

ProQuest Number: 10290264

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10290264

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346

QUENCH CORRECTION IN LIQUID SCINTILLATION COUNTING

A thesis submitted to the Council for National Academic Awards in partial fulfilment of the degree of Doctor of Philosophy.

I. LILLEY

018632

Department of Physical Sciences Trent Polytechnic, Nottingham.

June 1987

Abstract

QUENCH CORRECTION IN LIQUID SCINTILLATION COUNTING

I. Lilley

Quench correction in liquid scintillation counting has been investigated. A detailed comparison of the curve fitting routines compatible with a microcomputer has been made for the quench calibration curve and concludes that a cubic spline with natural end conditions is most suitable. The effect of colour/chemical quenching on the calibration curve and the choice of regions for dual and triple radionuclide counting is studied.

A new computer simulation of the LS counter has been created and proven to be a useful tool in LS counting. Modelling of the LSC has led to the invention of several novel quench correction techniques which are independent of colour and/or chemical quench for homogeneous solutions. A fully worked example of the use of one of the techniques (the SumDiff quench correction method) is presented. The successful application and modular design of the simulation has established a LS research program from which future discoveries are anticipated.

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks, firstly to Dr John Crookes at Trent Polytechnic for reviewing this thesis and for his many helpful suggestions over the preceding years; secondly to Mrs Amanda Richards for typing and assisting with the preparation of the thesis; and finally to my wife, friends and colleagues for their help and patience.

CONTENTS

·*·.

Chapte	er 1						
Intr	oductio	n					
1.1	1.1 Liquid Scintillation Counting Theory						
	1.1.1	Basic Physical Processes in LSC	2				
	1.1.2	Macroscopic Properties of LSC Systems	18				
	1.1.3	Theoretical modelling of the LSC	24				
1.2	LSC Ma	terials and Equipment	28				
1.3	LSC Pr	oblems	30				
	1.3.1	Sample Preparation	30				
	1.3.2	Counting Vials	31				
	1.3.3	Background	32				
	1.3.4	Quenching and Quench Correction	33				
	1.3.5	Dual and Triple label Counting in LSC	46				
	1.3.6	Other Problems	49				
Chapte	er 2						
Quen	ch Corr	ection Problems	50				
2.1	Curve	Fitting and LSC Calibration Data	52				
	2.1.1	Introduction	52				
	2.1.2	Experimental	54				
	2.1.3	Results and Discussion	57				
	2.1.4	Conclusions	62				
2.2	The Ef	fect of Quench on Background	64				
	2.2.1	Introduction	64				
	2.2.2	Experimental	65				
	2.2.3	Results and Discussion	66				

2.3	Multil	abel DPM Determinations - Quenching	68
	Limita	tions	
	2.3.1	Introduction	66
	2.3.2	Experimental	72
	2.3.3	Results	76
	2.3.4	Conclusions	83

Chapter 3

Simulating the LSC				
3.1	The Colo	ur-Chemical Quench Correction Problem	85	
3.2	LSC Mode	l Design	89	
	3.2.1 M	odel Geometry	89	
	3.2.2 T	he Model Scintillator and Detector	91	
	P	rocesses		
	3.2.3 M	odel Logic Design	98	
	3.2.4 M	odel Implementation	99	
	3.2.5 N	umerical and Logical Testing of the	101	
	M	odel		
3.3	Model In	put Data Sources	103	
	3.3.1 I	ntroduction	103	
	3.3.2 M	aterials and Methods	104	
	3.3.3 R	esults and Discussion	108	
3.4	Model Va	lidation and Performance	115	
	3.4.1 I	ntroduction	115	
	3.4.2 E	xperimental	116	
	3.4.3 R	esults and Discussion	121	

Chapter 4

Quen	ch Corr	ection Independent of the Type of Quench	126	
4.1	Applica	ation of the LSC Model to the Colour-	127	
	Chemica	al Quench Correction Problem		
	4.1.1	Introduction	127	
	4.1.2	Results and Discussion	129	
4.2	Quench	Correction Independent of the Type of	133	
	Quench			
	4.2.1	Introduction	133	
	4.2.2	Experimental	135	
	4.2.3	Results and Discussion	136	
4.3	Future	Work	140	
Collected Figures				
	F1.1 -		142	
	F2.1 -		151	
	F3.1 -		162	
	F4.1 -		205	
Collec	ted Tabl	les	228	
	T2.1 -		229	
	T3.1 -		246	
	T4.1 -		268	
References				
Bibliography				

1 . . . L

a construction of the second

Appendix A

Detection	of	Drift	in	Radioactive	Counting	using	the	321
cusum tech	nni¢	que						
Introduction 3							321	
Cusum Metł	nod							322
Simulated Data 3						326		
Instrument	t Te	ests						329
Conclusior	ì							330
Figures								332
Table								336

E.T

Appendix B

a contract the second second second second

Program	n Listings	337				
(i)	LSC Simulation					
(ii)	Polya Statistics	362				
(iii)	MCA Pulse Height Spectra Transfer and	363				
	Analysis					
(iv)	Fluorescence and Absorption Spectra Capture	384				
(v)	Curve Fitting	387				
(vi)	Data Capture of 300 Printer Output	401				

Chapter 1

INTRODUCTION

Since the discovery that organic solutions could be induced to fluoresce upon excitation by nuclear radiations the development of materials and methods for liquid scintillation counting (LSC) has been rapid. LSC is now well established for the counting of low energy β -emitting isotopes such as ³H and ¹⁴C.

With any assay of a radioisotope the knowledge of the activity is essential. This thesis deals with specific aspects of activity determination which have been difficult in the past but receive a novel treatment given modern electronics and computer technology.

1.1 Liquid Scintillation Counting Theory

Theoretical work important to the understanding of LSC can be divided into that dealing with the basic physical processes at work in a LS counter and that dealing with the global properties of the LSC system, i.e. into the microscopic and the macroscopic. Topics of the prior type of work are typified by the photophysics of aromatic molecules and mechanisms of molecular energy transfer, whereas topics of the latter are typified by LSC simulation models and techniques of radioactive assay.

1.1.1 Basic Physical Processes in LSC

Nuclear radiations interact with the molecules of organic solutions in many ways. Along the track of a nuclear particle large numbers of molecules are given energy and form ions, excited molecules, free radicals and secondary particles. The concentrations of these excited and ionised molecules in the wake of the ionising radiation determines the types of secondary processes (chemical and physical) Neutralisation, excimer production, that may occur. X-ray emission, fluorescence, phosphorescence, and excitation energy migration are examples of such processes. In liquid solutions these secondary reactions occur in or near the track of the particle where the concentration of the reactants is the highest. The probability of these secondary reactions is related to the concentration of the reactants which in turn is related to the specific ionisation of the exciting particle. A certain fraction of the ions and excited molecules produced in the organic solution leads to luminescence. The creation and detection of this luminescence forms the basis of liquid scintillation counting. The photo-production process is dependent on the efficient conversion of nuclear energy into optical energy. The photo detection processes then depend on the efficiency of photon collection and their conversion into electrical energy.

The photo-production process (after Birks)¹⁴ in a liquid scintillator solution XYZ where X is the solvent, Y is the primary scintillator and Z is the secondary scintillator (if present), consists of: (a) radiation physical processes; (b) internal conversion processes; (c) solvent excitation migration and solvent-solute energy transfer processes; (d) the primary to secondary solute-solute energy transfer process; and (e) solute fluorescence. 20

(a) Radiation physical processes are those in which the particle energy is converted into molecular ionisation energy or otherwise dissipated. They are comprised of:

(1) ${}^{1}X + E \longrightarrow {}^{1}X^{**}$ (2) ${}^{1}X + E \longrightarrow {}^{3}X^{**}$ (3) ${}^{1}X + E \longrightarrow {}^{**}$ (4) ${}^{1}X + E \longrightarrow {}^{2}X^{+} + e^{-}$ (5) ${}^{1}X + E \longrightarrow {}^{+} + F^{-}$

where

 ${}^{1}X =$ ground state molecule ${}^{1}X^{**} =$ excited singlet π -electronic state molecule ${}^{3}X^{**} =$ excited triplet π -electronic state molecule $\sigma^{**} =$ excited σ -electronic state ${}^{2}X^{+} =$ molecular ion F^{+} and $F^{-} =$ free radiculs $e^{-} =$ slow electron

The slow electrons from (4) can produce further reactions:

(6)	≈X+	+	e	\rightarrow	" Х**
(7)	‴X+	+	e	\rightarrow	≈X**
(8)	∞X+	+	e	\rightarrow	ጥ ት ት
(9)	» Х	ł	e	\rightarrow	≈X
(10)	ਸ'-''	+	e'''	\rightarrow	ਸ

and the ions from (4) and (9) can produce the reactions:

 $(11) \xrightarrow{\cong} X^{+} + \xrightarrow{\cong} X^{-} \longrightarrow {}^{1} D^{**}$ $(12) \xrightarrow{\cong} X^{+} + \xrightarrow{\cong} X^{-} \longrightarrow {}^{3} D^{***}$ $(13) \xrightarrow{\cong} X^{1} + {}^{1} X \longrightarrow {}^{2} D^{+}$ $(14) \xrightarrow{\cong} D^{+} + e^{-} \longrightarrow {}^{1} D^{***}$ $(15) \xrightarrow{\cong} D^{+} + e^{-} \longrightarrow {}^{3} D^{***}$

where 'D** is a singlet state excited dimer (or excimer)^{16,21,24,35}, ³D** is a triplet state excimer and ²D* is a dimer cation.⁶

Processes (1), (6), (11) and (14) yield 'X** and 'D** the scintillation emission of which occurs within a few nanoseconds (and is known as the fast scintillation component); and processes (2), (7), (12) and (15) yield "X** and "D** - the resulting emission from which occurs over a few microseconds (and is known as the slow scintillation component).

(b) Internal conversion processes are radiationless transitions between states of the same multiplicity e.g. $(S_n \rightarrow S_0, S_n \rightarrow S_{n-1}, \text{ or } T_2 \rightarrow T_1)$. These processes compete with intersystem crossing (radiationless transitions between states of different multiplicity), vibrational relaxation, excimer formation, and solute-solute energy transfer. The main processes that occur in aromatic molecules after excitation are (Fig. F1.1):

- (16) $S_n \longrightarrow S_{n-1}$ internal conversion
- (17) $S_{\perp} \longrightarrow S_{\odot}$ fluorescence

- (18) $S_1 \longrightarrow S_0$ internal conversion
- (19) $S_1 \longrightarrow T_1$ intersystem crossing
- (20) $T_{n} \longrightarrow T_{n-1}$ internal conversion
- (21) $T_1 \longrightarrow S_{\odot}$ phosphorescence
- (22) $T_1 \longrightarrow S_0$ intersystem crossing
- (23) $S_{\alpha} \longrightarrow S_{\alpha}$ internal conversion

where $S_0 \dots S_n$ and $T_1 \dots T_n$ are the singlet and triplet π -electron excited state manifolds

and $S_{0} = X$, $S_{1} = X^{*}$, $S_{0} = X^{**}$, $T_{1} = X^{*}$, $T_{0} = X^{**}$.

(c) Two theories are currently being debated regarding the actual solvent-solvent excitation migration process. One theory^{15,24,90} involves the formation of solvent excimers which upon dissociation find the excitation energy on the previously unexcited solvent molecule. This excimer forming and breaking is fast $(*10^{-11}s)^{117}$ compared to the fluorescence emission time thereby allowing the energy to migrate through the solution:

 ${}^{1}X_{m}^{*} + {}^{1}X_{m} \xleftarrow{} D_{mm}^{*} \xleftarrow{} X_{m} + {}^{1}X_{m}^{*} mechanism (A)$ ${}^{1}X_{m}^{*} + {}^{1}X_{m} \xleftarrow{} D_{mm}^{*} \xleftarrow{} X_{m} + {}^{1}X_{m}^{*} , etc$

Accordingly, the processes leading to the formation, dissociation and fluorescence of excimers are:

where 2¹X, ¹D^{*}, ¹D^{**} are the ground state, first excited singlet state and higher excited singlet state excimers. ³D^{*} and ³D^{**} are normally dissociated. These processes are summarised in Fig. F1.2.

A second theory proposed by Furst and Kallmann^{4,99} and Voltz¹⁰⁰ of the energy transfer between solvent molecules involves energy migration between adjacent solvent molecules:

7

 $X_{m}^{*} + X_{b} \rightleftharpoons X_{m} + X_{b}^{*}$ mechanism (B) $X_{b}^{*} + X_{c} \rightleftharpoons X_{b} + X_{c}^{*}$, etc

Laustriat and Voltz and Klein¹¹⁷ also propose a further energy transfer via a similar resonant process for higher excitation states:

 $X_{**}^{*} + X_{D} \rightleftharpoons X_{a} + X_{D}^{*}$ mechanism (C)

Also, Voltz¹⁷⁹ has given a description of energy migration encompassing diffusion, resonance type energy transfer and excimer type energy transfer.

Together, these mechanisms explain the observed evidence of energy transfer between solvent molecules. 116,179 Evidence of diffusion playing a role in solvent-solvent energy transfer has been obtained by the introduction of diluters (e.g. cyclohexane) to scintillator solvents. 📟 The diluters do not participate in the energy transfer process either as an energy quencher or as a transfer medium and the result is that energy transfer efficiency decreases. This is due to the increased solvent separation and implies that solvent-solvent energy transfer is in part diffusion controlled. Evidence of the existence of excimer formation and their importance in the scintillation process has been given by Birks. 13,21,25 Evidence for mechanism (B) has been supplied by Voltz et al for the lowest excited energy states in a study of energy transfer and quenching in various liquid scintillators excited by UV light 117, and by

Voltz¹⁷⁹, Laor¹⁷⁷ and Kallmann-Oster¹¹⁷ for mechanism (C).

According to Horrockses it is unlikely that contact will be made with solute molecules, which are present in concentrations of about 5 to 10 g l^{-1} , as energy is passed between solvent molecules. The energy is, however, quantitatively transferred from solvent molecules to solute molecules. The transfer is non radiative since solvent emission has a decay time of approximately 30x10-"s whereas the observed solvent-solvent transfer occurs in 10^{-11} s. Nor is it diffusion controlled which occurs in approximately 10-s. The energy transfer occurs by Forster type resonance transfer process. The strength of the interaction is related to the degree of overlap of the fluorescence spectrum of the solvent and the absorption spectrum of the solute and the distance over which the transfer takes place is related to the extinction coefficient of the solute molecules over the region of the overlap of the two spectra. The Forster radius, Ro, which is defined as the distance between solute molecule and solvent molecule such that the probability of transfer is equal to the probability of all other processes of energy release by the solvent, has been calculated to be 2-3nm for many organic molecules used in LSC. ## This contrasts with the 0.6nm approximate collision distance. Experimental support for the evidence of Forster type resonance transfer being the mechanism for energy transfer between solvents and solutes in LSC has been obtained by Voltz. 117

This view of solvent-solute energy transfer is not universally accepted and evidence that supports collisional solvent-solute energy transfer has been presented by Birks et al²²³ in a comparison between the rates of solvent-solute energy transfer using fluors and quenchers as the solute. However, the solvent-solute interaction is more complex for fluors than for quenchers because of the importance of the $S_n \leftarrow S_0$ transition dipole moments and because of competing backprocesses such as $F_n + S_0 \longrightarrow F_0 + S_n$. (as opposed to $F_n \longrightarrow F_1$ and fluorescence) whereas solvent-quencher energy transfer often involves the formation of charge transfer complexes resulting from molecular collisions. More experimantal data is necessary to remove the uncertainties surrounding energy trapping by fluorescent solutes.

(d) Energy may also be transferred between solute molecules. Low solute concentrations make diffusion controlled energy transfer improbable and result in fluorescence being the most probable energy transfer process.²⁴⁶ There is also some long-range dipole-dipole interaction between like solutes which is monoenergetic and involves the same energy levels of each solute. Energy transfer between unlike solutes is also monoenergetic but is usually accompanied by vibrational relaxation in the acceptor molecule.^{13,246}

(e) Fluorescence is a spin allowed radiative transition between states of the same multiplicity. It usually occurs between the first excited state (S_1) and the ground state of the molecule over a time of $10^{-15} - 10^{-11}$'s and is not monoenergetic. The energies of the photons correspond to the energy difference between the zero vibrational level of the S₁ state and the many vibrational levels of the ground state (S₀). The fluorescence spectrum reflects the probability of the transitions between S₁ and the vibrational levels of the ground state. Spin forbidden transitions between states of different multiplicity describe phosphorescence. Phosphorescence is not usually observed in LSC due to its long lifetime (>10⁻¹⁵ s) which renders it susceptible to quenching or other triplet energy transfers.

The photodetection process can be subdivided into the photon collection process and the photoelectric conversion process. Photon collection includes the passage of photons through the LS cocktail, the vial and the counting chamber.

Since the common scintillator solutes emit photons of energy corresonding to the wavelengths between 300 and 600nm it is required that the LS cocktail and the vial be transparent over that region. If the LS solution is not transparent over that region then self absorption is said to occur. Self absorption is present to some extent in most LS solutions and is a feature of both the primary and

secondary solutes. It is dependent on the overlap between the emission and absorption spectra of the solute, the molar extinction coefficient and the concentration of the solute. Also an important factor in the amount of self absorption is the path length for the photons before they escape from the LS solution.

In addition to the solvent and solute other materials forming the sample in the LS solution may have an absorption band which overlaps the solute emission spectrum. If this is the case then colour quenching is said to occur*. Colour quenching is dependent on the absorptivity and concentration of the quenching molecule, and on the path length which the photons must travel before escaping the solution. It can be seen that self absorption may be regarded as a particular case of colour quenching. Further sources of photon losses in the LS cocktail arise at the cocktail-air interface and the cocktail-vial interfaces. These are the result of reflections which cause the reflected photons to undergo the chances of self-absorption and colour quenching within the LS cocktail once more. The probability of photon reflection is dependent on the difference between the refractive indices of the two materials forming the interface according to Fresnel's equations. It is greater for greater differences and hence is greater for the liquid-air interface than for the liquid-vial interface.

* Refer to section 1.3.4a

As with the LS cocktail, photons may be absorbed or reflected in the vial. Absorption constitutes another form of colour quenching, but since the vial path lengths traversed by the majority of photons from a single event are approximately equal (assuming uniform wall thickness) the resulting effect resembles chemical quenching^{*.03} Reflection at the vial-air interface may ultimately result in the photon re-entering the LS cocktail or in the photon taking a path leading to total internal reflection in the vial wall and subsequent absorption in the vial, the vial cap or the vial base.

The fate of photons once they have left the vial is largely machine dependent. Usually, counting chambers consist of highly polished reflectors which fit closely to the vial and the face of the photomultiplier detector in an attempt to minimise both scintillation-photon loss and ambient light input. Although oils and greases have been used in the past as optical couplers between the vial and the PMT face, most current LSC's use reflective air-filled chambers. With these chambers, photons may be lost through absorption by the reflecting materials or on reaching the PMT face may be reflected back into the chamber and/or vial. These photon pathways are summarised together with the photon collection processes in the cocktail and vial in Fig. F1.3.⁴⁴⁵

* Refer to section 1.3.4a

The final stages of the photodetection process - the conversion of signal photons into an electrical pulse occurs within the photomultiplier tubes (PMT) of the LSC. There are three main parts of a PMT which are critical in the determination of its efficiency and response. These are (a) the photocathode, which converts the photons into a number of electrons defined by the wavelength of the photons, the number of photons, the quantum efficiency of the photocathode, and the geometry and type of material of the photocathode; (b) the dynodes, which multiply the number of electrons by means of secondary emission; and (c) the anode, which collects electrons from the dynodes and converts them into a pulse of amplitude proportional to their number.

The conversion of photons into electrons (photoemission) consists of photon absorption and transfer of its energy to an electron in the photocathode material, migration of the electron to the surface of the photocathode, and, escape of the electron into the vacuum by overcoming the potential barrier (work function) of the photocathode. The theory for photoemission stems from Einstein's photoelectric effect equation:

 $E = h\nu - \phi = \frac{1}{2}mv^{2}$ where E = kinetic energy of the emitted electron h = Plancks constant ν = frequency of incident photon

 ϕ = work function of photocathode material

Experimental evidence supporting this quantum theory of photoemission has been given by Sommer and Brady among others.⁴⁴ Ideal photocathodes have quantum efficiencies of 100%, i.e. every incident photon releases a photoelectron. Practical photoemitters have less than 100% quantum efficiency because of energy losses due to photon reflection or transmission, due to electron scattering and photon scattering of photoelectrons as they migrate to the surface, and due to prevention of photoelectron release by the potential barrier. Quantum efficiencies of the alkali metals in the visible region are only 0.1% but deliberate modification of the energy band structures of semiconductors has led to negative electron affinity materials44,162 which allow greater photocathode thickness and produce greater photoelectron escape depths and has resulted in quantum efficiencies up to 26%.

The photoelectrons are accelerated and focused by potential differences between the photocathode and first dynode and the field created by the focusing electrodes. The first dynode collection efficiency ranges from 85% to 98%.⁴⁴ The efficiency is less than 100% because some photoelectrons are released with velocities that cause imperfect focussing. Those electrons which do strike the first dynode have enough kinetic energy to produce a number of secondary electrons. The physical processes involved in secondary emission are similar to those in the production of photoelectrons at the photocathode except that electrons rather than photons comprise the incident particle. Three

steps can occur:

- (i) incident electrons excite electrons in the dynode material
- (ii) some of the excited electrons move to the surface, and,
- (iii) those electrons with energy greater than the surface barrier are emitted.

The secondary electrons that escape from the first dynode are accelerated by a p.d. to the next dynode and the same processes occur again.

The secondary emission yield is defined as the average number of secondary electrons emitted per number of primary electrons incident on the surface. The yield is dependent on the primary electron energy (and hence on the PMT operating voltage) and a theory for the dependence has been given by Simon and Williams^{16,22} for GaP:Cs dynodes which is corroborated by experimental data.⁴⁴ The statistical variations in the yield are most significant for the first and second dynodes. This is because after the first two dynodes the number of secondary electrons will not be enough to affect the final gain of the PMTube. The variations in the yield in the first two dynodes may, in some circumstances, result in loss of counts in LSC.⁶³

The anode collects the electrons leaving the last dynode. Its response is limited by its current capacity. If the number of electrons is too great a space charge builds up between the last dynode and the anode leading to nonlinear

response at high currents. (This may be caused by high count rates and/or high energy radionuclides). The electron collection by the anode produces a voltage which is converted into a voltage pulse through a capacitor. The amplitude of the pulse is proportional to the number of electrons collected at the anode, which are proportional to the number of photoelectrons^(a), which are proportional ^(b) to the energy of the original ionising particle in the LS cocktail.

This proportionality may vary from sample to sample due to interference with the energy transfer process, namely quenching. The major aim of the project is to devise a method which takes account of the type of quenching in each sample with particular reference to chemical and colour quenching. A detailed explanation of the quenching process is given in 1.3.4(a).

(a) if numbers not small, (b) only approximately as

1.1.2 Macroscopic Properties of LSC systems

Theories and techniques associated with the properties of LSC systems have been developed from observations of the variations of these properties (such as counting efficiency or pulse height spectrum channels ratios) under different counting conditions. The developments in theoretical techniques have been dependent on the progress made by LSC equipment manufacturers - an example being the use of spectrum parameters for quench correction, as demonstrated by Ring et al¹⁵², which was impracticable before the advent of LSC's with integral multi-channel pulse height analysers. Of course, many of the equipment improvements have been directed towards user convenience and these, along with the technical advances, are summarised in section 1.2.

The primary function of a LSC system is to estimate the true disintegration rate (DPM) of a radioisotope. The theoretical techniques used to accomplish this function essentially rely on the estimation of just two variables - the apparent sample activity (CPM) and the efficiency (E) with which the sample was counted. The true rate is then given by the expression DPM = CPM/E. If the counting efficiency remained constant for all samples then the variations in the calculated DPM would depend only on variations in the sample activity resulting from the random nature of radioactive decay, from the decay rate of the radioisotope and possibly from external chemical and

physical influences on the radioactive decay process. "" The latter source of variation is negligible in LSC and the former two sources can usually be satisfactorily overcome. It is unfortunately the case, however, that the efficiency is not constant for all samples.

As a prerequisite for the determination of counting efficiency reference must be made to a standard. This may be an internal standard⁷³, an external standard⁹¹, or a quenched sample or series of samples, all of known activity. The choice of standardisation is often related to quench correction (section 1.3) although no single method is capable of correcting for all the sources of efficiency variation.

LSC efficiency varies with the type of nuclear radiation, the type of chemical constituents in the sample and their relative proportions, scintillation detector performance, and, the method of counting. The variation in the counting efficiency with the nature of the ionising particle is related to the specific ionisation of the particle and has been reported by numerous workers.^{e,e,e,17,27,53,101,140,172} The composition of the solution (solvent, solutes and quenching materials) may affect the scintillation efficiency which in turn affects the detection efficiency or may affect the detection efficiency directly hence affecting the counting efficiency - these changes being different for different types of quencher. For example, chemical quenching (which is the scavenging of LS solvent

excitation energy by impurities or added samples in competition with the fluorescent solutes) and colour quenching (which is the molecular absorption of the fluorescent solutes' emissions) give rise to changes in the measured pulse height spectrum as shown in Fig. F1.4.¹²⁹⁹ Correlation of the counting efficiency with the <u>amount</u> of quench but independent of the <u>type</u> of quench has been a goal of LSC for many years. The most recent quench indicating parameters to be used, such as H[#] ⁶⁹⁶, SIE¹¹⁵⁷² and ESP¹¹²² all fail in this respect. A typical plot of efficiency vs SIE even with AEC is shown in Fig. F1.5. Quenching is considered further in section 1.3.

Detector performance variables are shared between the PMTubes and the electronic analyser circuitry. LSC stability is one of them and has been studied by Galloway and Crookes & Lilley". Although it can be a source of efficiency variation it is usually small enough to be neglected. PMT response and performance may by affected by temperature^{123,127,153,146,187}, by ageing of the glass face plate¹⁰⁰, by external magnetic and electric fields⁴⁴, by ambient light levels and by vibration or shock. Any such changes in the PMT response will be reflected in the counting efficiency. Dead time (especially with intense sources) and spectral matching of PMT to the fluorescent species may also affect the efficiency. So too will changes in the electronic thresholds and pulse height analyser discriminators of the analyser circuitry. Geometry is often an important aspect in the determination

of activities of radionuclides and LSC is no exception. The effects of relative changes in sample and external standard position on the counting efficiency and of variations in sample volume on the external standard counting efficiency, and other 'volume effects' has been investigated by numerous workers.^{10,35,45,57,66,67,137,156,}

Despite such a list of possible sources of error reliable counts are obtained from LSC's. This is because the magnitudes of the variations are small in everyday applications. The major sources of error in efficiency determination are usually (a) quenching and (b) the method of counting employed.

The method of counting can affect the counting efficiency in many ways even under conditions of constant quench. Most LS counters employ two photomultiplier tubes and a coincidence counting system although there are some single tube counters.^{14⊕} Coincidence counting provides a marked reduction of background count rates due to the randomly generated pulses in each PMT as a result of thermal noise and spurious light sources (e.g. chemiluminescence). This advantage must be balanced against the main disadvantage of coincident systems which is an inherently lower counting efficiency, especially for low energy isotopes. This is due to the requirement of at least one photon being detected at each PMT in a coincident system whereas a single photon may suffice in a non-coincident system. In

practice, the reduction in efficiency is not excessive and even theoretically the difference is only about 6% for an average energy tritium B-particle for PMT's operating with a 30% quantum efficiency.

Also, with two PMT's there are alternatives to the way the PMT pulses can be handled which can result in changes to the measured counting efficiency. One of the PMTubes may be utilised for pulse height analysis with the other acting as a coincidence monitor only." This technique has been superceded by pulse summation prior to pulse height analysis which gives increased resolution between events of different energy and a slight improvement in counting efficiency for low energy emitters by increasing the number of coincident events capable of passing low level noise thresholds. The only other 'front end' pulse handling technique to have been proposed (by Laney¹¹²), is lesser pulse height analysis, which represents an attempt to minimise crosstalk.114 Further work by Laney in this area shows the information value inherent in the individual PMT signals.113 Although concentrating on the rejection of background, two-parameter pulse height spectra of colour and chemically quenched 14C samples were presented. These results are reproduced in Fig. F1.6. The conclusion that the two-parameter pulse height analysis can distinguish between colour and chemically quenched samples is drawn by Laney but no methods to attempt to quantify the differences are proposed. This subject of 'front end' pulse handling and pulse information value in relationship to quench

correction has been largely neglected in LSC. It forms however an integral part of this thesis and is discussed at length in chapter 3.

The recorded counting efficiency can be substantially altered by the method of analysing the coincidence-gated pulses. Most modern machines now have integral Multichannel analysers (MCA) for pulse height storage and microprocessors/microcomputers for spectral analysis. They allow user selection of regions of interest, or pulse height windows, and thus are prone to reduced counting efficiency resulting from poor choice of counting regions.

Assumptions of constant quench are almost always invalid and thus in addition to the above sources of efficiency variation there are those resulting from the various types of quench. Indeed, the need to correct for quench has been responsible for most of the methodological developments over the past two decades. The developments are detailed in the section on quenching (1.3).

The determination of the true disintegration rate is not the only function of a LSC system. LSC's may be used to provide relative counts only, or assess the purity of radiolabelled materials irrespective of the total count¹⁴⁰, or to check for chemiluminescence, or perhaps perform radioisotope identification - a task which is gradually becoming more feasible owing to improvements in LSC resolution.

1.1.3 <u>Theoretical Modelling of the LSC</u>

For whichever mode of operation, correct use of the LSC requires an understanding not only of all the separate processes at work but also of how they interrelate. To achieve such an understanding a systems rather than an analytic approach is necessary. Theoretical work which has been conducted with a view to predicting the global properties of LSC's has been tackled by few authors. Kaczmarczyk¹⁰³ has presented a detailed model of chemical quenching at the spectral level but has not included any optical considerations such as PMTube response or even colour quenching. A one dimensional and simple three dimensional model of a LSC has been proposed by ten Haaf. 175,177 The first model qualitatively explains the broader pulse height spectrum obtained with colour quenched samples rather than with chemically quenched samples¹²⁰ by suggesting that light produced in different parts of a sample will take paths (to the detectors) of different length. The second model represents an improvement by extending the analysis to cover a three dimensional (3D) cylinder of scintillation material but still suffers from many drawbacks: the vial base and top are assumed to be perfect mirrors; no allowance is made for the spectral nature of light emission or absorption; the pulse height and β -energy relationship is assumed to be linear; all statistical fluctuations are ignored; and the scintillator is surrounded by perfect detectors. A more detailed model has been created by Malcolm and Stanley^{120,121,171} using a

stochastic approach which accumulates "counts" resulting from events considered at the photon level. For my model to be useful as a predicitive tool it must be able to closely reproduce known experimental data and it was the approach used by Stanley and Malcolm that best simulated the properties of an LSC system. Work for this model commenced in 1972 and although still under development was first presented at the International Symposium on LSC in 1973.¹²⁰ It is summarised below but a full description may be found in the aforementioned references.

The model simulated a two PMT coincidence LSC by computer generation of a ß-event of random energy, according to the Fermi distribution of the isotope, at a random 3D position within the solution in an idealised vial. This energy was then converted to an appropriate number of photons of random wavelength (following the fluorescence spectrum of the phosphor solution), which were assigned random directions in 3D. Each of these photons was traced to its extinction through the solution and vial (which was assumed to be optically continuous) and up to the PMTube, although the actual geometry of the vial was greatly simplified and any counting chamber effects were bundled with the PMT response, See Fig. F1.7.

Colour quench was simulated by calculating the absorbance of the solution for each photon according to its wavelength and an experimentally obtained absorption spectrum, and escape distance with the probability of absorption

following the Beer-Bouguer Law. Self (colour) quenching by the fluor was also modelled.

PMT response was simulated in a probabalistic fashion according to the photocathode quantum efficiency and wavelength of the incident photon. This response was scaled according to the point at which the photon left the vial. This approach was taken to avoid the further complicated geometrical analysis required to trace photons through the counting chamber.

Once all the available energy was exhausted in terms of photon production and these photons traced, the number of photoelectrons at each PMTube represented the pulse amplitude for each PMT. These were coincidence selected to produce summed and lesser pulse height spectra.

The model was subject to the following additional assumptions and restrictions:

- β-particle path lengths were zero (only [™]H and
 ¹⁴C modelled)
- (ii) isotopes followed the theoretical distribution
- (iii) only one B-event was processed at any one time(no dead time losses and no time dimension inthe model)
 - (iv) scintillation efficiency variation with energy followed the results given by Horrocks^{ee}
 - (v) chemical quench was independent of energy of the β-particle

- (vi) vial and solution were optically continuous, and were in the form of a perfect cylinder
- (vii) optical dispersion and polarization-related phenomenon were negligible with Snells Law dictating photon behaviour at interfaces

(viii) vial cap and vial base were perfect absorbers. Despite these restrictions, the matching of modelled "H and ""C colour or chemically quenched sample counting efficiencies with their experimantally obtained counterparts was achieved with some degree of success and Malcolm and Stanley were able to conclude that the model's behaviour was in accordance with that observed in the laboratory.""
1.2 Liquid Scintillation Counting Materials and Equipment

The materials and equipment used in LSC may be be split into hardware and 'wetware'. Wetware includes the solvents, solutes, cocktails and nuclear labelled compounds that are available for LSC. The variety of nuclear labelled compounds is as endless as that of unlabelled compounds even when only considering the commonly used isotopes ("H, 14C, 32P) and no attempt is made to categorise them. Liquid scintillation solvents are typified by molecules that have low energy levels and nonbinding m-electrons, which require little excitation. Many such candidates have been investigated by Birks^{18,18}, Hayes", Horrockses, e, Klevans', Laustriat et ali', Lawson et al¹¹⁰, Skarstad et al¹⁶³, Oster¹³³, Parmentier¹³⁸, Skerbele¹⁶⁴ and Voltz¹⁷⁹. Fluorescent solutes have been studied by many workers including Berlman¹², Birks^{13,26}, Furst et al^{36,57}, Gershuni⁶¹, Gusten⁴⁰, Hayes⁷⁴, Horrocks^{90,96,97}, Kallman^{100,106}, Kowalski¹¹¹, Painter¹³⁸, Scales¹⁸⁷, Scoggins¹⁶⁰, Ware¹⁸⁸ and Wirth¹⁰⁰⁶. Also, various aspects of solute-solvent systems and LS cocktails (i.e. solute-solvent and emulsifiers and/or solubilisers) have been reported by Benakis¹¹, Farmer⁴, Gebicki⁶⁰, Langenscheidt¹¹, Nibeck¹²⁹ and Spolders¹⁶⁷ and Stanley¹⁷⁰.

A detailed review of the developments in LSC hardware from 1950 to 1971 has been given by Rapkin.¹⁴⁸ Stanley has reviewed the developments in LSC generally¹⁷⁰ (including

hardware features) for the period 1964 to 1979. A more recent study of modern LSC's has been conducted by Price.¹⁴⁷ Since that time few major changes in LSC design have occurred.

.....

. . . .

1.3 Liquid Scintillation Counting Problems

1.3.1 <u>Sample Preparation</u>

Sample preparation for LSC depends on the nature of the sample to be counted and may be a very simple or very complicated procedure. The counting of aqueous, gaseous or heterogeneous sample in the aromatic organic solvents used in LSC present special problems.

General reviews of sample preparation techniques have been given by Parmentier and ten Haaf¹³⁹ and Horrocks⁹³ and collections of sample preparation papers can be found in "Liquid Scintillation Counting" vol. 2, "Liquid Scintillation Counting" vol. 4, "Liquid Scintillation Counting" vol. 5, "Liquid Scintillation Science and Technology" and "Liquid Scintillation Counting Recent Applications and Developments".

The labelled materials and quenching agents in this thesis have been chosen to facilitate sample preparation, although it is recognised that for the majority of LSC users this is not possible.

1.3.2 <u>Counting Vials</u>

There are several types of vials available commercially. These include low cost soda lime glass, low background glass (borosilicate glass low in ⁴⁰K), quartz, polythene, nylon and teflon. The choice of vial depends on cost, background rate requirements, U.V. transmission requirements, re-usability, solvent absorption characteristics and solute asorption characteristics. Problems arising from poor choice of vial can include vial "wall effects"^{99,134,126,192} due to solvent and solute permeability, background count rate^{31,32,136} variations, efficiency variations due to vials of variable thickness and geometry⁹³, photoluminescence¹²⁵ and sample leakage.¹¹⁹

A very useful review of choice of counting vials with 85 further references has been given by Painter in "Liquid Scintillation Counting - Recent Developments".¹³⁴

1.3.3 <u>Background</u>

There are many sources of background counts in LSC all of which may impair DPM determinations especially with samples of low activity. A good discussion of background is given by Horrocks in chapter 9 of "Applications of Liquid Scintillation Counting" with a table which neatly summarises the various sources of background.

Other references include those of Noakes¹³⁰ and Hartley and Church⁷⁰ and Calf and Pol.ach³³³ who each concentrate on low level counting and ¹⁴C dating, Laney¹¹⁴ who proposes a method to reduce the crosstalk component of background with various types of aqueous solutions in several different vials and cocktails and Scales¹⁶⁷, Alessio et al^{1,2} and Horrocks⁹¹ who have each studied the effect of quenching on LSC background.

1.3.4 <u>Quenching and Quench Correction</u>

(a) Quenching

Quenching is any energy transfer process which interferes with the efficient conversion of the ionising radiation into a measurable electron pulse. As explained in section 1.1, the LSC process may be held as a logical series of subprocesses. Each subprocess is susceptible to quenching (see Fig. F1.8).

Nuclear quenching, in the case of β^- emitters such as ³H and ¹⁴C, is inherent to the nuclear decay process. The available nuclear energy after disintegration is shared by the β -particle and an antineutrino¹⁵⁰ and the energy that is carried away by the antineutrino is lost to the LSC (since the probability of interaction is negligible).

Ionisation quenching covers those processes by which the B-particle energy is dissipated through the solution and/or vial via mechanisms that do not lead to the formation of excited π -electronic states of the solvent. Strictly speaking, the term should also exclude excitation of the solvent to σ -excited states but since these are wasteful states so far as energy transfer to the fluorescent solute is concerned, I include them here. (Processes (3), (5), (8) and (10) of section 1.1.1, pages 4 and 5). Not restricitng attention to B^- emitters alone, Birks^{1,9} investigated the scintillation response of anthracene and proposed a theory to relate the specific scintillation

response, dL/dr, with the specific particle energy loss dE/dr:

$$(dL/dr) = S(dE/dr)$$

1 + kB(dE/dr)

This theory has been experimentally supported by several workers.^{13,62,63} The effect of ionisation quenching is to make the response of the scintillator non-linear with particle energy type.^{64,83}

Chemical quenching (also known as impurity quenching) has been defined by Neary and Budd¹²⁰ as

"any process, active within the sample, which reduces the energy transfer efficiency of some member or members of the set of compounds essential to the scintillation process"

and by Peng¹⁴⁰ and Gibson⁶⁴ as a decrease in the fluorescence quantum yield caused by the presence of non-fluorescent molecules which compete with fluor molecules for the excitation energy of solvent molecules. The essential points of the definitions are (a) the assumed existence of excited solvents capable of transferring energy to the solutes and (b) the possible presence of

materials in solution apart from the solvent and solute whether as impurities (eg O_{Ξ}) or as a labelled sample. Chemical quenching thus covers all those processes by which energy is taken from excited solvents but which does not result in photon emission. Gibson and Gale^{Δ_{\Box}} have shown that the relative chemical quenching factor (which is the ratio of available fluorescence to actual fluorescence from a quenched solution) is independent of energy. Mechanisms of chemical, or impurity, quenching have been presented by Birks^{14, Ξ_{O}} and Laustriat et al¹¹⁷ amongst others.

Colour quenching is the absorption of the fluorescent radiation by substances which have an absorption band within the emission spectrum of the liquid scintillation fluors. Colour quenching is a function of the absorptivity and concentration of the quenchers and also of the path length the photon must traverse in order to escape the solution. It is this latter feature of colour quenching that affects the counting efficiency and pulse height spectra in a way that is quite different to chemical quenching (see Fig. F1.4). Simple models to explain the differnces have been given by ten $\operatorname{Haaf^{175,177}}$ and Neary & Budd.¹²⁶

Optical quenching is the loss of photons on leaving the scintillation solution prior to interaction with the photocathode of the PMTubes. It includes photon absorption in the vial material (glass or plastic), the vial base, the vial cap, the counting chamber reflectors, the PMTube

faceplate, and any dirt or condensation that may be present. It also includes direct photon escape through the narrow gaps around the vial in the counting chamber. These effects are normally small but are not negligible. Stanley⁷⁷ has shown, for instance, that around 9% of all photons are lost through the annular gaps around the vial although many of the other instrument design-dependent losses remain unquantified (at least publicly).

The quantum efficiency of a photocathode is defined as the probability that a photoelectron is released per incident photon. It depends on the wavelength of the incident photon as shown in Fig. F1.10 for an RCA 4501/V3 PMTube. Photoelectric emission involves three stages. Firstly, the photon must be absorbed and its energy transferred to an electron; secondly, the electrons must move to the material-vacuum surface; and thirdly, the electron must escape past the surface potential barrier. As explained in section 1.1.1 energy losses or quantum quenching may occur at each stage and so reduce the quantum efficiency to well below 100%.

PMTube quenching covers losses of energy due to imperfect focussing of photoelectrons between the photocathode to the first dynode and between successive dynodes and losses encountered in secondary emission. These losses seldom contribute to a reduction in the recorded counting efficiency under normal operating conditions but do alter the shape of the pulse height spectrum.

Electronic quenching is the reduction in height or loss of the PMTube pulses due to electronic thresholds (and discriminators) of the counting system, and may affect the counting efficiency and/or the shape of the pulse height spectrum.

In this scheme of quenching in the LSC process it is assumed throughout that the LS solution is homogeneous. This is not always the case. Many samples are counted in LSC 'cocktails' containing emulsifiers or solubilisers such as Triton X-100, in solid gels, or on solid supports immersed in scintillator solutions. With such mixtures, B-particles can be lost in nonscintillating micelles of an emulsion, in particles in a gel, in the solid supports or in the vial walls. Apart from the vial wall effect^{usa} such energy losses are difficult to assess and no method of quench correction can currently be applied irrespective of the phase of the sample, although phase changes during counting may be flagged. 40,101 To avoid the compounded problems of mixed colour and chemical quenching in heterogenous systems Ewer and Harding suggest the incorporation of the whole sample in the micellar phase where possible. Further references concerning the counting of heterogenous samples may be found in the bibliography.

(b) Quench Correction

Quenching can cause gross changes in counting efficiency and thus must be monitored to enable the count to be corrected. This task, quench correction, is complicated by the different types of quenching that may be present. Many attempts have been made to achieve quench correction but none can be applied uncritically. They are listed below:

- (i) Internal Standard^{38,73,137,185}
- (ii) Samples Channel Ratio (SCR)7,27
- (iii) External Standard Count (ESC)41,51,72,51
 - (iv) External Standard Channel Ratio (ESCR)*
 - (v) Relative Pulse Height (RPH) ****** Methods
 H**, SIE, ESP
 - (vi) Balance point counting⁴
- (vii) Gain Overrestoration 102,181,182
- (viii) Double Count Channels ***
 - (ix) Efficiency stick 40
 - (x) Optical filter
 - (xi) Optical absorbancy 39,76,77,184,188
 - (xii) Extrapolation^{141,142,143}
- (xiii) Double channels ratio^{so}
 - (xiv) Tracer¹⁶⁶

** no known reference except Horrocks says it was a commercial feature on Beckman LS200 in 1965

The Internal Standard (IS) technique involves the addition of a known amount of the labelling nuclide to the sample. The added activity should be high in relation to the sample activity to reduce the uncertainty in the efficiency determination. The efficiency determination is based on the subtraction of the sample count from the sample + standard count, and division of the resultant standard count rate by its known activity. The standard and sample should be chemically similar and the standard should not introduce large changes in quench. If this is possible, the method has the advantage that it eliminates the necessity to count a series of quenched standards. However, recovery of the sample may be impossible and samples cannot be recounted. Opening of vials taken from refrigerated systems leads to condensation of moisture in the vial (and water is a strong quencher). The technique cannot be applied to heterogeneous samples unless the standard goes into the same phase as the sample or is of the same form as the sample on a solid support. The technique is difficult to apply to dual label assays in presence of the above drawbacks and is difficult to automate. Also it is prone to operator error and repeated use can cause a gradual increase in the background. These disadvantages have led to the reduced use of the IS technique.

The SCR method of quench correction gives a measurement in the change in the differential pulse height spectrum with the amount of guench. It is based on the ratio of counts belonging to the two fixed pulse height channels/windows. The method has the advantages that no additions must be made to the sample and recounts are possible. However its accuracy is limited by the activity of the sample and by working with fractions of the total count - especially in the prescence of high quenching. The method requires the production of a standard quench curve - i.e. a series of known activity samples with increasing amounts of quench similar to the samples to be measured are counted and the efficiency vs SCR for each are plotted. Unknown sample efficiencies are then interpolated from this curve. The dynamic range of the method is dependent on the discriminator settings which define the two channels. The low discriminator rejects low level background noise and the high level discriminator is set to just include the maximum energy possible for the sample isotope. The middle discriminator determines the relative channel widths. If it is set low then the dynamic range is increased at the expense of the low quench sensitivity and if it is set high then the dynamic range is poor. Another feature of the SCR method is the generation of widely different calibration curves for colour and chemical quenchers. 177

Automatic external γ -standards are the most commonly used standards for quench correction. They are convenient and easy to use and can have a wide dynamic range. Half-life

and availability considerations have mainly limited the standards used to ¹³³Ba, ¹³⁷Cs and ²²⁶Ra. The samples are exposed to such standards by means of a shutter or by moving the standard close to the vial. The former method requires higher activity sources and greater shielding and the latter requires reproducible positioning. The γ -rays interact with the sample, the processes of Compton scattering and internal conversion and provide an energy continuum of electrons.

One method of quench correction which utilises external γ -ray standards is the External Standard Count (ESC). It involves the counting of a quenched series of known activity samples without and then with the presence of the external standard. If part of the sample counts are within the external standard count channel the external standard count is corrected. A calibration curve of efficiency vs external standard count is thus prepared. Samples with unknown quench levels are then counted with and without the external standard and the calibration curve is used to give the sample counting efficiency. There are various limitations to this method which may include sample volume dependency, a dependency on the sample to external standard relative position, half-life of the γ -source and changes in electron density from sample to sample. The ESC method is insensitive to the colour to chemical quench ratio whereas the sample count is not.

Another method is the ESCR which is equivalent to the SCR method mentioned above with the exception that the external standard is used to produce the efficiency vs quench calibration curve. ESCR represents an improvement over ESC since taking a ratio of counts reduces errors associated with sample volume, source half-life, sample electron density and source positioning. ESCR is insensitive to the colour to chemical quench ratio for appropriately chosen counting channels. As with the SCR method the ESCR method necessitates a compromise between high resolution (narrow window) and wide dynamic range (wide windows) and ESCR cannot be applied after phase separation.⁹³

Improvements in instrumentation have enabled pulse height spectrum storage through the incorporation of analogue to digital converters (ADC) and MCAs in LSCs and has led to several recent developments in quench correction methods. These methods involve analysis of either the whole spectrum or of local spectrum features. The first of these is the H" number method. The H" number is the difference in the location of the inflection point of the Compton edge of a ¹³⁷Cs external standard for unquenched and experimental samples after logarithmic amplification of the summed PMTube pulses. It is thus a ratio of the quenched Compton edge pulse height relative to an unquenched Compton edge pulse height. A second method the SIE, uses the mean summed-pulse height of the external standard spectrum relative to the mean summed-pulse height of an unquenched external standard spectrum (although not quite all the

spectrum is used for the computation due to wall effect discriminator). A third and similar quench indicating parameter (QIP) is the ESP. The ESP value of a sample is the mean lesser pulse height of an unquenched external standard spectrum divided by the mean lesser pulse height spectrum obtained with the sample (and with a small correction for the quantum efficiency).

The common feature of these methods, irrespective of the use of lesser or summed spectra, is the concept of relative pulse height (RPH). SIE and H* are related to the RPH and ESP to the reciprocal of RPH and all three methods have been shown to be linearly related by the expressions¹²¹:

 $H^{**} = 225 \log(ESP) - 6.35$

 $H^{**} = -475 \log(SIE) - 1391,$

the log term being present only because of the use of logarithmic amplification in the Beckman LSC and linear amplification in the Packard and Tracor LSCs. All these RPH methods make the problems of channel settings redundant, they have a wide dynamic range, are applicable to multilabel dpm determinations, are insensitive to structured pulse height distributions (e.g. ^{1,205}I), can be used with a wide range of sample count rates and are reasonably independent of volume and electron density. They are not, however, suitable for heterogeneous samples and are insensitive to the colour to chemical quench ratio.

The idea of using RPH for quench correction is not restricted to external standards. Reference samples (e.g. ¹⁴C β -emitters) may be used to construct calibration curves which provide a direct relationship with the unknown samples rather than the indirect relationship obtained with the Compton electrons of a scattered external standard γ -ray. The main disadvantage of this is the greater effect that quench has on the efficiency of detection of lower energy isotopes which necessitates longer counting times to provide a reliable measure of the sample based QIP.

The rest of the quench correction methods listed above have not gained general acceptance and popularity for various reasons. Methods (vi), (vii) and (viii) are all designed to produce a constant counting efficiency (and hence not require a calibration curve). Balance point counting achieves this by measuring counts in a middle section of the spectrum. As quenching shifts the spectrum to lower pulse heights the number of counts dropping below the middle section is balanced by the number of counts coming in from above the middle section. The method only works well for small quench changes and high count rate samples. Gain overrestoration involves the changing of amplifier gain in response to a QIP measurement (e.g. ESCR) such that a fraction of the pulses from below a low level discriminator (as set for an unquenched spectrum) are amplified into the counting region. This technique has a limited dynamic range and is restricted to high energy isotopes. The double-count channels method is similar to

the balance point method except that the middle section is not counted and the higher and lower sections are. This reduces the efficiency of all the samples to that of the most quenched and thus only uses a fraction of the total count. Descriptions of the other minor methods of quench correction may be found in the literature.

A common failure of many of these quench correction methods is the need to create a calibration curve of counting efficiency vs a quench indicating parameter. Curve fitting in LSC is another possible source of error. It is dealt with in chapter 2. The simultaneous counting of two isotopes using a LSC results in the superpositioning of the pulse height spectra associated with each isotope. Three possible cases arise: (a) no spectral overlap, (b) partial overlap, (c) total (or near total) overlap. An example of case (a) is the dual-label counting of the 5.1 MeV «-emitter *** Pu and the 21 keV B-emitter 241 Pu?4, and no problems are encountered in resolving the counts due to each isotope. Case (c) dual label counting is only feasible if some other feature of the radiation can be utilised to separate the contributions of each spectrum. One such feature may be the respective halflives of the isotopes. The difference in counts when the sample is counted at two different times is used in conjunction with the decay equation to give the activity of each isotope. Other features may be the use of Cerenkov radiation²⁰ or local pulse height features.95

Case (b) is the most common example of practical dual label counting and the ${}^{14}C-{}^{3}H$ dual label is the most common representative of this case. Both isotopes decay by emission of a ß continuum from 0 to 18.6 keV for ${}^{3}H$ and 0 to 156 keV for ${}^{14}C$. A window (B) set above the pulse height corresponding to 18.6 keV events will count a fraction of the ${}^{14}C$ events and no ${}^{3}H$ events. (See Fig. F1.9). A second window (A) spanning the pulse heights from 0 up to window B will count all the ${}^{3}H$ events and the remainder of the ${}^{14}C$ events. Dual label DPM determination

is achieved by counting similar composition known activity single label ¹⁴C samples and ³H samples using the same LSC settings. The single label reference samples provide the efficiency of counting ¹⁴C in windows B (E_{PC}) and A (E_{CC}) and the efficiency of counting ³H in window A (E_{OH}), whence the DPMs of the ³H and ¹⁴C in dual label samples may be found.

.

As with single label samples, quenching presents a major problem and quench correction calibration curves must be established for each of the isotopes in each window. **C -"H dual label counting has been reported by numerous researchers. Assailly et al" investigated the counting of "H in the presence of 14C using ESC. Everett44 reports 14C - "H dual label counting using SIE with AEC (or automatic efficiency correlation) whereas Kolbios discusses optimal choice of windows in 14C - 3H counting. Smith & Hodgson 455 examine the effect of quench on the dual label performance of two different LSCs utilising H* and SIE QIPs. Peng140 and Reuter and Trefny¹⁵¹ have included ¹⁴C - ³H dual labels in their investigations of several dual label sources which also included 3H - 128I, 32P - 128I, 32P - 14C, 3H - 32P and ¹⁴C - ¹²⁵I, and ³H - ²²Na and ¹⁴C - ²²Na respectively. De Filippis⁴⁰, also, has reported results of dual label counting of "H - 125 I. An unusual form of dual label counting which utilised "detector ratio" analogue of LSC channels ratio by means of a Geiger-Muller tube and solid scintillation counter has been reported by Gringorten. 47 A more recent technique to compute dual label radionuclide

activity has been presented by De Filippis.⁴⁰ The technique employs just one region and is dependent on the relationship between sample based QIP and external standard QIP for each isotope. It requires single isotope sample based QIP and external standard QIP calibration curves. The proportion of counts attributable to each isotope in a dual label sample is then derived from the relative position of the sample data between the calibration curves. The technique is an extension of the isotope contamination detection method proposed by Peng.¹⁴⁰

LSC pulse height spectra have been accessible for over a decade on commercial machines but the number of channnels open to the user has been limited to two or three. This restricts multi-label counting to dual or triple label counting and is perhaps one of the reasons why triple label counting has been performed rarely. Horrocks⁷³ reports the triple label counting of ³H, ^{1,25}I, ¹⁴C and the triple label counting of ³H, ^{1,25}Cl is reported in chapter 2.

1.3.6 Other Problems

There are a number of other problems that are often encountered in LSC. These include saturation of the counter due to high count rate samples and/or high energy isotopes¹¹⁰, the interference of external standard or ambient UV light induced photoluminescence¹¹⁰, bioluminescence¹¹⁰ or chemilumunescence^{70,03,104,110,144}. ^{157,174} from reactions in the solution in the vial, static electricity interference¹¹⁰, temperature effects¹⁷⁶ on the LS solutions and durability of the quenched standards.⁶²

Chapter 2

QUENCH CORRECTION PROBLEMS

Accurate quench correction is essential for the true assay of radioisotopes. Of all the common methods which attempt to accomplish this task only the internal standard method does not require the construction of a calibration curve relating counting efficiency to a quench indicating parameter (QIP). For the particular case of the SIE RPH-based technique certain general shapes of curves are obtained for the different isotopes counted. Since the correct choice of curve fitting routine is dependent on the data set a study of curve fitting to LSC calibration data was made. Another problem area in quench correction involves the background count rate. For low activity or highly quenched samples variations in the background with quench may become significant and thus were investigated. A problem though not often encountered in quench correction, and LS counting generally, is the limitations set by multilabelled radioassay. As an example of this the SIE RPH technique was extended to perform a 3H/14C/34Cl triple label dpm determination. These distinct but interrelated investigations are detailed below in sections 2.1, 2.2 and 2.3.

A further problem in quench correction involves colour and chemical quenching. The different quenching mechanisms result in the need to produce separate calibration curves for colour, chemically and mixed colour/chemically quenched samples. This major problem is considered in detail in chapter 3.

2.1 Curve Fitting and LSC Calibration Data

2.1.1 Introduction

Modern liquid scintillation counters (LSC's) allow many useful functions, such as batch handling of samples, counting efficiency vs quench calibration and multilabelled radioassay, to be performed automatically. However, the advances in machine design which have led to the provision of such facilities tend to remove the user from the analysis of the basic data which is obtained and the results are presented as a fait accompli. The most important stage in the analysis of results is the generation of the standards' counting efficiency vs quench calibration curves from which the activity of subsequently counted samples can be calculated. This applies whichever parameter is used to indicate the degree of quench in a sample, whether it is based on internal or external standards, H" @ numbers or spectral indices and whether the quenching is colour or chemical in nature. 124

Since different curve fitting routines are better matched to some data sets than others, the fitting of curves through efficiency vs quench calibration data should be dependent on the form of the data set for best results. This availability of a choice of curve fitting routines is not provided on commercial liquid scintillation counters with manufacturers choosing one particular procedure, e.g. Packard use double fixed point least squares quadratic

interpolations and Beckman use cubic spline with natural end conditions. This is reasonable with the good and almost equispaced data provided by commercial calibration standards but the more frequently produced inhouse standards are often less regular.

