \prime}=5^{\prime \prime \prime}$	$1.49 \mathrm{E}-1$	$3.09 \mathrm{E}-3$	$1.64 \mathrm{E-3}$	$3.04 \mathrm{E-7}$	$1.60 \mathrm{E-2}$	$7.63 \mathrm{E}-5$
Cubic spline $L^{\prime \prime}=S^{\prime \prime}$ end conditions	$1.56 \mathrm{E}-1$	3.35 Em 3	$3.50 \mathrm{E}-4$	$1.46 \mathrm{E}-8$	$4.29 \mathrm{E}-4$	$5.50 \mathrm{E}-8$
Cubic spline Swartz L'=S'	$1.56 \mathrm{E}-1$	$3.35 \mathrm{E-3}$	$1.01 \mathrm{E}-3$	$9.17 \mathrm{E}-8$	$8.24 \mathrm{E}-3$	$2.02 \mathrm{E}-5$
Cubic spline Parabolic end conds.	$2.90 \mathrm{E}-1$	$1.10 \mathrm{E}-2$	$1.97 \mathrm{E}-3$	$3.18 \mathrm{E}-7$	$1.39 \mathrm{E}-2$	5.81 E-5
Cubic spline Natural	$1.56 \mathrm{E}-1$	$3.36 \mathrm{E}-3$	$1.49 \mathrm{E}-3$	2.36 Em 7	$1.39 \mathrm{E-2}$	$5.81 \mathrm{E}-5$
Lagrangian polynomial	$2.66 \mathrm{E}-6$	$1.36 \mathrm{E}-8$	$9.35 \mathrm{E}-8$	$7.81 \mathrm{E}-16$	$1.90 \mathrm{E}-6$	$1.31 \mathrm{E}-12$
Cubic Spline Cantilever end conds.	$7.65 \mathrm{E}-2$	$5.87 \mathrm{E}-4$	$1.71 \mathrm{E}-3$	$2.66 \mathrm{E}-7$	$1.39 \mathrm{E}-2$	$5.81 \mathrm{E}-5$
Least squares 5° polynomial	$5.41 \mathrm{E}-2$	$4.02 \mathrm{E}-4$	$8.20 \mathrm{E}-4$	$1.95 \mathrm{E}-8$	$1.27 \mathrm{E}-3$	$4.71 \mathrm{E}-7$

Table T2.3a
Function type: ${ }^{3} \mathrm{H}$
Number of standards: 10
Data group: C
Number of comparison points: 650

FIT TYPE	LOW QIP EXTRAPOLATED		INTERPOLATED		HIGH QIP EXTRAPOLATED	
	$\operatorname{EABS}\left(\mathrm{Y}-\mathrm{Y}_{\mathrm{i}}\right)$	$\Sigma\left(Y-Y_{i}\right)^{2}$	$\Sigma \operatorname{ABS}\left(\mathrm{Y}-\mathrm{Y}_{\mathrm{i}}\right)$	$\Sigma\left(Y-Y_{i}\right)^{2}$	EABS ($Y-Y_{i}$)	$\Sigma\left(X-Y_{i}\right)^{2}$
Least squares 3° polynomial	4.82 E 0	$2.62 \mathrm{E-1}$	$4.00 \mathrm{E}-1$	4.51 E-4	$1.77 \mathrm{E-1}$	$7.59 \mathrm{E}-4$
Stineman	2.88 E 0	$1.09 \mathrm{E}-1$	$4.22 \mathrm{E}-2$	$1.97 \mathrm{E}-5$	$1.65 \mathrm{E-1}$	$7.74 \mathrm{E-4}$

Table T2. 4
Function type: ${ }^{3} \mathrm{H}$
Number of standards: 6
Data group: C
Number of comparison points: 65

FIT TYPE	$\begin{gathered} \text { LOW QIP } \\ \text { EXTRAPOLATED } \end{gathered}$		INTERPOLATED		HIGH QIP EXTRAPOLATED	
	$\operatorname{LABS}\left(\mathrm{Y}-\mathrm{Y}_{\mathrm{i}}\right)$	$\Sigma\left(Y-Y_{i}\right)^{2}$	$\operatorname{EABS}\left(\mathrm{Y}-\mathrm{Y}_{\mathrm{i}}\right)$	$\Sigma\left(Y-Y_{i}\right)^{2}$	$\operatorname{LABS}\left(\mathrm{Y}-\mathrm{Y}_{\mathrm{i}}\right)$	$\Sigma\left(Y-Y_{i}\right)^{2}$
Piecewise linear	$1.76 \mathrm{E}-1$	$4.85 \mathrm{E}-3$	$8.25 \mathrm{E}-2$	$2.05 \mathrm{E}-4$	$2.38 \mathrm{E}-2$	$1.48 \mathrm{E}-4$
Least squares 4° polynomial	$1.99 \mathrm{E}-1$	$4.96 \mathrm{E}-3$	$8.19 \mathrm{E}-3$	2.03 E-6	$5.59 \mathrm{E}-3$	8.65 E-6
Least squares 3° polynomial	$5.02 \mathrm{E}-1$	$2.85 \mathrm{E}-2$	$4.70 \mathrm{E}-2$	$6.29 \mathrm{E}-5$	$1.64 \mathrm{E-2}$	$6.69 \mathrm{E}-5$
Quadratic spline $S^{\prime \prime}=\mathrm{L} "$ end conditions	$3.56 \mathrm{E}-1$	$1.57 \mathrm{E}-2$	$9.74 \mathrm{E}-3$	$2.99 \mathrm{E}-6$	$4.89 \mathrm{E}-3$	6.57 E-6
Quadratic spline $S^{\prime}=L^{\prime}$ end conditions	$3.56 \mathrm{E}-1$	$1.57 \mathrm{E}-2$	$9.74 \mathrm{E}-3$	$2.99 \mathrm{E}-6$	$4.89 \mathrm{E}-3$	6.57 E-6
Quadratic spline Linear end conditions	$7.15 \mathrm{E}-2$	$6.14 \mathrm{E}-4$	$8.10 \mathrm{E}-2$	$1.80 \mathrm{E}-4$	$2.38 \mathrm{E}-2$	$1.48 \mathrm{E}-4$
Stineman	$4.41 \mathrm{E}-1$	$2.31 \mathrm{E-2}$	$2.67 \mathrm{E}-2$	$4.51 \mathrm{E}-5$	$3.30 \mathrm{E}-2$	$2.76 \mathrm{E}-4$
Cubic spline Forsythe's $I^{\prime \prime \prime}=S^{\prime \prime \prime}$	$2.77 \mathrm{E}-1$	9.59 E-3	$1.17 \mathrm{E}-2$	7.11 E-6	$2.03 \mathrm{E}-2$	$1.15 \mathrm{E}-4$
Cubic spline $L^{\prime \prime}=S^{\prime \prime}$ end conditions	$2.51 \mathrm{E}-2$	$9.12 \mathrm{E}-5$	$3.03 \mathrm{E}-3$	$5.54 \mathrm{E}-7$	$2.04 \mathrm{E}-3$	$1.16 \mathrm{E}-6$
Cubic spline Swartz L'=S'	$2.89 \mathrm{E-1}$	$1.04 \mathrm{E}-2$	$9.51 \mathrm{E}-3$	3.77 E-6	$1.23 \mathrm{E}-2$	$4.10 \mathrm{E}-5$
Cubic spline Parabolic end conds.	$3.95 \mathrm{E}-1$	$1.89 \mathrm{E}-2$	$1.29 \mathrm{E-2}$	7.79 E-6	$1.70 \mathrm{E}-2$	$8.10 \mathrm{E}-5$
Cubic spline Natural	$1.54 \mathrm{E}-1$	$3.21 \mathrm{E}-3$	$7.92 \mathrm{E}-3$	$4.77 \mathrm{E}-6$	$1.70 \mathrm{E}-2$	8.11 E-5
Lagrangian polynomial	$1.60 \mathrm{E}-1$	$3.41 \mathrm{E}-3$	$2.89 \mathrm{E}-3$	$3.34 \mathrm{E}-7$	$1.67 \mathrm{E}-1$	$3.41 \mathrm{E}-3$
Cubic spline Cantilever end conds.	$2.84 \mathrm{E}-1$	$7.22 \mathrm{E}-3$	$1.58 \mathrm{E}-2$	$1.09 \mathrm{E}-5$	$1.71 \mathrm{E-1}$	$8.14 \mathrm{E}-3$

Table T2.5
Function type: ${ }^{14} \mathrm{C}$
Number of standards: 10
Data group: A
Number of comparison points: 65

FIT TYPE	$\begin{gathered} \text { LOW QIP } \\ \text { EXTRAPOLATED } \end{gathered}$		INTERPOLATED		HIGH QIP EXTRAPOLATED	
	$\Sigma \operatorname{ABS}\left(\mathrm{Y}-\mathrm{Y}_{\mathrm{i}}\right)$	$\Sigma\left(Y-Y_{i}\right)^{2}$	$\Sigma \operatorname{ABS}\left(\mathrm{Y}-\mathrm{Y}_{\mathrm{i}}\right)$	$\Sigma\left(Y-Y_{i}\right)^{2}$	$\Sigma \operatorname{ABS}\left(\mathrm{Y}-\mathrm{Y}_{\mathbf{i}}\right)$	$\Sigma\left(Y-Y_{i}\right)^{2}$
Piecewise linear	$6.86 \mathrm{E}-3$	$1.90 \mathrm{E}-5$	$3.52 \mathrm{E}-1$	$6.11 \mathrm{E}-3$	$4.40 \mathrm{E}-3$	$1.87 \mathrm{E}-6$
Least squares 4° polynomial	$2.33 \mathrm{E-1}$	$1.41 \mathrm{E}-2$	$1.56 \mathrm{E}-1$	$6.90 \mathrm{E-4}$	1.16 E 0	$1.44 \mathrm{E-1}$
Least squares 3° polynomial	$2.35 \mathrm{E}-1$	$1.43 \mathrm{E}-2$	$1.55 \mathrm{E}-1$	$6.82 \mathrm{E}-4$	1.14 E 0	$1.38 \mathrm{E-1}$
Quadratic spline S"=L" end conditions	$1.09 \mathrm{E}-1$	$3.41 \mathrm{E}-3$	$7.96 \mathrm{E}-2$	9.32 E-4	$8.08 \mathrm{E}-3$	$8.04 \mathrm{E}-6$
Quadratic spline $S^{\prime}=L^{\prime}$ end conditions	$1.09 \mathrm{E}-1$	$3.41 \mathrm{E}-3$	$7.96 \mathrm{E}-2$	$9.32 \mathrm{E}-4$	$8.08 \mathrm{E-3}$	$8.04 \mathrm{E}-6$
Quadratic spline Linear end conditions	$1.10 \mathrm{E}-1$	$3.45 \mathrm{E}-3$	7.99 E-2	$3.35 \mathrm{E}-4$	$4.40 \mathrm{E}-3$	$1.87 \mathrm{E}-6$
Stineman	$4.17 \mathrm{E}-2$	$6.10 \mathrm{E}-4$	$6.46 \mathrm{E}-2$	$2.44 \mathrm{E}-4$	$4.54 \mathrm{E}-3$	$1.99 \mathrm{E}-6$
Cubic spline Forsythe's $\mathrm{L}^{\prime \prime=}=\mathrm{S}^{\text {"' }}$	$1.46 \mathrm{E}-2$	$7.58 \mathrm{E}-5$	$2.85 \mathrm{E}-2$	$3.70 \mathrm{E}-5$	$8.18 \mathrm{E-2}$	$9.49 \mathrm{E}-4$
Cubic spline $L^{\prime \prime}=S^{\prime \prime}$ end conditions	$9.13 \mathrm{E}-2$	$3.05 \mathrm{E}-3$	$2.68 \mathrm{E}-2$	$3.27 \mathrm{E}-5$	$1.94 \mathrm{E}-2$	$5.44 \mathrm{E}-5$
Cubic spline Swartz L'=S'	$5.70 \mathrm{E}-3$	$1.17 \mathrm{E}-5$	$2.83 \mathrm{E}-2$	$3.67 \mathrm{E}-5$	$8.56 \mathrm{E-3}$	9.60 E-6
Cubic spline Parabolic end conds.	$3.53 \mathrm{E}-2$	$4.51 \mathrm{E}-4$	$2.88 \mathrm{E}-2$	$3.80 \mathrm{E}-5$	$5.38 \mathrm{E}-2$	4.12 E-4
Cubic spline Natural	$4.05 \mathrm{E}-2$	$6.03 \mathrm{E}-4$	$2.76 \mathrm{E}-2$	$3.47 \mathrm{E}-5$	$5.38 \mathrm{E}-2$	$4.12 \mathrm{E}-4$
Lagrangian polynomial	$7.08 \mathrm{E}-4$	$2.04 \mathrm{E}-7$	$1.02 \mathrm{E}-3$	$5.47 \mathrm{E}-8$	$6.26 \mathrm{E}-1$	$8.10 \mathrm{E}-2$

Table T 2.6
Function type: ${ }^{14} \mathrm{C}$
Number of standards: 10
Data group: B
Number of comparison points: 65

FIT TYPE	LOW QIP EXTRAPOLATED		INTERPOLATED		HIGH QIP EXTRAPOLATED	
	$\operatorname{EABS}\left(\mathrm{Y}-\mathrm{Y}_{\mathrm{i}}\right)$	$\Sigma\left(X-Y_{i}\right)^{2}$	$E \operatorname{ABS}\left(\mathrm{Y}-\mathrm{Y}_{\mathrm{i}}\right)$	$\Sigma\left(Y-Y_{i}\right)^{2}$	$\Sigma \operatorname{ABS}\left(\mathrm{Y}-\mathrm{Y}_{\mathrm{i}}\right)$	$\varepsilon\left(Y-Y_{i}\right)^{2}$
Piecewise linear	1.18 Em 1	$3.28 \mathrm{E}-3$	$2.45 \mathrm{E}-1$	4.78 E-3	$2.46 \mathrm{E}-2$	$5.33 \mathrm{E}-5$
Least squares 4° polynomial	$2.44 \mathrm{E-1}$	$1.67 \mathrm{E}-2$	$1.67 \mathrm{E}-1$	$1.17 \mathrm{E}-3$	$7.84 \mathrm{E-1}$	$6.56 \mathrm{E}-2$
Least squares 3° polynomial	$2.09 \mathrm{E}-1$	$1.24 \mathrm{E}-2$	$1.80 \mathrm{E}-1$	$1.09 \mathrm{E}-3$	1.26 E 0	$1.69 \mathrm{E}-1$
Quadratic spline $S^{\prime \prime}=L^{\prime \prime}$ end conditions	$1.63 \mathrm{E-1}$	$7.56 \mathrm{E}-3$	$7.00 \mathrm{E-2}$	$3.19 \mathrm{E}-4$	$1.42 \mathrm{E-1}$	$2.06 \mathrm{E}-3$
Quadratic spline $S^{\prime}=L^{\prime}$ end conditions	$1.63 \mathrm{E}-1$	$7.56 \mathrm{E}-3$	$7.00 \mathrm{E-2}$	$3.19 \mathrm{E}-4$	$1.42 \mathrm{E-1}$	$2.06 \mathrm{E}-3$
Quadratic spline Linear end conditions	$1.48 \mathrm{E}-1$	$6.37 \mathrm{E}-3$	$4.55 \mathrm{E}-2$	$1.84 \mathrm{E}-4$	$2.46 \mathrm{E}-2$	$5.33 \mathrm{E}-5$
Stineman	$2.20 \mathrm{E-1}$	$1.35 \mathrm{E}-2$	$1.20 \mathrm{E-1}$	$1.17 \mathrm{E}-3$	$7.01 \mathrm{E}-2$	$4.14 \mathrm{E}-4$
Cubic spline Forsythe's $\mathrm{I}^{\prime \prime \prime}=S^{n \prime}$	$1.75 \mathrm{E}-1$	$8.75 \mathrm{E}-3$	$6.20 \mathrm{E}-2$	2.99 E-4	$5.66 \mathrm{E}-1$	$3.60 \mathrm{E}-2$
Cubic spline $L^{\prime \prime}=S^{n}$ end conditions	$2.99 \mathrm{E}-1$	$2.41 \mathrm{E-2}$	$1.78 \mathrm{E}-1$	$3.05 \mathrm{E}-3$	$3.50 \mathrm{E}-1$	$1.39 \mathrm{E}-2$
Cubic spline Swartz L'=S'	$1.75 \mathrm{E}-1$	$8.80 \mathrm{E}-3$	$5.42 \mathrm{E}-2$	2.81 E-4	2.25 E-1	$5.78 \mathrm{E}-3$
Cubic spline Parabolic end conds.	$1.42 \mathrm{E}-1$	$5.88 \mathrm{E}-3$	$3.56 \mathrm{E}-2$	$1.40 \mathrm{E}-4$	$2.89 \mathrm{E}-2$	$1.17 \mathrm{E}-4$
Cubic spline Natural	$5.24 \mathrm{E-2}$	6.65 E-4	$5.84 \mathrm{E}-2$	$3.23 \mathrm{E}-4$	$2.89 \mathrm{E}-2$	$1.17 \mathrm{E}-4$
Lagrangian polynomial	$1.36 \mathrm{E}-2$	$6.09 \mathrm{E}-5$	$2.50 \mathrm{E}-3$	$5.38 \mathrm{E}-7$	2.35 E 0	$9.79 \mathrm{E}-1$

Table T2.7
Function type: ${ }^{14} \mathrm{C}$
Number of standards: 10
Data group: C
Number of comparison points: 65

FIT TYPE	LOW QIP EXTRAPOLATED		INTERPOLATED		HIGH QIPEXTRAPOLATED	
	$\Sigma \operatorname{ABS}\left(\mathrm{Y}-\mathrm{Y}_{\mathrm{i}}\right)$	$\Sigma\left(Y-Y_{i}\right)^{2}$	$\Sigma \operatorname{ABS}\left(\mathrm{Y}-\mathrm{Y}_{\mathrm{i}}\right)$	$\Sigma\left(Y-Y_{i}\right)^{2}$	$\Sigma \operatorname{ABS}\left(\mathrm{Y}-\mathrm{Y}_{\mathrm{i}}\right)$	$\Sigma\left(Y-Y_{i}\right)^{2}$
Piecewise linear	$3.64 \mathrm{E}-2$	$2.95 \mathrm{E}-4$	$1.06 \mathrm{E-1}$	$5.53 \mathrm{E}-4$	$9.74 \mathrm{E}-3$	8.59 E-6
Least squares 4° polynomial	$2.35 \mathrm{E}-1$	$1.47 \mathrm{E-2}$	$1.52 \mathrm{E}-1$	$6.87 \mathrm{E}-4$	1.03 E 0	$1.13 \mathrm{E}-1$
Least squares 3° polynomial	$2.21 \mathrm{E}-1$	$1.32 \mathrm{E}-2$	$1.57 \mathrm{E}-1$	$7.08 \mathrm{E}-4$	1.19 E 0	1.50 E-1
Quadratic spline $S^{n}=\mathrm{L}^{\prime \prime}$ end conditions	$6.98 \mathrm{E}-2$	$1.56 \mathrm{E}-3$	$4.83 \mathrm{E}-3$	$1.25 \mathrm{E}-6$	$3.60 \mathrm{E}-2$	$1.41 \mathrm{E}-4$
Quadratic spline $S^{\prime}=L^{\prime}$ end conditions	$6.98 \mathrm{E}-2$	$1.56 \mathrm{E}-3$	$4.83 \mathrm{E}-3$	$1.25 \mathrm{E}-6$	$3.60 \mathrm{E}-2$	$1.41 \mathrm{E}-4$
Quadratic spline Linear end conditions	$6.66 \mathrm{E}-2$	$1.43 \mathrm{E}-3$	$4.50 \mathrm{E}-3$	$1.10 \mathrm{E}-6$	$9.74 \mathrm{E}-3$	8.59 E-6
Stineman	$1.32 \mathrm{E-1}$	$5.16 \mathrm{E}-3$	$2.12 \mathrm{E}-2$	$3.93 \mathrm{E}-5$	$1.59 \mathrm{E}-2$	$2.21 \mathrm{E}-5$
Cubic spline Forsythe's $\mathrm{I}^{\prime \prime}=\mathrm{S}^{\prime \prime \prime}$	$7.11 \mathrm{E}-2$	$1.56 \mathrm{E}-3$	5.79 E-3	$4.07 \mathrm{E}-6$	$1.62 \mathrm{E}-1$	$3.28 \mathrm{E}-3$
Cubic spline $L^{\prime \prime}=S^{\prime \prime}$ end conditions	$1.26 \mathrm{E}-1$	$4.69 \mathrm{E}-3$	$1.20 \mathrm{E}-2$	$2.19 \mathrm{E}-5$	$9.39 \mathrm{E}-2$	$1.11 \mathrm{E}-3$
Cubic spline Swartz L'=S'	$7.56 \mathrm{E}-2$	$1.77 \mathrm{E}-3$	$5.87 \mathrm{E}-3$	4.71 E-6	$5.78 \mathrm{E}-2$	$4.26 \mathrm{E}-4$
Cubic spline Parabolic end conds.	$9.48 \mathrm{E}-2$	$2.75 \mathrm{E}-3$	$7.37 \mathrm{E}-3$	$7.86 \mathrm{E}-6$	$2.62 \mathrm{E}-2$	$9.13 \mathrm{E}-5$
Cubic spline Natural	$2.36 \mathrm{E}-2$	$1.53 \mathrm{E}-4$	$3.07 \mathrm{E}-3$	$1.48 \mathrm{E}-6$	$2.62 \mathrm{E}-2$	9.11 E-5
Lagrangian polynomial	$5.47 \mathrm{E}-3$	$1.05 \mathrm{E}-5$	4.22 E-4	$1.80 \mathrm{E}-8$	1.48 E 0	$4.12 \mathrm{E}-1$

Table T2.8

Effect of near-coincident points
Function type: ${ }^{14} \mathrm{C}$
Number of standards: 6
Number of comparison points: 20
$\partial=0.0000001$