There are a multitude of algorithms to which recourse may be made in order to fit a curve to LSC efficiency vs quench calibration data. Some are very complicated and form part of large data handling packages requiring large computational processing installations. In this work a restriction is made to those algorithms which could be installed in a modern stand-alone counter and/or dedicated microcomputer.

2.1.2 <u>Experimental</u>

(a) Hardware and Software

All samples were counted with a United Technologies Packard 300C model liquid scintillation counter and the data was stored on disk via a 3D GPIB, Series 4000 CBM microcomputer and CBM 4022 disk drive. Data was obtained on this equipment through use of a BASIC program which recognised the number of the internal program commenced by the LSC and began data capture on identification of the correct batch of samples. Disk storage of results allowed repeated use of data sets for comparison purposes.

Post counting analysis was performed by a BASIC and 6502 machine code program offering a menu of curve fitting routines with screen plotting, screen dumps and printed output. When fitting to known functions or exact data the program allowed point by point comparisons and when fitting to experimental calibration data it allowed comparisons of the resulting assayed activities with samples of known dispensed activity. The types of curve fitting offered by the program are listed below:

- 54

- 1. Lagrangian Polynomial (using Newtons Method) 129
- Piecewise Linear (piecewise polynomials of degree >2 unsuitable)
- 3. Quadratic Splines (end conditions linear, spline slope ≡ lagrangian quadratic slope, or spline 2nd derivative ≡ lagrangian quadratic 2nd derivative)
- 4. Cubic Splines (end conditions natural, parabolic, cantilever, Forsythe's, Swartz & Varga's, or spline 2nd dervative ≡ lagrangian cubic 2nd derivatives)^{\$\$0,146}
- 5. Tension (Cubic) Spline^{so}
- 6. Stineman Interpolation¹⁷³
- 7. Bezier Blending
- Linear least squares polynomials of degree 2, 3, 4 or 5¹⁷⁰

(b) <u>Sample and Standards Preparation</u>

The standards used to compare the curve fitting routines were either theoretical or real. Theoretical standards were points chosen from functions which resembled typical LSC calibration curves. This facilitated observation of the effects of choosing many differently grouped calibration standards without having to physically produce them. For tritiated hexadecane in Fisons Fisofluor II chemically quenched with chloroform the function $y = 1/120(16/495 * x + 0.51515)^{=} \exp(-(16/495 * x + 0.51515))$ was used to approximate the efficiency vs quench curve, with 100%

efficiency normalized to 1 and $0 \leq \text{SIE}(\text{AEC}) \leq 650$. For the chemically quenched ¹⁴C standards supplied by Amersham the function $y = 1.24 - \exp(-x^2/39900)$ for 100 \leq SIE(AEC) \leq 1000 was used to approximate the efficiency vs quench curve.

Real standards were prepared by accurately weighing out quantities of a 10 $^{\circ}$ g l⁻¹ solution of b-PBD in p-Xylene (Fisons 'Scintran' grade), and quantities of CCL₄ or disperse Orange-7 as chemical and colour quenchers respectively. Weights were taken to ±0.0002 g. All liquids and glassware were purged of oxygen using a vacuum and freezing degassing technique^{*}. The dye was recrystallised from acetone and dried prior to dissolving in the same batch of b-PBD/p-Xylene solution used throughout the sample preparation.

* refer to section 2.3.2

2.1.3 <u>Results and Discussion</u>

The results for the various methods of fitting curves to LSC eficiency vs quench calibration data are shown in Tables T2.1 to T2.10. The effect of regular and irregular spacing of the standards on the SIE axis is investigated. Tables T2.1 to T2.4 show the results for the theoretical tritium standards. The key to the spacing of standards is given in Fig. F2.1. In all cases the comparison between the fitted curve and the standards function was made at equispaced intervals along the SIE axis from zero to 650. The use of $\Sigma_{\pm} ABS(X_{\pm} - Y_{\pm})$ and $\Sigma_{\pm} (X_{\pm} - Y_{\pm})^{\infty}$, where X_{\pm} , Y_{\pm} are the function efficiency values and the curve-fitted efficiency values respectively, introduces a bias against least squares or other non-interpolatory routines due to the coincidence of some of the comparison points with the interpolated standards points. This is evidenced by taking a ratio of the Σ_{\pm} ABS($X_{\pm} - Y_{\pm}$) for an interpolatory method (e.g. Stineman) and a least squares method (e.g. Least squares third order polynomial) (Table T2.3a) for 65 and 650 comparison points. These ratios are 0.10548 and 0.10100 to 5D respectively for the interpolated region (SIE 150 to 600) of the "H-efficiency vs SIE function. Also, the use of smooth functions to represent data which is usually scattered can be biased against least squares methods and to some extent the piecewise methods. This is shown by the obvious superiority of the langrangian polynomial curve fitting routine with the theoretical standards used. Tables T2.5 to T2.7 give the results for

the theoretical carbon-14 standards and in all cases the comparisons were made at equispaced interval along the SIE axis from 100 to 750.

A brief investigation of the effect of near coincident standards data was made since this is a common occurrence particularly in undergraduate laboratories. The values of $\Sigma_{\star} ABS(X_{\star} - Y_{\star})$ for curves with near coincident points at low and medium QIP are given in Table T2.8 along with subjective comments on the calibration curves obtained. In practice, such standards would be regarded as poor calibration data.

Some of the routines require the setting of variables to suit the form of the data to be fitted. This is the case for the tension parameter of the tension spline and the weighting coefficient for the least squares fitting and Bezier blending. Unless otherwise stated these were set to unity. The results for Bezier blending are not tabulated because the routine was observed to give much poorer fits than the others. The tension spline proved to be useful in situations where the ordinary splines began to show severe oscillations (setting the tension parameter >1 'pulls out' the oscillations, see Table T2.8). However, in all other situations the tension spline was inferior to the other splines ir. terms of accuracy and time requirements and so further results are not tabulated.

With the function generated calibration data acting as perfect standards Tables T2.1 to T2.3 and T2.4 to T2.7 can be grouped to compare the relative accuracies of the routines. A simple ranking procedure taking the average $\Sigma_{\pm}ABS(X_{\pm} - Y_{\pm})$ over the various data groups lists the routines in order of preference as :

> Lagrangian polynomial (Newtons Method) Cubic spline, natural end conditions Cubic spline, Swartz end conditions Cubic spline, L" = S" end conditions Cubic spline, Forsythe end conditions Cubic spline, parabolic end conditions Quadratic spline, S' = L' end conditions Quadratic spline, linear end conditions Least squares 4° ploynomial Stineman Least squares 3° polynomial Piecewise linear

To extend the study using theoretical standards the standards could be made more similar to experimentally obtained standards by superimposing random scatter on the function generated data. This would allow a comparison of the routines under conditions of different count precision. Repeated counting of real standards over different count times would also achieve a similar result however.

Tables T2.9 and T2.10 give the results for the real standards and samples prepared experimentally. Those entries marked X were not computed because of the observed occurrence of grossly inaccurate results. Chemically quenched and colour quenched tritium standards and/or samples of known activity range from SIE of 685 down to an SIE of 130 corresponding to "H detection efficiencies of approximately 55% to 0.1%. The carbon-14 samples were taken only from the region of rapid change of the efficiency curve gradient and the region of very high quench, SIE < 500 (Fig. F2.1). The calculation of the error bounds associated with each curve-generated dpm value is based on the errors in the count, the SIE and the dispensed DPM of the standards used for calibration curve production and the errors in the count and the SIE of the samples (of supposedly unknown activity). The experimental procedure used resulted in error bounds of ±0.06% and ±0.02% for the dispensed DPMs of "H and ""C respectively with the manufacturers absolute uncertainties of ±3% and ±1.5% being constant throughout the samples. The errors associated with the standards and samples counts are related to the magnitude of the counts accumulated by the expression $\sigma \approx \sqrt{\text{COUNT}}$ with the % deviation automatically calculated and printed by the Packard 300C. The SIE values were assumed to be correct to the nearest integer value (error range of ± 0.5 , and letting $3\sigma \approx 100\%$ of range then σ ≈ 0.17 for SIE number probability constant from X - 0.5 to X + 0.5), but the effect of this error on the efficiency value is dependent on the slope/form of the calibration

curve. The efficiency error $e \approx q(dE/dQ)$, where q is the error in the SIE value and dE/dQ is the rate of change of efficiency with respect to SIE at an SIE value of Q, Fig. F2.1 These errors are all combined using the expression:

Fractional dpmumercoven error, $d_{x} = \{(\% dev_{unte}/100)^{2} + (\% dev_{wture}/100)^{2} + (\% dev_{wture}/100)^{2} + 2 \times (\% (SIE x slope_wreer)/100)^{2}\}^{1/2}$

The listed values of average % difference refer to the difference between the dispensed dpms and calculated dpms.

Selection of the best curve fitting routine for LSC efficiency vs quench calibration data depends on the judgement criteria used. For example, if the resultant curve is to be smooth (with continuous first derivatives) then piecewise linear fitting is ruled out. Calibration curves are normally based on ten reasonably well spaced real standards, and so the results of the routines used for assay of real samples (Tables T2.9 and T2.11) are taken to be the final judgement criteria.

2.1.4 Conclusions

It may be concluded that cubic spline interpolation with natural end conditions is the best of the LSC efficiency vs quench curve fitting routines tested, but also noted that cubic splines with Forsythe's or parabolic end conditions and Stineman interpolation give good results for tritium and carbon-14 efficiency curve respectively. This assertion follows from the rankings of the routines (see Table T2.11). Indeed, Stineman interpolation has an additional advantage of being more robust and better at fitting curves with sharply changing gradients, i.e. ¹⁴C and more energetic B-sources.

The superior performance of the Lagrangian in the theoretical standards is not maintained in the practical situation. The introduction of noise into the system causes oscillations to occur to some extent in the splines but is excessive in the lagrangian and even within the high accuracy of the standards produced it is inferior to piecewise linear.

The currently used LSC machine routines are therefore found to be acceptable, but it should be emphasised that if calibration standards are poorly spaced the curve fitting by interpolation introduces large errors (even with perfect standards) and visual display of the resultant calibration curve is essential unless some mechanism for rejecting the fit is triggered. This may be accomplished by setting a

data spacing tolerance limit or switching to a generally less accurate but more universally applicable least squares fitting routine as a back-up.
2.2 The Effect of Quench on Background

2.2.1 Introduction

The effects of quenching on the recorded background count have been studied previously by Alessio et al, Scales and Horrocks. In an early study on the effects of colour and chemical quench on background Scales found the background count rate to decrease with the counting efficiency as established by an SCR method after spiking with an internal standard. Conversely, using a non-standard LSC Alessio found the background increased with quench for both "H and '*C samples. Horrocks has demonstrated and explained these effects by considering the changes to the background pulse height spectrum under conditions of varying quench.

This work complements these studies and assesses the significance of background quenching in routine single "H, ¹⁴C and dual label ³H/¹⁴C and triple label ³H/¹⁴C/³⁴Cl counting. Owing to the long counting times used in this study a supporting investigation into the detection of drift in LS Counters was performed. In this subsidiary investigation a comparison was made between the Cusum method and Kurtosis as indicators of drift. It is detailed in appendix A.

2.2.2 Experimental

A quenched series of 10 ml samples comprising 10 g l^{-1} butyl-PBD in scintillation grade p-Xylene and varying amounts CCl₄ as a chemical quencher was counted in standard 20 ml glass vials using a United Technologies Packard 300C LSC. All liquids and glassware were first purged of air by the technique described in section 2.3.2. The samples were left to temperature stabilize overnight in the refrigerated 300C prior to counting.

SIE with AEC was chosen to monitor the quench level using the integral \implies Ra External Standard of the 300C. Counting conditions were set to pre-programmed values of 0 - 19, 0 -156, 0 - 714, 0 - 12, 12 - 156, 12 - 90 and 90 - 714. This assured compatability with results for single ("H, ¹⁴C, ³⁶Cl), dual (³H/¹⁴C) and triple (³H/¹⁴C/³⁶Cl) label counting using AEC. Results are shown in Table T2.12.

2.2.3 <u>Results and Discussion</u>

The results for the variation in background count rate with quench under normal counting conditions for ⁴H, ^{4,4}C and ^{7,6}Cl single label, ³H/^{4,4}C dual label and ³⁷H/^{4,4}C/^{3,6}Cl triple label are depicted in Figs. F2.2, F2.3 and F2.4 (Table T2.12). The coefficients of the least squares cubic polynomials used to fit and interpolate the data are given in Table T2.13.

Fig. F2.2 shows that the background decreases with increasing quench for all the single windows 0 - 19, 0 - 156, and 0 - 714 when counting using SIE with AEC. Thus use of SIE with AEC avoids the problem of increasing background with increasing quench noted by Alessio et al who used a fixed upper disciminator to select either a "H or '*C counting window. Figs. F2.3 and F2.4 show the curves obtained for dual label and triple label regions and indicate the presence of a high energy component which is quenched into the windows despite the use of AEC. (AEC is tailored to suit the effects of quench on "H and ""C B type isotopes and not on, say, external standard γ rays). This effect can be better explained by reference to the background pulse height spectra, Fig. F2.5. It is the changing shape with quench of the spectrum relative to the counting regions which explains the background curves obtained.

It would appear generally that background is highly dependent on the counting conditions and the environment and must be fully investigated when low activity and/or highly quenched samples are being used. 2.3 Multilabel DPM Determination - Quenching Limitations

2.3.1 Introductiom

The incorporation of microprocessors and anologue to digital converters (ADC) into LSCs has led to an expansion of counting capabilities culminating in the development of machines capable of spectral analysis. Terminology has changed to describe the newer techniques (e.g. from windows to regions of interest) but the underlying processes remain unchanged. Radioactive decay in the counting vial causes scintillations to which the PMTubes respond and an electrical pulse is produced. Usually, two PMTubes are used and the pulses are coincidence gated. The selected pulses are then sorted or counted according to one of numerous criteria. These criteria involve the setting and scaling of discriminators which are related to the radionuclide's energy to provide information about the total count and the associated quench. For example, with summed PMTube pulses the resultant shaped and amplified pulse may be analysed as being within one of two preset sizes related to the radionuclide energy. This is the basis of the sample channels ratio method (described in Chapter 1) and is simple enough to realise using analogue techniques. With dual, triple, quadruple and higher label applications however, the pulse analysis requirements become more complicated and are best met by digital methods.

The ADCs of the newer counters effectively provide N channels for pulse analysis. These may be 'grouped' to form counting regions (e.g. two for an SCR measurement) and analysed for spectral features such as mean pulse-height. With an SIS type measure of quench a minimum of one counting region is required for single label counting, two for dual label counting, three for triple and so on. Assuming suitable isotopes can be selected, an N-region counter could allow N-label dpm determination. The resultant counts for each region C_4 (i=1 to N) can be solved for the dpm contributions d_4 (i=1 to N) from the set of simultaneous equations:

 $C_{1} = e_{11} d_{1} + e_{221} d_{22} + e_{231} d_{3} + \dots + e_{N1} d_{N}$ $C_{2} = e_{122} d_{1} + e_{222} d_{22} + e_{232} d_{33} + \dots + e_{N12} d_{N}$ \dots

 $C_N = e_{1N} d_1 + e_{2N} d_2 + e_{3N} d_3 + \dots e_{NN} d_N$ where $e_{1,j}$ (i,j = 1 to N) represent the counting efficiencies for each single isotope in each region (and need to be found by prior counting). The equations may be solved using gaussian elimination with partial pivoting, although pivoting is usually unnecessary since the regions are chosen so that the efficiency matrix is diagonally dominant, (and AEC or AQC type techniques are designed to maintain this situation over a wide quench range).

Currently, commercially produced machines provide up to three counting regions and thus allow single, dual and triple label counting - triple label counting of ³H, ¹⁴C and ¹²⁵I being recently reported by Horrocks. With these machines, higher label applications require either repeated use of the three output regions by recounting the samples after resetting the region limits or the inspection of the counters ADC output with external apparatus.

The complexity of the analysis and the amount of computation increases with the number of labels and necessitates accurate calibration data. However, the propagation of errors through matrix computations can produce poor results even with good data if the matrix is unstable. In a diagonally dominant matrix the gaussianreduction coefficients are <1 and so tend to reduce the effects of roundoff errors. This is not necessarily the case in LSC. Referring to Fig. F2.6, visual inspection shows that end > end > end + end < end + e ess and hence that the matrix is diagonally dominant. For a poor choice of counting regions such as (A), (B) and (C) of Fig. F2.5 emi is now greater than emi and diagonal dominance is lost. Thus optimal selection of counting regions gives the additional advantage of reduced computational error propagation.

Of course, the total error in the final dpm solutions generally depends much more upon the experimental counting conditions. Utilizing chemically quenched calibration standards to determine colour quenched sample activity would be useless for levels of quench giving rise to significant differences in the etc values for instance.

In this work a multilabel dpm determination for the particular case N=3 for colour and chemically quenched samples has been performed.

2.3.2 <u>Experimental</u>

The materials used in the preparation of the colour quenched series and the chemically quenched series of single label ³H, ¹⁴C and ³⁴Cl standards and ³H/¹⁴C/³⁴Cl triple label samples were Fisons Scintran grade p-Xylene, butyl-PBD (United Technologies Packard), BDH carbon tetrachloride and disperse orange 7 dye

(NO₂-N=N-N=N-NH₂) which was recrystalised CH₃

from acetone, Triton-X100, and "H n-hexadecane (batch 61) standard, **C n-hexadecane (batch B75) standard and **Cl as HCl, from Amersham International.

Two 1 litre batches of 10 g l^{-1} b-PBD in p-Xylene were produced and from which a 500 ml solution of 0.225 g of disperse orange 7 dye and the 10 g l^{-1} b-PBD in p-Xylene was made. This solution was used as the colour quencher.

Accurately weighed amounts of the labelled chemicals were measured into separate clean, dry 100 ml twin necked round bottomed flasks. 100 ml of the colour quencher, 100 ml of the chemical quencher (CCl₄) and the remainder of the 10 g l^{-1} b-PBD/p-Xylene were put into clean twin necked round bottomed flasks. All these materials were then purged of oxygen using the following technique. (Fig. F2.7).

Standard 20 ml LSC vials were amended by drilling 9 mm holes through the centres of the vial caps replacing the plastic seals with PTFE coated silicon septa (Pierce and Warriner, Tuf-bond Teflon laminated discs). These were then placed opened in an air tight container and repeatedly evacuated with an Edwards model N°5 vacuum pump and flushed with nitrogen. These were then held in the container under slight positive nitrogen pressure. The flasks of the various cocktail constituents were evacuated and flushed with nitrogen three times and then frozen by immersion in a dewar of liquid nitrogen. The flasks were slowly brought back to room temperature whereupon the gasses which came out of the solution were drawn off by evacuation and replaced with nitrogen. The whole procedure was repeated three times, further cycles not appreciably affecting the QIP of the material (10 g 1^{-1} p-Xylene). Each twin necked flask was sealed by the use of a Mininert ptfe resealable septum and glass/ptfe T-valve (Pierce and Warriner). The resealable septa provided a means for insertion of fine bore needle tipped stainless steel tubing into the flask and hence for pumping out the contents, using the pressurised nitrogen supply, into the amended LSC vials. This operation was carried out under positive nitrogen supply and with repeated evacuation and flushing of all interconnecting parts. Upon completion of the dispensing of quantities of labelled chemicals, quenchers, scintillators and solvents the vial caps were replaced under nitrogen with standard vial caps. This procedure allowed the addition of colour and/or chemical quencher

from a relatively low quench base.

To minimise the % weighing errors the labelled chemicals were diluted with some of the purged 10 g l^{-1} b-PBD in p-Xylene solution prior to dispensing, (50% Triton-X100/10 g l^{-1} b-PBD in p-Xylene in the case of 3^{-1} Cl-HCl). At all stages accurate weighings (to ±0.0002 g) were made and the activites of the new and/or diluted solutions were determined. The amended vials were weighed before and after the dispensation of each labelled solution, each quencher and were topped up to \$ 10 ml total volume (checked by weight) with 10 g l^{-1} b-PBD in p-Xylene. A series of 20 chemically quenched and 20 colour quenched single label standards were prepared for each isotope and a series of 40 chemically quenched and 10 colour quenched triple label standards of various constituent activity ratios were also prepared. In addition, 10 guenched background standards were prepared using CCl4 and b-PBD in p-Xylene only.

The standards were placed in the refrigerated chamber of a Packard 300C model LSC for several hours prior to counting. Samples were counted using AEC until the Packard 300C 20% terminators reached 0.2%.

The selection of counting regions for the new nuclides presented a problem. They were programmed manually to be 0-12 KeV for region A, 12-90 KeV for region B and 90-714 KeV for region C. These regions were chosen after obtaining spectra ^GH, ¹⁴C and ^{GG}Cl and background with a NE 4694 MCA and established diagonal dominanace in the efficiency matrix.

Since the 300C is not equipped to automatically produce a triple label assay, all results were stored and analysed externally. This was achieved by echoing the printer output to a series 4000 CBM microcomputer via a 3D GPIB and storing on disk. All counts were quenched-background corrected by reference to a least squares '3 polynomial fit to the quenched series of background standards (see section 2.2). All efficiency vs quench calibration curves for each isotope in each region were generated using cubic spline interpolation with natural end conditions (see section 2.1). The solution of the resulting simultaneous equations was accomplished using gaussian elimination and back substitution.

2.3.3 <u>Results</u>

The calibration curves used for the triple label determination of ³H, ¹⁴C and ³⁶Cl are shown in Figs. F2.8, F2.9 and F2.10. Differences arising from the different types of quench become more important as quenching increases becoming notable for SIE values of approximately 500 (equivalent to an H* of 109). This fact is reflected in the tabulated results for the sample dpm determinations. Referring to Tables T2.17 and T2.18, the use of colour quenched calibration standards with chemically quenched triple label samples produces poor results for SIE values less than approximately 500 and fails for SIE values of approximately 460 whereas the use of chemically quenched calibration standards give satisfactory results down to SIE values of approximately 330.

.

Tables T2.14 to T2.17 illustrate the effect of varying the ratios of the activity of the labels ³H, ¹⁴C and ³⁺Cl. The tritium activity determination is the first to fail in all cases as quench increases, failing for SIE values less than approximately 300 for higher ratios. This is expected and is due to the effect of quenching which reduces the total counting efficiency and reduces the mean energies of the β -spectra thereby causing an increase in the % of counts of the higher energy radionuclides in the lower counting regions. The effect on the counting matrix is shown graphically for quench levels of X₁ and X₂ in Figs. F2.8, F2.9 and F2.10.

For X₁, e₁₁ \approx 50% > e₂₁ \approx 5% > e₃₁ = 0 e₁₂ \approx 15% < e₂₂ \approx 70% > e₃₃ \approx 15% e₁₃ \approx 5% < e₂₂ \approx 10% < e₃₃ \approx 70%

For Xm, e11 \approx 15% > em1 \approx 3% > es1 = 0 e1m \approx 20% < emm \approx 55% > esm \approx 3% e1m \approx 5% < emm \approx 25% < esm \approx 55%

At X₁ the matrix is diagonally dominant but at X₂ it is not, although the submatrices become so as the gaussian elimination proceeds, indicating good choice of counting regions and reduced computational error propagation. Errors associated with the accuracy of each count, each SIE, and hence each efficiency remain present of course and are combined using the expression (see section 2.1.3): Fractional efficiency remain present of course and are fractional efficiency remain (see section 2.1.3): The fractional efficiency $\mathcal{F} = \{(\text{Mdev}_{\texttt{stdef}}/100)^2 + (\text{Mdpm}_{\texttt{stdef}}/100)^2 + 2 \times (\text{M}(\text{SIE x slope})_{\texttt{streer}}/100)^2\}^{1/2}$ The fractional errors in the counts accumulated in each region (δC_4 , i=1 to 3) may be directly determined from the M deviation of each count. These error bounds may be used to determine the confidence limits on the resulting dpm's by application of the expression: For i, j = 1, 2, 3 :- $\delta(\text{dpm})_4 = (\Sigma_{4,4}(\text{d}(\text{dpm})_4/\text{de}_{4,4})^2 \delta e_{4,4}^2 +$

 $\Sigma_{\pm} (d(dpm_{\pm})/d(cpm_{\pm}))^{2} \delta_{cpm_{\pm}}^{2})^{1/2}$ (1) and this necessitates differentiation of each dpm

expression by each of the $e_{\pm,i}$ and each cpm_{\pm} .

Given the matrix equation

e. 1	et a	eı s	dpmi		cpmı
ette 1.	eas	Cases	dpmæ	=	cpma
es 1	essa	easas	dpms_		cpms

gaussian elimination reduces the equation to

$$\begin{bmatrix} e_{1,1} & e_{1,2} & e_{1,3} \\ 0 & (e_{22}-e_{12}, e_{21}/e_{11}) & (e_{23}-e_{13}, e_{21}/e_{11}) \\ 0 & 0 & ((e_{23}-e_{13}, e_{21}/e_{11}) - (e_{23}-e_{13}, e_{21}/e_{11}) \\ (e_{22}-e_{13}, e_{21}/e_{11}) & (e_{23}-e_{13}, e_{21}/e_{11}) \end{bmatrix} \begin{bmatrix} dp_{m_2} \\ dp_{m_2} \\ dp_{m_3} \end{bmatrix}$$

$$= \begin{bmatrix} cp_{m_3} \\ (cp_{m_3}-cp_{m_1}, e_{21}/e_{11}) \\ (cp_{m_3}-cp_{m_1}, e_{21}/e_{11}) - (e_{23}-e_{13}, e_{21}/e_{11}) & (cp_{m_3}-cp_{m_1}, e_{21}/e_{11}) \\ (e_{22}-e_{12}, e_{21}/e_{11}) & (e_{22}-e_{12}, e_{21}/e_{11}) \end{bmatrix}$$

いいいの、「「「「「」」」」」

Spirit State and and a state of the state of a

a to the water

and a subscription with the second state of the second

のない、1991年の1月1日の日本では、1991年の日本では、1991年の日本では、1991年の日本では、1991年の日本では、1991年の日本では、1991年の1月1日の日本では、1991年の1日、1

ころのでの いちちちのこう こうちちん ちちん

from which

$$dpm_{\Xi} = \frac{(e_{11}cpm_{\Xi}-e_{\Xi1}cpm_{1}) - (e_{11}e_{\Xi\Xi}-e_{1\Xi}e_{\Xi1})(e_{11}cpm_{\Xi}-e_{\Xi1}cpm_{1})}{(e_{11}e_{\Xi\Xi}-e_{1\Xi}e_{\Xi1}) - (e_{11}e_{\Xi\Xi}-e_{1\Xi}e_{\Xi1})(e_{11}e_{\Xi\Xi}-e_{1\Xi}e_{\Xi1})/}$$

$$\frac{(e_{\Xi\Xi}e_{11}-e_{1\Xi}e_{\Xi1})}{(e_{\Xi\Xi}e_{11}-e_{1\Xi}e_{\Xi1})} -(2)$$

$$dpm_{2} = [(e_{11}cpm_{2}-e_{21}cpm_{1})-(e_{11}e_{23}-e_{13}e_{21})(dpm_{3})]/$$

 $dpm_{1} = [cpm_{1} - ((dpm_{2}), e_{12} + (dpm_{3}), e_{13})]/e_{11} - (4)$

If it assumed that each $e_{*,i}$ has a confidence limit of $e_{*,i}$ and each cpm_{*} has a confidence limit of cpm_{*,i} at a certain probability level then the confidence limits on the dpm_{*} ($\$dpm_*$) may be found using equation (1).

Let	R	Ξ	(exacpma-esacpma)	;	М	Ξ	(e	ess-ersesr)	}
	S	П	(e11esz-e1zes1)	;	Ρ	=	(e	eastersear))
	Т	=	(e11 cpm=-e=1 cpm1)	;	W	Π	R -	ST/Q	
	ର	=	(ezzeli -elzezi)	;	V	=	М —	SP/Q	

 $d(dpms) = [V(cpms-S(Q, cpms-T, esc)/Q^2-T, esc/Q)-W(esc-S(Q, esc))]$ deii $-P.e_{22})/Q^2 - P.e_{22}/Q)1/V^2$ $d(dpms) = [VT(Q, e_{S1} - S, e_{R1})/Q^2 - WP(Q, e_{S1} - S, e_{R1})/Q^2]/V^2$ deiz $d(dpms) = W(est-S, ezt/Q)/V^{2}$ deas $d(dpm_{s}) = [VS(T, e_{12}-Q, cpm_{1})/Q^{2}-WS(P, e_{12}-Q, e_{13})/Q^{2}]/V^{2}$ deza $d(dpm_{S}) = [V(ST, e_{11}/Q^2) - W(SP, e_{11}/Q^2)]/V^2$ dezz $d(dpm_{s}) = -WS.e_{1,1}/QV^{2}$ deas $d(dpms) = V(T.e_{12}/Q - cpm_1) - W(S.e_{21}/Q - e_{13}) / V^2$ des1 $d(dpm_{33}) = WP.e_{11}/Q - VT.e_{11}/Q$ desa $d(dpm_{2}) = -W.e_{11}/V^{2}$ dess $d(dpm_{\odot}) = S.e_{\odot}/QV - e_{\odot}/V$ d(cpm1) $d(dpm_{ss}) = -SQ.e_{1.1}/V$ d(cpma) $d(dpm_{\odot}) = e_{11}/V$ d(cpma) also, noting and that thedpms is not treated as an independent variable, $\underline{d(dpm_2)} = (Qcpm_2 - T. e_{22})/Q^2 - P(d(dpm_3))/Q - (dpm_3).(Q, e_{23} - P(d(dpm_3))/Q) - (dpm_3).(Q,$ den 1 dei i P.eaz)/QZ $\underline{d(dpm_{\mathbb{R}})} = -P(Q, \underline{d(dpm_{\mathbb{R}})} + (dpm_{\mathbb{R}}, e_{\mathbb{R}^{1}})/Q$ deam deaz $\frac{d(dpm_{2})}{d(dpm_{2})} = (e_{21}(dpm_{3}) - P.d(dpm_{3})/Q$ deas deas $\frac{d(dpm_{z})}{d(dpm_{z})} = (Q, e_{1S} - P, e_{1Z})(dpm_{S})/Q^{2} - P, \frac{d(dpm_{S})}{Q} - cpm_{1}$ dean deal

So:

$$\frac{d(dpm_m)}{de_{mm}} = ((dpm_m)e_{h,h} - Q, \underline{d(dpm_m)})P/Q^m \\ \frac{d(dpm_m)}{de_{mm}} = -P(\underline{d(dpm_m)} + e_{h,h}(dpm_m))/Q \\ \frac{d(dpm_m)}{de_{mm}} = -P.\underline{d(dpm_m)}/Q \\ \frac{d(dpm_m)}{de_{mm}} = e_{h,h} - P.\underline{d(dpm_m)}/Q \\ \frac{d(dpm_m)}{d(cpm_m)} = -P.\underline{d(dpm_m)}/Q \\ \frac{d(dpm_m)}{d(cpm_m)} = -P.\underline{d(dpm_m)}/Q \\ \frac{d(dpm_m)}{d(cpm_m)} = -P.\underline{d(dpm_m)}/Q \\ \frac{d(dpm_m)}{de_{h,h}} = -Cpm_h/e_{h,h}^m - e_{h,m}(e_{h,h},\underline{d(dpm_m)}) - (dpm_m))/e_{h,h} \\ \frac{d(dpm_m)}{de_{h,h}} = -(e_{h,m},\underline{d(dpm_m)}) + dpm_m + e_{h,m},\underline{d(dpm_m)})/e_{h,h} \\ \frac{d(dpm_m)}{de_{h,m}} = -(e_{h,m},\underline{d(dpm_m)}) + e_{h,m},\underline{d(dpm_m)}) + dpm_m)/e_{h,h} \\ \frac{d(dpm_m)}{de_{h,m}} = -(e_{h,m},\underline{d(dpm_m)}) + e_{h,m},\underline{d(dpm_m)}) + dpm_m)/e_{h,h} \\ \frac{d(dpm_m)}{de_{h,m}} = -(e_{h,m},\underline{d(dpm_m)}) + e_{h,m},\underline{d(dpm_m)}) + dpm_m)/e_{h,h} \\ \frac{d(dpm_m)}{de_{h,m}} = -(e_{h,m}/e_{h,h},\underline{d(dpm_m)}) + e_{h,m}/e_{h,h},\underline{d(dpm_m)}) ; for i=2,3 \\ \frac{d(dpm_m)}{de_{h,m}} = -(e_{h,m}/e_{h,h},\underline{d(dpm_m)}) + e_{h,m}/e_{h,h},\underline{d(dpm_m)}) ; for i=2,3 \\ \frac{d(dpm_m)}{d(cpm_h)} = -(e_{h,m}/e_{h,h},\underline{d(dpm_m)}) + e_{h,m}/e_{h,h},\underline{d(dpm_m)}) ; for i=2,3 \\ 1n this work the cpm_h were determined with typical confidence limits of 0,4\%, 4\%, 20\% for e_{h,j} i=1,2,3 and 0,5\%, 0,2\%, 1\% for i=2,3 \\ 0,5\%, 0,2\%, 1\% for e_{h,m} i=1,2,3 and 0,7\%, 0,4\%, 0,2\% for e_{h,j} i=1,2,3 and 0,5\%, 0,2\%, 1\% for i=2,3 \\ 0,5\%, 0,2\%, 1\% for e_{h,m} i=1,2,3 and 0,7\%, 0,4\%, 0,2\% for e_{h,m} i=1,2,3 and 0,5\%, 0,2\% for e_{h,m} i=1,2,3 and 0,5\% for e_{h,m} i=1,2,3 an$$

eis; i=1,2,3. Thus with the efficiency matrix

0.50	0.15	0.05
0.05	0.70	0.15
0	0.10	0.75

as an example and cpm_{1} of $\begin{bmatrix} 10,000 \end{bmatrix}$ the estimated confidence

10,000

limits on the dpm¹ become δ dpm¹ = 129, δ dpm² = 81, δ dpm³ = 204 for actual dpms of dpm¹ = 15,623, dpm² = 10,616, dpm³ = 11,918. Comparison of these results with those in Tables T2.14 to T2.17 for dpm ratios of (approx.) 1½:1:1 with light/moderate ranges of quench (equivalent to the efficiency matrix given) largely accounts for the observed scatter.

With unquenched and lightly quenched triple labelled samples there is evidence in Tables T2.14 - 19 that the ³⁶Cl activity is overestimated. (This may be in part due to a systematic error in the 'known' dpm of the ³⁶Cl which was a nonstandard labelled source standardised against a ³⁶Cl standard (suppled by Amersham). The source was of a similar level of quench to the standard.)

It is interesting to note, however, that this situation is not maintained as quenching increases. This may be caused by the AEC although further work would be necessary for verification. If AEC is not selected the calibration curves for ³H, ¹⁴C and ³⁶Cl counted in regions 0 - 12 keV, 12 - 90 keV and 90 - 714 keV are substantially altered, see

Fig. F2.11. Examination of the solution matrix for a triple label determination at a quench level of X. shows that

e₁₁ ≈ 9% > 0 > 0 e₂₁ ≈ 59% > e₂₂₂ ≈ 16% > 0

esi # 21% < esi # 61% > esi # 6%

and is not diagonally dominant. At first sight the presence of the zero efficiencies may seem advantageous in that no matrix reduction is necessary. However, the backsubstitution process is worsened by the development of coefficients with small denominators. Also, and of greater significance is the larger uncertainties associated with the lower counting efficiencies. It can thus be seen that the AEC feature provides a useful function.

2.3.4 <u>Conclusions</u>

Multilabel dpm determinations using liquid scintillation counting techniques are feasible provided the selection of counting regions is based on a thorough knowledge of the pulse height spectra of the labelling radionuclides.

the second of the second second

It remains important to differentiate between colour and chemical quench in multilabel dpm determinations.

AEC type electronic quench compensation remains a useful technique for multilabel dpm determinations.

SIMULATING THE LSC - I MODEL CONSTRUCTION

This chapter describes the design, development and implementation of an original simulation of the LSC. The input data necessary for the correct functioning of the model was partly researched in the literature and partly experimentally determined.

A stochastic approach was chosen because of the physically discontinous nature of the sequence of processes in LSC. Monte Carlo methods are well established and have been applied successfully in many branches of Nuclear physics. Modelling at the photon level gives advantages over modelling at the spectral level by avoiding the compounding of complex spectral and geometrical equations, by encouraging logical program development and by facilitating independent manual testing of the program. Since the basic stages of β decay \longrightarrow chemical quenching \longrightarrow fluorescence \longrightarrow colour quenching and photon detection are universally accepted, parts of this model must be similar to that of Stanley. However, extensive improvements to the modelled geometry and modelling of the PMTube response together with an independently developed program serve to (a) corroborate the earlier work and (b) provide a closer representation of a specific LSC. The latter point is important in the linking of the model to reality for the purposes of developing new counting techniques.

3.1 The Colour-Chemical Quench Correction Problem

The essential differences between the colour and chemical quenching effects that are observed in LSC are a consequence of the geometrical dependence of colour quenching and geometrical independence of chemical quenching. A typical two PMTube LSC is illustrated schematically in Fig. F3.1. After certain B-decay some energy is ultimately converted into useful photon production. Assume that an equal large number of monoenergetic photons is emitted in each direction (to PMT1 and PMT2) parallel to the x-axis. If no colour quencher is present the pulses at each PMTube will be of equal height. If a colour quencher is present, however, and the probability of absorption follows an exponential curve according to the Beer-Bougouer Law then PMT2 will produce a smaller pulse than PMT1. This is generalised in Fig. F3.2 for events of different position x.

In all current LSC machines the two pulses y_1 and y_2 are either summed or lesser-gated prior to pulse height analysis and storage. The net effect is a pulse which is still dependent on position x as shown in Fig. F3.3, where $y_3=y_1+y_2$ for the summed pulses and $y_1=\begin{cases} y_1 \ y_2 \ y_3 < y_1 \end{cases}$

"lesser" pulses. It is evident that y_{\perp} varies less with event position than does y_{ss} . This explains why lesser pulse height counting gives calibration curves that are more alike for colour and chemically quenched samples than

does summed pulse height counting, and also why the resolution is worse (owing to the consistently smaller pulses generated).

This simple analysis indicates two approaches to overcome the colour chemical quench differences:

- (a) find a combination, y_c, of pulses y₁ and y₂ which
 makes y_c independent of x (i.e. conceal the colour
 quench effect), or
- (b) find a new indicator of the event position and use
 it to indicate the <u>amount</u> of colour quench present
 (i.e. exaggerate the colour quench effect).

To pursue the simple analysis further let A represent the chemical quench coefficient (where $0 \le A \le 1$ and 0=100% quenched; 1=no quench), E be the energy available from the β -event, and B represent the colour quench coefficient such that

$$y_1 = EAe^{-B \times}$$
(1)

and
$$\mathbf{y}_{\mathbb{R}} = \mathbb{E}Ae^{-\mathbb{R}(1-\mathbf{x})}$$
 (2)

Then the sum $y_{\Xi} = EA(e^{-\Xi \times} + e^{-\Xi \cdot (1-\times)})$ (3) and the lesser $y_{L} = \begin{cases} EAe^{-\Xi \times} , y_{1} < y_{2} \\ EAe^{-\Xi \cdot (1-\times)} , y_{2} < y_{1} \end{cases}$ (4)

These are not the only way that equation (1) and (2) may be combined:

e.g.	Difference	:	Ур	=	$EA(e^{-Ex} - e^{-Ex})$	П	y1 -y2	(5)
	Product	:	У⊨∘	Π	(EA) [~] e ⁻	Ш	У1. У22	(6)
	Ratio	:	YFR	=	$1/(1 + e^{-\omega(1-2\pi)})$	=	$y_1/(y_1+y_2)$	(7)

It is noticed immediately that yr is independent of x and thus is an example of approach (a) whereas y_D , which varies substantially with x (see Fig. F3.1), is an example of approach (b). At first sight the pulse multiplication seems an ideal approach. However, this 1D model is not a very good representation of the processes at work in a LSC. Extension of the model to allow for 2D photon trajectories bounded by a rectangle (Fig. F3.4) shows yr becomes weakly position dependent. (e.g. Assuming H=1, h=H, r=0.5 and all photons travel by mean path lengths L1 or L2 then as x varies from 0 to 0.5, $\overline{L_1} + \overline{L_2}$ varies by up to 8.9%. Since $y_{p} = (EA)^{2} e^{-m \sqrt{-1} + \sqrt{-1}}$, y_{p} is shown to be dependent on event position x). Further extension of the model to cover a 3D cylinder of height=1 and radius=0.5 showed that for 1000 randomly positioned events each of 1000 monoenergetic photons emitted in random directions the function $L_1 + L_2 = 0.912$ and has a standard deviation of 0.201 and hence represents a worsening of the dependence of y- on event position. Obviously too much reliance must not be placed on simple models.

and the second of the second of the second of the second second of the second of the second of the second of the

and and the state of the state of the second state and the line

Caution must also be exercised in the use of equations (1) to (7). The basic elements of the system in terms of pieces of information rest with the fact that there are two PMTubes. For any given β event we know a pulse height y_1 , from PMT1, and a pulse height y_{20} from PMT2, i.e. two pieces of information. Current summed and lesser pulse height techniques are wasteful because only one piece of information is used (y_{20} or y_{10}). The approach (b) stated

above is feasible because there is scope for another pulse based parameter. The <u>simultaneous</u> use of y_{H} and y_{D} is an example.

To accomplish simultaneous summed and differenced pulse height analysis experimentally requires careful modification of the pulse handling circuit. Investigation of a large variety of pulse handling techniques to optimise selection of the colour-chemical quench indicating parameter becomes time prohibitive experimentally. If a reliable model of the LSC were developed such constraints would no longer apply. A highly detailed model of the LSC has been developed and applied to the colour-chemical quench correction problem. It is described in the succeeding sections.

3.2 LSC Model Design

3.2.1 Model Geometry

In section 3.1 the geometry dependence of colour quenching was stressed. For this model to approach a good simulation of the LSC the 3D geometry of the whole counting system must be as detailed as possible. This model is applied specifically to a Packard 300C LSC so far as the counting chamber and PMTubes are concerned although the modular design of the program allows future expansion to cater for alternative counting chamber geometries and materials.

A schematic diagram of the vial and counting chamber geometry used in the model are shown in Fig. F3.5. Dimensions have been chosen in accordance with United Technologies Packard Drawing No. D-5070871 and on measurements made on the standard glass vials used experimentally. The small differences between the vial length and chamber diameter may be adjusted in the model by the incorporation of a z-axis offset. The plane mirrors simulate the slightly curved photon-directing mirrors of the real counting chamber. The vial inner and outer walls are perfect cylinders and are concentric unless otherwise stated and the solution forms a 90° contact angle with the vial inner wall at the meniscus. The cross-hatched PMT faces have the properties of pyrex glass (Corning 7740). The pyrex is of zero thickness so that all non-reflected photons interact with the photocathoode.

The coordinate system adopted in the model is cartesian and the Right Hand axis convention is obeyed. The axes are also illustrated in Fig. F3.5.

3.2.2 The Model Scintillation Detector Processes

In addition to the geometrical constraints of section 3.1 the model is further characterised by the following description:

A β -event is defined by choosing an event position which is random 3 dimensionally in the volume occupied by the solution. The event position is fixed for ³H and ¹⁴C simulated decays for the duration of the photon production and photon tracking stages which result from the β -decay. The β -energy, E_{β} , is randomly selected according to the modified Fermi distribution for each particular isotope.

The β -energy which is released as useful for photon production is determined by application of a scintillation efficiency function and a chemical quench coefficient. The scintillation efficiency is a function of E_{β} and has been experimentally determined by Horrocks.^{eng} Malcolm & Stanley have made the point, however, that the data represents the scintillation efficiency as a function of average E_{β} whereas the model requires the scintillation efficiency as a function of a monoenergetic E_{β} .^{imit} The chemical quench coefficient is independent of E_{β} and hence is simulated as a simple multiplicative variable between 0 (fully quenched) and 1 (unquenched).

Photons are generated with random 3D direction vectors and with wavelengths according to the solute fluorescence spectrum. They are also assigned a random electric field vector which is perpendicular to the photon direction vector i.e. they are assumed to be The B-energy available for photon plane polarized. production, E_p, allows the repeated production of photons with random directions and random wavelengths until E_p is exhausted. If the amount of energy left is between the upper and lower limits of energy for photons of the solute (corresponding to wavelengths of 300 nm and 600 nm in the model) the Monte Carlo decision is based on the truncated fluorescence spectrum. Any residual energy of $E_{\rm p}$ which is less than that corresponding to a 600 nm photon is assumed lost. All the photon direction vectors start at the β -event coordinates and the photons are traced in turn until the fate of all is known.

いないたないろいない、あんなないないないないないのないないないないないないない

and the solution of the second second second second to be a solution of the so

Colour quenching is simulated by assigning to the solution an absorption spectrum and a concentration of the absorbant (or colour quench coefficient). The distance that the photon must travel from the ß-event coordinates to the point of escape from the solution is calculated. The probability of a photon being colour quenched along its path is assumed to follow an exponential distribution according to Beers law. Hence the Monte Carlo decision to quench or transmit a particular photon is based on the exponential

distribution defined by:

Prob. of escape = e^{-acd}

where a = abs. spectrum prob. ($0 \le a \le 1$)

c = colour quench concentration

d = path length of photons

The behaviour of photons at solution-vial interfaces and solution-air interfaces is determined by another Monte Carlo decision. Reflection or refraction is assumed to obey Fresnel's equations:

Rh	=	-Sin(Ø - Ø')	د	R _{//} =	Tan(Ø - Ø')	و
Е _Ь		$Sin(\emptyset + \emptyset')$		E //	Tan(Ø + Ø')	
Т <u>н</u>	=	2SinØ'CosØ	و	<u>T_{//}</u> =	2SinØ'CosØ	و
Е _Ь		$Sin(\emptyset + \emptyset)$		E ₁₁	$Sin(\emptyset + \emptyset')Cos($	Ø- Ø')

where E, R, T, are incident, reflected and transmitted amplitudes of the light electric vector and \underline{h} , // are perpendicular or parallel to the plane of incidence. From these equations the reflectances $(R_{\underline{h}}/E_{\underline{h}})^{x}$, $(R_{//}/E_{//})^{x}$ may be determined. In the model the total reflectance $(R/E)^{x}$ of a single photon is assumed to be a weighted average of the parallel and perpendicular reflectances of the photon. These parallel and perpendicular reflectances are computed by resolving the electric vector of the photon into components which are parallel and perpendicular to the plane of incidence (in 3D space). The Monte Carlo decision is thus based on the curve between the 100% $E_{//}$ and 100% $E_{\underline{h}}$ reflectance vs angle of incidence curves. A simpler method to decide the photons reflection or refraction

may have been to resolve the electric field vector into the parallel and perpendicular components and then make the photon obey either the $100\% E_{//}$ or the $100\% E_{\rm h}$ curves weighting the choice to a random decision weighted by the electric field vector components. The former method is used in the model and the cumulative result satifies Fresnel's equations and Snell's law. The refractive index, n, is wavelength dependent and is determined by application of a 3 point Cauchy equation at each interface: and the set of a second of any second

 $n = A + B/\lambda^{=} + C/\lambda^{4}$

where A, B and C = constants

λ = wavelength

This equation adequately accounts for dispersion in isotropic nonconducting noncolloidal homogeneous materials in the visible region, and is discussed in many standard optics texts.

The new direction vectors of reflected or refracted photons are calculated. If the photon is reflected the point of reflection becomes the new photon origin for the purposes of new path length calculations, colour quenching decisions, and new solution-air or solutionglass interface decisions (or direct loss in the vial base). If refracted it enters a new medium - air or glass. If it enters the air space it will either reach the vial top (and be absorbed) or the vial glass where a new reflection/refraction decision is made. If the photon enters the vial glass it is further traced with

yet more reflection/refraction decisions. These processes are repeated as often as necessary to trace each photon with the model allowing photons to re-enter any medium any number of times.

The path tracing of photons is continued after leaving the vial and entering the air filled counting chamber. Decisions on reflection or absorption at either the cylindrical or plane mirrors are made by a Monte Carlo method using the absorption spectrum of polished aluminium. At either of the PMTubes photons may be reflected by the glass face-plate or transmitted through it. If transmitted they interact with the photocathode by absorption, reflection or transmission according to the wavelength dependent quantum efficiency of the photocathode. It is incorrect at this stage to continue treating the photons as independent objects. The real world photocathode receives multiphoton pulses as its input signal and integral numbers of photoelectrons are emitted within a time that is short with respect to the resolution time of the PMTube. Thus in the model, as photons arrive at each photocathode they are stored (wavelength and arrival number) until the energy for photon production, E_{p} , and the whole β -event is exhausted. On completion of photon tracing for the B-event the batch of photons at each PMTube are analysed. If all the photons were monoenergetic the

number of photoelectrons produced could be determined from a simple Poisson distribution. However, they are not monoenergetic and moreover the batch wavelength spectrum varies from B-event to B-event and especially with low energy emitters. Precise work at this stage requires the construction of a full binomial distribution for every event and each PMTube. Owing to the large time constraints that this would entail an approximation was developed. In the model a wavelength is chosen at random from the stored wavelength data. This choice is naturally weighted according to the incident batch distribution. All photons in the batch are assigned the quantum efficiency of the chosen wavelength and the number of photoelectrons is determined by a Monte Carlo method based on the resulting poisson distribution. The poisson distributions vary from batch to batch and in the long term approximate the effect of using the binomial distribution.*

いいいいのである、あっているのである、このにないないないないのである、ころないとないない、あいろう

The number of photoelectrons arriving at the first dynodes of each PMTube is dependent on the collection efficiency and the probability of collection is applied to each photoelectron. The numbers of secondary electrons from the first dynodes resulting from the incident primary photoelectrons is determined by a Monte Carlo decision based on a Polya distribution.⁴⁴

* Refer to section 3.3.

This procedure is repeated for the second dynodes and the resulting numbers of electrons from each is taken to represent the pulse heights of PMT1 and PMT2. These pulses are then analysed and stored by whichever method the programmer has selected.

3.2.3 The Model Logic Design

The logical processes inherent in the model are best described by means of a flowchart. A simplified flowchart is presented in Fig. F3.6.

3.2.4 <u>Model Implementation</u>

The program is written in VAXPASCAL version V3.0 under a VAX VMS version V4.0 operating system. The program is approximately 1200 lines long and occupies 76 blocks of memory on a VAX 785. Run times vary greatly with isotope and quench. Typical CPU times are 6 hours for the accumulation of 1000 counts for an unquenched 'AC sample and around one tenth of this for a "H sample. Output consists of header information, set-up data and pulse height spectra. Status reports on the batch runs are logged in separate files. Analysis and formatting of the model generated data is performed by ancillary programs which are not detailed here.

The program is listed in appendix B. It is acknowledged that from a computer programming point of view the program is not optimised in terms of storage or runtime. This is largely because the program is still very much a research tool and is liable to modification for a variety of reasons. Originally the output was limited to six types of pulse height spectra (sum, difference, ratio with coincidence or noncoicidence). Modifications have since been made to produce product and other pulse height spectra. A better procedure would be to simply store the whole <u>sequence</u> of pulse pairs from PMT1 and PMT2 for each quenched sample so that an extensive hunt for optimal quench parameters could be made by repeated post-analysis using the data pairs. Batch running of the program
prohibited interactive initialization of program variables and so the initialization part of the program was spilt into separate compilation modules. This also reduced compilation times. The external mathematics functions which have been used are those belonging to the DEC FORTRAN maths reference library as maintained by the Computer Services Department at Trent Polytechnic.

3.2.5 Numerical and Logical Testing of the Model

A vitally important part of the implementation of the model is program validation. To this end each modular procedure was tested and correct functioning proven. All absorption spectra, fluorescence spectra, 8-spectra, Polya distributions, poisson ditributions and other sources of input data error have been manually compared with separately obtained results or data. Over twenty 3D vectors which cover most types of photon behaviour (e.g. total internal reflection in glass wall, and reflection and refraction at curved or plane surfaces at several 3D incident angles) have been manually calculated and fully manually traced. This extremely tedious and time consuming execise resulted in agreement with the models' calculation in all cases. (N.B. a real physical paper mock up of the vial and counting chamber greatly assisted 3D visualization of the photon paths).

actives and the solution of the solution of the second of the second

This left the problems associated with accumulation and calculation errors. Under certain conditions, due to the random nature of the selected input data and cumulative computational errors, incorrect ray tracing conditions were discovered. These were corrected by the use of computational tolerances put around the geometrical surface intersections. Vectors calculated as being just outside the system were slightly rescaled to lie on the edge of the system. Even so, one error which resulted in underflow occurred approximately once or twice in a series of ten

1000 count ¹⁴C runs (i.e. 10,000,000 photons). This rare but catastrophic programming event was treated as a photon loss and was the only case of avoiding rather than correcting program errors.

alphone and a second a factor of the second and the second design of the second second second second second se

3.3 Model Input-Data Sources

3.3.1 Introduction

A wide range of input data is required to operate the model. Fig. F3.7 shows a list which summarises the data actually used in the model. A significant proportion of the data has been self ascertained and how this was achieved is detailed overleaf.

ZI- 42 12.1

3.3.2 <u>Materials and Methods</u>

(a) Fluorescence Spectra

Equipment : Perkin Elmer model 3000 Fluorescence Spectrometer. Perkin Elmer model 561 chart recorder. Apple IIe Microcomputer + disc drives + printer. XAD2 A to D Card. TDI psystem Apple Pascal Software. Gould model 4040 Storage oscilloscope. Rockwell Aim 65 micro. Quartz sample and reference cells + 10 g l^{-1} b-PBD in p-Xylene + either n-hexadecane Orange 7 or CC14 or

たいないないないない、ないたいないないないというないないというないないないないないないであるというないない

Method : Equipment was set up in accordance with Fig. F3.8 so that depression of the PE3000 scan button synchronised the commencement of the spectra capture program on the Apple IIe. The spectra were obtained by passing the PE3000 chart recorder output through the XAD2 A to D card to the Apple IIe using self written assembly language subroutines to handle the binary coded data. Storage of the data on floppy disk facilitated the latter incorporation of the data in the model on the VAX network.

Four separate samples were measured. One was unquenched, one was quenched with CCl_4 and two were quenched with 07 dye. The samples were counted using a Packard 300C LSC to determine the relative quenching present in each prior to fluorescence spectra capture. The unquenched sample was counted twice - once with little O_{22} present and once after opening to the atmosphere and allowing the sample to become air saturated.

Spectrometer machine settings were 60 nm/min scan speed, 10 mm excitation slit width, 5 mm emission slit width, 300 nm start wavelength, 600 nm stop wavelength and auto PMT correction was used.

(b) Absorption Spectra

Equipment : As for fluorescence spectra + CHCl₃ non fluorescing solvent.

Method : The method employed is largely the same as that for the fluorescence spectra capture. In this experiment the sample was disperse 07 using chloroform as the common solvent. A full scan on the solvent and solvent reference cell allowed background subtraction to be performed. The experiment was performed twice with settings of transmission mode selected, excitation and emission slit widths on 1 mm, a 600 nm to 300 nm scan range and scan speeds of 60 nm/min and 15 nm/min respectively for the two runs.

(c) Optical Dispersion

Equipment : Bellingham and Stanley model 60 Abbe refractometer. LKB Multitemp Circulator model 2209. Sodium lamp. Mercury lamp. Optical filters: Evans Electroselenium Ltd. types 601 and 603, and a Helium-Neon laser filter (λ = 632.8 nm).

Method : The temperature of the refractometer was maintained at 16°C to match the (overnight) measured temperature of the Packard LSC refrigerated sample chamber. In an optical dark room refractive index readings were taken for the four filtered wavelengths 435.8 nm (λ_{γ}), 491.4 nm (λ_{P}), 589.2 nm (λ_{γ}), 632.8 nm (λ_{R}). Materials measured, in sequence, were p-Xylene, 10 g l⁻¹ b-PBD in p-Xylene, CCl₄ and n-hexadecane, with thorough cleaning and drying between each measurement.

(d) PMTube Photoelectron Distribution

Equipment : Apple IIe computer + disks + printer.

Method : A program was created to compare the binomial and multipoisson approximation distribution for small and moderately sized batches of photons with wavelengths chosen at random and weighted according to the fluorescence spectrum of 10 g 1^{-1} b-PBD/p-Xylene.

TDI pSystem Apple Pascal software.

Quantum efficiencies of the photons were calculated from a quadratic equation which was fitted to the manufacturers quantum efficiency curve for a RCA model 4501/V3 PMTube.

(e) <u>Vials</u>

Vial dimensions shown in Fig. F3.5 are the average of ten measurements on randomly selected low potassium borosilicate glass vials. Vial heights were taken from base to the glass shoulder. It may be noted that the vial (and counting chamber) dimensions may be treated as variables in the model.

(f) <u>PMTube Dynode Shape Factor</u>

Owing to the uncertainty in the appropriate value for the dynode shape factor, the Polya distribution was calculated for a dynode of gain 3.94 for a range of shape factors.