	$\operatorname{LABS}\left(\mathrm{X}_{\mathrm{i}}-Y_{i}\right)$ and comments	
QIP Values FIT TYPE	150,150+ , 200,250,300,350	150,200,250,250+, 300,350
```Piecewise linear Quadratic spline, L"=S" Stineman Cubic spline, Forsythe Cubic spline, Parabolic Cubic spline, Natural Lagrange Tension spline, z=1 Tension spline, z=2 Tension spline, z=3```	$\left\{\begin{array}{lll} 2.15 \mathrm{E}-1 & \\ 4.74 \mathrm{E}-2 & \\ 7.79 \mathrm{E}-2 & \text { All } \\ 4.28 \mathrm{E}-2 & \text { visibly } \\ 2.11 \mathrm{E}-2 & \text { satisfactory } \\ 4.29 \mathrm{E}-2 & \\ 3.79 \mathrm{E}-2 & \end{array}\right.$	$2.15 \mathrm{E}-1$ visibly satis.   $2.62 \mathrm{E}-1$ oscillatory   $1.14 \mathrm{E}-1$ visibly satis.   $2.64 \mathrm{E}-1$ oscillatory   $7.67 \mathrm{E}-1 \mathrm{v}$. oscillatory   $1.69 \mathrm{E}-1$ )   $8.77 \mathrm{E}-2$ ) visibly   1.79 E-1 ) satisfactory

T2.9
Comparison of calculated and dispensed DPM for ${ }^{3}$ 年 single label.

$\begin{gathered} \text { Sample } \\ \text { No } \end{gathered}$	Q1P	Dispensed	Piecemife bapear DPM $\simeq \triangle D P H$	Let Squares -3 Polynomal	Lat squares *4 polynomial	Quadratic Spline Natural EC	Quadratic Spline L'es.	Cubic Spline Natural	Cubic Spline Parabolic	Cubic Spline Swartz s'el'	Cubic Splina roraythe $\mathrm{stal}^{-1 *}$	scinamen
A1	177	69691	58429 $\pm 2161$	$49439 \pm 11394$	$71956 \pm 22395$	$54789 \pm 1891$	$59526 \pm 2054$	$65104 \pm 2321$	$64343 \pm 2304$	$64383 \pm 2305$	$64448 \pm 2306$	$63940 \pm 2395$
${ }^{12}$	235	86294	$83320 \pm 1327$	69691 - 4694	$85248 \pm 3625$	$90245 \pm 1340$	$87628 \pm 1301$	$84744 \pm 1326$	$84775 \pm 1326$	$84774 \pm 1326$	$84771 \pm 1326$	$84470 \pm 1348$
${ }^{13}$	272	87006	$83646 \pm 1006$	76781 - 3727	84816 $\pm 2441$	$79973 \pm 905$	$82118 \pm 929$	$84798 \pm 1013$	$84775 \pm 1013$	$84777 \pm 1013$	$84779 \pm 1013$	$85099 \geq 1026$
${ }^{4} 4$	593	96780	$97470 \pm 446$	$96304 \pm 1150$	$95658 \pm 713$	$95382 \pm 713$	$96575 \pm 437$	$96764 \pm 443$	$96764 \pm 443$	$96859 \pm 444$	$96759 \pm 443$	$96551 \pm 442$
As	609	86128	$87213 \pm 423$	$85609 \pm 1107$	$85598 \pm 710$	$85237 \pm 410$	$86365 \pm 415$	$86509 \pm 420$	$86509 \pm 420$	$86611 \pm 421$	$86504 \pm 420$	$86329 \pm 419$
B1	130	78102	x	$\times$	$\times$	x	$x$	$\chi$	$x$	x	$x$	$x$
B2	235	86294	$83320 \pm 1327$	$73461 \pm 6117$	$85164 \pm 2952$	$86401 \pm 1283$	$88630 \pm 1316$	$84888 \pm 1325$	$84720 \pm 1326$	$84687 \pm 1327$	$84661 \pm 1527$	$86401 \pm 1283$
H3	272	87006	$83646 \div 1006$	$76513 \pm 4353$	$85029 \pm 2061$	$83211 \pm 942$	$81267 \pm 920$	$84692 \pm 1013$	$84816 \pm 1013$	$84841 \pm 1013$	$84860 \pm 1013$	$83211 \pm 941$
84	393	96780	$96512 \pm 442$	$96746 \pm 1326$	$95809 \pm 645$	$96628 \pm 438$	$96246 \pm 436$	$96350 \pm 442$	$96350 \pm 462$	$96348 \pm 442$	$96352 \pm 442$	$96628 \pm 438$
H5	655	82244	82249 : 398	$80882 \pm 1093$	81883 - 589	$81519 \div 352$	$82027 \pm 395$	$81945 \pm 397$	$81945 \pm 397$	$81959 \pm 397$	$81914 \pm 397$	$81519 \pm 392$
C1	269	89800	$83197 \pm 1644$	$81376-1583$	$67638 \pm 6378$	$77712 \pm 1429$	$79379 \pm 1459$	$85168 \pm 1646$	$84976 \pm 1648$	$84978 \pm 1647$	$84946 \pm 1648$	$84758 \pm 1679$
C2	514	99801	$99127 \pm 518$	$98534 \pm 305$	$101374 \pm 1402$	$97193 \pm 495$	$97785 \pm 495$	$98814 \pm 517$	$98812 \pm 518$	$98816 \pm 517$	$98813 \pm 517$	98842 : 516
c3	562	80162	80645 : 453	$80244 \pm 462$	$82363 \pm 1201$	$79208 \pm 437$	$79648 \pm 439$	$80262 \pm 451$	$80261 \pm 451$	$80266 \pm 451$	$80262 \pm 451$	$80129 \pm 451$
C4	622	102579	103317 - 473	102627 : 520	$104015 \pm 1421$	$103631 \pm 469$	$103168 \pm 467$	$102836 \pm 473$	102836 $\pm 473$	102827 $~ 473$	$102835 \pm 471$	102974 : 472
cs	815	90829	$91341 \leq 376$	$91616 \pm 429$	$89479 \pm 979$	$91341 \pm 375$	$90854 \pm 373$	$90945 \pm 375$	$90945 \pm 375$	$90664 \pm 374$	90902 $\div 375$	$91310 \pm 376$
D1	219	93827	$100601: 3675$	$118015 \pm 7356$	$x$	$83028 \pm 2677$	$86956 \pm 2804$	$96188 \pm 3359$	$90386 \pm 3031$	$86769 \pm 2856$	89257 $\pm 2974$	$102119 \pm 3743$
D2	256	85400	01874 - 1805	$82286 \pm 2623$	$70185 \pm 10648$	$93330 \pm 1980$	$90070 \pm 1910$	$86294 \pm 1884$	$87616 \pm 1889$	$88554 \pm 1896$	$87899 \pm 1891$	$82644 \pm 1823$
D3	534	99801	$98789 \pm 517$	$94465 \pm 505$	$100766 \pm 1696$	$99420 \pm 506$	$99071 \pm 505$	$98671 \pm 516$	$98672 \pm 516$	$98672 \pm 516$	$98673 \pm 516$	94685 - 516
D4	669	89202	$49535 \pm 409$	$88377 \pm 401$	$88652 \pm 1176$	$89844 \pm 407$	$89378 \pm 405$	$89007 \pm 407$	$89007 \pm 407$	$88961 \pm 407$	88996 - 407	$88930 \pm 406$
DS	865	82009	$82304 \pm 350$	$82445 \pm 356$	$82257 \pm 923$	$82304 \pm 349$	$82116 \pm 349$	$82177 \pm 350$	$82177 \pm 350$	$82018 \pm 349$	82139 - 350	$82314: 350$

A and a groups are two chemically quenched calibration curves with different atandards
$C$ and $D$ groups are two colour quenched calibracion curves with different standayda
Table T2. 10
Comparison of calculated and dispensed DPM for ${ }^{14} \mathrm{C}$ single label

Sample Number	QIP	Dispensed DIM	Piecewise Linear	Least   Squares   $3^{\circ}$ Polynomial	Least   Squares   $4^{\circ}$ Polynomial	Quadratic   Spline   Natural	Quadratic Spline L' $=$ S'	Cubic Spline Natural	Cubic Spline Parabolic	Cubic Spline Swartz	Cubic Spline Forsythe	Stineman
1	175	120543	$121240 \pm 785$	$129332 \pm 10168$	$131056 \pm 7801$	$120771 \pm 513$	$120791 \pm 513$	$119705 \pm 916$	$119454 \pm 893$	$120026 \pm 887$	$120080 \pm 882$	$120477 \pm 779$
2	329	96384	$97406 \pm 321$	$93724 \pm 3410$	$93999 \pm 2500$	$95843 \pm 312$	$95797 \pm 312$	$96294 \pm 321$	$96236 \pm 322$	$96219 \pm 322$	$96206 \pm 322$	$46228 \pm 317$
3	426	75431	$75747 \pm 268$	$75147 \pm 2772$	$71638 \pm 1911$	$75549 \pm 267$	$25585 \pm 267$	$75342 \pm 268$	$75356 \pm 268$	$75360 \pm 268$	$75362 \pm 268$	$75449 \pm 267$

Table T2.11

	Piecewise   Linear	Least Squares $3^{\circ}$ Polynomial	Quadratic Spline	Quadratic Spline	Cubic   Spline	Cubic   Spline	Cubic Spline	Cubic Spline	Stineman
End conditions			Natural	$L^{\prime}=S^{\prime}$	Natural	Parabolic	Swartz	Forsythe	
${ }^{3} \mathrm{H}$ mean error (\%)	2.95	8.10	4.37	3.21	1.48	1.70	1.96	1.77	2.11
${ }^{14} \mathrm{C}$ mean error (\%)	0.69	5.41	0.30	0.34	0.30	0.25	0.23	0.22	0.08
Mean of ${ }^{3} \mathrm{H}$ and ${ }^{14} \mathrm{C}$	1.82	6.76	2.34	1.78	0.89	0.97	1.10	1.00	1.10



Table T2. 13

Coefficients of the ${ }^{\circ} 3$ Least Sauares Polynomials used to fit the backeround data.

Region	as	a.	am	$a_{2}$
0-19	8.22222	33.21226	59.42225	-68.58234
0-156	-27. 12587	353.96925	-568.79719	303.35668
0-714	3.30382	215.47564	-326.65731	174.95804
0-12	3.10007	31.92439	65.81563	-72.81374
12-156	0.24714	149.80508	-333.73327	213.78200
90-714	-13.05051	128.68608	-228.08991	129.22932
12-90	7.03592	92.48893	-226. 14439	151.19346

Equation : $y=a_{0}+a_{1} x+a_{2} x^{2 n}+a^{n}$ and $y=$ Background in CPM $x=\operatorname{SIE}(\operatorname{AEC}) \div 1000$

Table T2. 14

SIE/AEC	\%DPM Recovery			$\begin{gathered} \mathrm{H}: 1.4 \mathrm{C}: \pm \infty \mathrm{Cl} \text { Ratio } \\ (1 \equiv 20,000 \mathrm{cpm}) \\ \hline \end{gathered}$	
913	96.2	94.9	106.1	$1: 1$ :	2
868	97.3	97.6	106.8	$1: 1$ :	2
830	98.6	96.4	105.3	$2: 1$ :	2
76.5	99.7	96.8	105.7	$2: 1$ :	2
567	98.6	103.6	104.4	1/2: 1 :	2
451	97.3	102.3	105. 4	17/2: 1 :	2
395	94.7	106.6	102.5	17/2: 1	2
266	52.0	107.6	107.7	$1: 1:$	2
238	89.4	109.0	104.8	2 : 1	3

Table T2. 15

SIE/AEC	\%DPM Recovery			$\begin{gathered} \mathrm{H}:{ }^{14 \mathrm{C}: \mathrm{F} \mathrm{Cl}} \text { Ratio } \\ (1 \equiv 20,000 \mathrm{cpm}) \\ \hline \end{gathered}$	
945	98.3	97.8	103.5	$1: 1$ :	1
920	97.8	98.2	104.1	$1: 1$ :	1
851	97.8	97.7	105.6	$1: 1$ :	1
807	100.6	99.3	102.4	$1: 1$ :	1
731	99.8	99.9	101.1	1 : 1	1
575	99.1	103.4	96.3	$2: 1$	1
435	103.0	104.5	97.4	1 : 1	1
391	109.6	114.1	78.7	$1: 1$	1
321	119.9	114.9	74.8	1 : 1	1
236	185.2	103.4	95.3	$1: 1$	1


SIE/AEC	\%DPM Recovery			$\begin{gathered} \mathrm{BH}:{ }^{14 \mathrm{C}: ~ W \mathrm{Cl}} \begin{array}{c} \text { Ratio } \\ (1 \equiv 12,000 \mathrm{cpm}) \end{array} \\ \hline \end{gathered}$	
944	98.4	97.9	101.2	$3: 1$ :	
887	99.6	97.4	107.9	$3: 2:$	1
845	100.5	97.7	103.0	$3: 1:$	1
791	100.5	98.1	107.1	$3: 2$ :	1
708	100.1	99.6	104.1	$3: 2:$	
568	100.5	102.3	97.1	$3: 1$ :	
430	100.5	98.7	100.8	$3: 1$ :	1
389	100.5	101.1	87.5	$3: 1$ :	
358	99.2	106.1	85.6	$3: 2:$	
235	134.7	105.6	93.1	$3: 1$ :	

Table T2. 17


Results for Colour Quenched Samples using Chemical
Standards Calibration Curves

SIE/AEC	\%DPM Recovery   ${ }^{1.4} \mathrm{C} \quad{ }^{-2} \mathrm{Cl}$			H: ${ }^{14} \mathrm{C}: 3 \mathrm{Fl}$ Ratio
679	89.2	104.5	98.3	$1: 1: 1 \frac{1}{2}$
553	80.0	105.2	100.1	$1: 1$ : 11/2
462	58.2	98.2	105.0	$1: 1 \frac{1}{2}: 1^{1 / 2}$
432	47.3	96.5	106.6	$1: 1 \frac{1}{2}$ : $11 / 2$
333	-	84.9	102.1	$1: 1: 1 \frac{1}{2}$
331	-	88.3	101.7	$1: 1: 1 \frac{1}{2}$
243	-	-	-	$1: 1: 1 \frac{1}{2}$

Table T2. 19

Results for Colour Quenched Samples using Colour Quenched Standards Calibration Curves

SIE/AEC	\%DPM Recovery			${ }^{3} \mathrm{H}:{ }^{44} \mathrm{C}:{ }^{* s} \mathrm{Cl}$ Ratio   ( $1 \equiv 20,000 \mathrm{cpm}$ )
679	97.0	100.8	100.5	$1: 1: 1 \frac{1}{2}$
553	90.1	93.9	103.5	$1: 1: 1^{1 / 2}$
462	99.5	97.5	102.5	$1: 1 \frac{1}{2}: 1 \frac{1}{2}$
432	106.0	98.5	102.6	$1: 1 \frac{1}{2}$ : $11 / 2$
333	96.8	98.4	94.3	$1: 1: 1 \frac{1}{2}$
331	102.0	103.7	94.1	$1: 1$ : $11 / 2$
243	-	-	-	$1: 1: 1 \frac{1}{2}$

Table T3.1

	Substance			
	p-Xylene	$\begin{gathered} 10 \mathrm{~g} \mathrm{I}^{-1} \mathrm{bPBD} \text { in } \\ \mathrm{p} \text {-Xylene } \end{gathered}$	$\mathrm{CCl}_{4}$	n-Hexadecane
$\begin{array}{cc} \text { Measured } & { }^{N}{ }_{\lambda R} \\ " & { }^{N}{ }_{\lambda I} \\ " & { }^{N}{ }_{\lambda B} \\ " & { }^{N}{ }_{\lambda V} \end{array}$	1.4987   1.4974   1.4925   1.4850	$\begin{aligned} & 1.5006 \\ & 1.4992 \\ & 1.4964 \\ & 1.4868 \end{aligned}$	$\begin{aligned} & 1.4650 \\ & 1.4622 \\ & 1.4582 \\ & 1.4412 \end{aligned}$	$\begin{aligned} & 1.4403 \\ & 1.4373 \\ & 1.4365 \\ & 1.4140 \end{aligned}$
$\begin{array}{cc} \text { Calculated } & A \\ \text { using } \lambda_{R} \lambda_{Y} \lambda_{B} \\ " & B \\ " & C \\ " & N_{\lambda_{V}} \end{array}$	$\begin{array}{r} 1.50608488 \\ -2580.27797 \\ -150921742 \\ 1.4882 \end{array}$	$\begin{gathered} 1.51286338 \\ -6001.20807 \\ 436679096 \\ 1.4933 \end{gathered}$	$\begin{gathered} 1.4923113 \\ -14083.989 \\ 1.26042472 \mathrm{E} 9 \\ 1.4531 \end{gathered}$	$\begin{gathered} 1.47214743 \\ -17022.8845 \\ 1.70987482 \mathrm{E} 9 \\ 1.4562 \end{gathered}$
Calculated $A$   using $\lambda_{R} \lambda_{Y} \lambda_{V}$    $"$ $B$   $" 1$    $"$         $N_{\lambda_{B}}$	$\begin{gathered} 1.50368545 \\ -786.478293 \\ -484476726 \\ 1.4921 \end{gathered}$	$\begin{gathered} 1.50675199 \\ -1432.37733 \\ -412889718 \\ 1.4937 \end{gathered}$	$\begin{array}{r} 1.48042353 \\ -5196.90174 \\ -392118921 \\ 1.4522 \end{array}$	$\begin{array}{r} 1.45616846 \\ 1.45616846 \\ -511424519 \\ 1.4264 \end{array}$

Table T3.2
Probability of ' $n$ ' electrons when expected gain $=3.94$ and variation with Shape factor (b)

n	$\mathrm{b}^{\prime}=0$	$\mathrm{b}=0.01$	$b=0.05$	$\mathrm{b}=0.1$	$\mathrm{b}=0.2$	$\mathrm{b}=0.3$	$\mathrm{b}=0.5$	$\mathrm{b}=1$
0	1.944828-02	$2.09763 \mathrm{E}-02$	$2.74231 \mathrm{E}-02$	3.60888E-02	5.47220E-02	$7.42137 \mathrm{E-02}$	1.13367E-01	2.02429E-01
1	7.66260E-02	$7.95139 \mathrm{E}-02$	9.02649E-02	1.02001E-01	$1.20584 \mathrm{E-01}$	$1.34006 \mathrm{E-01}$	1.50393E-01	$1.61452 \mathrm{E-01}$
2	1.50953E-01	$1.52212 \mathrm{E}-01$	$1.55984 \mathrm{E-01}$	$1.58563 \mathrm{E}-01$	$1.59430 \mathrm{E}-01$	$1.57282 \mathrm{E}-01$	$1.49633 \mathrm{E}-01$	1.28768E-01
3	1.98252E-01	$1.96174 \mathrm{E}-01$	1.88258E-01	$1.79265 \mathrm{E-01}$	$1.63948 \mathrm{E}-01$	1.51468E-01	$1.32336 \pm-01$	1.02702E-01
4	1.95278E-01	1.91483E-01	$1.78153 \mathrm{E}-01$	$1.64669 \mathrm{E}-01$	1.44509E-01	$1.29914 \mathrm{E-01}$	$1.09723 \mathrm{E-01}$	$8.19125 \mathrm{E}-02$
5	1.53879E-01	$1.50976 \mathrm{E}-01$	$1.40737 \mathrm{E}-01$	$1.30318 \mathrm{E}-01$	1.14637E-01	$1.03217 \mathrm{E}-01$	$8.73348 \mathrm{E-02}$	6.53310E-02
6	1.01047E-01	1.00152E-01	9.65091E-02	9.20825E-02	7.765'70E-02	6.76570 Em 02	$6.75840 \mathrm{E}-02$	$5.21061 \mathrm{E}-02$
7	5.68752E-02	$5.74885 \mathrm{E}-02$	5.89950E-02	$5.94884 \mathrm{E-02}$	5.83159E-02	5.60895E-02	5.12325E-02	4.15583E-02
8	2.80110E-02	$2.91466 \mathrm{E}-02$	3.27688E-02	3.57293E-02	3.85511E-02	3.92459E-02	3.82303E-02	$3.31457 \mathrm{EE}-02$
9	$1.22626 \mathrm{E}-02$	$1.32581 \mathrm{E}-02$	1.67783E-02	2.01970E-02	2.45412E-02	2.67715E-02	2.81757E-02	$2.64360 \mathrm{E}-02$
10	$4.83147 \mathrm{e}-03$	5.47801E-03	8.00790E-03	1.08461E-02	1.51420E-02	1.78861E-02	$2.05578 \mathrm{E}-02$	$2.10846 \mathrm{E}-02$
11	$1.73054 \mathrm{E}-03$	$2.07652 \mathrm{E}-03$	$3.59434 \mathrm{E-03}$	5.57372E-03	9.09997E-03	$1.17442 \mathrm{E}-02$	$1.48756 \mathrm{E-02}$	1.68165E-02
12	5.68195E-04	7.28101E-04	1.52817E-03	2.75688E-03	$5.34734 \mathrm{E}-03$	7.59893E-03	1.06892E-02	$1.34123 \mathrm{E-02}$
13			$6.19084 \mathrm{E}-04$	$1.31865 \mathrm{E}-03$	3.08178E-03	$4.85521 \mathrm{E}-03$	$7.63556 \mathrm{E}-03$	1.06973E-02
14				$6.12298 \mathrm{E}-04$	$1.74624 \mathrm{E}-03$	3.06844E-03	$5.42644 \mathrm{E-03}$	$8.53184 \mathrm{E}-03$
15					9.74822\%-04	1.92075E-03	3.83931E-03	$6.8047 \mathrm{E}-03$
16						1.19222E-03	$2.70578 \mathrm{E-03}$	$5.42726 \mathrm{E}-03$
17						$7.34475 \pm-04$	$1.90032 \mathrm{E}-03$	$4.32864 \mathrm{E}-03$

Table T 3.2 cont.

n	$b=0$	$b=0.01$	$b=0.05$	$b=0.1$	$b=0.2$	$b=0.3$	$\mathrm{b}=0.5$	$\mathrm{b}=1$
18							$1.33050 \mathrm{E}-03$	3.45239E-03
19							9.28968E-04	2.75353E-03
20								2.19613E-03
21								$1.75157 \mathrm{E-03}$
22								1.39700E-03
23								$1.11421 \mathrm{E}-03$
24								$8.88661 \mathrm{E}-04$
SUM $=$	$9.99763 \mathrm{E}-01$	9.99663E-01	$9.99621 \mathrm{E}-01$	9.99510®-01	9.98836E-01	9.98865E-01	$9.97898 \mathrm{E}-01$	9.96499E-01

Table T 3.3

Aluminium Reflection Data

Wavelength of incident   radiation, nm	Normal Incidence   Reflection
620	0.9148
564	0.9200
517	0.9228
477	0.9238
443	0.9242
414	0.9241
388	0.9243
365	0.9245
345	0.9246
327	0.9247
295	0.9248

Effect of Loading on Packard 300C

Unaltered LSC   (and + line driver, results $\simeq$ same			$6^{11}$ Coax. cable + Scope   + MCA (no line driver)			4 Coax. cable + Scope   + MCA (no line driver)		
SIE	CPM	\% Dev	SIE	CPM	\% Dev	SIE	CPM	\% Dev
913	187130	1.46	913	187779	1.46	932	181130	1.49
558	180909	1.49	557	180730	1.49	570	178230	1.50
371	168240	1.54	372	170320	1.53	378	167810	1.54
295	149220	1.64	298	151449	1.63	302	150170	1.63
229	125230	1.79	229	124550	1.79	240	124160	1.79
203	103160	1.97	203	103210	1.97	214	1.4450	1.96
180	81680	2.21	180	81690	2.21	192	84560	2.17
164	68400	2.42	167	68280	2.42	180	69930	2.39

Table $\$ 3.5$

$\begin{aligned} & \text { MCA } \\ & \text { settings } \end{aligned}$			MCA Count	$\begin{gathered} \text { MCA } \\ \text { time } \\ \mathrm{s} \end{gathered}$	MCA CPM	MCA/PEP   Integration   LL limits   UL		MCA/PEI Mean p.h.	$\begin{aligned} & \text { MCA } \\ & \text { Effy } \% \end{aligned}$	Packard CPM **	Packard SIS Effy	$\underset{\substack{\text { DPM }}}{\text { Dispensed }}$
8	0	3.2	844132	600	84413	22	740	616	79.2	101205	94.5	106537
8	0	3.2	702743	600	70274	22	550	416	72.8	90450	93.7	96522
16	0	3.2	697478	600	69748	22	800	310	75.5	83472	90.7	92072
16	0	3.2	528938	600	52894	22	600	208	56.1	80517	85.4	94278
32	0	3.2	694831	600	69483	22	1000	180	73.5	76580	81.0	94575
32	0	3.2	759592	600	75959	22	960	139	64.9	85679	73.3	117016
32	0	3.2	508053	600	50805	22	880	107	52.6	58129	60.2	96575
32	0	3.2	319704	600	31970	22	808	83	34.7	39234	42.5	92232
32	0	3.2	216894	600	21689	22	720	75	24.9	27956	31.7	87110
32	0	3.2	189912	600	18991	22	688	73	18.1	25368	24.2	104789

[^4] Coincidence Summed Spectra Results for ${ }^{14} \mathrm{C}$ Colour Quenched Samples
Table T3.6
Coincidence Summed Spectra Results for ${ }^{14} \mathrm{C}$ Chemically Quenched Samples

$\begin{gathered} \text { MCA } \\ \text { settings } \end{gathered}$			MCA Count	$\begin{gathered} \text { MCA } \\ \text { time } \\ \mathrm{s} \end{gathered}$	MCA $\mathrm{CPM}$	MCA/PEI   Integration   LL limits   UL		$\begin{aligned} & \text { MCA/PET } \\ & \text { Mean } \\ & \text { p.h. } \end{aligned}$	$\begin{gathered} \text { MCA } \\ \text { Effy \% } \end{gathered}$	Packard CPM **	$\begin{gathered} \text { Packard } \\ \text { SIS } \\ \text { Effy } \end{gathered}$	Dispensed DPM
8	0	3.2	237076	600	23708	22	740	610	82.0	27857	96.3	28931
8	0	3.2	243727	600	24373	22	680	576	80.2	28997	95.4	30385
8	0	3.2	236135	600	23624	22	600	492	77.9	28880	95.3	30314
16	0	3.2	239865	600	23987	22	832	356	81.1	27678	93.6	29583
16	0	3.2	219566	600	21957	22	600	218	72.7	27069	89.6	30220
32	0	3.2	250979	600	25098	22	1000	213	82.2	27149	88.9	30526
32	0	3.2	233049	600	23305	22	760	147	76.5	25685	84.3	30456
32	0	3.2	176002	600	17600	22	400	57	53.7	21432	65.4	32672
32	0	3.2	137383	1000	8243	22	232	27	26.4	12743	40.8	31249
32	0	3.2	86511	2000	2595	22	232	17	8.4	5861	18.9	30951

* (i) Spectra rescaled by amplification factor $32=x 1,16=x 2,8=x 4$
(ii) LL offset removed
** SIS CPM based on 11 min counts
Table T3．7
Coincidence Summed Spectra Results for ${ }^{3}$ H Colour Quenched Samples

	욷
	N N N N N N N N N N
式忥	
或罭心	8 8 8 8 8 8 8 8 8 8   8 8
$\begin{aligned} & \text { 足 } \\ & \text { 艺 } \\ & 0 \end{aligned}$	
	$\dot{m} \dot{m} \dot{m} \dot{m} \dot{M} \dot{M} \dot{m} \dot{m} \dot{m} \dot{m}$   0000000000  

Table T3.8

$\begin{gathered} \text { MCA } \\ \text { settings } \end{gathered}$			MCA Count	$\begin{gathered} \text { MCA } \\ \text { time } \\ \mathrm{s} \end{gathered}$	MCA CPM	MCA/PET   Integration limits		MCA/PEI   Mean   Pulse   Height	MCA Effy \%	Packard CPM	Packard Effy \%	Dispensed DPM
64	0	3.2	386513	600	38651	22	700	111	44.89	40637	52.30	86105
64	0	3.2	328257	600	32826	22	600	88	38.10	34750	44.70	86158
64	0	3.2	293839	600	29384	22	500	78	34.12	31060	39.97	86128
64	0	3.2	286578	600	28658	22	480	70	30.06	30503	35.46	95342
64	0	3.2	135819	600	13582	22	400	54	21.72	14797	26.22	62536
64	0	3.2	102973	600	10297	22	320	43	14.56	11086	17.38	70706
64	0	3.2	71455	1000	4287	22	240	37	8.24	5077	10.82	52020
64	0	3.2	78816	1000	4729	22	240	32	5.44	5902	7.51	87006
64	0	3.2	22494	3000	450	22	200	26	0.58	609	0.86	78140

Table T3.9

Model Generated Coincidence-Summed Colour and Chemically Quenched ${ }_{H}$ Samples

QCOL	QCHEM	Coincidence   Mean Pulse ht	Coincidence Efficiency
0	0	92.1	68.8
0	0.1	89.4	66.4
0	0.2	80.4	61.1
0	0.3	74.7	59.1
0	0.4	67.2	53.0
0	0.5	63.0	46.7
0	0.6	55.1	42.1
0	0.7	47.4	32.7
0	0.8	39.7	21.1
0	0.9	33.1	9.61
0	0	92.1	68.8
0.01	0	92.6	65.4
0.05	0	80.2	61.7
0.10	0	74.9	54.7
0.20	0	63.1	45.4
0.50	0	52.3	33.4
1	0	48.2	27.9
10	0	41.9	22.7
100	0	37.5	12.6
500	0	36.5	3.13

Table T3. 10

Model Generated Coincidence Summed Colour and Chemically Quenched ${ }^{4} \mathrm{C}$ Samples:

QCOL	QCHEM	Coincidence   Mean pulse ht	Coincidence Efficiency
0	0	791.4	96:1
0	0.1	692.5	95.4
0	0.2	638.5	94.3
0	0.3	553.0	95.1
0	0.4	488.9	94.3
0	0.5	399.4	93.5
0	0.6	317.0	92.2
0	0.7	247.6	88.3
0	0.8	174.3	84.6
0	0.9	102.5	69.6
0	0.93	77.8	62.3
0	0.95	64.4	51.1
0	0.97	49.9	35.8
0.01	0	718.1	96.4
0.05	0	633.1	96.2
0.1	0	519.9	94.3
0.2	0	420.1	93.3
0.5	$\bigcirc$	308.6	88.3
1	0	241.6	88.4
10	0	185.6	84.5
100	0	132.0	69.6
500	0	114.5	23.6

Model Generated Coincidence Summed Colour and Chemically Quenched $\%$ Samoles using 5000 counts Spectra

QCOL	QCHEM	Mean	Efficiency
0	0	96.3	67.3
0	0.1	91.3	64.6
0	0.2	82.0	61.2
0	0.3	76.6	57.4
0	0.4	68.6	53.2
0	0.5	61.7	47.9
0	0.6	54.6	40.9
0	0.7	48.5	32.7
0	0.8	40.3	21.8
0	0.9	32.0	9.28
0	0	96.5	66.4
0.01	0	94.8	66.8
0.05	0	83.8	60.0
0.1	0	73.7	53.5
0.2	0	62.8	45.0
0.5	0	52.5	33.9
1	0	48.1	29.9
10	0	42.3	22.9
100	0	37.9	12.6
500	0	37.0	3.11
0.05	0.3	64.9	50.0
0.1	0.3	59.4	43.0


QCOL	QCHEM	Mean	Efficiency
0.5	0.3	44.7	24.4
10	0.3	37.5	15.7
100	0.3	34.7	8.14
0.05	0.4	60.2	45.8
0.1	0.4	56.1	38.1
0.5	0.4	41.4	20.9
10	0.4	35.4	12.9
100	0.4	33.3	6.66
0.05	0.5	54.9	39.7
0.1	0.5	50.7	33.0
0.5	0.5	39.5	17.5
10	0.5	33.9	10.3
100	0.5	31.7	5.24
0.05	0.6	49.5	33.0
0.1	0.6	45.5	27.2
0.5	0.6	36.3	13.3
10	0.6	32.4	7.74
100	0.6	30.7	3.75
0.05	0.7	42.5	25.7
0.1	0.7	40.7	20.5
0.5	0.7	33.9	9.17
10	0.7	30.4	5.24

Table T3. 12

Model Generated Coincidence Summed Colour and Chemically Quenched ${ }^{44} \mathrm{C}$ Samples using 5000 oounts

QCOL	QCHEM	Mean	Efficiency
0	0	766.3	96.5
0	0.3	549.6	95.0
0	0.5	396.4	92.8
0	0.7	250.8	88.7
0	0.9	102.1	70.5
0	0.95	64.2	51.0
0.05	0	614.1	95.1
0.5	0	298.8	89.6
1	0	253.2	86.9
10	0	191.0	83.4
100	0	130.3	69.0
500	0	110.4	23.8
0.5	0.8	83.1	58.3
10	0.8	61.3	45.1
100	0.8	51.1	28.3
500	0.8	48.2	7.46
0.5	0.9	54.7	37.8
10	0.9	43.8	25.7
100	0.9	39.5	14.1
500	0.9	37.5	3.54

Table T3.13(a)

Model Generated Coincidence Summed ${ }^{14} \mathrm{C}$ samples Repeatability

QCOL	QCHEM	Mean ph	Efficiency
0	0	744.6	96.8
0	0	773.0	96.9
0	0	773.3	96.5
0	0	791.4	96.5
0	0	781.8	97.0
0	0	779.1	95.4
0	0	776.1	94.9
0	0	755.8	97.0
0	0	752.6	96.9
0	0	749.5	96.1

Table T3.13(b)

QCOL	QCHEM	Mean ph	Efficiency
0	0	791.4	96.1
0	0.3	553.0	95.1
0	0.5	399.4	93.5
0	0.7	247.6	88.3
0	0.9	102.5	69.6
0	0	757.3	95.5
0	0.3	538.2	95.3
0	0.5	393.5	92.9
0	0.7	253.6	88.6
0	0.9	101.9	71.0

Threshold effect on Model calibration curves
(a) Tritium

QCHEM	Threshold=0		Threshold=1		Threshold=4		Threshold $=10$	
	$\begin{aligned} & \text { mean } \\ & \text { p.h. } \end{aligned}$	$\begin{gathered} \text { eff. } \\ \% \end{gathered}$	$\begin{aligned} & \text { mean } \\ & \text { p.h. } \end{aligned}$	eff.	mean   p.h.	$\begin{gathered} \text { eff. } \\ \% \end{gathered}$	$\begin{aligned} & \text { mean } \\ & \text { p.h. } \end{aligned}$	$\begin{aligned} & \mathrm{eff} . \\ & \% \end{aligned}$
0	92.1	68.8	101.8	61.1	105.5	52.3	112.2	37.7
0.1	89.4	66.4	94.6	58.1	95.1	49.2	105.5	35.5
0.2	80.4	61.1	89.2	54.7	87.3	43.5	98.8	30.1
0.3	74.7	59.1	78.1	49.8	83.8	42.2	90.9	26.0
0.4	67.2	53.0	72.0	44.5	75.2	35.9	82.0	21.5
0.5	63.0	46.7	65.5	39.8	71.4	30.4	74.3	17.1
0.6	55.1	42.1	61.4	32.6	62.5	23.9	66.7	12.8
0.7	47.4	32.7	52.7	25.2	53.7	17.7	60.3	7.91
0.8	39.7	21.1	43.7	15.9	46.8	10.8		
0.9	33.1	9.61	35.9	6.41	37.8	4.03		

(b) Carbon-14

QCHEM	Threshold $=0$		Threshold=1		Threshold=10		Threshold=50	
	mean   p.h.	$\begin{gathered} \text { eff. } \\ \% \end{gathered}$	$\begin{aligned} & \text { mean } \\ & \text { p.h. } \end{aligned}$	$\begin{gathered} \text { eff. } \\ \% \end{gathered}$	$\begin{aligned} & \text { mean } \\ & \text { p.h. } \end{aligned}$	eff. \%	mean   p.h.	eff.
0	757.3	95.5	803.2	95.1	781.2	91.6	855.5	74.3
0.3	538.2	95.3	541.0	93.5	536.4	87.8	632.6	62.4
. 0.5	393.5	92.9	392.7	91.7	417.4	83.7	486.1	54.7
0.7	253.6	88.6	257.9	86.7	273.7	75.3		
0.9	101.9	71.0	107.4	63.5	114.7	42.0		

Table $\mathbb{T} 3.15$

QCOI	07 DYE		Uniform		Step 300-400 nm		Step 400-500 nm		Step 500-600nm	
	Mean p.h.	Effy								
0	96.5	66.4	97.3	67.1	97.4	67.2	95.9	67.7	97.8	67.1
0.01	94.8	66.8	92.6	66.1	92.1	65.1	95.8	68.1		
0.05	83.8	60.0	80.3	58.9	81.3	59.1	94.6	67.0		
0.1	73.7	53.5	71.8	52.0	72.1	52.9	94.1	66.1		
0.2			61.3	42.3	64.2	46.0	90.6	66.7		
0.5			51.4	32.6	55.6	38.6	91.1	65.8		
1			47.0	28.1	52.3	35.8	90.4	65.4		
10	42.3	22.9	42.7	22.6	48.6	31.9	91.8	66.5		
100	37.9	12.6	37.9	11.2	44.1	22.8	89.7	65.4		
500	37.0	3.11	36.3	2.72	38.3	14.7	88.6	64.3	94.7	68.2

Table T3. 16

Model Generated Coincidence Summed Colour and Chemical Quenched FH : shape factor $\mathrm{B}=0.00001$ (almost Poissonian) and $B=1$ (exponential)

QCOL	QCHEM	B $=0.00001$   mean   p.h.		$B=1$   0	
0	0.2	118.1	71.8	66.9	74.2
0	0.4	87.8	58.4	47.0	56.1
0	0.6	70.9	43.9	37.0	45.5
0	0.8	48.8	24.1	26.7	24.8
0.05	0	103.6	65.2	55.1	66.0
0.5	0	66.5	37.7	34.7	35.9
1	0	60.9	32.0	31.1	32.9
10	0	53.3	24.7	27.5	25.3
100	0	48.6	14.5	24.4	13.9

Table T3. 17

Model Generated Coincidence-Summed Colour and Chemical Quenched $w H$ : PMTube Quantum Efficiency scaled down by $0.173 \%$ to $21.5 \%$ peak efficiency

QCOL	QCHEM	Mean p.h.	Efficiency
0	0	89.2	62.3
0	0.2	76.3	56.1
0	0.4	63.3	47.4
0	0.6	49.7	34.8
0	0.8	36.8	19.1
0.05	0	73.5	54.0
0.5	0	49.4	29.2
1	0	43.9	24.4
10	0	41.3	18.4
100	0	38.2	10.7

Model Generated Coincidence-Summed Colour and Chemical Quenched $=\mathrm{H}$ : Scintillation efficiency $=4.5 \%$ constant

QCOL	QCHEM	Mean p.h.	Efficiency
0	0	99.8	72.0
0	0.2	86.9	65.7
0	0.4	72.4	58.4
0	0.6	54.5	43.6
0	0.8	40.7	23.9
0.5	0	85.4	65.5
0.5	0	52.2	38.3
1	0	48.7	32.8
10	0	43.9	26.5
100	0	38.7	13.8

Table T3. 19

Model Generated Coincidence Summed Unquenched H : Effect of Volume variation

Liquid ht.	Mean	Efficiency
0.001	51.1	35.5
0.005	62.7	48.0
0.010	86.1	59.1
0.015	88.8	66.5
0.020	97.5	67.5
0.025	95.8	67.7
0.030	98.6	67.2
0.035	90.1	65.1
0.040	89.7	63.7

Table T4.1

Model generated results fox simultaneous coincidence summed, difference and ratio pulse height spectra - ${ }^{14} \mathrm{C}$

QCOL	QCHEM	Mean pulse ht.   Summed   Diff.		Std. dev. of   ratio p. h. s.	Counting   eff.
0	0	791.3	184.9	656.6	96.1
0	0.1	692.5	162.5	657.3	95.4
0	0.2	638.5	155.5	700.3	94.3
0	0.3	553.0	137.7	687.6	95.1
0	0.4	488.9	122.0	709.8	94.3
0	0.5	399.4	100.6	731.8	93.4
0	0.6	317.0	87.1	784.4	92.2
0	0.7	247.6	71.3	835.7	88.3
0	0.8	174.3	54.1	877.4	84.6
0	0.9	102.5	37.7	1021.0	69.6
0	0.93	77.7	31.8	1062.0	62.3
0	0.95	64.4	26.0	1062.0	51.1
0	0.97	49.9	20.6	1115.0	35.8
0.01	0	718.6	173.9	669.5	96.4
0.05	0	633.1	186.1	756.7	96.1
0.1	0	519.9	181.9	846.0	94.3
0.2	0	420.1	167.9	953.7	93.2
10	0	308.6	127.1	977.5	88.3
500	0	241.6	89.6	942.8	88.4
0	0	185.5	61.6	939.4	84.5
0	132.0	52.0	1014.0	69.6	
0	114.5	48.9	1103.0	23.6	
0	0				9

Table T4.2

Model generated results for simultaneous coincidence summed, difference and ratio pulse height spectra - sH

QCOL	QCHEM	Mean pulse ht. Summed Diff.		Std. dev. of ratio p.h.s.	Counting eff.
0	0	92.1	34.9	125.1	68.8
0	0.1	89.4	35.0	128.6	66.4
0	0.2	80.4	31.0	130.3	61.1
0	0.3	74.7	28.0	130.0	59.1
0	0.4	67.2	26.8	137.4	53.0
0	0.5	63.0	23.9	137.7	46.7
0	0.6	55.1	20.4	139.6	42.1
0	0.7	47.4	17.8	141.4	32.7
0	0.8	39.7	13.8	138.1	21.1
0	0.9	33.1	11.5	142.2	9.61
0	0	92.1	34.9	125.0	68.8
0.01	0	92.6	34.7	128.3	65.4
0.05	0	80.2	31.9	130.5	61.7
0.1	0	74.9	30.5	136.0	54.7
0.2	0	63.1	26.3	139.1	45.4
0.5	0	52.3	22.4	145.4	33.4
1	0	48.2	19.5	142.2	27.9
10	0	41.9	16.0	140.9	22.7
100	0	37.5	13.9	144.3	12. 6
500	0	36.5	13.6	145.1	3.13

Model generated results for simultaneous coincidence sum difference and ratio pulse height spectra for whing 5000 counts

QCOL	QCHEM	Mean pulse ht.   Summed Diff.		std. dev. of ratio p.h.s.	Counting eff.
0	0	96.3	37.0	126.4	67.3
0	0.1	91.3	34.6	126.6	64.6
0	0.2	82.0	31.3	130.0	61.2
0	0.3	76.6	29.5	132.8	57.4
0	0.4	68.6	26.8	134.6	53.2
0	0.5	61.7	23.6	135.0	47.9
0	0.6	54.6	20.5	136.0	40.9
0	0.7	48.5	18.1	140.2	32.7
0	0.8	40.3	15.0	142.9	21.8
0	0.9	32.0	11.3	143.4	9.28
0	0	96.5	36.7	126.4	66.3
0.01	0	94.8	36.0	128.5	66.8
0.05	0	83.8	33.6	132.4	60.0
0.1	0	73.7	30.5	136.6	53.5
0.2	0	62.8	28.7	139.7	45.0
0.5	0	52.5	23.9	141.6	33.9
1	0	48.1	20.9	142.3	29.9
10	0	42.3	19.4	142.8	22.9
100	0	37.9	16.7	144.4	12.6
500	0	36.9	15.1	143.1	3.11

Table T4. 3 cont

QCOL	QCHEM	Mean pulse ht. Summed Diff.		Std. dev. of ratio p.h.s.	Counting eff.
0.05	0.3	64.9	28.3	-	50.0
0.1	0.3	59.4	26.0	-	43.0
0.5	0.3	44.7	19.7	-	24.4
10	0.3	37.5	16.9	-	15.7
100	0.3	34.7	15.1	-	8.14
0.05	0.4	60.2	23.2	-	45.8
0.1	0.4	56.1	25.5	-	38.1
0.5	0.4	41.4	19.3	-	20.9
10	0.4	35.4	15.0	-	12.9
100	0.4	33.2	13.4	-	6.66
0.05	0.5	54.9	24.1	-	39.7
0.1	0.5	50.7	22.4	-	33.0
0.5	0.5	39.5	17.0	-	17.5
10	0.5	33.9	13.6	-	10.3
100	0.5	31.7	12.0	-	5.24
0.05	0.6	49.5	22.7	-	33.0
0.1	0.6	45.5	20.1	-	27.2
0.5	0.6	36.3	15.5	-	13.3
10	0.6	32.4	12.8	-	7.74
100	0.6	30.7	11.4	-	3.75
0.05	0.7	42.5	14.1	-	25.7
0.1	0.7	40.7	13.5	-	20.5
0.5	0.7	33.9	10.8	-	9.17
10	0.7	30.4	14.1	-	5.24

Table T4.4

Model generated results for coincidence product pulse height spectra for ${ }^{3} \mathrm{H}$

QCOL	QCHEM	Mean product p.h.	Efficiency
0	0	41.3	68.9
0	0.2	25.2	63.6
0	0.4	15.1	55.5
0	0.6	8.5	41.6
0	0.8	3.81	21.9
0.05	0	31.0	60.2
0.2	0	13.4	44.6
1	0	6.42	28.8
10	0	4.34	21.5
100	0	2.79	12.7

Table T4.5

Model generated results for coincidence product pulse height spectra for ${ }^{14} \mathrm{C}$

QCOL	QCHEM	Mean product p.h.	Efficiency
0	0	50.0	96.2
0	0.2	28.8	95.4
0	0.4	15.0	94.7
0	0.6	5.81	90.6
0	0.8	1.27	81.9
0.05	0	14.5	95.1
0.2	0	12.6	92.9
1	0	3.54	88.0
10	0	1.55	83.6
100	0	0.598	70.0

Table T4. 6

Model generated results for coincidence modified-product pulse height spectra with $w$

QCOL	QCHEM	Mean product p.h.	Efficiency
0	0	1533	68.8
0	0.2	1271	63.1
0	0.4	1042	54.6
0	0.6	720.5	42.1
0	0.8	399.1	22.1
0.05	0	1225	61.6
0.2	0	849.5	44.2
1	0	495.6	29.4
10	0	398.7	22.4
100	0	318.1	12.7

Table T4. 7

Model generated output for coinciddence summed pulse height spectra with $\%$ using singly applied upper discriminators and 5000 counts

QCOL	QCHEM	Mean summed p.h.	Efficiency
0	0	97.1	67.2
0	0.2	83.9	61.3
0	0.5	60.7	47.8
0	0.7	47.5	32.8
0	0.9	32.5	9.34
0.05	0	82.9	60.6
0.2	0	63.2	45.0
0.5	0	51.9	33.6
100	0	38.1	12.6

Coincidence Difference Spectra results for ${ }^{14} \mathrm{C}$ Samples MCA settings coarse 64, fine 0, TC $64 \mu s$.

MCA   Count	MCA   time   $s$	MCA   Count   Cate	Channel   Limits   UL		Mean   diff.   p.h.	Quench   type	Mean   summed   p.h.
361264	600	36126	22	960	100	Colour	616
329140	600	32914	22	960	103	Colour	416
311282	600	31128	22	960	108	Colour	310
315744	600	31574	22	920	114	Colour	208
286117	600	28612	22	920	108	Colour	180
309120	600	30912	22	880	98	Colour	139
194909	600	19491	22	780	97	Colour	107
121033	600	12103	22	720	87	Colour	83
79629	600	7963	22	720	83	Colour	75
67176	600	6718	22	680	80	Colour	73
107414	600	10741	22	800	104	Chemical	610
185399	1000	11124	22	800	101	Chemical	576
181847	1000	10911	22	760	94	Chemical	492
167407	1000	10044	22	600	76	Chemical	356
146298	1000	8778	22	520	66	Chemical	218
141396	1000	8484	22	500	57	Chemical	213
119275	1000	7157	22	400	46	Chemical	147
82211	1000	4933	22	240	27	Chemical	57
45245	2000	1357	22	200	20	Chemical	27
12638	2000	379	22	160	16	Chemical	17

*     - taken from tables T3.5 and T3.6

Coincidence Difference Spectra results for $\geqslant \mathrm{H}$ Samples MCA settings coarse 128, fine 0, TC $6.4 \mu s$.

$\begin{aligned} & \text { MCA } \\ & \text { Count } \end{aligned}$	$\begin{gathered} \text { MCA } \\ \text { time } \\ \mathrm{s} \end{gathered}$	MCA count rate CPM	$\begin{aligned} & \text { Channel } \\ & \text { limits } \\ & \text { LL UL } \end{aligned}$		Mean diff. p.h.	Quench type	Mean** summed p.h.
282227	1000	16933.6	22	480	53	Colour	110
273099	1000	16385.9	22	480	52	Colour	107
224577	1000	13474.6	22	440	49	Colour	91
186765	1000	11205.9	22	400	43	Colour	71
110111	1000	6606.7	22	360	42	Colour	61
7740	1000	464.4	22	203	37	Colour	56
71892	2000	2156.8	22	280	35	Colour	42
19172	2000	575.2	22	240	33	Colour	37
8551	2000	256.5	22	240	35	Colour	37
242473	1000	14548.4	22	480	51	Chemical	111
243327	1000	14599.6	22	440	46	Chemical	88
185550	1000	11133.0	22	400	45	Chemical	78
189645	1000	11378.7	22	360	43	Chemical	70
80871	1000	4852.3	22	320	37	Chemical	54
55278	1000	3316.7	22	260	32	Chemical	43
49034	2000	1471.0	22	240	28	Chemical	37
47991	2000	1439.7	22	200	26	Chemical	32
7421	2000	222.6	22	240	27	Chemical	26

Table T4. 10

External standard single pulse height spectra results using a half-coloured vial (containing lightly quenched cocktail) for various orientations

Relative   rotational   position ( $)$	Count	Time   $(s)$	Channel   limits   LL   UL		Mean pulse   height
0	29532	10	20	520	116
45	25906	10	20	520	103
90	15014	10	20	520	75
135	0	10	20	520	-
180	0	10	20	520	-
225	7282	10	20	520	58
270	23622	10	20	520	93
315	29670	10	20	520	106

## External Standard Coincident Summed Pulse Height Spectra

(MCA Amp set to 2 coarse, 0.0 fine; Time constant set to $3.2 \mu s$; unipolar pulse output) (Count time $=20$ seconds)

Sample   I.D.	Total   Count	MCA channel   limits   Lower Upper	Mean   channel	Normalized   efficiency		
C40	98741	22	880	145	84.6	M
C24	77459	22	720	111	66.4	M
C29	8826	22	200	20	7.6	M
C39	53272	22	520	83	45.7	M
C21	213	22	80	7	0.18	M
C25	19425	22	200	31	16.7	M
C27	26125	22	240	36	22.4	M
C28	8610	22	100	18	7.4	M
C38	591	22	80	10	0.51	M
C22	1690	22	100	12	1.45	M
C4	11766	22	140	22	10.1	M
C20	30694	22	293	45	26.3	M
C9	6588	22	110	16	5.65	M
C5	64773	22	600	93	55.5	M
C12	11678	22	180	24	10.0	M
C18	70619	22	640	104	60.5	M
C19	68779	22	586	98	59.0	M
C17	81957	22	780	129	70.3	M
C1N	114198	22	1023	215	97.9	H
C2N	105274	22	1023	205	90.2	H

Table T4. 11 cont.

Sample I. D.	Total Count	MCA channel limits Lower Upper		Mean channel	Normalized efficiency*	***
C3N	107679	22	1023	184	92.3	H
C4N	96537	22	840	155	82.8	H
C5N	83845	22	680	112	71.9	H
C6N	81040	22	680	105	69.5	H
C7N	64080	22	520	86	54.9	H
C8N	32960	22	320	47	28.3	H
C9N	15508	22	200	27	13.3	H
C10N	6239	22	120	17	5.35	H
C1.1N	116654	22	1023	214	100	0
C12N	90961	22	960	159	78.0	0
C13N	78150	22	600	100	67.0	0
C14N	69643	22	520	88	59.7	$\bigcirc$
C15N	57859	22	480	72	49.6	0
C16N	33282	22	320	45	28.5	0
C17N	16466	22	240	33	14.1	0
C18N	66652	22	500	79	57.1	$\bigcirc$
C19N	107988	22	1023	194	92.6	0
C 20 N	89165	22	800	133	76.4	$\bigcirc$
C26	26142	22	240	41	22.4	M
C35	35143	22	320	49	30.1	M
C37	97050	22	920	158	83.2	M
C33	72610	22	660	102	62.2	M
C36	11331	22	140	20	9.71	M
C31	75400	22	740	105	64.6	M

Table T4. 11 cont.

Sample I. D.	Total Count	MCA channel limits Lower Upper		Mean channel	Normalized efficiency*	\%..
C30	4665	22	100	13	4.00	M
C34	45089	22	400	58	38.7	M
C23	671	22	50	8	0.57	M
C32	33052	22	280	42	28.3	M
C8	68068	22	680	111	58.4	M
C13	15770	22	148	27	13.5	M
C3	4087	22	80	13	3.5	M
C16	55777	22	480	76	47.8	M
C10	76731	22	720	116	65.8	M
C14	79555	22	720	112	68.2	M
C15	90568	22	840	151	77.6	M
C11	84089	22	810	134	72.1	M
H25	110621	22	1023	222	94.8	M
H29	108162	22	1023	185	92.7	0
H37	100952	22	1000	167	86.5	0
H23	77583	22	800	130	66.5	0
H30	76321	22	700	111	65.4	0
H35	76878	22	680	102	65.9	0
H32	260	22	50	7	0.223	M
H22	28930	22	300	41	24.8	0
H38	15138	22	280	31	13.0	0
H4	104554	22	900	164	89.6	H
H3	88505	22	880	146	75.9	H
H8	87582	22	800	133	75.1	H

Table T4. 11 cont.

Sample   I.D.	Total   Count	MCA channel   limits   Lower Upper	Mean   channel	Normalized   efficiency	**	
H11	75083	22	640	105	64.4	H
H12	59529	22	520	84	51.0	H
H13	43923	22	440	65	37.7	M
H14	38189	22	400	54	32.7	M
H17	28332	22	300	45	24.3	H
H19	12399	22	160	22	10.6	H
H1N	5933	22	120	14	5.09	M
H2N	101629	22	1000	176	87.1	H
H3N	25062	22	220	33	21.5	M
H4N	66303	22	580	89	56.8	M
H5N	5083	22	120	15	4.36	M
H6N	4671	22	100	14	4.0	M
H7N	4937	22	100	15	4.23	H
H8N	112842	22	1023	213	96.7	H
H9N	15396	22	200	26	13.2	M
H10N	48986	22	400	67	42.0	M
H11N	37654	22	320	50	32.3	M
H12N	45994	22	400	60	39.4	O
H13N	21014	22	240	37	18.0	O
H14N	10024	22	200	28	8.59	O
H15N	32396	22	300	42	27.8	M
H16N	68830	22	600	94	59.0	M
H17N	312	22	50	7	0.267	M
H18N	35670	22	320	44	30.6	M

Table T4. 11 cont.

Sample   I.D.	Total   Count	MCA channel   limits   Lower Upper	Mean   channel	Normalized   efficiency*	**	
H19N	50609	22	400	66	43.4	M
H20N	40653	22	360	54	34.8	M
H21N	11601	22	160	22	9.94	M
H2	94666	22	860	139	81.2	M
H5	89465	22	800	124	76.7	M
H6	18077	22	240	31	15.5	M
H7	68179	22	510	81	58.4	M
H9	41195	22	360	53	35.3	M
H10	14492	22	200	25	12.4	M
H15	9750	22	160	18	8.36	M
H16	13076	22	260	23	11.2	M
H18	7162	22	120	17	6.14	M
H21	2285	22	80	11	1.96	M
H24	109035	22	1023	182	93.5	M
H26	41761	22	400	56	35.8	M
H27	62538	22	520	80	53.6	M
H28	34860	22	320	47	29.9	M
H31	42783	22	380	58	36.7	M
H36	35591	22	360	45	30.5	O
H34	17975	22	240	34	15.4	M
H39	19203	22	240	34	16.5	M
H40	47709	22	400	64	40.9	M
H1.1	18654	22	240	29	16.0	M
H1.2	32865	22	320	40	28.2	M

Table T4. 11 cont.

$\begin{aligned} & \text { Sample } \\ & \text { I.D. } \end{aligned}$	Total Count	MCA channel limits Lower Upper		Mean channel	Normalized efficiency*	***
H1. 3	80557	22	720	108	69.1	M
H1. 4	2624	22	100	17	2.25	M
H1. 5	98374	22	900	146	84.3	M
H2. 1	1919	22	120	16	1.65	M
H2. 2	33662	22	320	43	28.6	M
H2. 3	8275	22	200	22	7.09	M
H2. 4	75799	22	700	104	65.0	M
H2. 5	31330	22	300	42	26.9	M
H3. 1	8075	22	150	21	6.92	M
H3. 2	44373	22	400	58	38.0	M
H3. 3	23227	22	400	33	19.9	M
H3. 4	23301	22	400	33	20.0	M
H3. 5	2316	22	120	17	1.99	M
H4. 1	14326	22	200	23	12.3	M
H4. 2	1364	22	100	13	1.17	M
H4.3	21983	22	240	34	18.8	M
H4. 4	4429	22	140	18	3.80	M
H4. 5	46665	22	440	61	40.0	M
H5. 1	32461	22	320	44	2.7 .8	M
H5. 2	3282	22	120	13	2.81	M
H5. 4	525	22	100	10	0.45	M
H5. 5	22322	22	240	37	19.1	M
H6. 2	1264	22	100	14	1.08	M
H6. 3	2092	22	80	10	1.79	M

Table T4. 11 cont.

Sample   I.D.	Total   Count	MCA Channel   limits   Lower Upper	Mean   Channel	Normalized   efficiency*	$\cdots *$	
H6.4	24477	22	240	37	21.0	$M$
H6.5	7974	22	120	16	6.84	$M$

*     - Normalized to most active count i.e. 116654
** $-\mathrm{H}=$ chemically quenched $0=$ colour quenched $M=$ mixed colour/chemically quenched

Table T4. 12

External Standard Single Pulse Height Spectra
(Count time $=10$ seconds)

Total   Count	MCA channel   Limits   Lower   Upper		Mean   channel	Normalized   efficiency*	**
41889	20	720	109	100.0	0
36343	20	720	93	86.8	0
24484	20	720	71	58.4	0
12895	20	720	51	30.8	0
6407	20	400	38	15.3	0
$6279^{* * *}$	20	400	31	7.5	0
38055	20	720	108	90.8	H
32343	20	720	83	77.2	H
23482	20	720	64	56.1	H
11011	20	720	38	26.3	H
5995	20	400	25	14.3	H
$2184^{* * * *}$	20	400	12	2.6	H

$$
\begin{aligned}
& *-\text { Normalized to } 41889 \\
& * *-H=\text { chemical quench; } 0=\text { colour quench } \\
& * * *-\text { count time }=20 \text { seconds }
\end{aligned}
$$

## External Standard Coincident Differenced Pulse Height

## Spectra

(MCA Amp set to 16 coarse, 0.0 fine; time const. $=3.2 \mu s$; unipolar output)
(Count time $=20$ seconds)

Sample   I.D.	Total   Count	MCA channel   Limits   Lower Upper	Mean   channel	Normalized   efficiency	$\cdots$	
C40	47004	23	1023	100	84.1	M
C24	39488	23	1023	113	70.6	M
C29	10686	23	1023	39	19.1	M
C39	38098	23	1023	158	68.2	M
C21	5147	23	1023	32	9.2	M
C25	25058	23	680	97	44.8	M
C27	31013	23	1023	124	55.5	M
C28	19511	23	591	82	34.9	M
C38	8744	23	1023	47	15.6	M
C22	9022	23	1023	61	16.1	M
C4	12514	23	1023	46	22.9	M
C20	17681	23	1023	54	31.6	M
C9	18682	23	1023	74	33.4	M
C5	28126	23	1023	75	50.3	M
C12	19804	23	1023	108	35.4	M
C18	36312	23	1023	109	65.0	M
C19	46144	23	1023	182	82.6	M
C17	37867	23	1023	129	67.7	M
C1N	52038	23	1023	112	93.1	H

Table T4. 13 cont.

Sample I. D.	Total Count	MCA channel limits Lower Upper		Mean channel	Normalized efficiency"	$\cdots$
C2N	52413	23	1023	116	93.8	H
C3N	55893	23	1023	109	100.0	H
C4N	49560	23	1023	95	88.7	H
C5N	29787	23	1023	67	53.3	H
C6N	31844	23	1023	67	57.0	H
C7N	32643	23	1023	65	58.4	H
C8N	15530	23	1023	39	27.8	H
C9N	9412	23	348	30	16.8	H
C10N	5948	23	198	25	10.6	H
C11N	46517	23	1023	105	83.2	0
C12N	46764	23	1023	158	83.7	0
C13N	51398	23	1023	194	92.0	0
C14N	50502	23	1023	188	90.4	0
C15N	47269	23	1023	184	84.6	0
C16N	34910	23	1023	167	62.5	0
C17N	20737	23	1023	145	37.1	0
C18N	48707	23	1023	189	87.1	0
C19N	49941	23	1023	121	89.4	0
C20N	48352	23	1023	182	86.5	0
C26	15281	23	1023	42	27.3	M
C35	19754	23	1023	47	35.3	M
C37	47831	23	1023	137	85.6	M
C33	34661	23	1023	95	62.0	M
C36	9618	23	1023	33	17.2	M

Table T4. 13 cont.

Sample I.D.	Total Count	MCA channel limits Lower Upper		Mean channel	Normalized efficiency*	\%*
C31	41553	23	1023	139	74.3	M
C30	8757	23	811	33	15.7	M
C34	35640	23	1023	105	63.8	M
C23	5221	23	1023	29	9.3	M
C32	29809	23	1023	81	53.3	M
C8	40827	23	1023	179	73.0	M
C13	10627	23	1023	34	19.0	M
C3	10789	23	529	45	19.3	M
C16	29615	23	1023	65	53.0	M
C10	34.564	23	1023	90	61.8	M
C14	37414	23	1023	88	66.9	M
C15	41099	23	1023	103	73.5	M
C11	37131	23	1023	96	66.4	M
H25	45231	22	1023	118	80.9	M
H29	52389	22	1023	135	93.7	0
H37	50707	22	1023	155	90.7	0
H23	40616	22	1023	171	72.7	0
H30	45745	22	1023	191	81.8	$\bigcirc$
H35	48652	22	1023	190	87.0	0
H32	6804	22	1023	37	12.2	M
H22	31987	22	941	152	57.2	0
H38	18518	22	1023	145	33.1	0
H4	44542	22	1023	103	79.7	H
H3	21060	22	1023	64	37.8	H

Table T4. 13 cont.

Sample I. D.	Total Count	MCA channeI limits Lower Upper		Mean channel	Normalized efficiency*	***
H8	24749	22	1023	73	44.3	H
H11	21202	22	1023	56	37.9	H
H12	22815	22	1023	54	40.8	H
H13	18150	22	1023	47	32.5	M
H14	17213	22	1023	43	30.8	M
H17	13708	22	1023	37	24.5	H
H19	7357	22	1023	27	13.2	H
H1N	15198	22	1023	55	27.2	M
H2N	39117	22	1023	85	70.0	H
H3N	32813	22	1023	122	58.7	M
H4N	31415	22	1023	81	56.2	M
H5N	15995	22	1023	67	28.6	M
H6N	7168	22	1023	33	12.8	M
H7N	3594	22	1023	22	6.4	H
H8N	42807	22	1023	93	76.6	H
H9N	11727	22	. 1023	33	21.0	M
H10N	33904	22	1023	111	60.7	M
H11N	36946	22	1023	134	66.1	M
H12N	40574	22	1023	174	72.6	0
H13N	25055	22	830	140	44.8	0
H14N	14632	22	1023	126	26.2	0
H 15 N	33886	22	1023	117	60.6	M
H16N	30043	22	1023	82	53.8	M
H17N	6318	22	204	32	11.3	M

Table T4. 13 cont.

Sample I. D.	Total Count	MCA channel limits Lower Upper		Mean channel	Normalized efficiency*	***
H18N	39021	22	1023	137	69.8	M
H19N	34748	22	1023	104	62.2	M
H2ON	25342	22	1023	67	45.3	M
H21N	11997	22	1023	40	21.5	M
H22N	2043	22	1023	27	3.7	M
H2	42535	22	1023	104	76.1	M
H5	44020	22	1023	112	78.8	M
H6	23708	22	1023	134	42.4	M
H7	48492	22	1023	152	86.8	M
H9	39441	22	1023	149	70.6	M
H10	24742	22	1023	104	44.3	M
H15	17240	22	1023	58	30.8	M
H16	11755	22	1023	40	21.0	M
H18	2971	22	1023	25	5.31	M
H21	1396	22	1023	18	2.5	M
H24	52592	22	1023	150	94.1	M
H26	27364	22	1023	75	49.0	M
H27	40635	22	912	123	72.7	M
H28	28739	22	1023	92	51.4	M
H31	38016	22	1023	144	68.0	M
H36	38526	22	1023	163	68.9	0
H34	21849	22	1023	142	39.1	M
H39	7111	22	1023	29	12.7	M
H40	23601	22	1023	76	42.2	M

Table T4. 13 cont.

Sample   I. D.	Total Count	MCA channel limits Lower Jpper		Mean channel	Normalized efficiency**	$\cdots$
H1. 1.	25484	22	1023	124	45.6	M
H1. 2	34131	22	1023	132	61.1	M
H1. 3	35639	22	1023	104	63.8	M
H1. 4	6817	22	1023	83	12.8	M
H1. 5	34263	22	1023	76	61.3	M
H2. 1	4643	22	1023	31	8.31	M
H2. 2	28660	22	857	93	51.3	M
H2. 3	13806	22	1023	90	24.7	M
H2. 4	20120	22	1023	55	36.0	M
H2. 5	29515	22	1023	98	52.8	M
H3. 1	16270	22	1023	87	29.1	M
H3. 2	23747	22	1023	66	42.5	M
H3. 3	23936	22	1023	71	42.8	M
H3. 4	23802	22	856	74	42.6	M
H3. 5	6698	22	567	73	12.0	M
H4. 1	19148	22	1023	62	34.3	M
H4. 2	8606	22	1023	60	15.4	M
H4.3	16526	22	1023	53	29.6	M
H4. 4	11332	22	1023	81	20.3	M
H4. 5	12503	22	402	37	22.4	M
H5. 1	12506	22	1023	35	22.4	M
H5. 2	12441	22	1023	52	2¢. 3	M
H5. 4	6241	22	1023	49	11.2	M
H5. 5	11250	22	1023	42	20.1	M

Table T4. 13 cont.

Sample   I.D.	Total   Count	MCA Channel   limits   Lower Upper	Mean   channel	Normalized   efficieney*	$\cdots *$	
H6.2	5559	22	414	59	9.95	M
H6.3	9923	22	1023	41	17.8	M
H6.4	9257	22	1023	30	16.6	M
H6.5	11389	22	1023	38	20.1	M

*     - Normalized to highest count, i.e. 55893
*** $-\mathrm{H}=$ chemical quenched, $\mathrm{O}=$ colour quenched, $\mathrm{M}=$ mixed colour/chemical quench

Sample I. D.	Count time (min)	CPM	\%DEV	$\begin{aligned} & \text { Sample } \\ & \text { QIP/AEC } \end{aligned}$	Efficiency
C40	4.57	97306.1	. 30	592	91.34
C24	5.21	85375.4	. 30	477	88.45
C29	10.00	25496.8	. 40	161	27.69
C39	5.93	75045.3	. 30	372	79.60
C25	9.36	47704.0	. 30	203	40.76
C27	10.00	38531.3	. 32	220	39.9
C28	10.00	11624.2	. 59	158	12.6
C1	10.00	135.8	5.43	135	0.11
C4	10.00	38569.8	. 32	174	35.26
C20	9.76	45611.6	. 30	245	64.75
C9	10.00	9272.7	. 66	150	9.62
C5	6.89	64627.2	. 30	406	85.68
C12	10.00	11964.1	. 58	178	11.91
C18	4.94	90095.9	. 30	444	87.02
C19	6.04	73642.2	. 30	431	83.79
C17	5.83	76312.0	. 30	539	90.06
C1N	10.00	27285.3	. 38	857	94.31
C2N	10.00	28076.0	. 38	810	92.40
C3N	10.00	28335.8	. 38	748	93.47
C4N	10.00	27330.8	. 38	639	92.38
C5N	10.00	26803.0	. 39	479	88.69
C6N	10.00	27009.4	. 38	457	88.48
C7N	10.00	25842.2	. 39	382	84.85
C8N	10.00	21506.7	. 43	251	65.83

Table T4. 14 cont.

Sample   I.D.	Count   time   (min)	CPM	\%DEV	Sample   QIP/AEC	Efficiency
C9N	10.00	12862.3	.56	189	41.16
C10N	10.00	4862.7	.91	150	15.71
C11N	10.00	28753.0	.37	863	93.54
C12N	10.00	28212.2	.38	646	91.20
C13N	10.00	29031.6	.37	437	83.63
C14N	10.00	24427.3	.40	397	79.25
C15N	10.00	24672.3	.40	341	69.54
C16N	10.00	10587.5	.61	249	33.88
C17N	10.00	4293.5	.97	206	12.78
C18N	10.00	23744.9	.41	367	75.23
C19N	10.00	32618.6	.35	784	92.47
C20N	10.00	37368.9	.33	553	89.27
C26	8.67	51339.5	.30	231	60.23
C35	7.37	60371.2	.30	260	68.59
C37	5.97	74568.8	.30	644	93.32
C33	6.37	69856.0	.30	443	86.97
C36	10.00	25832.8	.39	166	30.41
C31	7.30	60935.4	.30	458	87.06
C30	10.00	1155.3	1.86	138	1.68
C34	9.53	46697.2	.30	295	72.86
C32	10.00	36480.5	.33	236	59.93
C3	7.14	62286.4	.30	478	87.41
	10.00	44099.2	.30	187	41.84
10.00	1504.4	1.63	139	1.71	

Table T4. 14 cont.

Sample   I.D.	Count   time   (min)	CPM	\%DEV	Sample   QIP/AEC	Efficiency
C16	5.23	85128.6	.30	349	81.12
C10	5.32	83692.8	.30	486	89.16
C14	5.61	79316.5	.30	481	88.89
C15	5.50	80911.6	.30	619	92.29
C11	5.38	82756.7	.30	559	90.17


Sample   I.D.	Count   time   (min)	CPM	\%DEV	Sample   QIP/AEC	Efficiency
H25	10.00	40671.0	.31	801	50.75
H29	10.00	38799.6	.32	746	47.35
H37	10.00	33028.9	.35	673	42.46
H23	10.00	28937.9	.37	540	31.27
H30	10.00	17632.6	.48	482	24.38
H35	10.00	15879.5	.50	443	20.30
H32	10.00	1205.5	1.82	238	1.56
H38	10.00	535.2	2.73	204	0.63
H4	10.00	34040.5	.34	678	43.79
H3	10.00	29985.6	.37	602	38.59
H8	10.00	30135.0	.36	656	35.03
H11	10.00	14318.8	.53	454	25.38
H12	10.00	10944.2	.60	377	17.16
H13	10.00	4913.7	.90	315	10.47
H14	10.00	5802.5	.83	279	7.39
H17	10.00	3413.6	1.08	244	4.38
H19	10.00	572.7	2.64	170	0.81
H1N	10.00	117.0	5.85	145	0.44
H2N	10.00	12302.3	.57	713	45.95
H3N	10.00	395.1	3.18	209	1.51
H4N	10.00	4957.7	.90	393	18.55
H5N	10.00	62.2	8.02	143	0.28
H6N	10.00	96.0	6.45	142	0.43
H7N	10.00	75.2	7.29	144	0.28

Table T4. 15 cont.

$\begin{aligned} & \text { Sample } \\ & \text { I.D. } \end{aligned}$	Count time (min)	CPM	\%DEV	Sample QIP/AEC	Efficiency
H 8 N	10.00	14390.5	. 53	864	53.50
H9N	10.00	366.4	3.30	185	1.36
H1ON	10.00	2509.6	1.26	325	9.34
H11N	10.00	1265.6	1.78	268	4.87
H12N	10.00	1495.7	1.64	302	5.41
H13N	10.00	301.3	3.64	223	1.13
H14N	10.00	131.3	5.52	190	0.49
H 15 N	10.00	850.7	2.17	241	3. 48
H 16 N	10.00	4317.1	. 96	416	21.22
H17N	10.00	20.7	13.9	110	0.09
H18N	10.00	655.2	2.47	245	3.06
H19N	10.00	2220.7	1.34	321	10.07
H2ON	10.00	1492.3	1.64	275	7.11
H 21 N	10.00	354.6	3.36	174	1.07
H2	10.00	29120.4	. 37	582	36.47
H5	10.00	21843.6	. 43	534	32.34
H6	10.00	534.2	2.74	204	0.79
H7	10.00	10342.6	. 62	369	13.94
H9	10.00	4517.5	. 94	279	5.17
H10	10.00	761.8	2.29	181	0.70
H15	10.00	622.8	2.53	160	0.76
H16	10.00	756.8	2.30	178	1.17
H18	10.00	346.2	3.40	153	0.55
H21	10.00	135.8	5.43	130	0.16

Table T4. 15 cont.

Sample   I.D.	Count   time   (min)	CPM	\%DEV	Sample   QIP/AEC	Efficiency
H24	10.00	34636.8	.34	742	46.06
H26	10.00	6148.2	.81	284	7.64
H27	10.00	11820.5	.58	364	14.79
H28	10.00	4712.4	.92	256	5.24
H31	10.00	5308.4	.87	292	6.69
H36	10.00	1560.0	1.60	251	1.93
H34	10.00	521.7	2.77	213	0.77
H39	10.00	1725.8	1.52	210	2.33
H40	10.00	7401.3	.74	313	9.73
H1.1	10.00	838.1	2.18	201	0.96
H1.2	10.00	2152.1	1.36	235	2.48
H1.3	10.00	21733.5	.43	462	24.88
H1.4	10.00	183.8	4.67	153	0.21
H1.5	10.00	32199.6	.35	596	36.86
H2.1	10.00	136.7	5.41	141	0.15
H2.2	10.00	3945.8	1.01	243	4.51
H2.3	10.00	525.8	2.76	171	0.60
H2.4	10.00	22768.9	.42	449	26.04
H2.5	10.00	3640.9	1.05	240	4.16
H3.1	10.00	400.2	3.16	164	0.46
H3.2	10.00	7668.2	.72	290	8.77
H3.3	10.00	2115.8	1.37	208	2.42
H3.5	10.00	2135.2	1.37	208	2.44
	10.00	130.3	5.54	144	0.15

Table T4. 15 cont.

Sample   I.D.	Count   time   (min)	CPM	\%DEV	Sample   QIP/AEC	Efficiency
H4.1	10.00	1027.2	1.97	176	1.17
H4.2	10.00	82.5	6.96	135	0.09
H4.3	10.00	2369.0	1.30	209	2.71
H4.5	10.00	212.8	4.34	154	0.24
H5.1	10.00	8611.2	.68	302	9.84
H5.2	10.00	4239.4	.97	245	4.85
H5.4	10.00	905.4	3.62	139	0.35
H5.5	10.00	2899.7	1.17	217	0.10
H6.2	10.00	77.5	7.18	133	3.32
H6.3	10.00	198.0	4.49	128	0.09
H6.4	10.00	2702.0	1.22	220	0.22
H6.5	10.00	563.1	2.77	153	3.09

Mixed Colour and Chemical Standards Data for Fi Fa Plot and Least Squares Fit
(a) ${ }^{11}{ }^{4} \mathrm{C}$

Ext Std Mean   Sum p.h.	Ext Std Mean   Diff. p.h.	Ratio $F_{1}$	Ratio F:	True   eff $\%$
36	124	0.332	0.801	39.9
45	54	0.000	0.140	64.75
98	182	0.809	0.930	83.79
58	105	0.124	0.473	72.86
42	81	0.000	0.378	59.93
-	-	0.000	0.000	-
-	-	1.000	1.000	-

(b) $=\mathrm{H}$

Ext std mean   Sum p.h.	Ext std mean   Diff. p.h.	Ratio $F_{1}$	Ratio Fs	True   eff $\%$
33	122	0.661	0.281	1.51
50	134	0.370	0.747	4.87
54	67	0.0808	0.202	7.11
31	134	0.926	0.962	0.80
126	112	0.157	0.351	32.34
80	123	0.230	0.518	14.79
-	-	0.000	0.000	-
-	-	1.000	1.000	-

## Summary $+{ }^{14}$ C Sum Diff. Quench Correction Results

Ext. std. mean sum	Ext. std. mean diff.	Sample CPM	True eff.	Predicted eff.	$\begin{gathered} \text { Error } \\ \% \end{gathered}$
111	113	85375.4	88.45	89.19	+0.74
20	39	25496.5	27.69	30.41	+2.72
83	158	75045.3	79.60	80.95	+1.35
31	97	47704.0	40.76	37.32	-3.44
22	46	38569.8	35.26	36.22	+0.96
93	75	64627.2	85.68	86.72	+1.04
129	129	76312.0	90.06	91.19	+1.13
41	42	51339.5	60.23	57.82	$-2.41$
205	116	28076.0	92.40	93.11	0.71
155	95	27330.8	92.38	93.22	+0.84
112	67	26803.0	88.69	89.25	+0.56
105	139	60935.4	87.06	87.95	+0.89
133	182	37368.9	89.27	90.96	+1.69
27	34	44099.2	41.84	40.82	$-1.02$
47	39	21506.7	65.83	65.25	-0.58
116	90	83692.8	89.16	89.79	$+0.63$
112	88	79316.5	88.89	89.31	+0.42
151	103	80911.6	92.29	93.03	+0.74
18	82	11624.2	12.60	15.69	+3.09
16	74	9272.7	9.62	8.48	$-1.14$
24	108	11964.1	11.91	17.61	+5.69

Absolute errors:- $\bar{X}_{\text {tetan }}=1.51 \quad$ Xronnemtamp $=0.98$

$$
\bar{x}_{\text {exter }} \operatorname{mam}_{p}=2.58
$$

"H Sum Diff Quench Correction Results

Sample   CPM	Ext. std.   mean sum   pulse ht.	Ext. std.   mean diff.   pulse ht.	True   eff. $\%$	Predicted   eff. $\%$	Error
29985.6	146	64	38.59	38.89	0.30
4913.7	65	47	10.47	10.86	0.39
12302.3	176	85	45.95	46.23	0.28
4957.7	89	81	18.55	18.88	0.33
2509.6	67	111	9.34	10.86	1.52
850.7	42	117	3.48	2.91	0.57
4317.1	94	82	21.22	20.86	0.36
655.2	44	137	3.06	2.76	0.30
2220.7	66	104	10.07	10.72	0.65
354.6	22	40	1.07	1.99	0.92
29120.4	139	104	36.47	36.76	0.29
10342.6	81	152	13.94	14.05	0.11
4517.5	53	149	5.17	4.81	0.36
756.8	23	40	1.17	2.14	0.97
34636.8	182	150	46.06	46.57	0.51
6148.2	56	75	7.64	7.90	0.26
4712.4	47	92	5.24	4.56	0.68
5308.4	58	144	6.69	6.66	0.27
7401.3	64	76	9.73	10.54	0.81

Table T4. 18 cont.
:H SumDiff Quench Correction Results
using Fisofluor II cocktail ( $\approx 3$ years old) (+ mixtures of $\mathrm{b}-\mathrm{PBD}$ in xylene and colour quencher in Fisofluor II)

Sample   CPM	Ext. std.   mean sum	Ext. std   mean diff.	True   eff. $\%$	Predicted   eff. \%	Error
2152.1	40	132	2.46	2.18	0.28
21733.5	108	104	24.88	26.26	1.38
32199.6	146	76	36.86	38.89	2.03
3945.8	43	93	4.51	3.55	0.96
22768.9	104	55	26.03	24.82	1.21
3640.9	42	98	4.16	3.29	0.87
7668.2	58	66	8.77	8.65	0.12
2115.8	33	71	2.42	2.73	0.31
2133.2	33	74	2.44	2.69	0.25
1027.2	23	62	1.17	1.99	0.82
2369.0	34	53	2.71	2.92	0.21
8611.2	61	37	9.84	9.59	0.25
4239.4	44	35	4.85	4.05	0.80
2899.7	37	42	3.32	3.12	0.20
2702.0	37	30	3.09	3.09	0.00

1. Alessio M, Allegri L, Bella $F$ \& Improta $S$, Nucl. Instr. Methods, 138, 537, (1976)
2. Alessio $M$, Allegri L, Bella $F$ \& Improta $S$, Nuel. Instr. Methods, 157, 579, (1978)
3. Annand $J R M$ \& Galloway $R B$, Nuel. Instr. Methodsi, 201, 381, (1982)
4. Arnold J R, Science, 119, 155, (1954)
5. Assailly J, Bader C, Funck-Brentano J-L \& Pavel D, "Liquid Scintillation Counting", Vol. 2, Crook M A \& Johnson P (Eds), (Heyden, 1972)
6. Badger B \& Brocklehurst B, Nature, 219, 263, (1968)
7. Baillie L A, Int. J. Appl. Radiat. Isotop., 8, 1, (1960)
8. Basson J K, Anal. Chem., 28, 1472, (1956)
9. Basson $J K$ \& Steyn J, Pros. Phys. Soc. London Sect. A, 64, 874, (1951)
10. Bell T K , "Liquid Scintillation Counting Recent Applications and Developments", Vol. 1, Peng C T, Horrocks D L \& Alpen E L (Eds), (Academic Presss, 1980)
11. Benakis A, "Liquid Scintillation Counting", Vol. 1, Dyer A (Ed), (Heyden, 1971)
12. Berlman I B, J. Chem. Phys., 33, 1124, (1960)
13. Birks J B, "The Theory and Practice of Liquid Scintillation Counting", Birks J B , (Pergamon Press, 1964)
14. Birks J B, "Current Status in Liquid Scintillation Counting", Bransome E D (Ed), (Grune \& Stratton, 1970)
15. Birks J B, "Organic Scintillators and Liquid Scintillation Counting", Horrocks D L \& Peng C T (Eds), (Academic Press, 1971)
16. Birks J B, Chem. Phys. Let., 1, 625, (1968)
17. Birks J B, Proc. Phys. Soc. London Sect. A, 64, 874, (1951)
18. Birks J B, "Liquid Scintillation Courting", Vol. 2, Crook M A \& Johnson P (Eds;), (Heyden, 1972)
19. Birks J B, "Liquid Scintillation Counting - Recent Developments", Stanley P E \& Scoggins B A (Eds;), (Academic Press, 1974)
20. Birks J B, "Liquid Scintillation Counting", Vol. 4, Crook M A \& Johnson P (Eds), (Heyden, 1977)
21. Birks J B, Braga C L \& Lumb M D, Proo. Roy. Soc. A, 283, 83, (1965)
22. Birks J B \& Christopherou L G, Nature, 194, 442, (1962)
23. Birks J B \& Conte J C, Proc. Roy. Soc. A, 303, 85, (1968)
24. Birks J B, Conte J C \& Walker G, IEEE Transi. Nucl. Sci., NS13(3), 148, (1966)
25. Birks J B, Dyson D J \& Munro I H, Proc. Roy. Soc. A, 275, 575, (1963)
26. Birks J B \& Kuchela K N, Proc. Phys. Soc., 77. 1083, (1961)
27. Brooks F D, Prog. Nucl. Phys., 5, 284, (1956)
28. Brown L C, Anal. Chem., 43, 1326, (1971)
29. Bush E T, Anal. Chem., 35, 1024, (1963)
30. Bush E T, Int. J. Appl. Radiat. Isotop., 19, 447, (1968)
31. Calf G E, Int. J. Appl. Radiat. Isotop., 20, 611, (1969)
32. Calf G E, "Organic Scintillators and Liquid Scintillation Counting", Horrooks D L \& Peng C T (Eds), (Academic Press, 1971)
33. Calf $G E$ \& Polach $H$ A, "Liquid Scintillation Counting - Recent Developments", Stanley P E \& Scoggins B A (Eds), (Academic Press, 1974)
34. Cavanaugh R, "Current Status in Liquid Scintillation Counting", Bransome E D (Ed), (Grune \& Stratton, 1970)
35. Clausen T, Anal. Biochem., 22, 70, (1968)
36. Cooper R \& Thomas J K, J. Chem. Phys., 48, 5097, (1968)
37. Crookes J N \& Lilley I, Appl. Radiat. Isot., 38, No 4, 301, (1987)
38. Davidson J D \& Feigelson P, Int. J. Appl. Radiat. Isotop., 2, 1,(1957)
39. De Bersaques J, Int. J. Appl. Radiat. Isotop., 14, 173, (1963)
40. De Filippis S J \& Everett L J, Trans. Am. Nucl. Soc., 39, 21, (1981)
41. De Wachter R \& Fiers W, Anal. Biochem., 18, 351, (1967)
42. Dobbs H E, Nature, 200, 1283, (1963)
43. Dugan M A \& Ice $R$ D, "Organic Scintillators and Liquid Scintillation Counting", Horrocks D L \& Peng C T (Eds), (Academic Press, 1971)
44. Engstrom R W, "Photomultiplier Handbook", (RCA Corporation, 1980)
45. Erikson K R, Winn $R$ W \& Horrocks D L, "Advances in Scintillation Counting", MoQuarrie S A, Ediss C \& Wiebe L I (Eds), (University of Alberta Press, 1983)
46. Everett L J, Ring J G \& Nguyen D C, "Liquid Scintillation Counting", Vol. 3, Crook M A \& Johnson P (Edsi), (Heyden, 1974)
47. Ewan W D, Technometrics, 5, 1, (1963)
48. Ewer M J \& Harding N G L, "Liquid Scintillation Counting", Vol. 3, Crook M A \& Johnson P (Eds), (Heyden, 1974)
49. Farmer G C H \& Hugget, Lab. Practice, 30, No5, 488, (1981)
50. Ferziger J H, "Numerical methods for engineering application", (Wiley, 1981)
51. Fleishman D G \& Glazunov U V, Instrum. Exp. Tech. (USSR), 472, (1962); Prib. Tekh. Eksp., 3, 55, (1962)
52. Flynn K F, Glendenin L E \& Prodi V, "Orgaric Scintillators and Liquid Scintillation Counting", Horrocks D L \& Peng C T (Eds), (Academic Press, 1971)
53. Flynn K F, Glendenin L E, Steinberg E P \& Wright $P$ M, Nucl. Instr. Methods, 27, 13, (1964)
54. Furst M \& Kallmann H, Phys. Rev., 85, 816, (1952)
55. Furst M \& Kallamnn H, Phys. Rev., 94, 503, (1954)
56. Furst M \& Kallmann H, Phys. Rev., 109, 646, (1958)
57. Furst M \& Kallmann H , "Liquid Scintillation Counting", Bell C G \& Hayes F N (Eds), (Pergamon, 1958)
58. Galloway R B, Nucl. Instr. Methods, 172, 431, (1980)
59. Garfinkel S B, Mann $W$ B, Medlock $R$ W \& Yura O, Int. J. Appl. Radiat. Isotopes, 16, 27, (1965)
60. Gebicki J, Reinschussel W \& Rudzinski J, "Liquid Scintillation Counting Recent Applications and Developments", Vol. 1, Peng C T, Horrocks D L \& Alpen E L (Eds), (Academic Press, 1980)
61. Gershuni S, Rabinowitz M, Agranat I \& Belman I B, "Liquid Scintillation Counting Recent Applications and Developments", Vol. 1, Peng C T, Horrocks D L \& Alpen E L (Eds), (Academic Press, 1980)
62. Gibson J A B, "Liquid Scintillation Science and Technology", Noujaim A A, Ediss C \& Wiebe L I (Edss), (Academic Presss, 1976)
63. Gibson J A B, "Liquid Scintillation Counting", Vol. 2, Crook M A \& Johnson P (Eds;) (Heyden, 1972)
64. Gibson J A B, "Liquid Scintillation Counting - Recent Developments", Stanley P E \& Scogeins B A (Eds), (Academic Press, 1974)
65. Gibsion J A B \& Gale H J, Int. J. Appl. Radiat. Isotop., 23, 321, (1972)
66. Gould J M, Cather $R$ \& Winget $G$ D, Anal. Biochem., 50, 540, (1972)
67. Gringorten J L, Int. J. Appl. Radiat. Isotop., part 9, 34, 1367, (1983)
68. Gusten H \& Seitz W, "Liquid Scintillation Counting Recent Applications and Developments", Vol. 1, Peng C T, Horrocks D L \& Alpen E L (Eds;), (Academic Press, 1980)
69. Harston M \& Pyper N, J. Phys. B G.B., 17, part 24, 839, (1972)
70. Hartley P E \& Church V E, "Liquid Seintillation Counting - Recent Developmertsi", Stanley P E \& Scoggins B A (Eds), (Academic Press, 1974)
71. Haviland R T \& Bieber L L, Anal. Biochem., 50, 540, (1972)
72. Hayes F N, Advan. Tracer Methodol., 3, 93, (1966)
73. Hayes $F$ N, Int. J. Appl. Radiat. Isotop., 1, 46, (1956)
74. Hayes $F$ N, Ott D G \& Kerr V N, Nucleonics, 14, 42, (1), (1956)
75. Hayes $F$ N, Rogers B S, Sanders $R$, Schuch R $L$ and Williams D L, Report LA1639, Los Alamoss Sciences Lab. (1953)
76. Helf S \& White C, Anal. Chem. , 29, 13, (1957)
77. Herberg R J, Anal. Chem., 32, 1468, (1960)
78. Hercules D M, "Current Status in Liquid Scintillation Counting", Bransome E D (Ed), (Grune \& Stratton, 1970)
79. Hiebert R D \& Watts R J, Nucleonict, 11, N 12, 38, (1953)
80. Hilaire M, Nucl. Instrm. \& Methods, 112, 385, (1973)
81. Higashimura T, Yamada O, Nohara $N$ \& Shidei T, Int. J. Appl. Radiat. Isotop., 13, 308, (1962)
82. Hoizumi K, "Liquid Scintillation Counting", Vol. 5, Crook M A \& Johnson P (Eds), (Heyden, 1978)
83. Horrocks D L, "Applications of Liquid Scintillation Counting", Horrocks D L, (Academic Press, 1974)
84. Horrocks D L, Photorhem. \& Photobiol., 15, 1083, (1972)
85. Horrocks D L, Prog. Nucl. Energy Ser. 9, 7, 21, (1966)
86. Horrocks D L, "Liquid Scintillation Counting", Vol. 5, Crook M A \& Johnson P (Eds), (Heyden, 1978)
87. Horrocks D L, Trans. Am. Nucl. Soc., 45, 24, (1983)
88. Horrocks D L, "Liquid Scintillation Counting", Vol. 3, Crook M A \& Johnson P (Eds), (Heyden, 1974)
89. Horrocks D L, J. Chem. Phys., 52, 1566, (1970)
90. Horrocks D L, J. Chem. Phys., 49, 2913, (1968)
91. Horrocks D L, Int. J. Appl. Radiat. Isotop., 36, Part B, 609, (1985)
92. Horrocks D L, Nature, 202, 78, (1964)
93. Horrocks D L, Trans. Am. Nuc1. Soc., 39, 39, (1981)
94. Horrocks D L \& Studier M H, Anal. Chem., 30, 1747, (1958)
95. Horrocks D L \& Studier M H, Anal. Chem., 30, 2077, (1964)
96. Horrocks D L \& Wirth H O, J. Chem. Phys., 49, 2907, (1968)
97. Horrocks D L \& Wirth H O, "Organic Scintillators", Horrocks D L (Ed), (Gordon \& Breach, 1968)
98. Ivanova T V, Mokkeeva G A \& Sveshnikov B Ya, Optios and Spectroscopy, 12, 235, (1962)
99. Johanson K J \& Lundquist H, Aral. Biochem., 50, 47, (1972)
100. Johnson S M, IEEE Trans. Nuc1. Soc., NS2O, N 1, 113, (1973)
101. Joon K \& Deurloo P A, Int. J. Appl. Radiat. Isotop., 16, 334, (1965)
102. Jordan P, Kaczmar U \& Koberle P, Nucl. Instr. Methods., 60, 77, (1968)
103. Kaczmarcayk K N, "Organic Scintillators and Liquid Scintillation Counting", Horrocks D L \& Peng C T (Eds), (Academic Press, 1971)
104. Kalbhen D A, "Current Status in Liquid Scintillation Counting", Bransome E D (Ed), (Grune \& Stratton, 1970)
105. Kallmann H \& Furst M, "Liquid Scintillation Counting", Bell C G \& Hayes F N (Eds), (Pergamon, 1958)
106. Kallmann $H$ \& Furst M, Nucleonics, 8, (3), 32, (1951)
107. Klevans H B \& Platt J R, J. Chem. Phys., 17, 470, (1949)
108. King $T$ A \& Voltz R, Proc. Roy. Soc. A, 289, 424, (1966)
109. Kolb A J, "Liquid Scintillation Counting Recent Applications and Developments", Vol. 1, Peng C T, Horrocks D L \& Alpen E L (Eds), (Academic Press, 1980)
110. Kolb A J \& Horrocks D L, Lab. Practice, 30, N 5, 481, (1981)
111. Kowalski E, Anliker $R$ \& Schmid K, "Organic Scintillators", Horrocks D L (Ed), (Gordon \& Breach, 1968)
112. Laney B H, "Liquid Scintillation Science and Technology", Noujaim A A, Ediss C \& Wiebe L I (Eds), (Academic Press, 1976)
113. Laney B H, "Liquid Scintillation Counting", Vol. 4, Crook M A \& Johnson P (Eds), (Heyden, 1977)
114. Laney B H, "Organic Scintillators and Liquid Scintillation Counting", Horrocks D L \& Peng C T (Eds), (Academic Press, 1971)
115. Langenscheidt E, "Liquid Scintillation Counting", Vol. 1, Dyer A (Ed), (Heyden, 1971)
116. Laor $V$ \& Weinreb A, J. Chem. Phys., 43, 1565, (1965)
117. Laustriat $G$, Volta $R$ \& Klein J, "Current Status in Liquid Scintillation Counting", Bransome E D (Ed), (Grune \& Stratton, 1970)
118. Lawson C W, Hirayama F \& Lipsky S, J. Chem. Phys., 51, 1590, (1969)
119. Liberman $R$ \& Moghissi A A, Int. J. Appl. Radiat. Isotop., 21, 319, (1970)
120. Malcolm P J \& Stanley P E, "Liquid Scintillation Counting - Recent Developments", Stanley P E \& Scoggins B A (Eds), (Academic Press, 1974)
121. Malcolm P J \& Stanley P E, "Liquid Scintillation Counting", Vol. 4, Crook M A \& Johnson P (Eds), (Heyden, 1977)
122. Malcolm P J \& Stanley P E, Int. J. Appl. Radiat. Isotop., 27, 415, (1976)
123. Martin H, Electro Optical Systems Design, 8, N $\mathrm{N}^{\circ} 11$, 16, (1976)
124. McQuarrie S A, Ediss C \& Weibe L I, Int. J. Appl. Radiat. Isotop., 34, N ${ }^{\infty}$ 7, 1009, (1983)
125. Moghissi A A, Kelley H L, Reynier J E \& Carter M W, Int. J. Appl. Radiat. Isotop., 20, 145, (1969)
126. Mueller E B, "Current Status in Liquid Scintillation Counting", Bransome E D (Ed), (Grune \& Stratton, 1970)
127. Murray $R$ B \& Manning J J, IRE Trans. Nucl. Sci., Vol. NS7, part2, 80, (1960)
128. Neary M P \& Budd A L, "Current Status in Liquid Scintillation Counting", Bransome E D (Ed), (Grune \& Stratton, 1970)
129. Nibeck J I, Bares S L \& Williams E S, "Liquid Scintillation Counting Recent Applications and Developments", Vol. 1, Peng C T, Horrocks D L \& Alpen E L (Eds), (Academic Press, 1980)
130. Noakes J E, "Liquid Seintillation Counting", Vol. 4, Crook M A \& Johnson P (Eds), (Heyden, 1977)
131. Noujaim A A, Weibe L I \& Ediss C, "Liquid Scintillation Science and Technology", Noujaim A A, Ediss C \& Wiebe L I (Eds), (Academic Press, 1976)
132. Okita G T, Spratt $J$ \& Leroy $G$ V, Nucleonics, 14, Now 3, 76, (1956)
133. Oster G K \& Kallamn H, Nature, 194, 1033, (1962)
134. Painter K, "Liquid Scintillation Counting - Recent Developmentsi", Stanley P E \& Scoggins B A (Eds), (Academic Press, 1974)
135. Painter K \& Gezing M, "Liquid Scintillation Counting - Recent Developments", Stanley P E \& Scoggins B A (Eds), (Academic Press, 1974)
136. Paix D, Int. J. Appl. Radiat. Isotop., 19, 162, (1968)
137. Parker R P \& Elrick R H, "Current Status in Liquid Scintillation Counting", Bransome E D (Ed), (Grune \& Stratton, 1970)
138. Parmentier J H \& ten Haaf $F$ E L, Int. J. Appl. Radiat. Isotop., 20, 305, (1969)
139. Pazdur M F, Int. J. Appl. Radiat. Isotop., 27, 179, (1976)
140. Peng C, Int. J. Nucl. Med. \& Biol., 10, part 2-3, 149, (1983)
141. Peng C, Anal. Chem., 32, 1292, (1960)
142. Peng C, Anal. Chem., 36, 2456, (1964)
143. Peng C, "Organic Scintillators", Horrocks D L (Ed), (Gordon \& Breach, 1968)
144. Peng C, "Liquid Scintillation Science and Technology", Noujaim A A, Ediss C \& Wiebe L I (Eds), (Academic Press, 1976)
145. Persyck D E \& Lewis T T, "Liquid Scintillation Counting", Vol. 3, Crook M A \& Johnson P (Eds), (Heyden, 1974)
146. Prenter P M, "Splines and Variational Methods", Wiley, (1975)
147. Price L W, Lab. Practice, 30, N 5, 489, (1981)
148. Rapkin E, "Liquid Scintillation Counting", Vol. 2, Crook M A \& Johnsion P (Eds), (Heyden, 1972)
149. Rapkin E, "Applications of Liquid Sointillation Counting", p 255, Horrocks D L, (Academic Press, 1974)
150. Reines F \& Cowan C L, Nature, 178, 446, (1956)
151. Reuter E \& Trefny F, Int. J. Appl. Radiat. Isotop., 28, 539, (1977)
152. Ring J G, Nguyen D C \& Everett L J, "Liquid Scintillation Counting Recent Applications and Developments", Vol. 1, Peng C T, Horrocks D L \& Alpen E L (Eds), (Academic Press, 1980)
153. Rohde R E, Nucl. Inst. Methods, 34, 109, (1965)
154. Ross H H, Anal. Chem., 37, 621, (1965)
155. Ross H H \& Yerick R E, Anal. Chem., 35, 794, (1963)
156. Rummerfield P S \& Goldman I H, Int. J. Appl. Radiat. Isotop., 23, 353, (1972)
157. Scales B, Int. J. Appl. Radiat. Isotop., 18, 1, (1967)
158. Scales B, Anal. Biochem. 5, 489, (1963)
159. Schram E, Demulyder F, DeRycker J \& Roosens H, "Liquid Scintillation Science and Technology", Noujaim A A, Edisss C \& Wiebe L I (Eds), (Academic Press, 1976)
160. Scoggins B A, Butkus A \& Coghlan J P, "Liquid Scintillation Counting - Recent Developments", Stanley B E \& Scoggins B A (Eds), (Academic Press, 1974)
161. Seliger H H, Int. J. Appl. Radiat. Isotop., 8, 29, (1960)
162. Simon $R E$ \& Williams $B F$, IEEE Trans. Nucl. Sci., NS15, 166, (1968)
163. Skarstad P, Ma R \& Lipsky S, "Organic Scintillators", Horrocks D L (Ed), (Gordon \& Breach, 1968)
164. Skerbele A \& Lassette E N, J. Chem. Phys., 42, 395, (1965)
165. Smith B S W \& Hodgson J C, Lab. Practice, 32, No 10 , 90, (1983)
166. Spicer W E \& Wooten F, Proc. IEEE, 51, 1119, (1963)
167. Spolders H, "Liquid Scintillation Counting", Vol. 4, Crook M A \& Johnson P (Eds), (Heyden, 1977)
168. Stanley P E, "Liquid Scintillation Science and Technology", Noujaim A A, Ediss C \& Wiebe L I (Eds), (Academic Press, 1976)
169. Stanley P E, "Liquid Scintillation Counting", Vol. 2, Crook M A \& Johnson P (Eds), (Heyden, 1972)
170. Stanley P E, "Liquid Scintillation Counting Recent Applications and Developments", Vol. 1, Peng C T, Horrocks D L \& Alpen E L (Eds), (Academic Press, 1980)
171. Stanley $P$ E \& Malcolm P J, "Liquid Scintillation Counting", Vol. 4, Crook M A \& Johnson P (Eds), (Heyden, 1977)
172. Steyn J, Proc. Phys. Soc. London A, 69, 865, (1956)
173. Stineman $R \mathrm{~W}$, Creative Computing, 54, (1980)
174. Takiuie M \& Hayashi M, Nucl. Instr. \& Methods Phys. Res. Sect. A, 219, 192, (1984)
175. ten Haaf F E L, "Liquid Scintillation Counting", Vol. 2, Crook M A \& Johnson P (Eds), (Heyden, 1972)
176. ten Haaf $F \mathrm{E}$ L, "Liquid Scintillation Counting", Vol. 5, Crook M A \& Johnson P (Eds), (Heyden, 1978)
177. ten Haaf F E L \& Vereijke M L, "Liquid Scintillation Counting', Vol. 4, Crook M A \& Johnson P (Eds), (Heyden, 1977)
178. Vadergraft $J \mathbb{S}$, "Introduction to Numerical Computation", 2nd Ed., (Academic Presss 1983)
179. Voltz R, Rad. Res. Rev., 1, 301, (1968)
180. Volte R, Laustriat $G$ \& Coche A, C. R. Acad. Soi. Paris, 257, 1473, (1963), \{in French\}
181. Wang C H, Advan. Tracer Methodol., 1, 285, (1962)
182. Wang C H, "Current Status in Liquid Scintillation Counting", Bransome E D (Ed), (Grune \& Stratton, 1970)
183. Ware W R, J. Amer. Chem. Soc., 83, 4374, (1961)
184. Wetherill G B, "Sampling inspection and quality control", (Chapman and Hall, 1977)
185. Whisman M L, Escleston B H \& Armstrong F E, Anal. Chem., 32, 484, (1960)
186. Wirth H O, Proc. Conf. Organic Scintillation Detectors, Univ. New Mexico, 1960, Rep. TID-7612 US AEC
187. Young A T, Appl. Opt., 2, N 1, 51, (1963)
188. Yura O, Radioisotopes, 20, $383 \mathrm{ff}, 493 \mathrm{ff}, 610 \mathrm{ff}$, (1971)

B1 "Applications of Liquid Scintillation Counting", D L Horrocks, Academic Press, 1974

B2 "Organie Scintillators and Liquid Scintillation Counting", D L Horrocks and C T Peng (Eds), Academic Press, 1971

B3 "Liquid Scintillation Counting", Vol. 1, A Dyer (Ed), Heyden, 1971

B4 "Liquid Scintillation Counting", Vol. 2, M A Crook and P Johnson (Eds), Heyden, 1972

B5 "Liquid Scintillation Counting", Vol. 3, M A Crook and P Johnsion (Edsi), Heyden, 1974

B6 "Liquid Scintillation Counting", Vol. 4, M A Crook and P Johnson (Eds), Heyder, 1977

B7 "Liquid Scintillation Counting", Vol. 5, M A Crook and P Johnson (Eds), Heyden, 1978

B8 "Current Status in Liquid Scintillation Counting", E D Bransome (Ed), Grune \& Stratton, 1970

B9 "Liquid Scintillation Counting - Recent Developments", P E Stanley and B A Scoggins (Eds), Academic Press, 1974

B10 "Liquid Scintillation Science and Technology", A A Noujaim, C Ediss and L I Wiebe (Eds), Academic Presss 1976

B11 "Liquid Scintillation Counting Recent Applications and Developments ", Vol. 1, C T Peng, D L Horrocks and E L Alpen (Eds), Academic Press, 1980

B17 "RCA Photomultiplier Handbook", R W Engstrom, RCA Corporation, 1980

B18 "Liquid Scintillation Counting", C G Bell and F N Hayes (Eds), Pergamon, 1958

B19 "Tables of Physical and Chemical Constants", 14th Ed., G W C Kaye and T H Laby, Longman, 1973

B20 "CRC Handbook of Physics and Chemistry", 64th Ed., Robert C Weast (Ed), CRC Press, 1983

DETECTION OF DRIFT IN RADIOACTIVE COUNTING USING THE CUSUM TECHNIQUE

## Introduction

The characteristics of a scintillation counter are critically dependent on the stability of the counting conditions. Instabilities in the system produce a drift in the counting efficiency. ${ }^{1 \times r}$ Such changes are often associated with drift in the EHT supply due to temperature or mains fluctuations or deterioration of the sample in liquid scintillation counting. Unless remedial action is to be taken the source of the drift is not so important. However, it is essential to know the magnitude and time when any drift occurs. The literature shows very little work on the monitoring of counter performances, ${ }^{*}$ and this has used traditional indicators of change in a Poissonian distribution such as standard deviation, skew and kurtosis. Although producing confidence limits, typically $95 \%$, these indicators have been shown to lack the sensitivity of other methods as well as producing no indication of the onset of drift. This work studies the detection of drift using a susum method47.1e4 and compares its scope and sensitivity with the traditional method.

## Cusum method

The cumulative sum chart (or cusum chart) is a highly informative means of presenting data that can be ordered into a logical sequence. A detailed exposition of the methodology is given in a British Standard Guide to Data analysiss and quality control using cusum techniques (BS 5703, parts 1, 2, 3 and 4). For observations $x_{3}$, xa, ...... x. obtained sequentially having a target value, $T$, which may be the mean, $x$, for retrospective analysis, the ousum is defined ass $C_{i}=\sum_{r=1}^{1}(X-T)$. A cusum ohart displays $C_{i}$ against i.

Where the observations are from a population having a mean equal to the target value the graph will generally be horizontal with random fluctuations about the lire. A systematic fluctuation from the target value will result in a change in the siope of the chart.

When measuring variability a plot is made of a sample statistic, say sample mean or range, having a standard error, $\pi_{m}$. If the population standard deviation, $\sigma$, is known, or there existsi an accurate estimate, we may use the relevant sampling theory to obtain $\sigma_{\infty}$ e.g. $\sigma_{\infty}=\sigma / \sqrt{n}$. Generally it is safer to obtain a direct estimate of the standard error. Denoting the values to be plotted $y \ldots, y=$,
$\ldots . y_{m}$ then $\sigma_{m}=\left(\sum_{i=1, i n}^{m-1} \frac{\left(y_{i}-y_{i,+1}\right)^{m}}{2(m-1)}\right)^{1 / 2}$

An estimate of the looal average in a partioular segment is given by the silope of the ousum chart. Consider the segment from sample $i+1$ to $j$. The relevant change in cusum is irrom C. to $C$. over $i$ to $j$. For the first segment $i=0$ and $C_{c}=0$ ). Hence the average shilt from the target (mean) value for the segment iss (C. $\left.-C_{i}\right) /(j-i)$. Thus the local average is $\overline{\mathrm{x}} \mathrm{m}, \mathrm{a}=\mathrm{T}+(\mathrm{C}, \mathrm{C}, \mathrm{C}) /(\mathrm{j}-\mathrm{i})$.

The application of the ousum method to the detection of drift in a parameter requires the establishment of decision rules to distinguish between real changes in the cusum slope and the normal variability of the data. The essential features of the cusum chart relevant to the detection of changes in the underlying average level are the steepness of the cusum slope and the number of samples over which the slope persists. When the parameter (e. g. count) iss running at the target level, i.e. an acoeptable quality level AQL, there will, because of the randon nature of counting, inevitably be occasions when the ousum path apparently diverges from the horizontal. The decision rule should not give false alarms that indioate that such sequences represent significant departure from AQL. On the other hand, when the process moves to an unsatisfactory condition, i.e. a rejectable quality level, RQL, the deoision rule should give as rapid a response as possible. The number of events between drift occurring and its detection by the cusum indicates the magnitude of the drift. If the true process is at or near $A Q L$, then this number should be large i.e. few false alarms, whereas if it
is near RQL, then it should be short i.e. rapid detection.

The detection of drift by use of AQL and RQL can be achieved in various ways. One graphical method employs a truncated V-mask which comprises a datum point, indicated by $A$ in Fig. A1.1 with two sloping arms running from $B$ to $D$ and $C$ to $E$. The scaling of the mask i.e. $h \& f$, will determine the stringency of the control. The mask is used by placing the datum $A$ over any point on the chart, usually the most recent point plotted. The $A F$ axis is laid parallel to the sample number axis of the chart. If the path of the cusum crosses either of the arms, a significant departure from the target value is signalled. However, if the entire cusum path remains inside the arms, no significant shift is indicated.

Although the $V$-mask is essentially a manual inspection method it can be computerised, but in both cases it is slow and laborious. An alternative method is entirely numerical in nature and hence much faster to compute. Again the data defines the AQL, $\mu$, and there is a deviation from $\mu_{m}$ which is unacceptable and is represented by the RQL, $\mu_{1}$. A reference level, $K$, for deviations from the mean is established where $K=T \pm f \sigma_{\text {er }}$. If $f=0.5$ then the reference level lies midway between $\mu_{\text {m }}$ and $\mu_{r-}$. Each count ( $\mathrm{x}_{\mathrm{s}}$ ) is compared with K . If $\mathrm{x}_{\mathrm{i}}<\mathrm{K}$ then no action iss taken. However, if $\mathrm{x}_{\mathrm{i}}>\mathrm{K}$, then a cusum is commenced of
the algebraie differences from $K$, i.e. $C=\sum_{i}^{\prime}\left(x_{1} \cdot K\right)$, where $j$ represents the end point of the ousum determined by one of the following two conditions: a) if C falls to below O or $b$ ) $C$ > $H$ where $H=h \sigma, i s$ a decision level, typically $h=5$. If a) applies then no action is taken until $T$ - fom $>X_{i}>T+f^{T} m_{m}$ again and a new cusum is commenced. If b) applies then drift is deemed to have ocourred, i representing the onset of the cusum but not necessarily the onset of drift (since allowance has to be made for statistical fluctuation, and $j$ - i representing the number of samples from onset to detection.

In order to test the sensitivity of the method and compare it with the traditional methods of analysis for Poissonian fluctuations, sets of data were produced using the random generator of a microcomputer. 100 sets each containing 1000 numbers were examined and satisfied the normality tests using the $95 \%$ confidence limits for skew and kurtosis. For a range of values of K the minimum decision level, hmar which failed to indicate drift was determined. This produced a $95 \%$ confidence limit as shown in Fig. A1. 2 and any RQL indicated by a data set lying within this band must be assumed to be normal data. However, where hma iss found to lie outside this range, then drift or nonnormality of the data is detected.

Having defined the range for acceptable Poissonian data, more data sets were generated with drifts introduced. This allowed an investigation of the size and length of drift detectable using the cusum as opposed to the traditional methods.

The data sets consisted of 1100 numbers; the first 1000 generated with a theoretical mean value of 20,000 and no drift followed by 100 numbers with a uniform positive drift. The various sets generated had drifts ranging from $0.01 \%$ per sample to $0.05 \%$ per sample.

The statistical analysis of the drift data was performed on batches of 200 and 1000 numbers with various proportions of the drifting data included for each of the simulated data sets. The cusum analysis produced not only the value of hwin required to prevent any drift indication but for lesser values of $h$ also determined the onset of drift and the point at which it was detected. For all drift data an RQL of 1 to was employed.

For batches of 200 taken from the drift data the variation in the value of hmon for a range of drifts ass well as non-drift was investigated (Fig. A1.3). The analysis of the results shows that for $h$ greater than 1.6 , the drift iss detected. However, a small proportion of the total indicated non-normality from a study of the kurtosiss. The sensitivity of the ousum technique detects drift of $0.015 \%$ per sample when the drift length is greater than $20 \%$ of the 200 sample total, but failed to detect a $0.01 \%$ drift at any point. The investigation demonstrated the superiority of the cusum technique over the more traditional kurtosis.

When considering 1000 points the sensitivity is increased compared with 200 points so that a drift of $0.01 \%$ per sample for a duration of $9 \%$ of the total sample size iss detected. A drift of $0.05 \%$ per sample is detected when only representing $2 \%$ of the total at a similar level as would be expected.

In order to detect the onset and magnitude of drift, a value of $h$ was fixed at 3 representing a value outside the spread of ham derived from nomal data sets and allowing for statistical fluctuations. The number of samples was determined between the onset and detection of dxift for the various drift sizes (Fig. A1.4). Although subject to quite large fluctuations the trend is as expected and allows the magnitude of drift in an instrument test to be estimated.

Experiments were conducted on three instruments, namely, the Nuclear Enterprises SR3 and Packard Auto Garma counter with NaI crystals and the Packard 300C liquid seintillation counter. A PET microcomputer, connected on-line to each in turn, acquired 1000 counts for various counting configurations. For the $\gamma$-detectors the counts across a as>Cs photopeak at optimum EHT produced no detectable drift. Plotted on Fig. A1. 2 the hma values lie within the 95\% confidence range for 1000 simulated data sets with no drift.

The tests of the liquid scintillation counter were rather more extensive and designed to assess the presence of drift a) while counting a given radionuclide and b) with alternations between two radionuclides. A single ${ }^{1.4} \mathrm{C}$ source was subjected to 1000 one minute counts with $43 s$ cycle time intervals between each count. The kurtosis was within the $95 \%$ confidence levels and an hma value of 2.1 showed a very low degree of drift (Experiment 1, Table TA1.1). Consequently, the instrument produced a high degree of stability for continuous counting of the same radionuelide.

To examine the effect of two radionuclides, single samples of FH and ${ }^{4.4} \mathrm{C}$ were counted alternately with the counting conditions varied appropriate to the radionuclide by the automatic programming of the counter. Although only 500
counts were taken for each sample in this case, considerable drift was detected by both the kurtosis and cusum techniques (Experiment 2, Table TA1.1). In order to investigate this effect further, rather than single counts of each radionuclide, 25 repeated counts of each i.e. 25 counts of $=\mathrm{H}$ followed by 25 counts of ${ }^{14} \mathrm{C}$, was performed a total of 40 times. The results showed much less drift. Indeed for both radionuclides the kurtosis values were within the $95 \%$ confidence levels. However, the cusum technique demonstrated its better sensitivity and detected some drift for both samples (Experiment 3, Table TA1.1). Hence the test demonstrated that a 'settling down' period follows the changed programme settings between radionuclides to be desirable.

An analysis of the drifts indicated for $h=3$ showed that the 10 drifts ( 7 for ${ }^{14} \mathrm{C}$ and 3 for ${ }^{*} \mathrm{H}$ ) ranged from 0.14\% per sample to $0.06 \%$, although these readings are subject to quite large errors which are difficult to estimate.

## Conclusion

The cusum technique when applied to radioisotope counting is both more sensitive and more informative than the use of kurtosis. A simple computer analysis with a decision level of $3 \sigma_{\mathrm{m}}$ determined from theoretical data produced a statement of the instrument behaviour. From the experiments performed using the Packard 300C liquid scintillation counter the stability during long counts of a particular isotope is better than the sensitivity of the cusum technique. However, using the parameters chosen above, drift occurred when alternate single counts of $w H-$ ${ }^{14} \mathrm{C}$ were made. When the samples were subject to repeated counts during each cycle drift was less severe.


General-purpose truncated V-mask


Truncated V-mask applied to cusum chart: no indication of shift


Truncated V-mask applied to cusm chart: indication of shift
Fig. A1. 1


Fig. A1.2 Variation of $h_{\text {min }}$


Fig. A1. 3 Variation of $h_{\text {min }}$ with drift length/total length


Fig. A1. 4 Variation of detection length with \% drift

Table TA1. 1

Results of drift experiments on Packard 300C Liquid Scintillation
Counter

Experiment   Number	Kurtosis	Number of drifts   detected with $h=3$	$h_{\text {min }}$
1	2.98	0	2.1
$2^{*}$$14_{\mathrm{C}}$   $3_{\mathrm{H}}$	2.44	11	10
3	2.24	11	10
$3_{\mathrm{H}}^{14_{\mathrm{C}}}$	3.00	7	9.5

* 500 counts of each sample


## Program Listings

(i) LSC Simulation

M2.2.PAS and M2.2INIT.PAS together comprise the root version of the LSC Model described in this thesis. The model simulates the two PMTube Liquid Scintillation Counter for ${ }^{* H}$ and ${ }^{14 C}$ counting. Editing of the module M2. 2INIT.PAS enables long sequences of non-interedive model running.
(ii) Polya Statistics

The program Polya. Pas produces a listing of the compound poisson (polya) distribution and its two extremes, the exponential distribution and the poisson distribution. The polya distribution is used to model pMTube statistics in the LSC simulation.
(iii) MCA Pulse Height Spectra Transfer and Analysis The BASIC and 6502 machine oode programs listed below enables the transfer of a pulse height spectrum from a NE4694 1024 MCA to a PET via a RS232/IEEE interface at 4800 baud; the display of the spectrum on a PET high resolution graphios soreen at variable sensitivity; use of a oursor to define a region of interest; and caloulation of the integral count and mean pulse height across the region of interest.
(iv) F'luorescence and Absorption Spectra Capture The program FLUORESCENCE is written in USCD Pascal as implemented on the Apple ITe microcomputer undex the TDI phystem. It is a program used to capture fluoresoence spectra data generated by a Ferkin Elmer 3000 Fluoximeter. This is achieved by monitoring two input channels of an attached $A / D$ card. One channel is used for the actual data Qapture and the other for initiating a run. Initiation of a run results from detection of a 1 V signal which goes low when the fluorimeter scan button is depressed. Jpon completion of capturing the requested number of samples the data is saved to disk.

## (v) Curve Fitting

The program Curfit written in BASIC on a CBM 4000 PTT offers a menu of curve fitting routines with soreen plotting, soreen dumps and printed output. The progren requires prior loading of PETGRAPG to enable the graphics function. The printed output is achieved by calling a chained program Curdat.
(vi) Data Capture of 300C Printer Output LSCIOSHORT, written in BASIC on a CBM 4000 PET is one ot a series of programs to capture the printed output of the Packard 300C liquid scintillation counter (LSC). The progran is designed to recognise the number of the internal program commenced by the LSC prior to starting any data capture, and subsequent storage of the data on disk.