3.3.3 <u>Results and Discussion</u>

The spectral distribution of light from a LS cocktail (a)when excited by a soft B source will include both fluorescence and phosphorescence in the absence of oxygen. The phosphorescence of the O_{a} -degassed samples in a LSC is not counted because of the fast response of the LSC (\approx 100 ns for Packard 300C). Fluorescence occurs in <10-* s whereas phosphorescence occurs in >10- s and a typical count rate of 60,000 cpm, if uniformly spread in time and corresponding to 1 event per millisecond, indicates that counting or 'doubling up' of phosphorescent events is unlikely within the LSC resolving time. The LSC is thus a fluorescence-only monitor. The PE3000 is not necessarily a fluorescence-only monitor however. With the unquenched sample, the storage scope and Aim micro were used to capture PMT pulses from the PE3000. These pulses were shown to be comprised of a fast and a slow component and the integration of these components suggested a method of determining the phosphorescent and fluorescent parts of a composite emission spectrum, but how much the pulses were a function of the PE3000 PMTube switching was not further investigated.

Oxygen is a very strong quencher of phosphorescent states in a LS cocktail. The spectrum obtained with O₂ present was used to provide the fluorescence

spectrum for the model. The further samples were measured to illustrate the effects of colour and chemical quenchers on the fluorescence spectrum. The spectra are plotted in Fig. F3.9. N.B.: different scaling factors were used for each spectrum to maximise usage of the A to D resolution. The choice of CCl₄ as a chemical-only quencher appears to be a good one since the relative distributions are identical within experimental error. The distortion to the fluorescence spectrum is illustrated by the heavy and light colour quenched samples. いたちとうないのでもないないです。そうでのは、ころうでもないないでもないできたでものでものできたです。

and a factor of the second second

A further point to note is that the fluorescence spectrum as used in the model incorporates the effects of any absorbers present in the O₂₂ quenched sample. This includes self absorption by the solute. The solute concentration is the same for all the samples used in this study and hence a separate experiment to assess the absorption spectrum (as carried out by Stanley) was not performed.

(b) With the absorption spectrum of 07, the 10 nm step spectra were thought to be of sufficient resolution for the broadband spectra obtained. The 10 nm step spectrum is shown in Fig. F3.10.

(c) The Cauchy dispersion equation $n(\lambda) = A + B/\lambda^2 + C/\lambda^4$ was used with the four refractive indices used for each substance. The red and yellow refractive indices were chosen for two of the three simultaneous equations required to compute A, B and C since these were more accurate. The third value was decided by comparing the results for the blue and violet indices (Table T3.1).

The Cauchy equation was also applied to the estimation of dispersion in the vial glass. For borosilicate glass $N_{\rm P}(H_{\rm H})$ blue/green=1.5158, $N_{\rm el}(H_{\rm H})$ yellow=1.50970 and $N_{\rm el}(H_{\rm H})$ red=1.50627 corresponding to wavelengths of 486.1 nm, 587.6 nm and 656.3 nm.

The constants then become A=1.49788933, B=4061.10397 and C=5804367.75.

The variation of refractive index is small over the range of wavelengths examined. The range doesn't extend to the 300 nm higher limit of the stored fluorescence and absorption spectra, but this is relatively unimportant because (a) the fluorescence spectrum high wavelength cut off is around 350 nm and (b) the refractive index is a slowly varying function with wavelength for regions not near an absorption band.

Dispersion of the PMTube glass is not incorporated in the model as yet (a fixed value of n= 1.52 is used), nor are changes in the cocktail composition due to the addition of samples and quenchers. The modelled solution is based on the results for 10 g l^{-1} b-PBD in p-Xylene. いいであるのでない いろういいない いんのう いいのうちにい ひろ

(d) Figs. F3.11 to F3.21 show the distributions for the binomial and multipoisson approximation modelled photocathode. Ten randomly chosen poisson distributions were constructed and averaged from the same input batch in each case. The cumulative effects of using the poisson approximation with batches of photons typified by the 10 g l⁻¹ b-PBD in p-Xylene fluorescence spectrum are seen to be almost identical to those using the lengthy full combinatorial binomial distribution for small numbers of incident photons. (For large numbers of incident photons the poisson approximates the binomial distribution as may be shown in many statistics texts).

A further check was made by comparing ten randomly chosen poisson distributions based on different input batches of photons. See Figs. F3.20, F3.21. The cases for m=4 and m=9 are plotted. The great similarity between the distributions is evident.

(e) Vial dimensions have been given in section 3.1.1. The outer radius of the standard glass vial has been extended to 14.7 mm in the model to cover the tolerance gap encountered between the vial and the counter chamber. Although the increased photon losses in the vial top and base in the area of the vial wall annulus will not be identical to losses by refraction and escape through the tolerance gap, the treatment is believed to be adequate for the relatively small % of photons affected. Increased rigour here would demand increased rigour in dealing with other more complex problems - the rounded shoulders of the glass vials and the screw threads for example. " and " a had a start of the and a start of the a start of the start o

The effects of varying the dynode statistical shape (f) factor on the secondary electron distribution for a dynode with an expected gain of 3.94 is shown in Table T 3.2. The gain of 3.94 is derived from the total gain of 1.4x107 (at 2kV applied voltage) for a 12 stage BeO PMTube of type 4501V3 (RCA Corporation). The distributions were obtained using program POLYA. PAS which is listed in appendix B. According to the manufacturers BeO dynodes do not exhibit pure poissonian behaviour due to irregularities in the dynode surface. In the absence of specific information a shape factor of 0.2 is arbitrarily selected in the first instance. The effects of varying the shape factor on the model output is examined in the next chapter.

- (g) For completeness, the data obtained from the literature is include below:
 - (i) Aluminium reflection data is linearly interpolated from Table T3.3. The normal incidence reflection underestimates the true multi-angled incidence of the model. The increased losses may in part be offset be neglect of such sources of absorption as surface dirt and dust and imperfect vial and chamber surface.

大学家がある。「ためまでない」があるまであったがないのできょうから、いたがないないないできょうがあり、「なみまである」、「なるまである」、「あってきまで、「あったいない」

(ii) Quantum efficiencies were calculated by use of a quadratic equation fitted to the curve shown in Fig. F1.10. Coordinates chosen for the fit were (260,4), (380,25) and (580,3) and resulted in the quadratic

> $Q(\lambda) = -0.0008906\lambda^{2} + 0.745\lambda - 129.49375$ It is known that the quantum efficiency is not constant over the surface of the PMTube and may vary by as much as 20%. The quoted curve with a maximum of \approx 26% efficiency is used in the model and may therefore be a slight overestimate.

(iii) The scintillation efficiency of the solution in the model is chosen to follow the same curve that Horrocks established for a PPO/POPOP/ Toluene cocktail. The curve is shown in Fig. F3.22 normalized to give a value of 5.2% at 50 keV. The effects of varying this curve on model output is investigated in the next chapter.

(iv) The β-spectra for ³H and ¹⁴C were obtained from Fano (National Bureau of standards).¹⁰⁹⁷ The data is included in the listing of the model program. It may be noticed that the spectra include correction for screening. いい マット・ディー

S. S. S. C. C. Ward

Other forms of data input, such as the colour or chemical quenching coefficients or electronic threshold levels are treated as variables and are stated with the output results which are described in the next chapter.

3.4 Model Validation and Performance

3.4.1 Introduction

The ultimate criterion for success of the model is to produce - without arbitrary adjustment of model variables simulated pulse height spectra which are the same as those obtained with real LSCs over a wide range of quenching conditions. This model has been given the properties of a Packard 300C LSC and hence the criteria relates to spectra obtained on such a machine. The comparison of sequences of spectra is aided by selection of some spectral parameter such as the mean pulse height of the pulse height spectrum. This choice of parameter has the additional advantage of allowing direct comparison with the SIE and SIS of the 300C and as these QIPs are derived from the mean pulse height. However, because increased flexibility in analysis of the spectra was deemed necessary, provision was made to accumulate the spectra on equipment external to the 300C.

3.4.2 <u>Experimental</u>

A schematic diagram of the equipment used for pulse height spectra capture is shown in Fig. F3.23. LSC signals (pulses) were taken prior to the A/D because (a) the complex digital circuit logic was protected by Packard Instruments Ltd. and (b) access to the raw coincidence gated analogue signal allowed flexibility in further pulse processing. and the second and a second and a second of a second of the second of th

and the state of the state and a second of the state of the state bar in the state of the state

The line driver was constructed after tests showed the effects of coaxial cable loading of the 300C - see Table T3.4. The performance of the line driver was tested by comparing its input and output pulses. Input pulses were provided by means of a Bradley Model 233 Fulse Generator. T-piece coaxial cable connections to a Gould Digital Oscilloscope 4040 and a MEI millivolt calibrator were used for pulse waveform observation and for pulse amplitude calibration. The pulses used were of 1 to 10 µsec duration and up to 6V amplitude, (corresponding to the maximum amplitude pulses of the 300C), and were shaped to resemble the LSC pulses as displayed on the scope.

Timed accumulation of the spectra were controlled by the NE4625 clock NIM unit. These spectra were then rapidly transferred via a 3D GPIB to a PET 4000 series microcomputer. This was accomplished using a 6502 machine code program which optimized storage by packing the numerical contents of each MCA channel in 2½ 8-bit words.

Interleaving of these channel contents allowed a full 1023 channel spectrum to be stored in just 2.5K memory and for numbers exceeding the six digits of the MCA. A suite of ancillary programs allowed (i) dumping of the spectra onto disk or reloading them back into memory, (ii) VDU display with cursor control of screen displayed upper and lower discriminators and (iii) integration over the region of interest together with computation of the mean pulse height (i.e. MCA channel "height"). These programs are listed in appendix B.

The storage scope was used with all spectrum gathering experiments and was particularly useful when the initial pulse handling circuit was changed from the summed configuration. The scope was used to monitor the pulses taken from the LSC. At certain combinations of amplification and time constant settings on the NE4658 Amplifier a sharp spike was produced in the MCA spectrum which corresponded to either regular low level noise or overamplified 'ringing' associated with the valid LSC pulses. A careful (and tedious) watch during spectrum capture ensured correct spectra were accumulated for each sample. あるのであるというというないというない いいのできるのであるのである

The pulse handling unit labelled SUM/DIFF* in Fig. F3.23 consisted of the standard 300C arrangement for the SUMmed configuration, Fig. F3.24a.

* Refer to chapter 4 for more information concerning difference pulse height analysis.

With the DIFFerence configuration use was made of the good A.C. and transient properties of isolation transformers. A 16-pin RS Data Bus Isolator (stock No. 208-355) was fitted with coaxial cable connectors and housed in a shielded box. Two of the four isolators were set to produce non-inverted output, one was set to produce inverted output and one was unused. Pulses of 10-20 nsec duration and up to 0.3 V amplitude and which were shaped to resemble the LSC pulses were used to test the isolators. These test pulses were passed through the isolators in single, summed and difference configurations. Little or no distortion was produced by theisolators. When in the summed configuration the output was observed to be the arithmetic sum of the inputs and when difference mode the output was observed to be the arithmetic difference of the inputs together with a little ringing caused by mismatching the experimantal test circuit. The difference configuation using the isolation transformers in the LSC is shown in Fig. F3.24b.

The second non-inverting transformer was used in place of the inverter to reproduce the summed configuration in the LSC but this time with the extra components present. Investigation of any effects of the additional components resulted in little or no detection of changes in the output see Figs. F3.25 and F3.26. Propagation delays on these isolators is less than 5 ns and is well within the delay loop (of approx 150 ns) incorporated in the 300C. No attempt was made to adjust the delay loop. あると、「ないちをおう」、「「ないないないない」、「、いたんない、いたいない」」、「、いたいないない」、「「、いたいないない」、

Other pulse handling configurations such as ratios (P_1/P_x) or products (P_1P_x) were not implemented experimentally. They could be readily installed by means of logarithmic amplification of each PMT pulse separately prior to summing or differencing.

Being satisfied with the experimental technique used for the experimental pulse height spectra capture, a variety of colour and chemically quenched ³H and ¹⁴C-labelled samples were counted. These samples were those used previously for triple-label dpm determination in chapter 2. The resultant spectra were then used to obtain calibration curves and hence assess model performance.

In assessing this performance the model variables used to generate the simulated data were as follows:

こうちょう あいてい ちゅうちょう いちょう いちょうかん ちょうちょう ちょうちょう ちょうしょう ちょうしょう ちょうちょう ちょうちょうちょう

the water of the second of the second the second second second second second second second second second second

The Start and a superior

NUCLIDE	Ξ	H or C	for ³ H and ¹⁴ C respectively
CNTMODE	=	C	to select accumulation of No.
			of counts and No, of
			disintegrations.
NDISNTGS	-	1000	and is the No. of accumulated
			counts or No. of
			disintegrations.
BSF[1] and [2]	Ξ	0.2, 0.2	shape factor 'B' for the two
			dynodes
DYM[1] and [2]	Ξ	3.94, 3.94	dynode mean gain for the two
			dynodes
VHT	-	0.047	vial height
VRAD	Ξ	0.0147	vial radius
LHT	11	0.02	liquid height
LRAD	=	0.0125	liquid radius
CHT	Ξ	0.04374	chamber height
CRAD	=	0.02286	chamber radius
THRESHOLD	1	0	electronic (pulse height)

threshold

and the quantum efficiencies, fluorescence spectra, absorption spectra, scintillation efficiencies, collection efficiencies, ß-spectra, refractive indices and dispersion are all as defined in section 3.3. The chemical and colour quench factors QCHEM and QCOL are stated with the results. The above model settings are henceforth called the standard model settings and apply to all results unless otherwise stated.

3.4.3 <u>Results and Discussion</u>

Tables T3.5 to T3.8 and Figs. F3.27 and F3.28 show the results obtained experimentally for ³H- and ¹⁴C- labelled colour and/or chemically quenched samples. The experimentally obtained calibration curves demonstrate the differences between coloured and chemically quenched samples using the mean summed RPH as a QIP. The results agree with numerous other workers mentioned previously.

The associated results for the model are shown in Tables T3.9 and T3.10 and Figs. F3.29 and F3.30.

The modelled curves show the same trends as found practically, with the model correctly changing its output spectra and resultant calibration curves with changes in both type of quench and isotope energy. Closer inspection reveals some differences between the experimental and modelled results. The tritium modelled efficiencies reach 67% approximately for an unquenched sample whereas the most unquenched experimental efficiency was approximately 52%. One reason for this is the presence of quenching materials in even the least quenched of the experimental samples. When originally prepared, for triple label work, the samples reached efficiencies approaching 60% as can be seen in Fig. F3.31 although in this case SIE(AEC) was used as the QIP. Results of further runs with the model using a greater number (5000) of counts and with

mixtures of colour and chemical quenchers are shown in Tables T3.11 and T3.12 and Figs. F3.32 and F3.33.

martine and a strate of an all and a strate and a strate of the strate o

22 a. Charles and the factor of the second second second sold and the second second second second second second

The 5000 count samples give similar calibration curves to the 1000 count samples but with more precision. The modelled colour and chemical quench calibration curves separation is observed to be slightly smaller than that observed experimentally. The absence of electronic thresholds or the choice of BSF[1]=0.2, BSF[2]=0.2 may be responsible for this. With the mixed colour/chemical quenched samples, the modelled addition of colour quench to chemically quenched samples shifts the calibration point towards the colour quench curve as expected. Quantification of this shift for "H does not appear to be feasible for spectra based on 5000 counts or less using the summed pulse height spectra although the results indicate a discernable separation at high quench levels.

With limits of 1000 or 5000 counts being set by time constraints a check on the repeatability of the results was made using modelled ${}^{14}C$: Tables T3.13 (a) and (b).

Overall, the results are encouraging and the effects of other variables of the model were briefly explored in the limited time available.

The effect of imposing a threshold on the PMTube outputs prior to spectral storage is shown in Tables T3.14 (a) and (b) and Figs. F3.34 and F3.35. The results indicate that a

threshold of 1 should perhaps be used in the model. However, in the absence of experimentally determined electronic thresholds the use of the standard model settings was continued and the matching of threshold levels is left as a future development of the model. Known amplitude pulses from a pulse generator could be fed into the LSC in place of the PMTube pulses and the coincidence pulses. Variations in pulse amplitude and observations of the resulting LSC output would lead to estimation of the threshold. Careful matching of impedances of the equipment to resemble the PMTube output impedence would, of course, be necessary.

Since the model is capable of utilizing purely colour quenched samples, the effects of a series of hypothetical quenchers were compared. One of the colour quenchers has a uniform absorption spectrum over the range 300 nm to 400 nm and the other three had step response absorption spectra from 300 nm to 600 nm, from 400 nm to 500 nm and from 500 nm to 600 nm respectively. These are shown along with the 07 absorption spectrum colour quenching results in Table T3.15 and Fig. F3.36. It is observed that although different amounts of the colour quencher are needed to reduce the counting efficiency by comparable degrees, (as expected from the differences in spectral matching to the solute fluorescence spectrum), the resultant calibration curves follow the same trend. A single general colour quenching curve could be used for all the different colour quenchers measured. Of course, practical colour quenchers

123

Barton and a strain the strain why a strain of a strain as a

also have an associated chemical quench when added to a LS cocktail and it is the colour to chemical quench ratio that requires determination.

Also briefly examined was the effect of varying the PMTube quantum efficiency and PMTube dynode shape factor, (Tables T3.16 and T3.17 and Figs. F3.37 and F3.38), and the scintillation efficiency (Table T3.18 and Fig. F3.39). The choice of an exponential shape factor is seen to degrade the PMTube resolution so much that the effects of colour and chemical quenching are indistinguishable. This doesn't present a method of quench correction independent of the colour/chemical ratio however because of the larger scatter associated with the poorer resolution. A move to a more poissonian shape factor than 0.2 would not appear to lead to much greater colour or chemical quench curve separation. The reduced quantum efficiency was chosen to be 21.5% on the basis of Persyk's comments on the quantum efficiency variation over the surface of a PMTube. The results more closely resemble the experimental curves. The PMTube face is an area which requires further modifications including the variation of quantum efficiency of the surface and the curvature of the face glass. Changing the scintillation efficiency from Horrocks data to a constant 4.5% caused an increase in efficiency and in mean pulse heights but in such a way as to make the calibration curve more bowed in the direction seen for isotopes of increasing energy. This implies that selection of a constant 4.5% scintillation efficiency for all "H B-particle energies is incorrect and The second is a second in the second of the

too high. Future runs with the model may shed further light on the effects of scintillation efficiency as a function of β -particle energy.

One last study shows the effects of varying the solution volume. Results are shown in Table T3.19 and Fig. F3.40 and agree with results obtained experimentally.

It is evident that the model opens several avenues of research, but the main reason for its development was to provide a tool for the investigation of new quench correction techniques. This subject is dealt with in the next chapter.

QUENCH CORRECTION INDEPENDENT OF THE TYPE OF QUENCH

This chapter summarises the results of the application of the LSC Model to the colour-chemical quench correction problem. A practical method of quench correction which is independent of the type of quench for homogeneous systems is presented and experimentally confirmed. and a state and the second of the second second state of the second second second second second second second s

4.1 <u>Application of the LSC Model to the Colour-Chemical</u> <u>Quench Correction Problem</u>

こうちょう ちょうちょう ちちちち ちちちょう ちちょうちょう ちんちち

「ないない」というないない、「ないないないない」というないでは、ないないないないない

4.1.1 <u>Introduction</u>

Recalling the comments made in section 3.1 there are two approaches to solve the colour-chemical quench correction problem. Simultaneous summed-pulse-height analysis differenced-pulse-height analysis and simultaneous summed and ratioed pulse-height analysis are representative of the approach to quantify the colour/chemical ratio, whereas product pulse height analysis, singly-applied upperdiscriminator pulse-height analysis and modified-product pulse height analysis are representative of the approach to produce a single calibration curve which is applicable to both colour and chemically quenched samples. The difference, ratio and product pulse height spectra have been defined previously.

The singly-applied upper-discriminator approach simply involves the use of an ordinary summed pulse height spectrum, but for pulses where both are less than an upper discriminator which is applied to each pulse prior to summation. Events which produce pulses exceeding the discriminators are used only to provide the total count and not as part of the spectrum upor which the QIP is based. The discriminators are decreased with increasing quench. The basic idea behind the method can be regarded as an inverted case of Laneys' crosstalk eliminator

discriminators. The modified-product spectrum is a development of the product spectrum. It consists of a product spectrum which is linearly stored for events corresponding to approximately $\frac{1}{3}$ mean β -particle energy with the rest of the spectrum linearly compressed into a few channels. (See Fig. F4.1).

All counts are used for the efficiency determination provided coincidence is achieved and the mean channel is taken over the whole modified spectrum to give the QIP.

The results of the application of all these methods using the model are described below.

4.1.2 <u>Results and Discussion</u>

Tables T4.1, T4.2 and T4.3 present model generated results for simultaneous coincidence sum, difference and ratio pulse height spectra for ¹⁴C and ³H respectively. (Plots of counting efficiency vs mean summed pulse height have been presented in section 3.4).

For difference pulse height spectra and ratio pulse height spectra to be useful as second parameters for colour/ chemical ratio quantification the variation in these pulse height spectra must be different from that of the sum pulse height spectra under conditions of varying colour or chemical quench. That this is, in fact, the case, as first supposed in section 3.1, is shown in Figs. F4.2 to F4.8. With 14C the mean difference pulse height vs mean summed pulse height curves for colour and chemical quench are widely different, thus indicating that these parameters may be used for colour-chemical ratio quantification. The form of the divergence between the curves may be explained by considering typical pulses (P_* and P_{∞}) produced with colour and with chemical quenched samples. With coloured samples P_1 and P_2 are more often dissimilar (and by larger margins) than with chemical quenched samples. The difference between the two pulses will thus, on average, be greater for coloured samples than for chemical quenched samples. Without the distortions caused to the relative pulse heights P1 and P2 by colour quenching the relationship between the mean of the summed pulse heights to the mean of

the differenced pulse heights is approximately linear. With ³H the same general trend is observed but is smaller owing to the smaller energy range (and hence pulse heights) involved.

The use of ratio pulse height spectra as a route to quantification of the colour-chemical ratio met with only limited success. The colour quenched samples result in a curve which is greater than that for chemical quenched samples because the ratios of the more dissimilar colour quenched pulses deviate more from the mean. The ratio pulse height spectra as modelled ranges from 0 to 1 with the mean value being 0.5 for all samples and colour quenching be characterised by greater spread. The standard deviation, σ , was used as a measure of the spread and it is because of the reliance on the 2nd moment of a distribution that the ratio σ approach suffers more from scatter than does the difference-mean. Whether the ratio σ method would be good enough experimentally depends on the relative benefits of using full pulse heights and not differences in the prescence of machine noise, thresholds and background. A simpler technique relying on the 1"t and 2"d moments of a distribution is measurement of the mean and standard deviation of the ordinary summed pulse height spectra and use of efficiency vs sum pulse height and sum σ vs mean sum as calibration curves. However, Fig. F4.6 shows no calibration curve separation is achieved for ³H. This is not so surprising since the sum pulse height spectra does not exaggerate colour and chemical quenching effects, as

explained previously.

The efficiency vs product pulse height spectra quench indicating parameter calibration curves for "H and 14C are shown in Figs. F4.9 and F4.10. (Tables T4.4 and T4.5). As explained in chapter 3, colour quenched product pulses are weakly dependent on the B-event position in the vial. By analogy to the summed pulse height case this results in the colour quenched product pulse height spectra being broader (and thus having a greater mean) than the chemically quenched product pulse height spectra for samples of equivalent efficiency. As quenching increases, this effect becomes more pronounced until quenching is so great that the statistical variation in the (small) numbers of photons destined for each PMTube begins to contribute significantly to the pulse height spectra and thus mask the effect. Also, the product spectrum reduces the differences between the two types of quench because of the logarithmic transformation of the individual pulse heights before summation. Small pulses are little affected, in contrast to larger pulses, and because of the relative sizes of the "H and 14C pulses the effect of the logarithmic transformation is more pronounced with 14C. It is suggested that within the limitations imposed by the amount of data obtained, the combination of the above effects accounts for the efficiency vs mean product pulse-height calibration curves. The modified pulse height spectrum for "H gives the desired single calibration curve for colour and chemically quenched samples. (Fig. F4.11 and Table T4.6). **C results are not

available.

Although more data on the product-based pulse height spectra is needed before any firm conclusions can be drawn, it would be interesting to further check the model predictions and perhaps put the product-based techniques into practice. The methods would have the advantages over the sum + difference method in (i) not relying on small <u>difference</u> pulse heights and (ii) using just one calibration curve for each isotope.

The singly-applied upper discriminator approach failed to produce a uniform quench calibration curve for colour and chemically quenched samples, (see Fig. F4.12 and Table T4.7), and was thus not studied further.

From the above model-based studies the sum + difference, the sum + ratio and product and modified product methods all seem capable of quench correction independent of the colour-chemical quench ratio and are all worthy of experimental investigation. However, the sum + difference method was selected as the most promising to put theory into practice. The experimental performance of this quench correction technique is described in the next section (4.2).

4.2 Quench Correction Independent of the Type of Quench

4.2.1 Introduction

The technique of quench correction independent of the colour-chemical quench ratio using the summed pulse height spectra and differenced pulse height spectra, (the SD technique) involves the following stages:

- (a) accumulate the summed pulse height spectra simultaneously or sequentially
- (b) accumulate the differenced pulse height spectra simultaneously or sequentially
- (c) use the mean difference pulse height and mean sum pulse height to determine the F_{Ξ} ratio
- (d) use the F_{π} ratio and the F_1F_{π} calibration curve to derive F_1 and hence the corrected efficiency.

The ratios F_1 and F_m are defined in Fig. F4.13 and are the fractional distances between the chemically quenched and colour quenched calibration curves of efficiency vs mean sum pulse height and mean difference pulse height vs mean sum pulse height respectively.

So far, only results based on the spectra obtained with isotopes which are internally dissolved in the LS solution have been modelled and experimentally verified. However, a common disadvantage of all internal-isotope quench correction techniques is their poor performance with low activity and/or low energy isotopes.

For the sum + difference quench correction technique (or SD technique) to be universally accepted it must be practicable with a high activity, high energy external standard. Extension of the SD technique to cover the use of external standards, although earmarked as a future development, presents problems which lie outside of the scope of the first generation of the LSC simulation.

It was believed however that the same distance dependency with colour quenched samples should be observed with the external standard as a source unless the distribution of events was randomly spread throughout the vial solution. If there existed a non-symetrical distribution of external standard fluorescence-events in the solution the difference pulse height spectra, which is specifically designed to exaggerate colour quenching effects, should vary in a manner similar to that obtained with internally dissolved β -emitters.

The mash Ra external standard of the Packard 300C is pneumatically driven to a point close to the outside of the vial which is nearer to one PMTube than the other and hence gives a fluorescent event distribution which is nonsymmetrical in relation to the two PMTubes. This feature was exploited to investigate the plausability of the SD technique.

4.2.2 <u>Experimental</u>

"H and ""C colour and chemically quenched samples were those previously used in section 2.3 and 2.2. A series of ten of each isotope and type of quench were reserved for efficiency vs mean sum pulse height calibration curves and mean sum pulse height vs mean difference pulse height To the remaining samples random calibration curves. amounts of disperse orange dye 07 and carbon tetrachloride colour and chemical quenchers were added such that the total volume was within 10% of 10 ml and within the efficiency range >90% to <1% for 14C, and 50% to 1% for 3H. All the samples were counted using the equipment and methods described in section 3.3. Although simultaneous counting of the sum and difference pulse height spectra was performed during simulation and is desirable commercially, the spectra were obtained sequentially in these experiments.

When using external standards short counting times were used in keeping with currently accepted practices. The samples used were those containing ¹⁴C and ³H described above. All pulse height spectra were stripped of the ¹⁴C or ³H contribution by successive equal timed counting with and without the external standard present.
4.2.3 <u>Results and Discussion</u>

Tables T4.8 and T4.9 and Figs. F4.14 and F4.15 give results obtained for the 14C- and 3H-labelled colour and chemically quenched samples. With the 'AC samples the form of the variation of the mean of the difference pulse height spectra with the mean of the sum pulse height spectra for colour and chemically quenched samples is in accord with the model predictions. This promotes even greater confidence in the model which now correctly accounts for sum and difference pulse height behaviour with colour or chemical quench and "H or ""C isotopes. With "H the general trend of greater mean difference pulse heights for colour quenched samples is demonstrated but is almost obscured by the large scatter associated with taking differences of small pulses in the presence of noise. The noise factor was not incorporated into the model and seems the most likely explanation of the results obtained. An interesting feature of the 14C results is the fact the the difference between the two calibration curves is larger than that predicted. This occurred to some extent with the efficiency vs mean sum pulse height calibration curves and may be a feature of the chosen variables in the model. Another possible cause, and one not present in the model, may be mismatching in the response of the two PMTubes plus the counting circuit. This would be equivalent to having uneven electronic thresholds in the model. The possibility of mismatching was investigated by means of a vial (containing an unquenched cocktail of 10 g l⁻¹ b-PBD in

p-Xylene) which was half coated with red tape such that the full length and half circumference of the curved surface was covered. This vial was counted in the presence of the external standard for various rotational orientations with each PMTube individually. Results are shown in Table T4.10 and Fig. F4.16. The different levels of recorded external standard activity for each PMTube indicate that some mismatching was present. The actual form of these curves shows the effect that a non symmetrical colour quench distribution has on the recorded external standard activity using single pulse height spectra and encouraged the investigation of the external standard SD technique (ESSD technique).

The insensitivity of the mean sum pulse height of the external standard to type of quench has been reported by many authors and is confirmed here - the colour and chemical quenched samples following an identical curve (Fig. F4.17 and Table T4.11). (N.B. The external standard counting efficiencies are quoted as relative to that obtained with the least quenched sample).

The variation of the mean differenced pulse height with mean summed pulse height is observed to follow the general pattern predicted by the model for internal isotopes of increased energy and confirms the expected colour-chemical dependence for a non symmetrically positioned external standard. The colour chemical dependence can even be shown with just the coincidence single PMTube pulse height

spectra (see Table T4.12 and Fig. F4.18). The very positive results of Tables T4.11 and T4.13 which are shown in Fig. F4.19 validates the use of the SD technique over the same wide range of homogenous samples currently counted using external standards.

Results of the implementation of the ESSD technique are given in Tables T4.14 to T4.18. The **C efficiency vs External Standard mean sum pulse height spectra and the efficiency vs ES mean sum pulse height spectra calibration curves for colour, chemical and mixed colour and chemical quenched samples are shown in Figs. F4.20 and F4.21. From these curves suitable candidates (part way between the pairs of curves) were chosen to determine the relationship between position relative to the colour and chemical curves of Figs. F4.20 and F4.21 for "H and '4C respectively and position relative to the colour and chemical curves of Fig. F4.19. To do this natural cubic splines were fitted to the curves of Figs. F4.20 and F4.21 in accordance with the conlusions of section 2.3 and least squares cubic polynomials were fitted to the curves of Figs. F4.19. The F1 and F2 ratios were then plotted for the selected mixed colour and chemical quenched standards (see Figs. F4.22 and F4.23 and Tables T4.16 (a) and (b)).

Owing to the large scatter of the F_1F_{22} plots a simpler least squares quadratic was fitted to the data. It is noted that the relative variation in the F_1F_{22} ratios is similar and appears largely independent of the isotope.

An approach using distance below the chemical quench curve (and not limited to the mean sum pulse height range of the colour quench curve) gave a series of colour-chemical calibration curves dependent on the combined total amount of quench and was therefore rejected.

The efficiencies predicted by the ESSD technique are presented in Table T4.17 for ¹°C and Table T4.18 for ³H and are compared with the efficiences calculated from the known dispensed activity of each sample. For the ¹°C samples which do not require extrapolation of the colour quenched efficiencies vs mean sum pulse height calibration curve, efficiencies are determined to within 2.5% down to counting efficiencies of 60%. Also, even with extrapolation, results are still within 3.5% down to counting efficiencies of only 30%. For ³H sample efficiencies are determined to within 1.5% over the range of cocktail, colour quencher and chemical quencher composition used.

In view of the use of non-optimal external standard position and samples with up to 10% volume variation and only 20s external standard counting times these results are excellent. They prove that a significant improvement in LSC can be achieved by adoption of the ESSD (and SD) method. The success of the method also completely vindicates the use of simulation in LSC increases and confidence in the likely success of the other methods proposed in this chapter.

4.3 Future Work and Recent Developments

Future work which promises to be of practical benefit includes experimental investigation of product based pulse height spectra, and extension of the model to include the effects of noise and background and alternative vialcounter geometries. More challenging extensions would be to include the external standard option and to include nonhomogeneous micellar solutions. A second generation model should attempt to incorporate the time dimension. This would greatly enhance the usefulness of the model, allowing such techniques as pulse shape discrimination to be studied in detail and hopefully lead to the development of new α , β and \mathbf{i} counting and quench correction techniques.

The importance of attempts to attain a widely applicable quench correction method is not lost on the LSC industry. Recently, LKB-Wallac OY of Finland have introduced a new LSC (the LKB Spectral) which is claimed to be capable of quench correction independent of the colour-chemical quench ratio. No data has yet been published describing the actual techniques used in the Scientific Literature, although a source from within the industry has indicated that two pulse height spectra are jointly used.

<u>Addendum</u>

Since the completion of this thesis a Product News Bulletin from LKB-Wallac has been obtained." In it there is a description of the quench correction technique used by the model "1219 Spectral". The essential point is that use is made of a simultaneously gathered summed-coincidence pulse height spectrum (p.h.s.) and a pulse height spectrum dependent on the ratio of the individual PMTube pulses (from a two PMTube system). Unfortunately, the exact form of this p.h.s is not stated nor whether the external standard is used for the determination of the colour quench parameter.

However, the basis of the technique is apparently similar to one of the methods proposed in this thesis. This adds yet further support for the (anticipated) utility of those methods and for the use of simulation in Liquid Scintillation Counting.

* LKB-Wallac "Product News", August 1985, K Rundt, T Oikari and H Kouru

140a

COLLECTED FIGURES

,

.....

.

.

Fig. F1.1 Modified Jablonski diagram showing the various processes that can occur upon excitation of an organic molecule

Fig. F1.2 Excimer photophysical processes

.

Fig. F1.4

FIG F1.5 : TYPICAL EFFICIENCY V SIE(AEC) COLOUR/CHEMICAL QUENCH CALIBRATION CURVES

×

Two-parameter spectrum of ³⁶Cl

Two-parameter spectrum of ³H

 ^{14}C chemically quenched to 70% efficiency

¹⁴C colour quenched to 70% efficiency

Fig. F1.6 Two parameter pulse height spectra

1 - Construction of the second states of the se

The state of the state of the state of the state

Fig. F1.8 Quenching and the LSC Process

Relative pulse distributions for single-labeled ${}^{3}\!H$ and single-labeled ${}^{14}\!C$ containing sample (a) compared with sample labeled with both ${}^{3}\!H$ and ${}^{14}\!C$ (b).

Window settings for counting ${}^{3}\text{H}_{-}$ and ${}^{14}\text{C}_{-}$ containing samples with optimization of separation of ${}^{14}\text{C}_{-}$ and ${}^{3}\text{H}_{-}$ produced pulses, showing settings for (a) unquenched sample and (b) quenched sample.

Fig. F1.9 Dual label windows for $^{14}\mathrm{C}$ and $^{3}\mathrm{H}$

Fig. F1.10 Typical Photocathode Responsivity Characteristics

Fig. F2.1 Typical ¹⁴C Efficiency v QIP curve showing data group types

FIGF2.2 : BACKGROUND COUNTRATE vs SIE(AEC) - SINGLE LABEL REGIONS

FIGF2.3 : BACKGROUND COUNTRATE vs SIE(AEC) - DUAL LABEL REGIONS

FIGF2.4 : BACKGROUND COUNTRATE vs SIE(AEC) - TRIPLE LABEL REGIONS

Fig. F 2.5 Triple Label Counting Regions

e ₁₁	, ^e 12	e 13
e ₂₁	e ₂₂	e ₂₃
 ^e 31	^e 32	^e 33

where $e_{ij} = e_{region,nuclide}$

Fig. F2.6 Triple Label Efficiency Matrix

Fig. F3.2 The Two P.M.Tube LSC System

Fig. F3.4

.

:..

Fig. F3.5 Model Geometry

Fig. F3.6 Flowchart of LSC Model

•

:

DATA	SOURCE	VALUE
Pi	Casio Calculator (Japan industrial stds) (JIS Z.8202-1978)	3.141592654
Plancks Constant	11 11	6.6262E-34
Charge on electron	ti (†	1.60219E-19
Speed of light	11 11	2.997925E8
β particle E_{max} for ${}^{3}H$		18.6 keV
β particle E_{max} for ^{14}C		156 keV
Fermi β spectrum for ${}^{3}_{ m H}$		-
Fermi β spectrum for ^{14}C		_
Scintillation Efficiency Curve	D. L. Horrocks ⁸⁸	-
Colour quencher Absorbtion spectrum - 07 dye	Self measured	-
RCA 4501/v3 PMTube dynode (BeO) shape factor	RCA Handbook (book B17)	0.2
RCA 4501/v3 PMTube dynode (BeO) gain	D. E. Persyck ¹⁴⁵	3.94
PMTube collection efficiency	RCA Handbook (book B17)	0.85
Aluminium Absorbtion spectrum	CRC Handbook (book B20)	
b-PBD Fluorescence spectrum	Self measured	-
Dispersion of b-PBD + pXylene	Self measured	-
Dispersion of vial glass (borosilicate)	Tables of Physical and Chemical Constants (book B19)	-
Dispersion of PMT glass (pyrex)	Tables of Physical and Chemical Constants (book B19)	-
Vial height	Self measured	0.047 m
Vial radius	Self measured	0.0147 m

Fig. F3.7 Data used in the LSC Model

DATA	SOURCE	VALUE
Liquid height	-	0.02 m
Liquid radius	Self measured	0.0125 m
Chamber height	Packard Instruments Inc.	0.04374 m
Chamber radius	Packard Instruments Inc.	0.02286 m
Low wavelength cut-off for spectra	Self measured	600 nm
High wavelength cut-off for spectra	Self measured	300 nm
PMTube Quantum efficiency	Packard Instruments Inc.	-

Fig. F3.7 (contd.) Data used in the LSC Model

Fig. F3.8 Block diagram of equipment used for Fluorescence and Absorption spectra capture.

MODEL

45.00

FIG F3.20 : PMTube Poisson distribution batch to batch variation For 4 photons

FIG F3.21 : PMTube Poisson distribution batch to batch variation for 9 photons

FIG F3.22 : SCINTILLATION EFFICIENCY VS BETA PARTICLE ENERGY (HORROCKS' DATA)

Fig. F3.23 Block Diagram of Equipment used for Pulse Height Spectra Capture and Analysis

(b) Differenced pulse handling circuit

FIG F3.25: EFFICIENCY vs SIE(AEC) CURVE -EFFECT OF INSTALLED DIFFERENCE CIRCUIT 188

FIG F3.26: 14C EFFICIENCY v SIE(AEC) CURVES WITH COLOUR/CHEMICAL QUENCH & TRANSFORMER IN/OUT

.,,,

FIG F3.32: MODEL GENERATED H3 CALIBRATION CURVES WITH MIXED COL/CHEM QUENCH (5000 pts)

FIG F3.33: MODEL GENERATED C14 CALIBRATION CURVES + MIXED COL/CHEM QUENCH (5000 pts)

FIG F3.36: MODEL GENERATED 3H CALIBRATION CURVES- VARIOUS COLOUR QUENCHERS(5000pts)

EFFICIENCY ON 3H MODEL OUTPUT

FIG F3.39: EFFECT OF CONSTANT SCINTILLATION EFFICIENCY ON 3H MODEL OUTPUT

- 'GEOMETRY QUENCHING'

FIG F3.40b: VOLUME EFFECT ON 3H MODEL OUTPUT

- 40 .X

FIG F4.3: MODEL GENERATED MEAN SUM PULSE-HEIGHT vs STD.DEV OF RATIO PULSE-HEIGHT SPECTRUM (14C)

FIG F4.4: MODEL GENERATED MEAN SUM PULSEHEIGHT vs MEAN DIFFERENCE PULSEHEIGHT FOR 3H

vs STD.DEV OF RATIO PULSEHEIGHT SPECTRUM FOR 3H

FIG F4.6 : MODEL GENERATED MEAN SUM PULSEHEIGHT vs STD.DEV OF SUM PULSEHEIGHT SPECTRUM FOR 14C

FIG F4.7 : MODEL GENERATED MEAN SUM PULSEHEIGHT vs MEAN DIFFERENCE PULSEHEIGHT FOR 3H (5000 pts)

FIG F4.8 : MODEL GENERATED MEAN SUM PULSEHEIGHT vs STD.DEV OF RATIO PH-SPECTRUM FOR 3H (5000 pts)

MEAN MODIFIED-PRODUCT PULSEHEIGHT FOR 3H

FIG F4.12 : MODEL GENERATED EFFICIENCY VS MEAN SUM PULSEHEIGHT FOR 3H WITH SAU DISCRIMINATORS

Mean sum pulse height

Mean sum pulse height

Fig. F4.13 Definition of F_1 and F_2 ratios

FIG F4.14:EXPERIMENTAL MEAN SUM PULSE-HEIGHT vs MEAN DIFFERENCE PULSE-HEIGHT FOR 14C

FIG F4.15:EXPERIMENTAL MEAN SUM PULSE-HEIGHT vs MEAN DIFFERENCE PULSE-HEIGHT FOR 3H

FIG F4.16 : ExtStd MEAN SINGLE PULSE HEIGHT USING HALF COLOURED VIAL

FIG F4.17 : EXT.STD. NORMALISED EFFICIENCY vs MEAN SUMMED PULSEHEIGHT

FIG F4.18 : EXT.STD. NORMALISED EFFICIENCY vs MEAN SINGLE PULSEHEIGHT

FIG F4.19 : EXT.STD MEAN SUMMED PULSEHT VS EXT.STD MEAN DIFFERENCED PULSEHEIGHT

FIG F4.20 : EXPERIMENTALLY OBTAINED EFFICIENCY vs MEAN SUM PULSEHEIGHT FOR 3H

EFFICIENCY vs MEAN SUM PULSEHEIGHT FOR 14C

FIG F4.22 : MIXED COLOUR/CHEMICAL QUENCHED C14 STANDARDS F1-F2 PLOT

FIG F4.23 : MIXED COLOUR/CHEMICAL QUENCHED 3H STANDARDS F1-F2 PLOT

COLLECTED TABLES

.

.

· · · · · ·

Function type: ³H Number of standards: 10 Data group: A Number of comparison points: 65

FIT TYPE	LOW EXTRAPC	QIP DLATED	INTERP	OLATED	HIGH EXTRAPO	QIP LATED
	ΣABS(Y-Y)	Σ(Y-Y ₁) ²	EABS(Y-Y)	۲(Y-Y ₁) ²	EABS(Y-Y)	$\Sigma(Y-Y_i)^2$
Piecewise linear	2.07 E-1	6.12 E-3	9.46 E-2	4.44 E-4	8.06 E-3	1.95 E-3
Least squares 4° polynomial	1.98 E-1	4.82 E-3	7.40 E-3	1.52 E-6	6.64 E-3	1.15 E-5
Least squares 3° polynomial	5.13 E-1	2.92 E-2	4.44 E-2	5.66 E-5	7.98 E-2	7.75 E-5
Quadratic spline S"=L" end conditions	1.71 E-1	4.43 E-3	1.52 E-3	4.52 E-8	6.21 E-4	1.34 E-7
Quadratic spline S'=L' end conditions	1.71 E-1	4.43 E-3	1.52 E-3	4.52 E-8	6.21 E-4	1.34 E-7
Quadratic spline Linear end conditions	4.46 E-2	2.56 E-4	6.67 E-3	1.46 E-6	8.06 E-3	8.95 E-5
Stineman	2.07 E-1	6.12 E-3	4.62 E-3	1.36 E-6	8.63 E-3	2.20 E-5
Cubic spline Forsythe's L"=S"	7.69 E-2	9.21 E-4	1.44 E-3	9.34 E-3	9.86 E-2	1.56 E-4
Cubic spline L"=S" end conditions	5.31 E-1	4.02 E-2	1.57 E-3	9.04 E-3	9.36 E-6	1.95 E-11
Cubic spline Swartz L'=S'	2.50 E-2	1.12 E-4	1.57 E-3	8.75 E-8	1.00 E-2	3.68 E-3
Cubic spline Parabolic end conds.	1.89 E-1	5.26 E-3	1.43 E-3	9.85 E-8	1.97 E-2	3.41 E-4
Cubic spline Natural	2.88 E-1	1.20 E-2	1.43 E-3	9.26 E-8	1.97 E-2	3.41 E-4
Lagrangian polynomial	1.51 E-5	4.70 E-9	3.16 E-7	5.12 E-12	6.02 E-7	1.55 E-13

Statistic in

.

Function type: ³H Number of standards: 10 Data group: B Number of comparison points: 65

FIT TYPE	LOW EXTRAPC	QIP DLATED	INTERP	OLATED	HIGH EXTRAPC	QIP DLATED
	ΣABS(Y-Y)	Σ(Y-Y _i) ²	ΣABS(Y-Y _i)	Σ(Y-Y ₁) ²	ΣABS(Y-Y)	Σ(Y-Y _i) ²
Piecewise linear	1.67 E-1	4.49 E-3	5,26 E-2	1.04 E-4	2.60 E-2	1.74 E-4
Least squares 4° polynomial	2.06 E-1	5.26 E-3	8.44 E-3	2.51 E-6	5.87 E-3	9.51 E-6
Least squares 3° polynomial	5.18 E-1	3.00 E-2	4.84 E-2	7.62 E-5	1.73 E-2	7.42 E-5
Quadratic spline S"=L" end conditions	3.82 E-1	1.79 E-2	8.58 E-3	3.62 E-6	5.09 E-3	6.16 E-6
Quadratic spline S'=L' end conditions	3.82 E-1	1.79 E-2	8.58 E-3	3.62 E-6	5.09 E-3	6.16 E-6
Quadratic spline Linear end conditions	7.59 E-2	7.24 E-4	7.11 E-2	1.66 E-4	2.60 E-2	1.75 E-4
Stineman	4.44 E-1	2.34 E-2	3.38 E-2	7.34 E-5	3.50 E-2	3.30 E-4
Cubic spline Forsythe's L"=S"'	2.35 E-1	7.11 E-3	1.28 E-2	1.30 E-5	2.29 E-2	1.43 E-4
Cubic spline L"=S" end conditions	4.67 E-2	4.12 E-4	4.61 E-3	1.59 E-6	1.52 E-3	6.54 E-7
Cubic spline Swartz L'=S'	2.70 E-1	9.18 E-3	9.03 E-3	4.32 E-6	1.26 E-2	4.38 E-5
Cubic spline Parabolic end conds.	4.02 E-1	1.95 E-2	1.54 E-2	1.28 E-5	1.84 E-2	9.30 E-5
Cubic spline Natural	1.55 E-1	3.35 E-3	9.74 E-3	8.32 E-6	1.84 E-2	9.30 E-5
Lagrangian polynomial	4.33 E-4	3.18 E-8	7.28 E-7	4.33 E-14	3.66 E-6	4.33 E-12

۰.

Function type: ³H Number of standards: 10 Data group: C Number of comparison points: 65

۰.

FIT TYPE	LOW EXTRAPC	QIP DLATED	INTERF	OLATED	H I GH EXTRAPC	QIP DLATED
	ΣABS(Y-Y)	Σ(Y-Y _i) ²	ΣABS (Y-Y _i)	ε(Y-Y ₁) ²	EABS (Y-Y)	Σ(Y-Y ₁) ²
Piecewise linear	2.02 E-1	5.93 E-3	2.47 E-2	1.97 E-5	1.56 E-2	6.61 E-5
Least squares 4° polynomial	2.00 E-1	4.96 E-3	7.48 E-3	1.57 E-6	6.39 E-3	1.08 E-5
Least squares 3° polynomial	5.27 E-1	3.05 E-2	4.00 E-2	4.53 E-5	2.03 E-2	9.68 E-5
Quadratic spline S"=L" end conditions	2.61 E-1	9.11 E-3	1.69 E-3	9.10 E-8	2.26 E-3	1.47 E-6
Quadratic spline S'=L' end conditions	2.61 E-1	9.11 E-3	1.69 E-3	9.10 E-8	2.26 E-3	1.47 E-6
Quadratic spline Linear end conditions	5.97 E-2	4.57 E-4	2.31 E-3	1.54 E-5	1.57 E-2	6.61 E-5
Stineman	3.19 E-1	1.30 E-2	4.05 E-3	1.97 E-6	1.99 E-2	1.04 E-4
Cubic spline Forsythe's L"=S"'	1.49 E-1	3.09 E-3	1.64 E-3	3.04 E-7	1.60 E-2	7.63 E-5
Cubic spline L"=S" end conditions	1.56 E-1	3.35 E-3	3.50 E-4	1.46 E-8	4.29 E-4	5.50 E-8
Cubic spline Swartz L'=S'	1.56 E-1	3.35 E-3	1.01 E-3	9.17 E-8	8.24 E-3	2.02 E-5
Cubic spline Parabolic end conds.	2.90 E-1	1.10 E-2	1.97 E-3	3.18 E-7	1.39 E-2	5.81 E-5
Cubic spline Natural	1.56 E-1	3.36 E-3	1.49 E-3	2.36 E-7	1.39 E-2	5.81 E-5
Lagrangian polynomial	2.66 E-6	1.36 E-8	9.35 E-8	7.81 E-16	1.90 E-6	1.31 E-12
Cubic Spline Cantilever end conds.	7.65 E-2	5.87 E-4	1.71 E-3	2.66 E-7	1.39 E-2	5.81 E-5
Least squares 5° polynomial	5.41 E-2	4.02 E-4	8.20 E-4	1.95 E-8	1.27 E-3	4.71 E-7

Table T2.3a

Function type: ³H Number of standards: 10 Data group: C Number of comparison points: 650 Effect of bias of points selected for comparison coinciding with interpolatory nodes

States -

and the second second second with the second s

FIT TYPE	LOW EXTRAPO	QIP LATED	INTERP	OLATED	HIGH EXTRAPO	QIP LATED
	ΣABS(Y-Y _i)	Σ(Y-Y _i) ²	ΣABS(Y-Y _i)	Σ(Y-Y _i) ²	LABS (Y-Yi)	ε(Y-Y ₁) ²
Least squares 3° polynomial	4.82 E O	2.62 E-1	4.00 E-1	4.51 E-4	1.77 E-1	7.59 E-4
Stineman	2.88 E O	1.09 E-1	4.22 E-2	1.97 E-5	1.65 E-1	7.74 E-4

Function type: ³H Number of standards: 6 Data group: C Number of comparison points: 65

FIT TYPE	LOW EXTRAPC	QIP DLATED	INTERP	OLATED	HIGH EXTRAPO	QIP LATED
	ΣABS(Y-Y _i)	Σ(Y-Y ₁) ²	EABS(Y-Y)	Σ(Y-Y ₁) ²	ZABS(Y-Y)	$\Sigma(Y-Y_i)^2$
Piecewise linear	1.76 E-1	4.85 E-3	8.25 E-2	2.05 E-4	2.38 E-2	1.48 E-4
Least squares 4° polynomial	1.99 E-1	4.96 E-3	8.19 E-3	2.03 E-6	5.59 E-3	8.65 E-6
Least squares 3° polynomial	5.02 E-1	2.85 E-2	4.70 E-2	6.29 E-5	1.64 E-2	6.69 E-5
Quadratic spline S"=L" end conditions	3.56 E-1	1.57 E-2	9.74 E-3	2.99 E-6	4.89 E-3	6.57 E-6
Quadratic spline S'=L' end conditions	3.56 E-1	1.57 E-2	9.74 E-3	2.99 E-6	4.89 E-3	6.57 E-6
Quadratic spline Linear end conditions	7.15 E-2	6.14 E-4	8.10 E-2	1.80 E-4	2.38 E-2	1.48 E-4
Stineman	4.41 E-1	2.31 E-2	2.67 E-2	4.51 E-5	3.30 E-2	2.76 E-4
Cubic spline Forsythe's L"=S"'	2.77 E-1	9.59 E-3	1.17 E-2	7.11 E-6	2.03 E-2	1.15 E-4
Cubic spline L"=S" end conditions	2.51 E-2	9.12 E-5	3.03 E-3	5.54 E-7	2.04 E-3	1.16 E-6
Cubic spline Swartz L'=S'	2.89 E-1	1.04 E-2	9.51 E-3	3.77 E-6	1.23 E-2	4.10 E-5
Cubic spline Parabolic end conds.	3.95 E-1	1.89 E-2	1.29 E-2	7.79 E-6	1.70 E-2 .	8.10 E-5
Cubic spline Natural	1.54 E-1	3.21 E-3	7.92 E-3	4.77 E-6	1.70 E-2	8.11 E-5
Lagrangian polynomial	1.60 E-1	3.41 E-3	2.89 E-3	3.34 E-7	1.67 E-1	3.41 E-3
Cubic spline Cantilever end conds.	2.84 E-1	7.22 E-3	1.58 E-2	1.09 E-5	1.71 E-1	8.14 E-3

Function type: ¹⁴C Number of standards: 10 Data group: A Number of comparison points: 65

FIT TYPE	LOW EXTRAPO	QIP DLATED	INTERP	POLATED	HIGH EXTRAPC	QIP LATED
	Σ ABS (Y-Y _i)	Σ(Y-Y _i) ²	$\Sigma ABS(Y-Y_i)$	$\Sigma(Y-Y_i)^2$	ΣABS(Y-Y)	$\Sigma(Y-Y_i)^2$
Piecewise linear	6.86 E-3	1.90 E-5	3.52 E-1	6.11 E-3	4.40 E-3	1.87 E-6
Least squares 4° polynomial	2.33 E-1	1.41 E-2	1.56 E-1	6.90 E-4	1.16 E O	1.44 E-1
Least squares 3° polynomial	2.35 E-1	1.43 E-2	1.55 E-1	6.82 E-4	1.14 E O	1.38 E-1
Quadratic spline S"=L" end conditions	1.09 E-1	3.41 E-3	7.96 E-2	9.32 E-4	8.08 E-3	8.04 E-6
Quadratic spline S'=L' end conditions	1.09 E-1	3.41 E-3	7.96 E-2	9.32 E-4	8.08 E-3	8.04 E-6
Quadratic spline Linear end conditions	1.10 E-1	3.45 E-3	7.99 E-2	3.35 E-4	4.40 E-3	1.87 E-6
Stineman	4.17 E-2	6.10 E-4	6.46 E-2	2.44 E-4	4.54 E-3	1.99 E-6
Cubic spline Forsythe's L"=S"'	1.46 E-2	7.58 E-5	2.85 E-2	3.70 E-5	8.18 E-2	9.49 E-4
Cubic spline L"=S" end conditions	9.13 E-2	3.05 E-3	2.68 E-2	3.27 E-5	1.94 E-2	5.44 E-5
Cubic spline Swartz L'=S'	5.70 E-3	1.17 E-5	2.83 E-2	3.67 E-5	8.56 E-3	9.60 E-6
Cubic spline Parabolic end conds.	3.53 E-2	4.51 E-4	2.88 E-2	3.80 E-5	5.38 E-2	4.12 E-4
Cubic spline Natural	4.05 E-2	6.03 E-4	2.76 E-2	3.47 E-5	5.38 E-2	4.12 E-4
Lagrangian polynomial	7.08 E-4	2.04 E-7	1.02 E-3	5.47 E-8	6.26 E-1	8.10 E-2

234

۰.

Function type: ¹⁴C Number of standards: 10 Data group: B Number of comparison points: 65

FIT TYPE	LOW EXTRAPO	QIP DLATED	INTERP	OLATED	HIGH EXTRAPC	QIP LATED
	ΣABS(Y-Y _i)	Σ(Y-Y _i) ²	EABS (Y-Y)	Σ(Y-Y ₁) ²	ΣABS(Y-Y _i)	$\Sigma(Y-Y_i)^2$
Piecewise linear	1.18 E-1	3.28 E-3	2.45 E-1	4.78 E-3	2.46 E-2	5.33 E-5
Least squares 4° polynomial	2.44 E-1	1.67 E-2	1.67 E-1	1.17 E-3	7.84 E-1	6.56 E-2
Least squares 3° polynomial	2.09 E-1	1.24 E-2	1.80 E-1	1.09 E-3	1,26 E 0	1.69 E-1
Quadratic spline S"=L" end conditions	1.63 E-1	7.56 E-3	7.00 E-2	3.19 E-4	1.42 E-1	2.06 E-3
Quadratic spline S'≃L' end conditions	1.63 E-1	7.56 E-3	7.00 E-2	3.19 E-4	1.42 E-1	2.06 E-3
Quadratic spline Linear end conditions	1.48 E-1	6.37 E-3	4.55 E-2	1.84 E-4	2.46 E-2	5.33 E-5
Stineman	2.20 E-1	1.35 E-2	1.20 E-1	1.17 E-3	7.01 E-2	4.14 E-4
Cubic spline Forsythe's L"=S"'	1.75 E-1	8.75 E-3	6.20 E-2	2.99 E-4	5.66 E-1	3.60 E-2
Cubic spline L"=S" end conditions	2.99 E-1	2.41 E-2	1.78 E-1	3.05 E-3	3.50 E-1	1.39 E-2
Cubic spline Swartz L'=S'	1.75 E-1	8.80 E-3	5.42 E-2	2.81 E-4	2.25 E-1	5.78 E-3
Cubic spline Parabolic end conds.	1.42 E-1	5.88 E-3	3.56 E-2	1.40 E-4	2.89 E-2	1.17 E-4
Cubic spline Natural	5.24 E-2	6.65 E-4	5.84 E-2	3.23 E-4	2.89 E-2	1.17 E-4
Lagrangian polynomial	1.36 E-2	6.09 E-5	2.50 E-3	5.38 E-7	2.35 E 0	9.79 E-1

235

۰.