```
(i) ISC Simulation - M2.2.PAS
PROGRAM LSCMODEL(INPUT, OUTPUT, OUTFILT, OUT1, OUTS, OUT3,
 OUT4, OUT5, OUT6, DATAPILI);
CONST CEFF = 0.85;{ collection off% }
 PI = 3.14159285;
 PLANCK =- 6.5262E-34;
 ECHARGE = 1.60219E-19;
 LIGHTSPEED = 2.997925EB;
TYPE STRING = PACKED ARRAY[1..25] OF CHAR;
 QUENCHREC = RECORD
 QCHEMVAL : REAL;
 QCOLVAL : REAL;
 QMATLS : STRING;
 END;
 CNTSETNGEREC = RECORD
 CNTMODE : CHAR;
 CNTNUM : INTEGER;
 THOLD : INTEGER;
 SCRSETNGS : ARRAY[1..4,1..6] OF INTEGER;
 BSPECSTEP : REAL;
 END;
 LSCGEOMREC= RECORD
 LIQHT : REAL;
 LIQRAD : REAL;
 VIALHT : REAL;
 VIALRAD : REAL;
 VIALOFFSET : REAL;
 CASEHT : REAL;
 CASERAD : REAL;
 END;
 PARAMREC = RECORD
 PMEAN : ARRAY[1..6] OF REAL;
 PMODE : ARRAY[1..6] OF REAL;
 PSCR : ARRAY[1..6] OF REAL;
 PMID : ARRAY[1..6] OF RTAL;
 END;
 PULSEREC = RECORD
 PULSENUM : ARRAY[1..2] OF INTEGER;
 END;
 PHOTREC = RECORD
 L1, L2,L3, L4, L5, L6, L7, L8, PNUM:
 INTEGER;
 END;
 CHNLREC = RECORD
 MAXCI : ARRAY[1..6] OF INTEGER;
 END;
MODLREC = RECORD
 RECNUM : [KEY(O)] INTEGER;
 NDCLTYPE : CHAR;
 MODLVERSION : PACKED ARRAY[1..52] OF CIIAR;
 QREC : QUENCHREC;
 CREC : CNTSETNGSREC;
 LREC : LSCGEOMREC;
 PREC : PARAMREC;
 PULREC : PULSEREC;
 TLOSS : INTEGER;
```

CLOSS : INTEGER;
QLOSS : INTEGER;
PHREC : PHOTREC;
CHREC : CHNLREC;
END;
MCAREC $=$ RECORD
MCAEECNUM : [KEY(O)] INTEGER;
MCADAT : ARRAY[0.4000] OF INTEGER;
END;
VAR \{files records\}
OUTFILE, TMPFILE : FILE OF MODLREC;
OUT1, OUT2, OUT3, OUT4, OUT5, OUT6 : TILT OF MCAREC;
DATAFILE : FILE OF INTEGER;
QREC: QUENCHREC ; CREC: CNTSETNGSREC; LREC: LSCGEOMREC;
MREC: MCAREC; PREC: PARAMREC; PULREC:PULSEREC;
PHREC: PHOTREC; CHREC : CHNLREC; AREC: MODLREC;
\{real variabless
QCHEM, QCOL, CRAD, LRAD, ARAD, VRAD, VOS, ESTEP, VHT, LIIT, AHT, CHT: [GLOBAL] REAL;
QCHEMVAL, QCOLVAL, EB, PRBMAX, MCPERBMAK, EBSUM, EPOL, MCPRB, EP, WPR, PHI, PSI, ANGLINC, ANGLREF, R, $\mathrm{Z}, \mathrm{VR}, \mathrm{VB}, \mathrm{VH}$, UA, JB, UC, UD, U, DIST, TEMP, XO, YO, Z0, X1, Y1, Z1, X2, Y2, Z2, XN, ZN, EM, E, SW, RETGAMMA, CRIT, BPLINEX, SPLINEY, NREF, EMAX, EBPRBMAX, EVX, EVY, EVZ, WCUTOFF, VIALHT, CASEIT, CASERAD, VIALRAD, BSPECSTEP, TEMP1, TEMPR, PHIINC, PSIINC, ANGLPOL, XTILT, ZTILT, TILT, NX, NY, NZ, XE, YE, ZE, XP, YP, ZP, XL, YL, ZL, VIALOFFSET, LIQHT, LIQRAD : REAL; \{quadruple reals\}
PMPRBMAK : QUADRIJPLE;
\{integer variables\}
IDNUMBER, NDISNTGS, NCOUNTS, DYNUM, THPESHOLD :
[GLOBAL] INTEGER;
I, JJ , COUNT, WP, WSTART, WSTOP, ASTART, ASTOP, FSTART, SKIP, CHOP, LOOP, II, NFERMI, SEEDVAL, FSTOP, MNUM, K, J, PMTMIN, PMTMAX, SUM, DIFF, RATIO, IMCFRB,
H, W, RND, SPLINEGIZE, MAXCHNL, WLOWER, WUPPER, ITEMP, COINLOST, THLDLOST, RECNUM, TLOSS, CLOSS, QLOSS, QUANTLOST, THOLD, CNTNUM, IEVENTS, MNUMTEMP, FACENUM, NFLEC, PARFLAG, L1, L2, L3, L4, L5, L6, L7, L8, RL2, LL2, PNUM, MCARECNIJM, L1, L2, L3, L4, L5, L6, L7 , L8, PNUM :
INTEGER;
\{boolean char\}
PHOTONTRACED, OUTWARD, RDO : BOOLEAN;
STOPFLAG: [GLOBAL] BOOLEAN;
NUCLIDE, CNTMODE: [GLOBAL] CIIAR;
CNTMODE, NUCLTYPE : CHAR;
QMATLS : [GLOBAL] PACKED ARRAY[1..25] OF CHAR;
QMATLS : PACKED ARRAY[1..25] OF CHAR;
MVERSION:[GLOBAL] PACKED ARRAY[1..50] OF CHAR;
MODLVERSION :PACKED ARRAY[1:.50] OF CHAR;
\{real arrays\}
VV, ZZ, A1, B, C, D1 : ARRAY[0. .50] OF REAL;
P, PP : ARRAY[0..1,0..50] OF REAL;
SEFF : ARRAY[0..1,0..9] OF REAL;
MEANENCH, SCR, MODE, MIDNUMCH, PMEAN, PMODE, PSCR,

PMID:ARPAY[1..6] OF REAL;
SCRSUM : ARRAY[1..2,1.. 6$]$ OF FEAL;
PMPRB : ARRAY[0.. 1000] OF QUADRUPLE;
QI :ARRAY[1..2,0..1000] OF REAL;
QP, DYM, BSF : [GLORAL] ARRAY[1..2] OF REAL;
\{integer arrays\}
MCA :ARRAY[1..6,0..4000] OF INTEGER;
MCADAT :ARTAY[0.4000] OF INTEGER;
FLSWAVE, FLGPROB, ABSPROB, WAVE, PROB, ALABGPROB :
ARRAY[0. .300] OF INTEGER;
SCRSETNGS : ARRAY[1..4,1..6] OF INTEGER;
SCRLL, SCRUL : [GLOBAL] ARRAY[1..2,1..6] OF INTEGER;
MAXCH : ARRAY[1..6] OF INTEGER;
ALAB : ARRAY[0..1,0..11] OF INTEGER;
PULSENUM, PULSENUM, PMCOUNT, QIX :
ARRAY[1..2] OF INTEGER;
FUNCTION SPLINEINTRRP (SPLINEX:REAL) : REAL;
BEGIN
$\mathrm{H}:=0 ; \mathrm{W}:=0$;
WHILE $W=0$ DO
BEGIN
IF (SPLINEX>=PP[0, H$]$ ) AND (SPLINEX<PP[O, $\mathrm{H}+1]$ )
THEN BEGIN
SPLINEX: =SPLINEX-PP[0, II];
SPLINEY : $=\mathrm{A} 1[\mathrm{H}]+\mathrm{B}[\mathrm{H}] * \mathrm{SPLINEX}+\mathrm{C}[\mathrm{H}] * \mathrm{KPLINEX}$, SPLINEX;
SPLINEINTERP : =SPLINEY+D1[H]*SPLINEX*SPLTNEX*SILTNEX;
W:=1; END; $\mathrm{H}:=\mathrm{H}+1$; END;
END;
FIJNCTION MAG(X,Y,Z : REAL) : REAL;
BEGIN
$\mathrm{MAG}:=\mathrm{SQRT}(\mathrm{X} * \mathrm{X}+\mathrm{Y} * \mathrm{Y}+\mathrm{Z} * \mathrm{Z})$
END;
[EXTERNAL, ASYNCHRONOUS] FUNCTION MTH\$TAN
(X : REAL) : REAL;
EXTERNAL;
[EXTERNAL, ASYNCHRONOUS] FUNCTION MTH\$ASIN
(X : REAL) : REAL;
EXTERNAL;
[EXTERNAL, ASYNCHRONOUS] FUNCTION MTH\$ACOS
(X : REAL) : REAL;
EXTERNAL;
[EXTERNAL, ASYNCHRONOUS] FUNCTION MTHSRANDOM
(VAR SEED:INTEGER) : REAL;
EXTERNAL;
[EXTERNAL] PROCEDURE INIT1;
EXTERN;
FUNCTION LFACT(X:INTEGER) : REAL;
VAR JJJ:INTEGER;
BEGIN
TTMP:=0; IF $X>0$ THEN BEGIN FOR JJJ:=1 TO X DO
BEGIN TEMP: =TEMP+LN(JJJ);END;END ELSE;
LTACT:=TEMP;
END;
FUNCTION LPOW(X:REAL;Y:INTEGER) : REAL; BEGIN

IT $\mathrm{X}=0 \mathrm{THEN}$ LPOW: $=0$ ELSE LPOW: $=\mathrm{Y}$ *LN $(X) ;$
END;
PROCEDURE RANDOMINT;
BEGIN
RND: = ROUND (MAXINTwMTHTRANDOM (EEEDVAL $)$ )
END;
FUNCTION RAND(LO, II: INTEGETR): INTEGER;
(* GIVES EVEN SPREAD THRO' A RANGझ LO TO HI *)
VAR MX, C, D: INTEGER;
PROCEDURE RANDM;
BEGIN
RND : = ROUND (MAXINT*MTH\$RANDOM(SEEDVAL))
END;
BEGTN
RAND: $=0$;
IF LO = HI THEN RAND:= LO ELSE BEGIM
$C:=\mathrm{HI}-\mathrm{LO}+1$;
$M X:=(M A X I N T-H I+L O) D I V C+1 ;$
$M X:=M X *(H I-L O)+(M X-1) ;$
REPEAT RANDM UNTIL MX $>=$ RND ;
RAND: $=L O+$ RND MOD $C$; END
END;
(* REF INDEX USING CAUCHY EQNS...*)
FUNCTION NPBDXYL ( $X$ : INTGGER) : REAL;
BEGIN
NPBDXYL: $=1.50675199-1432.37733 / \mathrm{X} / \mathrm{X}-4.12880718 \mathrm{E} / \mathrm{K} / \mathrm{K} / \mathrm{K} / \mathrm{X}$ END;
FUNCTION NCCLA (X : INTEGER) : FEAL;
BEGIN
NCCL4: $=1.48042353-5196.00174 / \mathrm{K} / \mathrm{K}-3.92118021 \mathrm{E} 8 / \mathrm{K} / \mathrm{K} / \mathrm{M} / \mathrm{X}$
END;
FUNCTION NPMTGLS(X : INTEGER) : FEAL;
BEGIN
NPMTGLS: $=1.52$
END;
FUNCTION NVIALGLS(X : INTEGER) :REAL;
BEGIN
NVIALGLS $:=1.49783933+4061.10397 / \mathrm{X} / \mathrm{X}+5804367.75 / \mathrm{K} / \mathrm{K} / \mathrm{K} / \mathrm{K}$
END;
FUNCTION NLIQVIAL. $X$ : INTEGER) : REAL;
BEGIN
NLIQVIAL:=1
END;
(* PMT QUANTUM EFF\% INTERPOLATED RCA4501/V3 DATA *)
FUNCTION QUANTEFT (X : INTEGER) : REAL;
BEGIN
QUANTEFF: $=(-8.906 E-4 * Y * X+0.745 * X-129.49375) / 100$;
(* approx. quadratic 0 to 0.26 effioienoy range, i.e not normaliaed *)

END;
PROCEDURE RANDOMIZE;
BEGIN
SEEDVAL: = CLOCK;
FOR I:= 1 TO 10 DO
TEMP: = MTH电RANDOM (SEEDVAL);

END;
PROCEDURE H3FERMI;
BEGIN
NFERMI: $=7 ; \mathrm{EMAX}:=18.6 ;$
FOR I:= 0 TO NFERMI DO BEGIN
$\mathrm{P}[0, \mathrm{I}]:=511 *(\operatorname{SQRT}(1+I * I / 400)-1)$;
END;
$P[1,0]:=0 ; P[1,1]:=0.00547 ; P[1,2]:=0.0153 ;$
$P[1,3]:=0.0302 ; P[1,4]:=0.0501 ; P[1,5]:=0.0751 ;$
$P[1,6]:=0.105 ; P[1,7]:=0.141 ;$
END;
PROCEDURE C14FERMI;
BEGIN
NFERMI: $=20$;EMAX: $=156$;
FOR I:= 0 TO NFERMI DO BEGIN
$P[0, I]:=511 *(\operatorname{SQRT}(1+I * I / 400) \cdots 1) ; \operatorname{END}$;
$P[1,0]:=0 ; P[1,1]:=0.0162 ; P[1,2]:=0.0328 ;$
$P[1,3]:=0.0553 ; P[1,4]:=0.0818 ; P[1,5]:=0.114 ;$
$P[1,6]:=0.151 ; P[1,7]:=0.193 ; P[1,8]:=0.240 ;$
$P[1,9]:=0.293 ; P[1,10]:=0.351 ; P[1,11]:=0.416 ;$
$P[1,12]:=0.485 ; P[1,13]:=0.560 ; P[1,14]:=0.641 ;$
$P[1,15]:=0.728 ; P[1,16]:=0.820 ; P[1,17]:=0.918 ;$
$P[1,18]:=1.021 ; P[1,19]:=1.131 ; P[1,20]:=1.246 ;$
$P[1,21]:=1.494$;
END;
PROCEDURE SCINTEFF;
BEGIN
$\operatorname{SEFF}[0,0]:=0 ; \operatorname{SEFF}[0,1]:=0.5 ; \operatorname{SPPr}[0,2]:=1 ; \operatorname{SEPF}[0,3]:=5 ;$
$\operatorname{SEFF}[0,4]:=18.6 ; \operatorname{SEFF}[0,5]:=50 ; \operatorname{SERF}[0,6]:=153 ;$
$\operatorname{SEFF}[0,7]:=300 ; \operatorname{SEFF}[0,8]:=500 ; \operatorname{SEFF}[0,9]:=1000 ;$
$\operatorname{SEPF}[1,0]:=0 ; \operatorname{SEFF}[1,1]:=0.024 ; \operatorname{SEPR}[1,2]:=0.031 ;$
$\operatorname{SEFF}[1,3]:=0.040 ; \operatorname{SEFF}[1,4]:=0.047 ; \operatorname{SEFF}[1,5]:=0.052 ;$
$\operatorname{SEFF}[1,6]:=0.058 ; \operatorname{SEFF}[1,7]:=0.062 ;$
$\operatorname{SEFF}[1,8]:=0.062 ; \operatorname{SEFF}[1,9]:=0.062$;
END;
PROCEDURE FSTSPL;
BEGIN
W: =NPLINESIZE;FOR H:=0 TO W DO A1[E]:=PP[1,H];
FOR H: =0 TO W-1 DO D1[H]:= PP[0, H+1]-PP[0, H];
$\mathrm{D} 1[\mathrm{~W}]:=\mathrm{D} 1[\mathrm{~W}-1] ; \mathrm{D} 1[\mathrm{~W}+1]:=\mathrm{D} 1[0] ; \mathrm{B}[0]:=2 * \mathrm{D} 1[0] ;$
FOR $H:=1$ TO $\mathrm{W}-1$ DO $\mathrm{B}[\mathrm{H}]:=2$ * (D1[H]+D1[H-1]);
$\mathrm{B}[\mathrm{W}]:=2 * \operatorname{D} 1[\mathrm{~W}-1] ; \mathrm{C}[0]:=3 *(\mathrm{~A} 1[1]-\mathrm{A} 1[\mathrm{O}]) ;$
FOR H:=1 TO W-1 DO
$\mathrm{C}[\mathrm{H}]:=3 *(\mathrm{D} 1[\mathrm{H}-1] *(\mathrm{~A} 1[\mathrm{H}+1]-\mathrm{A} 1[\mathrm{H}]) / \mathrm{D} 1[\mathrm{HI}]+(\mathrm{D} 1[\mathrm{H}] / \mathrm{D} 1[\mathrm{H}-1])$ *(A1[H]-A1[H-1]));
END;
PROCEDURE SECSPL;
BEGIN
$C[W]:=3 *(A 1[W]-A 1[W-1]) ; V V[0]:=B[0] ;$
$\mathrm{VV}[1]:=\mathrm{B}[1]-(\mathrm{D} 1[1] * \mathrm{D} 1[W+1] / \mathrm{VV}[0]) ;$
FOR H:= 2 TO W DO VV[II]: $=\mathrm{B}[\mathrm{H}]-(\mathrm{D} 1[\mathrm{II}] \mathrm{kD} 1[\mathrm{H}-2]) / \mathrm{VV}[\mathrm{H}-1])$;
$\mathrm{ZZ}[\mathrm{O}]:=\mathrm{C}[0] ; \mathrm{FOR} \mathrm{H}:=1$ TO W DO
$\mathrm{ZZ}[\mathrm{H}]:=\mathrm{C}[\mathrm{H}]-(\mathrm{D} 1[\mathrm{H}] * \mathrm{*Z}[\mathrm{H}-1] / \mathrm{VV}[\mathrm{H}-1])$;
$\mathrm{B}[\mathrm{W}]:=\mathrm{ZZ}[\mathrm{W}] / \mathrm{VV}[\mathrm{W}]$;
FOR H: =W-1 DOWNTO 1 DO
$\mathrm{B}[\mathrm{H}]:=(\mathrm{ZZ}[\mathrm{HI}]-(\mathrm{D} 1[\mathrm{H}-1] * \mathrm{~B}[\mathrm{H}+1])) / \mathrm{VV}[\mathrm{H}] ;$
$B[0]:=(Z Z[0]-(D 1[W+1] * B[1])) / V V[0] ;$
$C[0]:=0 ; C[W]:=0 ;$ FOR $H:=1$ TO $W-1$ DO
$\mathrm{C}[\mathrm{H}]:=3 *(\mathrm{~A} 1[\mathrm{H}+1]-\mathrm{A} 1[\mathrm{H}]) / \mathrm{SQR}(\mathrm{D} 1[\mathrm{H}])$
$-((2 * B[H])+\mathrm{B}[\mathrm{H}+1]) / \mathrm{D} 1[\mathrm{H}]$;
FOR E: $=0$ TO W-1 DO
D1[H]: $=(\mathrm{C}[\mathrm{H}+1]-\mathrm{C}[\mathrm{H}]) /(3 * \mathrm{D} 1[\mathrm{H}]) ;$
END;
PROCEDURE SPLINEFORM;
BEGIN
FSTSPL;
SECSPL;
END;
PROCEDURE INTT2;
BEGIN
PULSENUM[1]:=0;PULSTAUM[z]:= 0 ;COINLOST: $=0$;
THLDLOST: $=0 ;$ QUANTLOST $:=0$;
$\mathrm{L} 1:=0 ; \mathrm{L} 2:=0 ; \mathrm{L} 3:=0 ; \mathrm{L} 4:=0 ; \mathrm{LE}:=0 ; \mathrm{L} 6:=0 ; \mathrm{L} 7:=0 ; \mathrm{LB}:=0 ; \mathrm{RL} 2:=0$;
LL2 : $=0 ;$ PNUM $:=0 ;$ EBSTJM: $=0 ; \operatorname{IEVENTS}:=0$;
FOR I:= 1 TO 6 DO BEGIN
MAXCH[I]: $=0 ; \operatorname{BCRSUM}[1, I]:=0 ; \operatorname{SCRSUM}[2, I]:=0$;
FOR II:= 1 TO 4000 DO MCA[I, II]: $=0$; END;
TILT: $=\operatorname{ARCTAN((CHT/2)/(CRAD-VRAD));XTILT:=~COB(TILT);~}$
ZTILT: =SIN(TILT);
IF NUCLJDE $=$ 'H' THEN H3FPRMI ELEE C14FERMI;
FOR I: $=0$ TO NFERMI DO
BEGIN
$\operatorname{PP}[0, I]:=P[0, I] ; \operatorname{PP}[1, I]:=P[1, I] ;$
END;
SPLINESIZE:= NFERMI;
SPLINEFORM
SCINTEFF;
WCUTOFF: = PLANCK*LIGHTSPEED/600/1E-9;
END; (* INIT2 *)
PROCEDURE BSPECMAX;
BEGIN
EM: $=1+\mathrm{EMAX} / 510.91 ;$ PRBMAX: $=-999 ; E B:=\mathrm{ESTEP} * E M A X ;$
\{ keV. $0=\Rightarrow$ SWFO 0 \}
REPEAT $\mathrm{E}:=1+\mathrm{EB} / 510.91$;
SW: =SPLINEINTERP (EB) *E/SQRT (E*E--1)*SQR (EM-E);
IF SW>PRBMAX THEN BEGIN PRBMAX:= SW;EBPRBMAX:= IB;
END; $\mathrm{EB}:=\mathrm{EB}+\mathrm{ESTEP} * E M A X ; U N T I L$ SWくPRBMAX;
MCPRBMAX: = PRBMAX* ( $1+$ ESTEP);
(* MONTECARLO PROB MAX SLIGHTLY OVERESTIMATES SPECTRUM *) END; (* BSPECMAX *)
PROCEDURE BETAENERGY;
BEGIN
REPEAT EB: = MTH\$RANDOM(SEEDVAL) *EMAX;
$\mathrm{E}:=1+\mathrm{TB} / 510.91$; IF SQRT (E*E-1) $=0$ THEN $\mathrm{SK}:=0$
ELSE BEGIN MCPRB:= MTH象RANDOM(SEEDVAL)*MCPRBMAX;

SW: =SPLINEINTERP (ED)*E*SQR (EM-E)/SQRT(E*E-1); END;
UNTIL MCPRB <= SNA;
ITEMP: =0; $I:=0 ;$ EBSUM: $=$ EBSUMFEB;
REPEAT
IF EB<SEFF[0,I+1] THEN BEGIN TEMP:=SEFF[1,I+1]-GEFF[1,I];
TEMP: $=$ SEFF[ $1, I]+T E M P *(E B-S E F F[0,1])$
$/(\operatorname{SEFF}[0, I+1]-\operatorname{SEFF}[0, I]) ;$
EB: = EB*TEMP; ITEMP:=1;END
ELSE; \{linear interp of scint effy curve\}
$I:=I+1$; UNTIL ITEMP $=1$;
$\mathrm{EB}:=1000$ * EB * ECHABGE; (* KEV TO JOULES *)
END; (*BETAENERCY*)
PROCEDURE CHEMQUENCEI;
BEGIN
$\mathrm{EB}:=(1-\mathrm{QCHEM}) * E B ;$
(*is QCHEM a function of EB ? *)
END ; (*CHEMRUENCII*)
PROCEDURE SPECDATA;
VAR DAT, II : INTEGER;
BEGIN
RESET (DATAFILE);
DAT: = DATAFILE;
GET(DATAFILE);
WSTART: = DAT;
DAT: = DATAFILE;
GET(DATAFILE);
WSTOP:= DAT;
LOOP: = WSTOP-WSTART-1;
FOR I:= O TO LOOP DO
BEGIN
WAVE[I]:= WSTART+I;DAT:= DATAFILE;
GET(DATAFILE);
PROB[I]:= DAT;
END;
CLOSE (DATAFILE);
END; (*SPECDATA*)
PROCEDURE FLSPEC;
BEGIN
OPEN(DATAFILE,'FLSPEC1.DAT',HISTORY:= OLD);
SPECDATA;
FSTART:= WSTART;FSTOP:= WSTOP;
FOR I:= 0 TO LOOP DO BEGIN
FLSWAVE[I]:= WAVE[I]; FLSPROB[I]:= PROB[I];
END;
END;
PROCEDURE ABSPEC;
BEGIN
OPEN(DATAFILE, 'O7ABSPEC.DAT', HISTORY:= OLD);
SPECDATA;
ASTART: = WSTART; ASTOP: = WSTOP;
IF FSTART > ASTART THEN SKIP:= (FSTART-ASTART)
ELSE SKIP:=0;
IF FSTOP < ASTOP THEN CHOP:= (ASTOP-FSTOP) ELSE CHOP:= 0; (* N.B. ABS RANGE DIFFERENT TO FLSFEC *)
FOR I: = O TO (LOOP--CIIOP-SKIP) DO

BEGIN
ABSPROB[I]:= 1000-PROB[I+SKIP];
END;
END;
PROCEDURE ALABSPTC;
BEGIN
$\operatorname{ALAB}[0,0]:=295 ; \operatorname{ALAB}[0,1]:=310 ; \operatorname{ALAB}[0,2]:=327 ;$
$\operatorname{ALAB}[0,3]:=345 ; \mathrm{ALAB}[0,4]:=365 ; \mathrm{ALAB}[0,5]:=383$;
$\operatorname{ALAB}[0,6]:=414 ; \operatorname{ALAB}[0,7]:=443 ; \operatorname{ALAB}[0,8]:=477$;
$\operatorname{ALAB}[0,9]:=517 ; \operatorname{ALAB}[0,10]:=564 ; \operatorname{ALAB}[0,11]:=620 ;$
$\operatorname{ALAB}[1,0]:=752 ; \operatorname{ALAB}[1,1]:=752 ; \operatorname{ALAB}[1,2]:=753 ;$
$\operatorname{ALAB}[1,3]:=754 ; \mathrm{ALAB}[1,4]:=755 ; \operatorname{ALAB}[1,5]:=757 ;$
$\operatorname{ALAB}[1,6]:=759 ; \operatorname{ALAB}[1,7]:=758 ; \mathrm{AL} A B[1,8]:=762 ;$
$\operatorname{ALAB}[1,9]:=772 ; \operatorname{ALAB}[1,10]:=800 ; \operatorname{ALAB}[1,11]:=852 ;$
FOR I:= 0 TO FSTOP-FSTART-1 DO BEGIN
$\mathrm{J}:=0$; ITEMP: $=0$;
REPEAT
IF (I +FGTART) <ALAB[O, J+1] TIEN BEGIN
TEMP: =ALAB[1,J+1]-ALAB[1, J];
TEMP: $=\operatorname{ALAB}[1, J]+$ TEMP* $(I+F S T A R T-A L A B[0, J])$
$/(\operatorname{ALAB}[0, J+1]-\operatorname{ALAB}[0, J])$;
ALABSPROB[I]:= ROUND(TEMP*100); ITEMP:=1;END
ELSE; \{linear interp of scint effy curve\}
$J:=J+1$; UNTIL ITEMP $=1$;
END;
END;
PROCEDURE EVENTCOORDS;
BEGIN
REPEAT
EVZ: = (MTHकRANDOM (SEEDVAL) - 0.5 ) *LHT;
UNTIL (EVZ < LHT/2) AND (EVZ > (-LHT/2) );
REPEAT
EVX: = (MTEWRANDOM (SEEDVAL) -0.5) $\operatorname{*LRAD*2;~}$
EVY: = (MTHकRANDOM (SEEDVAL) -0.5)*LRAD*2;
UNTIL (EVX*EVX+EVY*EVY) < (LRAD*LRAD);
\{equi probs for cartesians,
not cylindrical coords, avoid boundarys
XO:= EVX;YO:= EVY;ZO:= EVZ;
VR: = LRAD; VH:= LHT/2;VB:= --LHT/2;
END;
PROCEDURE INITPHOTDIR;
BEGIN
PHI: = MTH ${ }^{\text {WRANDOM (SEEDVAL }) * 2 * P I ; ~}$
PSI:= MTH\$RANDOM(SEEDVAL)*2*PI;
$\mathrm{X1}:=\mathrm{VR} * S I N(P S I) * \operatorname{COS}(P H I) ;$
$\mathrm{Y} 1:=\mathrm{VR} * \operatorname{SIN}(\mathrm{PSI}) * \operatorname{SIN}(\mathrm{PHI})$;
Z1: $=\mathrm{VR} * \operatorname{COS}(\mathrm{PSI}) ;$
 of E--vector\}
\{rotate coords to get PE in global coords\}
$\mathrm{XE}:=\operatorname{COS}(-\mathrm{PSI}) * \operatorname{COS}(E P O L)-S I N(-\mathrm{PSI}) * S I N(E P O L) ;$
ZE: $=\operatorname{SIN}(-\mathrm{PSI}) * \operatorname{COS}(E P O L)+\operatorname{COS}(-\mathrm{PSI}) * \operatorname{sIN}(\mathrm{EPOL}) ;$ rot abt east west\}
$\mathrm{XE}:=\operatorname{COS}(-\mathrm{PHI}) * \mathrm{KE} ; \mathrm{YE}:=\mathrm{SIN}(-\mathrm{PIII}) * \mathrm{XE}$; \{rot abt north south\} END;

PROCEDURE CYIUT;
BEGIN
IF ( $\mathrm{X} 1=0$ ) AND (Y1=0) TIEN UA: $=-99999$ ELSE DEGIN
TEMF: $=\mathrm{KO} \mathrm{KX1}$;
TEMP: =TEMP+YO*Y1; TEMP: =SQR(TEMP) ; UA: $=\mathrm{X} 1 \times \mathrm{K} 1$;

UA: $=[J A * T E M P 1 ;$ if ua close to zero here thor final
result uasero is wrong
\{to cater for this rare event (ocoured after > 4hour:s opu time. event is so close to the wall that oertain P1 vectors cause the error) FICKU must choose CYLU and oylu must be set to some non-sero value e.g. 1 \} UA: =TEMP+UA; IF UA<O THEN BEGIN
WRITLLN('CYLU', MNUMTEMP, FACENUM, NFLEC, FARFLAG);
WRITELN (X0, Y0, Z0, X1, Y1, Z1, X2, Y2, Z2);
IF OUTWARD=FALSE TEEN FRITELN('F') ELSE;END ELSE;
UA: $=(\operatorname{SQRT}(\mathrm{UA})-(\mathrm{XO}$ *X1+YO*Y1) $) /(\mathrm{X} 1 * \mathrm{X} 1+\mathrm{Y} 1 * \mathrm{Y} 1) ;$
IF NFLEC=1 THEN UA:=1 ELSE; \{ . radius reflection $\mathrm{B}=\mathrm{X} 0 * * 2+\mathrm{YO} * * 2 \Rightarrow \mathrm{UA}=0\}$
IF UA=0 THEN BEGIN
WRTTELN('CYLU', MNUNTEMP, FACENUM, NTLDC, PARTLAG) ;
WRITELN (XO, YO, ZO, X1, Y1, Z1, X2, Y2, Z2);
IF OUTWARD=FALSE THEN WRITELN('F') ELSE; EMD ELSE; END;
END;
PROCEDURE DISCU;
BEGIN
IF $Z 1<>0$ TIIEN BEGIN
IF Z1>0 THEN UB:= (VII-ZO)/Z1 ELCE UB:= (VB--Z0)/Z1;END
ELGE JB: = -99999;
END;
PROCEDURE TORU;
BEGIN
IF XO<>0 THEN BEGIN
IF ( KO 0 ) AND (YO>=0) THEN TEMP: $=\operatorname{ARCTAN}(Y O / \mathrm{YO}$ ) ELSE;

IF ( $\mathrm{X} 0<0$ ) AND $(\mathrm{YO}<0)$ TEEN TEMP: $=P I+\operatorname{ARCTAN}(\operatorname{ABS}(\mathrm{YO} / \mathrm{XO})$ ) ELSE;
IF ( $\mathrm{X} 0>0$ ) AND $(\mathrm{YO}<0)$ THEN TEMP: $=2$ *PI-ARCTAN(ABS (YO/XO))
ELGE; END ELSE BEGIN IF YO:=0 THEN TEMP:=0 RLGE TEMP:=PI
END; IF X1<>0 THEN BEGIN
IF (X1>0)AND (Y1>=0) THEN TEMP1:=:ARCTAN(Y1/X1) RLSE;
IF ( $\mathrm{X} 1<0) \mathrm{AND}(\mathrm{Y} 1\rangle=0)$ THEN TEMP1: =PI-ARCTAF (ABS (Yi/K1) )
ELSE;

IF (X1>0; AND (Y1<0) THEN TEMP1: =2*PI-ARCTAM(ADS (Y1/K1))
ELSE;END RLNE BEGIN
IF Y1>0 THEN TEMP1:=0 ELSE TEMP1:=PI;END;
IF OUTWARD=TRUE THEN BEGIN
TEMP: $=A B S(P I-A B S(T E M P-T E M P 1)) ; T E A P:=C O S(T E M P) ;$
UA: =LRAD*LRAD* (TEMP*TEMP-1) +VRAD*VRAD;
$\mathrm{UA}:=(\mathrm{LRAD} * T E M P+S Q R T(U A)) / M A G(\mathrm{X} 1, Y 1,0) ;$
END ELSE BEGIN
TEMF: =ABS (ABS (TEMP-TEMP1)-PI); TEMP: =COS (TEMP);
UA: =LRAD*LRAD*(TEMP*TEMP-1) +VRAD*VRAD;
UA: =(VRAD*TEMP-SQRT (UA))/MAG(X1, Y1,0);
UA: $=1$; ffor all inwards phots, no pmt reflection anc\}

END;
END;
PROCEDURE PARU;
BEGIN

TEMP: =ABS (ZO+TJC*Z1)*XTILT/SIN(TILT-ARCTAD (ABS (Z1/X1)) ) $/ \operatorname{MAG}(\mathrm{X1}, 0, Z 1) ;$
UC: $=$ TEMP +UC ;
ITND;
PROCEDURE PICKU;
BEGIN IF UA=0 THEN BEGIN UA: $=1 ; \mathrm{U}:=\mathrm{UA}$; END
ELSE BEGIN
CASE MNUM OF
1,2,3 : IF ADS(UA) < ABS(DB) THEN U:= UA ELSE U: = UB;
4 : BEGIN TF ABG(UA) < ABS(IDB) THEL TEMP1: -UA
ELSE TEMP1: =UB; TF PARFLAG=0 THEN BEGIN
IF ABS(UC) < TEMP1 THEN U:=UC ELSE U:=TEMP1;
END ELSE U: =TEMP1; END;
END; END; $\mathrm{K} 1:=\mathrm{U} * \mathrm{~K} 1 ; \mathrm{Y} 1:=\llbracket \mathrm{F} \mathrm{Y} 1 ; \mathrm{Z} 1:=\mathrm{J} * Z 1 ;$
$\mathrm{X} 2:=\mathrm{X} 0+\mathrm{X} 1 ; \mathrm{Y} 2:=\mathrm{Y} 0+\mathrm{Y} 1 ; \mathrm{Z} 2:=\mathrm{Z} 0+\mathrm{Z} 1$;
\{now scale to avoid tolerance errors?
IF MAG(X2,Y2,0)>VF THEN BEGIN
TEMP: $=\mathrm{VR} / \mathrm{MAG}(\mathrm{X} 2, \mathrm{Y} 2,0) ; \mathrm{X2}:=\mathrm{X} 2$ *TEMP;
Y2: =Y2*TEMP; Z2: $=\mathrm{Z} 2$ *TTMP; IND
ELSE; \{chamber done individually\}
END;
PROCEDURE EVECTOR;
BEGIN
IF $\mathrm{X} 1 \ll 0$ THEN BEGIN
IF (X1>0)AND(Y1>=0) TIEN PHI: =ARCTAN(Y1/X1) ELSE;
IF $(\mathrm{X} 1<0) \mathrm{AND}(\mathrm{Y} 1>=0)$ THEN PHI: $=\mathrm{PI}-\mathrm{ARCTAN}(\mathrm{ABS}(\mathrm{Y} 1 / \mathrm{K} 1))$ ELSE;
IF (X1<0)AND (Y1<0) THEN PHI: =PI+ARCTAN (ABE (Y1/X1)) ELSE;
IF (X1>0)AND(Y1<0) THEN PHI: : $2 *$ PI-ARCTAN (ABE (Y1/X1)) ELSE;
END ELSE BEGIN IF Y1>0 THEN PHI: $=0$ TLBE PII: $=\mathrm{PI}$;
END ; IF Z1> $=0$ THEN PSI: $=\mathrm{MTH} \$ \mathrm{ACOS}(A B S(Z 1) / \operatorname{MAG}(\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z} 1)$ )
ELSE PSI: $=-\mathrm{MTH} \operatorname{ACOS}(\mathrm{ABS}(\mathrm{Z} 1) / \mathrm{MAG}(\mathrm{K} 1, \mathrm{Y} 1, \mathrm{Z} 1))$;
$\mathrm{XE}:=\operatorname{COS}(-\mathrm{PSI}) * \operatorname{COS}(E P O L)-S I N(-P S I) * S I N(E P O L) ;$
ZR: =SIN (-FSI) *COS (EPOL) $+\operatorname{COS}(-\mathrm{PSI}) * S I N(E P O L) ;$ rot abt east west?
XE: $=\mathrm{COS}(-\mathrm{PHI}) * \mathrm{XE}$;
YE: $=S I N(-\mathrm{PHI}) * \mathrm{XE}$; \{rot abt north south\}
END;
PROCEDURE DISCREFLECT;
BEGIN
$\mathrm{Z} 1:=-\mathrm{Z} 1 ; \mathrm{XO}:=\mathrm{X} 2 ; \mathrm{YO}:=\mathrm{Y} 2 ; \mathrm{Z} 0:=\mathrm{Z} 2 ; \operatorname{TVECTOR} ;$
END;
PROCEDURE DISCREFRACT;
BEGIN
KO: =X2; YO: =Y2;
IF ANGLINC $>0$
THEN Z1:=Z1*MTHATAN (ANGLINC)/MTHATAN (ANGLTEP) ELGE;
IF Z1>0 THEN BEGIN
MNUMTEMP: $=2 ; \mathrm{VH}:=A H T / 2 ; \mathrm{VB}:=-\mathrm{AHT} / 2 ; \mathrm{VR}:=\mathrm{ARAD} ; \mathrm{ZO}:=-\mathrm{AHT} / 2 ;$
MNUMTEMP $:=1 ; \mathrm{VH}:=\mathrm{LHT} / 2 ; \mathrm{VD}:=-\operatorname{LIIT} / 2 ; \mathrm{VR}:=\mathrm{LRAD} ; \mathrm{ZO}:=\mathrm{LHT} / 2 ;$