.

Function type: ¹⁴C Number of standards: 10 Data group: C Number of comparison points: 65

FIT TYPE	LOW EXTRAPO	QIP LATED	INTERP	OLATED	HIGH EXTRAPO	QIP LATED
	ΣABS(Y-Y)	Σ(Y-Y ₁) ²	ΣABS(Y-Y)	Σ(Y-Y ₁) ²	ΣABS(Y-Y _i)	$\Sigma(Y-Y_i)^2$
Piecewise linear	3.64 E-2	2.95 E-4	1.06 E-1	5.53 E-4	9.74 E-3	8.59 E-6
Least squares 4° polynomial	2.35 E-1	1.47 E-2	1.52 E-1	6.87 E-4	1.03 E O	1.13 E-1
Least squares 3° polynomial	2.21 E-1	1.32 E-2	1.57 E-1	7.08 E-4	1.19 E O	1.50 E-1
Quadratic spline S"=L" end conditions	6.98 E-2	1.56 E-3	4.83 E-3	1.25 E-6	3.60 E-2	1.41 E-4
Quadratic spline S'=L' end conditions	6.98 E-2	1.56 E-3	4.83 E-3	1.25 E-6	3.60 E-2	1.41 E-4
Quadratic spline Linear end conditions	6.66 E-2	1.43 E-3	4.50 E-3	1.10 E-6	9.74 E-3	8.59 E-6
Stineman	1.32 E-1	5.16 E-3	2.12 E-2	3.93 E-5	1.59 E-2	2.21 E-5
Cubic spline Forsythe's L"=S"	7.11 E-2	1.56 E-3	5.79 E-3	4.07 E-6	1.62 E-1	3.28 E-3
Cubic spline L"=S" end conditions	1.26 E-1	4.69 E-3	1.20 E-2	2.19 E-5	9.39 E-2	1.11 E-3
Cubic spline Swartz L'=S'	7.56 E-2	1.77 E-3	5.87 E-3	4.71 E-6	5.78 E-2	4.26 E-4
Cubic spline Parabolic end conds.	9.48 E-2	2.75 E-3	7.37 E-3	7.86 E~6	2.62 E-2	9.13 E-5
Cubic spline Natural	2.36 E-2	1.53 E-4	3.07 E-3	1.48 E-6	2.62 E-2	9.11 E-5
Lagrangian polynomial	5.47 E-3	1.05 E-5	4.22 E-4	1.80 E-8	1.48 E O	4.12 E-1

1.2.

Effect of near-coincident points

Function type: ¹⁴ Number of standards: 6 Number of comparison points: 20 $\theta = 0.0000001$

	ΣΑΒS(X ₁ - Y ₁)	and comments
QIP Values FIT TYPE	150,150+ ,200,250,300,350	150,200,250,250+ ,300,350
Piecewise linear	2.15 E-1	2.15 E-1 visibly satis.
L"=S"	4.74 E-2	2.62 E-1 oscillatory
Stineman	7.79 E-2 A11	1.14 E-1 visibly satis.
Cubic spline, Forsythe	4.28 E-2 visibly	
Cubic spline, Parabolic	2.11 E-2 satisfactory	
Cubic spline, Natural	4.29 E-2	2.64 E-1 oscillatory
Lagrange	3.79 E-2	7.67 E-1 v. oscillatory
Tension spline, Z=1		1.69 E-1)
Tension spline, Z=2		8.77 E-2) visibly
Tension spline, Z=3		1.79 E-1) satisfactory

1.

•

Comparison of calculated and dispensed DPM for 3^{1} wingle label.

No	410	DPM	HADA + MAD	Polynomial	Polynomial	Natural EC	.Se.1	Natural	Parabolic	SWATTE S'-L'	Toraythe S"+L"	SCINERAN
IV	177	16969	58429 - 2161	+6CII - 6C+65	71956 + 12395	1691 + 1691	59526 ± 2054	65104 ± 2321	64343 - 2304	64383 + 2305	64448 + 2306	\$3940 + 2395
**	215	86294	83320 + 1327	4694 - 16969	85248 + 3625	90245 ± 1340	87628 ± 1301	84744 ± 1326	B4775 ± 1326	84774 1326	84771 + 1326	84470 + 1348
2	272	87006	83646 1 1006	7575 + 18787	84816 ± 2441	206 + 57927	82118 ± 929	84798 ± 1013	84775 ± 1013	84777 ± 1013	E101 - 67748	85099 + 1026
**	\$93	96760	97470 + 446	96304 - 1150	611 = 85956	95382 + 713	151 - 51236	96764 + 443	96764 + 443	96859 + 444	96759 + 443	96551 + 442
\$\$	609	87198	87213 - 423	85609 ± 1107	95598 - 710	85237 ± 410	86365 ± 415	86509 ± 420	86509 + 420	86611 ± 421	86504 ± 420	86329 + 419
18	110	78102	*	×	*	×	×	×	×	×	*	×
84	235	86294	83320 • 1327	73463 + 6117	85164 ± 2952	86401 + 1283	86630 ± 1316	84888 ± 1325	84720 ± 1326	84687 + 1327	84661 + 1327	86401 + 1283
6.8	272	87006	83646 ± 1006	76513 + 4353	85029 + 2061	83211 ± 942	81267 ± 920	84692 ± 1013	84816 + 1013	84841 + 1013	84860 + 1013	83211 - 941
A	165	96780	96512 + 442	96746 ± 1326	95809 + 645	96628 ± 438	96246 - 436	96350 + 442	96350 + 442	96348 ± 442	96352 + 442	96628 + 438
ŝ	655	82244	82249 198	80882 + 1093	81883 - 589	81519 - 392	82027 + 395	81945 + 397	81945 ± 397	B1959 ± 397	191 - 197	81519 - 392
5	269	00868	83197 + 1644	81376 - 1583	67638 + 6378	1112 - 1429	65\$1 ÷ 64664	85168 - 1646	84976 ± 1648	16478 + 1647	84346 + 1648	84758 - 1679
C2	534	10866	9127 ÷ 518	98534 ÷ 505	101374 ± 1402	97193 + 495	97785 + 495	98814 + 517	98812 + 51896	112 + 91886	112 + 1186	96842 + 516
C	562	80162	80645 - 453	80244 + 462	82363 ± 1201	75208 + 437	79648 + 439	80262 + 451	80261 + 451	80266 + 451	80262 + 451	80329 + 451
5	622	102579	103317 - 471	102627 + 520	104015 - 1421	103631 + 469	103168 ± 467	102836 ± 473	102836 ± 473	102827 + 473	ETA + 258201	102974 : 472
S	815	90829	91341 2 376	91616 + 429	619 ± 61968	5LT + 19E16	EVE + 92809	90945 ± 375	90945 ± 375	90664 + 374	516 - 20606	918 - 01816
ī	219	93827	100601 + 3675	118015 + 7356	×	83028 + 2677	86956 + 2804	96188 + 3359	90386 ± 3031	86769 ± 2856	89257 + 2974	EATE - 011201
D2	256	85400	B1874 + 1805	82286 + 2623	70185 + 10648	93330 + 1960	90070 + 1910	86294 + 1884	87616 + 1889	88554 + 1896	87699 + 1891	82644 ± 1823
G	\$34	10866	LIS + 68186	98465 ± 505	100766 + 1696	99420 + 506	505 + 12066	98671 + 516	98672 + 516	98672 + 516	98673 + 516	98685 - 516
54	699	89202	807 + St368	88377 ± 401	88652 + 1176	89844 + 407	89378 + 405	89007 + 407	89007 + 407	88961 ± 407	88996 + 407	90* - 81688
50	865	82009	82304 + 350	82445 + 356	82257 + 923	82304 + 349	82116 + 349	82177 + 350	82177 + 350	82018 + 349	82139 + 350	82314 + 350

A and B groups are two chemically quenched calibration curves with different standards C and D groups are two colour quenched calibration curves with different standards

Comparison of calculated and dispensed DPM for $^{14}\mathrm{C}$ single label

ua	617 + 1	3 ± 317	197 -
Stinen	120477	46226	75449
Q	+ 882	+ 322	+ 268
Oubic Spline Forsyth	120080	96206	75362
	+ 887	+ 322	+ 268
Cubic Spline Swartz	120026	96219	75360
ic	+ 893	+ 322	+ 268
Cubic Spl ine Parabol	119454	96236	75356
	+ 916	+ 321	+ 268
Cubic Spline Natural	119705	96294	75342
ic	+ 513	+ 312	+ 267
Quadrat Spline L'=S'	120791	95797	25585
Li e Li	+ 513	+ 312	+ 267
Quadrat Splir Natura	120771	95843	75549
nomial	+ 7801	+ 2500	1161 +
Least Squares 4° Polyn	131056	66666	71638
mial	10168	3410	2772
east quares 1° Polync	29332 +	93724 ±	75147 +
82	786 1	321	268
Piecewi	121240 +	97406 +	75747 ±
pensed	543	384	431
p I	5 120	96 6	6 75
e r QI	17	32	42
Sampl	1	2	m
		239	

5
N
E
e
-
P
Ð
E-+

	Piecewise Linear	Least Squares 3° Polynomial	Quadratic Spline	Quadratic Spline	Cubic Spline	Cubic Spline	Cubic Spline	Cubic Spline	Stineman
End conditions			Natural	L ⁱ = S ⁱ	Natural	Parabolic	Swartz	Forsythe	
3 _H mean error (%)	2.95	8.10	4.37	3.21	1.48	1.70	1.96	1.77	2.11
14 _C mean error (%)	0.69	5.41	0.30	0.34	0.30	0.25	0.23	0.22	0.08
Mean of ³ H and ¹⁴ C	1.82	6.76	2.34	1.78	0.89	0.97	1.10	1.00	1.10

SIE		937	881	839	765	595	437	479	324	183	1
keV	% Dev	6.00	7.31	7.92	7.64	60-7	5.85	6.32	5.52	4.99	ı
12-90	Count rate	20.15	16.04	13.41	14.17	14.42	16.62	15.49	18.72	17.29	I.
SIE		426	885	837	767	593	438	484	327	184	142
keV	% Dev	6.68	8.78	8.84	8.76	8.80	7-57	7.81	7.38	11.40	ı
90-714	Count rate	13.55	11.58	10.22	10.65	6.71	9-64	10.53	10.04	3.47	ı
keV	% Dev	5.01	7.16	7.23	6.98	69•9	5.30	5.76	5.16	5.00	1
12-156	Count rate	24.07	17.41	15.26	16.78	16.79	19.70	19.32	20.55	17.99	1
еV	% Dev	4•52	5.00	5.00	4.98	4.99	4.95	4.95	5.39	6.62	6.85
0-12 k	Count rate	29.63	35.78	31.94	32.90	30.13	22.51	26.24	18.80	10.27	8.53
SIE		930	899	841	778	597	439	475	327	183	141
keV	% Dev	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	I
0-714	Count rate	61.78	60.58	56.22	56.98	52.58	47.62	51.45	46.51	32.49	1
keV	% De v	5.40	5.39	5.39	5.34	5.38	5.39	5.35	5.45	5.30	8.32
0-156	Count rate	52.90	52.02	48.31	49.89	45.42	40.96	44.89	39.19	28.81	5.78
eV	% Dev	6.90	6.22	6.26	6.12	6.38	6.63	6.36	6.93	7.10	5.47
0-19 k	Count rate	32.39	39.16	38.26	38.04	32.27	27.10	31.83	24.19	16.07	13.37

Region	සං	a1.	a	æ
0-19	8.22222	33.21226	59.42225	-68.58234
0-156	-27.12587	353.96925	-568.79719	303.35668
0-714	3.30382	215.47564	-326,65731	174.95804
0-12	3.10007	31.92439	65.81563	-72.81374
12-156	0.24714	149.80508	-333.73327	213.78200
90-714	-13.05051	128.68608	-228.08991	129.22932
12-90	7.03592	92.48893	-226.14439	151.19346

Coefficients of the °3 Least Squares Polynomials used to fit the background data.

Equation : $y = a_0 + a_1 x + a_2 x^2 + a_3 x^3$

and y = Background in CPM

 $x = SIE(AEC) \div 1000$

SIE/AEC	-%DI ≊H	PM Recove **C	ry SeCl	[™] H:¹⁴C: [®] 4 (1≡20,0	, C.		Rat	tio n)
913	96.2	94.9	106.1	1	:	1	:	2
868	97.3	97.6	106.8	1	:	1	:	2
830	98.6	96.4	105.3	2	:	1	:	2
765	99.7	96.8	105.7	2	:	1	:	2
567	98.6	103.6	104.4	1½	:	1	:	2
451	97.3	102.3	105.4	1½	:	1	:	2
395	94.7	106.6	102.5	1½	:	1	:	2
266	52.0	107.6	107.7	1	:	1	:	2
238	89.4	109.0	104.8	2	:	1	:	3

1

Table T2.15

SIE/AEC	%D ≅ H	PM Recove 14C	ery SeCl	[™] H: ¹ 4C: [®] ¢ (1≡20,0	, C.		Rat	tio n)
945	98.3	97.8	103.5	1	:	1	:	1
920	97.8	98.2	104.1	1	:	1	:	1
851	97.8	97.7	105.6	1	:	1	:	1
807	100.6	99.3	102.4	1	:	1	:	1
731	99.8	99.9	101.1	1	:	1	:	1
575	99.1	103.4	96.3	2	:	1	:	1
435	103.0	104.5	97.4	1	:	1	:	1
391	109.6	114.1	78.7	1	:	1	:	1
321	119.9	114.9	74.8	1	:	1	:	1
236	185.2	103.4	95.3	1	:	1	:	1
Table T2.16

.

SIE/AEC	%DI ≅H	PM Recove	ery SeCl	³ H: ¹⁴ C: ³⁴ (1≡12,0	» C:		Rat	tio n)
944	98.4	97.9	101.2	3	:	1	:	1
887	99.6	97.4	107.9	3	:	2	:	1
845	100.5	97.7	103.0	3	:	1	:	1
791	100.5	98.1	107.1	3	:	2	:	1
708	100.1	99.6	104.1	3	:	2	:	1
568	100.5	102.3	97.1	3	:	1	:	1
430	100.5	98.7	100.8	3	:	1	:	1
389	100.5	101.1	87.5	3	:	1	:	1
358	99.2	106.1	85.6	3	:	2	:	1
235	134.7	105.6	93.1	3	:	1	:	1

1

Table T2.17

.

•

SIE/AEC	%DI ≊H	PM Recove **C	ery ≊⇔Cl	[™] H:¹⁴C: [™] (1≡6,00	° C 00	l I cr	Ra† om	tio)
942	99.3	98.3	109.7	6	•	4	:	1
904	100.3	98.3	104.4	6	:	2	:	1
881	100.1	96.7	114.2	8	:	3	:	1
837	100.5	98.1	111.2	7	:	3	:	1
548	102.7	99.1	98.2	5	:	2	:	1
422	100.4	99.2	88.6	6	:	3	:	1
375	97.5	97.7	104.2	6	:	4	:	1
302	96.0	99.4	99.4	8	:	3	:	1
241	139.3	104.3	94.5	4	:	2	:	1

SIE/AEC	%D =H	PM Recove 14C	∍ry ≊≏Cl	³ H: ¹⁴ C: ³⁴ Cl Ratio (1≡20,000 cpm)
679 .	89.2	104.5	98.3	$1 : 1 : 1_{\frac{1}{2}}^{\frac{1}{2}}$
553	80.0	105.2	100.1	$1 : 1 : 1\frac{1}{2}$
462	58.2	98.2	105.0	$1 : 1\frac{1}{2} : 1\frac{1}{2}$
432	47.3	96.5	106.6	$1 : 1\frac{1}{2} : 1\frac{1}{2}$
333	-	84.9	102.1	$1 : 1 : 1_{2}^{\prime}$
331	-	88.3	101.7	$1 : 1 : 1_{\frac{1}{2}}$
243	-		-	$1 : 1 : 1\frac{1}{2}$

15 15

Standards Calibration Curves

Results for Colour Quenched Samples using Chemical

Table T2.19

Results for Colour Quenched Samples using Colour Quenched Standards Calibration Curves

SIE/AEC	%D ™H	PM Recove	ery SéCl	³ H: ¹⁴ C: ³⁶ Cl Ratio (1≡20,000 cpm)
679	97.0	100.8	100.5	$1 : 1 : 1\frac{1}{2}$
553	90.1	93.9	103.5	$1 : 1 : 1_{\frac{1}{2}}$
462	99.5	97.5	102.5	$1 : 1\frac{1}{2} : 1\frac{1}{2}$
432	106.0	98.5	102.6	$1 : 1\frac{1}{2} : 1\frac{1}{2}$
333	96.8	98.4	94.3	$1 : 1 : 1_{\frac{1}{2}}$
331	102.0	103.7	94.1	$1 : 1 : 1\frac{1}{2}$
243		-	-	$1 : 1 : 1_{\frac{1}{2}}$

Table TJ.1

	Cl ₄ n-Hexadecane	1.4450	1.4622	.4582	•4412 1.4440	.4923113 1.47214743	-17022-8845	.26042472E9 1.70987482E9	.4531 1.4562	.48042353 1.45616846	90174 1.45616846	-511424519	терор I рости Терор I
Substance	C			~	-		-14083	~		-	-5196	-392118921	<i>c</i> -
	10 g l ⁻¹ bPBD in p-Xylene	1.5006	1.4992	1.4964	1.4868	1.51286338	-6001.20807	436679096	1.4933	1.50675199	-1432.37733	-412889718	1-4937
	p-Xylene	1.4987	1.4974	1.4925	1.4850	1.50608488	-2580.27797	-150921742	1.4882	1.50368545	-786.478293	-484476726	1,4921
		Measured $^{ m N}_{ m \lambda R}$	" N _{AY}	" ["] "AB	" N _{XV}	Calculated A	" ARAYAB	0	۳. N _λ	Calculated A	B	ບ =	

Probability of 'n' electrons when expected gain = 3.94 and variation with Shape factor (b)

= 0.5 b = 1	367в-01 2.02429в-01	393Е-01 1.61452Е-01	533Е-01 1.28768Е-01	336E-01 1.02702E-01	723Е-01 8.19125Е-02	348E-02 6.53310E-02	840E-02 5.21061E-02	325E-02 4.15583E-02	303Е-02 3.31457Е-02	757е-02 2.64360Е-02	578Е-02 2.10846Е-02	756Е-02 1.68165Е-02	392Е-02 1.34123Е-02	556E-03 1.06973E-02	544E-03 8-53184E-03	ЭЗТЕ-03 6.8047E-03	371E-03 6.8047E-03 578E-03 5.42726E-03
0.3 b	7E-02 1.13	6E-01 1.50	ZE-01 1.49(8E-01 1.32	4E-01 1.09	7Е-01 8.73	DE-02 6.75	5E-02 5.12	ЭЕ-О2 3.82	JE-02 2.81	IE-02 2.055	2E-02 1.487	3E-03 1.068	IE-03 7.635	HE-03 5.426	5E-03 3.839	ы-03 3.839 ы-03 2.705
2 p =	02 7.4213	01 1.3400(01 1.5728	01 1.51468	01 1.2991	01 1.03217	02 6.76570	02 5.60895	02 3.92459	2.67715	1.78861	03 1.17442	7.59893	03 4.85521	3.06844	1.92075	04 1.92075 1.19222
b = 0.	5.47220E-	1.20584Е-	1.59430E-	1.63948Е-	1.44509距-	1.14637至-	7.76570E-	5.83159Е-	3.85511E-	2.45412E-	1.51420E-	9-09997Е-	5.34734E-4	3.08178E-4	1.74624E-(9.74822E-(9.748228-0
b = 0.1	3.60888E-02	1.02001E-01	1.58563Е-01	1.79265Е-01	1.64669Е-01	1.30318E-01	9.20825E-02	5.94884Е-02	3.57293Е-02	2.019705-02	1.08461E-02	5.57372E-03	2.75688Е-03	1.31865표-03	6.12298Е-04	-	
b = 0.05	2.74231E-02	9.026491-02	1.55984至-01	1.88258E-01	1.78153Е-01	1.40737E-01	9.65091E-02	5.89950E-02	3.27688E-02	1.67783Е-02	8.00790E-03	3.59434至-03	1.52817E-03	6.19084至-04			
b = 0 . 01	2.09763т-02	7.95139Е-02	1.52212E-01	1.96174至-01	1.91483Е-01	1.50976Е-01	1.00152E-01	5.74885E-02	2.91466т-02	1.32581E-02	5.47801E-03	2.076523-03	7.28101E-04				
p; = 0	1.944828-02	7.66260Е-02	1.50953E-01	1.98252E-01	1.95278E-01	1.53879Е-01	1.01047E-01	5.68752Е-02	2.80110E-02	1.22626т-02	4.83147e-03	1.73054至-03	5.68195E-04				
Я	0	~	N	М	4	ŋ	9	0	00	6	10	17	27	13	14	15	15

Table TJ.2 cont.

•

Aluminium Reflection Data

Wavelength of incident radiation, nm	Normal Incidence Reflection
620	0.9148
564	0.9200
517	0.9228
477	0.9238
443	0.9242
414	0.9241
388	0.9243
365	0.9245
345	0.9246
327	0.9247
310	0.9248
295	0.9248

the state of the s

w . .

· · · · · ·

Unalt (and resu	ered LSC + line d: 1ts \simeq sa	river, me	6" Co + MCA	oax. cable A (no line	e + Scope e driver)	4m Co + MC <i>I</i>	oax. cabl A (no lin	e + Scope e driver)
SIE	CPM	% Dev	SIE	СРМ	% Dev	SIE	CPM	% Dev
913	187130	1.46	913	187779	1.46	932	181130	1.49
558	180909	1.49	557	180730	1.49	570	178230	1.50
371	168240	1.54	372	170320	1.53	378	167810	1.54
295	149220	1.64	298	151449	1.63	302	150170	1.63
229	125230	1.79	229	124550	1.79	240	124160	1.79
203	103160	1.97	203	103210	1.97	214	1.4450	1.96
180	81680	2.21	180	81690	2.21	192	84560	2.17
164	68400	2.42	167	68280	2.42	180	69930	2.39

Effect of Loading on Packard 300C

-

Coincidence Summed Spectra Results for ¹⁴C Colour Quenched Samples

		**								
Dispensed	106537	96522	92072	94278	94575	117016	96575	92232	87110	104789
Packard SIS Effy	94.5	93.7	60.7	85.4	81.0	73.3	60.2	42.5	31.7	24.2
Packard CPM **	101205	90450	83472	80517	76580	85679	58129	39234	27956	25368
MCA Effy %	79.2	72.8	75.5	56.1	73.5	64.9	52.6	34.7	24.9	18.1
MCA/PET Mean p.h. *	616	416	310	208	180	139	107	83	75	23
CA/PET egration limits UL	740	550	800	600	1000	960	880	808	720	688
L L L	22	22	22	22	22	22	22	22	22	22
MCA CPM	84413	70274	69748	52894	69483	75959	50805	31970	21689	18991
MCA time s	600	600	600	600	600	600	600	600	600	600
MCA Count	844132	702743	697478	528938	694831	759592	508053	319704	216894	189912
TC	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
MCA ttings Fine	0	0	0	0	0	0	0	0	0	0
] Se Coarse	∞	Ø	16	16	32	32	32	32	32	32

 $8 = x^{4}$ 16 = x2, * (i) Spectra rescaled by amplification factor 32 = x1,

(ii) LL offset removed

** SIS CPM based on 11 min count

Coincidence Summed Spectra Results for ¹⁴C Chemicaily Quenched Samples

Dispensed	M40		28931	30385	30314	29583	30220	30526	30456	32672	31249	30951
Packard	SIS TAP	ליים	96.3	95.4	95.3	93.6	89.6	88.9	84.3	65.4	40.8	18.9
Packard	CPM **		27857	28997	28880	27678	27069	27149	25685	21432	12743	5861
MCA	Effy %		82.0	80.2	6-77	81.1	72.7	82.2	76.5	53.7	26.4	8.4
MCA/PET	Mean * r	- 11 • J	610	576	492	356	218	213	147	57	27	17
A/PET	gration	UL	047	680	600	832	600	1000	760	400	232	232
MC	Inte	LL L	22	22	22	22	22	22	22	22	22	22
MCA	CPM		23708	24373	23624	23987	21957	25098	23305	17600	8243	2595
MCA	time	ŭ	600	600	600	600	600	600	600	600	1000	2000
MCA	Count		237076	243727	236135	239865	219566	250979	233049	176002	137383	86511
	č E) T	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
MCA	ttings	апт т	0	0	0	0	0	0	0	0	0	0
	.95	es.roo	Ø	Ø	ω	16	16	32	32	32	32	32

8 = x4 16 = x2, (i) Spectra rescaled by amplification factor 32 = x1,

(ii) IL offset removed

×

** SIS CPM based on 11 min counts

Coincidence Summed Spectra Results for ³H Colour Quenched Samples

set	MCA ttings		MCA Count	MCA time	MCA CPM	MCA/PET Integrati	uo	MCA/PET Mean	MCA Effy %	Packard CPM	Packard Effy	Dispensed DPM
Coarse	Fine	TC		Ŋ		limits		Pulse			%	
		ß				LL	TI	Height				
64	0	3.2	398160	600	39816	22 7	00	110	44.83	41537	51.83	88822
64	0	3.2	382587	600	38259	22 6	260	101	42.12	40481	040.64	90829
64	0	3.2	327498	600	32750	22 6	8	16	37.99	34320	44.12	86211
64	0	3.2	236464	600	23646	22 5	00	12	23.05	30219	32.65	102579
64	0	3.2	172532	600	17253	22 4	10	61	21.52	18522	25.61	80162
64	0	3.2	151907	.009	15191	22 4	ş	56	17.52	16396	20.96	86703
64	0	3.2	107855	1000	6471	22 3	380	45	7.71	7257	9-59	83894
64	0	3.2	30394	1000	1824	22 22	.60	37	2.10	2145	2.74	86726
64	0	3.2	. 35288	2000	1057	22 22	040	37	1.24	1278	1.66	85400
64	0	3.2	24281	3000	486	22	00	36	0.52	597	0.71	93827

Coincidence Summed Spectra Results for $\frac{3}{2}H$ Chemical Quenched Samples

MC	A		MCA	MCA	MCA	MCA/	PET	MCA/PET	MCA	Packard	Packard	Dispensed
sett	ings	ļ	Count	time	CPM	Integr	ation	Mean	Effy %	CPM	Effy 2	DPM
Coarse H	ine			വ		тт Тт	its III	Pulse To: aht			%	
		a					TTO	1TGTDT				
64	0	3.2	386513	600	38651	22	700	111	44.89	40637	52.30	86105
64	0	3.2	328257	600	32826	. 22	600	88	38.10	34750	44.70	86158
64	0	3.2	293839	600	29384	22	500	78	34.12	31060	39.97	86128
64	0	3.2	286578	600	28658	22	480	20	30.06	30503	35.46	95342
64	0	3.2	135819	600	13582	22	400	54	21.72	14797	26.22	62536
64	0	3.2	102973	600	10297	22	320	43	14.56	11086	17.38	7 0706
64	0	3.2	71455	1000	4287	22	240	37	8.24	5077	10.82	52020
64	0	3.2	78816	1000	4729	22	240	32	5.44	5902	7.51	87006
64	0	3.2	22494	3000	450	22	200	26	0.58	609	0.86	78140

1. 1. 1.

Model Generated Coincidence-Summed Colour and Chemically Quenched SH Samples

QCOL	QCHEM	Coincidence Mean Pulse ht	Coincidence Efficiency
0	о	92.1	68.8
0	0.1	89.4	66.4
0	0.2	80.4	61.1
0	0.3	74.7	59.1
0	0.4	67.2	53.0
0	0.5	63.0	46.7
0	0.6	55.1	42.1
0	0.7	47.4	32.7
0	0.8	39.7	21.1
0	0.9	33.1	9.61
0	0	92.1	68.8
0.01	0	92.6	65.4
0.05	0	80.2	61.7
0.10	0	74.9	54.7
0.20	0	63.1	45.4
0.50	0	52.3	33.4
1	0	48.2	27.9
10	0	41.9	22.7
100	0	37.5	12.6
500	0	36,5	3.13

.

~

Model	Generated	Coincidence	Summed	Colour	and	Chemically
Quencl	ned <u>14C Sar</u>	nples				

QCOL	QCHEM	Coincidence Mean pulse ht	Coincidence Efficiency
0	0	791.4	96.1
0	0.1	692.5	95.4
0	0.2	638.5	94.3
0	0.3	553.0	95.1
0	0.4	488.9	94.3
0	0.5	399.4	93.5
0	0.6	317.0	92.2
0	0.7	247.6	88.3
0	0.8	174.3	84.6
0	0.9	102.5	69.6
0	0.93	77.8	62.3
0	0.95	64.4	51.1
0	0.97	49.9	35.8
0.01	0	718.1	96.4
0.05	0	633.1	96.2
0.1	0	519.9	94.3
0.2	0	420.1	93.3
0.5	0	308.6	88.3
1	0	241.6	88.4
10	0	185.6	84.5
100	0	132.0	69.6
500	0	114.5	23.6

QCOL	QCHEM	Mean	Efficiency
0	0	96.3	67.3
0	0.1	91.3	64.6
0	0.2	82.0	61.2
0	0.3	76.6	57.4
0	0.4	68.6	53.2
0	0.5	61.7	47.9
0	0.6	54.6	40.9
0	0.7	48.5	32.7
0	0.8	40.3	21.8
0	0.9	32.0	9.28
0	0	96.5	66.4
0.01	0	94.8	66.8
0.05	0	83.8	60.0
0.1	0	73.7	53.5
0.2	0	62.8	45.0
0.5	0	52.5	33.9
1	0	48.1	29.9
10	0	42.3	22.9
100	0	37.9	12.6
500	0	37.0	3.11
0.05	0.3	64.9	50.0
0.1	0.3	59.4	43.0

Model Generated Coincidence Summed Colour and Chemically Quenched ^{SH} Samples using 5000 counts Spectra

Table T3.11 Continued

QCOL	QCHEM	Mean	Efficiency
0.5	0.3	44.7	24.4
10	0.3	37.5	15.7
100	0.3	34.7	8.14
0.05	0.4	60.2	45.8
0.1	0.4	56.1	38.1
0.5	0.4	41.4	20.9
10	0.4	35.4	12.9
100	0.4	33.3	6.66
0.05	0.5	54.9	39.7
0.1	0.5	50.7	33.0
0.5	0.5	39.5	17.5
10	0.5	33.9	10.3
100	0.5	31.7	5.24
0.05	0.6	49.5	33.0
0.1	0.6	45.5	27.2
0.5	0,6	36.3	13.3
10	0.6	32.4	7.74
100	0.6	30.7	3.75
0.05	0.7	42.5	25.7
0.1	0.7	40.7	20.5
0.5	0.7	33.9	9.17
10	0.7	30.4	5.24

.

258

.

QCOL	QCHEM	Mean	Efficiency
0	0	766.3	96.5
0	0.3	549.6	95.0
0	0.5	396.4	92.8
0	0.7	250.8	88.7
0	0.9	102.1	70.5
0	0.95	64.2	51.0
0.05	0	614.1	95.1
0.5	0	298.8	89.6
1	0	253.2	86.9
10	0	191.0	83.4
100	0	130.3	69.0
500	0	110.4	23.8
0.5	0.8	83.1	58.3
10	0.8	61.3	45.1
100	0.8	51.1	28.3
500	0.8	48.2	7.46
0.5	0.9	54.7	37.8
10	0.9	43.8	25.7
100	0.9	39.5	14.1
500	0.9	37.5	3.54

Model Generated Coincidence Summed Colour and Chemically Quenched ¹⁴C Samples using 5000 counts Table T3.13(a)

Model Generated Coincidence Summed 14C samples -

QCOL	QCHEM	Mean ph	Efficiency
0	0	744.6	96.8
0	0	773.0	96.9
0	0	773.3	96.5
0	0	791.4	96.5
0	0	781.8	97.0
0	0	779.1	95.4
0	0	776.1	94.9
0	0	755.8	97.0
0	0	752.6	96.9
0	0	749.5	96.1
	Σ	= 7677.2	Σ = 964.0
	x	= 767.7	$\overline{\mathbf{x}} = 96.4$
	σ	= 15.8	$\sigma = 0.73$

<u>Repeatability</u>

Table T3.13(b)

QCOL	QCHEM	Mean ph	Efficiency
0	0	791.4	96.1
0	0.3	553.0	95.1
0	0.5	399.4	93.5
0	0.7	247.6	88.3
0	0.9	102.5	69.6
0	0	757.3	95.5
0	0.3	538.2	95.3
0	0.5	393.5	92.9
0	0.7	253.6	88.6
0	0.9	101.9	71.0

Threshold effect on Model calibration curves

(a) Tritium

QCHEM	Thres mean	hold=0 eff.	Thresh mean	old=1 eff.	Thresh mean	old=4 eff.	Thresh mean	old=10 eff.
	p.h.	%	p.h.	%	p.h.	%	p.h.	%
0	92.1	68.8	101.8	61.1	105.5	52.3	112.2	37.7
0.1	89.4	66.4	94.6	58.1	95.1	49.2	105.5	35.5
0.2	80.4	61.1	89.2	54.7	87.3	43.5	98.8	30.1
0.3	74.7	59.1	78.1	49.8	83.8	42.2	90.9	26.0
0.4	67.2	53.0	72.0	44.5	75.2	35.9	82.0	21.5
0.5	63.0	46.7	65.5	39.8	71.4	30.4	74.3	17.1
0.6	55.1	42.1	61.4	32.6	62.5	23.9	66.7	12.8
0.7	47.4	32.7	52.7	25.2	53.7	17.7	60.3	7,91
0.8	39.7	21.1	43.7	15.9	46.8	10.8		
0.9	33.1	9.61	35.9	6.41	37.8	4.03		

(b) Carbon-14

QCHEM	Thresh mean p.h.	old=0 eff. %	Thresh mean p.h.	old=1 eff. %	Thresh mean p.h.	old=10 eff. %	Thresh mean p.h.	old=50 eff. %
0	757.3	95.5	803.2	95.1	781.2	91.6	855.5	74.3
0.3	538.2	95.3	541.0	93.5	536.4	87.8	632.6	62.4
.0.5	393.5	92.9	392.7	91.7	417.4	83.7	486.1	54.7
0.7	253.6	88.6	257.9	86.7	273.7	75.3		
0.9	101.9	71.0	107.4	63.5	114.7	42.0		

Table TJ.15

unt Samples	
5000 col	
ata using	
Samples D	
Quenched H	
Colour (
l Purely	
e Summed	·
Coincidenc	
Generated	
Model	

5

	I 20)YE	Unif	orm	Step 300 -	400 nm	Step 400 -	· 500 nm	Step 500 -	600 nm
QCOL	Mean p.h.	Effy	Mean p.h.	Effy	Mean p.h.	Effy	Mean p.h.	Effy	Mean p.h.	Effy
0	96.5	66.4	97.3	67.1	97.4	67.2	6•26	67.7	97.8	67.1
0.01	94.8	66.8	92.6	66.1	92.1	65.1	95.8	68.1		
0.05	83.8	60.0	80.3	58.9	81.3	59.1	94.6	62.0		
0.1	73.7	53.5	71.8	52.0	72.1	52.9	94.1	66.1		
0.2			61.3	42.3	64.2	46.0	90.6	66.7		
0.5			51.4	32.6	55.6	38.6	1.16	65.8		
~			47.0	28.1	52.3	35.8	90.4	65.4		
10	42.3	22.9	42.7	22.6	48.6	31.9	91.8	66.5		
100	37.9	12.6	37.9	11.2	44.1	22.8	89.7	65.4		
500	37.0	3.11	36.3	2.72	38.3	14.7	88.6	64.3	6+•7	68.2

2 84. JAN

Model Generated Coincidence Summed Colour and Chemical Quenched ^{33}H : shape factor B = 0.00001 (almost Poissonian) and B = 1 (exponential)

QCOL	QCHEM	B = 0 mean p.h.	.00001 efficiency	B = mean p.h.	1 efficiency
0	0	118.1	71.8	66.9	74.2
0	0.2	102.9	66.9	56.5	67.7
0	0.4	87.8	58.4	47.0	56.1
0	0.6	70.9	43.9	37.0	45.5
0	0.8	48.8	24.1	26.7	24.8
0.05	0	103.6	65.2	55.1	66.0
0.5	0	66,5	37.7	34.7	35.9
1	0	60.9	32.0	31.1	32.9
10	0	53.3	24.7	27.5	25,3
100	0	48.6	14.5	24.4	13.9

Model Generated Coincidence-Summed Colour and Chemical Quenched ³³H : PMTube Quantum Efficiency scaled down by 0.173% to 21.5% peak efficiency 1 32's

	••••••••••••••••••••••••••••••••		
QCOL	QCHEM	Mean p.h.	Efficiency
0	0	89.2	62.3
0	0.2	76.3	56.1
0	0.4	63.3	47.4
0	0.6	49.7	34.8
0	0.8	36.8	19.1
0.05	0	73.5	54.0
0.5	0	49.4	29.2
1	0	43.9	24.4
10	0	41.3	18.4
100	0	38.2	10.7

.

QCOL	QCHEM	Mean p.h.	Efficiency
0	0	99.8	72.0
0	0.2	86.9	65.7
0	0.4	72.4	58.4
0	0.6	54.5	43.6
0	0.8	40.7	23.9
0.5	0	85.4	65.5
0.5	0	52.2	38.3
1	0	48.7	32.8
10	0	43.9	26.5
100	0	38.7	13.8

Model Generated Coincidence-Summed Colour and Chemical Quenched TH : Scintillation efficiency = 4.5% constant

Model Generated Coincidence Summed Unquenched "H : Effect

44 4 ... 20 s.

-3.6.1

Liquid ht.	Mean	Efficiency
0.001	51.1	35.5
0.005	62.7	48.0
0.010	86.1	59.1
0.015	88.8	66.5
0.020	97.5	67.5
0.025	95.8	67.7
0.030	98.6	67.2
0.035	90.1	65.1
0.040	89.7	63,7

of Volume variation

Model	ge	enerated	results	for	simultaneous	coincidence	
	2	1:00	1				

summed.	difference	and	ratio	nulse	heidht	spectra	 140
Dominiou,	MITTOL ONGO	ana	10010	parac	HOIGHU	apecura	 <u> </u>

QCOL	QCHEM	Mean pu Summed	lse ht. Diff.	Std. dev. of ratio p.h.s.	Counting eff.
0	0	791.3	184.9	656.6	96.1
0	0.1	692.5	162.5	657.3	95.4
0	0.2	638.5	155.5	700.3	94.3
0	0.3	553.0	137.7	687.6	95.1
0	0.4	488.9	122.0	709.8	94.3
0	0.5	399.4	100.6	731.8	93.4
0	0.6	317.0	87.1	784.4	92.2
0	0.7	247.6	71.3	835.7	88.3
0	0.8	174.3	54.1	877.4	84.6
0	0.9	102.5	37.7	1021.0	69.6
0	0.93	77.7	31.8	1062.0	62.3
0	0.95	64.4	26.0	1062.0	51.1
о	0.97	49.9	20.6	1115.0	35.8
0.01	0	718.6	173.9	669.5	96.4
0.05	0	633.1	186.1	756.7	96.1
0.1	0	519.9	181.9	846.0	94.3
0.2	0	420.1	167.9	953.7	93.2
0.5	0	308.6	127.1	977.5	88.3
1	0	241.6	89.6	942.8	88.4
10	0	185.5	61.6	939.4	84.5
100	0	132.0	52.0	1014.0	69.6
500	0	114.5	48.9	1103.0	23.6

268

-

QCOL	QCHEM	Mean pu Summed	lse ht. Diff.	Std. dev. of ratio p.h.s.	Counting eff.
0	0	92.1	34.9	125.1	68.8
0	0.1	89.4	35.0	128.6	66.4
0	0.2	80.4	31.0	130.3	61.1
0	0.3	74.7	28.0	130.0	59.1
0	0.4	67.2	26.8	137.4	53.0
0	0.5	63.0	23.9	137.7	46.7
0	0.6	55.1	20.4	139.6	42.1
0	0.7	47.4	17.8	141.4	32.7
0	0.8	39.7	13.8	138.1	21.1
0	0.9	33.1	11.5	142.2	9.61
0	0	92.1	34.9	125.0	68.8
0.01	0	92.6	34.7	128.3	65.4
0.05	0	80.2	31.9	130.5	61.7
0.1	0	74.9	30.5	136.0	54.7
0.2	0	63.1	26.3	139.1	45.4
0.5	0	52.3	22.4	145.4	33.4
1	0	48.2	19.5	142.2	27.9
10	0	41.9	16.0	140.9	22.7
100	0	37.5	13.9	144.3	12.6
500	0	36.5	13.6	145.1	3.13

Model generated results for simultaneous coincidence

summed, difference and ratio pulse height spectra - "H

Model generated results for simultaneous coincidence sum difference and ratio pulse height spectra for ³H using 5000 counts

QCOL	QCHEM	Mean pu Summed	lse ht. Diff.	Std. dev. of ratio p.h.s.	Counting eff.
0	0	96.3	37.0	126.4	67.3
0	0.1	91.3	34.6	126.6	64.6
0	0.2	82.0	31.3	130.0	61.2
0	0.3	76.6	29.5	132.8	57.4
0	0.4	68.6	26.8	134.6	53.2
0	0.5	61.7	23.6	135.0	47.9
0	0.6	54.6	20.5	136.0	40.9
0	0.7	48.5	18.1	140.2	32.7
0	0.8	40.3	15.0	142.9	21.8
0	0.9	32.0	11.3	143.4	9.28
0	0	96.5	36.7	126.4	66.3
0.01	0	94.8	36.0	128.5	66.8
0.05	0	83.8	33.6	132.4	60.0
0.1	0	73.7	30.5	136.6	53.5
0.2	0	62.8	28.7	139.7	45.0
0.5	0	52.5	23.9	141.6	33.9
1	0	48.1	20.9	142.3	· 29.9
10	0	42.3	19.4	142.8	22.9
100	0	37.9	16.7	144.4	12.6
500	0	36.9	15.1	143.1	3.11

Table T4.3 cont

QCOL	QCHEM	Mean pu Summed	lse ht. Diff.	Std. dev. of ratio p.h.s.	Counting eff.
0.05	0.3	64.9	28.3	-	50.0
0.1	0.3	59.4	26.0	_	43.0
0.5	0.3	44.7	19.7	-	24.4
10	0.3	37.5	16.9	_	15.7
100	0.3	34.7	15.1	-	8.14
0.05	0.4	60.2	23.2		45.8
0.1	0.4	56.1	25.5	-	38.1
0.5	0.4	41.4	19.3	_	20.9
10	0.4	35.4	15.0		12.9
100	0.4	33.2	13.4	-	6.66
0.05	0.5	54.9	24.1	-	39.7
0.1	0.5	50.7	22.4	-	33.0
0.5	0.5	39.5	17.0	-	17.5
10	0.5	33.9	13.6		10.3
100	0.5	31.7	12.0	-	5.24
0.05	0.6	49.5	22.7		33.0
0.1	0.6	45.5	20.1		27.2
0.5	0.6	36.3	15.5		13.3
10	0.6	32.4	12.8	—	7.74
100	0.6	30.7	11.4	-	3.75
0.05	0.7	42.5	14.1	-	25.7
0.1	0.7	40.7	13.5		20.5
0.5	0.7	33.9	10.8		9.17
10	0.7	30.4	14.1	-	5.24

Model generated results for coincidence product pulse height spectra for ³H

QCOL	QCHEM	Mean product p.h.	Efficiency
0	0	41.3	68.9
0	0.2	25.2	63.6
0	0.4	15.1	55.5
0	0.6	8.5	41.6
0	0.8	3.81	21.9
0.05	0	31.0	60.2
0.2	0	13.4	44.6
1	0	6.42	28.8
10	0	4.34	21.5
100	0	2.79	12.7

Model generated results for coincidence product pulse height spectra for ¹⁴C

QCOL	QCHEM	Mean product p.h.	Efficiency
0	0	50.0	96.2
0	0.2	28.8	95.4
0	0.4	15.0	94.7
0	0.6	5.81	90.6
0	0.8	1.27	81.9
0.05	0	14.5	95.1
0.2	0	12.6	92.9
1	0	3.54	88.0
10	0	1.55	83.6
100	0	0.598	70.0

Model generated results for coincidence modified-product pulse height spectra with "H C.F.

QCOL	QCHEM	Mean product p.h.	Efficiency
0	0	1533	68.8
0	0.2	1271	63.1
0	0.4	1042	54.6
0	0.6	720.5	42.1
0	0.8	399.1	22.1
0.05	0	1225	61.6
0.2	0	849.5	44.2
1	0	495.6	29.4
10	0	398.7	22.4
100	0	318.1	12.7

Model generated output for coinciddence summed pulse height spectra with "H using singly applied upper discriminators and 5000 counts

QCOL	QCHEM	Mean summed p.h.	Efficiency
0	0	97.1	67.2
0	0.2	83.9	61.3
0	0.5	60.7	47.8
0	0.7	47.5	32.8
0	0.9	32.5	9.34
0.05	0	82.9	60.6
0.2	0	63.2	45.0
0.5	0	51.9	33.6
100	0	38.1	12.6

Coincidence Difference Spectra results for 14C Samples

MCA settings coarse 64, fine 0, TC 64 µs.

MCA Count	MCA time s	MCA Count rate CPM	Cha li LL	nnel mits UL	Mean diff. p.h.	Quench type	Mean* summed p.h.
361264	600	36126	22	960	100	Colour	616
329140	600	32914	22	960	103	Colour	416
311282	600	31128	22	960	108	Colour	310
315744	600	31574	22	920	114	Colour	208
286117	600	28612	22	920	108	Colour	180
309120	600	30912	22	880	98	Colour	139
194909	600	19491	22	780	97	Colour	107
121033	600	12103	22	720	87	Colour	83
79629	600	7963	22	720	83	Colour	75
67176	600	6718	22	680	80	Colour	73
107414	600	10741	22	800	104	Chemical	610
185399	1000	11124	22	800	101	Chemical	576
181847	1000	10911	22	760	94	Chemical	492
167407	1000	10044	22	600	76	Chemical	356
146298	1000	8778	22	520	66	Chemical	218
141396	1000	8484	22	500	57	Chemical	213
119275	1000	7157	22	400	46	Chemical	147
82211	1000	4933	22	240	27	Chemical	57
45245	2000	1357	22	200	20	Chemical	27
12638	2000	379	22	160	16	Chemical	17

* - taken from tables T3.5 and T3.6

Coincidence Difference Spectra results for "H Samples

MCA settings coarse 128, fine 0, TC 6.4 $\mu s.$

MCA Count	MCA time s	MCA count rate CPM	Cha li LL	nnel mits UL	Mean diff. p.h.	Quench type	Mean* summed p.h.
282227	1000	16933.6	22	480	53	Colour	110
273099	1000	16385.9	22	480	52	Colour	107
224577	1000	13474.6	22	440	49	Colour	91
186765	1000	11205.9	22	400	43	Colour	71
110111	1000	6606.7	22	360	42	Colour	61
7740	1000	464.4	22	203	37	Colour	56
71892	2000	2156.8	22	280	35	Colour	42
19172	2000	575.2	22	240	33	Colour	37
8551	2000	256.5	22	240	35	Colour	37
242473	1000	14548.4	22	480	51	Chemical	111
243327	1000	14599.6	22	440	46	Chemical	88
185550	1000	11133.0	22	400	45	Chemical	78
189645	1000	11378.7	22	360	43	Chemical	70
80871	1000	4852.3	22	320	37	Chemical	54
55278	1000	3316.7	22	260	32	Chemical	43
49034	2000	1471.0	22	240	28	Chemical	37
47991	2000	1439.7	22	200	26	Chemical	32
7421	2000	222.6	22	240	27	Chemical	26

External standard single pulse height spectra results using a half-coloured vial (containing lightly quenched cocktail) for various orientations

in Your Sa have

Relative rotational position (°)	Count	Time (s)	Cha li LL	nnel mits UL	Mean pulse height
0	29532	10	20	520	116
45	25906	10	20	520	103
90	15014	10	20	520	75
135	0	10	20	520	-
180	0	10	20	520	-
225	7282	10	20	520	58
270	23622	10	20	520	93
315	29670	10	20	520	106

External Standard Coincident Summed Pulse Height Spectra

(MCA Amp set to 2 coarse, 0.0 fine; Time constant set to 3.2 µs; unipolar pulse output) (Count time = 20 seconds)

Sample I.D.	Total Count	MCA channel limits Lower Upper		Mean channel	Normalized efficiency*	- 494- +34+
C40	98741	22	880	145	84.6	М
C24	77459	22	720	111	66.4	м
C29	8826	22	200	20	7.6	М
C39	53272	22	520	83	45.7	М
C21	213	22	80	7	0.18	м
C25	19425	22	200	31	16.7	М
C27	26125	22	240	36	22.4	М
C28	8610	22	100	18	7.4	М
C38	591	22	80	10	0.51	М
C22	1690	22	100	12	1.45	М
C4	11766	22	140	22	10.1	М
C20	30694	22	293	45	26.3	М
C9	6588	22	110	16	5.65	М
C5	64773	22	600	93	55.5	М
C12	11678	22	180	24	10.0	М
C18	70619	22	640	104	60.5	М
C19	. 68779	22	586	98	59.0	М
C17	81957	22	780	129	70.3	М
C1N	114198	22	1023	215	97.9	H
C2N	105274	22	1023	205	90.2	Н
Sample I.D.	Total Count	MCA o l: Lowe:	channel imits r Upper	Mean channel	Normalized efficiency*	-3434-
----------------	----------------	----------------------	-----------------------------	-----------------	---------------------------	--------
СЗИ	107679	22	1023	184	92.3	H
C4N	96537	22	840	155	82.8	н
C5N	83845	22	680	112	71.9	Н
C6N	81040	22	680	105	69.5	H
C7N	64080	22	520	86	54.9	H
C8N	32960	22	320	47	28.3	Н
C9N	15508	22	200	27	13.3	Н
CION	6239	22	120	17	5.35	Н
C11N	116654	22	1023	214	100	0
C12N	90961	22	960	159	78.0	ο
C13N	78150	22	600	100	67.0	0
C14N	69643	22	520	88	59.7	0
C15N	57859	22	480	72	49.6	0
C16N	33282	22	320	45	28.5	0
C17N	16466	22	240	33	14.1	0
C18N	66652	22	500	79	57.1	0
C19N	107988	22	1023	194	92.6	0
C20N	89165	22	800	133	76.4	0
C26	26142	22	240	41	22.4	M
C35	35143	22	320	49	30.1	м
C37	97050	22	920	158	83.2	М
C33	72610	22	660	102	62.2	М
C36	11331	22	140	20	9.71	М
C31	75400	22	740	105	64.6	М

Sample I.D.	Total Count	MCA of 12 Lower	channel imits r Upper	Mean channel	Normalized efficiency*	rjada vijada
C30	4665	22	100	13	4.00	М
C34	45089	22	400	58	38.7	м
C23	671	22	50	8	0.57	м
C32	33052	22	280	42	28.3	м
C8	68068	22	680	111	58.4	М
C13	15770	22	148	27	13.5	м
СЗ	4087	22	80	13	3.5	М
C16	55777	22	480	76	47.8	м
C10	76731	22	720	116	65.8	м
C14	79555	22	720	112	68.2	м
C15	90568	22	840	151	77.6	м
C11	84089	22	810	134	72.1	М
H25	110621	22	1023	222	94.8	М
H29	108162	22	1023	185	92.7	0
H37	100952	22	1000	167	86.5	0
H23	77583	22	800	130	66.5	0
нзо	76321	22	700	111	65.4	ο
H35	76878	22	680	102	65.9	0
H32	260	22 .	50	7	0.223	М
H22	28930	22	300	41	24.8	0
H38	15138	22	280	31	13.0	0
H4	104554	22	900	164	89.6	Н
НЗ	88505	22	880	146	75,9	Н
H8	87582	22	800	133	75.1	Н

Sample I.D.	Total Count	MCA 1 Lowe:	channel imits r Upper	Mean channel	Normalized efficiency*	-bdbd-
H11	75083	22	640	105	64.4	H
H12	59529	22	520	84	51.0	н
H13	43923	22	440	65	37.7	м
H14	38189	22	400	54	32.7	м
H17	28332	22	300	45	24.3	н
H19	12399	22	160	22	10.6	Н
H1N	5933	22	120	14	5.09	м
H2N	101629	22	1000	176	87.1	Н
нзи	25062	22	220	33	21.5	М
H4N	66303	22	580	89	56.8	М
H5N	5083	22	120	15	4.36	М
H6N	4671	22	100	14	4.0	М
H7N	4937	22	100	15	4.23	H
H8N	112842	22	1023	213	96.7	н
нэи	15396	22	200	26	13.2	м
HION	48986	22	400	67	42.0	М
H11N	37654	22	320	50	32.3	М
H12N	45994	22	400	60	39.4	0
H13N	21014	22	240	37	18.0	0
H14N	10024	22	200	28	8.59	0
H15N	32396	22	300	42	27.8	М
H16N	68830	22	600	94	59.0	М
H17N	312	22	50	7	0.267	М
H18N	35670	22	320	44	30.6	м

1. 1. 9 34 Ja.

Sample I.D.	Total Count	MCA of 1: Lowe:	channel imits r Upper	Mean channel	Normalized efficiency*	-34- 134-
H19N	50609	22	400	66	43.4	М
H2ON	40653	22	360	54	34.8	М
H21N	11601	22	160	22	9.94	М
H2	94666	22	860	139	81.2	М
H5	89465	22	800	124	76.7	М
H6	18077	22	240	31	15.5	М
H7	68179	22	510	81	58.4	М
нэ	41195	22	360	53	35,3	м
H10	14492	22	200	25	12.4	М
H15	9750	22	160	18	8.36	М
H16	13076	22	260	23	11.2	М
H18	7162	22	120	17	6.14	M
H21	2285	22	80	11	1.96	М
H24	109035	22	1023	182	93.5	М
H26	41761	22	400	56	35.8	М
H27	62538	22	520	80	53.6	М
H28	34860	22	320	47	29.9	М
H31	42783	22	380	58	36.7	М
H36	35591	22	360	45	30.5	ο
H34	17975	22	240	34	15.4	М
H39	19203	22	240	34	16.5	М
H40	47709	22	400	64	40.9	М
H1.1	18654	22	240	29	16.0	м
H1.2	32865	22	320	40	28.2	М

Sample I.D.	Total Count	MCA c li Lower	hannel mits Upper	Mean channel	Normalized efficiency*	-3434-
H1.3	80557	22	720	108	69.1	М
H1.4	2624	22	100	17	2.25	м
H1.5	98374	22	900	146	84.3	М
H2.1	1919	22	120	16	1.65	М
H2.2	33662	22	320	43	28.6	М
H2.3	8275	22	200	22	7.09	М
H2.4	75799	22	700	104	65.0	М
H2.5	31330	22	300	42	26.9	М
H3.1	8075	-22	150	21	6.92	М
H3.2	44373	22	400	58	38.0	М
НЗ.З	23227	22	400	33	19.9	М
H3.4	23301	22	400	33	20.0	М
H3.5	2316	22	120	17	1.99	М
H4.1	14326	22	200	23	12.3	М
H4.2	1364	22	100	13	1.17	М
H4.3	21983	22	240	34	18.8	М
H4.4	4429	22	140	18	3.80	М
H4.5	46665	22	440	61	40.0	м
H5.1	32461	22	320	44	27.8	М
H5.2	3282	22	120	13	2.81	М
H5.4	525	22	100	10	0.45	М
H5.5	22322	22	240	37	19.1	м
H6.2	1264	22	100	14	1.08	М
H6.3	2092	22	80	10	1.79	М

Sample I.D.	Total Count	MCA Channel limits Lower Upper		Mean Channel	Normalized efficiency*	ide ide
H6.4	24477	22	240	37	21.0	М
H6.5	7974	22	120	16	6.84	М

* - Normalized to most active count i.e. 116654

****** - H = chemically quenched

0 = colour quenched

M = mixed colour/chemically quenched

Table T4.12

External Standard Single Pulse Height Spectra

(Count time = 10 seconds)

Total Count	MCA channel limits Lower Upper		Mean channel	Normalized efficiency*	-juj-=84-
41889	20	720	109	100.0	0
36343	20	720	93	86.8	0
24484	20	720	71	58.4	0
12895	20	720	51	30.8	0
6407	20	400	38	15.3	0
6279***	20	400	31	7.5	0
38055	20	720	108	90.8	Н
32343	20	720	83	77.2	H
23482	20	720	64	56.1	Н
11011	20	720	38	26.3	Н
5995	20	400	25	14.3	Н
2184***	20	400	12	2.6	Н

* - Normalized to 41889

****** - H = chemical quench; O = colour quench

*** - count time = 20 seconds

External Standard Coincident Differenced Pulse Height

<u>Spectra</u>

(MCA Amp set to 16 coarse, 0.0 fine; time const. = 3.2 $\mu s;$ unipolar output)

(Count time = 20 seconds)

Sample I.D.	Total Count	MCA 1 Lowe	channel imits r Upper	Mean channel	Normalized efficiency*	- (4 34-
C40	47004	23	1023	100	84.1	м
C24	39488	23	1023	113	70.6	М
C29	10686	23	1023	39	19.1	М
C39	38098	23	1023	158	68.2	М
C21	5147	23	1023	32	9.2	М
C25	25058	23	680	97	44.8	М
C27	31013	23	1023	124	55.5	М
C28	19511	23	591	82	34.9	М
C38	8744	23	1023	47	- 15.6	М
C22	9022	23	1023	61	16.1	М
C4	12514	23	1023	46	22.9	М
C20	17681	23	1023	54	31.6	М
C9	18682	23	1023	74	33.4	М
C5	28126	23	1023	75	50.3	М
C12	19804	23	1023	108	35.4	М
C18	36312	23	1023	109	65.0	М
C19	46144	23	1023	182	82.6	М
C17	37867	23	1023	129	67.7	М
C1N	52038	23	1023	112	93.1	H

Sample I.D.	Total Count	MCA 1 Lowe:	channel imits r Upper	Mean channel	Normalized efficiency*	-34344-
C2N	52413	23	1023	116	93.8	H
СЗИ	55893	23	1023	109	100.0	н
C4N	49560	23	1023	95	88.7	н
C5N	29787	23	1023	67	53.3	Н
C6N	31844	23	1023	67	57.0	н
C7N	32643	23	1023	65	58.4	H
C8N	15530	23	1023	39	27.8	H
C9N	9412	23	348	30	16.8	Н
CION	5948	23	198	25	10.6	H
C11N	46517	23	1023	105	83.2	0
C12N	46764	23	1023	158	83.7	0
C13N	51398	23	1023	194	92.0	0
C14N	50502	23	1023	188	90.4	0
C15N	47269	23	1023	184	84.6	0
C16N	34910	23	1023	167	62.5	0
C17N	20737	23	1023	145	37.1	0
C18N	48707	23	1023	189	87.1	0
C19N	49941	23	1023	121	89.4	0
C20N	48352	23	1023	182	86.5	0
C26	15281	23	1023	42	27.3	М
C35	19754	23	1023	47	35.3	М
C37	47831	23	1023	137	85.6	М
C33	34661	23	1023	95	62.0	М
C36	9618	23	1023	33	17.2	М

Sample I.D.	Total Count	MCA 1 Lowe	channel imits r Upper	Mean channel	Normalized efficiency*	-34384-
C31	41553	23	1023	139	74.3	М
СЗО	8757	23	811	33	15.7	м
C34	35640	23	1023	105	63.8	М
C23	5221	23	1023	29	9.3	м
C32	29809	23	1023	81	53.3	м
C8	40827	23	1023	179	73.0	м
C13	10627	23	1023	34	19.0	М
СЗ	10789	23	529	45	19.3	М
C16	29615	23	1023	65	53.0	М
C10	34564	23	1023	90	61.8	М
C14	37414	23	1023	88	66.9	М
C15	41099	23	1023	103	73.5	М
C11	37131	23	1023	96	66.4	М
H25	45231	22	1023	118	80.9	М
H29	52389	22	1023	135	93.7	О
H37	50707	22	1023	155	90.7	0
H23	40616	22	1023	171	72.7	0
НЗО	45745	22	1023	191	81.8	0
H35	48652	22	1023	190	87.0	0
H32	6804	22	1023	37	12.2	М
H22	31987	22	941	152	57.2	0
H38	18518	22	1023	145	33.1	0
H4	44542	22	1023	103	79.7	H
НЗ	21060	22	1023	64 .	37.8	H

Sample I.D.	Total Count	MCA channel limits Lower Upper		Mean channel	Normalized efficiency*	-3434-
H8	24749	22	1023	73	44.3	H
H11	21202	22	1023	56	37.9	H
H12	22815	22	1023	54	40.8	н
H13	18150	22	1023	47	32.5	М
H14	17213	22	1023	43	30.8	м
H17	13708	22	1023	37	24.5	Н
H19	7357	22	1023	27	13.2	H
H1N	15198	22	1023	55	27.2	М
H2N	39117	22	1023	85	70.0	H
нзи	32813	22	1023	122	58.7	м
H4N	31415	22	1023	81	56.2	М
H5N	15995	22	1023	67	28.6	м
H6N	7168	22	1023	33	12.8	М
H7N	3594	22	1023	22	6.4	Н
H8N	42807	22	1023	93	76.6	Н
нэи	11727	22	.1023	33	21.0	М
H1ON	33904	22	1023	111	60.7	М
H11N	36946	22	1023	134	66.1	М
H12N	40574	22	1023	174	72.6	0
H13N	25055	22	830	140	44.8	0
H14N	14632	22	1023	126	26.2	0
H15N	33886	22	1023	117	60.6	М
H16N	30043	22	1023	82	53.8	М
H17N	6318	22	204	32	11.3	М

Sample I.D.	Total Count	MCA 1 Lowe	channel imits r Upper	Mean channel	Normalized efficiency*	·₩• •₩•
H18N	39021	22	1023	137	69.8	М
H19N	34748	22	1023	104	62.2	м
H2ON	25342	22	1023	67	45.3	м
H21N	11997	22	1023	40	21.5	м
H22N	2043	22	1023	27	3.7	М
H2	42535	22	1023	104	76.1	м
H5	44020	22	1023	112	78.8	м
H6	23708	22	1023	134	42.4	М
H7	48492	22	1023	152	86.8	м
H9	39441	22	1023	149	70.6	м
H10	24742	22	1023	104	44.3	м
H15	17240	22	1023	58	30.8	м
H16	11755	22	1023	40	21.0	м
H18	2971	22	1023	25	5.31	м
H21	1396	22	1023	18	2.5	м
H24	52592	22	1023	150	94.1	М
H26	27364	22	1023	75	49.0	М
H27	40635	22	912	123	72.7	м
H28	28739	22	1023	92	51.4	м
H31	38016	22	1023	144	68.0	м
H36	38526	22	1023	· 163	68.9	0
H34	21849	22	1023	142	39.1	м
Н39	7111	22	1023	29	12.7	м
H40	23601	22	1023	76	42.2	м

Sample I.D.	Total Count	MCA 1 Lowe	channel imits r Upper	Mean channel	Normalized efficiency [*]	-3434-
H1.1	25484	22	1023	124	45.6	М
H1.2	34131	22	1023	132	61.1	М
H1.3	35639	22	1023	104	63.8	М
H1.4	6817	22	1023	83	12.8	м
H1.5	34263	22	1023	76	61.3	м
H2.1	4643	22	1023	31	8.31	м
H2.2	28660	22	857	93	51.3	м
H2.3	13806	22	1023	90	24.7	м
H2.4	20120	22	1023	55	36,0	м
H2.5	29515	22	1023	98	52.8	М
H3.1	16270	22	1023	87	29.1	М
H3.2	23747	22	1023	66	42.5	М
НЗ.З	23936	22	1023	71	42.8	м
H3.4	23802	22	856	74	42.6	М
H3.5	6698	22	567	73	12.0	М
H4.1	19148	22	1023	62	34.3	М
H4.2	8606	22	1023	60	15.4	М
H4.3	16526	22	1023	53	29.6	М
H4.4	11332	22	1023	81	20.3	м
H4.5	12503	22	402	37	22.4	М
H5.1	12506	22	1023	35	22.4	М
H5.2	12441	22	1023	52	22.3	М
H5.4	6241	22	1023	49	11.2	М
H5.5	11250	22	1023	42	20.1	м

Sample I.D.	Total Count	MCA (l: Lower	Channel imits r Upper	Mean channel	Normalized efficiency*	-141-1541
H6.2	5559	22	414	59	9.95	М
H6.3	9923	22	1023	41	17.8	М
H6.4	9257	22	1023	30	16.6	М
H6.5	11389	22	1023	38	20.1	М

- * Normalized to highest count, i.e. 55893
- ** H = chemical quenched, O = colour quenched, M =
 mixed colour/chemical quench

ì

5.

Table T4.14

T	1	r	1		·····
Sample I.D.	Count time (min)	СРМ	%DEV	Sample QIP/AEC	Efficiency
C40	4.57	97306.1	. 30	592	91.34
C24	5.21	85375.4	. 30	477	88.45
C29	10.00	25496.8	. 40	161	27.69
C39	5.93	75045.3	. 30	372	79.60
C25	9.36	47704.0	. 30	203	40.76
C27	10.00	38531.3	. 32	220	39.9
C28	10.00	11624.2	. 59	158	12.6
C1	10.00	135.8	5.43	135	0.11
C4	10.00	38569.8	. 32	174	35.26
C20	9.76	45611.6	. 30	245	64.75
C9	10.00	9272.7	.66	150	9.62
C5	6.89	64627.2	. 30	406	85.68
C12	10.00	11964.1	. 58	178	11.91
C18	4.94	90095.9	. 30	444	87.02
C19	6.04	73642.2	. 30	431	83.79
C17	5.83	76312.0	. 30	539	90.06
CIN	10.00	27285.3	. 38	857	94.31
C2N	10.00	28076.0	.38	810	92.40
СЗИ	10.00	28335.8	.38	748	93.47
C4N	10.00	27330.8	.38	639	92.38
C5N	10.00	26803.0	. 39	479	88.69
C6N	10.00	27009.4	. 38	457	88.48
C7N	10.00	25842.2	.39	382	84.85
C8N	10.00	21506.7	. 43	251	65.83

Sample I.D.	Count time (min)	СРМ	%DEV	Sample QIP/AEC	Efficiency
C9N	10.00	12862.3	. 56	189	41.16
CION	10.00	4862.7	.91	150	15.71
C11N	10.00	28753.0	. 37	863	93.54
C12N	10.00	28212.2	. 38	646	91.20
C13N	10.00	29031.6	. 37	437	83.63
C14N	10.00	24427.3	. 40	397	79.25
C15N	10.00	24672.3	. 40	341	69.54
C16N	10.00	10587.5	.61	249	33.88
C17N	10.00	4293.5	. 97	206	12.78
C18N	10.00	23744.9	. 41	367	75.23
C19N	10.00	32618.6	. 35	784	92.47
C2ON	10.00	37368.9	. 33	553	89.27
C26	8.67	51339.5	. 30	231	60.23
C35	7.37	60371.2	. 30	260	68.59
C37	5.97	74568.8	. 30	644	93.32
C33	6.37	69856.0	. 30	443	86.97
C36	10.00	25832.8	. 39	166	30.41
C31	7.30	60935.4	. 30	458	87.06
C30	10.00	1155.3	1.86	138	1.68
C34	9.53	46697.2	.30	295	72.86
C32	10.00	36480.5	. 33	236	59.93
C8	7.14	62286.4	• .30	478	87.41
C13	10.00	44099.2	. 30	187	41.84
C3	10.00	1504.4	1.63	139	1.71

Sample I.D.	Count time (min)	CPM	%DEV	Sample QIP/AEC	Efficiency
C16	5.23	85128.6	. 30	349	81.12
C10	5.32	83692.8	. 30	486	89.16
C14	5.61	79316.5	. 30	481	88.89
C15	5.50	80911.6	. 30	619	92.29
C11	5.38	82756.7	. 30	559	90.17

Sample I.D.	Count time (min)	СРМ	%DEV	Sample QIP/AEC	Efficiency
H25	10.00	40671.0	. 31	801	50.75
H29	10.00	38799.6	. 32	746	47.35
H37	10.00	33028.9	. 35	673	42.46
H23	10.00	28937.9	. 37	540	31.27
НЗО	10.00	17632.6	. 48	482	24.38
H35	10.00	15879.5	. 50	443	20.30
H32	10.00	1205.5	1.82	238	1.56
H38	10.00	535.2	2.73	204	0.63
H4	10.00	34040.5	.34	678	43.79
НЗ	10.00	29985.6	. 37	602	38.59
H8	10.00	30135.0	. 36	656	35.03
H11	10.00	14318.8	. 53	454	25.38
H12	10.00	10944.2	.60	377	17.16
H13	10.00	4913.7	. 90	315	10.47
H14	10.00	5802.5	. 83	279	7.39
H17	10.00	3413.6	1.08	244	4.38
H19	10.00	572.7	2.64	170	0.81
H1N	10.00	117.0	5.85	145	0.44
H2N	10.00	12302.3	. 57	713	45.95
НЗМ	10.00	395.1	3.18	209	1.51
H4N	10.00	4957.7	. 90	393	18.55
H5N	10.00	62.2	8.02	143	0.28
H6N	10.00	96.0	6.45	142	0.43
H7N	10.00	75.2	7.29	144	0.28

Sample I.D.	Count time (min)	СРМ	%DEV	Sample QIP/AEC	Efficiency
H8N	10.00	14390.5	. 53	864	53.50
нэи	10.00	366.4	3.30	185	1.36
HION	10.00	2509.6	1.26	325	9.34
H11N	10.00	1265.6	1.78	268	4.87
H12N	10.00	1495.7	1.64	302	5.41
H13N	10.00	301.3	3.64	223	1.13
H14N	10.00	131.3	5.52	190	0.49
H15N	10.00	850.7	2.17	241	3.48
H16N	10.00	4317.1	.96	416	21.22
H17N	10.00	20.7	13.9	110	0.09
H18N	10.00	655.2	2.47	245	3.06
H19N	10.00	2220.7	1.34	321	10.07
H2ON	10.00	1492.3	1.64	275	7.11
H21N	10.00	354.6	3.36	174	1.07
H2	10.00	29120.4	. 37	582	36.47
H5	10.00	21843.6	. 43	534	32.34
H6	10.00	534.2	2.74	204	0.79
H7	10.00	10342.6	. 62	369	13.94
H9	10.00	4517.5	.94	279	5.17
H10	10.00	761.8	2.29	181	0.70
H15	10.00	622.8	2.53	160	0.76
H16	10.00	756.8	2.30	178	1.17
H18	10.00	346.2	3.40	153	0.55
H21	10.00	135.8	5.43	130	0.16

Sample I.D.	Count time (min)	СРМ	%DEV	Sample QIP/AEC	Efficiency
H24	10.00	34636.8	. 34	742	46.06
H26	10.00	6148.2	.81	284	7.64
H27	10.00	11820.5	. 58	364	14.79
H28	10.00	4712.4	. 92	256	5.24
H31	10.00	5308.4	. 87	292	6.69
H36	10.00	1560.0	1.60	251	1.93
H34	10.00	521.7	2.77	213	0.77
H39	10.00	1725.8	1.52	210	2.33
H40	10.00	7401.3	.74	313	9.73
H1.1	10.00	838.1	2.18	201	0.96
H1.2	10.00	2152.1	1.36	235	2.46
H1.3	10.00	21733.5	. 43	462	24.88
H1.4	10.00	183.8	4.67	153	0.21
H1.5	10.00	32199.6	. 35	596	36.86
H2.1	10.00	136.7	5.41	141	0.15
H2.2	10.00	3945.8	1.01	243	4.51
H2.3	10.00	525.8	2.76	171	0.60
H2.4	10.00	22768.9	. 42	449	26.04
H2.5	10.00	3640.9	1.05	240	4.16
H3.1	10.00	400.2	3.16	164	0.46
H3.2	10.00	7668.2	. 72	290	8.77
НЗ.З	10.00	2115.8	1.37	208	2.42
H3.4	10.00	2135.2	1.37	208	2.44
H3.5	10.00	130.3	5.54	144	0.15

•

Sample I.D.	Count time (min)	CPM	%DEV	Sample QIP/AEC	Efficiency
H4.1	10.00	1027.2	1.97	176	1.17
H4.2	10.00	82.5	6.96	135	0.09
H4.3	10.00	2369.0	1.30	209	2.71
H4.4	10.00	212.8	4.34	154	0.24
H4.5	10.00	8611.2	.68	302	9.84
H5.1	10.00	4239.4	. 97	245	4.85
H5.2	10.00	305.4	3.62	139	0.35
H5.4	10.00	92.5	6.58	125	0.10
H5,5	10.00	2899.7	1.17	217	3.32
H6.2	10.00	77.5	7.18	133	0.09
H6.3	10.00	198.0	4.49	128	0.22
H6.4	10.00	2702.0	1.22	220	3.09
H6.5	10.00	563.1	2.77	153	0.65

Table T4.16

Mixed Colour and Chemical Standards Data for F_1F_2 Plot and Least Squares Fit

(a) ¹⁴C

Ext Std Mean Sum p.h.	Ext Std Mean Diff. p.h.	Ratio F1	Ratio F=	True eff %
36	124	0.332	0.801	39.9
45	54	0.000	0.140	64.75
98	182	0.809	0.930	83.79
58	105	0.124	0.473	72.86
42	81	0.000	0.378	59.93
-	-	0.000	0.000	
_		1.000	1.000	-

(b) [∞]H

free and the second sec				
Ext std mean Sum p.h.	Ext std mean Diff. p.h.	Ratio F1	Ratio F $_{\Xi}$	True eff %
33	122	0.661	0.281	1.51
50	134	0.370	0.747	4.87
54	67	0.0808	0.202	7.11
31	134	0.926	0.962	0.80
126	112	0.157	0.351	32.34
80	123	0.230	0.518	14.79
-	-	0.000	0.000	-
-	-	1.000	1.000	-

Table T4.17

Ext. std. mean sum	Ext. std. mean diff.	Sample CPM	True eff.	Predicted eff.	Error %
111	113	85375.4	88.45	89.19	+0.74
20	39	25496.5	27.69	30.41	+2.72
83	158	75045.3	79.60	80.95	+1.35
31	97	47704.0	40.76	37.32	-3.44
22	46	38569.8	35.26	36.22	+0.96
93	75	64627.2	85.68	86.72	+1.04
129	129	76312.0	90.06	91.19	+1.13
41	42	51339.5	60.23	57.82	-2.41
205	116	28076.0	92.40	93.11	0.71
155	95	27330.8	92.38	93.22	+0.84
112	67	26803.0	88.69	89.25	+0.56
105	139	60935.4	87.06	87.95	+0.89
133	182	37368.9	89.27	90.96	+1.69
27	34	44099.2	41.84	40.82	-1.02
47	39	21506.7	65.83	65.25	-0.58
116	90	83692.8	89.16	89.79	+0.63
112	88	79316.5	88.89	89.31	+0.42
151	103	80911.6	92.29	93.03	+0.74
18	82	11624.2	12.60	15.69	+3.09
16	74	9272.7	9.62	8.48	-1.14
24	108	11964.1	11.91	17.61	+5.69

Summary + 14 C Sum Diff. Quench Correction Results

Absolute errors: $-\overline{x}_{\text{total}} = 1.51$ $\overline{x}_{\text{non-extrap}} = 0.98$

Xestrap = 2.58

Sample CPM	Ext. std. mean sum pulse ht.	Ext. std. mean diff. pulse ht.	True eff. %	Predicted eff. %	Error
29985.6	146	64	38.59	38.89	0.30
4913.7	65	47	10.47	10.86	0.39
12302.3	176	85	45.95	46.23	0.28
4957.7	89	81	18.55	18.88	0.33
2509.6	67	111	9.34	10.86	1.52
850.7	42	117	3.48	2.91	0.57
4317.1	94	82	21.22	20.86	0.36
655.2	44	137	3.06	2.76	0.30
2220.7	66	104	10.07	10.72	0.65
354.6	22	40	1.07	1.99	0.92
29120.4	139	104	36.47	36.76	0.29
10342.6	81	152	13.94	14.05	0.11
4517.5	53	149	5.17	4.81	0.36
756.8	23	40	1.17	2.14	0.97
34636.8	182	150	46.06	46.57	0.51
6148.2	56	. 75	7.64	7,90	0.26
4712.4	47	92	5.24	4.56	0.68
5308.4	58	144	6.69	6.66	0.27
7401.3	64	76	9.73	10.54	0.81

"H Sum Diff Quench Correction Results

TH SumDiff Quench Correction Results

using Fisofluor II cocktail (\approx 3 years old) (+ mixtures of b-PBD in xylene and colour quencher in Fisofluor II)

	1				+
Sample CPM	Ext. std. mean sum	Ext. std mean diff.	True eff. %	Predicted eff. %	Error
2152.1	40	132	2.46	2.18	0.28
21733.5	108	104	24.88	26.26	1.38
32199.6	146	76	36.86	38.89	2.03
3945.8	43	93	4.51	3.55	0.96
22768.9	104	55	26.03	24.82	1.21
3640.9	42	98	4.16	3.29	0.87
7668.2	58	66	8.77	8.65	0.12
2115.8	33	71	2.42	2.73	0.31
2133.2	33	74	2.44	2.69	0.25
1027.2	23	62	1.17	1.99	0.82
2369.0	34	53	2.71	2.92	0.21
8611.2	61	37	9.84	9.59	0.25
4239.4	44	35	4.85	4.05	0.80
2899.7	37	42	3.32	3.12	0.20
2702.0	37	30	3.09	3.09	0.00

REFERENCES

- Alessio M, Allegri L, Bella F & Improta S, Nucl. Instr. Methods, <u>138</u>, 537, (1976)
- Alessio M, Allegri L, Bella F & Improta S, Nucl. Instr. Methods, <u>157</u>, 579, (1978)
- 3. Annand J R M & Galloway R B, Nucl. Instr. Methods, <u>201</u>, 381, (1982)
- 4. Arnold J R, Science, <u>119</u>, 155, (1954)
- 5. Assailly J, Bader C, Funck-Brentano J-L & Pavel D, "Liquid Scintillation Counting", Vol. 2, Crook M A & Johnson P (Eds), (Heyden, 1972)
- 6. Badger B & Brocklehurst B, Nature, 219, 263, (1968)
- Baillie L A, Int. J. Appl. Radiat. Isotop., <u>8</u>, 1, (1960)
- 8. Basson J K, Anal. Chem., 28, 1472, (1956)
- 9. Basson J K & Steyn J, Proč. Phys. Soc. London Sect. A, <u>64</u>, 874, (1951)
- 10. Bell T K, "Liquid Scintillation Counting Recent Applications and Developments", Vol. 1, Peng C T, Horrocks D L & Alpen E L (Eds), (Academic Press, 1980)
- Benakis A, "Liquid Scintillation Counting", Vol. 1, Dyer A (Ed), (Heyden, 1971)
- 12. Berlman I B, J. Chem. Phys., <u>33</u>, 1124, (1960)
- 13. Birks J B, "The Theory and Practice of Liquid Scintillation Counting", Birks J B , (Pergamon Press, 1964)

- 14. Birks J B, "Current Status in Liquid Scintillation Counting", Bransome E D (Ed), (Grune & Stratton, 1970)
- 15. Birks J B, "Organic Scintillators and Liquid Scintillation Counting", Horrocks D L & Peng C T (Eds), (Academic Press, 1971)
- 16. Birks J B, Chem. Phys. Let., <u>1</u>, 625, (1968)
- 17. Birks J B, Proc. Phys. Soc. London Sect. A, <u>64</u>, 874, (1951)
- Birks J B, "Liquid Scintillation Counting", Vol. 2, Crook M A & Johnson P (Eds), (Heyden, 1972)
- 19. Birks J B, "Liquid Scintillation Counting Recent Developments", Stanley P E & Scoggins B A (Eds), (Academic Press, 1974)
- 20. Birks J B, "Liquid Scintillation Counting", Vol. 4, Crook M A & Johnson P (Eds), (Heyden, 1977)
- 21. Birks J B, Braga C L & Lumb M D, Proc. Roy. Soc. A, <u>283</u>, 83, (1965)
- 22. Birks J B & Christopherou L G, Nature, <u>194</u>, 442, (1962)
- 23. Birks J B & Conte J C, Proc. Roy. Soc. A, <u>303</u>, 85, (1968)
- 24. Birks J B, Conte J C & Walker G, IEEE Trans. Nucl. Sci., <u>NS13(3)</u>, 148, (1966)
- 25. Birks J B, Dyson D J & Munro I H, Proc. Roy. Soc. A, <u>275</u>, 575, (1963)
- 26. Birks J B & Kuchela K N, Proc. Phys. Soc., <u>77</u>, 1083, (1961)
- 27. Brooks F D, Prog. Nucl. Phys., 5, 284, (1956)

- 28. Brown L C, Anal. Chem., <u>43</u>, 1326, (1971)
- 29. Bush E T, Anal. Chem., <u>35</u>, 1024, (1963)
- 30. Bush E T, Int. J. Appl. Radiat. Isotop., <u>19</u>, 447, (1968)
- 31. Calf G E, Int. J. Appl. Radiat. Isotop., <u>20</u>, 611, (1969)
- 32. Calf G E, "Organic Scintillators and Liquid Scintillation Counting", Horrocks D L & Peng C T (Eds), (Academic Press, 1971)
- 33. Calf G E & Polach H A, "Liquid Scintillation Counting
 Recent Developments", Stanley P E & Scoggins B A
 (Eds), (Academic Press, 1974)
- 34. Cavanaugh R, "Current Status in Liquid Scintillation Counting", Bransome E D (Ed), (Grune & Stratton, 1970)
- 35. Clausen T, Anal. Biochem., 22, 70, (1968)
- 36. Cooper R & Thomas J K, J. Chem. Phys., <u>48</u>, 5097, (1968)
- 37. Crookes J N & Lilley I, Appl. Radiat. Isot., <u>38</u>, N[∞]
 4, 301, (1987)
- 38. Davidson J D & Feigelson P, Int. J. Appl. Radiat. Isotop., <u>2</u>, 1,(1957)
- 39. De Bersaques J, Int. J. Appl. Radiat. Isotop., <u>14</u>, 173, (1963)
- 40. De Filippis S J & Everett L J, Trans. Am. Nucl. Soc., <u>39</u>, 21, (1981)
- 41. De Wachter R & Fiers W, Anal. Biochem., <u>18</u>, 351, (1967)
- 42. Dobbs H E, Nature, 200, 1283, (1963)

- 43. Dugan M A & Ice R D, "Organic Scintillators and Liquid Scintillation Counting", Horrocks D L & Peng C T (Eds), (Academic Press, 1971)
- 44. Engstrom R W, "Photomultiplier Handbook", (RCA Corporation, 1980)
- 45. Erikson K R, Winn R W & Horrocks D L, "Advances in Scintillation Counting", McQuarrie S A, Ediss C & Wiebe L I (Eds), (University of Alberta Press, 1983)
- 46. Everett L J, Ring J G & Nguyen D C, "Liquid Scintillation Counting", Vol. 3, Crook M A & Johnson P (Eds), (Heyden, 1974)
- 47. Ewan W D, Technometrics, <u>5</u>, 1, (1963)
- 48. Ewer M J & Harding N G L, "Liquid Scintillation Counting", Vol. 3, Crook M A & Johnson P (Eds), (Heyden, 1974)
- 49. Farmer G C H & Hugget, Lab. Practice, <u>30</u>, N^o5, 488, (1981)
- 50. Ferziger J H, "Numerical methods for engineering application", (Wiley, 1981)
- 51. Fleishman D G & Glazunov U V, Instrum. Exp. Tech. (USSR), 472, (1962); Prib. Tekh. Eksp., <u>3</u>, 55, (1962)
- 52. Flynn K F, Glendenin L E & Prodi V, "Organic Scintillators and Liquid Scintillation Counting", Horrocks D L & Peng C T (Eds), (Academic Press, 1971)
- 53. Flynn K F, Glendenin L E, Steinberg E P & Wright P M, Nucl. Instr. Methods, <u>27</u>, 13, (1964)
- 54. Furst M & Kallmann H, Phys. Rev., <u>85</u>, 816, (1952)
- 55. Furst M & Kallamnn H, Phys. Rev., <u>94</u>, 503, (1954)
- 56. Furst M & Kallmann H, Phys. Rev., <u>109</u>, 646, (1958)

- 57. Furst M & Kallmann H, "Liquid Scintillation Counting", Bell C G & Hayes F N (Eds), (Pergamon, 1958)
- 58. Galloway R B, Nucl. Instr. Methods, <u>172</u>, 431, (1980)
- 59. Garfinkel S B, Mann W B, Medlock R W & Yura O, Int. J. Appl. Radiat. Isotopes, <u>16</u>, 27, (1965)
- 60. Gebicki J, Reinschussel W & Rudzinski J, "Liquid Scintillation Counting Recent Applications and Developments", Vol. 1, Peng C T, Horrocks D L & Alpen E L (Eds), (Academic Press, 1980)
- 61. Gershuni S, Rabinowitz M, Agranat I & Belman I B, "Liquid Scintillation Counting Recent Applications and Developments", Vol. 1, Peng C T, Horrocks D L & Alpen E L (Eds), (Academic Press, 1980)
- 62. Gibson J A B, "Liquid Scintillation Science and Technology", Noujaim A A, Ediss C & Wiebe L I (Eds), (Academic Press, 1976)
- 63. Gibson J A B, "Liquid Scintillation Counting", Vol.2, Crook M A & Johnson P (Eds), (Heyden, 1972)
- 64. Gibson J A B, "Liquid Scintillation Counting Recent Developments", Stanley P E & Scoggins B A (Eds), (Academic Press, 1974)
- 65. Gibson J A B & Gale H J, Int. J. Appl. Radiat. Isotop., <u>23</u>, 321, (1972)
- 66. Gould J M, Cather R & Winget G D, Anal. Biochem., <u>50</u>, 540, (1972)
- Gringorten J L, Int. J. Appl. Radiat. Isotop., part
 9, <u>34</u>, 1367, (1983)

- 68. Gusten H & Seitz W, "Liquid Scintillation Counting Recent Applications and Developments", Vol. 1, Peng C T, Horrocks D L & Alpen E L (Eds), (Academic Press, 1980)
- 69. Harston M & Pyper N, J. Phys. <u>B</u> G.B., <u>17</u>, part 24, 839, (1972)
- 70. Hartley P E & Church V E, "Liquid Scintillation Counting - Recent Developments", Stanley P E & Scoggins B A (Eds), (Academic Press, 1974)
- 71. Haviland R T & Bieber L L, Anal. Biochem., <u>50</u>, 540, (1972)
- 72. Hayes F N, Advan. Tracer Methodol., <u>3</u>, 93, (1966)
- 73. Hayes F N, Int. J. Appl. Radiat. Isotop., <u>1</u>, 46, (1956)
- 74. Hayes F N, Ott D G & Kerr V N, Nucleonics, <u>14</u>, 42, (1), (1956)
- 75. Hayes F N, Rogers B S, Sanders R, Schuch R L and Williams D L, Report LA1639, Los Alamos Sciences Lab. (1953)
- 76. Helf S & White C, Anal. Chem., 29, 13, (1957)
- 77. Herberg R J, Anal. Chem., <u>32</u>, 1468, (1960)
- 78. Hercules D M, "Current Status in Liquid Scintillation Counting", Bransome E D (Ed), (Grune & Stratton, 1970)
- 79. Hiebert R D & Watts R J, Nucleonics, <u>11</u>, N[∞] 12, 38, (1953)
- 80. Hilaire M, Nucl. Instrm. & Methods, <u>112</u>, 385, (1973)
- Higashimura T, Yamada O, Nohara N & Shidei T, Int. J.
 Appl. Radiat. Isotop., <u>13</u>, 308, (1962)

- 82. Hoizumi K, "Liquid Scintillation Counting", Vol. 5, Crook M A & Johnson P (Eds), (Heyden, 1978)
- 83. Horrocks D L, "Applications of Liquid Scintillation Counting", Horrocks D L, (Academic Press, 1974)
- 84. Horrocks D L, Photochem. & Photobiol., <u>15</u>, 1083, (1972)
- Horrocks D L, Prog. Nucl. Energy Ser. 9, <u>7</u>, 21, (1966)
- 86. Horrocks D L, "Liquid Scintillation Counting", Vol.
 5, Crook M A & Johnson P (Eds), (Heyden, 1978)
- 87. Horrocks D L, Trans. Am. Nucl. Soc., <u>45</u>, 24, (1983)
- 88. Horrocks D L, "Liquid Scintillation Counting", Vol.3, Crook M A & Johnson P (Eds), (Heyden, 1974)
- 89. Horrocks D L, J. Chem. Phys., 52, 1566, (1970)
- 90. Horrocks D L, J. Chem. Phys., 49, 2913, (1968)
- 91. Horrocks D L, Int. J. Appl. Radiat. Isotop., <u>36</u>, Part B, 609, (1985)
- 92. Horrocks D L, Nature, 202, 78, (1964)
- 93. Horrocks D L, Trans. Am. Nucl. Soc., <u>39</u>, 39, (1981)
- 94. Horrocks D L & Studier M H, Anal. Chem., <u>30</u>, 1747, (1958)
- 95. Horrocks D L & Studier M H, Anal. Chem., <u>30</u>, 2077, (1964)
- 96. Horrocks D L & Wirth H O, J. Chem. Phys., <u>49</u>, 2907, (1968)
- 97. Horrocks D L & Wirth H O, "Organic Scintillators", Horrocks D L (Ed), (Gordon & Breach, 1968)
- 98. Ivanova T V, Mokkeeva G A & Sveshnikov B Ya, Optics and Spectroscopy, <u>12</u>, 235, (1962)

- 99. Johanson K J & Lundquist H, Anal. Biochem., <u>50</u>, 47, (1972)
- 100. Johnson S M, IEEE Trans. Nucl. Soc., <u>NS20</u>, N[∞] 1, 113, (1973)
- 101. Joon K & Deurloo P A, Int. J. Appl. Radiat. Isotop., <u>16</u>, 334, (1965)
- 102. Jordan P, Kaczmar U & Koberle P, Nucl. Instr. Methods., <u>60</u>, 77, (1968)
- 103. Kaczmarczyk K N, "Organic Scintillators and Liquid Scintillation Counting", Horrocks D L & Peng C T (Eds), (Academic Press, 1971)
- 104. Kalbhen D A, "Current Status in Liquid Scintillation Counting", Bransome E D (Ed), (Grune & Stratton, 1970)
- 105. Kallmann H & Furst M, "Liquid Scintillation Counting", Bell C G & Hayes F N (Eds), (Pergamon, 1958)
- 106. Kallmann H & Furst M, Nucleonics, <u>8</u>, (3), 32, (1951)
- 107. Klevans H B & Platt J R, J. Chem. Phys., <u>17</u>, 470, (1949)
- 108. King T A & Voltz R, Proc. Roy. Soc. A, <u>289</u>, 424, (1966)
- 109. Kolb A J, "Liquid Scintillation Counting Recent Applications and Developments", Vol. 1, Peng C T, Horrocks D L & Alpen E L (Eds), (Academic Press, 1980)
- 110. Kolb A J & Horrocks D L, Lab. Practice, <u>30</u>, N[∞] 5, 481, (1981)

- 111. Kowalski E, Anliker R & Schmid K, "Organic Scintillators", Horrocks D L (Ed), (Gordon & Breach, 1968)
- 112. Laney B H, "Liquid Scintillation Science and Technology", Noujaim A A, Ediss C & Wiebe L I (Eds), (Academic Press, 1976)
- 113. Laney B H, "Liquid Scintillation Counting", Vol. 4, Crook M A & Johnson P (Eds), (Heyden, 1977)
- 114. Laney B H, "Organic Scintillators and Liquid Scintillation Counting", Horrocks D L & Peng C T (Eds), (Academic Press, 1971)
- 115. Langenscheidt E, "Liquid Scintillation Counting", Vol. 1, Dyer A (Ed), (Heyden, 1971)
- 116. Laor V & Weinreb A, J. Chem. Phys., <u>43</u>, 1565, (1965)
- 117. Laustriat G, Voltz R & Klein J, "Current Status in Liquid Scintillation Counting", Bransome E D (Ed), (Grune & Stratton, 1970)
- 118. Lawson C W, Hirayama F & Lipsky S, J. Chem. Phys., <u>51</u>, 1590, (1969)
- 119. Liberman R & Moghissi A A, Int. J. Appl. Radiat. Isotop., <u>21</u>, 319, (1970)
- 120. Malcolm P J & Stanley P E, "Liquid Scintillation Counting - Recent Developments", Stanley P E & Scoggins B A (Eds), (Academic Press, 1974)
- 121. Malcolm P J & Stanley P E, "Liquid Scintillation Counting", Vol. 4, Crook M A & Johnson P (Eds), (Heyden, 1977)
- 122. Malcolm P J & Stanley P E, Int. J. Appl. Radiat. Isotop., <u>27</u>, 415, (1976)

- 123. Martin H, Electro Optical Systems Design, <u>8</u>, N⁻⁹ 11, 16, (1976)
- 124. McQuarrie S A, Ediss C & Weibe L I, Int. J. Appl. Radiat. Isotop., <u>34</u>, N^o 7, 1009, (1983)
- 125. Moghissi A A, Kelley H L, Reynier J E & Carter M W, Int. J. Appl. Radiat. Isotop., <u>20</u>, 145, (1969)
- 126. Mueller E B, "Current Status in Liquid Scintillation Counting", Bransome E D (Ed), (Grune & Stratton, 1970)
- 127. Murray R B & Manning J J, IRE Trans. Nucl. Sci., Vol. NS7, part2, 80, (1960)
- 128. Neary M P & Budd A L, "Current Status in Liquid Scintillation Counting", Bransome E D (Ed), (Grune & Stratton, 1970)
- 129. Nibeck J I, Bares S L & Williams E S, "Liquid Scintillation Counting Recent Applications and Developments", Vol. 1, Peng C T, Horrocks D L & Alpen E L (Eds), (Academic Press, 1980)
- 130. Noakes J E, "Liquid Scintillation Counting", Vol. 4, Crook M A & Johnson P (Eds), (Heyden, 1977)
- 131. Noujaim A A, Weibe L I & Ediss C, "Liquid Scintillation Science and Technology", Noujaim A A, Ediss C & Wiebe L I (Eds), (Academic Press, 1976)
- 132. Okita G T, Spratt J & Leroy G V, Nucleonics, <u>14</u>, N[∞]
 3, 76, (1956)
- 133. Oster G K & Kallamnn H, Nature, <u>194</u>, 1033, (1962)
- 134. Painter K, "Liquid Scintillation Counting Recent Developments", Stanley P E & Scoggins B A (Eds), (Academic Press, 1974)

- 135. Painter K & Gezing M, "Liquid Scintillation Counting

 Recent Developments", Stanley P E & Scoggins B A
 (Eds), (Academic Press, 1974)
- 136. Paix D, Int. J. Appl. Radiat. Isotop., <u>19</u>, 162, (1968)
- 137. Parker R P & Elrick R H, "Current Status in Liquid Scintillation Counting", Bransome E D (Ed), (Grune & Stratton, 1970)
- 138. Parmentier J H & ten Haaf F E L, Int. J. Appl. Radiat. Isotop., <u>20</u>, 305, (1969)
- 139. Pazdur M F, Int. J. Appl. Radiat. Isotop., <u>27</u>, 179, (1976)
- 140. Peng C, Int. J. Nucl. Med. & Biol., <u>10</u>, part 2-3, 149, (1983)
- 141. Peng C, Anal. Chem., <u>32</u>, 1292, (1960)
- 142. Peng C, Anal. Chem., <u>36</u>, 2456, (1964)
- 143. Peng C, "Organic Scintillators", Horrocks D L (Ed), (Gordon & Breach, 1968)
- 144. Peng C, "Liquid Scintillation Science and Technology", Noujaim A A, Ediss C & Wiebe L I (Eds), (Academic Press, 1976)
- 145. Persyck D E & Lewis T T, "Liquid Scintillation Counting", Vol. 3, Crook M A & Johnson P (Eds), (Heyden, 1974)
- 146. Prenter P M, "Splines and Variational Methods", Wiley, (1975)
- 147. Price L W, Lab. Practice, <u>30</u>, Nº 5, 489, (1981)
- 148. Rapkin E, "Liquid Scintillation Counting", Vol. 2, Crook M A & Johnson P (Eds), (Heyden, 1972)
- 149. Rapkin E, "Applications of Liquid Scintillation Counting", p 255, Horrocks D L, (Academic Press, 1974)
- 150. Reines F & Cowan C L, Nature, <u>178</u>, 446, (1956)
- 151. Reuter E & Trefny F, Int. J. Appl. Radiat. Isotop., <u>28</u>, 539, (1977)
- 152. Ring J G, Nguyen D C & Everett L J, "Liquid Scintillation Counting Recent Applications and Developments", Vol. 1, Peng C T, Horrocks D L & Alpen E L (Eds), (Academic Press, 1980)
- 153. Rohde R E, Nucl. Inst. Methods, 34, 109, (1965)
- 154. Ross H H, Anal. Chem., <u>37</u>, 621, (1965)
- 155. Ross H H & Yerick R E, Anal. Chem., <u>35</u>, 794, (1963)
- 156. Rummerfield P S & Goldman I H, Int. J. Appl. Radiat. Isotop., <u>23</u>, 353, (1972)
- 157. Scales B, Int. J. Appl. Radiat. Isotop., <u>18</u>, 1, (1967)
- 158. Scales B, Anal. Biochem., <u>5</u>, 489, (1963)
- 159. Schram E, Demulyder F, DeRycker J & Roosens H, "Liquid Scintillation Science and Technology", Noujaim A A, Ediss C & Wiebe L I (Eds), (Academic Press, 1976)
- 160. Scoggins B A, Butkus A & Coghlan J P, "Liquid Scintillation Counting - Recent Developments", Stanley B E & Scoggins B A (Eds), (Academic Press, 1974)
- 161. Seliger H H, Int. J. Appl. Radiat. Isotop., <u>8</u>, 29, (1960)

- 162. Simon R E & Williams B F, IEEE Trans. Nucl. Sci., <u>NS15</u>, 166, (1968)
- 163. Skarstad P, Ma R & Lipsky S, "Organic Scintillators", Horrocks D L (Ed), (Gordon & Breach, 1968)
- 164. Skerbele A & Lassette E N, J. Chem. Phys., <u>42</u>, 395, (1965)
- 165. Smith B S W & Hodgson J C, Lab. Practice, <u>32</u>, N[∞] 10, 90, (1983)
- 166. Spicer W E & Wooten F, Proc. IEEE, <u>51</u>, 1119, (1963)
- 167. Spolders H, "Liquid Scintillation Counting", Vol. 4, Crook M A & Johnson P (Eds), (Heyden, 1977)
- 168. Stanley P E, "Liquid Scintillation Science and Technology", Noujaim A A, Ediss C & Wiebe L I (Eds), (Academic Press, 1976)
- 169. Stanley P E, "Liquid Scintillation Counting", Vol. 2, Crook M A & Johnson P (Eds), (Heyden, 1972)
- 170. Stanley P E, "Liquid Scintillation Counting Recent Applications and Developments", Vol. 1, Peng C T, Horrocks D L & Alpen E L (Eds), (Academic Press, 1980)
- 171. Stanley P E & Malcolm P J, "Liquid Scintillation Counting", Vol. 4, Crook M A & Johnson P (Eds), (Heyden, 1977)
- 172. Steyn J, Proc. Phys. Soc. London A, <u>69</u>, 865, (1956)
- 173. Stineman R W, Creative Computing, 54, (1980)
- 174. Takiuie M & Hayashi M, Nucl. Instr. & Methods Phys. Res. Sect. A, <u>219</u>, 192, (1984)
- 175. ten Haaf F E L, "Liquid Scintillation Counting", Vol.2, Crook M A & Johnson P (Eds), (Heyden, 1972)

- 176. ten Haaf F E L, "Liquid Scintillation Counting", Vol.5, Crook M A & Johnson P (Eds), (Heyden, 1978)
- 177. ten Haaf F E L & Vereijke M L, "Liquid Scintillation Counting", Vol. 4, Crook M A & Johnson P (Eds), (Heyden, 1977)
- 178. Vadergraft J S, "Introduction to Numerical Computation", 2nd Ed., (Academic Press, 1983)
- 179. Voltz R, Rad. Res. Rev., <u>1</u>, 301, (1968)
- 180. Voltz R, Laustriat G & Coche A, C. R. Acad. Sci. Paris, <u>257</u>, 1473, (1963), {in French}
- 181. Wang C H, Advan. Tracer Methodol., 1, 285, (1962)
- 182. Wang C H, "Current Status in Liquid Scintillation Counting", Bransome E D (Ed), (Grune & Stratton, 1970)
- 183. Ware W R, J. Amer. Chem. Soc., <u>83</u>, 4374, (1961)
- 184. Wetherill G B, "Sampling inspection and quality control", (Chapman and Hall, 1977)
- 185. Whisman M L, Eccleston B H & Armstrong F E, Anal. Chem., <u>32</u>, 484, (1960)
- 186. Wirth H O, Proc. Conf. Organic Scintillation Detectors, Univ. New Mexico, 1960, Rep. TID-7612 US AEC
- 187. Young A T, Appl. Opt., 2, Nº 1, 51, (1963)
- 188. Yura O, Radioisotopes, <u>20</u>, 383 ff, 493 ff, 610 ff, (1971)

BIBLIOGRAPHY

B1	"Applicat:	ions	of L	iquid	Scintilla	ation	Counting",	D	L
	Horrocks,	Acad	lemic	Press	s, 1974				

- B2 "Organic Scintillators and Liquid Scintillation Counting", D L Horrocks and C T Peng (Eds), Academic Press, 1971
- B3 "Liquid Scintillation Counting", Vol. 1, A Dyer (Ed), Heyden, 1971
- B4 "Liquid Scintillation Counting", Vol. 2, M A Crook and P Johnson (Eds), Heyden, 1972
- B5 "Liquid Scintillation Counting", Vol. 3, M A Crook and P Johnson (Eds), Heyden, 1974
- B6 "Liquid Scintillation Counting", Vol. 4, M A Crook and P Johnson (Eds), Heyden, 1977
- B7 "Liquid Scintillation Counting", Vol. 5, M A Crook and P Johnson (Eds), Heyden, 1978
- B8 "Current Status in Liquid Scintillation Counting",E D Bransome (Ed), Grune & Stratton, 1970
- B9 "Liquid Scintillation Counting Recent Developments", P E Stanley and B A Scoggins (Eds), Academic Press, 1974
- B10 "Liquid Scintillation Science and Technology", A A Noujaim, C Ediss and L I Wiebe (Eds), Academic Press, 1976
- B11 "Liquid Scintillation Counting Recent Applications and Developments", Vol. 1, C T Peng, D L Horrocks and E L Alpen (Eds), Academic Press, 1980

B12 "Liquid Scintillation Counting Recent Applications and Developments", Vol. 2, C T Peng, D L Horrocks and E L Alpen (Eds), Academic Press, 1980

.

- B13 "The Theory and Practice of Liquid Scintillation Counting", J B Birks, Pergamon Press, 1964
- B14 "Organic Scintillators", D L Horrocks (Ed), Gordon & Breach, 1968
- B15 "Handbook of Fluorescence Spectra of Aromatic Molecules", I B Berlman, Academic Press, 1965
- B16 "Advances in Scintillation Counting", S A McQuarrie, C Ediss and L I Wiebe (Eds), University of Alberta Press, 1983
- B17 "RCA Photomultiplier Handbook", R W Engstrom, RCA Corporation, 1980
- B18 "Liquid Scintillation Counting", C G Bell and F N Hayes (Eds), Pergamon, 1958
- B19 "Tables of Physical and Chemical Constants", 14th Ed., G W C Kaye and T H Laby, Longman, 1973
- B20 "CRC Handbook of Physics and Chemistry", 64th Ed., Robert C Weast (Ed), CRC Press, 1983

Appendix A

DETECTION OF DRIFT IN RADIOACTIVE COUNTING USING THE CUSUM TECHNIQUE

Introduction

The characteristics of a scintillation counter are critically dependent on the stability of the counting conditions. Instabilities in the system produce a drift in the counting efficiency.139 Such changes are often associated with drift in the EHT supply due to temperature or mains fluctuations or deterioration of the sample in liquid scintillation counting. Unless remedial action is to be taken the source of the drift is not so important. However, it is essential to know the magnitude and time when any drift occurs. The literature shows very little work on the monitoring of counter performance^{3,56} and this has used traditional indicators of change in a Poissonian distribution such as standard deviation, skew and kurtosis. Although producing confidence limits, typically 95%, these indicators have been shown to lack the sensitivity of other methods as well as producing no indication of the onset of drift. This work studies the detection of drift using a cusum method 47.184 and compares its scope and sensitivity with the traditional method.

Cusum method

The cumulative sum chart (or cusum chart) is a highly informative means of presenting data that can be ordered into a logical sequence. A detailed exposition of the methodology is given in a British Standard Guide to Data analysis and quality control using cusum techniques (BS 5703, parts 1, 2, 3 and 4). For observations x_1 , x_2 , x_n obtained sequentially having a target value, T, which may be the mean, \overline{x} , for retrospective analysis, the cusum is defined as $C_4 = \sum_{r=1}^{4} (x_r - T)$. A cusum chart displays C_4 against i.

Where the observations are from a population having a mean equal to the target value the graph will generally be horizontal with random fluctuations about the line. A systematic fluctuation from the target value will result in a change in the slope of the chart.

When measuring variability a plot is made of a sample statistic, say sample mean or range, having a standard error, σ_{ee} . If the population standard deviation, σ , is known, or there exists an accurate estimate, we may use the relevant sampling theory to obtain σ_{ee} e.g. $\sigma_{ee} = \sigma/Jn$. Generally it is safer to obtain a direct estimate of the standard error. Denoting the values to be plotted y_1 , y_2 ,

..... ym then $\sigma_{42} = \begin{pmatrix} m-1 \\ \Sigma \\ \pm -\pm \end{pmatrix} \frac{(y_{\pm} - y_{\pm} + \pm)^{22}}{2(m-1)} \end{pmatrix}^{\frac{1}{2}}$

An estimate of the local average in a particular segment is given by the slope of the cusum chart. Consider the segment from sample i+1 to j. The relevant change in cusum is from C. to C. over i to j. (For the first segment i = 0 and $C_{\odot} = 0$). Hence the average shift from the target (mean) value for the segment is $(C_{\perp} - C_{\perp})/(j - i)$. Thus the local average is $\overline{X_{i+1,j}} = T + (C_{j} - C_{\perp})/(j - i)$.

The application of the cusum method to the detection of drift in a parameter requires the establishment of decision rules to distinguish between real changes in the cusum slope and the normal variability of the data. The essential features of the cusum chart relevant to the detection of changes in the underlying average level are the steepness of the cusum slope and the number of samples over which the slope persists. When the parameter (e.g. count) is running at the target level, i.e. an acceptable quality level AQL, there will, because of the random nature of counting, inevitably be occasions when the cusum path apparently diverges from the horizontal. The decision rule should not give false alarms that indicate that such sequences represent significant departure from AQL. On the other hand, when the process moves to an unsatisfactory condition, i.e. a rejectable quality level, RQL, the decision rule should give as rapid a response as possible. The number of events between drift occurring and its detection by the cusum indicates the magnitude of the drift. If the true process is at or near AQL, then this number should be large i.e. few false alarms, whereas if it

is near RQL, then it should be short i.e. rapid detection.

The detection of drift by use of AQL and RQL can be achieved in various ways. One graphical method employs a truncated V-mask which comprises a datum point, indicated by A in Fig. A1.1 with two sloping arms running from B to D and C to E. The scaling of the mask i.e. h & f, will determine the stringency of the control. The mask is used by placing the datum A over any point on the chart, usually the most recent point plotted. The AF axis is laid parallel to the sample number axis of the chart. If the path of the cusum crosses either of the arms, a significant departure from the target value is signalled. However, if entire cusum path remains inside the arms, the no significant shift is indicated.

Although the V-mask is essentially a manual inspection method it can be computerised, but in both cases it is slow and laborious. An alternative method is entirely numerical in nature and hence much faster to compute. Again the data defines the AQL, μ , and there is a deviation from μ_{m} which is unacceptable and is represented by the RQL, μ_{r} . A reference level, K, for deviations from the mean is established where K = T ± f σ_{m} . If f = 0.5 then the reference level lies midway between μ_{m} and μ_{r} . Each count (x₄) is compared with K. If $x_4 < K$ then no action is taken. However, if $x_4 > K$, then a cusum is commenced of

the algebraic differences from K, i.e. $C = \Sigma(x_{*} - K)$,

where j represents the end point of the cusum determined by one of the following two conditions: a) if C falls to below O or b) C > H where H = $h\sigma_{cr}$ is a decision level, typically h = 5. If a) applies then no action is taken until T - $f\sigma_{cr}$ > x_s > T + $f\sigma_{cr}$ again and a new cusum is commenced. If b) applies then drift is deemed to have occurred, i representing the onset of the cusum but not necessarily the onset of drift (since allowance has to be made for statistical fluctuation), and j - i representing the number of samples from onset to detection.

Simulated Data

In order to test the sensitivity of the method and compare it with the traditional methods of analysis for Poissonian fluctuations, sets of data were produced using the random generator of a microcomputer. 100 sets each containing 1000 numbers were examined and satisfied the normality tests using the 95% confidence limits for skew and kurtosis. For a range of values of K the minimum decision level, h_{min} which failed to indicate drift was determined. This produced a 95% confidence limit as shown in Fig. A1.2 and any RQL indicated by a data set lying within this band must be assumed to be normal data. However, where h_{min} is found to lie outside this range, then drift or nonnormality of the data is detected.

Having defined the range for acceptable Poissonian data, more data sets were generated with drifts introduced. This allowed an investigation of the size and length of drift detectable using the cusum as opposed to the traditional methods.

The data sets consisted of 1100 numbers; the first 1000 generated with a theoretical mean value of 20,000 and no drift followed by 100 numbers with a uniform positive drift. The various sets generated had drifts ranging from 0.01% per sample to 0.05% per sample.

The statistical analysis of the drift data was performed on batches of 200 and 1000 numbers with various proportions of the drifting data included for each of the simulated data sets. The cusum analysis produced not only the value of h_{min} required to prevent any drift indication but for lesser values of h also determined the onset of drift and the point at which it was detected. For all drift data an RQL of 1 σ_{m} was employed.

For batches of 200 taken from the drift data the variation in the value of hmin for a range of drifts as well as non-drift was investigated (Fig. A1.3). The analysis of the results shows that for h greater than 1.6, the drift is detected. However, a small proportion of the total indicated non-normality from a study of the kurtosis. The sensitivity of the cusum technique detects drift of 0.015% per sample when the drift length is greater than 20% of the 200 sample total, but failed to detect a 0.01% drift at any point. The investigation demonstrated the superiority of the cusum technique over the more traditional kurtosis.

When considering 1000 points the sensitivity is increased compared with 200 points so that a drift of 0.01% per sample for a duration of 9% of the total sample size is detected. A drift of 0.05% per sample is detected when only representing 2% of the total at a similar level as would be expected.

In order to detect the onset and magnitude of drift, a value of h was fixed at 3 representing a value outside the spread of h_{max} derived from normal data sets and allowing for statistical fluctuations. The number of samples was determined between the onset and detection of drift for the various drift sizes (Fig. A1.4). Although subject to quite large fluctuations the trend is as expected and allows the magnitude of drift in an instrument test to be estimated.

Instrument Tests

Experiments were conducted on three instruments, namely, the Nuclear Enterprises SR3 and Packard Auto Gamma counter with NaI crystals and the Packard 300C liquid scintillation counter. A PET microcomputer, connected on-line to each in turn, acquired 1000 counts for various counting configurations. For the γ -detectors the counts across a ¹³⁷Cs photópeak at optimum EHT produced no detectable drift. Plotted on Fig. A1.2 the hmin values lie within the 95% confidence range for 1000 simulated data sets with no drift.

The tests of the liquid scintillation counter were rather more extensive and designed to assess the presence of drift a) while counting a given radionuclide and b) with alternations between two radionuclides. A single ¹⁴C source was subjected to 1000 one minute counts with 43s cycle time intervals between each count. The kurtosis was within the 95% confidence levels and an h_{min} value of 2.1 showed a very low degree of drift (Experiment 1, Table TA1.1). Consequently, the instrument produced a high degree of stability for continuous counting of the same radionuclide.