```
END;EVECTOR;
TND;
PROCEDURE CYLREPLIECT;
BEGIN
TEMP:= 2*MAG(X1,Y1,Z1)*COB(ANGLINC)/VE;
IF OUTWARD=FALSE THEN TEMP:=-TTMP ELSE;
X1:= X1-X2*TEMP;
Y1:= Y1-Y2*TEMP;
XO:=X2;YO:=Y2;ZO:=Z2;
EVECTOR;
END;
PROCEDURE CYLREFRACT;
BEGIN
IF MTHकTAN(ANGLINC)<>O THEN BEGIN DIST:= MAG(X1,Y1,Z1);
TEMP:=(1-MTH$TAN(ANGLREF)/MTH=$TAN(ANGLINC));
IF OUTWARD=FALSE THEN TEMP:=-TEMP ELSE;
TEMP:=TEMP*COS (ANGLINC)*DIST/VR;
X1:= TEMP*X2+MTITTAN(ANGLREF)/MTITSTAN(ANGLINC)*X1;
```



```
Z1:= MTH$TAN(ANGLREF)/MTITTAN(ANGLINC)*Z1;TND)
ELSE;{anglinc=0 => leave x1,y1, z1 mame}
XO:=X2;YO:=Y2;ZO:=Z2;
EVECTOR;
IND;
PROCTDURE FARREFLECT;
BEGIN
TEMP:=2*MAG(X1,Y1, Z1)*COS(ANGLINC);
X1:=X1 +TEMP*ZTILT*XN;Z1:=Z1&TEMP*XTILT*&N;
XO:=X2;YO:=Y2; Z0:=, 22;
EVECTOR;
END;
PROCEDURE LAFACE;
BEGIN
DIST:= MAG(X1,Y1,Z1);
DIST:= MAG(X1,Y1,Z1);
IF DIST=O THEN BEGIN WEITELN('ZERO P1 VECTOR',U, XO, YO,ZO);
PHOTONTRACED:=TRUE;L4:=L4+1;END ELSE BEGIN
{check colour quench outwards..}
IF OUTWARD=TRUE TIIEN BEGIN
IF MTH$RANDOM(SEEDVAL) >EXP(- DIST*ADSPROB[W]/1000*QCOI)
THEN BEGIN PHOTONTRACED:= TRUE;L4:=L年年;END
ELSE;END ELSE;
IF PHOTONTRACED=FALSE THEN BEGIN IF Z1=0
THEN BEGIN NX:=1;NY:=0;NZ:=0;END ELSE BEGIN
NX:= -Y1/Z1;NY:=1;NZ:=0; END;IF (NX<>0)THEN
PHI:=ARCTAN(ABS(NY/NX)) ELGE PHI:=PI/2;
IF (XE<>O) THEN PHIINC:=ABE(PHI-ARCTAN(ADC(YE/KE)))
ELSE PHIINC:=ABS(PHI-(PI/2));
PSIINC:= M'TH$ACOS(ABS(ZE)/MAG(XE, YE,ZE));
ANGLPOL:= MTH$ACOS(1/SQRT(1+SQR(MTH$TAN(PHITNC)))
/SQRT(1+SQR(MTH$TAN(PSITNC))):;
ANGLINC:= MTH$ACOS(ABS(Z1)/DIST);
IF OUTWARD=TEUE TIIEN BEGIN NREFF:=1/NFBDNYL(WP);
CRIT:= MTHISASIN(NREF);TND ELSE REGIN
NREF:=NPBDXYL(WP);CRIT:=PI/2;END;
```

IF ANGLINC < CRIT THEN BEGIN


ELCTE BEGIN

TEMPZ: = BQR (MTHETAN (ANGLINC-ANGLDET )
/MTHETAN (ANGLINC+ANGLTETP) ;
TEMP: =SQR(SIN(ANGLPOL)) *TEMP1+SQP(COE (ANGLPCL) *TEMP2;
END; [weighted averace of Fresnel paraperg reflectances\} IF MTHकRANDOM(SEEDVAL) <= TEMP THEN DISCREFTECT
ELSE DISCREFRACT; END ELGE DISCREALECT;
\{discface bidirectional\}END ELSE;NFIEC: $=0$; END
END;
PROCEDURE LVFACE;
BEGIN
DIST: = MAG(X1,Y1,Z1);
IF DIST=0 THEN BEGIN WRITELN('ZENO F1 YECTOR', U, XO, YO, ZO);
PHOTONTRACED:=TRUE;L3:=L3+1; END ELSE BEGIN
[check colour quench outwards.. \}
IF MNUMTEMP=1 THEN BEGIN

THEN BEGIN PHOTONTRACED: = TRUE; LG: $=\mathrm{LG}+1$; END ELGE; DNE EINE; IF PHOTONTRACED=TALSE THEN BEGIN
IF $((Y 1 * X 2 / Y 2-X 1)<>0) A N D((Y 1-X 1 * Y 2 / X 2)<0)$ THPN BEGIN
$\mathrm{NX}:=\mathrm{Z} 1 /(\mathrm{Y} 1 * \mathrm{X} 2 / \mathrm{Y} 2-\mathrm{X} 1)$; $\mathrm{NY}:=-\mathrm{Z} 1 /(\mathrm{Y} 1-\mathrm{X} 1 \mathrm{kY} 2 / \mathrm{KR}) ; \mathrm{NZ}:=1$; END
ELSE; \{photon parallel to normal $\because=N X, N Y$, NZ wohangel\}
IF (NX<>0) THEN PHI:=ARCTAN (ADS (NY/NX)) DINR PIIJ: TM,
IF (XEく>0) THEN PHIINC:=ADG(PHI-ARCTAN(ADE(YE/XE):
ELSE PIIIINC: $=\mathrm{ABS}($ PIII- $-(\mathrm{FI} / 2)$ );





IF (X1<>0) TEIEN PHIINC:=ABE(FHI-ARCTAN(ABE(Ya/K1))
ELSE PEIIINC: $=\mathrm{ABS}(\mathrm{PHI}-(\mathrm{PI} / 2))$;
PSIINC: $=\mathrm{PI} / 2-\mathrm{MTH} \mathrm{ACOS}(\mathrm{ABS}(\mathrm{Z1}) / \mathrm{DIST})$;

/SQRT(1+SQR(MTEGTAN(ISIINC)):);
IF MNUMTEMP $=1$ THEN BEGIN
NREF: =NVIALGLS(WP)/NPBDYPL(WP);CRIT: =PI/A; PRD RIGE DEGTM
 END; IF ANGLINC<CRIT THEN BEGIN
ANGLREF: =MTH\$ASIN (SIN (ANGLINC)/NREF) ; IF AIGIINC=O
THEN TEMP: =SQR ( (NREF--1)/(NREF+1)) ELSE BECIN
TEMP 1: = SQR (SIN (ANGLINC-AHGLREF) /OIN (ANGLREF +ANGLIMC) ;
TEMP2: =SQR (MTH\$TAN (ANGLINC-ANGLREF)
/ATHPTAN (ANGLTNC+ANGLRER ));
TEMP: $=\operatorname{SQR}(S I N(A N G L P O L)) * T E M P 1+N G L(C O S(A N G L D C I)$ ) *TPMR2; END; \{weishted average of Fresnel faraperp reflectancoz] IF MTHSRANDOM(SEEDVAL) <= TEMP THEN BEGIN CYYNETITECT; IF OUTWARD=FALGE THEN BEGIN OUTWARD: =TRUE; NTIAEC: $=1$; VR: = VRAD; END ELSE END ELGR BEGIN CPLREFRACT;
 MNUMTEMP: $=3 ; Z 0:=Z 0-(V H T-L H T) / 2 ; N F L E C:=0 ;$

 END; END; EID ELGE BEGIN CYLRETIECT;

VR: = VRAD ; END ELEE END; END ELRE; \{photontraced $\}$
END;
END;
TROCDDURE AVFACE;
BEGIN
DIST:= MAG(X1,Y1,Z1);
IF DIST $=0$ THEN BEGIN
WRITELN('ZERO P1 VECTOR', $\mathrm{J}, \mathrm{XO}, \mathrm{YO}, \mathrm{ZO}$ );
PHOTONTRACED: $=$ TRUE; $44:=L 4+1$; END ELGE DEGTN
IF $((\mathrm{Y} 1 * \mathrm{X} 2 / \mathrm{Y} 2-\mathrm{X} 1)<>0) \mathrm{AND}\left(\left(\mathrm{Y} 1-\mathrm{X} 1 * \mathrm{Y}_{2} / \mathrm{K} 2\right)<0\right)$
THEN BEGIN
$\mathrm{NX}:=\mathrm{Z} 1 /(\mathrm{Y} 1 * \mathrm{X} 2 / \mathrm{Y} 2-\mathrm{X} 1) ; \mathrm{NY}:=-\mathrm{Z} 1 /(\mathrm{Y} 1-\mathrm{X} 1 * Y \mathrm{Y} / \mathrm{X} 2) ; \mathrm{NZ}:=1 ; \mathrm{PND}$
PLSE; \{photon parallel to nomel $=\mathrm{NX}, \mathrm{NY}, \mathrm{NZ}$ unchanged\}

IF (XE()O) THEN PHIINC: =ABS (PHI-AROTAN(ADS (YE/XR)))
ELSE PIIIINC: $=\mathrm{ABS}(\mathrm{PHI}-(\mathrm{PI} / 2))$;
PSIING: $=A B S(M T H ⿻=B C O S(A B S(N Z) / M A G(N X, N Z, N Z))$ $-\mathrm{MTH} \$ \mathrm{ACOS}(\mathrm{ABS}(Z \mathrm{I}) / \mathrm{MAG}(\mathrm{XE}, \mathrm{YE}, 2 \mathrm{E})))$;
 /SQRT (1+SQR(MTHकTAN(PSIINC))));
IF (X2<>0)THEN PHI:=ARCTAN (ABS (Y2/X2)) ELSE FIII:=PI/2;
IF (X1<>0) THEN PHIINC: =ABS (PHI-ARCTAN (ABS (Y1/X1)))
ELSE PHIINC: =ABS (PHI-(PI/2));
PSIINC: $=P I / 2-M T I D A C O S(A B S(Z 1) / D I S T) ;$
ANGLINC: $=\mathrm{MTH}+\mathrm{ACOS}(1 / 6 \mathrm{QRT}(1+\mathrm{GQR}(\mathrm{MTH} \$ \mathrm{TAN}(\mathrm{PHIINC})))$
/SQRT(1+SQR(MTH定TAN(DSIINC) ) );
NRET: = NPBDKYL(WP);CRIT:= PT/2;
ANGLREF: $=$ MTITSASIN (SIN (ANGLINC)/NEEF);
IF ANGLINC=0 THEN TEMP: $=\mathrm{SQR}((\mathrm{NREF}-1) /(N R E F+1))$ ELSE BEGTN
TEMP1: =SQR(SIN (ANGLINC-ANGLREF)/SIN (ANGLREF+ANGLINC));
TEMP2: =SQR (MTH\$TAN (ANGLINC-ANGLREF)
/MTHATAN (ANGLINC+ANGLREF));
TEMP: =SQR (SIN(ANGLPOL))*TEMP1+SQR(COS(ANGLPOL))*TEMP2;
END; \{weighted average of Fresnel paraperp reflectances?
IF MTH ${ }^{2}$ RANDOM (SEEDVAL) <= TEMP
THEN BEGIN CXLREPLRCT;NFLEC:=1; END ELSE BEGIN
CYLRPFRACT; VH: = VIIT/2;VB:=-VHT/2;VR:=VRAD;
MNUMTEMP: $=3 ; 20:=20+($ VET $-A H T) / 2 ;$
END; \{no rotate, but coords-origin z-translates\}
\{phot lost up vial wall on any reflection in muma=3\}
END;
END;
PROCEDURE VCFACE;
BEGIN
DIST: $=\operatorname{MAG}(\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z} 1)$;
TF DIST=0 THEN BEGIN
MRITELN('ZERO P1 VECTOR', U, XO, YO, ZO);
PHOTONTRACED : $=$ TRITE; L5: $=\mathrm{L} 5+1$; END
GLSE BEGIN IF ((Y1*X2/Y2-X1)<>0)AND ( (Y1-X1*Y2/X2): 0 )
THEN BEGIN
$N X:=Z 1 /(Y 1 * K 2 / Y 2-\mathrm{K} 1) ; N Y:=-\mathrm{Z} 1 /(\mathrm{Y} 1-\mathrm{K} 1 * \mathrm{Y} 2 / \mathrm{K} 2) ; \mathrm{NZ}:=1 ; \mathrm{END}$

PLSE; \{photon parallel to normal $=:=N X, N Y, N Z$ unchane $n\}$
 IF (XESO) THEN PHIINC: =ADE (PUI-ARCTAN (ABE (YR/XE)) :

PSITNC: =ADS (MTHकACOS (ABS (TU) MAG (NX, NY, NZ) ) -MTH中ACOS(ADS(-TE)/AAG(XE, YE, ZE)));

$/ \operatorname{SQRT}(1+\operatorname{SQR}(M T H E T A N(P G I I N C)))$;
IT ( $\mathrm{K} 2 \ll 0$ ) TIEN PII: : ARCTAN (ABE(YO, X2) ) ELGE PHI: =FI, 2 ;
IF (X1<<) THEN PUITNC: $=A B E(P I I-A R C T A N(A B S(Y 1 / X 1)))$
ELSE PHIINC: $=A B S(P H I-(P I / 2)) ;$
PSIINC: = $\mathrm{PI} / 2 \cdot \mathrm{MTEI}+\mathrm{ACOS}(A B S(Z 1) / D I G T) ;$
ANGLINC: : MTHISACOS(1/SQRT(1+SQR(MTHDTAN(PHIINC)))
/SQRT(1+SQR(MTH\$TAN(PSIINC))));
NREF: $=1 /$ NPDDKYL (WP) ; CRIT: = MTH\$ABIN(NREF);
IF ANGLTNC < CRIT THEN BEGIN IF ANGLINC=0
THEN TEMP: $=6 Q R((N R E F-1) /(N R E F+1)$ )
ELSE BEGIM
TEMP1: =SQR (SIN (ANGLTNC-ANGLREF)/ETN (ANGLREF+ANGLIMC) ;
TEMP2: =SQR (MTH\$TAN (ANGLINC-ANGLRET)
/MTHPTAN (ANGLINC+ANGLIREF) );
TEMP: =SQR(SIN(ANGLPOL))*TEMP1+SQR(COS(ANGLPOL))*TEMP2;
END; \{weighted average of Fresnel paraperp reflectancus
IF MTH\$RANDOM(SREDVAL) <= TEMP
THEN BEGIN CYLREFLECT;OUTWARD:-FALSE;NFLEC:=1;VR:-LTAD;
END ELSE BEGIN CYLREFRACT;TEMP:=-Z1;Z1:=Y1;Y1:=TEMP;
TEMP: =-Z1; ANGLREF: $=\mathrm{MTH} \$ \triangle S I H(S I N(A N G L I N C) / N R E F) ;$
Z2: =Y2; Y2: =TEMP;TEMP:=-Z0; ZO: =YO; YO: =TEMP; VR: =CRAD;
VH: $=$ CHT $/ 2 ; 7 B:=-C H T / 2 ;$ MNMMTEMP $:=4$; FACENUM $:=4 ;$ NFLEC: $=0$;
IT $(((21 / \operatorname{MAG}(X 1,0,21))$-XTILT $) A N D(Z 0>0))$
OR(( $21 / \mathrm{MAG}(\mathrm{X1}, 0, \mathrm{Z} 1)) \times \mathrm{XTILT}) \mathrm{AND}(70<0)))$
OR(MAG(XO,YO, 0$)==C R A D)$ THEN BEGIN
PHOTONTRACED: $=$ TRUE; LB: $=\mathrm{Le}+1$; END;
\{a few phots are returned by parmirror to vial\}
\{chamber doesn't envelop the vial\}
END; END ELGE BEGIN
CYLREFLECT; OUTWARD : =FALSE; VR:=LRAD; NFLEC:=1;
END; FACENUM: $=4$; END;
END;
PROCEDURE PARMIRTROR;
BEGIN
IF MTH ${ }^{2} R A N D O M(S E E D V A L) ~ \therefore=(A L A B S P F O B[W] / 1000000)$
THEN BEGIN DIST: $=\operatorname{MAG}(\mathrm{X} 1, Y 1, Z 1) ; I T$ DIST $=0$
THEN BEGIN WRITHLN('ZERO P1 VECTOR', U, XO, YO, ZO);
PHOTONTRACED: $=$ TRUE; L1: $=\mathrm{L} 1+1$; END
ELEE BEGIN IF ZOンO TIEN BEGIN
$\mathrm{ZN}:=1 ; \operatorname{IF} \mathrm{X} 1>0$ THEN XN: $=-1$ ELSE XN: $=1$; END ELSE BEGTAT
$\mathrm{ZN}:=-1$; IF X1>0 THEN XN: $=-1$ ELAE XN: $=1$;
END;PSIINC: = PI/2-TILT+ARCTAN(ABS (Z1/X1));
PHIINC: $=\mathrm{MTHWASIN}(A B S(Y 1) / D I G T)$;

$/ \operatorname{SQRT}(1+\operatorname{SQR}(\mathrm{MTH}$ ©TAN (PSIINC) ) ) );
PARREPLECT END END ELSE BEGIN
PHOTCNTIACED := TRUE; L1:-L1:1; END;
PACENUM: $=5 ;$ PARFLAG: $=1$;
feor area of parmirro：where PO＝CRAD
arfrox．Get nflec as fur gylaimors
IF MAG（KO，YO，O）$>=C R A D$ THEN NPTPC：$=1$ ELCD NPLEC：$=0 ;$
RHD；
PNOCEDURE CYLMIRROR；
ngeIn
IF MTH\＄RANDOM（SERDVAL）$\therefore=$（ATADSPROR［四］／100COOO）
THEN BEGIM DIST：＝MAG（K1，Y1，21）；
IF DIST $=0$ THEN BEGIN
WRITELN（＇ZERO P1 VECTOR＇，U，XO，YO，ZO）；
PHOTONTRACED：＝TRUE；L1：＝L1＋1；WDD ELSE EEGIN
IF $\mathrm{X} 2<>0$ THEN PHI：＝ARCTAN（ABS（Y』／X2））TLEE PII：＝TI／2；
IF X1く＞0 THEN PHIINC：$=A D S(P H I-A I L C T A N(A B S(Y 1 / X 1) /)$
ELSE PHIINC：$=\mathrm{ABS}(\mathrm{PHI}-\mathrm{PI} / 2)$ ；
PSIINC：$=P I / 2-M T H \$ A C O S(A B S(Z 1) / D I K T) ;$


CYLREPLECT；NFLEC：＝1；PND；END PLSE BEGIN
PHOTONTRACED ：＝TRUE；［1：$=\mathrm{L} 1+1$ ；
TRD；
FACENUM：$=6$ ；
END；
PROCEDURE PMTUBE；
BEGIN
IF Z1＞0 THEN BEGIN QIX［1］：$=\mathrm{QTK}[1]+1$ ；
QI［1，QIX［1］］：＝QUANTEPT（WP）；END
ELSE BEGIN QIX［2］：＝QTX［2］41；
QI［2，QIX［2］］：$=$ QUANTEFT（NP）；END；
PHOTONTRACED：＝TRUE；
END；
PROCEDUER PMGLAES；
BEGIN
DIST：$=\mathrm{MAG}(\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z1}) ;$
IF DIST＝0 THEN BEGIN WRITELN（＇zERO P1 VECTOR＇，U，$\because \cap$, Yo，ロO： PHOTONTRACED ：＝TRUE；
IF Z1＞0 THEN RL2：＝RL2＋1 ELSR LIO：＝＝L2＋1；
L2：＝L2＋1；END ELSE BEGIN IF X1＝0 THEN BEGIN
NX：$=1$ ；NY：$=0 ; N Z:=0$ ；END ELISE BEGIN
NX：$=-\mathrm{Y} 1 / \mathrm{X} 1 ; N Y:=1 ; N Z:=0 ; E N D ;$
IF（NX＜＞0）THEN PHI：＝ARCTAN（ABS（NY／NX））ELSE PHT：$-P I / A$ ；
IF（XE＜＞0）．THEN PHIINC：＝ABS（PHI－ARCTAN（ADS（YE／YE））
ELCE PHIINC：＝ABS（PHI－（PI／2））；
PGIINC：＝ABS（MTHकACOS（ADS（NZ）／MAG（NX，NY，NZ））
－MTHPACOS（ABS（ZR）／MAG（XD，YR，ZR）））；
ANGLPOL：$=$ MTH\＄ACOS（1／SQRT（1＋SQR（MTI\＄TAN（PHIINC）） ／SQRT（1＋SQR（MTHWHAN（PSIINC）））；
ANGLINC：$=$ MTH ${ }^{2} A C O S(A B N(Z 1) / D I S T) ;$
NRET：$=N P M T G L S(W P) ; C R T T:=P T / \AA ;$

IF ANGLINC＝0 THEN TEMP：＝SQR（（NRTP－1）／（NREF＇＋1））
ELGE BEGIN
TEMP1：＝SQR（SIN（ANGLINC－ANGLRET）／SIN（ANGLTRT＋ARGLINO）；
TEMP2：＝SQR（MTHTAN（ANCIINC－ANGLREF）
／MTH\＄TAN（NNGLTNC＋MPGLREF））


EmD ; weight average of Fresnel paraperp replatances? I: MTMFRANDOM(SEEDVAL) く․ TEMP TIIEN BEGIN FHOTONTRACRD: =TRUE;
 END ELGE FMTUBE; TND;
END;
PROCEDULE CIAAMBERTRACK;
BEGIN
IF X1<>0 THEN BEGIN
TE ARCTAN (ARC (Z1/K1) $)=$ TILT THEN PARFLAG: $=1$ ELAE ;
END ELSE PARFLAG:=1;
CAGE FACENUM OF
4: BEGIN CYLU;DISCU;
IF PARFLAG=0 THEN PARU ELSE;
PICKU;
IF $\mathrm{U}=\mathrm{IJB}$
THEN PMGLAEE ELSE BEGIN
IF U-UA THEN CYLMIRROR ELSE PARMIRROR;
END;
END;
5: BEGIN CYLU;DISCU;PICKU; IF U-UA THEN CYLMIRROR ELSE PMGLASS; END;
6: BEGIN CYLU;DISCU;
IF PARFLAG=0 THEN PARU ELSE;
PICKI;
If U=UB TEEN PMGLASE ELSE BEGIN
IF U=TDA THEN CYLMIRROR ELSE PARMIRROR; END;
END;
IND; \{case\}
END ;
PROCEDURE FIASHTRACK;
VAR LOW, HIH: INTEGER;
BEGIN
QIX[1]:=0; QIX[2]:=0; \{pmtube arrays initialized
for new photon batch\}
WHILE EB $>$ WCUTOFF DO
BEGTN
REPEAT
IF TB < (PLANCK*LIGHTSPEED/340/1E-9) THEN
WLOWER: = TRUNC (PLANCK*LIGHTSPEED/EB/1E-9) ELSE
WLOWER: = PLSWAVE[O]; WUPPER: = FLSWAVE[TSTOF-FATART․-1];
WP: = RAND (WLOWER, WUPPER);
IMCPRB: $=\operatorname{RAND}(1,900)$;
UNTIL IMCPRB <= FLSPROB[WP-FLSWAVE[O]];
W: = WP-FLSWAVE[O];WPR:=WP*1E-9; (* REAL NO. NATOMETERS \%)
EP: = PLANCK * LIGHTSPEED / WFR;FNUM:= PNUM+1;

PHOTOUTRACED: =FALSE;OUTWARD:=TRJE; XO:=EVK;YO:=EYY;
ZO: = IVZ ; PARFLAG: $=0 ;$ NFLEC: $=0$;
REPEAT
CASE MNUM OT
1 : BEGIN PARFLAG:=0;CYLU;DISCU;FICKU;
IF ABS(UB) $<=A B S(U A)$ THEN BEGIN

IF Z1:0 TMPM Tarace mage begin
PHOTONTRACED: = TTUE;
L3: $=\mathrm{L} 3+1 ; \mathrm{IND}$ DID ELSE LVFACT
END;
2 : BEGTN CYLU;DIECU; DICKU;
IF ABS(IDB) <= ADS(TA) THEN BEGIN
IF Z1>0 THEN DEGIN PIOTONTRACED: $=\mathrm{TRUE} ; \mathrm{L} 4:=\mathrm{L} 4+1$;
END RLSE LAFACP \{shouldn't ocour\}END
ELSE AVPACE;
END;
3 : BEGIN TORU;DISCU;PICKU; IF $\triangle B S(U B)>=A B S(U A)$
THEN BEGIN IF OUTWARD=TRIE THEN VCFACE
ELSE BEGIN IT $20>(-0.0035)$ TIIEN PEGIN
PHOTONTRACED: $=T R T E ; L 5:=L 5+1$; END ELSE LVFACE
END END ELSE BEGIN PHOTONTRACED: $=T R U E ; L 5:=15+1$; END END;
4 : BEGIN IF MAG(YO, YO,O):=(CRAD+0.00001) TIIEN BEGIN
TEMF: $=\mathrm{MAG}(\mathrm{XO}, \mathrm{YO}, 0)$;
WRITELN( PO:CEMD, MNOMTEMP, FACENUM, XO, YO, ZO:;
WRITELN(X1, Y1, Z1, X2, Y2, Z2, TEMF, VR); END ELSE;
CHAMBERTRACK EHD;
END; \{case\}
MNUM: =MNUMTEMP;
UNTIL PHOTONTRACED = TRUE;
$\mathrm{EB}:=\mathrm{EB}-\mathrm{EP}$; (*note. always leaves residual enerryw)
END; (*while*)
END; (*FLASIITRACK*)
PROCTDURE PMSTATS1;
BEGIN
\{Gives No. of photelectrons produced\}
FOR $K:=1$ TO 2 DO $\{k=1==>$ leftemtube, $k=2==>$ rightemtube?
BEGIN IF QIY[K] $>0$ THEN BEGIN
REPEAT
ITEMP: =TWUNC (MTHकRANDOM(SEEDVAL)*(QTX[K]+1));
UNTIL ITEMPく(QIX[K]+1);
QP[K]: $=\mathrm{QI}[\mathrm{K}, \mathrm{ITEMP}] ; \mathrm{PMPRBMAX}:=0$;
$\{q p \Rightarrow$ quantum effy picked from $q i$ distribution
of quantum effy's, trunc used to eliminato end bias?
FOR $J:=0$ TO QIX[K] DO BEGIN
$\operatorname{TEMP1}:=\operatorname{LPOW}(\mathrm{QP}[K], J)+\operatorname{LPOW}((1-\mathrm{QP}[K]),(\mathrm{QIX}[K]-J)) ;$
TEMP2: = LTACT(QIX[K])-LFACT(J)-LFACT(QIX[K]-J);
$\operatorname{PMPRD}[J]:=\operatorname{QUAD}(T T M P 1+T E M P 2) ; \operatorname{PMPRD}[J]:=\operatorname{EXP}(\operatorname{PMPRB}[J]) ;$
IF PMPRB[J] $>$ PMPRDMAX THEN BEGIN
PMPRBMAX: $=$ PMTRB[J]; ITEMP: $=J$; END ELGT; END:
\{big num phots $=\Rightarrow$ sparse prob. distribution\}
$J:=$ ITEMP; REPEAT PMTMIN: $=J ; J:=J-1$;
UNTIL $(J=(-1)) O R(\operatorname{PMPRB}[J+1]<=0.0001)$;
$J:=I T E M P ;$ REPEAT PMTMAX:=J; J:=J +1 ;
UNTIL $(J=(Q I X[K]+1)) O R(P M P R B[J-1]<=0.0001) ;$
REPEAT'
PMCOUNT[KK]: = PMTMIN+TRUNC(MTITFANDOM(SEEDTAL)米 (PMTMAX+1)) ;
UNTIL PMPRB[PMCOUNT[K]] $>=(M T H W F A N D O M(S E E D V A L) * D M P D M A X) ;$ END ELSE PMCOUNT[K]: $=0$; $\{$ no phots $=>$ no oount $\}$
END; $\{\mathrm{k}$ loop $\}$

END ; \{pmstats1\}
PROCEDIEE MOTARED:
BEGIN
[Apely oollecion effioiency of PMT electron upic.i]
FOR $\mathrm{K}:=1$ TO 2 DO BRGIN ITPMP:=0;IF PMCONMT[E]<O
THEN DECIN TOR $I:=1$ TO PMCOUNT[K] DO BEGIN
ITP MTHARANDOM(GEEDVAL) <CEFT THEN ITEMP: = ITEMP+1 ELSE;
END; PMCOINT[K]:= ITEMP;END ELEE;END;
\{Now gives No. of secondary electrons
from dynonte haine Polya distribution\}
FOR JJ:=1 TO DYNHM DO\{ number of dynode stages
BEGIN
TEMP2: $=1+\mathrm{BSF}[J T] * D Y M[J J] ;$
FOR $K:=1$ TO 2 DO[left right tubes?
BEGIN IF PMCOUNT[K]:- 0 THIN BEGIN GUM:=0;
FOR J:=1 TO PMCOUNT[K] DO BEGIN
RETEAT
ITTMP:- RAND (1,12); ri.e. range of probs
includes all but 0.001 of total\}
TEMP1: $=1$; IF ITEMP: $=2$ TIEN BEGIN
FOR I:=1 TO ITEMP-1 DO BEGIN TEMP1:=TEMP1*(1+I*BCT[JT]);
END; END ELSE;
TRMP: =LPOW(DYM[JJ], ITEMP)-LTACT (ITEMP)
-(ITEMP+1/BGF[JJ]) *JN (TEMP2);
TEMP: =TEMP $+\mathrm{LN}(T E M P 1)$;
TEMP: $=\operatorname{EXP}(T E M F)$; [itompwo. 2ndry's per single primarys
UNTIL MTHकRANDOM(EEEDVAL) <TEMP;
SUM: = EUM + ITEMP; TEND;
PMCOUNT[K]:=RUM;\{Re-use count arrays for next dyacle\}
END ELSE;END; \{leftright\}
END; [dynodes;
END;
PROCEDUNE MULTIMCA;
BEGIN
IF (PMCOUNT[1]=0) AND (PMCOUNT[2]=0)
THEN QUANTLOST: $=$ QUAMTLOST +1 ELSE BEGIM
IF PMCOUNT[1]>THRESHOLD THEN
PMCOUNT[1]: =PMCOUNT[1]-THRESHOLD ELSE PMCOUNT[1]: $=0$;
IF PMCOINT[2]>THRESHOLD THEN
PMCOUNT[2]:=PMCOUNT[2]-THRESHOLD ELSE PMCOUNT[2]:= 0 ;
IF (PMCOUNT[1]=0)AND (PMCOUNT[2]=0)
THEN THLDLOST: = THLDLOST+1 ELGE BEGIN
SUM: = PMCOUNT[1]+PMCOUNT[2];

ELSE RATIO: $=(4000 * P M C O U N T[1])$ DIV SUM;
\{non-coincidence spectra\}
MCA[1,SUM]:= MCA[1,SUM]H1;MCA[2,DIFF]:= MCA[2,DIFF]+1;
MCA[3, RATIO]:= MCA[3, RATIO]+1;
PULSENUM[1]:= PULGENUM[1]+1; \{total accumulated pulses\}
IF SUM > MAXCH[1] THEN MAXCH[1]:= SUM;
IF DIFF > MAXCH[2] THEN MAXCH[2]:= DIFF;
IF RATIO > MAXCH[3] THEN MAXCH[3]:= RATIO;
\{max channel markers \}
IP ((PMCOUNT[1] > THMEHOLD) AND
(PMCODNT[2] - THPESHOLD) $=$ TPUE THEN DEGIN
$\operatorname{MCA}[4, \mathrm{GUA}]:=\operatorname{HCA}[4, \mathrm{SUM}]+1 ; \mathrm{MCA}[5, \mathrm{DIFR}]:=\mathrm{MCA}[5, D I P R], 1 ;$
MCA[日, RATIO]:= MCA[b, RATIO] 1 ; \{DOincidence speotra\}
PULSENUM[a]:- PULSENUM[2]+1;
IF SUM : MAXOH[4] THEN MAXCH[4]:= STM;
IF DIFF : MAXCI[5] THEN MAXCI[5]:= DIPr;
IT RATIO > MAXCH[6] TUEN MAXCH[6]:= RATIO; END
ELAE COINLOET: $=$ COINLOST +1 ; END; \{thldloEt $\}$
END; \{quantlost\}
END; \{multimca\}
PROCEDURE SPECALYSIS;
VAR RNE, RSUM : REAL;
NE, SUM : INTEGER;
BEGIN
FOR II: $=1$ TO-6 DO BEGIN
NE: = 0; BUM: $=0 ;$ MODE[II]: $=0 ;$ WP:=0;ITEMP: $=0 ;$
IF II 3 THEN T: = 2 ELBE W:= 1 ;
MAKCINL:= MAXCH[II]; WRITELM("MAKCH=", MAXCINL);
FOR I:= 0 TO MAMCHNL DO BEGIN SUM:= SUM MCA[II,I];
$\mathrm{NE}:=\mathrm{NE}+\mathrm{I}$ 斯CA[II,I];
IF SUM $>=$ (PULSENUM[W] DIV 2) TIEN BEGIN
IF ITEMP=0 THEN MIDNUMCH[II]:=I;ITEMP:=1;END
ELSE; IF MCA[TI,I] > WP THEN BEGIN
WP: = MCA[II,I];MODE[II]:= I END ELSE;
FOR H:= 1 TO 2 DO BEGIN
IF (IVSCRLL[H, II]) AND (I<SCRUL[H, II])
THEN SCRSUM[H, II]: = SORSUM[H, II]+1 ELRT; END;END;
BSUM: = BUM; RNE:= NE; IT RSUM $>=1$
THEN MTANENCLI[I]: = [MTV/RSDM ELGE MEANEACIIII]: $=0$;
IF SCRSJM[2,II] $>=1$
THEN SCR[II]:= SCRSUM[1,II]/SCREUM[2,II] ELSE SCR[II]:=: 0;
END;
END;
PROCEDURE DATASAVE;
BEGIN
OPEN (OUTFILE,'LSCM22.DAT', HISTORY:= UNKNOWN,
ACCESSMETHOD: = KEYED, ORGANIZATION:= INDEXED);
FINDK (OUTFILE; O, IDNUMBER);
IF UFB(OUTFILE) THEN BEGIN
WITE AREC DO
BEGIT
RECNTJM:= IDNUMBER;MODLVERGION:= MVERGION;
NUCLTYPE: = NUCLIDE;
WITH QREC DO
BEGIN
QCHEMVAL:= QCHEM;QCOLVAL:= QCOL;QMATLS: $=$ QMATLS;
END;
WITEI CREC DO
BEGIN
CNTMODE: = CNTMODE;
IF CNTMODE='D' THEN CNTNUM: = NDIENTGS
ELSE CNTNUM: = NCOUNTE;
THOLD: = THREGHOLD;FOR I:= 1 TO 2 DO BEGIN
FOR II: = 1 TO $G$ DO PEGIN

```
BCROETWGO[I,IT]:= SCRLL[I,II];
SCRCETMOC[I+=,I]:= SCROL[I,II];FND;WND;
DGPECSTEP: = EQmeR;
END;
WITH LrEC DO
BEGTM
LIQITT: -LITT;LIORAD: =LRAD;VIALET:= VHT;
VIALRAD:- VRND;VIALOFFGET:=VOS;
CASEIT:= CHT;CASRRAD:= CRAD;
END;
WITII MREC DO
BEGIN
FOR I:= 1 TO C DO BEGIN
PMEAN[I]:= MEANENCH[I];PMODE[I]:= MODE[I];
PSCR[I]:= ECD[T];PMID[I]:= MIDNJMCII[I];END;
END;
WITH PULEEC DO
BEGIN
POR I:-1 TO = 20
BEGTN PULGENTMM[I]:-PJLSENUM[I];END;
END;
WITH PHREC DO
BEGIN
L1:-L1;LE:-IN;LS:=L,3;L4:=-L4;L5:=I.5;L6:=LG;
L7:=L7;LE:=LB;PNUM:=PNUM;
END;
WITII CIPWCC NO
BEGIN
FOR I:=1 TO 6 [O BEGIN MAXCE[I]:-MAXCII[I]; END;DND;
TLOSE:= TULDLOBT;CLOSS:= COINLOST;QLOSS:= QUANTLOST;
END;
NRITE(OUTEILR, AREC);FOR J:=1 TO G DO EEGIN
WITH MREC DO
BEGIN
MCARECNUM:=IDNUNBER;FOR I:= 0 TO 4000 DO BEGIN
MCADAT[I]:= MCA[J,I];END;
END;
CASE J OF
1 : BEGIN OPEN (OUT1,'MCA1.DAT',HISTORY:= UNKNOWN,
ACCEGSMETHOD:= KEYED,ORGANIZATION:= INDEXED);
FINDK(OUT1, 0, IDNUMBER);
IF IFP(OJM1) TIEN NRTTE(OUT1, MRHC) ELSE;
CLOBE(OUT1); END;
2 : BEGIN OPEN (OUTZ,'MCA2.DAT', HISTORY:=UNLNOWN,
ACCESSMETHOD:= KEYED,ORGANIZATION:= INDEXED);
FINDK(OUT'2,0, IDNUMBER);
IF ITB(OUT2) THEN NRITE(OUT2, MREC) ELSE;
CLOSE(OUTC); END;
3 : BEGIN OPGN (OUT3,'MCA3.DAT',HISTORY:= UNKNOMN,
ACCESBMETHOD:= KEYED,ORGANIZATION:= INDEXED);
TINDR(OUT3,0, IDNOMBER);
IF UPB(OUTS) TEEN WRITE(OIJTS, MREC) ELSE;
CLOSE(OUT'3); END;
4 : BEGIN OPEN (OUT4,'MCA4.DAT', IIIETORY:= WHKNODN,
ACCPGSMETIIOD:= KEYED,ORGANIZATION:= INDENED:;
```

FINDK(OUT4,, IDNUMPES.);

CLOSE(OUTA); END;
5 : BEGIN OPTA (OUTE, MCAS.DAT', HISTORY: = INKNOWN, ACCESSMETHOD: = KEYED, ORGANIZATION:= INDEXED; ; FINDK (OUTS, 0 , IDNUMPED); IF UPB (OTTS) THEN FRITE(OUT5, MREC) ELSE; CLOEE (OUTE) ; THD ;
6 : BEGIN OPEN (OUTG, 'MCAG. DAT', HISTORY: = UNENOWN, ACCESSMETHOD: = KEYED, ORGANIZATION:= INDEXED); FINDK (OUTG, O, IDNUMBER);
IF UFB(OUTG) THEN NRITE(OUTG, MREC) ELSE; CLOSE (OUTE) ; END;
END ; \{oase\}
END ; \{mrec\}
END ELSE WRITELM('FTLE NOT STORED ..IDNUMBER',
IDNUMEER, ALREADY EXTOTC':;
CLOSE(OUTFILT: ;
END;
[EXTERNAL] PTOCTDURE MAINDO; EXTERN;
[EXTERNAL] PFOCEDURE MAININIT;
EXTERN;
(*. MAIN PROGRAM. . *)
BEGIN
MAININIT; INIT1; PLEPEC; $\triangle D B P E C ; A L A B S P E C ; R A N D O M Z E ;$ REPEAT
MAINDO; INIT2; DSPPCMAX;
IF CNTMCDE = 'D' THEN BEGIN
FOR IEVENTS:-1 TO NDISNTGS DO BEGIN
EVENTCOORDS; BETAENERGY; CHEMQUENCH; FLASHTRACK;
PMSTATS1;PMETATER;MULTMCA;END

## END

ELSE BEGIN
IEVENTS: $=0$;
REPEAT
EVENTCOORDS; BETAENERGY; CHEMQUENCH; FLASHTRACK;
PMSTATS1; PMSTATS2; MIJLTIMCA;
IEVENTS: = IEVENTS +1 ;
UNTIL (IEVENTS-QUANTLOST-THLDLOST-COINLOST)=NCOUNTS;
END;
SPECALYSIS;
TEMP: =EBSUM/IEVENTS;
WRITELN ('Mean E-beta was ', TEMP', kev');
DATABAVE;
UNTIL STOPFLAG=TRUT;
END.

MODJULE M2INIT;
VAR QCHEM, QCOL, VOS, VIIT, LHT, AHT, VRAD, LRAD, ARAD, CIIT, CRAD, ESTEP: [EXTTRNAL] REAL;
IDNUMBER, NDISNTGS, NCOUNTS, DYNUM, THRESIIOLD:
[EXTERNAL] INTEGER;
STOPFLAG: [EXTERNAL] BOOLEAN;
NUCLIDE, CNTMODE: [EXTERNAL] CHAR;
MVERSION: [EXTERNAL] PACKED ARFAY[1..50] OF CHIAR;
QMATLS: [EXTERNAL] PACKED ARRAY[1..25] OF CHAR;
SCRLL, SCRUL: [EXTERNAL] ARRAY[1..2,1..6]
OF INTEGER;
QP, BSF, DYM: [EXTERNAL] ARRAY[1..2] OF RTAL;
[GLOBAL] PROCEDURE INIT1;
BEGIN
MVERSION: =
' $\mathrm{XM} 22 \mathrm{SE}=\mathrm{CURVE}$ QE=20
NUCLIDE:='C';
CNTMODE:='C';
NDISNTGS: $=1000 ;$ NCOUNTS: $=1000$;
QMATLS:- ' CCL4 AND DISPERSE O7 DYE';
$\operatorname{SCRLL}[1,1]:=0 ; \operatorname{SCRUL}[1,1]:=4000 ;$
SCRLL $[2,1]:=10 ; \operatorname{SCRUL}[2,1]:=4000 ;$
SCRLL $[1,2]:=0 ; \operatorname{SCRUL}[1,2]:=4000 ;$
$\operatorname{SCRLL}[2,2]:=5 ;$ SCRUL $[2,2]:=4000 ;$
$\operatorname{SCRLL}[1,3]:=0 ; \operatorname{SCRUL}[1,3]:=4000 ;$
$\operatorname{SCRLL}[2,3]:=50 ; \operatorname{SCRUL}[2,3]:=4000 ;$
SCRLL $[1,4]:=0 ; \operatorname{SCRJL}[1,4]:=4000$;
SCRLL[2, 4]:=10;SCRUL $[2,4]:=4000$;
$\operatorname{SCRLL}[1,5]:=0 ;$ SCRJL $[1,5]:=4000 ;$
$\operatorname{SCRLL}[2,5]:=5 ; \operatorname{SCRUL}[2,5]:=4000 ;$
$\operatorname{SCRLL}[1,6]:=0 ; \operatorname{SCRUL}[1,6]:=4000 ;$
SCRLL[2,6]:=50; SCRUL[2,6]:=4000;
$\operatorname{BSF}[1]:=0.2 ; \operatorname{BSF}[2]:=0.2 ; \operatorname{DYM}[1]:=3.94 ;$
DYM[2]:=3.94;DYNUM:=2;
VOS: $=0 ; \mathrm{VHT}:=0.047+$ VOS $;$ VRAD $:=0.0147$;
$\mathrm{CHT}:=0.04374 ; \mathrm{CRAD}:=0.02286 ;$
\{..thick wall includes gaps in chamber around vial..\}
LHT : $=0.02+$ VOS; LRAD $:=0.0125 ; \operatorname{AEIT}:=0.027+V O S ; A R A D:=0.0125$;
ESTEP: $=0.001$;
THRESHOLD: $=50$;
TND;
[GLOBAL] PROCEDURE MAININTT;
BEGIN
STOPFLAG:=FALSE;
IDNUMBER: $=0$;
END;
[GLOBAL] PROCEDURE MAINDO;
BEGIN
IDNUMBER: =IDNUMBER +1 ;
\{IF IDNUMBER=240 THEN IDNUMBER: $=251$ RLSE; \}
CASE IDNUMBER OF
1 : BEGIN QCOL: $=0 ;$ QCHEM: $=0$; END;
2 : BEGIN QCOL: $=0$; QCHEM: $=0.3$;END;
3 : BEGIN QCOL: $=0 ;$ QCHEM: $=0.5 ;$ END;
4 : BEGIN QCOL: $=0$;QCHEM: $=0.7$; END;
$5:$ EEGIN QCOL: $=0 ;$ QCHEM: $=0.9 ; E N D ;$
6 : BEGIN QCOL: $=0.05 ;$ QCHEM: $=0 ; \mathrm{END}$;
7 : BEGIN QCOL: $=0.5 ;$ QCIEM: $=0$; END;
8 : BEGIN QCOL: $=5 ;$ QCIHM: $=0 ; \mathrm{END}$;
9 : BEGIN QCOL: =50;QCHEM:=0; END;
END;
IF IDNUMBER=9 THEN STOPFLAG: =TRUE ELEE; END;
END.
（ii）Polya Statistics－Polya．Pas


```
7AD U1, -, --, --, PDOD, BTW:EEAT
 NmTOER
80%-4
1
I:=-1
I:=I;1;T+T:=0;
TG I:1 THEN QQMIN
TOR Y:=1 TO I IO
```



```
LE:=1 -T(思) 1-IT
F[I]:=ZNO(IQ);SNM:=ATMP[II];
THTHTE F-T-0.001
```

```
NTIMETN!
```

NTIMETN!
Nom=, (1%M)
Nom=, (1%M)
ENO
F-TーOMTTHER FOI;
35GTM
T:= - ; CITM:=0;
REPEAT
I:-I+1;IF:=O;DNOD:=1.
IF F`=% THEN BEGTM TOR X:=1 TO \& IO
ROGTN TP:=TW+TMT(X); WNTM
TOR V:=1 TO I-1 DC

```



```

WNTIL ELTC0.001;

```

```

TNT,
PHOCRDUTR TXTO
ETGTM
I:=-1; MUM:=0;
REPEAD
I:=I
IF:=I*IN(M) (T, 思 TNT:M, M);

```


```

WNHTL MEJ,O.OOI;
MNIMIN:
EWO
{MALIN FDNOTGAM}
EEGTM

```

```

O.2=-0,

```



```

ETBE POL;MNT
END.

```
```

(iii) MCA Pulse Height Spectra Transfer and Analysis
BASIC Program
1 OPEN1,5:PRINT\#1,CHR$(255);"JE2GA":CLOSE1
5 POKE53,95
6 POKE52,255
7 SYS29760
1\varnothing REM DISPLAY WHOLE SPECTRUM AT MINIMUM SENSITIVITY
15 SYS25317:REM CLEAR
19 POKE24969,1
2\emptyset POKE24968,\varnothing:REM AVOIDS INTEGRATION
21 POKE24964,4
22 POKE24982,\varnothing:POKE24983,\varnothing:REM START CH =\varnothing
24 POKE24984,3:POKE24985,252
25 POKE24963,8:REM MIN SENS
27 SYS25344
30 PRINT""
40 POKE49151,3
50 PRINT"DOUBLE SENSITTVITY(Y/N)?"
60 GETA$:IFA$=""THEN6\emptyset
61 IFA$="Y"THEN7\varnothing
65 GOTO27\emptyset
70 POKE24963,4
7 2 ~ S Y S 2 5 3 1 7
75 POKE24982,\varnothing:POKE24983,\varnothing
80 SYS25344
9\varnothing PRINT
1\varnothingD POKE49151,3
110 PRINT"DOUBLE SENS(Y/N)?"
12\emptyset GETA$:IFA$=""THEN12\emptyset
121 IFA$="Y"THEN140
13\varnothing GOTO27D
140 POKE24963,2
142 SYS25317
145 POKE24982,\varnothing:POKE24983, 
15Ø SYS25344
16ø PRINT""
170 POKE49151,3
18\emptyset PRINT"DOUBLE SENS(Y/N)?"
190 GETA$:IFA$=""THEN19\emptyset
2\emptysetø IFA$="Y"THEN22Ø
210 GOTO270
22Ø POKE24963,1
230 SYS25317
25\emptyset POKE24982,\emptyset:POKE24983,\emptyset
260 SYS25344
27\varnothing PRINT""
28Ø POKE49151,3
290 PRINT"WHICH HALF OF SPECTRUM(U/L)?"
3ØØ GETA$:IFA$=""THEN3D\varnothing
31Ø IFA\$="U"THEN35Ø
32\emptyset POKE24982,\varnothing:POKE24983,\emptyset
330 POKE24984,1:POKE24985,254

```
```

340 GOTO370
35Ø POKE24982, 2:POKE24983,\emptyset
360 POKE24984,3:POKE24985,254
370 SYS25317
375 POKE24964,2
38@ SYS25344
390 PRINT"
40\emptyset POKE49151,3
41\emptyset PRINT"DEFINE REQUIRED 256 CHANNELS"
42\emptyset INPUT"LOWEST CHANNEL";L1
430 U=L1+255
440 X=L1/256
450 UL=TNT (X)
460 LL=(X-UL)*256
47\emptyset POKE24982,UL
48\emptyset POKE24983, LL
490 X=U/256
500 UU=INT (X)
51\emptyset LU=(X-UU)*256
52\emptyset POKE24984,UU
530 POKE24985, LU
540 POKE24964,1
550 SYS25317
555 PRINT"
560 SYS25344
57\emptyset POKE49151,3
58\emptyset PRINT"INTEGRATION LIMTTS"
59\emptyset PRINT"LOWER CHANNEL"
5 9 2 ~ G O S U B 2 \emptyset \emptyset \varnothing ~
5 9 4 ~ L = X + L 1
6\emptyset\emptyset PRINT"UPPER CHANNEL"
602 GOSUB2ØØØ
604 U=X+L1
610 X=L/256
62\emptyset UL=INT (X)
630 LL=(X-UL)*256
640 POKE24982,UL
65Ø POKE24983,LL
660 X=U/256
6 7 0 ~ U U = I N T ~ ( X )
68\emptyset LU=(X-UU)*256
69\emptyset POKE24984,UU
7\emptyset\varnothing POKE24985, 工U
710 POKE24968,1
720 PRINT"'"
730 SYS25344
740 X=PEEK (24944)
750 Y=X/16:Z=INT(Y)
76\emptyset TE=(Y-Z)*16+10*Z
770 X=PEEK(24945)
780 Y=X/16:Z=INT(Y)
79\emptyset TH=((Y-Z)*16+1\varnothing*Z)*1\emptyset\emptyset
8ØØ X=PEEK(24946)
81\emptyset Y=X/16:Z=INT(Y)
82\emptyset HT=((Y-Z)*16+1\varnothing*Z)*1\varnothing\emptyset\emptyset\emptyset

```
```

830 X=PEEK(24947)
840 Y=X/16:Z=INT(Y)
85\emptyset TM=((Y-Z)*16+1\varnothing*Z)*1\emptyset\varnothing\emptyset\emptyset\emptyset\emptyset
86\emptyset TT=TE+TH+HT+TM
87\emptyset PRINT"SUM FROM CH ";L;" TO CH ";U;" = ";TT
880 V=PEEK(25852)
890 W=PEEK(25853)*256
900 X=PEEK(25854)*256*256
91ø Y=PEEK(25855)*256*256*256
915 YY=PEEK (25999)*256*256*256*256
92\emptyset Z=V+W+X+Y+YY
930 EN=Z/TT
940 PRINT"MEAN ENERGY BETWEEN CH";L;"AND CH";U;"=";INT(EN
);"KEV"
950 END
2Øø\emptyset PRINT"CURSOR MOVE RIGHT(R),LEFT(L),STEP(S),END(E)"
2ØØ5 FORI=1TO3\emptyset\emptyset\emptyset:NEXTI
201\varnothing Y=1\varnothing
2\emptyset2\emptyset X=\emptyset
2\emptyset3\emptyset POKE24969,1:POKE25ø\emptyset7,X
2032 PRINT""
2033 GOSUB25ØØ
2Ø35 PRINT"CH:";X+L1,,"COUNTS:";NU
2Ø40 SYS2688\emptyset
2\emptyset5\emptyset GETA$:IFA$=""THEN2\emptyset5\varnothing
2Ø55 POKE24969,\emptyset:SYS2688Ø
206\emptyset IFA$="R"THEN2\varnothing9\varnothing
2070 IFA$="L"THEN211Ø
2075 IFA\$="S"THEN2130
2Ø8\emptyset RETURN
2ø9ø X=X+Y:IFX>255THENX=255
21Ø0 GOTO2ø3Ø
2110 X=X-Y:IFX<\emptysetTHENX=\emptyset
212\emptyset GOTO2Ø3\emptyset
213ø INPUT"STEP SIZE";Y
2140 GOTO2Ø3Ø
25ø\emptyset F=X+L1
2505 G=F/256
2510 A=INT(G)
2515 B=(G-A)*256
252ø POKE24982,A
2530 POKE24983,B
2540 SYS24640
2550 SYS24734
256Ø C=PEEK(24948)
2570 D=C/16:E=INT(D)
258\emptyset NE=(D-E)*16+1\varnothing*E
2590 C=PEEK(24949)
260ø D=C/1f:E=INT(D)
261\varnothing NF=((D-E)*16+1\varnothing*E)*1\emptyset\emptyset
2620 C=PEEK(2495ø)

```

```

2640 NU=NE+NF+NG
2650 RETURN

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline Øøø & A9 & \(\varnothing \varnothing\) & & LDA & \#\$Ø \\
\hline \(6 \varnothing \emptyset 2\) & 8D & \(7 \varnothing\) & 61 & STA & \$617Ø \\
\hline \(6 \emptyset \emptyset 5\) & 8D & 71 & 61 & STA & \$6171 \\
\hline \(6 \emptyset \emptyset 8\) & 8D & 72 & 61 & STA & \$6172 \\
\hline 6øøВ & 8D & 73 & 61 & STA & \$6173 \\
\hline \(6 \emptyset \emptyset \mathrm{E}\) & \(2 \emptyset\) & 40 & \(6 \emptyset\) & JSR & \$6040 \\
\hline \(6 \emptyset 11\) & \(2 \emptyset\) & AD & 60 & JSR & \$6ØAØ \\
\hline 6014 & \(2 \varnothing\) & \(4 \square\) & 61 & JSR & \$614ø \\
\hline \(6 \emptyset 17\) & AD & 97 & 61 & LDA & \$6197 \\
\hline 601A & CD & 99 & 61 & CMP & \$6199 \\
\hline 601 D & Dø & ø8 & & BNE & \$6ø27 \\
\hline \(601 F\) & AD & 96 & 61 & LDA & \$6196 \\
\hline \(6 \emptyset 22\) & CD & 98 & 61 & CMP & \$6198 \\
\hline \(6 \emptyset 25\) & \(F \varnothing\) & ØB & & BEQ & \$6ø32 \\
\hline \(6 \varnothing 27\) & EE & 97 & 61 & INC & \$6197 \\
\hline 6ø2A & DØ & E2 & & BNE & \$6ØDE \\
\hline 6ø2C & EE & 96 & 61 & INC & \$6196 \\
\hline 6ø2F & 4 C & ØE & 60 & JMP & \$6ØØE \\
\hline \(6 \emptyset 32\) & 60 & & & RTS & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 60 & 18 & & & C & \\
\hline 6041 & AD & 97 & 61 & LDA & \$6197 \\
\hline 6044 & 69 & Ø1 & & ADC & \#\$01 \\
\hline 6046 & 8D & 9 B & 61 & STA & \$619B \\
\hline 6049 & AD & 96 & 61 & LDA & \$6196 \\
\hline \(6 \emptyset 4 \mathrm{C}\) & 69 & Øø & & ADC & \#\$øØ \\
\hline 604 E & 8D & 9A & 61 & STA & \$619A \\
\hline \(6 \varnothing 51\) & DE & 9 A & 61 & ASL & \\
\hline \(6 \emptyset 54\) & 18 & & & CLC & \\
\hline 955 & ØE & 9B & 61 & ASL & \\
\hline 058 & AD & 9A & 61 & LDA & \$619A \\
\hline 6ø5B & 69 & \(\emptyset \emptyset\) & & ADC & \#\$øø \\
\hline 6ø5D & 8D & 9A & 61 & STA & \$619A \\
\hline \(6 \varnothing 6 \emptyset\) & AD & 97 & 61 & LDA & \$6197 \\
\hline 6063 & 4A & & & LSR & \\
\hline 6064 & 8D & 9D & 61 & STA & \\
\hline 6067 & 18 & & & CLC & \\
\hline 6068 & AD & 96 & 61 & LDA & \\
\hline 606B & 4A & & & LSR & \\
\hline 6ø6C & 8D & 9C & 61 & STA & \$619C \\
\hline 606F & 90 & \(\emptyset 9\) & & BCC & \\
\hline 6071 & 18 & & & CLC & \\
\hline 6072 & AD & 9 D & 61 & LDA & \$619D \\
\hline 6075 & 69 & \(8 \emptyset\) & & ADC & \#\$8ø \\
\hline 6077 & 8D & 9D & 61 & STA & \$619D \\
\hline 607A & 18 & & & CLC & \\
\hline 607B & AD & 9D & 61 & LDA & \$619D \\
\hline 697 E & 6 D & 9B & 61 & ADC & \$619B \\
\hline \(6 \emptyset 81\) & 8D & 9 F & 61 & ST & \$619F \\
\hline
\end{tabular}

Rem: 6000-6032 Initializes program

Rem: 6040-6096
Calculates \(2 n+X+2\) where \(X=\operatorname{int}(n / 2)\)
```

6084 AD 9C 61 LDA \$619C
6087 6D 9A 61 ADC \$619A
608A 8D 9E 61 STA \$619E
6\emptyset8D 18 CLC
608E AD 9E 61 LDA \$619E
6ø91 69 76 ADC \#\$76
6093 8D 9E 61 STA \$619E
6096 60 RTS

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(6 \emptyset 9 \mathrm{E}\) & \(A \varnothing\) & \(\emptyset \emptyset\) & LDY & \#\$øø & Rem: & 609E-6126 \\
\hline 6ØAD & AD 9 & 9E 61 & LDA & \$619E & & Prepares next number for \\
\hline 60А3 & 85 & \(\emptyset 9\) & STA & \$ø9 & & addition and stores in \\
\hline 69 A5 & AD 9 & 9F 61 & LDA & \$619F & & s6176,5,4 \\
\hline 6ØA8 & 85 & ø8 & STA & \$ø8 & & \\
\hline 6ØAA & A9 & \(\varnothing 1\) & LDA & \#\$01 & & \\
\hline 6øAC & 2C & 9761 & BIT & \$6197 & & \\
\hline 60AF & Dø 5 & 54 & BNE & \$6105 & & \\
\hline \(60 \mathrm{B1}\) & \(A \varnothing \square\) & \(\varnothing \varnothing\) & LDY & \#\$øø & & \\
\hline 6øВ3 & B1 0 & Ø8 & LDA & (\$Ø8), Y & & \\
\hline 6ØВ5 & 29 F & FD & AND & \#\$Fø & & \\
\hline 60B7 & 4A & & LSR & & & \\
\hline 6ØB8 & 4A & & LSR & & & \\
\hline 60B9 & 4A & & LSR & & & \\
\hline 6øBA & 4A & & LSR & & & \\
\hline \(6 \emptyset \mathrm{BB}\) & 8D 7 & 7461 & STA & \$6174 & & \\
\hline \(6 \emptyset \mathrm{BE}\) & A5 & ø8 & LDA & \$08 & & \\
\hline 6ØCD & Dø Ø & ø2 & BNE & \$6øC4 & & \\
\hline 6øC2 & C6 \(\varnothing\) & ø9 & DEC & \$ø9 & & \\
\hline 6øC4 & C6 \(\varnothing\) & \(\emptyset 8\) & DEC & \$ø8 & & \\
\hline 6øC6 & B1 & Ø8 & LDA & (\$ø8), Y & & \\
\hline 60C8 & 29 ¢ & \(\emptyset \mathrm{F}\) & AND & \#\$øF & & \\
\hline 6øCA & ØA & & ASL & & & \\
\hline \(6 \emptyset \mathrm{CB}\) & ØA & & ASL & & & \\
\hline 6øCC & ØA & & ASL & & & \\
\hline 6øCD & ØA & & ASL & & & \\
\hline 6øCE & 18 & & CLC & & & \\
\hline 60 CF & 6D 7 & 7461 & ADC & \$6174 & & \\
\hline 6ØD2 & 8D 7 & 7461 & STA & \$6174 & & \\
\hline 60D5 & B1 & Ø8 & LDA & (\$ø8), Y & & \\
\hline 60D7 & 29 F & Fø & AND & \#\$FO & & \\
\hline 6øD9 & 4A & & LSR & & & \\
\hline 6øDA & 4A & & LSR & & & \\
\hline 6øDB & 4A & & LSR & & & \\
\hline 6øDC & 4A & & LSR & & & \\
\hline 6øDD & 8D 7 & 7561 & STA & \$6175 & & \\
\hline 6ØED & A5 0 & ø8 & LDA & \$ø8 & & \\
\hline 6ØE2 & Dø Ø & Ø2 & BNE & \$6ØE6 & & \\
\hline 6ØE4 & C6 & \(\emptyset 9\) & DEC & \$09 & & \\
\hline 6øE6 & C6 & \(\emptyset 8\) & DEC & \$ø8 & & \\
\hline 60 E 8 & B1 & \(\emptyset 8\) & LDA & (\$ø8), Y & & \\
\hline 60EA & 29 & \(\emptyset F\) & AND & \#\$øF' & & \\
\hline 6ØEC & ØA & & ASL & & & \\
\hline 6ØED & \(\emptyset A\) & & ASL & & & \\
\hline 6ØEE & \(\emptyset A\) & & ASL & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 6øEF & ØA & & & ASL & \\
\hline 6øFD & 18 & & & CLC & \\
\hline 60 F 1 & 6D & 75 & 61 & ADC & \$6175 \\
\hline 60F4 & 8D & 75 & 61 & STA & \$6175 \\
\hline 60F7 & B1 & ø8 & & LDA & (\$ø8), Y \\
\hline 6øF9 & 29 & \(F \emptyset\) & & AND & \#\$FD \\
\hline 6 6FB & 4A & & & LSR & \\
\hline 60FC & 4A & & & LSR & \\
\hline \(6 \emptyset F D\) & 4A & & & LSR & \\
\hline 60 FE & 4A & & & LSR & \\
\hline 60FF & 8D & 76 & 61 & STA & \$6176 \\
\hline 6102 & 4 C & 26 & 61 & JMP & \$6126 \\
\hline 6105 & B1 & ø8 & & LDA & (\$ø8), Y \\
\hline 6107 & 8D & 74 & 61 & STA & \$6174 \\
\hline 610A & A5 & Ø8 & & LDA & \$08 \\
\hline 610C & DØ & Ø2 & & BNE & \$611ø \\
\hline 610E & C6 & ø9 & & DEC & \$ 09 \\
\hline 6110 & C6 & Ø8 & & DEC & \$ø8 \\
\hline 6112 & B1 & Ø8 & & LDA & (\$ø8), Y \\
\hline 6114 & 8D & 75 & 61 & STA & \$6175 \\
\hline 6117 & A5 & ø8 & & LDA & \$ø8 \\
\hline 6119 & DØ & ø2 & & BNE & \$611D \\
\hline 611B & C6 & ¢9 & & DEC & \$ø9 \\
\hline 611 D & C6 & ¢8 & & DEC & \$ø8 \\
\hline 611 F & B1 & Ø8 & & LDA & (\$ø8), Y \\
\hline 6121 & 29 & ØF & & AND & \#\$ØF \\
\hline 6123 & 8D & 76 & 61 & STA & \$6176 \\
\hline 6126 & \(6 \square\) & & & RTS & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 6140 & F8 & & & \multicolumn{2}{|l|}{SED} \\
\hline 6141 & 18 & & & CLC & \\
\hline 6142 & AD & 74 & 61 & LDA & \$6174 \\
\hline 6145 & 6D & 70 & 61 & ADC & \$617ø \\
\hline 6148 & 8D & \(7 \emptyset\) & 61 & STA & \$617Ø \\
\hline 614B & AD & 75 & 61 & LDA & \$6175 \\
\hline 614 E & 6D & 71 & 61 & ADC & \$6171 \\
\hline 6151 & 8D & 71 & 61 & STA & \$6171 \\
\hline 6154 & AD & 76 & 61 & LDA & \$6176 \\
\hline 6157 & 6D & 72 & 61 & ADC & \$6172 \\
\hline 615A & 8D & 72 & 61 & STA & \$6172 \\
\hline 615D & A9 & Øø & & LDA & \#\$øø \\
\hline 615 F & 6D & 73 & 61 & ADC & \$6173 \\
\hline 6162 & 8D & 73 & 61 & STA & \$6173 \\
\hline 6165 & D8 & & & CLD & \\
\hline 6166 & \(6 \varnothing\) & & & RTS & \\
\hline
\end{tabular}

Rem: 6140-6166
Addition of 6176,5,4 to running total in \(6173,2,1,0\) in decimal mode.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 61 ED & A9 & øø & & LDA & \#\$Фø & Rem: & 61ED - 62DE & \\
\hline 61 EF & 8D & A1 6 & 61 & STA & \$61A1 & & Plots point & n FRG screen \\
\hline 61F2 & AD & 816 & 61 & LDA & \$6181 & & & \\
\hline 61 F 5 & C9 & C8 & & CMP & \#\$C8 & & & \\
\hline \(61 F 7\) & \(9 \varnothing\) & ø5 & & BCC & \$61FE & & & \\
\hline \(61 \mathrm{F9}\) & A9 & C7 & & LDA & \#\$C7 & & & \\
\hline 61 FB & 8D & 816 & 61 & STA & \$6181 & & & \\
\hline 61 FE & A9 & \(\emptyset 2\) & & LDA & \#\$ø2 & & & \\
\hline \(620 \square\) & 8D & FF & BF & STA & \$BFFF & & & \\
\hline 6203 & AD & 876 & 61 & LDA & \$6187 & & & \\
\hline 6206 & 8D & AF 6 & 61 & STA & \$61AF & & & \\
\hline 6209 & AD 8 & 816 & 61 & LDA & \$6181 & & & \\
\hline \(62 \emptyset \mathrm{C}\) & 8D & AE 6 & 61 & STA & \$61AE & & & \\
\hline 620 F & 38 & & & SEC & & & & \\
\hline 6210 & A9 & C7 & & LDA & \#\$C7 & & & \\
\hline 6212 & ED & AE 6 & 61 & SBC & \$61AE & & & \\
\hline 6215 & 8D & AD 6 & 61 & STA & \$61AD & & & \\
\hline 6218 & A9 & \(\emptyset \emptyset\) & & LDA & \#\$øØ & & & \\
\hline 621A & 8D & AD 6 & 61 & STA & \$61Aø & & & \\
\hline 621 D & AD & AD 6 & 61 & LDA & \$61AD & & & \\
\hline 6220 & ØA & & & ASL & & & & \\
\hline 6221 & 8D & AC 6 & 61 & STA & \$61AC & & & \\
\hline 6224 & 90 & \(\emptyset 9\) & & BCC & \$622F & & & \\
\hline 6226 & 18 & & & CLC & & & & \\
\hline 6227 & AD & Aø 6 & 61 & LDA & \$61AØ & & & \\
\hline 622A & 69 & Ø2 & & ADC & \#\$ø2 & & & \\
\hline 622C & 8D & Aø 6 & 61 & STA & \$61AØ & & & \\
\hline 622F & AJ & AC 6 & 61 & LDA & \$61AC & & & \\
\hline 6232 & ØA & & & ASL & & & & \\
\hline 6233 & 8D & AC 6 & 61 & STA & \$61AC & & & \\
\hline 6236 & AD & AD 6 & 61 & LDA & \$61A0 & & & \\
\hline 6239 & 69 & \(\emptyset \square\) & & ADC & \#\$ø口 & & & \\
\hline 623B & 8D & AB 6 & 61 & STA & \$61AB & & & \\
\hline 623E & 18 & & & CLC & & & & \\
\hline 623F & AD & AC 6 & 61 & LDA & \$61AC & & & \\
\hline 6242 & 6D & AD 6 & 61 & ADC & \$61AD & & & \\
\hline 6245 & 8D & AA 6 & 61 & STA & \$61AA & & & \\
\hline 6248 & AD & AB 6 & 61 & LDA & \$61AB & & & \\
\hline 624 B & 69 & øø & & ADC & \#\$ø口 & & & \\
\hline 624 D & 8D & A9 6 & 61 & STA & \$61A9 & & & \\
\hline 6250 & AD & AA 6 & 61 & LDA & \$61AA & & & \\
\hline 6253 & ØA & & & ASL & & & & \\
\hline 6254 & 8D & A2 6 & 61 & STA & \$61A2 & & & \\
\hline 6257 & 90 & 06 & & BCC & \$625F & & & \\
\hline 6259 & A9 & Ø4 & & LDA & \#\$ø4 & & & \\
\hline 625B & 8D & A1 6 & 61 & STA & \$61A1 & & & \\
\hline 625 E & 18 & & & CLC & & & & \\
\hline 625F & AD & A2 6 & 61 & LDA & \$61A2 & & & \\
\hline 6262 & ØA & & & ASL & & & & \\
\hline 6263 & 8D & A2 6 & 61 & STA & \$61A2 & & & \\
\hline 6266 & \(9 \emptyset 1\) & ØA & & BCC & \$6272 & & & \\
\hline 6268 & 18 & & & CLC & & & & \\
\hline 6269 & A9 & \(\emptyset 2\) & & LDA & \#\$02 & & & \\
\hline 626B & 6D & A1 6 & 61 & ADC & \$61A1 & & & \\
\hline 626E & 8D & A1 6 & 61 & STA & \$61A1 & & & \\
\hline 6271 & 18 & & & CLC & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 6272 & AD & A2 & 61 & LDA & \$ \\
\hline 6275 & ØA & & & ASL & \\
\hline 6276 & 8D & A2 & 61 & STA & \\
\hline 6279 & A9 & \(\emptyset \emptyset\) & & LDA & \#\$ø口 \\
\hline 627B & 6D & A1 & 61 & ADC & \$61A1 \\
\hline 627E & 8D & A1 & 61 & STA & \$61A1 \\
\hline 6281 & AD & A9 & 61 & LDA & \$61A9 \\
\hline 6284 & \(\emptyset A\) & & & ASL & \\
\hline 6285 & ØA & & & ASL & \\
\hline 6286 & ØA & & & ASL & \\
\hline 6287 & 6D & A1 & 61 & ADC & \$61A1 \\
\hline 628A & 8D & A3 & 61 & STA & \$61A3 \\
\hline 628D & 18 & & & CLC & \\
\hline 628E & AD & AF & 61 & LDA & \\
\hline 6291 & 4A & & & LSR & \\
\hline 6292 & 4A & & & LSR & \\
\hline 6293 & 4A & & & LSR & \\
\hline 6294 & 8D & A4 & 61 & STA & \$61A4 \\
\hline 6297 & 18 & & & CLC & \\
\hline 6298 & 6 D & A2 & 61 & ADC & \$61A2 \\
\hline 629B & 8D & A5 & 61 & STA & \$61A5 \\
\hline 629E & AD & A3 & 61 & LDA & \$61A3 \\
\hline 62 Al & 69 & øø & & ADC & \#\$øø \\
\hline 62A3 & 8D & A6 & 61 & STA & \$61A6 \\
\hline 62A6 & 69 & 90 & & ADC & \#\$9ø \\
\hline 62A8 & 8D & A6 & 61 & STA & \$61A6 \\
\hline 62 AB & AD & AF & 61 & LDA & \$61AF \\
\hline 62AE & 29 & ø7 & & AND & \#\$07 \\
\hline 62B0 & 8D & A7 & 61 & STA & \$61A7 \\
\hline 62B3 & 38 & & & SEC & \\
\hline 62B4 & A9 & Ø7 & & LDA & \#\$ø7 \\
\hline 62B6 & ED & A7 & 61 & SBC & \$61A7 \\
\hline 62B9 & 8D & A8 & 61 & STA & \$61A8 \\
\hline 62BC & A9 & \(\emptyset 1\) & & LDA & \#\$01 \\
\hline 62BE & 8D & \(B \varnothing\) & 61 & STA & \$61Bø \\
\hline 62 C 1 & AD & A8 & 61 & LDA & \$61A8 \\
\hline 62C4 & Fø & øВ & & BEQ & \$62D1 \\
\hline 62C6 & ØE & Bø & 61 & ASL & \$61Bø \\
\hline 62 C 9 & CE & A8 & 61 & DEC & \$61A8 \\
\hline 62CC & \(\mathrm{F} \emptyset\) & ø3 & & BEQ & \$62D1 \\
\hline 62CE & 4 C & C6 & 62 & JMP & \$62C6 \\
\hline 62D1 & AD & A5 & 61 & LDA & \$61A5 \\
\hline 62D4 & 85 & ø8 & & STA & \$ø8 \\
\hline 62D6 & AD & A6 & 61 & LDA & \$61A6 \\
\hline 62D9 & 85 & \(\emptyset 9\) & & STA & \$ø9 \\
\hline 62 DB & \(2 \emptyset\) & DB & 68 & JSR & \$68DB \\
\hline 62DE & \(6 \emptyset\) & & & RTS & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 62 E 5 & A9 & \(9 \varnothing\) & LDA & \#\$90 \\
\hline 62 E 7 & 85 & \(\emptyset 9\) & STA & \$ø9 \\
\hline 62E9 & A9 & øø & LDA & \#\$ø口 \\
\hline 62 EB & 85 & Ø8 & STA & \$ø8 \\
\hline 62 ED & Aø & \(\emptyset \varnothing\) & LDY & \#\$\$øø \\
\hline 62 EF & & \(\emptyset \emptyset\) & LDA & \#\$øø \\
\hline
\end{tabular}