To examine the effect of two radionuclides, single samples of ³H and ¹⁴C were counted alternately with the counting conditions varied appropriate to the radionuclide by the automatic programming of the counter. Although only 500

counts were taken for each sample in this case, considerable drift was detected by both the kurtosis and cusum techniques (Experiment 2, Table TA1.1). In order to investigate this effect further, rather than single counts of each radionuclide, 25 repeated counts of each i.e. 25 counts of ³H followed by 25 counts of ¹⁴C, was performed a total of 40 times. The results showed much less drift. Indeed for both radionuclides the kurtosis values were within the 95% confidence levels. However, the cusum technique demonstrated its better sensitivity and detected some drift for both samples (Experiment 3, Table TA1.1). Hence the test demonstrated that a 'settling down' period follows the changed programme settings between radionuclides to be desirable.

An analysis of the drifts indicated for h = 3 showed that the 10 drifts (7 for ¹⁴C and 3 for ³H) ranged from 0.14% per sample to 0.06%, although these readings are subject to quite large errors which are difficult to estimate.

Conclusion

The cusum technique when applied to radioisotope counting is both more sensitive and more informative than the use of kurtosis. A simple computer analysis with a decision level of $3\sigma_{w}$ determined from theoretical data produced a statement of the instrument behaviour. From the experiments performed using the Packard 300C liquid scintillation counter the stability during long counts of a particular isotope is better than the sensitivity of the cusum technique. However, using the parameters chosen above, drift occurred when alternate single counts of ³H -¹⁴C were made. When the samples were subject to repeated counts during each cycle drift was less severe.

General-purpose truncated V-mask

Truncated V-mask applied to cusm chart: indication of shift

Fig. A1.1

Fig. A1.3 Variation of ${\rm h}_{\rm min}$ with drift length/total length

Fig. A1.4 Variation of detection length with % drift

Table TA1.1

Results of drift experiments on Packard 300C Liquid Scintillation Counter NIN SAL

Experiment Number		Kurtosis	Number of drifts detected with h = 3	h _{min}	
1		2.98	0	2.1	
2*	¹⁴ c 3 _H	2.44 2.24	11 11	10 10	
3	¹⁴ c	3.00	7	9.5	
	3 _H	2.97	3	7.5	

* 500 counts of each sample

APPENDIX B

Program Listings

(i) LSC Simulation

M2.2.PAS and M2.2INIT.PAS together comprise the root version of the LSC Model described in this thesis. The model simulates the two PMTube Liquid Scintillation Counter for "H and **C counting. Editing of the module M2.2INIT.PAS enables long sequences of non-interactive model running.

(ii) Polya Statistics

The program Polya.Pas produces a listing of the compound poisson (polya) distribution and its two extremes, the exponential distribution and the poisson distribution. The polya distribution is used to model PMTube statistics in the LSC simulation.

(iii) MCA Pulse Height Spectra Transfer and Analysis The BASIC and 6502 machine code programs listed below enables the transfer of a pulse height spectrum from a NE4694 1024 MCA to a PET via a RS232/IEEE interface at 4800 baud; the display of the spectrum on a PET high resolution graphics screen at variable sensitivity; use of a cursor to define a region of interest; and calculation of the integral count and mean pulse height across the region of interest.

(iv) Fluorescence and Absorption Spectra Capture The program FLUORESCENCE is written in USCD Pascal as implemented on the Apple IIe microcomputer under the TDI pSystem. It is a program used to capture fluorescence spectra data generated by a Perkin Elmer 3000 Fluorimeter. This is achieved by monitoring two input channels of an attached A/D card. One channel is used for the actual data capture and the other for initiating a run. Initiation of a run results from detection of a 1V signal which goes low when the fluorimeter scan button is depressed. Upon completion of capturing the requested number of samples the data is saved to disk.

(v) Curve Fitting

The program Curfit written in BASIC on a CBM 4000 PET offers a menu of curve fitting routines with screen plotting, screen dumps and printed output. The program requires prior loading of PETGRAPH to enable the graphics function. The printed output is achieved by calling a chained program Curdat.

(vi) Data Capture of 300C Printer Output

LSC10SHORT, written in BASIC on a CBM 4000 PET is one of a series of programs to capture the printed output of the Packard 300C liquid scintillation counter (LSC). The program is designed to recognise the number of the internal program commenced by the LSC prior to starting any data capture, and subsequent storage of the data on disk.

```
(i) LSC Simulation - M2.2.PAS
PROGRAM LSCMODEL (INPUT, OUTPUT, OUTFILE, OUT1, OUT2, OUT3,
          OUT4, OUT5, OUT6, DATAFILE);
CONST CEFF = 0.85; { collection off% }
      PI = 3.14159265;
      PLANCK = 6.6262E - 34;
      ECHARGE = 1.60219E - 19;
      LIGHTSPEED = 2.997925E8;
TYPE STRING = PACKED ARRAY[1, 25] OF CHAR:
     QUENCHREC = RECORD
         QCHEMVAL : REAL;
         QCOLVAL : REAL;
         QMATLS : STRING;
         END;
     CNTSETNGSREC = RECORD
         CNTMODE : CHAR;
         CNTNUM : INTEGER;
         THOLD : INTEGER;
          SCRSETNGS : ARRAY[1..4,1..6] OF INTEGER;
         BSPECSTEP : REAL;
         END;
     LSCGEOMREC= RECORD
         LIQHT : REAL;
         LIQRAD : REAL;
         VIALHT : REAL:
         VIALRAD : REAL:
         VIALOFFSET : REAL;
         CASEHT : REAL;
         CASERAD : REAL;
         END:
     PARAMREC = RECORD
         PMEAN : ARRAY[1..6] OF REAL;
PMODE : ARRAY[1..6] OF REAL;
         PSCR : ARRAY[1..6] OF REAL;
         PMID : ARRAY[1..6] OF REAL;
         END:
     PULSEREC = RECORD
         PULSENUM : ARRAY[1..2] OF INTEGER;
         END;
     PHOTREC = RECORD
         L1, L2, L3, L4, L5, L6, L7, L8, PNUM:
          INTEGER;
         END;
     CHNLREC = RECORD
         MAXCH : ARRAY[1..6] OF INTEGER;
         END;
MODLREC = RECORD
         RECNUM : [KEY(0)] INTEGER;
         NUCLTYPE : CHAR;
         MODLVERSION : PACKED ARRAY[1..50] OF CHAR;
         QREC : QUENCHREC;
         CREC : CNTSETNGSREC;
         LREC : LSCGEOMREC;
         PREC : PARAMREC;
         PULREC : PULSEREC;
         TLOSS : INTEGER;
```

CLOSS : INTEGER; QLOSS : INTEGER; PHREC : PHOTREC; CHREC : CHNLREC; END; MCAREC = RECORDMCARECNUM : [KEY(O)] INTEGER; MCADAT : ARRAY[0..4000] OF INTEGER; END; {files VAR records } OUTFILE, TMPFILE : FILE OF MODLREC; OUT1, OUT2, OUT3, OUT4, OUT5, OUT6 : FILE OF MCAREC; DATAFILE : FILE OF INTEGER; QREC: QUENCHREC; CREC: CNTSETNGSREC; LREC: LSCGEOMREC; MREC: MCAREC; PREC: PARAMREC; PULREC: PULSEREC; PHREC: PHOTREC; CHREC: CHNLREC; AREC: MODLREC; {real variables} QCHEM, QCOL, CRAD, LRAD, ARAD, VRAD, VOS, ESTEP, VHT, LHT, AHT, CHT: [GLOBAL] REAL; QCHEMVAL, QCOLVAL, EB, PREMAX, MCPREMAX, EBSUM, EPOL, MCPRB, EP, WPR, PHI, PSI, ANGLINC, ANGLREF, R, Z, VR, VB, VH, UA, UB, UC, UD, U, DIST, TEMP, XO, YO, ZO, X1, Y1, Z1, X2, Y2, Z2, XN, ZN, EM, E, SW, RETGAMMA, CRIT, SPLINEX, SPLINEY, NREF, EMAX, EBPRBMAX, EVX, EVY, EVZ, WCUTOFF, VIALHT, CASEHT, CASERAD, VIALRAD, BSPECSTEP, TEMP1, TEMP2, PHIINC, PSIINC, ANGLPOL, XTILT, ZTILT, TILT, NX, NY, NZ, XE, YE, ZE, XP, YP, ZP, XL, YL, ZL, VIALOFFSET, LIQHT, LIQRAD : REAL; {quadruple reals} PMPRBMAX : QUADRUPLE: {integer variables} IDNUMBER, NDISNTGS, NCOUNTS, DYNUM, THRESHOLD : [GLOBAL] INTEGER; I, JJ, COUNT, WP, WSTART, WSTOP, ASTART, ASTOP, FSTART, SKIP, CHOP, LOOP, II, NFERMI, SEEDVAL, FSTOP, MNUM, K, J, PMTMIN, PMTMAX, SUM, DIFF, RATIO, IMCPRB, H, W, RND, SPLINESIZE, MAXCHNL, WLOWER, WUPPER, ITEMP, COINLOST, THLDLOST, RECNUM, TLOSS, CLOSS, QLOSS, QUANTLOST, THOLD, CNTNUM, IEVENTS, MNUMTEMP, FACENUM, NFLEC, PARFLAG, L1, L2, L3, L4, L5, L6, L7, L8, RL2, LL2, PNUM, MCARECNUM, L1, L2, L3, L4, L5, L6, L7, L8, PNUM : INTEGER; {boolean char} PHOTONTRACED, OUTWARD, RDO : BOOLEAN; STOPFLAG: [GLOBAL] BOOLEAN; NUCLIDE, CNTMODE: [GLOBAL] CHAR; CNTMODE, NUCLTYPE : CHAR; QMATLS : [GLOBAL] PACKED ARRAY[1..25] OF CHAR; QMATLS : PACKED ARRAY[1..25] OF CHAR; MVERSION: [GLOBAL] PACKED ARRAY[1..50] OF CHAR: MODLVERSION : PACKED ARRAY[1..50] OF CHAR; {real arrays} VV, ZZ, A1, B, C, D1 : ARRAY[0..50] OF REAL; P, PP : ARRAY[0..1,0..50] OF REAL; SEFF : ARRAY[0..1,0..9] OF REAL; MEANENCH, SCR, MODE, MIDNUMCH, PMEAN, PMODE, PSCR.

PMID: ARRAY[1..6] OF REAL; SCRSUM : ARRAY[1..2,1..6] OF REAL; PMPRB : ARRAY[0..1000] OF QUADRUPLE; QI :ARRAY[1..2,0..1000] OF REAL; QP, DYM, BSF : [GLOBAL] ARRAY[1..2] OF REAL: {integer arrays} MCA : ARRAY[1..6,0..4000] OF INTEGER; MCADAT : ARRAY[0..4000] OF INTEGER; FLSWAVE, FLSPROB, ABSPROB, WAVE, PROB, ALABSPROB : ARRAY[0..300] OF INTEGER; SCRSETNGS : ARRAY[1..4,1..6] OF INTEGER; SCRLL, SCRUL : [GLOBAL] ARRAY[1..2,1..6] OF INTEGER; MAXCH : ARRAY[1..6] OF INTEGER; ALAB : ARRAY[0..1,0..11] OF INTEGER; PULSENUM, PULSENUM, PMCOUNT, QIX : ARRAY[1..2] OF INTEGER; FUNCTION SPLINEINTERP(SPLINEX:REAL) : REAL; BEGIN H:=0; W:=0;WHILE W=O DO BEGIN IF (SPLINEX>=PP[0,H]) AND (SPLINEX<PP[0,H+1])</pre> THEN BEGIN SPLINEX:=SPLINEX-PP[0,II]; SPLINEY :=A1[H]+B[H]*SPLINEX+C[H]*SPLINEX*SPLINEX; SPLINEINTERP := SPLINEY+D1[H]*SPLINEX*SPLINEX*SPLINEX; W := 1; END; H := H + 1; END; END; FUNCTION MAG(X, Y, Z : REAL) : REAL; BEGIN MAG := SQRT(X*X+Y*Y+Z*Z)END; [EXTERNAL, ASYNCHRONOUS] FUNCTION MTH\$TAN (X : REAL) : REAL; EXTERNAL: [EXTERNAL, ASYNCHRONOUS] FUNCTION MTH\$ASIN (X : REAL) : REAL;EXTERNAL: [EXTERNAL, ASYNCHRONOUS] FUNCTION MTH\$ACOS (X : REAL) : REAL;EXTERNAL: [EXTERNAL, ASYNCHRONOUS] FUNCTION MTH\$RANDOM (VAR SEED: INTEGER) : REAL; EXTERNAL; [EXTERNAL] PROCEDURE INIT1; EXTERN: FUNCTION LFACT(X: INTEGER) : REAL; VAR JJJ: INTEGER; BEGIN TEMP:=0; IF X>0 THEN BEGIN FOR JJJ:=1 TO X DO BEGIN TEMP:=TEMP+LN(JJJ);END;END ELSE; LFACT: =TEMP; END: FUNCTION LPOW(X:REAL;Y:INTEGER) : REAL; BEGIN

IF X=0 THEN LPOW:=0 ELSE LPOW:=Y*LN(X); END; PROCEDURE RANDOMINT; BEGIN RND: = ROUND(MAXINT*MTH\$RANDOM(SEEDVAL)) END: FUNCTION RAND(LO, HI: INTEGER): INTEGER; (* GIVES EVEN SPREAD THRO' A RANGE LO TO HI *) VAR MX, C, D: INTEGER; PROCEDURE RANDM; BEGIN RND: = ROUND(MAXINT*MTH\$RANDOM(SEEDVAL)) END; BEGIN RAND:=0;IF LO = HI THEN RAND: = LO ELSE BEGIN C := HI - LO + 1;MX:= (MAXINT - HI + LO) DIV C + 1;MX := MX*(HI-LO) + (MX-1);REPEAT RANDM UNTIL MX>=RND; RAND: = LO + RND MOD C; ENDEND; (* REF INDEX USING CAUCHY EQNS...*) FUNCTION NPBDXYL(X : INTEGER) : REAL; BEGIN NPBDXYL:= 1.50675199-1432.37733/X/X-4.12889718E8/X/X/X/X END; FUNCTION NCCL4(X : INTEGER) : REAL; BEGIN NCCL4:= 1.48042353-5196.90174/X/X-3.92118921E8/X/X/X/X END; FUNCTION NPMTGLS(X : INTEGER) :REAL; BEGIN NPMTGLS:=1.52END; FUNCTION NVIALGLS(X : INTEGER) : REAL; BEGIN NVIALGLS:=1.49788933+4061.10397/X/X+5804367.75/X/X/X/X END: FUNCTION NLIQVIAL(X : INTEGER) : REAL; BEGIN NLIQVIAL:=1 END; (* PMT QUANTUM EFF% INTERPOLATED RCA4501/V3 DATA *) FUNCTION QUANTEFF(X : INTEGER) : REAL; BEGIN QUANTEFF:= (-8.906E-4*X*X+0.745*X-129.49375)/100; (* approx. quadratic 0 to 0.26 efficiency range, i.e not normalized *) END; PROCEDURE RANDOMIZE; BEGIN SEEDVAL: = CLOCK; FOR I:= 1 TO 10 DO TEMP:= MTH\$RANDOM(SEEDVAL);

- -----

- .

```
END:
PROCEDURE H3FERMI;
BEGIN
NFERMI := 7; EMAX := 18, 6;
FOR I:= O TO NFERMI DO BEGIN
P[0, I] := 511*(SQRT(1+I*I/400)-1);
END:
P[1,0] := 0; P[1,1] := 0,00547; P[1,2] := 0,0153;
P[1,3]:= 0.0302;P[1,4]:= 0.0501;P[1,5]:= 0.0751;
P[1, 6] := 0.105; P[1, 7] := 0.141;
END:
PROCEDURE C14FERMI;
BEGIN
NFERMI:= 20; EMAX:= 156;
FOR I:= O TO NFERMI DO BEGIN
P[0, I] := 511*(SQRT(1+I*I/400)-1); END;
P[1,0]:=0;P[1,1]:=0.0162;P[1,2]:=0.0338;
P[1,3]:= 0.0553;P[1,4]:= 0.0818;P[1,5]:= 0.114;
P[1,6] := 0.151; P[1,7] := 0.193; P[1,8] := 0.240;
P[1,9] := 0.293; P[1,10] := 0.351; P[1,11] := 0.416;
P[1, 12] := 0.485; P[1, 13] := 0.560; P[1, 14] := 0.641;
P[1,15]:= 0.728;P[1,16]:= 0.820;P[1,17]:= 0.918;
P[1,18]:= 1.021;P[1,19]:= 1.131;P[1,20]:= 1.246;
P[1, 21] := 1.494;
END;
PROCEDURE SCINTEFF;
BEGIN
SEFF[0,0]:= 0;SEFF[0,1]:=0.5;SEFF[0,2]:= 1;SEFF[0,3]:= 5;
SEFF[0,4]:= 18.6;SEFF[0,5]:= 50;SEFF[0,6]:= 158;
SEFF[0,7]:= 300;SEFF[0,8]:= 500;SEFF[0,9]:= 1000;
SEFF[1,0]:= 0;SEFF[1,1]:= 0.024;SEFF[1,2]:= 0.031;
SEFF[1,3]:= 0.040;SEFF[1,4]:= 0.047;SEFF[1,5]:= 0.052;
SEFF[1, 6] := 0.058; SEFF[1, 7] := 0.062;
SEFF[1, 8] := 0.062; SEFF[1, 9] := 0.062;
END;
PROCEDURE FSTSPL;
BEGIN
W:=SPLINESIZE;FOR H:=O TO W DO A1[H]:=PP[1,H];
FOR H:=0 TO W-1 DO D1[H]:= PP[0, H+1]-PP[0, H];
D1[W]:=D1[W-1];D1[W+1]:=D1[O];B[O]:=2*D1[O];
FOR H:=1 TO W-1 DO B[H]:=2*(D1[H]+D1[H-1]);
B[W] := 2*D1[W-1]; C[O] := 3*(A1[1] - A1[O]);
FOR H:=1 TO W-1 DO
C[H]:=3*(D1[H-1]*(A1[H+1]-A1[H])/D1[H]+(D1[H]/D1[H-1])
       *(A1[H]-A1[H-1]));
END;
PROCEDURE SECSPL;
BEGIN
C[W] := 3*(A1[W] - A1[W - 1]); VV[O] := B[O];
VV[1]:=B[1]-(D1[1]*D1[W+1]/VV[0]);
FOR H := 2 TO W DO VV[H] := B[H] - ((D1[H] * D1[H-2]) / VV[H-1]);
ZZ[0] := C[0]; FOR H := 1 TO W DO
```

```
ZZ[H]:=C[H]-(D1[H]*ZZ[H-1]/VV[H-1]);
B[W] := ZZ[W] / VV[W];
FOR H:=W-1 DOWNTO 1 DO
B[H]:=(ZZ[H]-(D1[H-1]*B[H+1]))/VV[H];
B[0] := (ZZ[0] - (D1[W+1]*B[1]))/VV[0];
C[0]:=0; C[W]:=0; FOR H:= 1 TO W-1 DO
C[H] := 3*(A1[H+1] - A1[H])/SQR(D1[H])
       -((2*B[H])+B[H+1])/D1[H];
FOR H:=0 TO W-1 DO
D1[H] := (C[H+1] - C[H]) / (3*D1[H]);
END;
PROCEDURE SPLINEFORM;
BEGIN
FSTSPL:
SECSPL;
END:
PROCEDURE INIT2;
BEGIN
PULSENUM[1]:= 0;PULSENUM[2]:= 0;COINLOST:= 0;
THLDLOST: = 0; QUANTLOST: =0;
L1:=0; L2:=0; L3:=0; L4:=0; L5:=0; L6:=0; L7:=0; L8:=0; RL2:=0;
LL2:=0;PNUM:=0;EBSUM:=0;IEVENTS:=0;
FOR I:= 1 TO 6 DO BEGIN
MAXCH[I]:=0;SCRSUM[1,I]:= 0;SCRSUM[2,I]:= 0;
FOR II:= 1 TO 4000 DO MCA[I, II]:=0; END;
TILT:= ARCTAN((CHT/2)/(CRAD-VRAD));XTILT:= COS(TILT);
ZTILT:=SIN(TILT);
IF NUCLIDE = 'H' THEN H3FERMI ELSE C14FERMI;
FOR I := O TO NFERMI DO
BEGIN
PP[0,I] := P[0,I]; PP[1,I] := P[1,I];
END;
SPLINESIZE: = NFERMI;
SPLINEFORM;
SCINTEFF;
WCUTOFF:= PLANCK*LIGHTSPEED/600/1E-9;
END; (* INIT2 *)
PROCEDURE BSPECMAX;
BEGIN
EM:= 1+EMAX/510.91; PRBMAX:= -999; EB:= ESTEP*EMAX;
{ keV..0==>SW=0}
REPEAT E:= 1+EB/510.91;
SW:=SPLINEINTERP(EB)*E/SQRT(E*E-1)*SQR(EM-E);
IF SW>PRBMAX THEN BEGIN PRBMAX:= SW; EBPRBMAX:= EB;
END; EB:= EB+ESTEP*EMAX; UNTIL SW<PRBMAX;
MCPRBMAX:= PRBMAX*(1+ESTEP);
(* MONTECARLO PROB MAX SLIGHTLY OVERESTIMATES SPECTRUM *)
END; (* BSPECMAX *)
PROCEDURE BETAENERGY;
BEGIN
REPEAT EB:= MTH$RANDOM(SEEDVAL)*EMAX;
E:= 1+EB/510.91; IF SQRT(E*E-1)=0 THEN SW:=0
ELSE BEGIN MCPRB:= MTH$RANDOM(SEEDVAL)*MCPRBMAX;
```

```
344
```

```
SW:=SPLINEINTERP(EB)*E*SQR(EM-E)/SQRT(E*E-1);END;
UNTIL MCPRB <= SW;
ITEMP:=0; I:=0; EBSUM:=EBSUM+EB;
REPEAT
IF EB<SEFF[0, I+1] THEN BEGIN TEMP:=SEFF[1, I+1]-SEFF[1, I];
TEMP:=SEFF[1, I]+TEMP*(EB-SEFF[0, I])
                     /(SEFF[0,I+1]-SEFF[0,I]):
EB:= EB*TEMP; ITEMP:=1; END
ELSE; {linear interp of scint effy curve}
I:=I+1;UNTIL ITEMP=1:
EB:= 1000 * EB * ECHARGE; (* KEV TO JOULES *)
END: (*BETAENERGY*)
PROCEDURE CHEMQUENCH;
BEGIN
EB:= (1-QCHEM) \times EB;
(*is QCHEM a function of EB ? *)
END; (*CHEMQUENCH*)
PROCEDURE SPECDATA;
VAR DAT, II : INTEGER;
BEGIN
RESET (DATAFILE);
DAT: = DATAFILE;
GET(DATAFILE);
WSTART: = DAT;
DAT: = DATAFILE;
GET(DATAFILE);
WSTOP:= DAT;
LOOP: = WSTOP-WSTART-1;
FOR I := O TO LOOP DO
BEGIN
WAVE[I]:= WSTART+I; DAT:= DATAFILE;
GET(DATAFILE);
PROB[I] := DAT;
END:
CLOSE (DATAFILE);
END; (*SPECDATA*)
PROCEDURE FLSPEC;
BEGIN
OPEN(DATAFILE, 'FLSPEC1.DAT', HISTORY: = OLD);
SPECDATA;
FSTART:= WSTART;FSTOP:= WSTOP;
FOR I:= O TO LOOP DO BEGIN
FLSWAVE[I]:= WAVE[I];FLSPROB[I]:= PROB[I];
END;
END;
PROCEDURE ABSPEC;
BEGIN
OPEN(DATAFILE, '07ABSPEC.DAT', HISTORY:= OLD);
SPECDATA;
ASTART: = WSTART; ASTOP: = WSTOP;
IF FSTART > ASTART THEN SKIP:= (FSTART-ASTART)
ELSE SKIP:=0;
IF FSTOP < ASTOP THEN CHOP:= (ASTOP-FSTOP) ELSE CHOP:= 0;
(* N.B. ABS RANGE DIFFERENT TO FLSPEC *)
FOR I := 0 TO (LOOP-CHOP-SKIP) DO
```

```
BEGIN
ABSPROB[I]:= 1000-PROB[I+SKIP];
END:
END:
PROCEDURE ALABSPEC;
BEGIN
ALAB[0,0]:=295;ALAB[0,1]:=310;ALAB[0,2]:=327;
ALAB[0,3]:=345;ALAB[0,4]:=365;ALAB[0,5]:=388;
ALAB[0,6]:=414;ALAB[0,7]:=443;ALAB[0,8]:=477;
ALAB[0,9]:=517;ALAB[0,10]:=564;ALAB[0,11]:=620;
ALAB[1,0]:=752;ALAB[1,1]:=752;ALAB[1,2]:=753;
ALAB[1,3]:=754;ALAB[1,4]:=755;ALAB[1,5]:=757;
ALAB[1,6]:=759;ALAB[1,7]:=758;ALAB[1,8]:=762;
ALAB[1,9]:=772; ALAB[1,10]:=800; ALAB[1,11]:=852;
FOR I:= 0 TO FSTOP-FSTART-1 DO BEGIN
J:=0; ITEMP:=0;
REPEAT
IF (I+FSTART) < ALAB[0, J+1] THEN BEGIN
\text{TEMP}:=\text{ALAB}[1, J+1]-\text{ALAB}[1, J];
TEMP: =ALAB[1, J] + TEMP*(I + FSTART - ALAB[0, J])
              /(ALAB[0, J+1] - ALAB[0, J]);
ALABSPROB[I]:= ROUND(TEMP*100); ITEMP:=1; END
ELSE; {linear interp of scint effy curve}
J:=J+1;UNTIL ITEMP=1:
END:
END:
PROCEDURE EVENTCOORDS;
BEGIN
REPEAT
EVZ := (MTH \$RANDOM(SEEDVAL) - 0.5) *LHT;
UNTIL (EVZ < LHT/2)AND(EVZ > (-LHT/2));
REPEAT
EVX: = (MTH \$RANDOM(SEEDVAL) - 0.5) *LRAD *2;
EVY := (MTH \$RANDOM(SEEDVAL) - 0.5) * LRAD * 2;
UNTIL (EVX*EVX+EVY*EVY) < (LRAD*LRAD);
{equi probs for cartesians,
not cylindrical coords, avoid boundary}
XO:= EVX; YO:= EVY; ZO:= EVZ;
VR:= LRAD; VH:= LHT/2; VB:= -LHT/2;
END;
PROCEDURE INITPHOTDIR;
BEGIN
PHI:= MTH$RANDOM(SEEDVAL)*2*PI;
PSI:= MTH$RANDOM(SEEDVAL)*2*PI:
X1:= VR*SIN(PSI)*COS(PHI);
Y1:= VR*SIN(PSI)*SIN(PHI);
Z1:= VR*COS(PSI);
EPOL:= MTH$RANDOM(SEEDVAL)*PI/2; {angle of polarization
of E-vector}
{rotate coords to get PE in global coords}
XE:=COS(-PSI)*COS(EPOL)-SIN(-PSI)*SIN(EPOL);
ZE:=SIN(-PSI)*COS(EPOL)+COS(-PSI)*SIN(EPOL); {rot abt
east west}
XE:=COS(-PHI)*XE;YE:=SIN(-PHI)*XE;{rot abt north south}
END;
```

PROCEDURE CYLU; BEGIN IF (X1=0)AND(Y1=0) THEN UA:= -999999 ELSE BEGIN TEMP : = XO * X1;TEMP := TEMP + YO * Y1 ; TEMP := SQR(TEMP) ; UA := X1 * X1 ;UA: =UA+Y1*Y1; TEMP1: =((VR*VR) -(YO*YO+XO*XO)); UA:=UA*TEMP1; {if us close to zero here then final result ua=zero is wrong} {to cater for this rare event (occured after >4hours cpu time.. event is so close to the wall that certain P1 vectors cause the error) PICKU must choose CYLU and cylu must be set to some non-zero value e.g. 1 } UA:=TEMP+UA; IF UA<O THEN BEGIN WRITELN('CYLU', MNUMTEMP, FACENUM, NFLEC, FARFLAG); WRITELN(X0, Y0, Z0, X1, Y1, Z1, X2, Y2, Z2); IF OUTWARD=FALSE THEN WRITELN('F') ELSE; END ELSE; UA := (SQRT(UA) - (XO * X1 + YO * Y1)) / (X1 * X1 + Y1 * Y1);IF NFLEC=1 THEN UA:=1 ELSE; { ... radius reflection R=X0**2+Y0**2 =>UA=0} IF UA=O THEN BEGIN WRITELN('CYLU', MNUMTEMP, FACENUM, NFLEC, PARFLAG); WRITELN(XO, YO, ZO, X1, Y1, Z1, X2, Y2, Z2); IF OUTWARD=FALSE THEN WRITELN('F') ELSE; END ELSE; END; END: PROCEDURE DISCU; BEGIN IF Z1<>O THEN BEGIN IF Z1>O THEN UB:= (VH-ZO)/Z1 ELSE UB:= (VB-ZO)/Z1;END ELSE UB := -999999;END; PROCEDURE TORU; BEGIN IF XO<>0 THEN BEGIN IF (XO>0)AND(YO>=0) (XO>O)AND(YO>=O) THEN TEMP:=ARCTAN(YO/XO) ELSE; IF (XO<O)AND(YO>=O) THEN TEMP:=PI-ARCTAN(ABS(YO/XO)) ELSE; IF (XO<O)AND(YO<O) THEN TEMP:=PI+ARCTAN(ABS(YO/XO)) ELSE; IF (XO>O)AND(YO<O) THEN TEMP:=2*PI-ARCTAN(ABS(YO/XO)) ELSE; END ELSE BEGIN IF YO>=O THEN TEMP:=O ELSE TEMP:=PI END; IF X1<>O THEN BEGIN IF (X1>0)AND(Y1>=0) THEN TEMP1:=ARCTAN(Y1/X1) ELSE; IF (X1<0)AND(Y1>=0) THEN TEMP1:=PI-ARCTAN(ABS(Y1/X1)) ELSE: IF (X1<0)AND(Y1<0) THEN TEMP1:=PI+AECTAN(ABG(Y1/X1)) ELSE; IF (X1>0)AND(Y1<0) THEN TEMP1:=2*FI-ARCTAN(AES(Y1/X1)) ELSE; END ELSE BEGIN IF Y1>O THEN TEMP1:=O ELSE TEMP1:=PI;END; IF OUTWARD=TRUE THEN BEGIN TEMP:=ABS(PI-ABS(TEMP-TEMP1));TEMP:=COS(TEMP); UA:=LRAD*LRAD*(TEMP*TEMP-1)+VRAD*VRAD; UA:=(LRAD*TEMP+SQRT(UA))/MAG(X1,Y1,O); END ELSE BEGIN TEMP:=ABS(ABS(TEMP-TEMP1)-PI);TEMP:=COS(TEMP); UA:=LRAD*LRAD*(TEMP*TEMP-1)+VRAD*VRAD; UA:=(VRAD*TEMP-SQRT(UA))/MAG(X1,Y1,O); UA:=1; {for all inwards phots , no pmt reflection case}

END; END; PROCEDURE PARU; BEGIN IF X1>0 THEN UC:=(VRAD-X0)/X1 ELSE UC:= (VRAD+X0)/X1; TEMP:=ABS(ZO+UC*Z1)*XTILT/SIN(TILT-ARCTAN(ABS(Z1/X1))) /MAG(X1,0,Z1); UC:=TEMP+UC; END: PROCEDURE PICKU; BEGIN IF UA=0 THEN BEGIN UA:=1;U:=UA;END ELSE BEGIN CASE MNUM OF 1,2,3 : IF ABS(UA) < ABS(UB) THEN U:= UA ELSE U:= UB; : BEGIN IF ABS(UA) < ABS(UB) THEN TEMP1: -UA 4 ELSE TEMP1:=UB; IF PARFLAG=0 THEN BEGIN IF ABS(UC) < TEMP1 THEN U:=UC ELSE U:=TEMP1; END ELSE U:=TEMP1;END; END; END; X1: =U*X1; Y1: =U*Y1; Z1: = U*Z1; X2:=X0+X1; Y2:=Y0+Y1; Z2:=Z0+Z1;{now scale to avoid tolerance errors} IF MAG(X2,Y2,O)>VR THEN BEGIN TEMP:=VR/MAG(X2,Y2,O);X2:=X2*TEMP; Y2:=Y2*TEMP;Z2:=Z2*TEMP;END ELSE; {chamber done individually} END; PROCEDURE EVECTOR; BEGIN IF X1<>O THEN BEGIN IF (X1>O)AND(Y1>=O) THEN PHI:=ARCTAN(Y1/X1) ELSE; IF (X1<0)AND(Y1>=0) THEN PHI:=PI-ARCTAN(ABS(Y1/X1)) ELSE; IF (X1<0)AND(Y1<0) THEN PHI:=PI+ARCTAN(ABS(Y1/X1)) ELSE; IF (X1>0)AND(Y1<0) THEN PHI:=2*PI-ARCTAN(ABS(Y1/X1)) ELSE; END ELSE BEGIN IF Y1>0 THEN PHI:=0 ELSE PHI:=PI: END: IF Z1>=0 THEN PSI:=MTH\$ACOS(ABS(Z1)/MAG(X1,Y1,Z1)) ELSE $PSI:= -MTH \pm ACOS(ABS(Z1)/MAG(X1, Y1, Z1));$ XE:=COS(-PSI)*COS(EPOL)-SIN(-PSI)*SIN(EPOL); ZE:=SIN(-PSI)*COS(EPOL)+COS(-PSI)*SIN(EPOL);{rot abt east west} XE := COS(-PHI) * XE;YE:=SIN(-PHI)*XE; {rot abt north south} END: PROCEDURE DISCREFLECT; BEGIN Z1:= -Z1;X0:=X2;Y0:=Y2;Z0:=Z2;EVECTOR; END; PROCEDURE DISCREFRACT: BEGIN XO: = X2; YO: = Y2;IF ANGLINC<>0 THEN Z1:=Z1*MTH\$TAN(ANGLINC)/MTH\$TAN(ANGLREF) ELSE; IF Z1>O THEN BEGIN MNUMTEMP:=2;VH:=AHT/2;VB:= -AHT/2;VR:=ARAD;ZO:=-AHT/2; MNUMTEMP:=1;VH:=LHT/2;VD:= -LHT/2;VR:=LRAD;ZO:=LHT/2;

END; EVECTOR; END: PROCEDURE CYLREFLECT; BEGIN TEMP := 2*MAG(X1, Y1, Z1)*COS(ANGLINC)/VR;IF OUTWARD=FALSE THEN TEMP:=-TEMP ELSE; X1 := X1 - X2 * TEMP;Y1:= Y1-Y2*TEMP;XO: = X2; YO: = Y2; ZO: = Z2;EVECTOR; END; PROCEDURE CYLREFRACT; . BEGIN IF MTH\$TAN(ANGLINC) <> 0 THEN BEGIN DIST: = MAG(X1,Y1,Z1); TEMP:=(1-MTH\$TAN(ANGLREF)/MTH\$TAN(ANGLINC)); IF OUTWARD=FALSE THEN TEMP:=-TEMP ELSE; TEMP:=TEMP*COS(ANGLINC)*DIST/VR; X1:= TEMP*X2+MTH\$TAN(ANGLREF)/MTH\$TAN(ANGLINC)*X1; Y1:= TEMP*Y2+MTH\$TAN(ANGLREF)/MTH\$TAN(ANGLINC)*Y1; Z1:= MTH\$TAN(ANGLREF)/MTH\$TAN(ANGLINC)*Z1;END ELSE; {anglinc=0 ==>leave x1, y1, z1 same} XO:=X2; YO:=Y2; ZO:=Z2;EVECTOR; END: PROCEDURE PARREFLECT; BEGIN TEMP:=2*MAG(X1,Y1,Z1)*COS(ANGLINC); X1:=X1+TEMP*ZTILT*XN;Z1:=Z1+TEMP*XTILT*ZN; X0:=X2;Y0:=Y2;Z0:=Z2;EVECTOR; END; PROCEDURE LAFACE; BEGIN DIST:= MAG(X1,Y1,Z1); DIST := MAG(X1, Y1, Z1);IF DIST=0 THEN BEGIN WRITELN('ZERO P1 VECTOR', U, XO, YO, ZO); PHOTONTRACED: =TRUE; L4: =L4+1; END ELSE BEGIN {check colour quench outwards..} IF OUTWARD=TRUE THEN BEGIN IF MTH\$RANDOM(SEEDVAL) > EXP(-DIST*ABSPROB[W]/1000*QCOL) THEN BEGIN PHOTONTRACED := TRUE ; L4 := L4 +1 ; END ELSE: END ELSE: IF PHOTONTRACED=FALSE THEN BEGIN IF Z1=0 THEN BEGIN NX:=1;NY:=0;NZ:=0;END ELSE BEGIN NX := -Y1/Z1; NY := 1; NZ := 0; END; IF (NX <> 0) THENPHI:=ARCTAN(ABS(NY/NX)) ELSE PHI:=PI/2; IF (XE<>0) THEN PHIINC:=ABS(PHI-ARCTAN(ABS(YE/XE))) ELSE PHIINC: = ABS(PHI-(PI/2)); PSIINC:= MTH\$ACOS(ABS(ZE)/MAG(XE,YE,ZE)); ANGLPOL:= MTH\$ACOS(1/SQRT(1+SQR(MTH\$TAN(PHIINC))) /SQRT(1+SQR(MTH\$TAN(PSIINC))); ANGLINC: = MTH\$ACOS(ABS(Z1)/DIST); IF OUTWARD=TRUE THEN BEGIN NREF:=1/NFBDXYL(WP); CRIT:= MTH\$ASIN(NREF); END ELSE BEGIN NREF: =NPBDXYL(WP); CRIT: =PI/2; END;

IF ANGLINC < CRIT THEN BEGIN ANGLREF: =MTH\$ASIN(SIN(ANGLINC)/NREF); IF ANGLINC=0 THEN TEMP: =CQR((NREF -1)/(NREF +1)) ELSE BEGIN TEMP1:=SQR(SIN(ANGLINC-ANGLREF)/SIN(ANGLREF)ANGLINC):: TEMP2:=SQR(MTH\$TAN(ANGLINC-ANGLREF) /MTH\$TAN(ANGLINC+ANGLREF)); TEMP := SQR(SIN(ANGLPOL)) * TEMP1 + SQR(COS(ANGLPCL)) * TEMP2;END; {weighted average of Fresnel paraperp reflectances} IF MTH\$RANDOM(SEEDVAL) <= TEMP THEN DISCREFLECT ELSE DISCREFRACT; END ELSE DISCREFLECT; {discface bidirectional}END ELSE;NFLEC:=0;END END; PROCEDURE LVFACE; BEGIN DIST := MAG(X1, Y1, Z1);IF DIST=0 THEN BEGIN WRITELN('ZERO P1 VECTOR', U, KO, YO, ZO); PHOTONTRACED:=TRUE;L3:=L3+1;END ELSE BEGIN {check colour quench outwards..} IF MNUMTEMP=1 THEN BEGIN IF MTH\$RANDOM(SEEDVAL) > EXP(-DICT*ABSPROB[W]*QCOL) THEN BEGIN PHOTONTRACED: = TRUE; L6:=L6+1; END ELSE; END ELSE; IF PHOTONTRACED=FALSE THEN BEGIN IF ((Y1*X2/Y2-X1)<>0)AND((Y1-X1*Y2/X2)<>0) THEN BEGIN NX:=Z1/(Y1*X2/Y2-X1); NY:= -Z1/(Y1-X1*Y2/X2); NZ:=1; ENDELSE; {photon parallel to normal =>NX, NY, NZ unchanged} IF (NX<>0) THEN PHI:=ARCTAN(ABS(NY/NX)) ELCE PHJ: PI/2; IF (XE<>0) THEN PHIINC:=AES(PHI-ARCTAN(AES(YE/XE))) ELSE PHIINC:=ABS(PHI-(PI/2)); PSIINC:=ABS(MTH\$ACOS(ABS(NI)/MAG(NX,NY,NI)) -MTH\$ACOS(AES(JE)/MAG(XE,YE,ZE);); ANGLPOL: = MTH\$ACOS(1/SQRT(1+SQR(MTH\$TAN(PHIINC)) /SQRT(1+SQR(MTH\$TAN(PSIINC))); IF (X2<>0) THEN PHI:=ARCTAN(ABS(Y2/X2)) ELSE PHI:=PI/2; IF (X1<>0) THEN PHIINC:=ABS(PHI-ARCTAN(ABS(Y1/X1))) ELSE PHIINC: = ABS(PHI-(PI/2)); PSIINC:= PI/2-MTH\$ACOS(ABS(Z1)/DIST); ANGLINC:= MTH\$ACOS(1/SQRT(1+SQR(MTH\$TAN(PHIINC))) /SQRT(1+SQR(MTH\$TAN(PSIINC))); IF MNUMTEMP=1 THEN BEGIN NREF:=NVIALGLS(WP)/NPBDXYL(WP);CRIT:=PI/2;END ELCE DEGIN NREF:=NPBDXYL(WP)/NVIALGLS(WP); CRIT:=MTH\$ACIN(MREF); END; IF ANGLINC < CRIT THEN BEGIN ANGLREF:=MTH\$ASIN(SIN(ANGLINC)/NREF); IF ANGLINC=0 THEN TEMP:=SQR((NREF-1)/(NREF+1)) ELSE BECIN TEMP1:=SQR(SIN(ANGLINC-ANGLREF)/CIN(ANGLREF+ANGLINC)); TEMP2:=SQR(MTH\$TAN(ANGLINC-ANGLREF) /MTH\$TAN(ANGLINC+ANGLREF)) TEMP:=SQR(SIN(ANGLPOL))*TEMP1+SQR(COS(ANGLPOL))*TEMP2; END; {weighted average of Fresnel paraperp reflectances} IF MTH\$RANDOM(SEEDVAL) <= TEMP THEN BEGIN CYLREFLECT; IF OUTWARD=FALSE THEN BEGIN OUTWARD:=TRUE; NFLEC:=1; VR:=VRAD; END ELSE END ELSE BEGIN CYLREFRACT; IF OUTWARD=TRUE THEN BEGIN VH:=VHT/2;VB:= -VHT/2;VR:=VRAD; MNUMTEMP:=3;ZO:=ZO-(VHT-LHT)/2;NFLEC:=0;

END ELSE BEGIN VH: =LHT/2; VB: = -LHT/2; VR: =LRAD; MNUMTEMP: =1; NFLEC: =0; OUTWARD: =TRUE; ZO: =ZO+(VHT-LHT)/2; END; END; END ELSE BEGIN CYLREFLECT; IF OUTWARD=FALSE THEN BEGIN OUTWARD:=TRUE;NFLEC:=1; VR:=VRAD;END ELSE END;END ELSE; {photontraced} END; END: PROCEDURE AVFACE; BEGIN DIST := MAG(X1, Y1, Z1);IF DIST=0 THEN BEGIN WRITELN('ZERO P1 VECTOR', U, XO, YO, ZO); PHOTONTRACED:=TRUE;L4:=L4+1;END ELGE BEGIN IF ((Y1*X2/Y2-X1)<>0)AND((Y1-X1*Y2/X2)<>0) THEN BEGIN NX:=Z1/(Y1*X2/Y2-X1);NY:= -Z1/(Y1-X1*Y2/X2);NZ:=1;END ELSE; {photon parallel to normal =>NX, NY, NZ unchanged} IF (NX:>0) THEN PHI:=ARCTAN(ABS(UY/NY)) ELSE PHI:=PI/2; IF (XE<>0) THEN PHIINC: =ABS(PHI-ARCTAN(AES(YE/XE))) ELSE PHIINC: = ABS(PHI-(PI/2)); PSIINC:=ABS(MTH\$ACOS(ABS(NZ)/MAG(NX,NY,NZ)) -MTH\$ACOS(ABS(ZE)/MAG(XE,YE,ZE))); ANGLPOL: = MTH\$ACOS(1/SQRT(1+SQR(MTH\$TAN(PHIINC))) /SQRT(1+SQR(MTH\$TAN(PSIINC))); IF (X2<>0)THEN PHI:=ARCTAN(ABS(Y2/X2)) ELSE PHI:=PI/2; IF (X1<>0) THEN PHIINC:=ABS(PHI-ARCTAN(ABS(Y1/X1))) ELSE PHIINC: = ABS(PHI-(PI/2)); PSIINC:= PI/2-MTH\$ACOS(ABS(Z1)/DIST); ANGLINC: = MTH\$ACOS(1/SQRT(1+SQR(MTH\$TAN(PHIINC))) /SQRT(1+SQR(MTH\$TAN(PSIINC))); NREF: =NPBDXYL(WP); CRIT: = PI/2; ANGLREF: =MTH\$ASIN(SIN(ANGLINC)/NREF); IF ANGLINC=0 THEN TEMP:=SQR((NREF-1)/(NREF+1)) ELSE BEGIN TEMP1:=SQR(SIN(ANGLINC-ANGLREF)/SIN(ANGLREF+ANGLINC)); TEMP2:=SQR(MTH\$TAN(ANGLINC-ANGLREF) /MTH\$TAN(ANGLINC+ANGLREF)); TEMP:=SQR(SIN(ANGLPOL))*TEMP1+SQR(COS(ANGLPOL))*TEMP2; END; {weighted average of Fresnel paraperp reflectances} IF MTH\$RANDOM(SEEDVAL) <= TEMP THEN BEGIN CYLREFLECT; NFLEC: =1; END ELSE BEGIN CYLREFRACT; VH: =VHT/2; VB: = -VHT/2; VR: =VRAD; MNUMTEMP := 3; ZO := ZO + (VHT - AHT) / 2;END; {no rotate , but coords-origin z-translates} {phot lost up vial wall on any reflection in mnum=3} END; END; PROCEDURE VCFACE; BEGIN DIST := MAG(X1, Y1, Z1);IF DIST=0 THEN BEGIN WRITELN('ZERO P1 VECTOR', U, XO, YO, ZO); PHOTONTRACED: =TRUE; L5: =L5+1; END ELSE BEGIN IF ((Y1*X2/Y2-X1)<>0)AND((Y1-X1*Y2/X2)(>0) THEN BEGIN NX:=Z1/(Y1*X2/Y2-X1);NY:= -Z1/(Y1-X1*Y2/X2);NZ:=1;END
ELSE; {photon parallel to normal =>NX, NY, NZ unchanged} IF (NX<>0) THEN PHI:=ARCTAN(ABS(NY/NX)) ELSE PHI:=PI/2; IF (XE<>0) THEN PHIINC: =ABS(PHI-ARCTAN(ABS(YE/XE))) ELSE PHITMC: = ABS(PHI (PI/2)); PSIINC:=ABS(MTH\$ACOS(ABS(NZ)/MAG(NX,NY,NZ)) -MTH\$ACOS(ABS(ZE)/MAG(XE,YE,ZE))); ANGLPOL: = MTH\$ACOS(1/SQRT(1+SQR(MTH\$TAN(PHIINC))) /SQRT(1+SQR(MTH\$TAN(PSIINC))); IF (X2<>0)THEN PHI: =ARCTAN(ABS(Y2/X2)) ELSE PHI:=PI/2; IF (X1<>0) THEN PHIINC:=ABS(PHI-ARCTAN(ABS(Y1/X1))) ELSE PHIINC: = ABS(PHI-(PI/2)); PSIINC:= PI/2-MTH\$ACOS(ABS(Z1)/DIST); ANGLINC: = MTH\$ACOS(1/SQRT(1+SQR(MTH\$TAN(PHIINC))) /SQRT(1+SQR(MTH\$TAN(PSIINC))); NREF:=1/NPBDXYL(WP);CRIT:= MTH\$ASIN(NREF); IF ANGLINC < CRIT THEN BEGIN IF ANGLINC=0 THEN TEMP: =SQR((NREF-1)/(NREF+1)) ELSE BEGIN TEMP1:=SQR(SIN(ANGLINC-ANGLREF)/SIN(ANGLREF+ANGLINC)); TEMP2:=SQR(MTH\$TAN(ANGLINC-ANGLREF) /MTH\$TAN(ANGLINC+ANGLREF)); TEMP:=SQR(SIN(ANGLPOL))*TEMP1+SQR(COS(ANGLPOL))*TEMP2; END; {weighted average of Fresnel paraperp reflectances} IF MTH\$RANDOM(SEEDVAL) <= TEMP THEN BEGIN CYLREFLECT; OUTWARD: =FALSE; NFLEC: =1; VR: =LRAD; END ELSE BEGIN CYLREFRACT; TEMP: =-Z1; Z1: =Y1; Y1: =TEMP; TEMP:=-Z1;ANGLREF:=MTH\$ASIN(SIN(ANGLINC)/NREF); Z2:=Y2;Y2:=TEMP;TEMP:=-Z0;Z0:=Y0;Y0:=TEMP;VR:=CRAD; VH:=CHT/2;VB:=-CHT/2;MNUMTEMP:=4;FACENUM:=4;NFLEC:=0; IF ((((Z1/MAG(X1, 0, Z1)) < -XTILT)AND(Z0>0)) OR(((Z1/MAG(X1, 0, Z1))>XTILT)AND(Z0<0))) OR(MAG(XO,YO,O)>=CRAD) THEN BEGIN PHOTONTRACED: =TRUE; L8: =L8+1; END; {a few phots are returned by parmirror to vial} {chamber doesn't envelop the vial} END; END ELSE BEGIN CYLREFLECT; OUTWARD: =FALSE; VR: =LRAD; NFLEC: =1; END; FACENUM: =4; END; END; PROCEDURE PARMIRROR; BEGIN IF MTH $\$ RANDOM(SEEDVAL) >= (ALABSPROB[W]/1000000) THEN BEGIN DIST: = MAG(X1, Y1, Z1); IF DIST=0 THEN BEGIN WRITELN('ZERO P1 VECTOR', U, XO, YO, ZO); PHOTONTRACED:=TRUE;L1:=L1+1;END ELSE BEGIN IF ZO>O THEN BEGIN ZN:=1; IF X1>0 THEN XN:= -1 ELSE XN:=1; END ELSE BEGIN ZN := -1; IF X1>O THEN XN := -1 ELSE XN := 1; END;PSIINC:= PI/2-TILT+ARCTAN(ABS(Z1/X1)); PHIINC:= MTH\$ASIN(ABS(Y1)/DIST); ANGLINC: =MTH\$ACOS(1/SQRT(1+SQR(MTH\$TAN(PHIINC))) /SQRT(1+SQR(MTH\$TAN(PSIINC))); PARREFLECT END END ELSE BEGIN PHOTONTRACED := TRUE; L1:=L1+1; END;

FACENUM: =5; PARFLAG: =1;

```
(for area of parmirror where PO=CRAD
approx. set nflec as for cylmirror}
IF MAG(XO, YO, O)>=CRAD THEN NFLEC:=1 ELSE NFLEC:=0;
END;
PROCEDURE CYLMIRROR;
PEGIN
IF MTH$RANDOM(SEEDVAL) >= (ALABSPROB[W]/1000000)
THEN BEGIN DIST: = MAG(X1, Y1, Z1);
IF DIST=0 THEN BEGIN
WRITELN('ZERO P1 VECTOR', U, XO, YO, ZO);
PHOTONTRACED:=TRUE;L1:=L1+1;END ELSE BEGIN
IF X2<>O THEN PHI:=ARCTAN(ABS(Y2/X2)) ELSE PHI:=PI/2;
IF X1<>0 THEN PHIINC: =ABS(PHI-ARCTAN(ABS(Y1/X1)))
ELSE PHIINC: = ABS(PHI-PI/2);
PSIINC:= PI/2-MTH$ACOS(ABS(Z1)/DIST);
ANGLINC: =MTH$ACOS(1/SQRT(1+SQR(MTH$TAN(PHIINC)))
            /SQRT(1+SQR(MTH$TAN(PSIINC)));
CYLREFLECT; NFLEC: =1; END; END ELSE BEGIN
PHOTONTRACED := TRUE;L1:=L1+1;
END;
FACENUM: =6;
END;
PROCEDURE PMTUBE;
BEGIN
IF Z1>0 THEN BEGIN QIX[1]:=QIX[1]+1;
QI[1,QIX[1]]:=QUANTEFF(WP);END
ELSE BEGIN QIX[2]:=QIX[2]+1;
QI[2,QIX[2]]:=QUANTEFF(WP);END;
PHOTONTRACED := TRUE ;
END;
PROCEDURE PMGLASS;
BEGIN
DIST := MAG(X1, Y1, Z1);
IF DIST=0 THEN BEGIN WRITELN('ZERO P1 VECTOR', U, XO, YO, ZO);
PHOTONTRACED:=TRUE;
IF Z1>0 THEN RL2:=RL2+1 ELSE LL2:=LL2+1;
L2:=L2+1; END ELSE BEGIN IF X1=0 THEN BEGIN
NX:=1;NY:=0;NZ:=0;END ELSE BEGIN
NX:= -Y1/X1;NY:=1;NZ:=0;END;
IF (NX<>O)THEN PHI:=ARCTAN(ABS(NY/NX)) ELSE PHI:=PI/2;
IF (XE<>0) THEN PHIINC:=ABS(PHI-ARCTAN(ABS(YE/XE)))
ELSE PHIINC:=ABS(PHI-(P1/2));
PSIINC:=ABS(MTH$ACOS(ABS(NZ)/MAG(NX,NY,NZ))
             -MTH$ACOS(ABS(ZE)/MAG(XE,YE,ZE)));
ANGLPOL: = MTH$ACOS(1/SQRT(1+SQR(MTH$TAN(PHIINC)))
             /SQRT(1+SQR(MTH$TAN(PSIINC)));
ANGLINC:= MTH$ACOS(ABS(Z1)/DIST);
NREF:=NPMTGLS(WP);CRIT:= PI/2
ANGLREF: = MTH$ASIN(SIN(ANGLINC)/NREF);
IF ANGLINC=0 THEN TEMP:=SQR((NREF-1)/(NREF+1))
ELSE BEGIN
TEMP1:=SQR(SIN(ANGLINC-ANGLREF)/SIN(ANGLREF+ANCLINC));
TEMP2:=SQR(MTH$TAN(ANGLINC-ANGLREF)
           /MTH$TAN(ANGLINC+ANGLREF));
TEMP:=SQR(SIN(ANGLPOL))*TEMP1>SQR(COS(ANGLPOL))*TEMP2;
```

END; (weight d average of Fresnel paraperp reflectances) IF MTH\$RANDOM(SEEDVAL) <= TEMP THEN BEGIN PHOTONTRACED := TRUE ; IF 31>0 THEN RL2:=RL2+1 ELSE LL2:=LL2+1:L2:=L2+1: END ELSE PMTUBE; END: END; PROCEDURE CHAMBERTRACK: BEGIN IF X1<>O THEN BEGIN IF ARCTAN(ABS(Z1/X1))>=TILT THEN PARFLAG:=1 ELSE; END ELSE PARFLAG:=1; CASE FACENUM OF 4: BEGIN CYLU: DISCU: IF PARFLAG=0 THEN PARU ELSE; PICKU; IF U=UB THEN PMGLASS ELSE BEGIN IF U=UA THEN CYLMIRROR ELSE PARMIRROR; END; END; 5: BEGIN CYLU; DISCU; PICKU; IF U=UA THEN CYLMIRROR ELSE PMGLASS; END; 6: BEGIN CYLU; DISCU; IF PARFLAG=0 THEN PARU ELSE: PICKU: IF U-UB THEN PMGLASS ELSE BEGIN IF U=UA THEN CYLMIRROR ELSE PARMIRROR; END; END: END; {case} END: PROCEDURE FLASHTRACK: VAR LOW, HIH: INTEGER: BEGIN QIX[1]:=0;QIX[2]:=0; {pmtube arrays initialized for new photon batch} WHILE EB > WCUTOFF DO BEGIN REPEAT IF EB < (PLANCK*LIGHTSPEED/340/1E-9)THEN WLOWER:=TRUNC(PLANCK*LIGHTSPEED/EB/1E-9) ELSE WLOWER: =FLSWAVE[0]; WUPPER: = FLSWAVE[FSTOP-FSTART-1]; WP:= RAND(WLOWER, WUPPER); IMCPRB := RAND(1, 900);UNTIL IMCPRB <= FLSPROB[WP-FLSWAVE[0]]; W:= WP-FLSWAVE[0]; WPR:= WP*1E-9; (* REAL NO. NANOMETERS *) EP:= PLANCK * LIGHTSPEED / WPR; PNUM:= PNUM+1; INITPHOTDIR; VR:=LRAD;VH:=LHT/2;VB:=--LHT/2;MNUM:=1;MNUMTEMP:=1; PHOTONTRACED: =FALSE; OUTWARD: =TRUE; XO: =EVX; YO: =EVY; ZO:=EVZ; PARFLAG:=0; NFLEC:=0; REPEAT CASE MNUM OF 1 : BEGIN PARFLAG:=0;CYLU;DISCU;PICKU; IF $ABS(UB) \leq ABS(UA)$ THEN BEGIN