Rem: 62E5-62FE
Clears HRG screen
\begin{tabular}{|c|c|c|c|c|}
\hline 62F1 & 91 & ø8 & STA & (\$ø8), Y \\
\hline 62F3 & C8 & & INY & \\
\hline 62F4 & Dø & F9 & BNE & \$62EF \\
\hline 62F6 & E6 & \(\emptyset 9\) & INC & \$ø9 \\
\hline 62F8 & A5 & \(\emptyset 9\) & LDA & \$ø9 \\
\hline 62FA & C9 & Bø & CMP & \#\$BØ \\
\hline 62FC & Dø & F1 & BNE & \$62EF \\
\hline 62 FE & \(6 \emptyset\) & & RTS & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 63øø & A9 & Øø & LDA & \#\$øø & Rem: & 6300-6445 \\
\hline 6302 & \(2 \emptyset 8\) & 8365 & JSR & \$6583 & & Main routine which displays, \\
\hline \(63 \emptyset 5\) & 8D 7 & 7161 & STA & \$6171 & & integrates and averages \\
\hline 63 ¢8 & 8D 7 & 7261 & STA & \$6172 & & spectrum between limits \\
\hline 630 B & 8D 7 & 7361 & STA & \$6173 & & determined by cursor \\
\hline 630 E & 8D 8 & 8761 & STA & \$6187 & & positions. \\
\hline 6311 & 8D F & FC 64 & STA & \$64FC & & \\
\hline 6314 & 8D & FD 64 & STA & \$64FD & & \\
\hline 6317 & 8D F & FE 64 & STA & \$64FE & & \\
\hline 631A & 8D F & FF 64 & STA & \$64FF & & \\
\hline 631D & \(2 \emptyset\) & 4060 & JSR & \$6Ø4Ø & & \\
\hline \(632 \emptyset\) & \(2 \emptyset\) & AD 6ø & JSR & \$6ØAØ & & \\
\hline 6323 & AD 8 & 8861 & LDA & \$6188 & & \\
\hline 6326 & \(F \varnothing\) & ØC & BEQ & \$6334 & & \\
\hline 6328 & \(2 \emptyset\) & 4061 & JSR & \$6140 & & \\
\hline 632B & \(2 \emptyset \mathrm{~F}\) & FD 65 & JSR & \$65FD & & \\
\hline 632 E & \(2 \varnothing 口\) & ØD 65 & JSR & \$65øø & & \\
\hline 6331 & 4C 4 & 4063 & JMP & \$6340 & & \\
\hline 6334 & \(2 \emptyset 7\) & 7563 & JSR & \$6375 & & \\
\hline 6337 & 20 & \(6 \emptyset 64\) & JSR & \$646ø & & \\
\hline 633A & \(2 \emptyset \mathrm{E}\) & ED 61 & JSR & \$61ED & & \\
\hline 633D & EE 8 & 8761 & INC & \$6187 & & \\
\hline 6340 & AD 9 & 9761 & LDA & \$6197 & & \\
\hline 6343 & CD 9 & 9961 & CMP & \$6199 & & \\
\hline 6346 & DØ & ø8 & BNE & \$635ø & & \\
\hline 6348 & AD 9 & 9661 & LDA & \$6196 & & \\
\hline 634B & CD 9 & 9861 & CMP & \$6198 & & \\
\hline 634 E & FD 1 & 12 & BEQ & \$6362 & & \\
\hline 6350 & 18 & & CLC & & & \\
\hline 6351 & AD 97 & 9761 & LDA & \$ 6197 & & \\
\hline 6354 & 6D 8 & 8461 & ADC & \$6184 & & \\
\hline 6357 & 8D 9 & 9761 & STA & \$6197 & & \\
\hline 635A & Dø & C1 & BNE & \$631D & & \\
\hline 635C & EE 9 & 9661 & INC & \$6196 & & \\
\hline 635F & 4C 10 & 1D 63 & JMP & \$631D & & \\
\hline 6362 & 60 & & RTS & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 6375 & A9 & ØØ & & LDA & \#\$ØØ \\
\hline 6377 & 8D & 7 C & 61 & STA & \$617C \\
\hline 637 A & 8D & 7A & 61 & STA & \$617A \\
\hline 637 D & 8D & 82 & 61 & STA & \$6182 \\
\hline 6380 & 18 & & & CLC & \\
\hline 6381 & AD & 76 & 61 & LDA & \$6176 \\
\hline 6384 & @A & & & ASL & \\
\hline 6385 & ØA & & & ASL & \\
\hline 6386 & 8D & 78 & 61 & STA & \$6178 \\
\hline 6389 & ØA & & & ASL & \\
\hline 638A & \(\emptyset A\) & & & ASL & \\
\hline 638B & \(\emptyset A\) & & & ASL & \\
\hline 638C & 8D & 79 & 61 & STA & \$6179 \\
\hline 638 F & 8D & 7B & 61 & STA & \$617B \\
\hline 6392 & \(9 \emptyset\) & øВ & & BCC & \$639F \\
\hline 6394 & 18 & & & CLC & \\
\hline 6395 & A9 & \(\varnothing 2\) & & LDA & \#\$Ø2 \\
\hline 6397 & 8D & 7 C & 61 & STA & \$617C \\
\hline 639A & A9 & 01 & & LDA & \#\$01 \\
\hline 639C & 8D & 7 A & 61 & STA & \$617A \\
\hline 639\% & ØE & 7 B & 61 & ASL & \$617B \\
\hline \(63 \mathrm{A2}\) & EA & & & NOP & \\
\hline 63A3 & EA & & & NOP & \\
\hline 63 A4 & EA & & & NOP & \\
\hline 63 A 5 & \(9 \emptyset\) & \(\emptyset 9\) & & BCC & \$63Bø \\
\hline 63 A'7 & 18 & & & CLC & \\
\hline 63 A8 & A9 & 01 & & LDA & \#\$01 \\
\hline 63AA & 6D & 7 C & 61 & ADC & \$617C \\
\hline 63AD & 8D & 7 C & 61 & STA & \$617C \\
\hline 63 BD & 18 & & & CLC & \\
\hline \(63 \mathrm{B1}\) & AD & 78 & 61 & LDA & \$6178 \\
\hline 63B4 & 6D & 79 & 61 & ADC & \$6179 \\
\hline 63B7 & 8D & 7D & 61 & STA & \$617D \\
\hline 63BA & AD & 7A & 61 & LDA & \$617A \\
\hline 63BD & 69 & ¢0 & & ADC & \(\# \$ \varnothing \varnothing\) \\
\hline 63 BF & 8D & 7 E & 61 & STA & \$617E \\
\hline 63 C 2 & AD & 7D & 61 & LDA & \$617D \\
\hline 63 C 5 & 6D & 7 B . & 61 & ADC & \$617B \\
\hline \(63 \mathrm{C8}\) & 8D & 7 D & 61 & STA & \$617D \\
\hline 63 CB & AD & 7 C & 61 & LDA & \$617C \\
\hline 63 CE & 6D & 7 E & 61 & ADC & \$617E \\
\hline 63 D 1 & 8D & 7 E & 61 & STA & \$617E \\
\hline 63 D 4 & 18 & & & CLC & \\
\hline 63D5 & AD & 75 & 61 & LDA & \$6175 \\
\hline 63D8 & 29 & \(F \emptyset\) & & AND & \(\# \$ F \varnothing\) \\
\hline 63DA & 4A & & & LSR & \\
\hline 63 DB & 4A & & & LSR & \\
\hline 63DC & 4A & & & LSR & \\
\hline 63DD & 4A & & & LSR & \\
\hline 63DE & 8 D & \(8 \emptyset\) & 61 & STA & \$6180 \\
\hline 63 E 1 & ØA & & & ASL & \\
\hline 63 E 2 & 8D & 81 & 61 & STA & \$6181 \\
\hline 63E5 & \(9 \varnothing\) & \(\emptyset 6\) & & BCC & \$63ED \\
\hline 63 E 7 & A9 & 02 & & LDA & \#\$02 \\
\hline 63E9 & 8D & 82 & 61 & STA & \$6182 \\
\hline 63 EC & 18 & & & CLC & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline 6460 & AD & 83 & 61 & LDA & \$6183 \\
\hline 6463 & C9 & Ø1 & & CMP & \#\$ø1 \\
\hline 6465 & Fø & 49 & & BEQ & \$64Bø \\
\hline 6467 & AD & 81 & 61 & LDA & \$6181 \\
\hline 646A & 4A & & & LSR & \\
\hline 646B & 8D & 81 & 61 & STA & \$6181 \\
\hline 646E & 18 & & & CLC & \\
\hline 646 F & AD & 82 & 61 & LDA & \$6182 \\
\hline 6472 & 4A & & & LSR & \\
\hline 6473 & 8D & 82 & 61 & STA & \$6182 \\
\hline 6476 & 90 & ¢9 & & BCC & \$6481 \\
\hline 6478 & 18 & & & CLC & \\
\hline 6479 & AD & 81 & 61 & LDA & \$6181 \\
\hline 647C & 69 & \(8 \emptyset\) & & ADC & \#\$8ø \\
\hline 647E & 8D & 81 & 61 & STA & \$6181 \\
\hline 6481 & AD & 83 & 61 & LDA & \$6183 \\
\hline 6484 & C9 & ø2 & & CMP & \#\$02 \\
\hline 6486 & Fø & 28 & & BEQ & \$64Bø \\
\hline 6488 & AD & 81 & 61 & LDA & \$6181 \\
\hline
\end{tabular}

Rem: 6460-64BO
Sets verical scaling factor on spectrum display.
\begin{tabular}{|c|c|c|c|c|c|}
\hline 648B & 4A & & & LSR & \\
\hline 648C & 8D & 81 & 61 & STA & \$6181 \\
\hline 848F & 18 & & & CLC & \\
\hline \(649 \varnothing\) & AD & 82 & 61 & LDA & \$6182 \\
\hline 6493 & 4A & & & LSR & \\
\hline 8494 & 8D & 82 & 61 & STA & \$6182 \\
\hline 6497 & 90 & ø9 & & BCC & \$64A2 \\
\hline 6499 & 18 & & & CLC & \\
\hline 649A & AD & 81 & 61 & LDA & \$6181 \\
\hline 649D & 69 & \(8 \emptyset\) & & ADC & \#\$8ø \\
\hline 649F & 8D & 81 & 61 & STA & \$6181 \\
\hline 64 A 2 & AD & 83 & 61 & LDA & \$6183 \\
\hline 64A5 & C9 & ¢4 & & CMP & \#\$ø4 \\
\hline 64A7 & FD & Ø7 & & BEQ & \$64Bø \\
\hline 64A9 & AD & 81 & 61 & LDA & \$6181 \\
\hline 64AC & 4A & & & LSR & \\
\hline 64AD & 8D & 81 & 61 & STA & \$6181 \\
\hline \(64 \mathrm{~B} \emptyset\) & 60 & & & RTS & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 64FD & 503 F & & BVC & \$653E \\
\hline 64FF & ¢5 AD & & ORA & \$AD \\
\hline 6501 & 9661 & & STX & \$61, Y \\
\hline 6503 & 8D F7 & 64 & STA & \$64F7 \\
\hline 6506 & AD 97 & 61 & LDA & \$6197 \\
\hline 6509 & 8D F6 & 64 & STA & \$64F6 \\
\hline 650C & A2 ØA & & LDX & \#\$øA \\
\hline 650 E & A9 ØØ & & LDA & \#\$øø \\
\hline 6510 & 8D FB & 64 & STA & \$64FB \\
\hline 6513 & AD F6 & 64 & LDA & \$64F6 \\
\hline 6516 & 29 Ø1 & & AND & \#\$ø1 \\
\hline 6518 & C9 ø1 & & CMP & \#\$Ø1 \\
\hline 651A & DØ 2C & & BNE & \$6548 \\
\hline 651 C & 18 & & CLC & \\
\hline 651D & AD FC & 64 & LDA & \$64FC \\
\hline 6520 & 6D F8 & 64 & ADC & \$64F8 \\
\hline 6523 & 8D FC & 64 & STA & \$64FC \\
\hline 6526 & AD FD & 64 & LDA & \$64FD \\
\hline 6529 & 6D F9 & 64 & ADC & \$64F9 \\
\hline 652C & BD FD & 64 & STA & \$64FD \\
\hline 652F & AD FE & 64 & LDA & \$64FE \\
\hline 6532 & 6D FA & 64 & ADC & \$64FA \\
\hline 6535 & 8D FE & 64 & STA & \$64FE \\
\hline 6538 & \(2 \varnothing 90\) & 65 & JSR & \$6590 \\
\hline 653B & EA & & NOP & \\
\hline 653C & EA & & NOP & \\
\hline 653 D & EA & & NOP & \\
\hline 653 E & EA & & NOP & \\
\hline 653F & EA & & NOP & \\
\hline 6540 & AD 8F & 65 & LDA & \$658F \\
\hline 6543 & 69 øø & & ADC & \#\$øø \\
\hline 6545 & 8D 8F & 65 & STA & \$658F \\
\hline 6548 & 18 & & CLC & \\
\hline 6549 & ØE FB & 64 & ASL & \$64FB \\
\hline 654C & ØE FA & 64 & ASL & \$64FA \\
\hline
\end{tabular}

Rem: 64FD - 6599
Multiplies number in 64F8,9,A,(B) by number in 64F6,7 and stores in 64FC, D, E,F.
\begin{tabular}{|c|c|c|c|c|c|}
\hline 54 F & AD & FB & 64 & LDA & \$64FB \\
\hline 6552 & 69 & Øロ & & ADC & \#\$øø \\
\hline 6554 & 8D & FB & 64 & STA & \$64FB \\
\hline 6557 & ØE & F9 & 64 & ASL & \$64F9 \\
\hline 655A & AD & FA & 64 & LDA & \$64FA \\
\hline 655D & 69 & \(\emptyset \emptyset\) & & ADC & \#\$øø \\
\hline 655 F & 8D & FA & 64 & STA & \$64FA \\
\hline 6562 & ØE & F8 & 64 & ASL & \$64F8 \\
\hline 6565 & AD & F9 & 64 & LDA & \$64F9 \\
\hline 6568 & 69 & Фø & & ADC & \#\$øø \\
\hline 656A & 8D & F9 & 64 & STA & \$64F9 \\
\hline 656D & 4 E & F6 & 64 & LSR & \$64F6 \\
\hline 6570 & 18 & & & CLC & \\
\hline 6571 & 4 E & F7 & 64 & LSR & \$64F7 \\
\hline 6574 & 90 & ø9 & & BCC & \$657F \\
\hline 6576 & 18 & & & CLC & \\
\hline 6577 & AD & F6 & 64 & LDA & \$64F6 \\
\hline 657 A & 69 & 80 & & ADC & \#\$8ワ \\
\hline 657 C & 8D & F6 & 64 & STA & \$64F6 \\
\hline 657 F & CA & & & DEX & \\
\hline 6580 & DØ & 91 & & BNE & \$6513 \\
\hline 6582 & 60 & & & RTS & \\
\hline
\end{tabular}
\begin{tabular}{llllll}
6583 & 8D & \(8 F\) & 65 & STA & \(\$ 658 F\) \\
6586 & \(8 D\) & \(7 \emptyset\) & 61 & STA & \(\$ 617 \varnothing\) \\
6589 & \(6 \emptyset\) & & RTS
\end{tabular}
\begin{tabular}{lllll}
6590 & AD FF & 64 & LDA & \(\$ 64 F F\) \\
6593 & 6D FB & 64 & ADC & \(\$ 64 F B\) \\
6596 & 8D & FF & 64 STA & \(\$ 64 F F\) \\
6599 & \(6 \emptyset\) & & RTS
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 65FD & A9 \(\square \square\) & & LDA & \#\$øø \\
\hline 65 FF & 8D D2 & 64 & STA & \$64D2 \\
\hline 6602 & 8D E2 & 64 & STA & \$64E2 \\
\hline 6605 & 8D E4 & 64 & STA & \$64E4 \\
\hline 6608 & 8D E6 & 64 & STA & \$64E6 \\
\hline 660 B & 8D B9 & 64 & STA & \$64B9 \\
\hline \(66 \emptyset \mathrm{E}\) & 8D DB & 64 & STA & \$64DB \\
\hline 6611 & 18 & & CLC & \\
\hline 6612 & AD 76 & 61 & LDA & \$6176 \\
\hline 6615 & ØA & & ASL & \\
\hline 6616 & ØA & & ASL & \\
\hline 6617 & ØA & & ASL & \\
\hline 6618 & ØA & & ASL & \\
\hline 6619 & 8D Eø & 64 & STA & \$64EØ \\
\hline 661 C & ØA & & ASL & \\
\hline 661 D & 8D E1 & 64 & STA & \$64E1 \\
\hline 6620 & AD E2 & 64 & LDA & \$64E2 \\
\hline 6623 & 69 øø & & ADC & \#\$0. \\
\hline 6625 & 8D E2 & 64 & STA & \$64E2 \\
\hline 6628 & 18 & & CLC & \\
\hline 6629 & ØE E2 & 64 & ASL & \$64E2 \\
\hline
\end{tabular}

Rem: 65FD - 6892
Converts 5 digit decimal
number to 3 bytes of hexadecimal.
\begin{tabular}{|c|c|c|c|c|}
\hline 662C & ØE E1 & 64 & A & \$64E1 \\
\hline 662 F & AD E2 & 64 & LDA & \$64E2 \\
\hline 6632 & 69 øø & & ADC & \#\$ø \\
\hline 634 & 8D E2 & 64 & STA & \\
\hline 637 & 18 & & CL & \\
\hline 638 & ØE E2 & 64 & ASL & \\
\hline 63 B & ØE E1 & 64 & AS & \\
\hline 63 E & AD E2 & 64 & & \\
\hline 641 & 69 øø & & AD & \#\$øø \\
\hline 643 & 8D E2 & 64 & STA & \$64E2 \\
\hline 646 & 18 & & CLC & \\
\hline 647 & ØE E2 & 64 & ASL & \\
\hline 4A & ØE E1 & 64 & ASL. & \$64E1 \\
\hline 4D & AD E2 & 64 & LDA & \$64E2 \\
\hline 650 & 69 øø & & ADC & \\
\hline 6652 & 8D E2 & & STA & \\
\hline 655 & 18 & & C & \\
\hline 556 & AD E2 & 64 & L & \\
\hline 59 & ØA & & A & \\
\hline 665A & 8D E3 & , & STA & \\
\hline 65D & AD E4 & 64 & LDA & \$64E4 \\
\hline 6660 & 69 øø & & ADC & \#\$øø \\
\hline 6662 & 8D E4 & 64 & STA & \\
\hline 6665 & 18 & & CLC & \\
\hline 666 & AD E3 & 64 & LDA & \\
\hline 669 & ØA & & ASL & \\
\hline 66A & 8D & 64 & ST & \\
\hline 6D & AD E6 & 64 & LD & \$64E6 \\
\hline 670 & 69 øø & & AD & \#\$ \\
\hline 6672 & 8D E6 & 64 & STA & \\
\hline 6675 & 18 & & CLC & \\
\hline 6676 & AD E6 & 64 & LDA & \\
\hline 6679 & \(\varnothing \mathrm{A}\) & & ASL & \\
\hline 67 A & 8D E8 & 64 & STA & \\
\hline 7 D & AD E5 & 64 & LDA & \\
\hline 680 & ØA & & ASL & \\
\hline 6681 & 8D E7 & , & STA & \\
\hline 84 & AD E8 & 64 & LDA & \$64E8 \\
\hline 8 & 69 øø & & ADC & + \\
\hline 6689 & 8D E8 & 64 & STA & \\
\hline 668C & 18 & & CLC & \\
\hline 668D & ØE E8 & 64 & ASL & \$64E8 \\
\hline 690 & ØE E7 & 64 & ASL & \$64E7 \\
\hline 693 & AD E8 & 64 & LDA. & \$64E8 \\
\hline 6696 & 69 øø & & ADC & \#\$ \\
\hline 6698 & 8D E8 & 64 & STA & \\
\hline 69B & 18 & & CLC & \\
\hline 669 C & ØE E8 & 64 & ASL & \$64E8 \\
\hline 669 F & ØE E7 & 64 & ASL & \$64E7 \\
\hline 66A2 & AD E8 & 64 & LDA & \$64E8 \\
\hline 66A5 & 69 Øø & & ADC & \#\$øø \\
\hline 66A7 & 8D E8 & 64 & STA & \$64E8 \\
\hline 66AA & 18 & & CLC & \\
\hline 66AB & AD 75 & 61 & LDA & \$6175 \\
\hline 66AE & 29 FD & & AND & \#\$ \\
\hline 66Bø & 4A & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 66B1 & 8D B7 & 64 & STA & \$ \\
\hline 66B4 & ØA & & ASL & \\
\hline 66B5 & ØA & & ASL & \\
\hline 66B6 & 8D B8 & 64 & STA & \$64B8 \\
\hline 66B9 & AD B9 & 64 & LDA & \$64B9 \\
\hline 66BC & 69 øø & & ADC & \#\$0.0 \\
\hline 66 BE & 8D B9 & 64 & STA & \$64B9 \\
\hline 66C1 & 18 & & CLC & \\
\hline 66C2 & AD B9 & 64 & LDA & \\
\hline \(66 \mathrm{C5}\) & ØA & & ASL & \\
\hline \(66 \mathrm{C6}\) & 8D BB & 64 & STA & \$64BB \\
\hline \(66 \mathrm{C9}\) & AD B8 & 64 & LDA & \$64B8 \\
\hline 66CC & ØA & & ASL & \\
\hline 66CD & 8D BA & 64 & STA & \$64BA \\
\hline 66DØ & AD BB & 64 & LDA & \$64BB \\
\hline 66D3 & 69 øø & & ADC & \#\$0ø \\
\hline 66 D 5 & 8D BB & 64 & STA & \$64BB \\
\hline 66D8 & 18 & & CLC & \\
\hline 66D9 & AD BB & 64 & LDA & \$6 \\
\hline 66DC & ØA & & ASL & \\
\hline 66DD & 8D BC & 84 & STA & \$64BC \\
\hline 66ED & AD BA & 64 & LDA & \$64BA \\
\hline 66E3 & ØA & & ASL & \\
\hline 66E4 & 8D BD & 64 & STA & \$64BD \\
\hline 66E7 & \(A D B C\) & 64 & LDA & \$64BC \\
\hline 66EA & 69 Øø & & ADC & \#\$øø \\
\hline 66EC & 8D BC & 64 & STA & \$64BC \\
\hline 66 EF & 18 & & CLC & \\
\hline 66Fø & AD BC & 64 & LDA & \$64BC \\
\hline 66F3 & ØA & & ASL & \\
\hline 66 F 4 & 8D BE & 64 & STA & \$64BE \\
\hline 66 F 7 & \(A D B D\) & 64 & LDA & \$64BD \\
\hline 66FA & ØA & & ASL & \\
\hline 66 FB & 8D BF & 64 & STA & \$64BF \\
\hline 66FE & AD BE & 64 & LDA & \$64BE \\
\hline 6701 & 69 Øø & & ADC & \#\$øø \\
\hline 6703 & 8D BE & 64 & STA & \$64BE \\
\hline 6706 & 18 & & CLC & \\
\hline 6707 & \(A D B E\) & 64 & LDA & \$64BE \\
\hline 670A & ØA & & ASL & \\
\hline 670В & 8D Fø & 64 & STA & \$64Fø \\
\hline 679 E & AD BF & 64 & LDA & \$64BF \\
\hline 6711 & ØA & & ASL & \\
\hline 6712 & 8D F1 & 64 & STA & \$64F1 \\
\hline 6715 & AD FD & 64 & LDA & \$64Fø \\
\hline 6718 & 69 Ø0 & & ADC & \#\$øø \\
\hline 671A & 8D FOb & 64 & STA & \$64FØ \\
\hline 671 D & 18 & & CLC & \\
\hline 671 E & AD 75 & 61 & LDA & \$6175 \\
\hline 6721 & 29 ØF & & AND & \#\$ØF \\
\hline 6723 & ØA & & ASL & \\
\hline 6724 & ØA & & ASL & \\
\hline 6725 & 8D Dø & 64 & STA & \$64Dø \\
\hline 6728 & DA & & ASL & \\
\hline 6729 & ØA & & ASL & \\
\hline 672A & ØA & & ASL & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 7 AC & øø & & ADC & \#\$øめ \\
\hline 67 AE & 8D C2 & 64 & STA & \$64C2 \\
\hline 67B1 & AD E5 & 64 & LDA & \$64E5 \\
\hline 7 B 4 & 6D C1 & 64 & AD & \\
\hline 67B7 & 8D C1 & 64 & ST & \$6 \\
\hline BA & AD C2 & 64 & LD & \$64C2 \\
\hline 7 BD & 6D E6 & 64 & & \\
\hline 7 C & 8D C2 & 64 & & \\
\hline 7 C 3 & AD E7 & 64 & & \\
\hline 7 C 6 & 6D C1 & 64 & ADC & \\
\hline 7 C 9 & 8D C1 & 64 & STA & \$6 \\
\hline 7 CC & AD E8 & 64 & LDA & \$6 \\
\hline 7 CF & 6D C2 & 64 & ADC & \$64C2 \\
\hline D2 & 8D C2 & 64 & ST & \$64C2 \\
\hline 67D5 & AD B7 & 64 & LD & \\
\hline 7D8 & 6D B8 & 64 & AD & \\
\hline 7 DB & 8D C3 & 6 & STA & \\
\hline DE & AD B9 & 6 & LDA & \$6489 \\
\hline E1 & 69 øø & & ADC & \#\$øø \\
\hline E3 & 8D C4 & 64 & ST & \$64C4 \\
\hline 7 E 6 & AD BA & 64 & LDA & \$64BA \\
\hline 67E9 & 6D C3 & 64 & ADC & \$64C3 \\
\hline 67EC & 8D C3 & 64 & STA & \$64C3 \\
\hline 67EF & AD BB & 64 & LDA & \$64 \\
\hline 67 F 2 & 6 D C4 & 64 & ADC & \$6 \\
\hline , & 8D C4 & 64 & ST & \$6 \\
\hline 67F8 & AD BD & 64 & LD & \$64BD \\
\hline 67FB & 6D & 6 & ADC & \\
\hline 67FE & 8D C3 & 6 & ST & \\
\hline 6801 & \(A D B C\) & 64 & LDA & \$6 \\
\hline 6804 & 6D C4 & 64 & AD & \\
\hline \(8 \emptyset 7\) & 8D C4 & 64 & ST & \\
\hline 68ØA & AD BF & 64 & LDA & \$6 \\
\hline 6801 & 6D C3 & 64 & ADC & \$64C3 \\
\hline 6810 & 8D C3 & 64 & STA & \$6 \\
\hline 6813 & AD BE & 64 & LDA & \\
\hline 6816 & 6 D C4 & 64 & ADC & \$6 \\
\hline 6819 & 8D C4 & 64 & ST & \\
\hline & AD F1 & 64 & LDA & \\
\hline 1 F & \(6 \mathrm{D} \mathrm{C3}\) & 64 & & \\
\hline 6822 & 8D C3 & 64 & STA & \\
\hline 8825 & AD FD & 64 & LDA & \$6 \\
\hline 6828 & 6D C4 & 64 & ADC & \$64C4 \\
\hline 682B & 8D C4 & 64 & STA & \$64C4 \\
\hline 682E & AD DC & 64 & LDA & \$64DC \\
\hline 6831 & 6D DA & 64 & ADC & \$64DA \\
\hline 6834 & 8D F8 & 64 & STA & \$64 \\
\hline 6837 & AD DB & 64 & LDA & \$64DB \\
\hline 683A & 69 øø & & ADC & \#\$øø \\
\hline 3 C & 8D F9 & 64 & STA & \$64F9 \\
\hline 88 & AD D5 & 64 & LDA & \$64 \\
\hline 8842 & 6D F8 & 64 & AD & \$64F8 \\
\hline 6845 & 8D F8 & 64 & STA & \$64F8 \\
\hline 6848 & AD D6 & 64 & LDA & \$64D6 \\
\hline 684B & 6D F9 & 64 & ADC & \$64F9 \\
\hline 684E & 8D F9 & 64 & STA & \$64F'9 \\
\hline
\end{tabular}
```

6851 AD C3 64 LDA \$64C3
6854 6D F8 64 ADC \$64F8
6857 8D F8 64 STA \$64F8
685A AD C4 }64\mathrm{ LDA \$64C4
685D 6D F9 64 ADC \$64F9
6860 8D F9 64 STA \$64F9
6863 AD C\emptyset 64 LDA \$64C\varnothing
6866 6D F8 64 ADC \$64F8
6869 8D F8 64 STA \$64F8
686C AD C1 }64\mathrm{ LDA \$64C1
686F 6D F9 64 ADC \$64F9
6872 8D F9 64 STA \$64F9
6875 AD C2 64 LDA $64C2
6878 69 Ø\emptyset ADC #$\emptyset\varnothing
687A 8D FA 64 STA \$64FA
687D 60 RTS

```
\begin{tabular}{|c|c|c|c|}
\hline 6880 & AD D5 & 64 LDA & \$64D5 \\
\hline 6883 & 6D D3 & 64 ADC & \$64D3 \\
\hline 6886 & 8D D5 & 64 STA & \$64D5 \\
\hline 6889 & AD D4 & 64 LDA & \$64D4 \\
\hline 688C & 6D D6 & 64 ADC & \$64D6 \\
\hline 688F & 8D D6 & 64 STA & \$6 \\
\hline 6892 & \(6 \varnothing\) & RTS & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 68DB & \(A \varnothing\) & Øø & & LDY & \#\$ \(\varnothing \varnothing\) & Rem: & 68DB - 68F2 \\
\hline 68DD & AD & 89 & 61 & LDA & \$6189 & & Subroutine of point \\
\hline 68ED & \(F \emptyset\) & \(\emptyset \mathrm{B}\) & & BEQ & \$68ED & & plotting. \\
\hline 68E2 & B1 & \(\emptyset 8\) & & LDA & (\$ø8), Y & & \\
\hline 68 E 4 & 9D & \(\emptyset \emptyset\) & 5F & STA & \$5Føø, X & & \\
\hline 68 E 7 & ØD & Bø & 61 & ORA & \$61Bø & & \\
\hline 68EA & 91 & \(\emptyset 8\) & & STA & (\$ø8), Y & & \\
\hline 68EC & \(6 \varnothing\) & & & RTS & & & \\
\hline 68ED & BD & øø & 5 F & LDA & \$5Føø, X & & \\
\hline 68Fの & 91 & ¢8 & & STA & (\$ø8), Y & & \\
\hline 68 F 2 & \(6 \varnothing\) & & & RTS & & & \\
\hline
\end{tabular}
\begin{tabular}{lllll}
\(69 \emptyset \emptyset\) & A9 & Ø3 & & LDA
\end{tabular} \#\$ø3

Rem: 6900-6918
Positions cursor.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 7440 & A9 & 76 & & LDA & \＃\＄76 & Rem： & 7440－75EA \\
\hline 7442 & 85 & ø9 & & STA & \＄ø9 & & Transfers spectrum via \\
\hline 7444 & A9 & \(\varnothing \varnothing\) & & LDA & \＃\＄ø口 & & IEPE port and stores the \\
\hline 7446 & 85 & \(\square 8\) & & STA & \＄ø8 & & 5 k digits in \(2 \frac{1}{2} \mathrm{k}\) of \\
\hline 7448 & AD & Øø & & LDY & \＃\＄øø & & memory from 7600 to 7 FFF \\
\hline 744A & 98 & & & TYA & & & ignoring channel numbers \\
\hline 744 B & 8D & FE & 75 & STA & \＄75FE & & and spaces． \\
\hline 744 E & 8D & FA & 75 & STA & \＄75FA & & i．e．channel n stored in \\
\hline 7451 & A9 & \(8 \varnothing\) & & LDA & \＃\＄8め & & locations s7600＋ \(2 n+X\) \\
\hline 7453 & 8D & FD & 75 & STA & \＄75FD & & to s7600 \(+2 n+X+2\) \\
\hline 7456 & A9 & ¢9 & & LDA & \＃\＄ø9 & & where \(X=\operatorname{int}(\mathrm{n} / 2)\) \\
\hline 7458 & 8D & FC & 75 & STA & \＄75FC & & \\
\hline 745B & A9 & Ø6 & & LDA & \＃\＄ø6 & & \\
\hline 745 D & 8D & FB & 75 & STA & \＄75FB & & \\
\hline 7460 & \(2 \emptyset\) & Eø & 74 & JSR & \＄74EØ & & \\
\hline 7463 & A2 & \(\emptyset 1\) & & LDX & \＃\＄ø1 & & \\
\hline 7465 & \(2 \emptyset\) & B0 & 75 & JSR & \＄75BØ & & \\
\hline 7468 & AD & FC & 75 & LDA & \＄75FC & & \\
\hline 746 B & 18 & & & CLC & & & \\
\hline 746 C & E9 & Ø8 & & SBC & \＃\＄ø8 & & \\
\hline 746 E & Fø & 42 & & BEQ & \＄74B2 & & \\
\hline 7470 & AD & FB & 75 & LDA & \＄75FB & & \\
\hline 7473 & 18 & & & CLC & & & \\
\hline 7474 & E9 & ¢5 & & SBC & \＃\＄ø5 & & \\
\hline 7476 & \(F \emptyset\) & 3 A & & BEQ & \＄74B2 & & \\
\hline 7478 & A5 & Ø2 & & LDA & \＄ø2 & & \\
\hline 747A & 49 & 30 & & EOR & \＃\＄30 & & \\
\hline 747C & 8D & FF & 75 & STA & \＄75FF & & \\
\hline 747F & AD & FA & 75 & LDA & \＄75FA & & \\
\hline 7482 & C9 & ゆø & & CMP & \＃\＄\({ }^{\text {¢ }}\) & & \\
\hline 7484 & DØ & Ø6 & & BNE & \＄748C & & \\
\hline 7486 & \(2 \emptyset\) & \(5 \emptyset\) & 75 & JSR & \＄7550 & & \\
\hline 7489 & 4C & 9D & 74 & JMP & \＄749D & & \\
\hline 748 C & AD & FF & 75 & LDA & \＄75FF & & \\
\hline 748 F & 18 & & & CLC & & & \\
\hline 7490 & 71 & ¢8 & & ADC & （\＄08），Y & & \\
\hline 7492 & 91 & ¢8 & & STA & （\＄08），Y & & \\
\hline 7494 & C8 & & & INY & & & \\
\hline 7495 & CE & FE & 75 & DEC & \＄75FE & & \\
\hline 7498 & A9 & øø & & LDA & \＃\＄øø & & \\
\hline 749A & 8D & FA & 75 & STA & \＄75FA & & \\
\hline 749 D & CA & & & DEX & & & \\
\hline 749 E & Dø & C5 & & BNE & \＄7465 & & \\
\hline 74A® & AD & FA & 75 & LDA & \＄75FA & & \\
\hline 74 A 3 & Dø & ØD & & BNE & \＄74B2 & & \\
\hline 74A5 & AD & FE & 75 & LDA & \＄75FE & & \\
\hline 74 AB & Dø & Ø8 & & BNE & \＄74B2 & & \\
\hline 74AA & Aø & Øø & & LDY & \＃\＄øØ & & \\
\hline 74 AC & 98 & & & TYA & & & \\
\hline 74 AD & 8D & FE & 75 & STA & \＄75FE & & \\
\hline 74 BD & E6 & ø9 & & INC & \＄ 09 & & \\
\hline 74B2 & \(2 \varnothing\) & \(2 \emptyset\) & 75 & JSR & \＄7520 & & \\
\hline 74B5 & \(2 \emptyset\) & \(8 \varnothing\) & 75 & JSR & \＄7580 & & \\
\hline \(74 \mathrm{B8}\) & A9 & ＠4 & & LDA & \＃\＄04 & & \\
\hline 74BA & ØD & 40 & E8 & ORA & \＄E840 & & \\
\hline 74 BD & 8D & 40 & E8 & STA & \＄E840 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 74 CD & CE & F'B & 75 & DEC & \$75FB \\
\hline 74 C 3 & Dø & 9 B & & BNE & \$746ø \\
\hline 74 C 5 & CE & FC & 75 & DEC & \$75FC \\
\hline 74 CB & Dø & 91 & & BNE & \$745B \\
\hline 74 CA & CE & FD & 75 & DEC & \$75FD \\
\hline 74 CD & Dø & 87 & & BNE & \$7456 \\
\hline 74 CF & \(6 \emptyset\) & & & RTS & \\
\hline 74 DD & Dø & 8A & & BNE & \$745C \\
\hline 74D2 & CE & FD & 75 & DEC & \$75FD \\
\hline 74 D 5 & Dø & 80 & & BNE & \\
\hline 74 D 7 & \(6 \emptyset\) & & & RTS & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 74 ED & A9 & FB & & LDA & \#\$ \\
\hline 74 E 2 & 2D & 4ø & E8 & AND & \$E840 \\
\hline 74 ES & 8D & 40 & E8 & STA & \$E840 \\
\hline 74 EB & A9 & 25 & & LDA & \#\$25 \\
\hline 74 EA & 85 & ø1. & & STA & \$Ø1 \\
\hline 74 EC & 20 & \(8 \square\) & 75 & JSR & \$7580 \\
\hline 74 EF & A9 & Ø8 & & LDA & \#\$ø8 \\
\hline 74 F 1 & 85 & ø1 & & STA & \$ø1 \\
\hline 74 F 3 & \(2 \emptyset\) & 80 & 75 & JSR & \$7580 \\
\hline 74 F 6 & A9 & 46 & & LDA & \#\$46 \\
\hline 74F8 & 85 & Ø1 & & STA & \$ø1 \\
\hline 74FA & \(2 \varnothing\) & 80 & 75 & JSR & \$7580 \\
\hline 74 FD & A9 & FD & & LDA & \#\$FD \\
\hline 74 FF & 2D & 40 & E8 & AND & \$E840 \\
\hline 7502 & 8D & 40 & E8 & STA & \$E840 \\
\hline 7505 & A9 & F7 & & LDA & \#\$F7 \\
\hline 7507 & 2D & 21 & E8 & AND & \$E821 \\
\hline 75ØA & 8D & 21 & E8 & STA & \$E821 \\
\hline 750 D & A9 & \(\varnothing 4\) & & LDA & \#\$ø4 \\
\hline 750 F & ØD & 40 & E8 & ORA & \$E840 \\
\hline 7512 & 8D & 40 & E8 & STA & \$E840 \\
\hline 7515 & \(6 \emptyset\) & & & RTS & \\
\hline
\end{tabular}
\begin{tabular}{lllll}
\(752 \emptyset\) & A9 & FB & & LDA
\end{tabular} \#\$FB
\begin{tabular}{|c|c|c|c|c|c|}
\hline 7550 & AD & \(F F\) & 75 & LDA & \$75FF \\
\hline 7553 & ØA & & & ASL & \\
\hline 7554 & ØA & & & ASL & \\
\hline 7555 & ØA & & & ASL & \\
\hline 7556 & ØA & & & ASL & \\
\hline 7557 & 91 & Ø8 & & STA & (\$Ø8), Y \\
\hline 7559 & A9 & \(\emptyset 1\) & & LDA & \#\$01 \\
\hline 755 B & 8D & FA & 75 & STA & \$75FA \\
\hline 755 E & 60 & & & RTS & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 7580 & AD & 40 & E8 & LDA & \$E840 \\
\hline 7583 & 29 & 40 & & AND & \#\$4 \\
\hline 7585 & \(F \varnothing\) & F9 & & BEQ & \$7580 \\
\hline 7587 & A5 & \(\emptyset 1\) & & LDA & \$01 \\
\hline 7589 & 49 & FF & & EOR & \#\$FF \\
\hline 758B & 8D & 22 & E8 & STA & \$ E822 \(^{2}\) \\
\hline 758 E & A9 & F7 & & LDA & \#\$F7 \\
\hline 7590 & 2D & 23 & E8 & AND & \$E823 \\
\hline 7593 & 8D & 23 & E8 & STA & \$E823 \\
\hline 7596 & AD & 40 & E8 & LDA & \$E840 \\
\hline 7599 & 29 & 01 & & AND & \#\$ 01 \\
\hline 759 B & \(F \varnothing\) & F9 & & BEQ & \$7596 \\
\hline 759 D & A9 & Ø8 & & LDA & \#\$08 \\
\hline 759F & ØD & 23 & E8 & ORA & \$E823 \\
\hline 7542 & 8D & 23 & E8 & STA & \$E823 \\
\hline 75A5 & A9 & FF & & LDA & \#\$FF' \\
\hline \(75 A 7\) & 8D & 22 & E8 & STA & \$E822 \\
\hline 75AA & \(6 \emptyset\) & & & RTS & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 75B0 & A9 & \(\emptyset 2\) & & LDA & \#\$02 \\
\hline 75B2 & \(\varnothing \mathrm{D}\) & 40 & E8 & ORA & \$E840 \\
\hline 75B5 & 8D & 40 & E8 & STA & \$E84ø \\
\hline 75B8 & AD & 40 & E8 & LDA & \$E840 \\
\hline 75 BB & 29 & \(8 \emptyset\) & & AND & \#\$80 \\
\hline 75 BD & DØ & F9 & & BNE & \$75B8 \\
\hline 75 BF & AD & 20 & E8 & LDA & \$E820 \\
\hline 75 C 2 & 49 & FF & & EOR & \#\$FF \\
\hline 75 C 4 & 85 & Ø2 & & STA & \$ \(¢ 2\) \\
\hline 75 C 6 & A9 & FD & & LDA & \#\$FD \\
\hline 75 C 8 & 2D & 40 & E8 & AND & \$E840 \\
\hline 75 CB & 8D & 40 & E8 & STA & \$E840 \\
\hline 75 CE & A9 & 08 & & LDA & \#\$ø8 \\
\hline 75Dめ & ØD & 21 & E8 & ORA & \$E821 \\
\hline 75 D 3 & 8D & 21 & E8 & STA & \$E821 \\
\hline 75D6 & AD & 40 & E8 & LDA & \$E840 \\
\hline 75D9 & 29 & 80 & & AND & \#\$80 \\
\hline 75 DB & Fø & F9 & & BEQ & \$75D6 \\
\hline 75 DD & A9 & F'7 & & LDA & \#\$F7 \\
\hline 75 DF & 2D & 21 & E8 & AND & \$E821 \\
\hline 75E2 & 8D & 21 & E8 & STA & \$E821 \\
\hline 75E5 & A9 & FF & & LDA & \#\$FF \\
\hline 75E7 & 8D & 22 & E8 & STA & \$E822 \\
\hline 75EA & 60 & & & RTS & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 39 & 1 & 4:ø & 474 & END; \\
\hline 40 & 1 & 4:ø & 486 & (*- \\
\hline ----*) & & & & \\
\hline 41 & 1 & \(5:\) D & 1 & PROCEDURE SCANSTART; \\
\hline 42 & 1 & 5: D & 1 & VAR X : INTEGER; \\
\hline 43 & 1 & \(5: \varnothing\) & \(\emptyset\) & BEGIN \\
\hline 44 & 1 & 5:1 & \(\emptyset\) & \(\mathrm{X}:=\varnothing\); \\
\hline 45 & 1 & 5:1 & 3 & REPEAT \\
\hline 46 & 1 & 5:2 & 3 & POKE (1, 5) ; \\
\hline 47 & 1 & 5:2 & 9 & REPEAT \\
\hline 48 & 1 & 5:2 & 9 & UNTIL PEEK (S) < 128; \\
\hline 49 & 1 & 5:2 & 22 & IF PEEK (S1) < 40 THEN X := 1 \\
\hline \(5 \emptyset\) & 1 & 5:2 & 33 & ELSE \(\mathrm{X}:=\varnothing\); \\
\hline 51 & 1 & 5:1 & 41 & UNTIL \(\mathrm{X}=1\); \\
\hline 52 & 1 & 5:1 & 46 & WRITELN ('SCANSTART DONE'); \\
\hline 53 & 1 & 5:Ø & \(8 \emptyset\) & END; \\
\hline 54 & 1 & 5:ø & 96 & (*- \\
\hline -*) & & & & \\
\hline 55 & 1 & 6:D & 1 & PROCEDURE SETCLOCK; \\
\hline 56 & 1 & 6:D & 1. & VAR CLKI, CS : INTEGER; \\
\hline 57 & 1 & 6:ø & \(\emptyset\) & BEGIN \\
\hline 58 & 1 & 6:1 & \(\emptyset\) & POKE (0, CLK1); \\
\hline 59 & 1 & 6:1 & 6 & POKE (1, CLK \(\varnothing\)); POKE (\(\varnothing\), CLK \(\varnothing\)); \\
\hline \(6 \emptyset\) & 1 & 6:1 & 18 & FOR I:= \(\varnothing\) TO \(1 \varnothing\) DO \\
\hline 61 & 1 & 6:2 & 32 & BEGIN \\
\hline 62 & 1 & 6:3 & 32 & CLKI \(:=3+\mathrm{I}-16384+256 *\) SLO \\
\hline 63 & 1 & 6:3 & 51 & POKE (\(\emptyset, C L K I\)) \\
\hline 64 & 1 & 6:2 & 55 & END; \\
\hline 65 & 1 & 6:1 & 65 & WRITELN ('SETCLOCK DONE'); \\
\hline 66 & 1 & 6:ø & 98 & END; \\
\hline 67 & 1 & 6:ø & 112 & \\
\hline \multicolumn{5}{|l|}{-*)} \\
\hline 68 & 1 & 7:D & 1 & PROCEDURE STARTCLOCK; \\
\hline 69 & 1 & 7:ø & \(\emptyset\) & BEGIN \\
\hline \(7 \varnothing\) & 1 & 7:1 & \(\emptyset\) & POKE (\(\varnothing\), CLK \()\)) POKE (1, CLK) ; \\
\hline 71 & 1 & 7:ø & 12 & END; \\
\hline 72 & 1 & 7:ø & 24 & (*- \\
\hline \multicolumn{5}{|l|}{----*)} \\
\hline 73 & 1 & 8:D & 1 & PROCEDURE READCLOCK; \\
\hline 74 & 1 & 8:ø & \(\emptyset\) & BEGIN \\
\hline 75 & 1 & 8:1 & \(\emptyset\) & C: = PEEK (CLK2); \\
\hline 76 & 1 & 8:ø & 10 & END; \\
\hline 77 & 1 & 8:ø & 22 & (*--------- \\
\hline \multicolumn{5}{|l|}{---**)} \\
\hline 78 & 1 & 9:D & 1 & PROCEDURE DISKSTORE; \\
\hline 79 & 1 & 9:ø & \(\emptyset\) & BEGIN \\
\hline 80 & 1 & 9:1 & \(\emptyset\) & WRITELN ('TYPE FULL DISK:FILE. NAME \\
\hline \multicolumn{4}{|l|}{} & READLN (FL) ; \\
\hline 82 & 1 & 9:1 & 64 & RENRITE (DATAFILE, FL); \\
\hline 83 & 1 & 9:1 & 76 & DATAFILE^ \(:=\) Lø; \\
\hline 84 & 1 & 9:1 & 81 & PUT (DATAFILE); \\
\hline 85 & 1 & 9:1. & 88 & DATAFILE^ \({ }^{\text {a }}=\) Li \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 86 & 1 & 9:1 & 93 & PUT (DATAFILE); \\
\hline 87 & 1 & 9:1 & 100 & DATAFILE^ \(:=\) SS; \\
\hline 88 & 1 & 9:1 & 105 & PUT (DATAFILE); \\
\hline 89 & 1 & 9:1 & 112 & DATAFILE^ : \(=\) XS; \\
\hline 90 & 1 & 9:1 & 117 & PUT (DATAFILE); \\
\hline 91 & 1 & 9:1 & 124 & DATAFILE^ \(:=\) MS; \\
\hline 92 & 1 & 9:1 & 129 & PUT(DATAFILE) ; \\
\hline 93 & 1 & 9:1 & 136 & \(J:=\varnothing\); \\
\hline 94 & 1 & 9:1 & 140 & FOR \(J:=\emptyset\) TO L DO \\
\hline 95 & 1 & 9:2 & 156 & BEGIN \\
\hline 96 & 1 & 9:3 & 156 & DATAFILE^ \(:=\) DAT [J] \\
\hline 97 & 1 & 9:3 & 172 & PUT(DATAFILE) \\
\hline 98 & 1 & 9:2 & 179 & END; \\
\hline 99 & 1 & 9:1 & 189 & CLOSE (DATAFILE, LOCK); \\
\hline 100 & 1 & 9:ø & 197 & END; \\
\hline 101 & 1 & 9:ø & 212 & (*-----------MAIN PROGRAM- \\
\hline -*) & & & & \\
\hline 102 & 1 & 1:ø & \(\emptyset\) & BEGIN \\
\hline 103 & 1 & 1:1 & \(\emptyset\) & INIT; \\
\hline 104 & 1 & 1:1 & 13 & S:= SLOT * \(16-16256\); \\
\hline 105 & 1 & \(1: 1\) & 25 & S1: \(=\) S + 1; \\
\hline 106 & 1 & 1:1 & 33 & S2: \(=\mathrm{S}+2\); \\
\hline 107 & 1 & 1:1 & 41 & CLK1: \(=\) SLOT * 256-16384; \\
\hline 108 & 1 & 1:1 & 55 & CLK2 \(:=\) CLK \(1+2 ;\) \\
\hline 109 & 1 & 1:1 & 63 & CLKø: = CLK1 + 14; \\
\hline 110 & 1 & 1:1 & 71 & SETCLOCK; \\
\hline 111 & 1 & 1:1 & 73 & SCANSTART; \\
\hline 112 & 1 & 1:1 & 75 & STARTCLOCK; \\
\hline 113 & 1 & 1:1 & 77 & REPEAT \\
\hline 114 & 1 & 1:2 & 77 & \(\mathrm{C}:=\mathrm{PEEK}\) (CLK2) ; \\
\hline 115 & 1 & 1:1 & 87 & UNTIL (C MOD 16) <> 15; \\
\hline 116 & 1 & 1:1 & 96 & \(\mathrm{CC}:=\mathrm{C} ; \mathrm{L}:=\varnothing\); \\
\hline 117 & 1 & 1:1 & 106 & LL: = ((L1 - Lø) * SF) DIV FS; \\
\hline 118 & 1 & 1:1 & 124 & WRITELN (LL); \\
\hline 119 & 1 & 1:1 & 144 & REPEAT \\
\hline \(12 \emptyset\) & 1 & 1:2 & 144 & POKE (8, 5) ; \\
\hline 121 & 1 & 1:2 & 150 & REPEAT \\
\hline 122 & 1 & 1:2 & 150 & UNTIL PEEK (S) < 128; \\
\hline 123 & 1 & 1:2 & 163 & WRITELN (L); \\
\hline 124 & 1 & 1:2 & 183 & DAT [L] := PEEK (S1) * \(16+\) PEEK \\
\hline (S2) DIV & 16; & & & \\
\hline 125 & 1 & 1:2 & 216 & WRITELN (DAT [L]); \\
\hline 126 & 1 & 1:2 & 247 & REPEAT \\
\hline 127 & 1 & 1:3 & 247 & REPEAT \\
\hline 128 & 1 & 1:4 & 247 & \(\mathrm{C}:=\) PEEK (CLK2) \\
\hline 129 & 1 & 1:3 & \(25 \varnothing\) & UNTIL (C MOD 16) <> 15 \\
\hline 130 & 1 & 1:2 & 262 & UNTIL (ABS (C-CC)) MOD \(2=1\); \\
\hline 131 & 1 & 1:2 & \(28 \varnothing\) & \(\mathrm{CC}:=\mathrm{C}\); \\
\hline 132 & 1 & 1:2 & 286 & \(\mathrm{L}:=\mathrm{L}+1\) \\
\hline 133 & 1 & 1:1 & 289 & UNTIL L = LL; \\
\hline 134 & 1 & 1:1 & \(3 \emptyset 3\) & WRITELN ('DISK STORAGE (Y/N)'); \\
\hline 135 & 1 & 1:1 & 341 & READLN (A); \\
\hline 136
137 & 1 & 1:1 & 369 & IF \(A=\) 'Y' THEN DISKSTORE; \\
\hline
\end{tabular}
(v) Curve Fitting
```

    5\emptyset REM MAIN
    51 REM ****
    6\emptyset POKE52,\emptyset:POKE53,1ø9
    7\emptyset S$="\emptyset":R$="\emptyset":OP=\emptyset:C=\emptyset:Z=\emptyset:M=\emptyset:EC=\emptyset
    1Ø\varnothing PRINT"
    110 PRINT" CURVE-FITTER"
    120 PRINT"
    13\emptyset FORI=1TO8\emptyset\emptyset:NEXT:PRINT""
    140 PRINT" THIS PROGRAM WILL FIT ONE OF SEVERAL TYPES OF
    APPROXIMATION TO A";
142 PRINT" GIVEN FUNCTION OR DATA"
143 INPUT"FUNCTION(=F) OR DATA(=D) FIT";D\$
1 4 7 PRINT:PRINT"SELECT THE FIT REQUIRED BY TYPING THE APP
ROPRIATE NUMBER:-"
148 PRINT" ... 1 = NEWTON'S POLYNOMIAL"
15\emptyset PRINT" ... 2 = ORTHOGONAL POLYNOMIAL"
152 PRINT" ... 3 = LEAST SQUARES "
154 PRINT" ...4 = CUBIC SPLINE INTERPOLATION"
155 PRINT" ... 5 = TENSION SPLINE INTERPOLATION"
156 PRINT" ... 6 = STINEMAN INTERPOLATION"
158 PRINT" ... 7 = BEZIER BLENDING"
16\varnothing PRINT" ... 8 = QUADRATIC SPLINE"
162 PRINT" .... 9 = PIECEWISE LINEAR (SPLINE)"
18\emptyset PRINT:INPUT"FIT TYPE NUMBER IS.......";FT
19\varnothing IFFT=1THENGOSUB1\varnothing\varnothingØ\emptyset
192 IFFT=2THENGOSUB2\emptyset\emptyset\emptyset\emptyset
194 IFFT=3THENGOSUB3\varnothing\varnothing\varnothing\varnothing
196 IFFT=4THENGOSUB4\varnothing\emptysetø\emptyset
198 IFFT=5THENGOSUB410øø
2ø\emptyset IFFT=6THENGOSUB5\emptyset\emptyset\emptyset\emptyset
2\emptyset2 IFFT=7THENGOSUB6Øø\emptyset\emptyset
2\emptyset4 IFFT=8THENGOSUB42Ø\emptyset\emptyset
2\emptyset6 IFFT=9THENGOSUB43\emptyset\emptyset\emptyset
215 GOSUB5ØDD
216 POKE49151,3
22\emptyset GOSUB1\varnothing\varnothing\varnothing:REM PLOT IT
222 IFD$="D"THEN31\varnothing
    23ø PRINT" PRINTOUT FOLLOWS":PRINT""
    240 DOPEN#1\varnothing, "CURDAT",N
    25\emptyset PRINT#1\varnothing,FT:PRINT#1\varnothing,FU:PRINT#1\varnothing, EC:PRINT#1\varnothing,LS$
252 PRINT\#1\emptyset, WT:PRINT\#1\varnothing,C:PRINT\#1\emptyset,Z:PRINT\#1\varnothing,OP:PRINT\#1
\emptyset,M
255 PRINT\#1\emptyset,S$:PRINT#1\varnothing,R$:PRINT\#1\varnothing,NN:PRINT\#1\varnothing,00
26\emptyset FORI=\emptysetTONN:PRINT\#1\varnothing,X(I):PRINT\#1\emptyset,Y(I):NEXT
27\emptyset FORI=\varnothingTOOO:PRINT\#1\varnothing,XX(I):PRINT\#1\varnothing,G(I):PRINT\#1\varnothing,P(I)
:NEXT
275 IFWT=\emptysetTHEN28\emptyset

```
```

    278 FORI=\emptysetTONN:PRINT#1Ø,WT(I):NEXT
    280 DCLOSE#1Ø
    3ø\emptyset CLR:DLOAD"CURPRINT"
    310 OPEN4,4:PRINT#4:PRINT#4
    311 PRINT#4,"STANDARDS FOR EFFICIENCY CURVE TAKEN FROM FI
    LE ";FL\$
312 PRINT\#4, "FIT TYPE=";
32\emptyset IFFT=1THENPRINT\#4,"NEWTON'S INTERPOLATION"
33\varnothing IFFT=2THENPRINT\#4,"ORTHOG. POLYNOMIAL INTERPOLATION"
34Ø IFFT=3THENPRINT\#4,"LINEAR LEAST SQUARES"
342 IFFT=6THENPRINT\#4,"STINEMAN INTERPOLATION"
344 IFFT=9THENPRINT\#4, "PIECEWISE LINEAR"
348 IFFT<4THEN4DD
349 IFFT>5THEN37D
35\emptyset IFFT=4THENPRINT\#4,"CUBIC SPLINE INTERPOLATION"
351 IFFT=5THENPRINT\#4,"TENSION SPLINE INTERPOLATION"
352 PRINT"\#4,"SPLINE END CONDITONS ARE ";
353 IFEC=1THENPRINT\#4, "NATURAL"
354 IFEC=2THENPRINT\#4,"PARABOLIC"
355 IFEC=3THENPRINT\#4,"CANTILEVER..WITH END LOAD CONSTANT
=";CC
356 IFEC=4ANDS$="C"ANDR$="A"THENPRINT\#4,"SWARTZ \& VARGA'S
"
357 IFEC>=4ANDS$="C"ANDR$="E"THENPRINT\#4,"CUBIC LAGRANGE'
S EULER"
358 IFEC>=4ANDS$="C"ANDR$="C"THENPRINT\#4,"CUBIC LAGRANGE"
S COMPOUND EULER"
359 IFEC>=4ANDS$="Q"ANDR$="C"THENPRINT\#4,"QUADRATIC LAGRA
NGE'S COMPOUND EULER"
36\emptyset IFEC>=4ANDS$="Q"ANDR$="A"THENPRINT\#4,"QUADRATIC LAGRA
NGE'S ANALYTIC"
361 IFEC>=4ANDS$="Q"ANDR$="E"THENPRINT\#4,"QUADRATIC LAGRA
NGE'S EULER"
362 IFEC>=4ANDS$="L"THENPRINT#4,"LINEAR LAGRANGE'S"
    363 IFEC=5THENPRINT#4, "FORSYTHE'S"
    364 IFEC=6THENPRINT#4, "CUBIC LAGRANGE'S 2ND DERIV=SPLINE'
S 2ND DERIV."
    365 IFFT=5THENPRINT#4,"TENSION PARAMETER = ";Z
    370 IFFT<>8THEN4Ø\emptyset
    371 PRINT#4,"QUADRATIC SPLINE"
    372 PRINT#4,"SPLINE END CONDITONS ARE ";
    373 TFEC=1THENPRINT#4,"LINEAR SLOPE"
    374 IFEC=2THENPRINT#4,"SPLINE SLOPE=QUAD.LAGRANGE SLOPE"
    375 IFEC=3THENPRINT#4,"SPLINE 2ND DERIV.=QUAD.LAGRANGE 2N
D.DERIV"
    40Ø PRINT#4
    41Ø DATA 671,177,2.44,361Ø, 235,1.Ø5,62\emptyset8,272,.8\emptyset,38Ø63,59
3,.32,35109,609,.34
    4 1 1 ~ U N = 5 : F O R I J = \emptyset T O U N - 1 ~
    4 1 2 ~ I F M D \$ < > " Y " T H E N 4 1 4 4
    413 READ CPM,QIP,CM:OO=\varnothing:GOTO42\varnothing
    414 IFGF$<>"Y"THEN413
4 1 5 ~ I N P U T \# 1 \emptyset , ~ D U M M Y , ~ C P M , ~ D U M M Y , ~ D U M M Y , ~ X X ( \emptyset ) : X X ( \emptyset ) = X X ( \varnothing ) / 1 \emptyset \emptyset \emptyset ~
00=\emptyset
42\emptyset QE=\emptyset.\emptyset\emptyset\emptyset17:XX(\varnothing)=QIP/1\varnothing\emptyset\emptyset
421 IFTC=2THEN424
422 BKG=8.2222189+33.212264*XX(\varnothing)+59.4222547*XX(\varnothing)^2-68.5
823397*XX(ø)^3

```

423 GOTO425
\(424 \mathrm{BKG}=-27.1258658+353.96925 * \mathrm{XX}(\varnothing)-568.797189 * \mathrm{XX}(\varnothing) \wedge 2+3 \varnothing\) \(3.356678 * \mathrm{XX}(\varnothing) \wedge 3\)
425 CPM=CPM-BKG
429 IFFT=1THENGOSUB1ø1øØ
\(43 \emptyset\) IFFT=2THENGOSUB2ø17Ø
\(44 \varnothing\) IFFT=3THENGOSUB3Ø355
\(45 \emptyset\) IFFT=4THENGOSUB40115
\(46 \varnothing\) IFFT=5THENGOSUB41155
\(47 \varnothing\) IFFT=6THENGOSUB5ø12ø
\(48 \varnothing\) REM FT=7
\(49 \emptyset\) IFFT=8THENGOSUB42ø8ø
\(5 \emptyset \emptyset\) IFFT=9THENGOSUB43040
\(5 \emptyset 2 \mathrm{ER}=2 *\) QE \(*\) SL/P(ø)*1øø:REM STDS QIP ERROR \& UNKNOWNS QIP ERROR
\(5 \emptyset 4\) REM STDS \%CPMERROR=CM
\(5 \emptyset 6\) REM \%STDS DPMERROR=ø. \(015 \%\)
\(5 \emptyset 8 \mathrm{E} 4=\mathrm{SQR}(\mathrm{E} 2 * E 2+\mathrm{CM} * \mathrm{CM}+\emptyset . \emptyset 15 * \emptyset . \emptyset 15): \mathrm{REM}\) TOTAL EFFIC\%. \%ER R
\(51 \varnothing\) DPM=CPM/P(\(): P(\varnothing)=P(\varnothing) * 1 \varnothing \varnothing\)
515 DM=SQR (CM*CM+E4*E4):REM \%ERR IN DPM
\(52 \emptyset\) PRINT\#4, "CPM="; INT(CPM); CHR\$(141);
521 PRINT\#4," \(\quad\) QIP \(=" ; \times X(\varnothing) * 1 \varnothing \varnothing \varnothing ; \mathrm{CHR} \$(141)\);
524 PRINT\#4,
\%EFFICIENCY="; P(
Ø) \(\operatorname{CHR}(141)\);
525 PRINT\#4,
DPM="; DPM
\(53 \emptyset\) PRINT\#4,"+/-\%"; CM; CHR\$(141);
531 PRINT\#4," \(\quad+/-\%^{\prime \prime} ; \mathrm{QE} / \mathrm{XX}(\varnothing) * 1 \varnothing \varnothing\); \(\mathrm{CHR} \$(141)\);
534 PRINT\# \(4, " \quad+/ \%^{\prime \prime} ;\) E4
; CHR\$(141);
535 PRINT\#4,"
\[
+/-\%^{\prime \prime} ; D M
\]

541 PRINT\#4," \(+/-" ; \emptyset .5 ; \operatorname{CHR} \$(141)\);
544 PRINT\#4," \(\quad+/-\) "; E4
*P(Ø)/1øø;CHR\$(141);
545 PRINT\#4,'
\[
+/-\cdots ;
\]

546 PRINT\#4, DPM*DM/1øø
548 PRINT\#4
\(55 \emptyset\) NEXT
\(56 \emptyset\) CLOSE4:IFMD\$="Y"THEN6øø
570 DCLOSE
\(6 \varnothing \varnothing\) END
\(1 \emptyset \emptyset \emptyset\) REM PLOTIT USING PETGRAPH
\(1 \emptyset \emptyset 1 \mathrm{REM} *\)
\(1 \varnothing \emptyset 5\) REM AXES
\(10 \emptyset 6\) CLEAR
\(1 \emptyset \varnothing 8\) FORI \(=\varnothing\) TON: \(\mathrm{X}(\mathrm{I})=\mathrm{X}(\mathrm{I}) *(\mathrm{UL}-\mathrm{LL})+\mathrm{LL}:\) NEXT
\(1 \emptyset \emptyset 9\) FORL \(=\emptyset T \cup O O: X X(L)=X X(L) *(U L-L L)+L L: N E X T\)
\(1 \emptyset 1 \varnothing \operatorname{SETL}(27,12,27,191): \operatorname{SETL}(24,188): \operatorname{SETL}(27,191,3 \varnothing, 188)\)
\(1015 \mathrm{Y}=\emptyset:\) IFPN \(>Y T H E N Y=P N\)
1016 GOSUB3øøø
\(1020 \operatorname{SETL}(27, \mathrm{Y} 1,295, \mathrm{Y} 1): \operatorname{SETL}(292, \mathrm{Y} 1+3): \operatorname{SETL}(295, \mathrm{Y} 1,292, \mathrm{Y} 1\)
-3)
\(1 \varnothing 3 \emptyset\) A\$="X"
```

    1ø4\emptyset TEXT(296,Y1-4,A$)
    105\emptyset B$="Y"
    106Ø TEXT(X1,192,B$)
    107\emptyset REM AXIS NICKS
    1Ø8\emptyset X1=24:X2=27:FORY=PNTOPXSTEP(PX-PN)/1Ø:GOSUB3\emptysetDD:SETL
    (X1,Y1,X2,Y1)
1090 T$=STR$(Y):TEXT(\emptyset,Y1-4,MID$(T$, 2, 3)):NEXT
1095 Y=Ø:IFPN>YTHENY=PN
1\varnothing99 GOSUB3ø\emptysetø
11Ø\emptyset SET(27,Y1):Y2=Y1-3:Y3=Y1
111\varnothing FORX=XNTOXMSTEPABS((XM-XN)/1\varnothing):GOSUB3\emptyset5\emptyset:SETL(X1,Y2,
X1,Y3)
112\emptyset T$=STR$(X):TEXT(X1-15,Y1-12,MID$(T$,1,4)):NEXT
118\varnothing REM ORIGINAL DATA PLOT
119ø FORI=\emptysetTONN:X=X(I):Y=Y(I):GOSUB3ø\emptyset\emptyset:GOSUB3\emptyset5\emptyset:TEXT (X1
-4,Y1-4,"+"):NEXT
12Ø\emptyset REM APPROXIMATION PLOT
121\varnothing MM=\emptyset:FORI=\varnothingTOOO:X=XX(I):Y=P(I):MM=MM+1:GOSUB3\emptyset\emptyset\emptyset:GOS
UB3ø5\emptyset
122Ø IFMM<>1THEN1240
1230 SET(X1,Y1):GOTO125\emptyset
124Ø DOTL(X1,Y1)
125\emptyset NEXT
1260 IFD$="D"THEN14Ø\emptyset
    13Ø\emptyset REM EXACT FUNCTION PLOT
    1310 MM=\emptyset:FORI=\emptysetTOOO:X=XX(I):Y=G(I):MM=MM+1:GOSUB3\emptyset\emptyset\emptyset:GOS
UB3ø5\emptyset
    132\emptyset IFMM<>1THEN134\emptyset
    133ø SET(X1,Y1):GOTO135\emptyset
    1340 SETL(X1,Y1)
    1350 NEXT
    140\varnothing REM LABELS
    141\varnothing L$="N"
142ø IF L$="N"THEN145\emptyset
    143\emptyset INPUT"START COORDINATES ...(X,Y)";XL,YL
    144Ø TEXT(XL,YL,L$):GOTO141\varnothing
145\emptyset RETURN
30\emptyset\emptyset REM Y-AXIS SCALE
3ø\emptyset1 REM *************
3Ø1\emptyset Y1=12+Y*179/(PX-PN)-179*PN/(PX-PN)
3\emptyset2\emptyset RETURN
3050 REM X-AXIS SCALE
3ø51 REM ************
3ø6Ø X1=27+X*268/(XM-XN)
3\emptyset64 X1=X1-XN*268/(XM-XN)
3Ф7\emptyset RETURN
5ØDD REM MAX\&MIN FINDER
5\emptyset\emptyset1 REM **************
5\emptyset\emptyset2 IFD$<>"F"THEN5øø8
5 0 0 3 ~ D I M G ( O O )
5\emptysetø4 FORI=\varnothingTOOO:X=XX(I)*(UL-LL)+LL:G(I)=FN F1(X):NEXT
5\emptyset\emptyset7 GX=G(\varnothing):GN=G(\emptyset)
5\emptyset\emptyset8 PX=P(\emptyset):PN=P(\emptyset):YX=Y(\emptyset):YN=Y(\emptyset)
5ø\emptyset9 IFD$="D"THEN5\emptyset14
501\emptyset FORI=ØTOOO-1
5\emptyset11 IFG(I+1)<GNTHENGN=G(I+1)
5012 IFG(I+1)>GXTHENGX=G(I+1)

```
```

    5013 NEXT
    5014 FORI=\emptysetTOOO-1
    5015 IFP(I+1)<PNTHENPN=P(I+1)
    5016 IFP(I+1)>PXTHENPX=P(I+1)
    5017 NEXT
    502\emptyset FORI=1TON
    5ø22 IFY(I)>YXTHENYX=Y(I)
    5025 IFY(I)<YNTHENYN=Y(I)
    5026 NEXT
    5\emptyset3Ø IFYX>PXTHENPX=YX
    5\emptyset33 IFYN<PNTHENPN=YN
    5034 IFD$="D"THEN5ø4\emptyset
    5035 IFGX>PXTHENPX=GX
    5036 IFGN<PNTHENPN=GN
    5040 RETURN
    8\emptyset\emptyset\emptyset N=1\emptyset
    8001 N=N-1:MD$="N"
    8\emptysetø2 DIMVS(N),BKG(N),X(N),Y(N):IFMD$="Y"THEN8\emptyset4\emptyset
    8\emptyset\emptyset4 GF$="N":REM INPUT"GETCPM FILE(Y/N)";GF$
    8ø\emptyset6 IFGF$="Y"THEN8ø3\varnothing
    8Ø11 FL=33:FL$="H3CHM33"
    8012 DOPEN#\emptyset+FL,""+FL$
    8Ø14 FORI=\emptysetTON:INPUT#\emptyset+FL,Y(I),X(I),VS(I):NEXT:GOTO8Ø69
    8\emptyset31 DOPEN#10,"DPMDAT1\emptyset",D1
    8\emptyset32 FORI=NTOØSTEP-1:INPUT#1\emptyset, DUMMY,Y(I),DUMMY,DUMMY,X(I)
    :NEXT:GOTO8ø69
804\emptyset FORI=\emptysetTON:INPUT"CPM,QIP,ACTIVITY";Y(I),X(I),VS(I):NE
XT
8 0 6 9 ~ N N = N
8Ø7\emptyset VV=N+UN:NN=N
8\emptyset8\emptyset INPUT"TRIT/C14(1/2)";TC
8\emptyset82 FORI=\emptysetTON:X(I)=X(I)/1\varnothing\varnothing\emptyset
8\emptyset83 IFTC=2THEN8\emptyset88
8\emptyset84 BKG(I)=8.2222189+33.212264*X(I)+59.4222547*X(I)^2-68
5823397*X(I)^3-3ø
8\emptyset86 GOTO8Ø9\emptyset
8ø88 BKG(I)=-27.1258658+353.96925*X(I)-568.797189*X(I)^2+
3ø3.356678*X(I)^3-4\emptyset
8\emptyset9\emptyset NEXT
812Ø FORI=\emptysetTON:Y(I)=(Y(I)-BKG(I))/VS(I):NEXT
8155 LL=\emptyset:UL=1:REM NOW SORT DATA TO ASCENDING ORDER
8160 RETURN
90Ø\emptyset REM INITIAL (FUNCTION) DATA INPUT
9Ø\emptyset1 REM *****************************
901ø INPUT"NUMBER DATA POINTS=";N:N=N-1
9\emptyset15 INPUT"TYPE 1 FOR WEIGHTS Ø OTHERWISE";WT
9\emptyset16 IFWT=\emptysetTHEN9\emptyset2\emptyset
9017 DIMWT(N)
9\emptyset2\emptyset DIMX(N),Y(N):NN=N
9\emptyset22 FORI=1TON:X(I)=\emptyset:Y(I)=\emptyset:NEXT
9\emptyset3\emptyset PRINT"FUNCTION TYPES ARE %V/V(=1),SCR(=2),QIPSIE(=3)
,QIPC14(=4),SINE";
9031 PRINT"(=5), EXP(X)(=6)"
9\emptyset40 INPUT"FUNCTION TYPE NUMBER=";FUT
9Ø5\emptyset FORI=\emptysetTON:INPUT"...X=";SS:X(I)=SS
9Ø60 IF FUT=1THEN DEF FN F1(SS)=\emptyset.4\emptyset64*EXP(-Ø. 458145*SS)+
\emptyset.\emptyset1

```
\(9 \emptyset 7 \emptyset\) IF FUT=2THEN DEF FN F1 (SS) \(=\emptyset .4 * \operatorname{EXP}(-\emptyset . \emptyset 2 *(\emptyset .2 * S S-168\) \(\left.)^{\wedge} 1.8\right\rangle+S S / 10 \emptyset \varnothing \varnothing-\varnothing . \emptyset 5\)
\(9 \emptyset 72 \mathrm{~F} 5=.4 *\). \(25 / 12\)
\(9074 \quad \mathrm{~F} 6=16 / 495\)
9076 F7 \(=.51515\)
9ø8ø IFFUT=3THEN DEF FN F1(SS)=F5*(F6*SS+F7)^2*EXP(-.1*(F 6*SS+F7))
9ø81 IF FUT=4THEN DEF FN F1(SS)=1.24-1.24*EXP(-SS*SS \(/ 399 \emptyset\)
ø) \(-\varnothing .3 \emptyset 5\)
\(9 \emptyset 82\) IF FUT=6THEN DEF FN F1(SS)=EXP(SS)
\(9 \emptyset 83\) IF FUT=5THEN DEF FN F1(SS)=STN(SS)
\(9 \emptyset 85 \mathrm{Y}(\mathrm{I})=\mathrm{FN}\) F1 (SS)
\(9 \emptyset 9 \emptyset\) PRINT"... Y="; Y(I):NEXTI
\(9 \emptyset 92\) IFWT=ØTHEN91Øø
\(9 \emptyset 93\) FORI=øTON:INPUT". . WEIGHT="; SS
9094 WT(I) =SS: NEXT
\(91 \varnothing \emptyset \mathrm{LL}=\mathrm{X}(\varnothing): \mathrm{UL}=\mathrm{X}(\mathrm{N})\)
911ø FORI=ØTON: X(I) \(=(X(I)-L L) /(U L-L L): N E X T\)
9199 RETURN
\(92 \emptyset \emptyset\) REM DATA INPUT FOR PLOT OF FITTING FUNCTION
\(92 \emptyset 1 \mathrm{REM} *\)
\(92 \emptyset 5 \mathrm{XN}=1 \varnothing \varnothing\)
\(92 \emptyset 6 \mathrm{XM}=9 \varnothing \varnothing\)
\(921000=6\)
9215 DIMXX(OO):XN=XN/1øØØ: XM=XM/1øøØ
922Ø FORI \(=\emptyset T 000: \mathrm{XX}(\mathrm{I})=((\mathrm{XM}-\mathrm{XN}) / \mathrm{OO}) * \mathrm{I}+\mathrm{XN}: \mathrm{NEXT}\)
\(923 \varnothing\) FORI \(=\varnothing\) TOOO: \(\mathrm{XX}(\mathrm{I})=((\mathrm{XX}(\mathrm{I})-\mathrm{LL})) /(\mathrm{UL}-\mathrm{LL}): \mathrm{NEXT}\)
9240 RETURN
\(1 \varnothing \varnothing \varnothing \varnothing\) REM NEWTON'S POLYNOMIAL INTERPOLATION (FAST LAGRANG IAN)
\(1 \varnothing \emptyset \emptyset 1 \mathrm{REM} *\) ***
\(1 \varnothing 01 \varnothing\) REM FIND DIVIDED DIFFERENCES
\(1 \varnothing \varnothing 2 \emptyset\) IFD \(\$=" F " T H E N G O S U B 9 \varnothing \emptyset \varnothing ~\)
\(1 \varnothing \varnothing 25\) IFD\$="D"THENGOSUB8 \(\varnothing \varnothing \varnothing\)
\(1 \varnothing \emptyset 3 \emptyset \operatorname{DIMD}(\mathrm{~N}+1)\)
\(1 \varnothing \emptyset 4 \varnothing\) FORJ=1TON+1
\(10 \emptyset 41 \mathrm{D}(\mathrm{J})=\mathrm{Y}(\mathrm{J}-1)\)
\(10 \emptyset 43\) NEXTJ
\(10 \emptyset 50\) FORK=1TON
\(1 \varnothing \emptyset 6 \emptyset\) FORJ \(=N+1 T O K+1 S T E P-1: D(J)=(D(J)-D(J-1)) /(X(J-1)-X(J-\) K-1)) : NEXTJ
\(10 \boxed{70} \mathrm{NEXTK}\)
\(1 \not \square \varnothing \emptyset\) REM CALCULATE NEWTONS FORMULA
\(1 \varnothing \varnothing 9 \varnothing\) GOSUB92øø
10695 DIMP (OO)
\(101 \varnothing \varnothing\) FORL \(=\varnothing\) TOOO
\(10110 \mathrm{P}(\mathrm{L})=\mathrm{D}(\mathrm{N}+1)\)
\(1 ø 112\) FORI \(=\mathrm{N}+1\) TO1STEP-1: \(\mathrm{P}(\mathrm{L})=\mathrm{P}(\mathrm{L}) *(\mathrm{XX}(\mathrm{L})-\mathrm{X}(\mathrm{I}-1))+\mathrm{D}(\mathrm{I}): \mathrm{NEX}\) T:NEXT
10140 RETURN
2øøøø REM ORTHOGONAL POLYNOMIAL FIT
\(2 \emptyset \emptyset \emptyset 1 \mathrm{REM}\) ************************
\(2 \emptyset \emptyset 1 \emptyset\) INPUT"TYPE 1 FOR TCHEBYCHEV, 2 FOR LEGENDRE"; OP
\(2 \emptyset 012\) INPUT"NO. BASIS FNCTNS=";M
\(2 \emptyset \emptyset 15\) IFD \(\$=" F " T H E N G O S U B 9 \varnothing \varnothing \varnothing ~\)
\(2 \emptyset \varnothing 25\) IFD \(\$=" D " T H E N G O S U B 8 \varnothing \varnothing \varnothing\)
\(2 \emptyset \emptyset 3 \emptyset\) DIMA(M),T(M),XR(N)
```

2\emptyset\emptyset4\emptyset FORI=\emptysetTON:XR(I)=2*(X(I)-X(\emptyset))/(X(N)-X(\emptyset))-1:NEXT
2\emptyset\emptyset5\emptyset FORK=1TOM:A=\varnothing
2ØØ6\emptyset FORI=\emptysetTON: X=XR(I)
2Ø\emptyset8\emptyset IFOP=1THENGOSUB2\emptyset5\emptyset\emptyset
2\emptyset\emptyset9\emptyset IFOP=2THENGOSUB2ø6\emptyset\emptyset
2øø95 IFI<>\emptysetORI<>NTHEN2\emptyset1ø\emptyset
2\emptyset\emptyset96 A=A+Y(I)*Z/2:GOTO2\emptyset12\emptyset
2ø1Ø\emptyset A=A+Y(I)*Z
2\emptyset12\emptyset NEXTI
2013\emptyset A(K)=A*2/N
2Ø140 NEXTK
2\emptyset15\emptyset REM GOT ALL A'S.NOW CALCULATE APPROX Y(I)
2ø160 GOSUB92øø
2\emptyset165 DIMP(OO),X2R(OO)
2\emptyset166 FORL=\emptysetTOOO:P(L)=\emptyset:NEXT
2017\emptyset FORL=\emptysetTOOO
2\emptyset175 X2R(L)=2*(XX(L)-XN)/(XM-XN)-1
2\emptyset18\emptyset X=X2R(L):FORK=1TOM
2\emptyset19\emptyset IFOP=1THENGOSUB2Ø5\varnothing\varnothing
2\emptyset2ø\emptyset IFOP=2THENGOSUB2ø6ø\emptyset
2ø2\emptyset5 IFK<>1THEN2\emptyset21\varnothing
2\emptyset2\emptyset6 P(L) =P(L)+A(K)*Z/2:GOTO2\emptyset215
20210 P(L)=P(L)+A(K)*Z
20215 NEXTK:NEXTL
2022\emptyset RETIJRN
205\emptysetø REM TCHEBYCHEV FUNCTIONS
205\emptyset1 REM ********************
2ø51\emptyset FORJJ=1TOK
2ø52\emptyset IFJJ=1THEN2ø55\emptyset
2ø53\emptyset IFJJ=2THEN2\emptyset56\varnothing
2ø540 T(JJ)=2*T(JJ-1)*X-T(JJ-2)
2ø545 GOTO2ø57\emptyset
2ø550 T(1)=1:GOTO2\emptyset570
20560 T(2)=X
2ø57Ø NEXTJJ:Z=T(K)
2Ø58\emptyset RETURN
2Ø6\emptyset\emptyset REM LEGENDRE FUNCTIONS
2ø6\emptyset1 REM ******************
2Ø61\emptyset FORJJ=1TOK
2ø62\emptyset IFJJ=1THEN2\emptyset65\emptyset
2ø63ø IFJJ=2THEN2ø66\emptyset
2ø64\emptysetT(JJ)=(2*JJ-1)/JJ*X*T(JJ-1)-(JJ-1)*T(JJ-2)/JJ
2Ø645 GOTO2Ø67\emptyset
2ø65\emptyset T(1)=1:GOTO2ø67\emptyset
20660 T(2)=X
2Ø67\emptyset NEXTJJ:Z=T(JJ-1)
2068\emptyset RETURN
3Ø\varnothing\emptyset\emptyset REM LINEAR LEAST SQUARES
3ø\emptyset\emptyset1 REM **********************
3\emptyset\emptyset1\varnothing REM FIRST COMPUTE NORMAL EQNS
3Ø\emptyset2\emptyset IFD$="F"THENGOSUB9\emptysetø\emptyset
30ø21 IFD$="F"THENGOTO3Øø25
3øØ22 GOSUB8øøø
3ØØ23 DIMWT(N):FORI=\emptysetTON:WT(I)=1:NEXT
30\emptyset25 INPUT"NO. OF BASIS FNCTNS";M
3Ø\emptyset3\emptyset DIMA(M,M),B(M),S(M),SUB(M)
3\emptyset\emptyset4\emptyset FORK=1TOM:FORJ=K'TOM:A(K,J)=\emptyset

```
```

    3Ø\emptyset45 FORI=\emptysetTON
    30Ø50 H=X(I):GOSUB3Ø5Ø\emptyset
    3ø\emptyset6\emptyset A(K,J)=A(K,J)+S(K)*S(J)
    3\emptyset\emptyset7\emptyset NEXTI:A(J,K)=A(K,J):NEXTJ
    3ØØ8\emptyset B(K)=\varnothing:FORI=\emptysetTON
    3ØØ85 H=X(I):GOSUB3\emptyset50\emptyset
    3ø\emptyset90 B(K)=B(K)+S(K)*Y(I)
    3ø1\emptyset\emptyset NEXTI:NEXTK
    3Ø12Ø REM NOW USE GAUSS ELIMINATION & BACKSOLVING
    3Ø13\emptyset FORI=1TOM:SUB(I)=I:NEXTI
    3\emptyset14\emptyset FORK=1TOM-1:MAX=\emptyset:FORI=KTOM
    3\emptyset15\emptyset IFMAX>=ABS(A(SUB(I),K))THEN3Ø156
    3Ø155 MAX=ABS(A(SUB(I),K)):INDX=I
    30156 NEXTI
    3Ø16\emptyset IFMAX<>\emptysetTHENGOTO3Ø18\emptyset
    3ø170 PRINT"ERROR":END
    3ø18\emptyset J=SUB(K):SUB(K)=SUB(INDX):PIVOT=A(SUB(K),K):SUB(IND
    X)=J
3\emptyset19\emptyset FORI=K+1TOM
3\emptyset2\emptyset\emptyset A(SUB(I),K)=-A(SUB(I),K)/PIVOT
3\emptyset21\emptyset FORJ=K+1TOM
3\emptyset22\emptyset A(SUB(I),J)=A(SUB(I),J)+A(SUB(I),K)*A(SUB(K),J):NEX
TJ
3ø23\emptyset B(SUB(I))=B(SUB(I))+A(SUB(I),K)*B(SUB(K)):NEXTI
30240 NEXTK
3\emptyset25\emptyset REM NOW BACKSOLVE THE UPPER TRIANGULAR MATRIX
30260 DIMAA(M)
30270 AA(M)=B(SUB(M))/A(SUB(M),M)
3028\emptyset FORK=M-1'O1STEP-1:AA(K)=B(SUB(K))
30290 FORI=K+1TOM
3ø3\emptyset\varnothing AA(K) =AA(K)-A(SUB(K),I)*AA(I)
3ø31ø NEXTI:AA(K)=AA(K)/A(SUB(K),K)
3Ø32\emptyset NEXTK
3\emptyset33\emptyset REM AA FUNCTION COEFFS FOUND
3\emptyset340 REM NOW EVALUATE LST SQS FUNCTION
30345 GOSUB 92øø
3ø35Ø DIMP(OO)
3Ø355 FORL=\emptysetTOOO:P(L)=\varnothing
3ø36\emptyset FORK=1TOM: X=XX(L)
3\emptyset37\emptyset H=XX(L):GOSUB3ø5\emptyset\emptyset
3ø38\varnothing P(L)=P(L)+AA(K)*S(K)
3ø385 SL=SL+AA(K)*K*S(K-1):REM SLOPE
3\emptyset386 NEXTK
3Ø39\emptyset NEXTL
3040\emptyset RETURN
3\emptyset5\emptyset\emptyset REM LEAST SQUARES FUNCTION INPUT
3\emptyset5\emptyset1 REM *****************************
3\emptyset51\emptyset REM N.B. INPUT FUNCTION VIA POKE TO DEF FN( ) COMM
AND IS CLEVEREST
3Ø52Ø REM HERE MAKE DO WITH RE-TYPES
3ø530}\textrm{S}(1)=
30531 S(2)=H
30532 S(3)=H*H
3ø533 S(4)=H*H*H
3Ø534 REMS(5) =H*H*H*H
3Ø535 REM S(6)=H*H*H*H*H
3Ø540 LS\$="1 X X*X X*X*X"
3ø599 RETURN

```
```

    4ØØ\emptyset\emptyset REM CUBIC SPLINE
    4\emptyset\emptyset\emptyset1 REM ************
    4øøø3 IFD$="F"THENGOSUB9ø\emptyset\emptyset
    4\varnothingØ\emptyset4 TFD$="D"THENGOSUB8\emptyset\emptyset\emptyset
    40øø5 DIMAA(N),E(N),S2(N),H(N),A(N),C(N)
    40Ø10 FORI=\emptysetTON-1
    4\varnothingØ2\emptyset H(I) =X(I+1)-X(I):NEXT
    40ø25 GOSUB403\emptyset\emptyset
    40\emptyset3\emptyset FORI=1TON-1
    40040 C(I)=H(I-1)/6:A(I)=H(I)/6
    40\emptyset60 AA(I)={H(I-1)+H(I))/3-C(I-1)*A(I)/AA(I-1)
    4Ø\emptyset7\emptyset E(I)=Y(I+1)/H(I)-Y(I)/H(I)-Y(I)/H(I-1)+Y(I-1)/H(I-1
    )-E(I-1)*A(I)/AA(I-1)
40ø8\emptyset NEXTI
40ø85 S2(N)=E(N)/AA(N)
40090 FORI=N-1TODSTEP-1
40\emptyset95 S2(I)=(E(I)-C(I)*S2(I+1))/AA(I)
4 0 0 9 7 ~ N E X T I ~
401Ø0 GOSUB920ø
4 0 1 1 1 ~ D I M P ( O O )
40115 FORL=\emptysetTOOO
4012\emptyset GOSUB4\emptyset2\emptyset\emptyset
4013\emptyset S1=(Y(K+1)-Y(K))/H(K)-S2(K+1)*H(K)/6-S2(K)*H(K)/3
4ø140 P(L)=Y(K)+S1*(XX(L)-X(K))+S2(K)*(XX(L)-X(K))^2/2
40150 P(L)=P(L)+(S2(K+1)-S2(K))*(XX(L)-X(K))^3/(6*H(K))
4016\emptyset NEXTL:SL=S1
4017\emptyset RETURN
40200 REM INTERVAL SEARCH
402\emptyset1 REM ***************
4Ø2\emptyset5 IFXX(L)<=X(N) THEN4\emptyset22\emptyset
402\emptyset6 K=N-1:GOTO4\emptyset27\emptyset
4\emptyset22\emptyset FORK=\emptysetTON-2
40230 IFXX(L)<X(K+1)THEN40270
40250 NEXTK
4027\emptyset RETURN
4\emptyset3ø\emptyset REM SPLTNE END CONDITIONS
4\emptyset3ø1 REM *********************
4\emptyset31\varnothing PRINT"SEVERAL END CONDITIONS ARE AVAILABLE FOR SPLI
NE FIT"
4032\emptyset PRINT"TYPE 1 FOR NATURAL (S''=\emptyset ATBOTH ENDS)
40322 PRINT"TYPE 2 FOR PARABOLIC (S''(\emptyset)=S''(1) \& S''(N)=
S''(N-1))"
40324 PRINT'TTYPE 3 FOR CANTILEVER (S''(\emptyset)=CONST*S''(1) \&
S''(N)=C*S''(N-1))"
40326 PRINT"TYPE 4 FOR VARGA'S TYPE (S'(\emptyset)=L'(\varnothing) \& S'(N)=
L'(N))'
4\varnothing327 PRINT"TYPE 5 FOR FORSYTHE'S TYPE (S'''(\emptyset)=L'''(\emptyset) \&
S'"'(N)=L'"(N))"
4\emptyset328 PRINT"TYPE 6 FOR IAN'S TYPE (S''(\varnothing)=L''(\varnothing) \& S''(N)
=L"'(N))"
4033Ø INPUT"TYPE NUMBER=";EC
40335 TFEC=6THEN40602
40340 IFEC=5THEN406Ø2
4035\emptyset IFEC=4THEN40415
4\varnothing36\emptyset TFEC=3THEN4\varnothing4\emptyset\emptyset
4037\varnothing TFEC=2THEN4\varnothing39\emptyset
4\emptyset38\emptyset AA(\emptyset)=1:C(\varnothing)=\varnothing:E(\varnothing)=\emptyset

```
```

    40381 AA(N)=1:A(N)=\varnothing:E(N)=\varnothing
    40382 IFFT=4THEN40387
    4\varnothing384 E(\varnothing)=Z*Z*Y(\varnothing)
    40386 E(N)=Z*Z*Y(N)
    40387 GOTO40999
    4039\emptyset AA(Ø)=1:C(Ø)=-1:E(\emptyset)=\emptyset
    40391 AA(N)=1:A(N)=-1:E(N)=\varnothing
    40392 IFFT=4THEN40397
    4\varnothing394 E(\emptyset)=Z*Z*(Y(\emptyset)-Y(1))
    40396 E(N)=Z*Z*(Y(N)-Y(N-1))
    4 0 3 9 7 ~ G O T O 4 Ø 9 9 9 ~
    4040\emptyset INPUT"CONSTANT(\emptyset<=C<=1) =";C
    40403 AA(\emptyset)=1:C(\emptyset)=-C:E(\varnothing)=\varnothing
    40404 AA(N)=1:A(N)=-C:E(\emptyset)=\emptyset
    40405 IFFT=4THEN40411
    4\varnothing4\varnothing6 E(\emptyset)=Z*Z*(Y(\emptyset)-C*Y(1))
    404\emptyset8 E(N)=Z*Z*(Y(N)-C*Y(N-1))
    4 0 4 1 1 ~ G O T O 4 0 9 9 9 ~
    40415 INPUT"LINEAR,QUADRATIC OR CUBIC SLOPE APPROX? (L/Q/
    C)"; S\$
40421 IFS$="Q"THEN4Ø5\emptysetø
    40422 IFS$="C"THEN40600
4\varnothing425 G1=(Y(1)-Y(\varnothing))/(X(1)-X(\varnothing))
40426 GN=(Y(N)-Y(N-1))/(X(N)-X(N-1)):GOTO4\emptyset8\emptyset\emptyset
405\emptyset\emptyset INPUT"ANALYTIC,EULER OR COMPOUND EULER SLOPE REQD.
(A/E/C)";R\$
4ø5ø2 DIMLA(2), LY(2)
40505 MM=\emptyset:FORJ=\emptysetTONSTEPN
4051ø IFJ=NTHENMM=N-2
40515 FORI=\emptysetTO2:LX(I)=X(I+MM):LY(I)=Y(I+MM):NEXTI
4052\emptyset A\emptyset=LY(\emptyset)/((LX(\emptyset)-LX(1))*(LX(\emptyset)-LX(2)))
40525 A1=LY(1)/((LXX(1)-LX(\varnothing))*(LX(1)-LX(2)))
4\emptyset53\varnothing A2=LY(2)/((LX(2)-LX(\emptyset))*(LX(2)-LX(1)))
40536 A=A\emptyset+A1+A2
40537 IFEC=4THEN40540
40538 IFJ=\emptysetTHENB1=A
40539 GOTO40770
4054\emptyset B\emptyset=A\emptyset*(LX(1)+LX(2))
40545 B1=A1*(LX(\varnothing)+LX(2))
40550 B2=A2*(LX(\varnothing)+LX(1))
40556 B=B\emptyset+B1+B2
4\emptyset56\emptyset C\emptyset=A\emptyset*LX(1)*LX(2)
40565 C1=A1*LX(\varnothing)*LX(2)
4Ø57\emptyset C2=A2*LX(\emptyset)*LX(1)
4 0 5 7 6 ~ C = C \varnothing + C 1 + C 2 ~
40578 IFR$<>"A"THEN40584
    40579 GN=2*X(J)*A-B
    4058\emptyset IFJ=NTHEN4Ø77\emptyset
    4 0 5 8 1 ~ G 1 = G N
    40582 GOTO4077\emptyset
    40584 IFJ=\emptysetTHENGX=LX(\emptyset)-(LX(1)-LX(\emptyset))
    40585 IFJ=NTHENGX=LX(2)+(LX(2)-LX(1))
    40586 GY=A*GX*GX-B*GX+C
    40587 IFR$="C"THEN40591
40588 IFJ=ØTHENG1=(LY(1)-GY)/(LX(1)-GX)
40589 IFJ=NTHENGN=(GY-LY(1))/(GX-LX(1))
4059\emptyset GOTO4077\emptyset

```
```

    40591 IFJ=\emptysetTHENG1=((LY(\emptyset)-GY)/(LX(\emptyset)-GX)+(LY(1)-LY(\emptyset))/(L
    X(1)-LX(\emptyset)))/2
40592 IFJ=NTHENGN=((GY-LY(2))/(GX-LX(2))+(LY(2)-LY(1))/(L
X(2)-LX(1)))/2
40593 GOTO4077\emptyset
4Ø6\emptyset\emptyset INPUT"ANALYTIC,EULER OR COMPOUND EULER SLOPE REQD.
(A/E/C)";R\$
406Ø2 DIMLA(3),LY(3)
4\emptyset605 MM=Ø:FORJ=\emptysetTONSTEPN
4061\varnothing TFJ=NTHENMM=N-3
40615 FORI=\varnothingTO3:LX(I)=X(I+MM):LY(I)=Y(I+MM):NEXTI
4\emptyset62\emptyset A\emptyset=LY(\emptyset)/((LX(\emptyset)-LX(1))*(LX(Ø)-LX(2))*(LX(\emptyset)-LX(3))
)
40625 A1=LY(1)/((LX(1)-LX(\varnothing))*(LX(1)-LX(2))*(LX(1)-LX(3))
)
4\emptyset63\emptyset A2=LY(2)/((LX(2)-LX(\varnothing))*(LX(2)-LX(1))*(LX(2)-LX(3))
)
40635 A3=LY(3)/((LX(3)-LX(\emptyset))*(LX(3)-LX(1))*(LX(3)-LX(2))
)
40636 A=A0}+A1+A2+A
4Ø638 IFJ=\emptysetTHENAZ=A
40639 IFEC=5THEN4\emptyset770
4Ø64Ø B\emptyset=A\emptyset*(LX(1)+LX(2)+LX(3))
4\varnothing645 B1=A1*(LX(\varnothing) +LX(2)+LX(3))
4Ø65\emptyset B2=A2*(LX(Ø)+LX(1)+LX(3))
40655 B3=A3*(LX(Ø)+LX(1)+LX(2))
4 0 6 5 6 ~ B = B \emptyset + B 1 + B 2 + B 3
40658 IFJ=\emptysetTHENBZ=B
4\varnothing€59 IFEC=6THEN4077\varnothing
4066\emptyset C\emptyset=A\emptyset*(LX(1)*LX(2)+LX(2)*LX(3)+LX(1)*LX(3))
40665 C1=A1*(LX(\emptyset)*LX(2)+LX(2)*LX(3)+LX(\emptyset)*LX(3))
4067\emptyset C2=A2*(LX(\emptyset)*LX(1)+LX(1)*LX(3)+LX(\emptyset)*LX(3))
4Ø675 C3=A3*(LX(\emptyset)*LX(1)+LX(1)*LX(2)+LX(\emptyset)*LX(2))
40676 C=CØ+C1+C2+C3
40678 IFR$<>"A"THEN4\emptyset7\emptyset\emptyset
    4\emptyset68\emptyset GN=3*X(J)*X(J)*A-2*X(J)*B+C
    40685 IFJ=NTHEN4077\emptyset
    40690 G1=GN
    4Ø695 GOTO4\emptyset77\emptyset
    4Ø7\emptyset\emptyset D\emptyset=LX(1)*LX(2)*INX(3)*A\emptyset
    4\emptyset7\emptyset5 D1=LX(\emptyset)*LX(2)*LX(3)*A1
    40710 D2=LX(\varnothing)*LX(1)*LX(3)*A2
    40715 D3=LX(\emptyset)*LX(1)*LX(2)*A3
    4072\emptyset D=D\emptyset+D1+D2+D3
    4\emptyset725 IFJ=\emptysetTHENGX=LX(\emptyset)-(LX(1)-LX(\emptyset))
    4Ø73\emptyset IFJ=NTHENGX=LX(3)+(LX(3)-LX(2))
    40735 GY=A*GX*GX*GX-B*GX*GX+C*GX-D
    40740 TFR$='C"THEN4\varnothing75\emptyset
40745 IFJ=\emptysetTHENG1= (LY(1)-GY)/(LX(1)-GX)
40746 IFJ=NTHENGN=(GY-LY(2))/(GX-LX(2))
40748 GOTO40770
40750 IFJ=\emptysetTHENG1=((LY(\emptyset)-GY)/(LX(\emptyset)-GX)+(LY(1)-LY(\emptyset))/(L
X(1)-LX(\emptyset)))/2
40755 IFJ=NTHENGN=((GY-LY(3))/(GX-LX(3))+(LY(3)-LY(2))/(L
X(3)-LX(2)))/2
40760 GOTO4\varnothing77\emptyset
40770 NEXTJ