IF Z1>O THEN LAFACE ELSE BEGIN PHOTONTRACED := TRUE; L3:=L3+1; END END ELSE LVFACE END; 2 : BEGIN CYLU; DISCU; PICKU; IF $ABS(UB) \ll ABS(UA)$ THEN BEGIN IF Z1>0 THEN BEGIN PHOTONTRACED:=TRUE;L4:=L4+1; END ELSE LAFACE { shouldn't occur } END ELSE AVFACE; END: 3 : BEGIN TORU; DISCU; PICKU; IF ABS(UB) >= ABS(UA) THEN BEGIN IF OUTWARD=TRUE THEN VCFACE ELSE BEGIN IF 22>(-0.0035) THEN BEGIN PHOTONTRACED:=TRUE;L5:=L5+1;END ELSE LVFACE END END ELSE BEGIN PHOTONTRACED:=TRUE;L5:=L5+1;END END: 4 : BEGIN IF MAG(X0, Y0, 0)>=(CRAD+0.00001) THEN BEGIN TEMP := MAG(XO, YO, O);WRITELN('PO>CEAP', MNUMTEMP, FACENUM, XO, YO, ZO); WRITELN(X1, Y1, Z1, X2, Y2, Z2, TEMP, VR); END ELSE; CHAMBERTRACK END; END; {case} MNUM: = MNUMTEMP; UNTIL PHOTONTRACED = TRUE; EB:= EB-EP; (*note.. always leaves residual energy*) END: (*while*) END: (*FLASHTRACK*) PROCEDURE PMSTATS1; BEGIN {Gives No. of photelectrons produced} FOR K:=1 TO 2 DO {k=1 ==> leftpmtube,k=2 ==> rightpmtube} BEGIN_IF QIX[K]<>0 THEN BEGIN REPEAT ITEMP:=TRUNC(MTH\$RANDOM(SEEDVAL)*(QIX[K]+1)); UNTIL ITEMP<(QIX[K]+1); QP[K]:=QI[K, ITEMP]; PMPRBMAX:=0; {qp ==> quantum effy picked from qi distribution of quantum effy's, trunc used to eliminate end bias} FOR J:=O TO QIX[K] DO BEGIN TEMP1 := LPOW(QP[K], J) + LPOW((1 - QP[K]), (QIX[K] - J));TEMP2:= LFACT(QIX[K])-LFACT(J)-LFACT(QIX[K]-J); PMPRB[J]:= QUAD(TEMP1+TEMP2); PMPRB[J]:= EXP(PMPRB[J]); IF PMPRB[J] > PMPRBMAX THEN BEGIN PMPRBMAX:=PMPRB[J];ITEMP:=J;END ELSE;END; {big num phots ==> sparse prob.distribution} J:=ITEMP; REPEAT PMTMIN:=J; J:=J-1; UNTIL (J=(-1))OR(PMPRB[J+1]<=0.0001); J:=ITEMP; REPEAT PMTMAX:=J; J:=J+1; UNTIL (J=(QIX[K]+1))OR(PMPRB[J-1]<=0.0001);REPEAT PMCOUNT[K] := PMTMIN+TRUNC(MTH\$RANDOM(SEEDVAL) *(PMTMAX+1)); UNTIL PMPRB[PMCOUNT[K]] >=(MTH\$RANDOM(SEEDVAL)*PMPRBMAX); END ELSE PMCOUNT[K]:=0; {no phots=>no count} END; {k loop}

END; {pmstats1} PROCEDURE PMCTATE2; BEGIN {Apply collection efficiency of PMT electron optical FOR K:=1 TO 2 DO BEGIN ITEMP:=0; IF PMCOUNT[K] <> 0 THEN BEGIN FOR I:=1 TO PMCOUNT[K] DO BEGIN IF MTH\$\phiRANDOM(SEEDVAL) < CEFF THEN ITEMP:=ITEMP+1 ELSE; END; PMCOUNT[K] := ITEMP; END ELSE; END; {Now gives No. of secondary electrons from dynode using Polya distribution} FOR JJ:=1 TO DYNUM DO{ number of dynode stages} BEGIN TEMP2:=1+BSF[JJ]*DYM[JJ]; FOR K:=1 TO 2 DO{left right tubes} BEGIN IF PMCOUNT[K] ~ 0 THEN BEGIN SUM:=0; FOR J:=1 TO PMCOUNT[K] DO BEGIN REPEAT ITEMP:= RAND(1,12); [i.e. range of probs includes all but 0.001 of total} TEMP1:=1; IF ITEMP>=2 THEN BEGIN FOR I:=1 TO ITEMP-1 DO BEGIN TEMP1:=TEMP1*(1+I*BCF[JJ]); END; END ELSE; TEMP:=LPOW(DYM[JJ], ITEMP)-LFACT(ITEMP) -(ITEMP+1/BSF[JJ])*LN(TEMP2); TEMP:=TEMP+LN(TEMP1); TEMP:=EXP(TEMP);{itomp=no. 2ndry's per single primary} UNTIL MTH\$RANDOM(SEEDVAL) < TEMP; SUM: =SUM+ITEMP; END; PMCOUNT[K]:=SUM; {Re-use count arrays for next dynode} END ELSE; END; {leftright} END; [dynodes] END: PROCEDURE MULTIMCA; BEGIN IF(PMCOUNT[1]=0)AND(PMCOUNT[2]=0)THEN QUANTLOST:=QUANTLOST+1 ELSE BEGIN IF PMCOUNT[1]>THRESHOLD THEN PMCOUNT[1]:=PMCOUNT[1]-THRESHOLD ELSE PMCOUNT[1]:= 0; IF PMCOUNT[2]>THRESHOLD THEN PMCOUNT[2]:=PMCOUNT[2]-THRESHOLD ELSE PMCOUNT[2]:= 0; IF (PMCOUNT[1]=0)AND(PMCOUNT[2]=0) THEN THLDLOST: = THLDLOST+1 ELSE BEGIN SUM: = PMCOUNT[1]+PMCOUNT[2]; FE:= ABS(PMCOUNT[1]-PMCOUNT[2]); NUCLIDE= II' THEN RATIO:=(500*PMCOUNT[1]) DIV SUM DIFF. ELSE RATIO:=(4000*PMCOUNT[1]) DIV SUM; {non-coincidence spectra} MCA[1,SUM]:= MCA[1,SUM]+1;MCA[2,DIFF]:= MCA[2,DIFF]+1; MCA[3,RATIO]:= MCA[3,RATIO]+1; PULSENUM[1]:= PULSENUM[1]+1; {total accumulated pulses} IF SUM > MAXCH[1] THEN MAXCH[1] := SUM; IF DIFF > MAXCH[2] THEN MAXCH[2]:= DIFF; IF RATIO > MAXCH[3] THEN MAXCH[3]:= RATIO; {max channel markers} IF ((PMCOUNT[1] > THRESHOLD) AND

(PMCOUNT[2] > THRESHOLD)) = TRUE THEN BEGINMCA[4,SUM]:= MCA[4,SUM]+1;MCA[5,DIFF]:= MCA[5,DIFF]+1; MCA[6, RATIO] := MCA[6, RATIO] +1; {coincidence spectra} PULSENUM[2]:= PULSENUM[2]+1; IF SUM > MAXCH[4] THEN MAXCH[4]:= SUM; IF DIFF > MAXCH[5] THEN MAXCH[5]:= DIFF; IF RATIO > MAXCH[6] THEN MAXCH[6] := RATIO; END ELSE COINLOST: = COINLOST+1; END; {thldlost} END; {quantlost} END; {multimea} PROCEDURE SPECALYSIS; VAR RNE, RSUM : REAL; NE, SUM : INTEGER; BEGIN FOR II:= 1 TO 6 DO BEGIN NE: = O; SUM: = O; MODE[II]: = O; WP: =O; ITEMP: =O;IF II > 3 THEN W := 2 ELSE W := 1; MAXCHNL: = MAXCH[II]; WRITELN('MAXCH=', MAXCHNL); FOR I:= 0 TO MAXCHNL DO BEGIN SUM:= SUM+MCA[II,I]; NE:= NE+I*MCA[II, I]; IF SUM >= (PULSENUM[W] DIV 2) THEN BEGIN IF ITEMP=0 THEN MIDNUMCH[II]:= I; ITEMP:=1; END ELSE; IF MCA[II, I] > WP THEN BEGIN WP:= MCA[II, I]; MODE[II]:= I END ELSE; FOR H:= 1 TO 2 DO BEGIN IF (I>SCRLL[H, II]) AND (I<SCRUL[H, II]) THEN SCRSUM[H, II] := SCRSUM[H, II] +1 ELSE; END; END; RSUM:= SUM; RNE:= NE; IF RSUM >= 1 THEN MEANENCH[II] := RNE/RSUM ELSE MEANENCH[II] := 0; IF SCRSUM[2, II] >= 1 THEN SCR[II]:= SCRSUM[1, II]/SCRSUM[2, II] ELSE SCR[II]:= 0; END; END; PROCEDURE DATASAVE; BEGIN OPEN (OUTFILE, 'LSCM22.DAT', HISTORY: = UNKNOWN, ACCESSMETHOD: = KEYED, ORGANIZATION: = INDEXED); FINDK(OUTFILE, O, IDNUMBER); IF UFB(OUTFILE) THEN BEGIN WITH AREC DO BEGIN **RECNUM:** = IDNUMBER; MODLVERGION: = MVERSION; NUCLTYPE:= NUCLIDE; WITH QREC DO BEGIN QCHEMVAL:= QCHEM; QCOLVAL:= QCOL; QMATLS:= QMATLS; END; WITH CREC DO BEGIN CNTMODE := CNTMODE;IF CNTMODE='D' THEN CNTNUM: = NDISNTGS ELSE CNTNUM: = NCOUNTS; THOLD: = THRESHOLD; FOR I: = 1 TO 2 DO BEGIN FOR II:= 1 TO 6 DO BEGIN

SCRSEINGC[I, II]: = SCRLL[I, II]; SCRSETNGC[I+2, II]: = SCRUL[I, II]; END; END; BSPECCTEP: = ESTEP: END; WITH LREC DO EEGIN LIQHT:=LHT;LIQRAD:=LRAD;VIALHT:= VHT; VIALRAD: - VRAD: VIALOFFSET: = VOS: CASENT: = CHT; CASERAD: = CRAD; END: WITH PREC DO BEGIN FOR I:= 1 TO C DO BEGIN PMEAN[I]:= MEANENCH[I]; PMODE[I]:= MODE[I]; PSCR[I] := SCR[I]; PMID[I] := MIDNUMCH[I]; END; END: WITH FULFEC DO BEGIN FOR I:=1 TO 2 DO BEGIN PULSENUM[I]:=PULSENUM[I];END; END; WITH PHREC DO BEGIN L1:=L1;L2:=L2;L0:=L3;L4:=L4;L5:=L5;L6:=L6; L7:=L7;L8:=L8;PNUM:=PNUM; END; WITH CHREC DO BEGIN FOR I:=1 TO 6 DO BEGIN MAXCH[I]:=MAXCH[I];END;END; TLOSS: = THLDLOST; CLOSS: = COINLOST; OLOSS: = QUANTLOST; END; WRITE(OUTFILE, AREC); FOR J:=1 TO 6 DO BEGIN WITH MREC DO BEGIN MCARECNUM: = IDNUMBER; FOR I:= 0 TO 4000 DO BEGIN MCADAT[I] := MCA[J, I]; END;END; CASE J OF 1 : BEGIN OPEN (OUT1, 'MCA1.DAT', HISTORY: = UNKNOWN, ACCESSMETHOD: = KEYED, ORGANIZATION: = INDEXED); FINDK(OUT1, 0, IDNUMBER); IF UFB(OUT1) THEN WRITE(OUT1, MREC) ELSE; CLOSE(OUT1); END; 2 : BEGIN OPEN (OUT2, 'MCA2.DAT', HISTORY: = UNKNOWN, ACCESSMETHOD: = KEYED, ORGANIZATION: = INDEXED); FINDK(OUT2, 0, IDNUMBER); IF UFB(OUT2) THEN WRITE(OUT2, MREC) ELSE; CLOSE(OUT2); END; 3 : BEGIN OPEN (OUT3, 'MCA3.DAT', HISTORY: = UNKNOWN, ACCESSMETHOD: = KEYED, ORGANIZATION: = INDEXED); FINDK(OUT3, 0, IDNUMBER); IF UFB(OUT3) THEN WRITE(OUT3, MREC) ELSE; CLOSE(OUT3); END; 4 : BEGIN OPEN (OUT4, 'MCA4.DAT', HISTORY := UNKNOWN,

FINDK(OUT4, 0, IDNUMBER); IF UFB(OUT4) THEN WRITE(OUT4, MREC) ELSE; CLOSE(OUT4); END; 5 : BEGIN OPEN (OUT5, 'MCA5.DAT', HISTORY: = UNKNOWN, ACCESSMETHOD: = KEYED, ORGANIZATION: = INDEXED); FINDK(OUT5, 0, IDNUMBER); IF UFB(OUT5) THEN WRITE(OUT5, MREC) ELSE; CLOSE(OUT5); END; 6 : BEGIN OPEN (OUT6, 'MCA6.DAT', HISTORY: = UNKNOWN, ACCESSMETHOD: = KEYED, ORGANIZATION: = INDEXED); FINDK(OUT6, 0, IDNUMBER); IF UFB(OUT6) THEN WRITE(OUT6, MREC) ELSE: CLOSE(OUT6); END; END; {case} END; {mrec} END ELSE WRITELN('FILE NOT STORED .. IDNUMBER', IDNUMBER, 'ALREADY EXISTS';; CLOSE(OUTFILE); END; [EXTERNAL] PROCEDURE MAINDO; EXTERN; [EXTERNAL] PROCEDURE MAININIT; EXTERN; (*...MAIN PROGRAM...*) BEGIN MAININIT; INIT1; FLSPEC; AESPEC; ALABSPEC; RANDOMIZE; REPEAT MAINDO; INIT2; BSPECMAX; IF CNTMODE= 'D' THEN BEGIN FOR IEVENTS:=1 TO NDISNTGS DO BEGIN EVENTCOORDS; BETAENERGY; CHEMQUENCH; FLASHTRACK; PMSTATS1; PMSTATS2; MULTIMCA; END END ELSE BEGIN IEVENTS:=0; REPEAT EVENTCOORDS; BETAENERGY; CHEMQUENCH; FLASHTRACK; PMSTATS1; PMSTATS2; MULTIMCA; IEVENTS: = IEVENTS+1; UNTIL (IEVENTS-QUANTLOST-THLDLOST-COINLOST)=NCOUNTS; END; SPECALYSIS; TEMP:=EBSUM/IEVENTS; WRITELN('Mean E-beta was ', TEMP, ' keV'); DATASAVE UNTIL STOPFLAG=TRUE; END.

```
MODULE M2INIT:
         QCHEM, QCOL, VOS, VHT, LHT, AHT, VRAD, LRAD, ARAD, CHT,
VAR
 CRAD.ESTEP: [EXTERNAL] REAL;
 IDNUMBER, NDISNTGS, NCOUNTS, DYNUM, THRESHOLD:
        [EXTERNAL] INTEGER:
 STOPFLAG: [EXTERNAL] BOOLEAN;
 NUCLIDE, CNTMODE: [EXTERNAL] CHAR;
 MVERSION: [EXTERNAL] PACKED ARRAY[1..50] OF CHAR;
 QMATLS: [EXTERNAL] PACKED ARRAY[1..25] OF CHAR;
 SCRLL, SCRUL: [EXTERNAL] ARRAY[1..2,1..6]
        OF INTEGER;
 QP, BSF, DYM: [EXTERNAL] ARRAY[1..2] OF REAL;
[GLOBAL] PROCEDURE INIT1;
BEGIN
MVERSION:=
'XM22 SE=CURVE QE=26
                                                     ':
NUCLIDE: ='C';
CNTMODE:='C'
NDISNTGS:=1000;NCOUNTS:=1000;
QMATLS:=' CCL4 AND DISPERSE O7 DYE';
SCRLL[1,1]:=0;SCRUL[1,1]:=4000;
SCRLL[2,1]:=10;SCRUL[2,1]:=4000;
SCRLL[1,2]:=0;SCRUL[1,2]:=4000;
SCRLL[2,2]:=5;SCRUL[2,2]:=4000;
SCRLL[1,3]:=0;SCRUL[1,3]:=4000;
SCRLL[2,3]:=50;SCRUL[2,3]:=4000;
SCRLL[1, 4]:=0; SCRUL[1, 4]:=4000;
SCRLL[2,4]:=10;SCRUL[2,4]:=4000;
SCRLL[1,5]:=0;SCRUL[1,5]:=4000;
SCRLL[2,5]:=5; SCRUL[2,5]:=4000;
SCRLL[1,6]:=0;SCRUL[1,6]:=4000;
SCRLL[2,6]:=50;SCRUL[2,6]:=4000;
BSF[1]:=0.2;BSF[2]:=0.2;DYM[1]:=3.94;
DYM[2]:=3.94;DYNUM:=2;
VOS: =0; VHT: =0.047+VOS; VRAD: =0.0147;
CHT:=0.04374;CRAD:=0.02286;
{...thick wall includes gaps in chamber around vial..}
LHT:=0.02+VOS;LRAD:=0.0125;AHT:=0.027+VOS;ARAD:=0.0125;
ESTEP:=0.001;
THRESHOLD: =50;
END;
[GLOBAL] PROCEDURE MAININIT;
BEGIN
STOPFLAG:=FALSE;
IDNUMBER := 0:
END;
[GLOBAL] PROCEDURE MAINDO;
BEGIN
IDNUMBER:=IDNUMBER+1;
{IF IDNUMBER=240 THEN IDNUMBER:=251 ELSE;}
CASE IDNUMBER OF
1 : BEGIN QCOL:=0;QCHEM:=0;END;
2 : BEGIN QCOL:=0;QCHEM:=0.3;END;
3 : BEGIN QCOL:=0;QCHEM:=0.5;END;
4 : BEGIN QCOL:=0;QCHEM:=0.7;END;
```

5 : BEGIN QCOL:=0;QCHEM:=0.9;END; 6 : BEGIN QCOL:=0.05;QCHEM:=0;END; 7 : BEGIN QCOL:=0.5;QCHEM:=0;END; 8 : BEGIN QCOL:=5;QCHEM:=0;END; 9 : BEGIN QCOL:=50;QCHEM:=0;END; END; IF IDNUMBER=0 THEN STOPFLAG:=TRUE ELSE; END; END;

(ii) Polya Statistics - Polya.Pas

```
PROGRAM POLYA(INPUT, OUTPUT);
VAR M, B, LT, LP, PROD, SUM: REAL;
I, M: INTEGER;
P:ARRAY[0..50] OF REAL;
PROCEDURE POISSON;
BEGIN
 I:= -1;SUM:=0;
REPEAT
REPEAT
I:=I(1;LF:=0;
IF I>1 THEN DEGIN
FOR X:=1 TO I DO
DEGIN LF:=LF+LN(X);END;END ELSE;
LP:=I*LN(M)-M-LF;
P[I]:=EXP(LP);SUM:=SUM+P[I];
WEITELN('Probability of obtaining ',I,' is ',P[I]);
UNTIL P[I]:0.001;
WEITELN(' Sum = ',SUM);
END:
 END:
 PROCEDURE POL;
 BEGIN
 I:= -1;SUM:=0;
REPEAT
 I:=I+1;LF:=O;PROD:=1;
IF I>=2 THEN BEGIN FOR X:=1 TO I DO
BEGIN LF:=LF+LN(X);END;
FOR X:=1 TO I-1 DO
FOR X:=1 TO 1-1 DO
BEGIN PRCD:=PROD*(1+X*B);END;END ELCE;
LP:=I*LN(M)-LF-(I+1/B)*LN(1+B*M)+LN(PROD);
P[I]:=EXP(LP);SUM:=SUM+P[I];
WRITELN('Probability of obtaining ',I,' is ',P[I]);
UNTIL P[I]<0.001;
WRITELN(' Sum = ',CUM);
                                                                                                                 Sum = ', CUM);
 TIND :
 PROCEDURE EXPO;
 BEGIN
 I:= -1;SUM:=0;
 REPEAT
 I := I + 1;
LP:=I*LN(M)-(I+1)*LN(1+M);

P[I]:=EXP(LP);SUM:=SUM+P[I];

WRITELN('Probability of obtaining ',I,' is ',P[I]);

UNTIL P[I]<0.001;

WRITELN(' Sum = ',SUM);
                                                                                                                Sum = ', SUM);
 END;
{MAIN PROGRAM}
 BEGIN
BEGIN
WRITELN('Shape factor B (0=poisson,1=exponential,
0.2=50/50each>');
READLN(D);
WRITELN('Required mean, >= 1, (e.g.
dynode yield=3.94 for LSC> ');
READLM(M);
IF B=0 THEN POISSON ELSE BEGIN IF B=1 THEM EXPO
ELSE POL;END;
THD
END.
```

(iii) MCA Pulse Height Spectra Transfer and Analysis

BASIC Program

1 OPEN1, 5: PRINT#1, CHR\$(255); "JE2GA": CLOSE1 5 POKE53,95 6 POKE52,255 7 SYS2976Ø 10 REM DISPLAY WHOLE SPECTRUM AT MINIMUM SENSITIVITY 15 SYS25317:REM CLEAR 19 POKE24969,1 20 POKE24968, 0: REM AVOIDS INTEGRATION 21 POKE24964,4 22 POKE24982, Ø: POKE24983, Ø: REM START CH =Ø 24 POKE24984, 3: POKE24985, 252 25 POKE24963,8:REM MIN SENS 27 SYS25344 30 PRINT" 4Ø POKE49151,3 5Ø PRINT"DOUBLE SENSITIVITY(Y/N)?" 6Ø GETA\$: IFA\$=""THEN6Ø 61 IFA\$="Y"THEN7Ø 65 GOTO27Ø 7Ø POKE24963,4 72 SYS25317 75 POKE24982,Ø:POKE24983,Ø 8Ø SYS25344 90 PRINT"" 100 POKE49151,3 11Ø PRINT"DOUBLE SENS(Y/N)?" 12Ø GETA\$: IFA\$=""THEN12Ø 121 IFA\$="Y"THEN14Ø 13Ø GOT027Ø 14Ø POKE24963,2 142 SYS25317 145 POKE24982, Ø: POKE24983, Ø 15Ø SYS25344 16Ø PRINT"" 17Ø POKE49151,3 18Ø PRINT"DOUBLE SENS(Y/N)?" 19Ø GETA\$: IFA\$=""THEN19Ø 200 IFA\$="Y"THEN220 21Ø GOTO27Ø 22Ø POKE24963,1 23Ø SYS25317 25Ø POKE24982,Ø:POKE24983,Ø 26Ø SYS25344 27Ø PRINT"" 28Ø POKE49151,3 29Ø PRINT"WHICH HALF OF SPECTRUM(U/L)?" 300 GETA\$: IFA\$=""THEN300 31Ø IFA\$="U"THEN35Ø 32Ø POKE24982,Ø:POKE24983,Ø 33Ø POKE24984, 1: POKE24985, 254

34Ø GOTO37Ø 35Ø POKE24982,2:POKE24983,Ø 36Ø POKE24984,3:POKE24985,254 37Ø SYS25317 375 POKE24964,2 38Ø SYS25344 39Ø PRINT"" 400 POKE49151,3 410 PRINT"DEFINE REQUIRED 256 CHANNELS" 42Ø INPUT"LOWEST CHANNEL";L1 43Ø U=L1+255 44Ø X=L1/256 450 UL=INT(X) 46Ø LL=(X-UL)*256 47Ø POKE24982, UL 480 POKE24983, LL 49Ø X=U/256 500 UU=INT(X) 51Ø LU=(X-UU)*256 52Ø POKE24984, UU 53Ø POKE24985, LU 54Ø POKE24964,1 55Ø SYS25317 555 PRINT"" 56Ø SYS25344 57Ø POKE49151,3 580 PRINT"INTEGRATION LIMITS" 590 PRINT"LOWER CHANNEL 592 GOSUB2ØØØ 594 L=X+L1 600 PRINT"UPPER CHANNEL" 6Ø2 GOSUB2ØØØ 6Ø4 U=X+L1 61Ø X=L/256 620 UL=INT(X) 63Ø LL=(X-UL)*256 64Ø POKE24982,UL 65Ø POKE24983,LL 66Ø X=U/256 67Ø UU=INT(X) 68Ø LU=(X-UU)*256 69Ø POKE24984, UU 700 POKE24985, LU 71Ø POKE24968,1 72Ø PRINT"" 73Ø SYS25344 74Ø X=PEEK(24944) 750 Y=X/16:Z=INT(Y)76Ø TE=(Y-Z)*16+1Ø*Z 77Ø X=PEEK(24945) 78Ø Y=X/16:Z=INT(Y) 79Ø TH=((Y-Z)*16+1Ø*Z)*1ØØ 800 X=PEEK(24946) $81\emptyset Y=X/16:Z=INT(Y)$ 82Ø HT=((Y-Z)*16+1Ø*Z)*1ØØØØ

83Ø X=PEEK(24947) $840 \ Y = X / 16 : Z = INT(Y)$ 85Ø TM=((Y-Z)*16+1Ø*Z)*1ØØØØØØ 86Ø TT=TE+TH+HT+TM 87Ø PRINT"SUM FROM CH ";L;" TO CH ";U;" = ";TT 88Ø V=PEEK(25852) 89Ø W=PEEK(25853)*256 900 X=PEEK(25854)*256*256 91Ø Y=PEEK(25855)*256*256*256 915 YY=PEEK(25999)*256*256*256*256 $92\emptyset Z=V+W+X+Y+YY$ 93Ø EN=Z/TT 94Ø PRINT"MEAN ENERGY BETWEEN CH";L; "AND CH";U; "="; INT(EN); "KEV" 95Ø END 2000 PRINT"CURSOR MOVE RIGHT(R), LEFT(L), STEP(S), END(E)" 2005 FORI=1TO3000:NEXTI 2Ø1Ø Y=1Ø 2Ø2Ø X=Ø 2Ø3Ø POKE24969,1:POKE25ØØ7,X 2Ø32 PRINT"" 2Ø33 GOSUB25ØØ 2Ø35 PRINT"CH: "; X+L1,, "COUNTS: "; NU 2Ø4Ø SYS2688Ø 2050 GETA\$: IFA\$=""THEN2050 2Ø55 POKE24969,Ø:SYS2688Ø 2060 IFA\$="R"THEN2090 2070 IFA\$="L"THEN2110 2075 IFA\$="S"THEN2130 2Ø8Ø RETURN 2090 X=X+Y:IFX>255THENX=255 2100 GOTO2030 211Ø X=X-Y:IFX<ØTHENX=Ø 212Ø GOTO2Ø3Ø 213Ø INPUT"STEP SIZE";Y 214Ø GOTO2Ø3Ø 2500 F=X+L1 25Ø5 G=F/256 251Ø A=INT(G) 2515 B=(G-A)*256 252Ø POKE24982, A 253Ø POKE24983, B 254Ø SYS2464Ø 255Ø SYS24734 256Ø C=PEEK(24948) 257Ø D=C/16:E=INT(D) 258Ø NE=(D-E)*16+1Ø*E 259Ø C=PEEK(24949) $2600 \text{ D=C/1} \in :E=INT(D)$ 261Ø NF=((D-E)*16+1Ø*E)*1ØØ 262Ø C=PEEK(2495Ø) 263Ø NG=1ØØØØ*C 264Ø NU=NE+NF+NG 265Ø RETURN

6ØØØ	A9	ØØ		LDA	#\$ØØ
6ØØ2	8D	7Ø	61	STA	\$617Ø
6ØØ5	8D	71	61	STA	\$6171
6ØØ8	8D	72	61	STA	\$6172
6ØØB	8D	73	61	STA	\$6173
6ØØE	2Ø	4Ø	6Ø	JSR	\$6Ø4Ø
6Ø11	2Ø	AØ	6Ø	JSR	\$6ØAØ
6Ø14	2Ø	4Ø	61	JSR	\$614Ø
6Ø17	AD	97	61	LDA	\$6197
6Ø1A	CD	99	61	CMP	\$6199
6Ø1D	DØ	Ø8		BNE	\$6Ø27
6Ø1F	AD	96	61	LDA	\$6196
6Ø22	CD	98	61	CMP	\$6198
6Ø25	FØ	ØB		BEQ	\$6Ø32
6Ø27	EΕ	97	61	INC	\$6197
6Ø2A	DØ	E2		BNE	\$6ØØE
6Ø2C	ΕE	96	61	INC	\$6196
6Ø2F	4C	ØE	6Ø	JMP	\$6ØØE
6Ø32	6Ø			RTS	

6Ø4Ø	18			CLC	
6Ø41	AD	97	61	LDA	\$6197
6Ø44	69	Ø1		ADC	#\$Ø1
6Ø46	8D	9B	61	STA	\$619B
6Ø49	AD	96	61	LDA	\$6196
6Ø4C	69	ØØ		ADC	#\$ØØ
6Ø4E	8D	9A	61	STA	\$619A
6Ø51	ØE	9A	61	ASL	\$619A
6Ø54	18			CLC	
6Ø55	ØE	9B	61	ASL	\$619B
6Ø58	AD	9A	61	LDA	\$619A
6Ø5B	69	ØØ		ADC	#\$ØØ
6Ø5D	8D	9A	61	STA	\$619A
6Ø6Ø	AD	97	61	LDA	\$6197
6Ø63	4 A			LSR	
6Ø64	8D	9D	61	STA	\$619D
6Ø67	18			CLC	
6Ø68	AD	96	61	LDA	\$6196
6Ø6B	4A			LSR	
6Ø6C	8D	9C	61	STA	\$619C
6Ø6F	9Ø	Ø9		BCC	\$6Ø7A
6Ø71	18			CLC	
6Ø72	AD	9D	61	LDA	\$619D
6Ø75	69	8Ø		ADC	#\$8Ø
6Ø77	8D	9D	61	STA	\$619D
6Ø7A	18			CLC	
6Ø7B	AD	9D	61	LDA	\$619D
6Ø7E	6D	9B	61	ADC	\$619B
6Ø81	8D	9F	61	STA	\$619F

Rem:	6000 - 6032	
	Initializes	program

Rem:	6040 - 6096
	Calculates $2n + X + 2$
	where $X = int(n/2)$

6Ø84 6Ø87 6Ø8A 6Ø8D 6Ø8E 6Ø91 6Ø93 6Ø96	AD 6D 8D 18 AD 69 8D 6Ø	9C 9A 9E 9E 76 9E	61 61 61 61	LDA ADC STA CLC LDA ADC STA RTS	\$619C \$619A \$619E \$619E #\$76 \$619E
6Ø9E 6ØAØ 6ØA3 6ØA5 6ØA8 6ØAA 6ØAA	AØ AD 85 AD 85 A9 2C DØ	ØØ 9E Ø9 9F Ø8 Ø1 97 54	61 61 61	LDY LDA STA LDA STA LDA BIT BNE	#\$ØØ \$619E \$Ø9 \$619F \$Ø8 #\$Ø1 \$6197 \$6105
6ØB1 6ØB3 6ØB5 6ØB7 6ØB8 6ØB9 6ØBA 6ØBB 6ØBE 6ØCØ	AØ B1 29 4A 4A 4A 4A 8D A5 DØ	ØØ Ø8 FØ 74 Ø8 Ø2	61	LDY LDA AND LSR LSR LSR STA LDA BNE	#\$ØØ (\$Ø8),Y #\$FØ \$6174 \$Ø8 \$6ØC4
6ØC2 6ØC4 6ØC6 6ØC8 6ØCA 6ØCB 6ØCC 6ØCD 6ØCE	C6 C6 B1 29 ØA ØA ØA ØA 18	Ø9 Ø8 Ø8 ØF		DEC DEC LDA AND ASL ASL ASL ASL CLC	\$Ø9 \$Ø8 (\$Ø8),Y #\$ØF
6ØCF 6ØD2 6ØD5 6ØD7 6ØD9 6ØDA 6ØDB 6ØDC	6D 8D 81 29 4A 4A 4A 4A	74 74 Ø8 FØ	61 61	ADC STA LDA AND LSR LSR LSR LSR	\$6174 \$6174 (\$Ø8),Y #\$FØ
6ØDD 6ØEØ 6ØE2 6ØE4 6ØE6 6ØE8 6ØE8 6ØEC 6ØED 6ØEF	8D A5 DØ C6 C6 B1 29 ØA ØA	75 Ø2 Ø9 Ø8 Ø8	61	STA LDA BNE DEC DEC LDA AND ASL ASL	\$6175 \$Ø8 \$6ØE6 \$Ø9 \$Ø8 (\$Ø8),Y #\$ØF

Rem: 609E - 6126 Prepares next number for addition and stores in s6176,5,4 ALL ALL

6ØEF	ØA			ASL	
6ØFØ	18			CLC	
6ØF1	6D	75	61	ADC	\$6175
6ØF4	8D	75	61	STA	\$6175
6ØF7	B1	Ø8		LDA	(\$Ø8),Y
6ØF9	29	FØ		AND	#\$FØ
6ØFB	4A			LSR	
6ØFC	4A			LSR	
6ØFD	4A			LSR	
6ØFE	4A			LSR	
6ØFF	8D	76	61	STA	\$6176
61Ø2	4C	26	61	JMP	\$6126
61Ø5	B1	Ø8		LDA	(\$Ø8),Y
61Ø7	8D	74	61	STA	\$6174
61ØA	A5	Ø8		LDA	\$Ø8
61ØC	DØ	Ø2		BNE	\$611Ø
61ØE	C6	Ø9		DEC	\$Ø9
611Ø	C6	Ø8		DEC	\$Ø8
6112	B1	Ø8		LDA	(\$Ø8),Y
6114	8D	75	61	STA	\$6175
6117	A5	Ø8		LDA	\$Ø8
6119	DØ	Ø2		BNE	\$611D
611B	C6	Ø9		DEC	\$Ø9
611D	C6	Ø8		DEC	\$Ø8
611F	B1	Ø8		LDA	(\$Ø8),Y
6121	29	ØF		AND	#\$ØF
6123	8D	76	61	STA	\$6176
6126	6Ø			RTS	

614Ø	F8			SED	
6141	18			CLC	
6142	AD	74	61	LDA	\$6174
6145	6D	7Ø	61	ADC	\$617Ø
6148	8D	7Ø	61	STA	\$617Ø
614B	AD	75	61	LDA	\$6175
614E	6D	71	61	ADC	\$6171
6151	8D	71	61	STA	\$6171
6154	AD	76	61	LDA	\$6176
6157	6D	72	61	ADC	\$6172
615A	8D	72	61	STA	\$6172
615D	A9	ØØ		LDA	#\$ØØ
615F	6D	73	61	ADC	\$6173
6162	8D	73	61	STA	\$6173
6165	D8			CLD	
6166	6Ø			RTS	

.

Rem:	6140 - 6166
	Addition of 6176,5,4 to
	running total in 6173,2,1,0
	in decimal mode.

1000

1 21

•

61ED	A9	ØØ		LDA	#\$ØØ
61EF	8D	A1	61	STA	\$61A1
61F2	AD	81	61	LDA	\$6181
61F5	C9	C8		CMP	#\$C8
61F7	9Ø	Ø5		BCC	\$61FE
61F9	A9	C7		LDA	#\$C7
61FB	8D	81	61	STA	\$6181
61FE	A9	Ø2		LDA	#\$Ø2
62ØØ	8D	FF	BF	STA	\$BFFF
62Ø3	AD	87	61	LDA	\$6187
62Ø6	8D	AF	61	STA	\$61AF
62Ø9	AD	81	61	LDA	\$6181
62ØC	8D	AE	61	STA	\$61AE
62ØF	38			SEC	
621Ø	A9	C7		LDA	#\$C7
6212	ED	AE	61	SBC	\$61AE
6215	8D	AD	61	STA	\$61AD
6218	A9	ØØ		LDA	#\$00
621A	8D	AØ	61	STA	\$61AØ
621D	AD	AD	61	LDA	\$61AD
6220	ØĂ		~-	ASL	401110
6221	8D	AC	61	STA	\$61AC
6224	90	ดด	~~	BCC	\$622F
6226	18	20		CLC	QOUUT.
6227	ÂD	AØ	61	LDA	\$61 AØ
622A	69	02	01		#\$Ø2
6220	8D		61	STA	ΦG1Δ0
622F	AD	AC	61	T.DA	\$61AC
6232	ØΔ	nu	ΟI	AGI	40 THO
6233	80	AC	61	STA	\$61AC
6236		AC	61	TUV	\$01AC
6239	69	aa	01	ADC	40100 #0100
623B	8n	ΔD	61	STA	#400 ФС1 AD
623F	18	ΩD	01	CIC	401VD
623F	ΔD	۵C	61		\$61AC
6242	6D		61	ADC	\$01A0
6915	an		61	CT A	0100 0100
6248			01 G1	TDA	DULAA DULAA
6910	60	aa	0 T	ADG	4014D
624D	80	<u>80</u>	61	CTTA	#000 #0110
6250		49 49	01 01	AIG	Ф0149 Ф0149
6250	av AD	AA	01	LUA	201AA
0200	A A A	A O	01	ADL	#0140
0404	00	AL AC	01	DOG	\$01AZ
0407	80	00		BCC	\$625F
0209	A9	Ø4	01	LUA	#\$24
020B	10	AT	01	STA	\$61A1
620E	19	• •	~ 1	CLC	+ - +
625F	AD	AZ	61	LDA	\$61A2
6262	AQ		~ -	ASL	
6263	80	AZ	61	STA	\$61A2
0200	90	ØA		BCC	\$6272
6268	18	~~		CLC	
6269	A9	Ø2		LDA	#\$Ø2
626B	6D	A1	61	ADC	\$61A1
626E	8D	A1	61	STA	\$61A1
6271	18			CLC	

Rem: 61ED - 62DE

Plots point on HRG screen

0070	4.75	40	0.4	T T. A	A0140
6272	AD	AZ	ρ Τ	LUA	\$61A2
6275	ØA		~ 4	ASL	+ - 1 + -
6276	80	AZ	61	STA	\$61A2
6279	A9	00		LDA	#\$00
627B	6D	A1	61	ADC	\$61A1
627E	8D	A1	61	STA	\$61A1
6281	AD	Α9	61	LDA	\$61A9
6284	ØA			ASL	
6285	ØA			ASL	
6286	ØA			ASL	
6287	6D	A1	61	ADC	\$61A1
628A	8D	A3	61	STA	\$61A3
628D	18			CLC	• • • • • • • •
628E	AD	AF	61	LDA	\$61AF
6291	4A			LSR	40222
6292	4A			LSR	
6293	4 A			LSR	
6294	80	۵4	61	STA	\$6144
6207	10	7 7	0 I		Φ01744
6200	20	49	G 1	ADC	46149
0230 690D		A 5	01	CTT A	0182 00185
0290	AD AD	AD	01	DIA	\$01A0
0296	AD	AJ	01	ADA	\$01A3
6ZA1	69	90		ADC	#\$00
62A3	80	A6	61	STA	\$61A6
62A6	69	90	~ .	ADC	#\$90
62A8	8D	A6	61	STA	\$61A6
62AB	AD	AF	61	LDA	\$61AF
62AE	29	Ø7		AND	#\$Ø7
62BØ	8D	A7	61	STA	\$61A7
62B3	38			SEC	
62B4	A9	Ø7		LDA	#\$Ø7
62B6	ED	Α7	61	SBC	\$61A7
62B9	8D	A8	61	STA	\$61A8
62BC	A9	Ø1		LDA	#\$Ø1
62BE	8D	BØ	61	STA	\$61BØ
62C1	AD	A 8	61	LDA	\$61A8
62C4	FØ	ØB		BEQ	\$62D1
62C6	ØE	BØ	61	ASL.	\$61BØ
6209	CE	AR	61	DEC	\$61A8
62CC	FØ	Ø3	5.	BEO	\$62D1
62CE	4C	C6	62	.IMP	\$6206
62D1	ΔD	45	61	LDA	\$6145
6204	85	MR I	ΟI	STA	\$Ø8 \$0110
6204		46	61	TDA	\$61A6
6200	QK	a	01	CTLA	401A0
6200	200	סט	60	TCD	400 4000
02DD	60	עע	00	Dac	400DD
OZDE	90			RID	
00775	• •	00			
0ZED	A9	90		LDA	#\$9Ø
DZE7	85	Ø9 67		STA	\$Ø9
DZEA	AA	00		AUL	#\$ØØ
OZEB	85	200		STA	第20 8 2 2 2 2 2 2 2 2 2 2 2 2 2
62ED	AØ	200		LDA	#\$00
6ZEF	A9	เงด		LDA	#\$00

Rem:	62E5 -	62FE
	Clears	HRG screen

62F1 62F3 62F4 62F6 62F8	91 C8 DØ E6 A5	Ø8 F9 Ø9 Ø9		STA INY BNE INC LDA	(\$Ø8),Y \$62EF \$Ø9 \$Ø9	
62FA 62FC 62FE	C9 DØ 6Ø	BØ F1		CMP BNE RTS	#\$BØ \$62EF	
63ØØ 63Ø2 63Ø5	A9 2Ø 8D	ØØ 83 71 72	65 61	LDA JSR STA	#\$ØØ \$6583 \$6171 \$6172	Rei
63ØB	8D	73	61	STA	\$6173	
63ØE	8D	87	61	STA	\$6187	
6311	8D	FC	64	STA	\$64FC	
6317	8D	FE	64	STA	\$64FD \$64FE	
631A	8D	FF	64	STA	\$64FF	
631D	2Ø	40	6Ø	JSR	\$6Ø4Ø	
6320	20 AD	88	61	LDA	\$60A0 \$6188	
6326	FØ	øč	U L	BEQ	\$6334	
6328	2Ø	4Ø	61	JSR	\$614Ø	
632B	20	FD	65	JSR	\$65FD	
6331	20 4C	4Ø	63	JSR .IMP	\$634Ø	
6334	2ø	$\tilde{75}$	63	JSR	\$6375	
6337	2Ø	6Ø	64	JSR	\$646Ø	
633A	20	ED	61	JSR	\$61ED	
6340	AD	97	61	LDA	фото/ \$6197	
6343	CD	99	61	CMP	\$6199	
6346	DØ	Ø8	• •	BNE	\$635Ø	
6348 6348	AD	96	61	LDA	\$6196	
634E	FØ	12	01	BEQ	\$6362	
635Ø	18			CLC	+	
6351	AD	97	61	LDA	\$6197	
6357	6D 8D	84 97	61 61	ADC STA	\$6184 \$6107	
635A	DØ	C1	ΟŢ	BNE	\$631D	
635C	EE	96	61	INC	\$6196	
635F	4C	1D	63	JMP	\$631D	
0362	60			RIS		

em: 6300 - 6445 Main routine which displays, integrates and averages spectrum between limits determined by cursor positions.

6375	A9	ØØ		LDA	#\$ØØ	
6377	8D	7C	61	STA	\$617C	
637A	8D	7A	61	STA	\$617A	
637D	8D	82	61	STA	\$6182	
638Ø	18			CLC		
6381	AD	76	61	LDA	\$6176	
6384	ØA			ASL		
6385	ØA			ASL		
6386	8D	78	61	STA	\$6178	
6389	ØA			ASL		
638A	ØA			AST.		
638B	ØA			ASL		
638C	8D	79	61	STA	\$6179	
638F	8D	7R	61	STA	\$617B	
6392	90	ØR	• -	BCC	\$6398	
6394	18	~2		CL.C	\$0001	
6395	Āġ	Ø2		LDA	#\$02	
6397	8D	70	61	STA	\$6170	
6394	Δq	a1	<u> </u>	LDA	#\$01	
6390	8D	70	61	STA	ΦG17Δ	
6397	ØF	72	61	AST.	\$617B	
6342	ΨΔ	110	01	AUN	Φ017D	
6343	FΔ			NOP		
6344	ΠA			NOP		
6345	00	ao		BCC	\$63D0	
6347	18	00		CIC	\$00DD	
6348	ΔQ	Ø1			#\$01	
6344	6D	70	61		##01 \$6170	
63AD	สก	70	61	STA	\$617C	
63BØ	18	.0	01	CLC	\$0170	
63B1	ÂD	78	61	LDA	\$6178	
63B4	6D	79	61	ADC	\$6179	
63B7	8D	70	61	STA	\$6170	
63BA	AD	74	61	LDA	\$6174	
63BD	69	ØØ	¥ *	ADC	#\$00	
63BF	8D	7π	61	STA	\$617E	
6302	AD	70	61	LDA	\$617D	
6305	6D	78.	61	ADC	\$617B	
6308	80	70	61	STA	\$617D	
63CB	Δn	70	61	TDA	\$617C	
63CE	6D	78	61	ADC	\$617E	
63D1	an	75	61	STA	\$617F	
63D4	18	1 12	01	CIC	ΦΟΤΙΒ	
6305	ΔD	75	61		¢6175	
6308	20	т <i>о</i>	0 T		40170 #0170	
6304	10	1.60		TCD	₩ Φ1' Ø	
63DD	40			LON		
6300	40			LOR		
GODC	40			TCD		
6305	20	80	61	CTV	¢6190	
69T1	av	90	01	ACT	Φ 0.ΤΟЮ	
0320	80	81	61	CTV CTV	46191	
6325	g/A	0 L	ΟT	BUG	Φ0101 Φ0101	
6327	20	ดว		LDA	400ED #400	
6310	80	82	61	STA	ተዋድር ዋይነይን	
63FC	18	04	0 T	CIC	ψυτυζ	
JOHO -	T O			ULU		

63ED	AD	81	61	LDA	\$6181
63FØ	ØA			ASL	
63F1	8D	81	61	STA	\$6181
63F4	AD	82	61	LDA	\$6182
63F7	69	ØØ		ADC	#\$ØØ
63F9	8D	82	61	STA	\$6182
63FC	AD	8Ø	61	LDA	\$618Ø
63FF	6D	81	61	ADC	\$6181
64Ø2	8D	81	61	STA	\$6181
64Ø5	AD	82	61	LDA	\$6182
64Ø8	69	ØØ		ADC	#\$ØØ
64ØA	8D	82	61	STA	\$6182
64ØD	ØA			ASL	
64ØE	8D	82	61	STA	\$6182
6411	AD	81	61	LDA	\$6181
6414	ØA			ASL	
6415	8D	81	61	STA	\$6181
6418	AD	82	61	LDA	\$6182
641B	69	ØØ		ADC	#\$ØØ
641D	8D	82	61	STA	\$6182
642Ø	AD	75	61	LDA	\$6175
6423	29	ØF		AND	#\$ØF
6425	6D	81	61	ADC	\$6181
6428	8D	81	61	STA	\$6181
642B	AD	82	61	LDA	\$6182
642E	69	ØØ		ADC	#\$ØØ
643Ø	8D	82	61	STA	\$6182
6433	AD	81	61	LDA	\$6181
6436	6D	7D	61	ADC	\$617D
6439	8D	81	61	STA	\$6181
643C	AD	82	61	LDA	\$6182
643F	6D	7E	61	ADC	\$617E
6442	8D	82	61	STA	\$6182
6445	6Ø			RTS	
646Ø	AD	83	61	LDA	\$6183
6469	CO	G 1		CIMD	#001

6463	C9	Ø1		CMP	#\$Ø1
6465	FØ	49		BEQ	\$64BØ
6467	AD	81	61	LDA	\$6181
646A	4A			LSR	
646B	8D	81	61	STA	\$6181
646E	18			CLC	
646F	AD	82	61	LDA	\$6182
6472	4A			LSR	
6473	8D	82	61	STA	\$6182
6476	9Ø	Ø9		BCC	\$6481
6478	18			CLC	
6479	AD	81	61	LDA	\$6181
647C	69	8Ø		ADC	#\$8Ø
647E	8D	81	61	STA	\$6181
6481	AD	83	61	LDA	\$6183
6484	C9	Ø2		CMP	#\$Ø2
6486	FØ	28		BEQ	\$64BØ
6488	AD	81	61	LDA	\$6181

Rem: 6460 - 64B0 Sets verical scaling factor on spectrum display.

648B 648C	4A 8D	81	61	LSR STA	\$6181
648F	18 4D	82	61	CLC	4618 2
6493	4A	02	01	LSR	\$0102
6494 6497	9Ø	82 Ø9	61	BCC	\$6182 \$64A2
6499 649A	18 AD	81	61	CLC LDA	\$6181
649D	69 8D	8Ø	61	ADC	#\$8Ø
64A2	AD	83	61	LDA	\$6183
64A5 64A7	C9 FØ	Ø4 Ø7		CMP BEQ	#\$Ø4 \$64BØ
64A9 64AC	AD 4A	81	61	LDA LSR	\$6181
64AD 64BØ	8D 6Ø	81	61	STA RTS	\$6181
64FD	5Ø	ЗF		BVC	\$653E
64FF 65Ø1	Ø5 96	AD 61		ORA STX	\$AD \$61,Y
65Ø3	8D AD	F7 97	64 61	STA	\$64F7
6509	8D	F6	64	STA	\$64F6
65ØC 65ØE	A2 A9	ØA ØØ		LDX LDA	#\$ØA #\$ØØ
651Ø 6513	8D AD	FB F6	64	STA LDA	\$64FB \$64F6
6516	29	Ø1		AND	#\$Ø1
651A	DØ	2C		BNE	\$6548
651C 651D	18 AD	FC	64	LDA	\$64FC
652Ø 6523	6D 8D	F8 FC	64 64	ADC STA	\$64F8 \$64FC
6526	AD	FD	64	LDA	\$64FD
652C	8D	FD	64 64	STA	\$64FD
652F 6532	AD 6D	FE FA	64 64	LDA ADC	\$64FE \$64FA
6535 6538	8D 20	FE 90	64 65	STA	\$64FE \$6590
653B	EA	0.0		NOP	40000
653D	EA			NOP	
653E 653F	EA EA			NOP NOP	
654Ø 6543	AD 69	8F ØØ	65	LDA	\$658F #\$00
6545	8D	8F	65	STA	\$658F
6549	ØΕ 18	FB	64	ASL	\$64FB
654C	ØE	FA	64	AST.	\$64FA

Rem:	64FD - 6599
	Multiplies number in
	64F8,9,A,(B) by number
	in 64F6,7 and stores in
	64FC, D, E, F.

654F 65524 65557 6555A 6555A 6555D 65562 65562 65562 65562 65568A 65577 65577 65577 65577 6557F 6582	AD 69 80 80 80 80 80 80 80 80 80 80	FØFFFØFFFØFF6 F88F 91	64 64 64 64 64 64 64 64 64 64 64	LDA ADC STA ASL LDA ADC STA ADC STA ADC STA ADC LSR CLC LDA ADC STA ADC STA ADC STA ADC STA ADC STA	\$64FB #\$ØØ \$64FB \$64F9 \$64FA #\$ØØ \$64FA \$64F8 \$64F9 #\$ØØ \$64F9 \$64F6 \$64F6 \$64F6 #\$8Ø \$64F6 #\$8Ø \$64F6
6583 6586 6589	8D 8D 6Ø	8F 7Ø	65 61	STA STA RTS	\$658F \$617Ø
659Ø 6593 6596 6599	AD 6D 8D 6Ø	FF FB FF	64 64 64	LDA ADC STA RTS	\$64FF \$64FB \$64FF
65FD 65FF 66Ø2 66Ø5 66Ø8 66Ø8 66Ø8 6608 6611 6612 6615 6616 6617 5618	A9 8D 8D 8D 8D 18 AD 9A ØA ØA	ØØ D2 E2 E4 E6 B9 DB 76	64 64 64 64 64 61	LDA STA STA STA STA STA STA CLC LDA ASL ASL ASL	#\$ØØ \$64D2 \$64E2 \$64E4 \$64E6 \$64B9 \$64DB \$6176
6619 661C 661D 662Ø 6623 6625 6628 6629	8D ØA 8D AD 69 8D 18 ØF	EØ E1 E2 ØØ E2 E2	64 64 64 64	STA ASL STA LDA ADC STA CLC ASL	\$64EØ \$64E1 \$64E2 #\$ØØ \$64E2 \$64E2

Rem: 65FD - 6892 Converts 5 digit decimal number to 3 bytes of hexadecimal.

375

662C	ØE	Ε1	64	ASL	\$64E1
662F	AD	E2	64	LDA	\$64E2
6632	69	ØØ		ADC	#\$ØØ
6634	8D	E2	64	STA	\$64E2
6637	18	-		CLC	+0.4770
6638	0E	EZ	64	ASL	\$64EZ
663B	NE ND	ET ET	04	ADL	第04世 1 カC4世の
003E	60	<u>с</u> 00	04	ADC	ቅዐ ኅ ըշ ዘቀለለ
6643	80	200	64	STA	ተ ወይ ላ ም ዓ ቁ ዓ ላ ም ዓ
6646	18	1977	04	CLC	φ0 <u>-</u> 222
6647	ØĔ	E2	64	ASL	\$64E2
664A	ØE	E1	64	ASL	\$64E1
664D	AD	E2	64	LDA	\$64E2
665Ø	69	ØØ		ADC	#\$ØØ
6652	8D	E2	64	STA	\$64E2
6655	18			CLC	
6656	AD	E2	64	LDA	\$64E2
6659	ØA			ASL	
665A	8D	E3	64	STA	\$64E3
665D	AD	E4	64	LDA	\$64E4
666Ø	69	ØØ	~ .	ADC	#\$ØØ
6662	80	E4	64	STA	\$64E4
6665	18	170	04	CLC	#04779
0000	AD ØA	出り	64	AGT	第04氏 3
6660	8D	ចាត	61	CTTV CTTV	ቀርላፑና
6660		EC EC	64	LDA	\$64E5
6670	69	aa	04	ADC	#\$0400 #\$00
6672	8D	E6	64	STA	\$64E6
6675	18		• •	CLC	40 120
6676	AD	E6	64	LDA	\$64E6
6679	ØA			ASL	
667A	8D	E8	64	STA	\$64E8
667D	AD	E5	64	LDA	\$64E5
668Ø	ØA			ASL	
6681	8D	E7	64	STA	\$64E7
6684	AD	E8	64	LDA	\$64E8
6687	69 07	00	~ •	ADC	#\$00
6689	40	EЯ	64	STA	\$64E8
0000	10	TPO	04	CLC	40 4 E O
6600	0 C	00 107	04 61	AGI	404L0 404T7
6603	AD	ь r ър	64	TDA	464E8
6696	69	aa	0-1	ADC	#\$04E0
6698	8D	E8	64	STA	\$64E8
669B	18	110	~ 1	CLC	φυτμο
669C	ØĒ	E8	64	ASL	\$64E8
669F	ØE	E7	64	ASL	\$64E7
66A2	AD	E8	64	LDA	\$64E8
66A5	69	ØØ		ADC	#\$ØØ
66A7	8D	E8	64	STA	\$64E8
66AA	18			CLC	
66AB	AD	75	61	LDA	\$6175
66AE	29	FØ		AND	#\$FØ
66BØ	4A			LSR	

66B1 66B4	8D ØA	Β7	64	STA ASL	\$64B7
66B5	ØA			ASL	
66B6	8D	B8	64	STA	\$64B8
66B9	AD	B9	64	LDA	\$64B9
66BC	69	ØØ	• •	ADC	#\$ØØ
66BE	8D	B9	64	STA	\$64B9
66C1	18	-	~ •	CLC	+0.100
66C2	AD	B8	64	LDA	\$6489
6605	AW	777	~ ^	ADL	40 ADD
0000	AD	DD	04	5TA	\$04BB
0009	AD AA	bo	04	LUA	\$04D0
COUC	AQ AQ	DA	C A	C T A	ACADA
COCD		DA	04	DIA TDA	Ф04DA ФСИПП
6602	80 80	DD MM	04	ADC	4040D
CODS	8D	22	61	CTA	467DD
66000	18	ענ	04	CI C	Φ04DD
6600		RR	64	LDA	\$6ABB
6600	MΔ	1010	04	AST.	ΦΟΨΟΟ
6600	80	BC	64	STA	\$64BC
66EØ	AD	RA	64	LDA	\$64BA
6673	Ø	DIS	0 Ŧ	AST.	φυπρα
66E4	80	BD	64	STA	\$64BD
66E7	AD	BC	64	LDA	\$64BC
66EA	69	aa	0-1	ADC	#\$ØØ
66EC	80	BC	64	STA	\$64BC
66EF	18	1.0	• •	CLC	φ0 1D0
66FØ	ÂD	BC	64	LDA	\$64BC
66F3	ØA			ASL.	+
66F4	8D	BE	64	STA	\$64BE
66F7	AD	BD	64	LDA	\$64BD
66FA	ØA			ASL	
66FB	8D	BF	64	STA	\$64BF
66FE	AD	BE	64	LDA	\$64BE
67Ø1	69	ØØ		ADC	#\$ØØ
67Ø3	8D	BE	64	STA	\$64BE
67Ø6	18			CLC	
67Ø7	AD	BE	64	LDA	\$64BE
67ØA	ØA			ASL	
67ØB	8D	FØ	64	STA	\$64FØ
67ØE	AD	BF	64	LDA	\$64BF
6711	ØA			ASL	
6712	8D	F1	64	STA	\$64F1
6715	AD	FØ	64	LDA	\$64FØ
6718	69	ØØ		ADC	#\$ØØ
671A	8D	FØ	64	STA	\$64FØ
671D	18		0 4	CLC	+040F
671E	AD	75	61	LDA	\$6175
6721	29	ØF.		AND	#\$ØF
0723	ØA			ASL	
6705	0A QD	ъø	C A	ADL CTLV	66 100
6700	លរ	שע	04	ACT	\$04DØ
6720	ØA ØA			VGT	
6791	ØΔ			TON	
UI GA	ωr_{λ}			DOL	

672B	8D AD	D1 D2	64 64	STA	\$64D1 \$64D2
6721	60	aa	0-1	ADC	404D2
6722	οD	2020	G A	CUL	# 4 9 9 9 9
6796		D2 D2	04 GA	TDA	404D2
0730	AD	D2	04	LDA	\$04DZ
6739	DA OD	T 4		ASL	+0.45.4
673A	8D	D4	64	STA	\$64D4
673D	AD	D1	64	LDA	\$64D1
6740	ØA			ASL	
6741	8D	DЗ	64	STA	\$64D3
6744	AD	D4	64	LDA	\$64D4
6747	69	ØØ		ADC	#\$ØØ
6749	8D	D4	64	STA	\$64D4
674C	EΑ			NOP	
674D	ΕA			NOP	
674E	EΑ			NOP	
674F	18			CLC	
675Ø	AD	DØ	64	LDA	\$64DØ
6753	6D	D1	64	ADC	\$64D1
6756	8D	D5	64	STA	\$64D5
6759	AD	D2	64	LDA	\$64D2
675C	69	ØØ		ADC	#\$ØØ
675E	8D	D6	64	STA	\$64D6
6761	20	ลิด	68	JSR	\$6880
6764	EA	02	00	NOP	φ000 <i>D</i>
6765	ΠA			NOP	
6766	FΔ			NOP	
6767	10			CIC	
6769	40	71	61		0C171
0700	20	7 4 17(7)	ΟT	AND	40114 40174
0700	29	чø			#\$r0
	4A			LOR	
676E	4A		~ •	LSR	+0.477
676F	8D	D7	64	STA	\$6407
6772	4A			LSR	
6773	4A			LSR	
6774	8D	D8	64	STA	\$64D8
6777	6D	D7	64	ADC	\$64D7
677A	8D	D9	64	STA	\$64D9
677D	ØA			ASL	
677E	8D	DA	64	STA	\$64DA
6781	AD	DB	64	LDA	\$64DB
6784	69	ØØ		ADC	#\$ØØ
6786	8D	DB	64	STA	\$64DB
6789	AD	74	61	LDA	\$6174
678C	29	ØF		AND	#\$ØF
678E	8D	DC	64	STA	\$64DC
6791	18			CLC	
6792	AD	ΕØ	64	LDA	\$64EØ
6795	6D	E1	64	ADC	\$64E1
6798	80	cø	64	STA	\$6400
679R	AD	E2	64	LDA	\$64E2
679E	69	øø	~ 1	ADC	#\$00
67 AØ	8D	ĉĩ	64	STA	\$6401
6743	бП	E3	64	ADC	\$6473
6746	an	C1	64	STA	\$6401
6749	AD	E4	64	LDA	\$6474
0100	r 717	11 °T	U-#	uvn	40.47.4

contra tobe a store of spherical and

.