```
```

    40775 IFFT=5THEN40855
    40779 IFEC=6THEN40845
    4078\emptyset IFEC=4THEN4\emptyset8\emptyset\emptyset
    40782 AA(\emptyset)=-1:C(\emptyset)=1:E(\emptyset)=6*AZ*H(\emptyset)
    40784 AA(N)=1:A(N)=-1:E(N)=6*A*H(N-1)
    40786 GOTO40999
    4\emptyset8\emptyset\emptyset AA(\varnothing)=H(\emptyset)/3:C(\emptyset)=H(\emptyset)/6:E(\emptyset)=(Y(1)-Y(\varnothing))/H(\emptyset)-G1
    4082\emptyset AA(N)=H(N-1)/3:A(N)=H(N-1)/6
    4083\emptyset E(N)=GN-(Y(N)-Y(N-1))/H(N-1)
    40840 GOTO40999
    4\emptyset845 AA(\varnothing)=H(\varnothing)/6-1:C(\emptyset)=-H(\varnothing)/6:E(\emptyset)=6*X(\emptyset)*AZ-2*BZ
    40846 AA(N)=1-H(N-1)/6:A(N)=H(N-1)/6:E(N)=6*X(N)*A-2*B
    40848 GOTO40999
    4085\emptyset IFEC=6THEN40890
    40855 IFEC=4THEN4\emptyset88\emptyset
    4\varnothing86\emptyset AA(\varnothing)=-1:C(\varnothing)=1:E(\varnothing)=Z*Z*(Y(1)-Y(\varnothing))+6*AZ*H(\varnothing)
    40865 AA(N)=1:A(N)=-1:E(N)=Z*Z*(Y(N)-Y(N-1))+6*A*H(N-1)
    40870 GOTO40899
    4088\emptyset AA(\varnothing)=H(\varnothing)/3:C(\emptyset)=H(\varnothing)/6
    40882 E(\emptyset)=(Y(1)-Y(O))/H(\emptyset)-G1+Z*Z*H(\emptyset)*(Y(\emptyset)/3+Y(1)/6)
    40885 AA(N)=H(N-1)/3:A(N)=H(N-1)/6
    40886 E(N)=GN-(Y(N)-Y(N-1))/H(N-1)+Z*Z*H(N-1)*(Y(N)/3+Y(N
    -1)/6)
40888 GOTO40999
4\emptyset89\emptyset AA(\emptyset)=H(\emptyset)/6-1:C(\emptyset)=-H(\emptyset)/6
4\emptyset891 E(\varnothing)=6*X(\varnothing)*AZ-2*BZ+Z*Z*H(\varnothing)*(Y(\varnothing)-Y(1))/6-Z*Z*Y(\emptyset)
40892 AA(N)=1-H(N-1)/6:A(N)=H(N-1)/6
40893 E(N)=6*X(N)*A-2*B+Z*Z*H(N-1)*(Y(N-1)-Y(N))/6+Z*Z*Y(
N)
40999 RETURN
410Ø0 REM TENSION SPLINE
41ø\emptyset1 REM **************
41010 IFD$="F"THENGOSUB9ØD\emptyset
    41011 IFD$="D"THENGOSUB8\varnothingØ\emptyset
4 1 0 1 5 ~ I N P U T " T E N S I O N ~ P A R A M E T E R , Z ~ = ' ; Z ~
41ø2ø DIMAA(N),E(N),S2(N),H(N),A(N),C(N)
41ø3\emptyset FORI=\emptysetTON-1:H(I)=X(I+1)-X(I):NEXT
41040 GOSUB4Ø3ØØ
41ø50 FORI=1TON-1
41ø6ø TS=Z*(EXP(Z*H(I-1))+EXP(-Z*H(I-1)))/(EXP(Z*H(I-1))-
EXP(-Z*H(I-1)))
41061 TS=TS-1/H(I-1)
41062 TS=TS+Z*(EXP(Z*H(I))+EXP(-Z*H(I)))/(EXP(Z*H(I))-EXP
(-Z*H(I)))
41063 AA(I) =(TS-1/H(I))/Z/Z
4107\emptysetC(I)=-(Z*2/(EXP(Z*H(I))-EXP(-Z*H(I)))-1/H(I))/Z/Z
41071 A(I) =-(Z*2/(EXP(Z*H(I-1))-EXP(-Z*H(I-1)))-1/H(I-1))
/Z/Z
41075 AA(I) =AA(I)-C(I-1)*A(I)/AA(I-1)
41085 E(I)=Y(I+1)/H(I)-Y(I)/H(I)-Y(I)/H(I-1)+Y(I-1)/H(I-1
)-E(I-1)*A(I)/AA(I-1)
41090 NEXTI
41100 S2(N)=E(N)/AA(N)
41110 FORI=N-1TOØSTEP-1
4112\emptyset S2(I)=(E(I)-C(I)*S2(I+1))/AA(I)
4 1 1 3 \emptyset ~ N E X T I ~
41140 GOSUB92ø\emptyset

```
```

    4115Ø DIMP(OO)
    41155 FORL=ØTOOO:GOSUB4\emptyset2\emptyset\emptyset
    4116ø P=S2(K)*(EXP(Z*(X(K+1)-XX(L)))-EXP(-Z*(X(K+1)-XX(L)
    )))
4117\emptyset P=P+S2(K+1)*(EXP(Z*(XX(L)-X(K)))-EXP(-Z*(XX(L)-X(K)
)))
4118\emptyset P=P/(Z*Z*(EXP(Z*H(K))-EXP(-Z*H(K))))
41185 PP=(Y(K)-S2(K)/Z/Z)*(X(K+1)-XX(L))+(Y(K+1)-S2(K+1)/
Z/Z)*(XX(L)-X(K))
41186 P(L) =P+PP/H(K)
41190 NEXTL
412ø\emptyset RETURN
42Ø\emptyset\emptyset REM QUADRATIC SPLINE
42ø\emptyset1 REM *****************
42øø3 IFD$="F"THENGOSUB9\varnothingø\emptyset
    42øø4 IFD$="D"THENGOSUB8øø\emptyset
42Øø5 DIMS1(N)
42Ø1\varnothing PRINT:PRINT" END CONDITION AT R.H.S MAY BE ....."
42Ø12 PRINT" 1...LINEAR SLOPE "
42\emptyset13 PRINT" 2... S' = LAGRANGIAN QUADRATIC SLOPE
(L')"
42Ø14 PRINT" 3...S'' = LAGRANGIAN QUADRATIC 2ND
DERIVATIVE (L'')"
42ø16 INPUT"TYPE OF END CONDITION=";EC
42\emptyset18 IFEC=1THEN42\emptyset29
42019 A3 = Y (N)/(X(N)-X(N-2))/(X(N)-X(N-1))
42ø2\emptyset A2=Y(N-1)/(X(N-1)-X(N-2))/(X(N-1)-X(N))
42\emptyset21 A1=Y(N-2)/(X(N-2)-X(N-1))/(X(N-2)-X(N))
42022 A=A1+A2+A3:B=A1* (X(N)+X(N-1))+A2*(X(N)+X(N-2))+A3*(
X(N-1)+X(N-2))
42\emptyset24 IFEC=2THEN42027
42ø25 S1(N)=A*(X(N)-X(N-1))+(Y(N)-Y(N-1))/(X(N)-X(N-1)):G
OTO42ø3\emptyset
42ø27 S1(N)=2*A*X(N)-B:GOTO42\emptyset3\emptyset
42029 S1(N)=(Y(N)-Y(N-1))/(X(N)-X(N-1))
42ø3\emptyset FORI=N-1TOØSTEP-1
42Ø40 S1(I)=2*(Y(I+1)-Y(I))/(X(I+1)-X(I))-S1(I+1)
42Ø50 NEXT
42ø6ø GOSUB92øø
42\emptyset7\emptyset DIMP(OO)
4208\emptyset FORL=ØTOOO
42ø9\emptyset GOSUB4Ø2Ø\emptyset
421ø\emptyset P(L)=S1(K+1)/(X(K+1)-X(K))*(XX(L)-X(K))^2
421\emptyset2 P(L)=(P(L)+(S1(K)*(XX(L)-X(K+1))^2)/(X(K)-X(K+1))+S
1(K)*(X(K+1)-X(K)) )/2
42105 P(L)=P(L)+Y(K)
4211\varnothing NEXTL:SL=S(K)
4212ø RETURN
43Øø\emptyset REM PIECENISE LINEAR
43Ø\emptyset1 REM ****************
43Ø\emptyset3 IFD$="F"THENGOSUB9\emptysetø\emptyset
    43Ø\varnothing4 IFD$="D"THENGOSUB8\varnothing\varnothing\emptyset
43ø2ø GOSUB92øø
4 3 \emptyset 3 0 ~ D I M P ( O O )
43ø4\emptyset FORL=\emptysetTOOO:GOSUB4\emptyset2\emptyset\emptyset
43Ø5\emptyset P(L)=(Y(K+1)*(XX(L)-X(K))-Y(K)*(XX(L)-X(K+1)))/(X(K
+1)-X(K))

```
```

    43\emptyset6\emptyset NEXT:SL=(Y(K+1)-Y(K))/(X(K+1)-X(K)):REM SLOPE
    43Ø7\emptyset RETURN
    5\emptysetØ\emptyset\emptyset REM STINEMAN INTERPOLATION
    5ØØ\emptyset1 REM **********************
    5ØØ1\emptyset IFD$="F"THENGOSUB9\emptyset\emptyset\emptyset
    5\emptyset\emptyset15 IFD$="D"THENGOSUB8\emptyset\emptyset\emptyset
    5\emptyset\emptyset2\emptyset DIM C(N)
    5\emptyset\varnothing4\emptyset Z=Y(1)-Y(\varnothing):X=X(1)-X(\varnothing):FORJ=1TON-1:Y=Z:Z=Y(J+1)-Y(
    J) :W=X:X=X(J+1)-X(J)
5\emptysetø5\emptyset U=X*X+Z*Z:V=W*W+Y*Y:C (J)=(Y*U+Z*V)/(W*U+X*V):NEXT
5øø6\emptyset U=(Y(1)-Y(\emptyset))/(X(1)-X(\emptyset)):V=(Y(N)-Y(N-1))/(X(N)-X(N
-1))
5\emptyset\emptyset7\emptyset IFU=\emptysetANDC(1)=\emptysetTHENC(\varnothing)=\emptyset:GOTO5\varnothing1\varnothing\varnothing
5\emptyset\emptyset8\emptyset IF(U>\emptysetANDU>C(1))OR<U<\emptysetANDU<C(1))THENC(\varnothing)=U+U-C(1):G
OTO5ø1ø\varnothing
5\emptysetø9\emptyset C(\emptyset)=C(1)+ABS(U)*(U-C(1))/(ABS(U)+ABS(U-C(1)))
5\emptyset1\emptyset\emptyset IFV=\emptysetANDC(N-1)=\emptysetTHENC(N)=\emptyset:GOTO5\emptyset115
5\emptyset11\varnothingC(N)=C(N-1)+ABS(V)*(V-C(N-1))/(ABS}(\textrm{V})+\textrm{ABS}(\textrm{V}-\textrm{C}(\textrm{N}-1)
)
50115 GOSUB92ø\varnothing
50117 DIMP(OO)
5\emptyset12\emptyset FORL=\emptysetTOOO
50122 GOSUB4\emptyset2ø\varnothing
5\emptyset13\emptyset UU=(Y(K+1)-Y(K))/(X(K+1)-X(K)):V=Y(K)+UU*(XX(L)-X(K
))
5\emptyset14\emptyset Z\emptyset=Y(K)+C(K)*(XX(L)-X(K))-V:Z1=Y(K+1)+C(K+1)*(XX(L)
-X(K+1))-V:Z2=Zø*Z1
5Ø15\emptyset IFZ2=\emptysetTHENP(L)=V:GOTO5Ø18\emptyset
5\emptyset16\emptyset IFZ2>\emptysetTHENP(L) =V+Z\emptyset*Z1/(Z\emptyset+Z1):GOTO5\emptyset18\emptyset
5017\emptyset P(L)=V+Z2*(XX(L)-X(K)+XX(L)-X(K+1))/((Z\emptyset-Z1)*(X(K+1
)-X(K)))
5ø18\varnothing NEXT:SL=UU
5\emptyset19\emptyset RETURN
6ØØ\emptyset\emptyset REM BEZIER BLENDING
6ø\emptyset\emptyset1 REM ****************
6\emptyset\emptyset1\emptyset IFD$="F"THENGOSUB9\emptyset\emptyset\emptyset
    6øø15 IFD$="D"THENGOSUB8\varnothing\varnothing\varnothing
6Ø\emptyset2\emptyset GOSUB92ø\emptyset
6ø\emptyset22 DIMU(OO),P(OO)
6Ø\25 FORJ=\emptysetTOOO
6\emptyset\emptyset28 U(J)=J/OO:XSUM=\emptyset:YSUM=\emptyset:T=\emptyset
6\emptyset\emptyset3\emptyset FORI=ØTON
6Ø\emptyset35 IFI=ØTHEN6øø46
6\emptyset\emptyset4\emptyset K=N:GOSUB6\emptyset2\emptyset\emptyset:T=F
6ø\emptyset42 K=I:GOSUB6\emptyset2\emptyset\emptyset:T=T/F
6\emptyset\emptyset44 K=N-I:GOSUB6ø2\emptyset\emptyset:T=T/F:GOTO6\emptyset\emptyset5\emptyset
60D46 T=1
6ø\emptyset5\emptyset T=T*U(J)^I*(1-U(J))^(N-I)
6\emptyset\emptyset6\emptyset XSUM=XSUM+T*X(I):YSUM=YSUM+T*Y(I)
6\emptyset\emptyset70 NEXTI
6Ø\emptyset75 IFJ<>ØTHEN6\emptysetøB\emptyset
6Ø\emptyset76 XSUM=X(\emptyset):YSUM=Y(\emptyset)
60\emptyset8\emptyset XX(J)=XSUM:P(J)=YSUM:NEXTJ
60Ø90 RETURN
6Ø2ø\emptyset REM FACTORIALS
6\emptyset210 F=1:FORG=1TOK:F=F*G:NEXT
6\emptyset22\emptyset RETURN

```

\section*{(vi) Data Capture of 300C Printer Output}
```

    2 DOFEN#1,"BKGBLURB",D1,W
    3 DOPEN\#10,"BKGDAT10",D1,W
4 DOPEN\#11,"BKGDAT11",D1,W
5 PRINT\#1
6 \mp@code { P R I N T \# 1 0 }
7 PRINT\#11
8 DCLOSE\#10:DCLOSE\#11:DCLOSE\#1
9 INPUT"NUMBER OF PROGRAMS....1...OR...2";NP
10 INPUT"FIRST PROGRAM NUMBER=";P1
15 INPUT"NUMBER IN FIRST SAMPLE=";S1
17 INPUT"NUMBEROF REPEAT COUNTS/VIAL";R1
20 INPUT"NUMBER OF CYCLES OF FIRST SAMPLE=";C1
25 IF NP=1THEN55
30 INPUT"SECOND PROGRAM NUMBER=";P2
35 INPUT"NUMBER IN SECOND SAMPLE=";S2
36 INPUT"NUMBEROF REPEAT COUNTS/VIAL";R2
40 INPUT"NUMBER OF CYCLES OF SECOND SAMPLE=";C2
55 OPEN1,5:PRINT\#1,CHR$(255);"FE2GA":CLOSE1
56 OPEN2,6
57 APPEND#10,"BKGDAT10",D1
58 APPEND#11,"BKGDAT11",D1
59 IFNP=1THEN70
60 D=C1-C2
63 IFD<OTHEN65
64 CC=C2:GOTO7O
65 CC=C1
70 FORC=1TOC1
75 GOSUB7000
110 IF NP=1THEN GOTO310
150 GOSUB8000
3 1 0 ~ N E X T C ~
315 IF NP=1THEN330
318 IFD=OTHEN330
320 FOR G=1TOABS(D)
325 IFCC=C1THEN GOSUB8000
328 IFCC=C2THEN GOSUB7000
329 NEXT G
330 DCLOSE#10:DCLOSE#11
350 PRINT"DONE"
400 END
1000 GET#2,A$:IFST=2THEN1000
1010 RETURN
2000 IF. MARK=1THEN2010
2005 PRINT\#10,VAL(X$)
2007 GOTO2020
2010 PRINT#11,VAL(X$)
2020 RETURN
3000 APPEND\#1,"BKGBLURB",D1
3001 REM ROLLING STRING LOOKS FOR "PROG" TO IDENTIFY A PR
OGRAM START
3003 AA$="":Z$=""
3005 FORI=1TO4:GOSUB1000

```
```

3006 AA$=AA$+A$:NEXTI
3007 IFAA$="PROG"THEN3019
3010 GOSUB1000: AA$=AA$+A\$
3012 AA串=RIGHT\$ (AAS, 4):GOTOB007
3018 REM Z\$ LOOKS FOR CORRECT PROGRAM NUMBER
3019 FORI=1TO10:GOSUB1000
3020 Z$=Z$+A$:NEXTI
3021 IF VAL(RIGHT$(Z$,2))=P1THEN3100
3024 GOTO3003
3100 PRINT#1, AAS+Z$
3115 FORI=1TO5:GOSUB1000:NEXTI
3116 FORI=1TO68:GOSUB1000:PRINT\#1,A$;
3118 NEXTI:PRINT#1
3120 FORI=1TO5:GOSUB1000:NEXTI
3122 FORI=1TO68:GOSUB1000:PRINT#1,A$;
3130 NEXTI:PRINT\#1
3135 FORI=1TO5:GOSUB1000:NEXTI
3140 FORI=1TO68:GOSUB1000:PRINT\#1,A$;
3141 NEXTI:PRINT#1
3143 FORI=1TO5:GOSUB1000:NEXTI
3145 FORI=1TO47:GOSUB1000:PRINT揓1,A$;
3148 NEXTI:PRINT\#1
3150 FORI=1TO4:GOSUB1000:NEXTI
3155 FORI=1TO76:GOSUB1000:PRINT\#1,A.$;
3158 NEXTI:PRINT#1
3160 FORI=1TO11:GOSUB1000:NEXTI
3170 DCLOSE#1
3205 RETURN
4000 P$="":S$="'":CT$="':CA$="'":IA$=""
4002 CB$="":IB$="":CC$="":IC$="":QIP$=""
4 0 0 4 ~ S C \$ = " ' " : R T \$ = " ' " '
4 0 0 6 ~ G O S U B 1 0 0 0 ~
4 0 0 8 ~ I F A S C ( A \$ ) = 1 8 T H E N 4 0 1 2 ~
4010 GOTO4006
4 0 1 2 ~ G O S U B 1 0 0 0 ~
4 0 1 6 ~ F O R I = 1 T O 2
4 0 1 8 ~ G O S U B 1 0 0 0 : P \$ = P \$ + A \$
4 0 2 0 ~ N E X T I : ~ X \$ = P \$
4024 FORI=1TO5
4 0 2 6 ~ G O S U B 1 0 0 0 : S \$ = S \$ + A \$
4 0 2 8 ~ N E X T I : X \$ = S \$
4032 FORI=1TO7
4034 GOSUB1000:CT$=CT$+A$
4 0 3 6 ~ N E X T I : ~ X \$ = C T \$ ~
4038 GOSUB2000
4040 FORI=1TO8
4042 GOSUB1000: CA$=CA$+A\$
4044 NEXTI: X$=CA$:GOSIJB2000
4046 FORI=1TO5
4048 GOSUB1000:IA$=IA⿱$+A\$
4050 NEXTI:X$=IA$
4052 FORI=1TO8
4054 GOSUB1000:CB$=CB$+A\$
4056 NEXTI: X$=CB$:GOSUB2000
4058 FORI=1TO5
4060 GOSUB1000:IB $=IB$+A\$
4 0 6 2 ~ N E X T I ~
4064 FORI=1TO8

```
```

4066 GOSUB1000:CC $=CC$+A\$
4 0 6 8 ~ N E X T I : X \$ = C C \$ : G O S U B 2 0 0 0 ~
4070 FORI=1TO5
4072 GOSIJB1000:IC{=IC$+A$
4074 NEXTI
4 0 7 6 ~ F O R I = 1 T O 6 ~
4078 GOSUB1000:QIP$=QIP$+A\$
4080 NEXTI: X$=QIP$
4 0 8 2 ~ G O S U B 2 0 0 0 ~
4084 FORI=1TO7:GOSUB1000
4 0 8 6 ~ N E X T I ~
4088 FORI=1TO7
4 0 9 0 GOSUB1000:SC\$=SC\$+A\$
4 0 9 2 ~ N E X T T : X \$ = S C \$
4096 FORI=1TO5
4 0 9 8 GOSUB1000:RT\$=RT串+A\$
4100 NEXTI: X$=RT$
4106 FORI=1TOG
4 1 0 8 ~ G O S U B 1 0 0 0 ~
4110 NEXTT
4150 RETURN
6000 AA$="":Z$="'"
6005 FORI=1TO4:GOSUB1000
6006 AA$=AA$+A$:NEXTI
6007 IFAA$="PROG"THEN6019
6009 GOSUB1000: AA$=AA$+A\$
6011 AA$=RIGHT$ (AA串, 4):GOTO6007
6019 FORI=1TO10:GOSUB1000
6020 Z$=Z$+A$:NEXTI
6021 IF VAL(RIGHT必(Z$, 2)) =P1THEN6100
6025 IF VAL(RIGHT串(Z\$, 2))=P2THEN6100
6034 GOT06000
6100 RETURN
7000 MARK=0
7010 IFC>1THEN7040
7020 GOSUB3000
7030 GOTO 7060
7040 GOSUB6000
7060 FORS=1TOS1
7 0 6 2 ~ I F R 1 = 1 T H E N 7 0 7 0 ~
7064 FORR=1TOR1
7066 GOSUB4000:PRINT\#10
7 0 6 7 ~ N E X T
7068 GOSUB9000:GOTO7090
7070 GOSUB4000
7080 PRINT\#10
7090 NEXTS
7100 RETURN
8000 MARK=1
8010 IFC>1THEN8040
8020 GOSUB3000
8 0 3 0 ~ G O T O 8 0 6 0 ~
8 0 4 0 ~ G O S U J B 6 0 0 0 ~
8060 FOR SS=1TOS2
8062 IER1=1THEN8070
8064 FORR=1TOR1
8066 GOSUB4000:PRINT\#11
8067 NEXT

```

8068 GOSUB9000:GOTO8090
8070 GOSUB4000
8080 PRINT\#11
8090 NEXTSS
8100 RETURN
9000 FORI=1TO81
9010 GOSUB1000
9020 NEXT
9030 RETURN

\section*{Abstract}

\section*{QUENCH CORRECTION IN LIQUID SCINTILLATION COUNTING}

\section*{I. Lilley}

Quench correction in liquid scintillation counting has been investigated. A detailed comparison of the curve fitting routines compatible with a microcomputer has been made for the quench calibration curve and concludes that a cubic spline with natural end conditions is most suitable. The effect of colour/chemical quenching on the calibration curve and the choice of regions for dual and triple radionuclide counting is studied.

A new computer simulation of the LS counter has been created and proven to be a useful tool in LS counting. Modelling of the LSC has led to the invention of several novel quench correction techniques which are independent of colour and/or chemical quench for homogeneous solutions. A fully worked example of the use of one of the techniques (the SumDiff quench correction method) is presented. The successful application and modular design of the simulation has established a LS research program from which future discoveries are anticipated.

\title{
A STUDY OF CURVE FITTING TO LIQUID SCINTILLATION COUNTER CALIBRATION DA
}

\author{
J.N. CROOKES and I. LILLEY \\ Department of Physical Sciences, Trent Polytechnic, Clifton Lane, Nottingham, England
}

Received 2 May 1986 and in revised form 17 October 1986

A comprehensive study is made of the various curve fitting procedures available for representing the calibration data used i dpm assay of LSC samples and compatible with the limited memory storage available in modern instruments. The output data the LSC are echoed to a microcomputer allowing the utilisation of user developed algorithms for data processing and analysis. evidence shows that the normal practice of the machine selecting a curve without choice by the user may not produce the best re In general the cubic spline interpolation with natural end conditions is found to give the best representation for standards invo errors of less than \(1.5 \%\) for \({ }^{3} \mathrm{H}\) and \({ }^{14} \mathrm{C}\). However, for \({ }^{14} \mathrm{C}\) and higher energy \(\beta\)-emitters there is strong evidence for the \(u\) Stineman interpolation.

\title{
A STUDY OF CURVE FITTING TO LIQUID SCINTILLATION COUNTER CALIBRATION DATA
}

\author{
J.N. CROOKES and I. LILLEY
}

Department of Physical Sciences, Trent Polytechnic, Clifton Lane, Nottingham, England
Received 2 May 1986 and in revised form 17 October 1986

\begin{abstract}
A comprehensive study is made of the various curve fitting procedures available for representing the calibration data used in th dpm assay of LSC samples and compatible with the limited memory storage available in modern instruments. The output data fro the LSC are echoed to a microcomputer allowing the utilisation of user developed algorithms for data processing and analysis. Th evidence shows that the normal practice of the machine selecting a curve without choice by the user may not produce the best result In general the cubic spline interpolation with natural end conditions is found to give the best representation for standards involvin errors of less than \(1.5 \%\) for \({ }^{3} \mathrm{H}\) and \({ }^{14} \mathrm{C}\). However, for \({ }^{14} \mathrm{C}\) and higher energy \(\beta\)-emitters there is strong evidence for the use Stineman interpolation.
\end{abstract}

\section*{1. Introduction}

Modern liquid scintillation counters (LSCs) allow many useful functions, such as batch handling of samples, counting efficiency vs quench calibration and multilabelled radioassay, to be performed automatically. However, the advances in machine design which have led to the provision of such facilities tend to remove the user from the analysis of the basic data which are obtained and the results are presented as a fait accompli. The most important stage in the analysis of results is the generation of the standards' counting efficiency vs quench calibration curves from which the activity of subsequently counted samples can be calculated. This applies whichever parameter is used to indicate the degree of quench in a sample, whether it is based on internal or external standards, \(H^{\#}\) numbers [1] or spectral indices [2], and whether the quenching is colour or chemical [3] in nature.

Since different curve fitting routines are better matched to some data sets than others, the fitting of curves through efficiency vs quench calibration data should be dependent on the form of the data set for best results. This availability of a choice of curve fitting routines is not provided on commercial liquid scintillation counters with manufacturers choosing one particular procedure, e.g. Packard use double fixed point least-squares quadratic interpolations and Beckman use cubic spline with natural end conditions. This is reasonable with the good and almost equispaced data provided by commercial calibration standards but the more frequently produced inhouse standards are often less regular.

There are a multitude of algorithms to which re-
course may be made in order to fit a curve to LSC efficiency vs quench calibration data. In this work restriction is made to those algorithms which could \(b\) installed in a modern stand-alone counter and/or dedi cated microcomputer operating in a real time mode.

\section*{2. Experimental}

All samples were counted with a United Technolo gies Packard 300 C model liquid scintillation counte and the data were stored on disk via a 3D GPIB, Serie 4000 CBM microcomputer and CBM 4022 disk drive Data were obtained on this equipment through use of BASIC program which recognised the number of th internal program commenced by the LSC and begar data capture on identification of the correct batch o samples. Disk storage of results allowed repeated use o data sets for comparison purposes.

Postcounting analysis was performed by a BASIC and 6502 machine code program offering a menu o curve fitting routines with screen plotting, screen dump and printed output. When fitting to experimenta calibration data the program allowed comparisons o the resulting assayed activities with samples of knowr dispensed activity. The types of curve fitting offered by the program are:
1) Lagrangian polynomial (using Newton's method) [4]
2) Piecewise linear (piecewise polynomials of degre \(\geqslant 2\) unsuitable).
3) Quadratic splines (end conditions linear, spline slop \(\equiv\) Lagrangian quadratic slope, or spline 2nd deriva tive \(\equiv\) Lagrangian quadratic 2 nd derivative).
4) Cubic splines (end conditions natural, parabolic
cantilever, Forsythe's, Swartz and Varga's, or spline 2nd derivative \(\equiv\) Lagrangian cubic 2nd derivative) [5,6].
5) Tension (cubic) spline.
6) Stineman interpolation [7].
7) Bezier blending.

Table 1
Comparison of calculated and dispensed DPM for \({ }^{3} \mathrm{H}\) single label
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample
\[
\text { No. }{ }^{11}
\] & QIP & Dispensed DPM & Piecewise linear DPM \(\pm \triangle\) DPM & Lst-squares \({ }^{\circ} 3\) polynomial & Lst-squares \({ }^{\circ} 4\) polynomial & Quadratic spline natural EC \\
\hline A1 & 177 & 69691 & \(58429 \pm 2161\) & \(49439 \pm 11394\) & \(71956 \pm 12395\) & \(54789 \pm 1891\) \\
\hline A2 & 235 & 86294 & \(83320 \pm 1327\) & \(69691 \pm 4694\) & \(85248 \pm 3625\) & \(90245 \pm 1340\) \\
\hline \({ }^{1}\) & 272 & 87006 & \(83646 \pm 1006\) & \(76781 \pm 3727\) & \(84816 \pm 2441\) & \(79972 \pm 905\) \\
\hline A4 & 593 & 96780 & \(97470 \pm 446\) & \(96304 \pm 1150\) & \(95658 \pm 713\) & \(95382 \pm 713\) \\
\hline A5 & 609 & 86128 & \(87213 \pm 423\) & \(85609 \pm 1107\) & \(85598 \pm 710\) & \(85237 \pm 410\) \\
\hline B1 & 130 & 78102 & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline B2 & 235 & 86294 & \(83320 \pm 1327\) & \(73463 \pm 6117\) & \(85164 \pm 2952\) & \(86401 \pm 1283\) \\
\hline B3 & 272 & 87006 & \(83646 \pm 1006\) & \(76513 \pm 4353\) & \(85029 \pm 2061\) & \(83211 \pm 942\) \\
\hline B4 & 593 & 96780 & \(96512 \pm 442\) & \(96746 \pm 1326\) & \(95809 \pm 645\) & \(96628 \pm 438\) \\
\hline B5 & 655 & 82244 & \(82249 \pm 398\) & \(80882 \pm 1093\) & \(81883 \pm 589\) & \(81519 \pm 392\) \\
\hline Cl & 269 & 89800 & \(83197 \pm 1644\) & \(81376 \pm 1583\) & \(67638 \pm 6378\) & \(77712 \pm 1429\) \\
\hline C2 & 534 & 99801 & \(99127 \pm 518\) & \(98534 \pm 505\) & \(101374 \pm 1402\) & \(97193 \pm 495\) \\
\hline C3 & 562 & 80162 & \(80645 \pm 453\) & \(80244 \pm 462\) & \(82363 \pm 1201\) & \(79208 \pm 437\) \\
\hline C4 & 622 & 102579 & 103317 \(\pm 473\) & 102627 \(\pm 520\) & \(104015 \pm 1421\) & \(103631 \pm 469\) \\
\hline C5 & 815 & 90829 & \(91341 \pm 376\) & \(91616 \pm 429\) & \(89479 \pm 979\) & \(91341 \pm 375\) \\
\hline D1 & 219 & 93827 & \(100601 \pm 3675\) & \(118035 \pm 7356\) & \(\times\) & \(83028 \pm 2677\) \\
\hline D2 & 256 & 85400 & \(81874 \pm 1805\) & \(82286 \pm 2623\) & \(70185 \pm 10648\) & \(93330 \pm 1980\) \\
\hline D3 & 534 & 99801 & \(98789 \pm 517\) & \(98465 \pm 505\) & \(100766 \pm 1696\) & \(99420 \pm 506\) \\
\hline D4 & 669 & 89202 & \(89535 \pm 409\) & \(88377 \pm 401\) & \(88652 \pm 1176\) & \(89844 \pm 407\) \\
\hline D5 & 865 & 82009 & \(82304 \pm 350\) & \(82445 \pm 356\) & \(82257 \pm 923\) & \(82304 \pm 349\) \\
\hline
\end{tabular}
\begin{tabular}{cccccc}
\hline \begin{tabular}{l}
Quadratic spline \\
\(\mathrm{L}^{\prime}=\mathrm{S}^{\prime}\)
\end{tabular} & \begin{tabular}{l}
Cubic spline \\
natural
\end{tabular} & \begin{tabular}{l}
Cubic spline \\
parabolic
\end{tabular} & \begin{tabular}{l}
Cubic spline \\
Swartz \(\mathrm{S}^{\prime}=\mathrm{L}^{\prime}\)
\end{tabular} & \begin{tabular}{l}
Cubic spline \\
Forsythe \(\mathrm{S}^{\prime \prime \prime}\)
\end{tabular}\(=\mathrm{L}^{\prime \prime \prime}\)
\end{tabular}

\footnotetext{
a) A and B groups are two chemically quenched calibration curves with different standards. C and D groups are two colour quenched calibration curves with different standards.
}
8) Linear least-squares polynomials of degree \(2,3,4\) or 5 [4].
Standards were prepared by accurately weighing out quantities of a \(10 \mathrm{gl}^{-1}\) solution of b-PBD in pXylene (Fisons "Scintran" grade), and quantities of \(\mathrm{CCl}_{4}\) or disperse Orange-7 as chemical and colour quenchers respectively. Weights were taken to \(\pm 0.0002 \mathrm{~g}\). All liquids and glassware were first purged of oxygen using a vacuum and freezing degassing technique. The dye was recrystallised from acetone and dried prior to dissolving in the same batch of b-PBD/pXylene solution used throughout the sample preparation.

\section*{3. Results and discussion}

Tables 1 and 2 give the results for the standards and samples prepared experimentally. Those entries marked \(\times\) were not computed because of the observed occurrence of grossly inaccurate results. Chemically quenched and colour quenched tritium standards and/or samples of known activity range from SIE of 865 down to an SIE of 130 corresponding to \({ }^{3} \mathrm{H}\) detection efficiencies of approximately \(55 \%\) to \(0.1 \%\). The \({ }^{14} \mathrm{C}\) samples were taken only from the region of rapid change of the efficiency curve gradient and the region of very high quench, SIE \(<500\) (fig. 1). The calculation of the error bounds associated with each curve-generated dpm value is based on the errors in the count, the SIE and the dispensed DPM of the standards used for calibration curve production and the errors in the count and the SIE of the samples (of supposedly unknown activity). The experimental procedure used resulted in error bounds of \(\pm 0.06 \%\) and \(\pm 0.02 \%\) for the dispensed DPMs of \({ }^{3} \mathrm{H}\) and \({ }^{14} \mathrm{C}\) respectively with the manufacturers' absolute uncertainties of \(\pm 3 \%\) and \(\pm 1.5 \%\) being con-

Fig. 1. Typical \({ }^{14} \mathrm{C}\) efficiency vs QIP curve showing data group types.
stant throughout the samples. Coupled with these is the error due to the counting statistics with the percent deviation automatically calculated and printed by the Packard 300C. The SIE values were assumed to be correct to the nearest integer value (error range of \(\pm 0.5\), and letting \(3 \sigma=100 \%\) of range then \(\sigma \simeq 0.17\) for SIE number probability constant from \(X-0.5\) to \(X+0.5\)), but the effect of this error on the efficiency value is dependent on the slope/form of the calibration curve. The efficiency error \(e \simeq q \mathrm{~d} E / \mathrm{d} Q\), where \(q\) is the error

Table 2
Comparison of calculated and dispensed DPM for \({ }^{14} \mathrm{C}\) single label
\begin{tabular}{lrlllll}
\hline \begin{tabular}{l}
Sample \\
no.
\end{tabular} & QIP & \begin{tabular}{l}
Dispensed \\
DPM
\end{tabular} & \begin{tabular}{l}
Piecewise \\
linear
\end{tabular} & \begin{tabular}{l}
Least- \\
squares
\end{tabular} & \begin{tabular}{l}
Least- \\
squares \\
\(4^{\circ}\)
\end{tabular} & \\
& & & & polynomial
\end{tabular}
\begin{tabular}{llllll}
\hline Quadratic & Cubic & Cubic & Cubic & Cubic & Stineman \\
spline & spline & spline & spline & spline & \\
\(\mathrm{L}^{\prime}=\mathrm{S}^{\prime}\) & natural & parabolic & Swartz & Forsythe & \\
\hline \(120791 \pm 513\) & \(119705 \pm 916\) & \(119454 \pm 893\) & \(120026 \pm 887\) & \(120080 \pm 882\) & \(120477 \pm 779\) \\
\(95797 \pm 312\) & \(96294 \pm 321\) & \(96236 \pm 322\) & \(96219 \pm 322\) & \(96206 \pm 322\) & \(46228 \pm 317\) \\
\(25585 \pm 267\) & \(75342 \pm 268\) & \(75356 \pm 268\) & \(75360 \pm 268\) & \(75362 \pm 268\) & \(75449 \pm 267\) \\
\hline
\end{tabular}

Table 3
Summary of errors for \({ }^{3} \mathrm{H}\) and \({ }^{14} \mathrm{C}\) for curve fitting routines
\begin{tabular}{llllllllll}
\hline & \begin{tabular}{l}
Piecewise \\
linear
\end{tabular} & \begin{tabular}{l}
Least \\
squares \\
\(3^{\circ}\) polynomial
\end{tabular} & \begin{tabular}{l}
Quadratic \\
spline
\end{tabular} & \begin{tabular}{l}
Quadratic \\
spline
\end{tabular} & \begin{tabular}{l}
Cubic \\
spline
\end{tabular} & Stineman \\
\hline End conditions & & & Natural & \(\mathrm{L}^{\prime}=\mathrm{S}^{\prime}\) & Natural & Parabolic & Swartz & Forsythe & \\
\({ }^{3} \mathrm{H}\) mean error \([\%]\) & 2.95 & 8.10 & 4.37 & 3.21 & 1.48 & 1.70 & 1.96 & 1.77 & 2.11 \\
\({ }^{14} \mathrm{C}\) mean error \([\%]\) & 0.69 & 5.41 & 0.30 & 0.34 & 0.30 & 0.25 & 0.23 & 0.22 & 0.08 \\
Mean of \({ }^{3} \mathrm{H}\) and \({ }^{14} \mathrm{C}\) & 1.82 & 6.76 & 2.34 & 1.78 & 0.89 & 0.97 & 1.10 & 1.00 & 1.10 \\
\hline
\end{tabular}
in the SIE value and \(\mathrm{d} E / \mathrm{d} Q\) is the rate of change of efficiency with respect to SIE at an SIE value of \(Q\) (fig. 1). These errors are all combined using the expression:

Fractional dpm \({ }_{\text {unknown }}\) error,
\[
\left.\left.\begin{array}{rl}
d_{\mathrm{u}}= & \left\{\left(\frac{\% \mathrm{dev}_{\mathrm{unk}}}{100}\right)^{2}+\left(\frac{\% \mathrm{dev}_{\text {stds }}}{100}\right)^{2}\right. \\
& +\left(\frac{\% \mathrm{DPM}}{\text { crror }}\right. \\
100
\end{array}\right)^{2}+2 \times \frac{\%\left(\text { SIE } \times \text { slope }_{\text {error }}\right)}{100}\right\}^{1 / 2} .
\]

The listed values of average percentage differences refer to the differences between the dispensed dpms and calculated dpms.

Selection of the best curve fitting routine for LSC efficiency vs quench calibration data depends on the judgement criteria used. For example, if the resultant curve is to be smooth (with continuous first derivatives) then piecewise linear fitting is ruled out. Calibration curves are normally based on ten reasonably well spaced standards, and so the results of the routines presented in tables 1 and 2 are taken to be suitable judgement criteria.

\section*{4. Conclusion}

It may be concluded that cubic spline interpolation with natural end conditions is the best of the LSC efficiency vs quench curve fitting routines tested, but also noted that cubic splines with Forsythe's or parabolic end conditions and Stineman interpolation give good results for tritium and carbon-14 efficiency curves respectively. This assertion follows from the rankings of the routines (see table 3). Indeed, Stineman interpolation has an additional advantage of being more robust
and better at fitting curves with sharply changing gradients, i.e. \({ }^{14} \mathrm{C}\) and more energetic \(\beta\)-sources.

Not all the routines tested are displayed in tables 1 and 2 due to their total inadequacy. For example, the Lagrangian polynomial produced large oscillations due to the experimental errors in the standards.

The currently used LSC machine routines are therefore found to be acceptable, but it should be emphasised that if calibration standards are poorly spaced then curve fitting by interpolation introduces large errors (even with perfect standards) and visual display of the resultant calibration curve is essential unless some mechanism for rejecting the fit is triggered. This may be accomplished by setting a data spacing tolerance limit or switching to a generally less accurate but more universally applicable least-squares fitting routine as a backup.

\section*{References}
[1] D.L. Horrocks, Liquid Scintillation Science and Technology, eds., A.A. Noujaim et al. (Academic Press, New York, 1976).
[2] J.G. Ring, D.C. Nguyen and L.J. Everett, Liquid Scintillation Counting, Recent Applications and Development, vol. 1, eds., C.T. Peng et al. (Academic Press, New York, 1980).
[3] S.A. McQuarrie, C. Edisse and L.I. Wiebe, Int. J. Appl. Radiat. Isot. 34 (1983) 1009.
[4] J.S. Vandergraft, Introduction to numerical computations, 2nd ed. (Academic Press, New York, 1983).
[5] P.M. Prenter, Splines and variational methods (Wiley, New York, 1975).
[6] J.H. Ferziger, Numerical methods for engineering application (Wiley, New York, 1981).
[7] R.W. Stineman, Creative Computing (1980) 54.

\title{
Detection of Drift in Radioactive Counting Using the Cusum Technique
}

\author{
J. N. CROOKES and I. LILLEY \\ Physical Science Department, Trent Polytechnic, Clifton,
} Nottingham NG11 8NS, England
(Received 17 March 1986; in revised form 17 October 1986)
A comparison of the cusum method and kurtosis as the indicator of drift in radioactive counting is made.

Modern programmable counters are tested and interesting features are observed with alternate counting of different radionuclides. Patterns of repeated counts suggest that an initial "settling" period is advisable following a change of radionuclide.

\section*{Introduction}

The characteristics of a scintillation counter are critically dependent on the stability of the counting conditions. Instabilities in the system produce a drift in the counting efficiency. \({ }^{(1)}\) Such changes are often associated with drift in the EHT supply due to temperature or mains fluctuations or deterioration of the sample in liquid scintillation counting. Unless remedial action is to be taken the source of the drift is not so important. However, it is essential to know the magnitude and time when any drift occurs. The literature shows very little work on the monitoring of counter performance \({ }^{(2,3)}\) and this has used traditional indicators of change in a Poissonian distribution such as standard deviation, skew and kurtosis. Although producing confidence limits, typically \(95 \%\), these indicators have been shown to lack the sensitivity of other methods as well as producing no indication of the onset of drift. This work studies the detection of drift using a cusum method \({ }^{(4.5)}\) and compares its scope and sensitivity with the traditional method.

\section*{Cusum Method}

The cumulative sum chart (or cusum chart) is a highly informative means of presenting data that can be ordered into a logical sequence. A detailed exposition of the methodology is given in a British Standard Guide to data analysis and quality control using cusum techniques (BS 5703, parts, 1, 2, 3, 4). For observations \(x_{1}, x_{2}, \ldots, x_{n}\) obtained sequentially having a target value, \(T\), which may be the mean, \(\mathbf{X}\), for retrospective analysis, the cusum is defined as
\[
C_{i}=\sum_{r=1}^{i}\left(x_{r}-T\right) .
\]

A cusum chart displays \(C_{i}\) against \(i\).
Where the observations are from a population having a mean equal to the target value the graph will generally be horizontal with random fluctuations about the line. A systematic fluctuation from the target value will result in a change in the slope of the chart.

An estimate of the local average in a particular segment is given by the slope of the cusum chart. Consider the segment from sample \(i+1\) to \(j\). The relevant change in cusum is from \(C_{i}\) to \(C_{j}\) over \(i\) to \(j\). (For the first segment \(i=0\) and \(C_{o}=0\)). Hence the average shift from the target (mean) value for the segment is
\[
\frac{C_{j}-C_{i}}{j-i} .
\]

Thus the local average is
\[
\mathbf{X}_{i+1, j}=T+\frac{C_{j}-C_{i}}{j-i}
\]

The application of the cusum method to the detection of drift in a parameter requires the establishment of decision rules to distinguish between real changes in the cusum slope and the normal variability of the data. The essential features of the cusum chart relevant to the detection of changes in the underlying average level are the steepness of the cusum slope and the number of samples over which the slope persists. When the parameter (e.g. count) is running at the target level, i.e. an acceptable quality level AQL, there will, because of the random nature of counting, inevitably be occasions when the cusum path apparently diverges from the horizontal. The decision rule should not give false alarms that indicate that such sequences represent significant departure from AQL . On the other hand, when the process moves to an unsatisfactory condition, i.e. a rejectable quality level, RQL, the decision rule should give as rapid a response as possible. The number of events between drift occurring and its detection by the cusum indicate the magnitude of the drift. If the true process is at or near the AQL, then this number should be large i.e. a few false alarms, whereas if it is near the RQL, then it should be short i.e. rapid detection.

\section*{Decision Interval Scheme}

The method adopted in this study is entirely numerical in nature and hence readily computed. A reference level, \(K\), for deviations from the mean is established where \(K=T \pm f \sigma_{e}\) where
\[
\sigma_{e}=\left(\sum_{i=1}^{m-1} \frac{\left(X_{i}-X_{i+1}\right)^{2}}{2(m-1)}\right)^{1 / 2}
\]
for \(m\) samples. If \(f=0.5\) then the reference level lies midway between AQL and RQL. Each count \(\left(x_{i}\right)\) is compared with \(K\). If \(x_{i}\) is within the limits defined by \(K\) then no action is taken. However, if \(x_{i}\) lies outside the \(K\) limits, then a cusum is commenced of the algebraic differences from the appropriate \(K\), i.e.
\[
C=\sum_{i}^{j}\left(x_{i}-K\right)
\]
where \(j\) represents the end point of the cusum determined by one of the following two conditions: (a) if \(C\) falls to below

Table 1. Results of drift experiments on Packard 300 C liquid scintillation counter
\begin{tabular}{lcccc}
\hline \begin{tabular}{l}
Experiments \\
Number
\end{tabular} & Kurtosis & \begin{tabular}{c}
Number of drifts \\
detected with \(h=3\)
\end{tabular} & \(h_{\text {min }}\) \\
\hline 1 & & 2.98 & 0 & 2.1 \\
\(2^{*}\) & \({ }^{14} \mathrm{C}\) & 2.44 & 11 & \(>10\) \\
& \({ }^{3} \mathrm{H}\) & 2.24 & 11 & \(>10\) \\
3 & \({ }^{14} \mathrm{C}\) & 3.00 & 7 & 9.5 \\
& \({ }^{3} \mathrm{H}\) & 2.97 & 3 & 7.5 \\
\hline
\end{tabular}
* 500 counts of each sample.
zero or (b) \(C>H\) where \(H=h \sigma_{e}\) is a decision level, typically \(h=5\). If (a) applies then no action is taken until \(T-f \sigma_{c}>x_{i}>T>f \sigma_{c}\) again and a new cusum is commenced. If (b) applies then drift is deemed to have occurred, \(i\) representing the onset of the cusum but not necessarily the onset of drift, since allowance has to be made for statistical fluctuation, \(j-i\) representing the number of samples from onset to detection.
In order to detect the onset and magnitude of drift, a value of \(h=3\) was fixed representing a value outside the spread of \(h_{\text {min }}\) derived from normal data sets and allowing for statistical fluctuations.

\section*{Instrument Tests}

Experiments were conducted on three instruments, namely, the Nuclear Enterprises SR3 and Packard auto gamma counter with NaI crystals and the Packard 300C liquid scintillation counter. A PET microcomputer, connected on-line to each in turn, acquired 1000 counts for various counting configurations. For the gamma-detectors the counts across a \({ }^{137} \mathrm{Cs}\) photopeak at optimum EHT produced no detectable drift. The \(h_{\text {nin }}\) values lie within the \(95 \%\) confidence range for 1000 simulated data sets with no drift.

The tests on the liquid scintillation counter were rather more extensive and designed to assess the presence of drift (a) while counting a given radionuclide and (b) with alternations between two radionuclides. A single \({ }^{14} \mathrm{C}\) source was subjected to 1000 one minute counts with 43 s cycle time intervals between each count. The kurtosis was within the \(95 \%\) confidence levels and an \(h_{\min }\) value of 2.1 showed a very low degree of drift (Experiment 1, Table 1). Consequently, the instrument produced a high degree of stability for continuous counting of the same radionuclide.
To examine the effect of two radionuclides, single samples of \({ }^{3} \mathrm{H}\) and \({ }^{14} \mathrm{C}\) were counted alternately with the counting conditions varied appropriate to the radionuclide by the automatic programming of the counter. Although only 500 counts were taken for each sample in this case, considerable drift was detected by both the kurtosis and cusum tech-
niques (Experiment 2, Table 1). In order to investigate this effect further, rather than single counts of each radionuclide, 25 repeated counts of each i.e. 25 counts of \({ }^{3} \mathrm{H}\) followed by 25 counts of \({ }^{14} \mathrm{C}\), was performed a total of 40 times. The results showed much less drift. Indeed for both radionuclides the kurtosis values were within the \(95 \%\) confidence levels. However, the cusum technique demonstrated its better sensitivity and detected some drift for both samples (Exeriment 3, Table 1). Hence the test demonstrated that a "settling down" period following the changed programme settings between radionuclides to be desirable.

An analysis of the drifts indicated for \(h=3\) showed that the 10 drifts (7 for \({ }^{14} \mathrm{C}\) and 3 for \({ }^{3} \mathrm{H}\)) ranged from \(0.14 \%\) per sample to \(0.06 \%\), although these readings are subject to quite large errors which are difficult to estimate.

\section*{Conclusion}

The cusum technique when applied to radioisotope counting is both more sensitive and more informative than the use of kurtosis. A simple computer analysis with a decision level of \(3 \sigma_{\varepsilon}\) determined from theoretical data produced a statement of the instrument behaviour. From the experiments performed using the Packard 300 C liquid scintillation counter the stability during long counts of a particular isotope is better than the sensitivity of the cusum technique. However, using the parameters chosen above, drift occurred when alternate single counts of \({ }^{3} \mathrm{H}-{ }^{14} \mathrm{C}\) were made. When the samples were subject to repeated counts during each cycle drift was less severe.

\section*{References}
1. Pazdur M. F. Int. J. Appl. Radiat. Isot. 27, 179 (1976).
2. Galloway R. B. Nucl. Instrum. Methods 172, 431 (1980).
3. Annand J. R. M. and Galloway R. B. Nucl. Instrum. Methods 201, 381 (1982).
4. Ewan W. D. Technometrics 5, 1 (1963).
5. Wetherill G. B. Sampling Inspection and Quality Control. (Chapman and Hall, London, 1977).```

[^0]: * Refer to section 1.3.4a

[^1]: * Refer to section 3.3.

[^2]: * Refer to chapter 4 for more information concerning difference pulse height analysiss.

[^3]: * LKB-Wallac "Product News", August 1985, K Rundt, T Oikari and H Kouru

[^4]: * (i) Spectra rescaled by amplification factor $32=x 1, \quad 16=x 2, \quad 8=x^{4}$ (ii) LI offset removed