67AC	69	ØØ		ADC	#\$ØØ
67AE	8D	C2	64	STA	\$64C2
67B1	AD	E5	64	LDA	\$64E5
67B4	6D	Cl	64	ADC	\$64C1
67B7	80	Cl	64	STA	\$64C1
67BA	AD	UZ TEC	64		\$64CZ
6700		60 02	04 61	ADC CTA	\$04£0 \$6400
6709		52 177	64	TDA	40402 46757
6706	6D	C1	64	ADC	\$6401
6709	80	$\tilde{C1}$	64	STA	\$64C1
67CC	AD	E8	64	LDA	\$64E8
67CF	6D	C2	64	ADC	\$64C2
67D2	8D	C2	64	STA	\$64C2
67D5	AD	B7	64	LDA	\$64B7
67D8	6D	B8	64	ADC	\$64B8
67DB	8D	C3	64	STA	\$64C3
67DE	AD	B9	64	LDA	\$64B9
67E1	69 0D	00	04	ADC	#\$00
0/153 67TC		04 DA	04	STA	\$0404 •64DA
67E0	AD AD	DA CJ	64		\$04DA \$6403
67EC	80	C3	64	STA	\$6403
67EF	AD	BB	64	LDA	\$64BB
67F2	6D	$\tilde{C4}$	64	ADC	\$64C4
67F5	8D	C4	64	STA	\$64C4
67F8	AD	BD	64	LDA	\$64BD
67FB	6D	CЗ	64	ADC	\$64C3
67FE	8D	CЗ	64	STA	\$64C3
68Ø1	AD	BC	64	LDA	\$64BC
6804	6D	C4	64	ADC	\$64C4
6807	8D		64 64	STA	\$64C4
680D	AD AD	70 70	64	ADC	4640r
6810	80	C3	64	STA	\$6403
6813	AD	BE	64	LDA	\$64BE
6816	6D	C4	64	ADC	\$64C4
6819	8D	C4	64	STA	\$64C4
681C	AD	F1	64	LDA	\$64F1
681F	6D	C3	64	ADC	\$64C3
6822	8D	C3	64	STA	\$64C3
6825	AD	FØ	64	LDA	\$64FØ
0020 600D	UD 0D	04	04 64	ADC	\$6404
682F			64 64	TDA	\$0404 \$64DC
6831	6D	DA	64	ADC	\$64D0
6834	8D	F8	64	STA	\$64F8
6837	AD	DB	64	LDA	\$64DB
683A	69	ØØ		ADC	#\$ØØ
683C	8D	F9	64	STA	\$64F9
683F	AD	D5	64	LDA	\$64D5
6842	6D	F8	64	ADC	\$64F8
6845	8D	F.8	64	STA	\$64F8
0040 6940	AD	10 10 10	64	LDA	\$64D6
004D	עס	r y Fo	04 61	STR A	461L0 4041A
0044	UD	гэ	04	DIN	ФО 4 ЦА

6851 6854 6857 685A 685D 6863 6863 6866 6869 6866 6869 6865 68672 6875 6878 687A 687D	AD 6D 8D 6D 8D 6D 8D 6D 8D 6D 8D 60 8D 69 80 60	C38 F5499 F50 F50 F50 F50 F50 F50 F50 F50 F50 F50	6444444444444444444444444444444444444	LDA ADC STA LDA ADC STA LDA ADC STA LDA ADC STA LDA ADC STA RTS	\$64C3 \$64F8 \$64F8 \$64C4 \$64F9 \$64F9 \$64F9 \$64F9 \$64F8 \$64F8 \$64F8 \$64F9 \$64F9 \$64F9 \$64F9 \$64F9 \$64F9 \$64F9 \$64F9		
688Ø 6883 6886 6889 688C 688F 688F	AD 6D 8D 6D 6D 8D 6Ø	D5 D3 D5 D4 D6 D6	64 64 64 64 64	LDA ADC STA LDA ADC STA RTS	\$64D5 \$64D3 \$64D5 \$64D4 \$64D6 \$64D6 \$64D6		
68DB 68DD 68EØ 68E2 68E4 68E7 68EA 68EC 68ED 68ED 68FØ 68F2	AØ AD FØ 9D 9D 91 6Ø 91 6Ø	ØØ 89 ØB Ø8 ØØ Ø8 Ø8	61 5F 61 5F	LDY LDA BEQ LDA STA ORA STA RTS LDA STA RTS	#\$ØØ \$6189 \$68ED (\$Ø8),Y \$5FØØ,X \$61BØ (\$Ø8),Y \$5FØØ,X (\$Ø8),Y	Rem:	68DB - 68F2 Subroutine of poi plotting.
69ØØ 69Ø2 69Ø5 69Ø7 69Ø8 69ØB 69ØD 691Ø 6913 6914 6916 6918	A9 8D 82 8A 8D 8D 2Ø CA EØ 6Ø	Ø3 FF C7 AE ØØ A1 ØF FF EF	BF 61 61 62	LDA STA LDX TXA STA LDA STA JSR DEX CPX BNE RTS	#\$Ø3 \$BFFF #\$C7 \$61AE #\$ØØ \$61A1 \$62ØF #\$FF \$69Ø7	Rem:	6900 - 6918 Positions cursor.

2 of point

a star

The second and the second second

あいうないいいで

we have a the state of the bar of the second of a second

744Ø 7442 7444	A9 85 A9	76 Ø9 ØØ		LDA STA LDA	#\$76 \$Ø9 #\$ØØ
7446 7448 744A	85 AØ 98	Ø8 ØØ		STA LDY TYA	\$Ø8 #\$ØØ
744B 744E 7451	8D 8D 49	FE FA 80	75 75	STA STA	\$75FE \$75FA #\$80
7453 7456	8D A9	FD Ø9	75	STA LDA	\$75FD #\$Ø9
7458 745B	8D A9	FC Ø6	75	STA LDA	\$75FC #\$Ø6
745D 746Ø 7463	2Ø A2	FБ EØ Ø1	75 74	JSR LDX	\$75FB \$74EØ #\$Ø1
7465 7468 7468	2Ø AD	BØ FC	75 75	JSR LDA	\$75BØ \$75FC
746C 746E	E9 FØ	Ø8 42		SBC BEQ	#\$Ø8 \$74B2
747Ø 7473	AD 18 FQ	FB	75	LDA CLC	\$75FB
7476 7478	FØ A5	3А Ø2		BEQ LDA	\$74B2 \$Ø2
747A 747C	49 8D	3Ø FF	75	EOR STA	#\$3Ø \$75FF
747£ 7482 7484	C9 DØ	FА ØØ Ø6	70	CMP BNE	\$75FA #\$ØØ \$748C
7486 7489	2Ø 4C	5Ø 9D	75 74	JSR JMP	\$755Ø \$749D
748C 748F 749Ø	AD 18 71	FF Ø8	75	LDA CLC ADC	\$75FF (\$08) V
7492 7494	91 C8	<i></i> ø8		STA INY	(\$Ø8),Y
7495 7498 7498	CE A9 8D	FE ØØ FA	75	DEC	\$75FE #\$ØØ \$75EA
749D 749E	CA DØ	C5	70	DEX BNE	\$7465
74AØ 74A3	AD DØ	FA ØD	75	LDA BNE	\$75FA \$74B2
74A5 74A8 74AA	DØ AØ	Ø8 ØØ	75	LDA BNE LDY	\$75FE \$74B2 #\$ØØ
74AC 74AD	98 8D	FE	75	TYA STA	\$75FE
74BØ 74B2 74B5	њб 2Ø 2Ø	2Ø 2Ø 8Ø	75 75	JSR JSR	ъюя \$752Ø \$7580
74B8 74BA	A9 ØD	Ø4 4Ø	E8	LDA ORA	#\$Ø4 \$E84Ø
74BD	8D	$4\emptyset$	E8	STA	\$E84Ø

Rem: 7440 - 75EA

Transfers spectrum via IEEE port and stores the 5k digits in $2\frac{1}{2}$ k of memory from 7600 to 7FFF ignoring channel numbers and spaces. i.e. channel n stored in locations s7600 + 2n + X to s7600 + 2n + X + 2 where X = int(n/2)

74CØ 74C3 74C5 74C8 74CA 74CD 74CF 74DØ 74D2 74D2 74D5 74D7	CE DCE DCE DCE DCE DCE DCE DCE DCE DCE D	FB 9B FC 91 FD 87 8A FD 8Ø	75 75 75 75	DEC BNE DEC BNE DEC BNE BNE BNE BNE BNE BNE BNE BNE BNE	\$75FB \$746Ø \$75FC \$745B \$75FD \$7456 \$7456 \$745C \$75FD \$7457
74EØ 74E2 74E5 74E8 74E7 74E7 74F1 74F7 74F7 74F7 74F7 75Ø5 75Ø7 75Ø7 750 7515	A9 2D 39 20 30 30 30 30 30 30 30 30 30 30 30 30 30	F400510801061000 F400510801061000 F400711400 400	E8 75 75 75 E88 E88 E88 E88	LDA AND STA LDA STA JSR LDA STA JSR LDA STA LDA AND STA LDA AND STA LDA AND STA LDA STA STA STA STA	#\$FB \$E8400 #\$07508 \$7\$0150 #\$07508 #\$07508 #\$07508 #\$07508 #\$0500 \$E25 #\$E25 #\$E25 #\$0500 \$F211 #\$E2804 \$E25 \$E25 #\$E25 #\$0500 \$F211 #\$E25 \$E25 #\$E25 #\$0500 \$F211 #\$E25 \$E25 #\$0500 \$F211 \$E25 \$F255 \$F2555 \$F2555 \$F25555\$F255\$F2555\$F2555\$F2555\$F2555\$F2555\$F2555\$F2555\$F25\$F2
7520 7522 7528 752A 752D 7530 7532 7535 7538 7538 753A 753C	A9 2D 8D 8D 8D 8D 8D 8D 8D 8D 80 85 60	FB 4Ø 4Ø 4Ø 21 5F Ø1	E8 E8 E8 E8 E8	LDA AND STA LDA ORA STA LDA STA LDA STA RTS	#\$FB \$E84Ø \$E84Ø #\$Ø2 \$E84Ø \$E84Ø #\$Ø8 \$E821 \$E821 #\$5F \$Ø1

Span -

7550 7553 7554 7555 7556 7557 7559 7558 7558 755E	AD ØA ØA ØA 91 A9 8D 6Ø	FF Ø8 Ø1 FA	75	LDA ASL ASL ASL STA LDA STA RTS	\$75FF (\$Ø8),Y #\$Ø1 \$75FA	·
7580 7583 7585 7589 7589 7588 7590 7593 7593 7596 7599 7599 7599 7595 7595 7545 7545 7545	AD 29 49 80 80 80 80 80 80 80 80 80 80 80 80 80	4091F2F23019833F2	E8 E8 E8 E8 E8 E8 E8	LDA AND BEQ LDA EOR STA LDA AND STA LDA STA LDA STA LDA STA RTS	\$E84Ø \$758Ø \$Ø1FF22 \$\$FF22 \$E8823 \$E884Ø \$7598 \$233 \$E8823 \$7598 \$233 \$E8823 \$596 \$596 \$598 \$233 \$E885F \$E8223 \$E857 \$E8223 \$598 \$233 \$E857 \$E8223 \$598 \$233 \$E857 \$E8223 \$598 \$233 \$E857 \$E8223 \$598 \$598 \$598 \$598 \$598 \$598 \$598 \$598	
75BØ 75B2 75B5 75B8 75BB 75BF 75C2 75C4 75C6 75C8 75C8 75C8 75C8 75C8 75C9 75D3 75D9 75D5 75D5 75D5 75D5 75D5 75E2 75E5 75E5 75E5	A9 ØD AD 29 ØD AD 29 AD 49 85 A9 20 A0 80 80 80 80 80 80 80 80 80 80 80 80 80	Ø40090F2D0811009711F2	ES ES ES ES ES ES ES ES ES	LDA STA LDA EOR STA LDA EOR STA LDA STA LDA STA AND BEQ LDA STA LDA STA STA STA STA STA STA STA STA STA	#\$Ø2 \$\$840 \$\$E840 \$\$E840 \$\$585 \$\$585 \$\$585 \$\$557 \$\$585 \$\$557 \$\$557 \$\$557 \$\$557 \$\$575 \$\$575 \$\$575 \$\$575 \$\$575 \$\$575 \$\$575 \$\$575 \$\$5755 \$\$5575 \$\$55755 \$\$55755555555	

3:59

(iv) Fluorescence and Absorption Spectra Capture

1:D 1 PROGRAM FLUORESCENCE; 1:D 3 (* PROGRAM TO GET FLUORESCENCE SPE 2 1 3 1 CTRA DATA ONTO DISK IN A SERIAL FILE 1:D 3 USING XAD1 CARD IN SLOTS 1..5.C 4 1 HART/DRIVE IS SCANNED FOR START 5 1 1:D 3 DATA REA XAD1 CLOCK AND 12 BIT CONVERSION*) 1:D 3 DATA READ EVERY 1 SECOND USING 1 1:D 3 VAR DATAFILE: FILE OF INTEGER; 6 7 1 1:D 304 DAT : ARRAY [Ø..300] OF INTEGER; 8 1 1:D 605 FL : STRING; 9 1 1:D 646 A : CHAR; 10 1 1:D 647 FS, LL, XS, MS : INTEGER; 11 1 1:D 651 L, LØ, L1, SF, SS, I, J, K, CLKØ, CLK1, CLK2, C, CC, SLOT, S, S1, S2: INTEGER; 12 1 1:D 668 (* 12 1 1:D 668 (*--------*) 1 2:D 13 3 FUNCTION PEEK(K: INTEGER): INTEGER ; 4 (*--------*) 16 1 3:D 1 PROCEDURE POKE(I: INTEGER; J: INTEG ER); 17 1 3:D 3 EXTERNAL; 18 1 3:D 3 (*--------*)

 19
 1
 4:D
 1
 PROCEDURE INIT;

 20
 1
 4:Ø
 Ø
 BEGIN

 21
 1
 4:1
 Ø
 WRITELN; WRITE (

 Ø WRITELN; WRITE ('ENTER START WAVELE I IN NM: '); 22 1 4:1 5Ø READLN (LØ); 23 1 4:1 69 WRITELN;WRITE ('ENTER STOP WAVELE NGTH IN NM: '); NGTH IN NM: '); 4:1 119 READLN (L1); 4:1 138 WRITELN;WRITE ('ENTER SCAN SPEED I 24 1 25 1 N NM/MIN: '); 4:1 186 READLN (SS); 4:1 205 WRITELN;WRITE ('ENTER EXCITATION S 26 1 27 1 LIT WIDTH'); 1 4:1 252 READLN (XS); 1 4:1 271 WRITELN; WRITE ('ENTER EMISSION SLI 28 29 T WIDTH');
 3Ø
 1
 4:1
 316
 READLN (MS);

 31
 1
 4:1
 335
 SF:= 1;FS:= 1;
 3214:1343IFSS=15THENSF:=4ELSE3314:2356IFSS=30THENSF:=2ELSE3414:3369IFSS=60THENSF:=1ELSE3514:4382IFSS=120THENFS:=2ELSE3614:5395IFSS=240THENFS:=4ELSEFS:= 8; 37 1 4:1 414 WRITELN ('TYPE XAD1 SLOT NUMBER'); 38 1 4:1 455 READLN (SLOT);

	39	1	4:Ø	474	END;
	4Ø	1	4:Ø	486	(*
	-*)				
	41	1	5:D	1	PROCEDURE SCANSTART;
	42	1	5:D	1	VAR X : INTEGER;
	43	1	5:Ø	Ø	BEGIN
	44	1	5:1	ø	$X := \emptyset$:
	45	1	5:1	3	REPEAT
	46	1	5:2	3	POKE (1, S):
	47	ī	5:2	9	REPEAT
	48	1	5:2	9	INTIL PEEK $(S) < 128$:
	49	1	5:2	22	TF PEEK $(S1) < 40$ THEN X := 1
	50	1	5:2	33	ELSE X := \emptyset :
	51	1	5:1	41	IINTTI, X = 1:
	52	1	5:1	46	WRITELN ('SCANSTART DONE')
	53	1	5:0	ล้ด	END.
	54	1	5.0	9ê	
	-*1	*	0.0	00	
	55	1	6 · D	1	PROCEDURE SETCIOCK
	56	1	6 · D	1	VAR CLKI CS · INTEGER ·
	57	1	6.0	ā	REGIN
	58	1	6 • 1	ã	POKE (Ø CIKI).
	59	1	6.1	e e	POKE $(0, OLKI),$ POKE $(1, OLKA) \cdot POKE (A, OLKA) \cdot$
	ea	1	. 6.1	18	$\mathbf{FOP} \mathbf{I} \cdot - \mathbf{a} \mathbf{TO} \mathbf{I} \mathbf{a} \mathbf{DO}$
	61	1	6.2	20	BEATN
	62	1	6.3	32	$\frac{1}{1} \frac{1}{1} \frac{1}$
φ.	04	<u>ب</u> د	0.0	04	OPVI = 2 + 1 = 10204 + 520 + 270
1,	63	1	6.3	51	POKE (A CLKI).
	64	1	6.2	55	FND.
	65	1	6.1	65	WRITELN ('SETCLOCK DONE')
	66	1	6.0	98	FND.
	67	1	6.0	112	(*
	-*)	т	0.0	J. J. 64	\ "
	68	1	7 · D	1	PROCEDURE STARTCLOCK
	69	1	7.0	ดิ	BEGIN
	70	1	7.1	ã	POKE (A CLEA) · POKE (1 CLEA) ·
	71	1	7.0	12	FND.
	72	1	7.0	24	(*
	-*)	T	1.2	6-I	
	73	1	8 · D	1	PROCEDURE READCIOCK.
	74	1	8.0	ā	REGIN
	75	1	8.1	ã	$C \leftarrow PFFK / CIK2)$
	76	1	8.0	10	$C_{\rm L} = 1 {\rm EER} ({\rm CER} Z) ,$
	77	1	8.0	22	
	-*1	-	0.0	44	(*
	78	1	9 · D	1	PRACEDIER DISKSTORE.
	79	1	9.0	à	REGIN
	80	1	0.0	, c	MOTTENN //TVDE EIIII DICK.EIIE NAME
· \ ·	0.0	ـك	0.1	Ø	MALLER (TILE FOLD DIOK-FIDE.NAME
/,	81	1	9.1	44	READIN (FI):
	82	1	Q · 1	6A	
	83	1	Q • 1	76	DATTIE (DATAPIDE, PD),
	84	1	Q · 1	20 Q1	
	85	1	9.1	88	$\frac{1}{1} \frac{1}{1} \frac{1}$
	00	-	S. A. J.		

86 87 88 9Ø 91 92 93 94 95 96 97 98 99 1ØØ 1Ø1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9:1 9:1 9:1 9:1 9:1 9:1 9:1 9:1 9:2 9:3 9:3 9:2 9:3 9:2 9:0 9:0	$\begin{array}{c} 93\\ 1 \varnothing \varnothing\\ 1 \varnothing 5\\ 1 1 2\\ 1 1 7\\ 1 2 4\\ 1 2 9\\ 1 3 6\\ 1 4 \varnothing\\ 1 5 6\\ 1 7 2\\ 1 7 9\\ 1 8 9\\ 1 9 7\\ 2 1 2\end{array}$	<pre>PUT (DATAFILE); DATAFILE^ := SS; PUT (DATAFILE); DATAFILE^ := XS; PUT (DATAFILE); DATAFILE^ := MS; PUT(DATAFILE); J:= Ø; FOR J := Ø TO L DO BEGIN DATAFILE^ := DAT [J] ; PUT(DATAFILE) END; CLOSE (DATAFILE,LOCK); END; (*MAIN PROGRAM</pre>
*)				
1Ø2	1	1:Ø	Ø	BEGIN
103	1	1:1	Ø	INIT;
104	1	1.1	13	S := SLOT * 16 - 16256;
100	1	1.1	20	51:=5+1;
107	1	1 • 1	21	01K1 - 0 + 2, 01K1 - 9100 + 956 - 16394.
108	1	1 • 1	55	CLK2 := CLK1 + 2
109	1	1:1	63	CLK0 := CLK1 + 14
11Ø	ī	1:1	71	SETCLOCK:
111	1	1:1	73	SCANSTART;
112	1	1:1	75	STARTCLOCK;
113	1	1:1	77	REPEAT
114	1	1:2	77	C := PEEK (CLK2);
115	1	1:1	87	UNTIL (C MOD 16) <> 15;
116	1	1:1	96	$CC:= C ; L:= \emptyset;$
117	1	1:1	106	$LL:= ((L1 - L\emptyset) * SF) DIV FS;$
118	1	1:1	124	WRITELN (LL);
119	1	1.0	144	REPEAT DOME (O. C.)
120	1	1.2	144	POKE (8,5); Dedeam
199	1	1.2	150	REFERI INTI DEFEV (C) / 190,
123	1	1:2	163	WRITEIN (I) ·
124	1	1:2	183	DAT $[I_1] := PEEK (S1) * 16 + PEEK$
(S2) DIV	16;			
125	1	1:2	216	WRITELN (DAT [L]):
126	1	1:2	247	REPEAT
127	1	1:3	247	REPEAT
128	1	1:4	247	C := PEEK (CLK2)
129	1	1:3	25Ø	UNTIL (C MOD 16) <> 15
13Ø	1	1:2	262	UNTIL (ABS(C-CC)) MOD $2 = 1;$
131	1	1:2	28Ø	CC:=C;
132	1	1:2	286	
133	1	1:1	289	UNTIL L = LL;
104 105	1	1.1	303	WRITELN ('DISK STORAGE (Y/N)');
130	1	1 • 1	341	READEN (A); TE A $ 2X$ much discussions.
137	1	1:Ø	369	END.

50 REM MAIN 51 REM **** 6Ø POKE52, Ø: POKE53, 109 7Ø S\$="Ø":R\$="Ø":OP=Ø:C=Ø:Z=Ø:M=Ø:EC=Ø 100 PRINT" 11Ø PRINT" CURVE-FITTER" 12Ø PRINT" 13Ø FORI=1TO8ØØ:NEXT:PRINT"" 140 PRINT" THIS PROGRAM WILL FIT ONE OF SEVERAL TYPES OF APPROXIMATION TO A"; 142 PRINT" GIVEN FUNCTION OR DATA" 143 INPUT"FUNCTION(=F) OR DATA(=D) FIT";D\$ 147 PRINT: PRINT" SELECT THE FIT REQUIRED BY TYPING THE APP ROPRIATE NUMBER: -" 148 PRINT" ... 1 = NEWTON'S POLYNOMIAL" 150 PRINT" ... 2 = ORTHOGONAL POLYNOMIAL" 152 PRINT" \dots 3 = LEAST SQUARES ... 4 = CUBIC SPLINE INTERPOLATION" 154 PRINT" 155 PRINT" ... 5 = TENSION SPLINE INTERPOLATION" 156 PRINT" ... 6 = STINEMAN INTERPOLATION" 158 PRINT" ... 7 = BEZIER BLENDING" 160 PRINT" ... 8 = QUADRATIC SPLINE" 162 PRINT" ... 9 = PIECEWISE LINEAR (SPLINE)" 180 PRINT: INPUT"FIT TYPE NUMBER IS.....";FT 19Ø IFFT=1THENGOSUB1ØØØØ 192 IFFT=2THENGOSUB2ØØØØ 194 IFFT=3THENGOSUB3ØØØØ 196 IFFT=4THENGOSUB4ØØØØ 198 IFFT=5THENGOSUB41000 200 IFFT=6THENGOSUB50000 202 IFFT=7THENGOSUB60000 2Ø4 IFFT=8THENGOSUB42ØØØ 206 IFFT=9THENGOSUB43000 215 GOSUB5ØØØ 216 POKE49151,3 22Ø GOSUB1ØØØ:REM PLOT IT 222 IFD\$="D"THEN31Ø 23Ø PRINT" PRINTOUT FOLLOWS": PRINT"" 24Ø DOPEN#1Ø, "CURDAT", W 250 PRINT#10, FT: PRINT#10, FU: PRINT#10, EC: PRINT#10, LS\$ 252 PRINT#1Ø, WT: PRINT#1Ø, C: PRINT#1Ø, Z: PRINT#1Ø, OP: PRINT#1 Ø,M 255 PRINT#1Ø, S\$: PRINT#1Ø, R\$: PRINT#1Ø, NN: PRINT#1Ø, OO 26Ø FORI=ØTONN:PRINT#1Ø,X(I):PRINT#1Ø,Y(I):NEXT 27Ø FORI=ØTOOO:PRINT#1Ø,XX(I):PRINT#1Ø,G(I):PRINT#1Ø,P(I) :NEXT 275 IFWT=ØTHEN28Ø
278 FORI=ØTONN:PRINT#1Ø.WT(I):NEXT 28Ø DCLOSE#1Ø 300 CLR:DLOAD"CURPRINT" 31Ø OPEN4, 4: PRINT#4: PRINT#4 311 PRINT#4, "STANDARDS FOR EFFICIENCY CURVE TAKEN FROM FI LE ";FL\$ 312 PRINT#4, "FIT TYPE="; 320 IFFT=1THENPRINT#4, "NEWTON'S INTERPOLATION" 330 IFFT=2THENPRINT#4, "ORTHOG. POLYNOMIAL INTERPOLATION" 340 IFFT=3THENPRINT#4, "LINEAR LEAST SQUARES" 342 IFFT=6THENPRINT#4, "STINEMAN INTERPOLATION" 344 IFFT=9THENPRINT#4, "PIECEWISE LINEAR" 348 IFFT<4THEN400 349 IFFT>5THEN37Ø 35Ø IFFT=4THENPRINT#4, "CUBIC SPLINE INTERPOLATION" 351 IFFT=5THENPRINT#4, "TENSION SPLINE INTERPOLATION" 352 PRINT#4, "SPLINE END CONDITONS ARE "; 353 IFEC=1THENPRINT#4, "NATURAL" 354 IFEC=2THENPRINT#4, "PARABOLIC" 355 IFEC=3THENPRINT#4, "CANTILEVER..WITH END LOAD CONSTANT =";CC 356 IFEC=4ANDS\$="C"ANDR\$="A"THENPRINT#4, "SWARTZ & VARGA'S 357 IFEC>=4ANDS\$="C"ANDR\$="E"THENPRINT#4, "CUBIC LAGRANGE' S EULER" 358 IFEC>=4ANDS\$="C"ANDR\$="C"THENPRINT#4, "CUBIC LAGRANGE' S COMPOUND EULER" 359 IFEC>=4ANDS\$="Q"ANDR\$="C"THENPRINT#4, "QUADRATIC LAGRA NGE'S COMPOUND EULER" 36Ø IFEC>=4ANDS\$="Q"ANDR\$="A"THENPRINT#4, "QUADRATIC LAGRA NGE'S ANALYTIC" 361 IFEC>=4ANDS\$="Q"ANDR\$="E"THENPRINT#4, "QUADRATIC LAGRA NGE'S EULER" 362 IFEC>=4ANDS\$="L"THENPRINT#4, "LINEAR LAGRANGE'S" 363 IFEC=5THENPRINT#4, "FORSYTHE'S" 364 IFEC=6THENPRINT#4, "CUBIC LAGRANGE'S 2ND DERIV=SPLINE' S 2ND DERIV." 365 IFFT=5THENPRINT#4, "TENSION PARAMETER = ";Z 37Ø IFFT<>8THEN4ØØ 371 PRINT#4, "QUADRATIC SPLINE"
372 PRINT#4, "SPLINE END CONDITONS ARE "; 373 IFEC=1THENPRINT#4, "LINEAR SLOPE"
374 IFEC=2THENPRINT#4, "SPLINE SLOPE=QUAD.LAGRANGE SLOPE" 375 IFEC=3THENPRINT#4, "SPLINE 2ND DERIV. =QUAD. LAGRANGE 2N D. DERIV" 400 PRINT#4 41Ø DATA 671,177,2.44,361Ø,235,1.Ø5,62Ø8,272,.8Ø,38Ø63,59 3,.32,35109,609,.34 411 UN=5:FORIJ=ØTOUN-1 412 IFMD\$<>"Y"THEN414 413 READ CPM, QIP, CM:00=Ø:GOT042Ø 414 IFGF\$<>"Y"THEN413 415 INPUT#1 \emptyset , DUMMY, CPM, DUMMY, DUMMY, XX(\emptyset) : XX(\emptyset) = XX(\emptyset) / 1 \emptyset \emptyset \emptyset :00=0 42Ø QE=Ø.ØØØ17:XX(Ø)=QIP/1ØØØ 421 IFTC=2THEN424

422 BKG=8.2222189+33.212264*XX(Ø)+59.4222547*XX(Ø)^2-68.5 823397*XX(Ø)^3

423 GOT0425 424 BKG=-27.1258658+353.96925*XX(Ø)-568.797189*XX(Ø)^2+3Ø 3.356678*XX(Ø)^3 425 CPM=CPM-BKG 429 IFFT=1THENGOSUB1Ø1ØØ 43Ø IFFT=2THENGOSUB2Ø17Ø 44Ø IFFT=3THENGOSUB3Ø355 45Ø IFFT=4THENGOSUB4Ø115 46Ø IFFT=5THENGOSUB41155 47Ø IFFT=6THENGOSUB5Ø12Ø 480 REM FT=7 49Ø IFFT=8THENGOSUB42Ø8Ø 500 IFFT=9THENGOSUB43040 502 E2=2*QE*SL/P(0)*100:REM STDS QIP ERROR & UNKNOWNS QIP ERROR 504 REM STDS %CPMERROR=CM 506 REM %STDS DPMERROR=0.015% 508 E4=SQR(E2*E2+CM*CM+0.015*0.015):REM TOTAL EFFIC%. %ER R 51Ø DPM=CPM/P(\emptyset):P(\emptyset)=P(\emptyset)*1 \emptyset Ø 515 DM=SQR(CM*CM+E4*E4):REM %ERR IN DPM 520 PRINT#4, "CPM="; INT(CPM); CHR\$(141); 521 PRINT#4, QIP=";XX(Ø)*1000;CHR\$(141); 524 PRINT#4, " %EFFICIENCY=";P(Ø);CHR\$(141); 525 PRINT#4," DPM=";DPM 53Ø PRINT#4, "+/-%"; CM; CHR\$(141); 531 PRINT#4, "+/-%"; GM; CHR\$(141); +/-%; QE/XX(Ø) *100; CHR(141); 534 PRINT#4, " +/-%";E4 ;CHR\$(141); 535 PRINT#4," +/-%";DM 541 PRINT#4," +/- ";Ø.5;CHR\$(141); 544 PRINT#4, +/- ";E4 *P(Ø)/1ØØ;CHR\$(141); 545 PRINT#4, +/- ": 546 PRINT#4, DPM*DM/100 548 PRINT#4 55Ø NEXT 56Ø CLOSE4: IFMD\$="Y"THEN6ØØ 57Ø DCLOSE 6ØØ END 1000 REM PLOTIT USING PETGRAPH 1005 REM AXES 1006 CLEAR 1008 FORI=0TON:X(I)=X(I)*(UL-LL)+LL:NEXT 1009 FORL=0TOO:XX(L)=XX(L)*(UL-LL)+LL:NEXT 1Ø1Ø SETL(27, 12, 27, 191): SETL(24, 188): SETL(27, 191, 30, 188) 1Ø15 Y=Ø: IFPN>YTHENY=PN 1Ø16 GOSUB3ØØØ 1020 SETL(27, Y1, 295, Y1): SETL(292, Y1+3): SETL(295, Y1, 292, Y1 -3) 1Ø3Ø A\$="X"

1Ø4Ø TEXT(296, Y1-4, A\$) 1050 B\$="Y" 1060 TEXT(X1, 192, B\$) 1070 REM AXIS NICKS 1080 X1=24:X2=27:FORY=PNTOPXSTEP(PX-PN)/10:GOSUB3000:SETL (X1, Y1, X2, Y1) 1Ø9Ø T\$=STR\$(Y):TEXT(Ø,Y1-4,MID\$(T\$,2,3)):NEXT 1095 Y=0: IFPN>YTHENY=PN 1Ø99 GOSUB3ØØØ 1100 SET(27, Y1):Y2=Y1-3:Y3=Y1 111Ø FORX=XNTOXMSTEPABS((XM-XN)/1Ø):GOSUB305Ø:SETL(X1,Y2, X1, Y3) 112Ø T\$=STR\$(X):TEXT(X1-15,Y1-12,MID\$(T\$,1,4)):NEXT 118Ø REM ORIGINAL DATA PLOT 119Ø FORI=ØTONN:X=X(I):Y=Y(I):GOSUB3ØØØ:GOSUB3Ø5Ø:TEXT(X1 -4, Y1-4, "+"):NEXT 1200 REM APPROXIMATION PLOT 121Ø MM=Ø:FORI=ØTOOO:X=XX(I):Y=P(I):MM=MM+1:GOSUB3ØØØ:GOS **UB3Ø5Ø** 122Ø IFMM<>1THEN124Ø 123Ø SET(X1, Y1):GOTO125Ø 124Ø DOTL(X1,Y1) 125Ø NEXT 126Ø IFD\$="D"THEN14ØØ 1300 REM EXACT FUNCTION PLOT 131Ø MM=Ø:FORI=ØTOOO:X=XX(I):Y=G(I):MM=MM+1:GOSUB3ØØØ:GOS **UB3Ø5Ø** 132Ø IFMM<>1THEN134Ø 133Ø SET(X1,Y1):GOTO135Ø 134Ø SETL(X1,Y1) 135Ø NEXT 1400 REM LABELS 141Ø L\$="N" 1420 IF L\$="N"THEN1450 143Ø INPUT"START COORDINATES ... (X,Y)"; XL, YL 144Ø TEXT(XL,YL,L\$):GOTO141Ø 145Ø RETURN 3000 REM Y-AXIS SCALE 3ØØ1 REM ********** 3Ø1Ø Y1=12+Y*179/(PX-PN)-179*PN/(PX-PN) 3Ø2Ø RETURN 3050 REM X-AXIS SCALE 3Ø51 REM ********** 3060 X1=27+X*268/(XM-XN)3Ø64 X1=X1-XN*268/(XM-XN) 3070 RETURN 5000 REM MAX&MIN FINDER 5001 REM *********** 5002 IFD\$<>"F"THEN5008 5003 DIMG(00) 5004 FORI=0T000:X=XX(I)*(UL-LL)+LL:G(I)=FN F1(X):NEXT $5\emptyset$ Ø7 GX=G(Ø):GN=G(Ø) 5008 $PX=P(\emptyset):PN=P(\emptyset):YX=Y(\emptyset):YN=Y(\emptyset)$ 5009 IFD\$="D"THEN5014 5010 FORI=0T000-1 5011 IFG(I+1)<GNTHENGN=G(I+1) 5012 IFG(I+1)>GXTHENGX=G(I+1)

```
5Ø13 NEXT
 5Ø14 FORI=ØT000-1
 5Ø15 IFP(I+1)<PNTHENPN=P(I+1)
 5016 IFP(I+1)>PXTHENPX=P(I+1)
 5Ø17 NEXT
 5020 FORI=1TON
 5022 IFY(I)>YXTHENYX=Y(I)
 5025 IFY(I) < YNTHENYN=Y(I)
 5Ø26 NEXT
 5Ø3Ø IFYX>PXTHENPX=YX
 5Ø33 IFYN<PNTHENPN=YN
 5Ø34 IFD$="D"THEN5Ø4Ø
 5Ø35 IFGX>PXTHENPX=GX
 5Ø36 IFGN<PNTHENPN=GN
 5040 RETURN
 8ØØØ N=1Ø
 8001 N=N-1:MD$="N"
 8002 DIMVS(N), BKG(N), X(N), Y(N): IFMD$="Y"THEN8040
 8004 GF$="N":REM INPUT"GETCPM FILE(Y/N)";GF$
 8006 IFGF$="Y"THEN8030
 8Ø11 FL=33:FL$="H3CHM33"
 8Ø12 DOPEN#Ø+FL,""+FL$
 8014 FORI=0TON:INPUT#0+FL,Y(I),X(I),VS(I):NEXT:GOTO8069
 8Ø31 DOPEN#10, "DPMDAT10", D1
 8032 FORI=NTO0STEP-1: INPUT#10, DUMMY, Y(I), DUMMY, DUMMY, X(I)
:NEXT:GOTO8Ø69
 8040 FORI=0TON: INPUT"CPM, QIP, ACTIVITY"; Y(I), X(I), VS(I):NE
XT
 8Ø69 NN=N
 8070 VV=N+UN:NN=N
 8080 INPUT"TRIT/C14(1/2)";TC
 8Ø82 FORI=ØTON:X(I)=X(I)/1ØØØ
 8Ø83 IFTC=2THEN8Ø88
 8Ø84 BKG(1)=8.2222189+33.212264*X(1)+59.4222547*X(1)^2-68
.5823397*X(I)^3-3Ø
 8Ø86 GOTO8Ø9Ø
 8Ø88 BKG(I)=-27.1258658+353.96925*X(I)-568.797189*X(I)^2+
3Ø3.356678*X(I)^3-4Ø
 8090 NEXT
 812Ø FORI=ØTON:Y(I)=(Y(I)-BKG(I))/VS(I):NEXT
 8155 LL=Ø:UL=1:REM NOW SORT DATA TO ASCENDING ORDER
 816Ø RETURN
 9000 REM INITIAL (FUNCTION) DATA INPUT
 9010 INPUT"NUMBER DATA POINTS=";N:N=N-1
9015 INPUT"TYPE 1 FOR WEIGHTS 0 OTHERWISE";WT
 9Ø16 IFWT=ØTHEN9Ø2Ø
 9Ø17 DIMWT(N)
 9Ø2Ø DIMX(N),Y(N):NN=N
 9Ø22 FORI=1TON:X(I)=Ø:Y(I)=Ø:NEXT
 9030 PRINT"FUNCTION TYPES ARE %V/V(=1), SCR(=2), QIPSIE(=3)
,QIPC14(=4),SINE";
 9Ø31 PRINT"(=5), EXP(X)(=6)"
 9040 INPUT"FUNCTION TYPE NUMBER=":FUT
 9050 FORI=0TON: INPUT"...X=";SS:X(I)=SS
 9060 IF FUT=1THEN DEF FN F1(SS)=0.4064*EXP(-0.458145*SS)+
Ø.Ø1
```

```
391
```

```
9070 IF FUT=2THEN DEF FN F1(SS)=0.4*EXP(-0.02*(0.2*SS-168
)^1.8)+SS/10000-0.05
 9Ø72 F5=.4*.25/12
 9Ø74 F6=16/495
 9Ø76 F7=.51515
 9080 IFFUT=3THEN DEF FN F1(SS)=F5*(F6*SS+F7)^2*EXP(-.1*(F
6*SS+F7))
 9Ø81 IF FUT=4THEN DEF FN F1(SS)=1.24-1.24*EXP(-SS*SS/399Ø
\emptyset) - \emptyset, 305
 9082 IF FUT=6THEN DEF FN F1(SS)=EXP(SS)
 9083 IF FUT=5THEN DEF FN F1(SS)=SIN(SS)
 9Ø85 Y(I)=FN F1(SS)
 9090 PRINT"...Y=";Y(I):NEXTI
 9092 IFWT=0THEN9100
 9093 FORI=0TON: INPUT"...WEIGHT=";SS
 9094 WT(I)=SS:NEXT
 9100 LL=X(0):UL=X(N)
 911Ø FORI=ØTON:X(I)=(X(I)-LL)/(UL-LL):NEXT
 9199 RETURN
 9200 REM DATA INPUT FOR PLOT OF FITTING FUNCTION
 92Ø5 XN=1ØØ
 92Ø6 XM=9ØØ
 9210 00=6
 9215 DIMXX(OO):XN=XN/1000:XM=XM/1000
 922Ø FORI=ØTOOO:XX(I)=((XM-XN)/OO)*I+XN:NEXT
 923Ø FORI=ØTOOO:XX(I)=((XX(I)-LL))/(UL-LL):NEXT
 924Ø RETURN
 10000 REM NEWTON'S POLYNOMIAL INTERPOLATION (FAST LAGRANG
IAN)
 ***
 10010 REM FIND DIVIDED DIFFERENCES
 10020 IFDs="F"THENGOSUB9000
 10025 IFD$="D"THENGOSUB8000
 10030 DIMD(N+1)
 10040 FORJ=1TON+1
 10041 D(J) = Y(J-1)
 10043 NEXTJ
 10050 FORK=1TON
 10060 FORJ=N+1TOK+1STEP-1:D(J)=(D(J)-D(J-1))/(X(J-1)-X(J-
K-1)):NEXTJ
 10070 NEXTK
 10080 REM CALCULATE NEWTONS FORMULA
 1ØØ9Ø GOSUB92ØØ
 10095 DIMP(00)
 1Ø1ØØ FORL=ØTOOO
 10110 P(L) = D(N+1)
 10112 FORI=N+1T01STEP-1:P(L)=P(L)*(XX(L)-X(I-1))+D(I):NEX
T:NEXT
 10140 RETURN
 20000 REM ORTHOGONAL POLYNOMIAL FIT
 20010 INPUT"TYPE 1 FOR TCHEBYCHEV, 2 FOR LEGENDRE"; OP
 20012 INPUT"NO. BASIS FNCTNS=":M
 20015 IFD$="F"THENGOSUB9000
 20025 IFD$="D"THENGOSUB8000
 20030 DIMA(M), T(M), XR(N)
```

```
392
```

```
20040 FORI=0TON:XR(I)=2*(X(I)-X(0))/(X(N)-X(0))-1:NEXT
20050 FORK=1TOM: A=0
20060 FORI=0TON:X=XR(I)
20080 IFOP=1THENGOSUB20500
20090 IFOP=2THENGOSUB20600
20095 IFI<>00RI<>NTHEN20100
20096 A=A+Y(I)*Z/2:GOTO20120
20100 A=A+Y(I)*Z
2Ø12Ø NEXTI
2Ø13Ø A(K)=A*2/N
20140 NEXTK
20150 REM GOT ALL A'S.NOW CALCULATE APPROX Y(I)
2Ø16Ø GOSUB92ØØ
20165 DIMP(00), X2R(00)
2Ø166 FORL=ØTOOO:P(L)=Ø:NEXT
20170 FORL=0T000
20175 X2R(L) = 2*(XX(L) - XN)/(XM - XN) - 1
2Ø18Ø X=X2R(L):FORK=1TOM
20190 IFOP=1THENGOSUB20500
20200 IFOP=2THENGOSUB20600
20205 IFK<>1THEN20210
20206 P(L) = P(L) + A(K) \times Z/2 : GOTO20215
20210 P(L) = P(L) + A(K) \times Z
20215 NEXTK:NEXTL
20220 RETURN
20500 REM TCHEBYCHEV FUNCTIONS
2Ø5Ø1 REM *****************
2Ø51Ø FORJJ=1TOK
2Ø52Ø IFJJ=1THEN2Ø55Ø
2Ø53Ø IFJJ=2THEN2Ø56Ø
20540 T(JJ) = 2*T(JJ-1)*X-T(JJ-2)
2Ø545 GOTO2Ø57Ø
2Ø55Ø T(1)=1:GOTO2Ø57Ø
2Ø56Ø T(2)=X
20570 NEXTJJ:Z=T(K)
20580 RETURN
20600 REM LEGENDRE FUNCTIONS
20601 REM ****************
2Ø61Ø FORJJ=1TOK
20620 IFJJ=1THEN20650
20630 IFJJ=2THEN20660
2Ø64Ø T(JJ)=(2*JJ-1)/JJ*X*T(JJ-1)-(JJ-1)*T(JJ-2)/JJ
20645 GOTO20670
2Ø65Ø T(1)=1:GOTO2Ø67Ø
2Ø66Ø T(2)=X
2Ø67Ø NEXTJJ:Z=T(JJ-1)
2Ø68Ø RETURN
30000 REM LINEAR LEAST SQUARES
30001 REM ********************
30010 REM FIRST COMPUTE NORMAL EQNS
30020 IFD$="F"THENGOSUB9000
30021 IFD$="F"THENGOTO30025
3ØØ22 GOSUB8ØØØ
30023 DIMWT(N):FORI=0TON:WT(I)=1:NEXT
30025 INPUT"NO. OF BASIS FNCTNS";M
30030 DIMA(M,M),B(M),S(M),SUB(M)
30040 FORK=1TOM:FORJ=KTOM:A(K,J)=0
```

```
30045 FORI=0TON
3ØØ5Ø H=X(I):GOSUB3Ø5ØØ
30060 A(K, J) = A(K, J) + S(K) * S(J)
30070 NEXTI: A(J,K) = A(K,J): NEXTJ
30080 B(K)=0:FORI=0TON
30085 H=X(I):GOSUB30500
30090 B(K)=B(K)+S(K)*Y(I)
3Ø1ØØ NEXTI:NEXTK
30120 REM NOW USE GAUSS ELIMINATION & BACKSOLVING
3Ø13Ø FORI=1TOM:SUB(I)=I:NEXTI
3Ø14Ø FORK=1TOM-1:MAX=Ø:FORI=KTOM
30150 IFMAX>=ABS(A(SUB(I),K))THEN30156
3Ø155 MAX=ABS(A(SUB(I),K)):INDX=I
3Ø156 NEXTI
3Ø16Ø IFMAX<>ØTHENGOTO3Ø18Ø
3Ø17Ø PRINT"ERROR": END
3Ø18Ø J=SUB(K):SUB(K)=SUB(INDX):PIVOT=A(SUB(K),K):SUB(IND
X)=J
 3Ø19Ø FORI=K+1TOM
30200 A(SUB(I), K) = -A(SUB(I), K)/PIVOT
30210 FORJ=K+1TOM
 3Ø22Ø A(SUB(I),J)=A(SUB(I),J)+A(SUB(I),K)*A(SUB(K),J):NEX
TJ
3Ø23Ø B(SUB(I))=B(SUB(I))+A(SUB(I),K)*B(SUB(K)):NEXTI
3Ø24Ø NEXTK
30250 REM NOW BACKSOLVE THE UPPER TRIANGULAR MATRIX
3Ø26Ø DIMAA(M)
3\emptyset 27\emptyset AA(M)=B(SUB(M))/A(SUB(M),M)
30280 FORK=M-1TO1STEP-1:AA(K)=B(SUB(K))
3Ø29Ø FORI=K+1TOM
3Ø3ØØ AA(K) = AA(K) - A(SUB(K), I) * AA(I)
3Ø31Ø NEXTI: AA(K) = AA(K) / A(SUB(K), K)
3Ø32Ø NEXTK
30330 REM AA FUNCTION COEFFS FOUND
30340 REM NOW EVALUATE LST SQS FUNCTION
3Ø345 GOSUB 92ØØ
3Ø35Ø DIMP(00)
3Ø355 FORL=ØTOOO:P(L)=Ø
3Ø36Ø FORK=1TOM:X=XX(L)
3Ø37Ø H=XX(L):GOSUB3Ø5ØØ
30380 P(L) = P(L) + AA(K) * S(K)
3Ø385 SL=SL+AA(K)*K*S(K-1):REM SLOPE
3Ø386 NEXTK
3Ø39Ø NEXTL
3Ø4ØØ RETURN
30500 REM LEAST SQUARES FUNCTION INPUT
30510 REM N.B.
                 INPUT FUNCTION VIA POKE TO DEF FN( ) COMM
AND IS CLEVEREST
30520 REM HERE MAKE DO WITH RE-TYPES
3Ø53Ø S(1)=1
3Ø531 S(2)=H
3Ø532 S(3)=H*H
 3Ø533 S(4)=H*H*H
3Ø534 REMS(5)=H*H*H*H
3Ø535 REM S(6)=H*H*H*H*H
3Ø54Ø LS$="1
                          X*X*X"
                Х
                    X*X
 3Ø599 RETURN
```

```
394
```

```
40000 REM CUBIC SPLINE
 40001 REM **********
 40003 IFD$="F"THENGOSUB9000
 40004 IFD$="D"THENGOSUB8000
 40005 DIMAA(N), E(N), S2(N), H(N), A(N), C(N)
 40010 FORI=0TON-1
 40020 H(I)=X(I+1)-X(I):NEXT
 40025 GOSUB40300
 40030 FORI=1TON-1
 40040 C(I)=H(I-1)/6:A(I)=H(I)/6
 40060 AA(I)=(H(I-1)+H(I))/3-C(I-1)*A(I)/AA(I-1)
 40070 \text{ E}(I) = Y(I+1)/H(I) - Y(I)/H(I) - Y(I)/H(I-1) + Y(I-1)/H(I-1)
)-E(I-1)*A(I)/AA(I-1)
 40080 NEXTI
 40085 S2(N) = E(N) / AA(N)
 40090 FORI=N-1TO0STEP-1
 40095 \text{ S2(I)}=(E(I)-C(I)*S2(I+1))/AA(I)
 40097 NEXTI
 4Ø1ØØ GOSUB92ØØ
 4Ø111 DIMP(00)
 4Ø115 FORL=ØT000
 4Ø12Ø GOSUB4Ø2ØØ
 40130 S1=(Y(K+1)-Y(K))/H(K)-S2(K+1)*H(K)/6-S2(K)*H(K)/3
 40140 P(L) = Y(K) + S1*(XX(L) - X(K)) + S2(K)*(XX(L) - X(K))^{2/2}
 40150 P(L) = P(L) + (S2(K+1) - S2(K)) * (XX(L) - X(K))^3/(6*H(K))
 4Ø16Ø NEXTL:SL=S1
 4Ø17Ø RETURN
 40200 REM INTERVAL SEARCH
 40201 REM ************
 40205 IFXX(L) <= X(N) THEN 40220
 4Ø2Ø6 K=N-1:GOTO4Ø27Ø
 40220 FORK=0TON-2
 4Ø23Ø IFXX(L)<X(K+1)THEN4Ø27Ø
 4Ø25Ø NEXTK
 40270 RETURN
 40300 REM SPLINE END CONDITIONS
 4Ø3Ø1 REM ***************
 40310 PRINT"SEVERAL END CONDITIONS ARE AVAILABLE FOR SPLI
NE FIT"
 4Ø32Ø PRINT"TYPE 1 FOR NATURAL (S''=Ø ATBOTH ENDS)
 4Ø322 PRINT"TYPE 2 FOR PARABOLIC (S''(Ø)=S''(1) & S''(N)=
S''(N-1))"
 40324 PRINT TYPE 3 FOR CANTILEVER (S''(0)=CONST*S''(1) &
S''(N)=C*S''(N-1))"
 40326 PRINT TYPE 4 FOR VARGA'S TYPE (S'(0)=L'(0) \& S'(N)=
L'(N))"
 4Ø327 PRINT"TYPE 5 FOR FORSYTHE'S TYPE (S'''(Ø)=L'''(Ø) &
 S'''(N)=L'''(N))"
 4Ø328 PRINT"TYPE 6 FOR IAN'S TYPE (S''(Ø)=L''(Ø) & S''(N)
=L''(N))"
 40330 INPUT"TYPE NUMBER=";EC
 4Ø335 IFEC=6THEN4Ø6Ø2
 40340 IFEC=5THEN40602
 4Ø35Ø IFEC=4THEN4Ø415
 4Ø36Ø IFEC=3THEN4Ø4ØØ
 4Ø37Ø IFEC=2THEN4Ø39Ø
 4\emptyset 38\emptyset AA(\emptyset) = 1:C(\emptyset) = \emptyset:E(\emptyset) = \emptyset
```

```
395
```

1.2

```
4\emptyset 381 \text{ AA(N)}=1:A(N)=\emptyset:E(N)=\emptyset
 4Ø382 IFFT=4THEN4Ø387
 4\emptyset 384 E(\emptyset) = Z * Z * Y(\emptyset)
 40386 E(N) = Z * Z * Y(N)
 4Ø387 GOTO4Ø999
 4\emptyset 39\emptyset AA(\emptyset) = 1:C(\emptyset) = -1:E(\emptyset) = \emptyset
 4\emptyset 391 \text{ AA(N)}=1:A(N)=-1:E(N)=\emptyset
 40392 IFFT=4THEN40397
 4\emptyset 394 E(\emptyset) = Z * Z * (Y(\emptyset) - Y(1))
 40396 E(N) = Z \times Z \times (Y(N) - Y(N-1))
 4Ø397 GOTO4Ø999
 4Ø4ØØ INPUT"CONSTANT(Ø<=C<=1) =";C
 4\emptyset 4\emptyset 3 AA(\emptyset)=1:C(\emptyset)=-C:E(\emptyset)=\emptyset
 4\emptyset 4\emptyset 4 AA(N) = 1:A(N) = -C:E(\emptyset) = \emptyset
 4Ø4Ø5 IFFT=4THEN4Ø411
 4\emptyset 4\emptyset 6 = E(\emptyset) = Z * Z * (Y(\emptyset) - C * Y(1))
 40408 = (N) = Z \times Z \times (Y(N) - C \times Y(N-1))
 4Ø411 GOTO4Ø999
 4Ø415 INPUT"LINEAR, QUADRATIC OR CUBIC SLOPE APPROX? (L/Q/
C)";S$
 4Ø421 IFS$="Q"THEN4Ø5ØØ
 4Ø422 IFS$="C"THEN4Ø6ØØ
 4\emptyset 425 \ G1 = (Y(1) - Y(\emptyset)) / (X(1) - X(\emptyset))
 4\emptyset 426 \text{ GN} = (Y(N) - Y(N-1)) / (X(N) - X(N-1)) : \text{GOTO} 4\emptyset 8\emptyset\emptyset
 40500 INPUT"ANALYTIC, EULER OR COMPOUND EULER SLOPE REQD.
(A/E/C)";R$
 40502 DIMLA(2), LY(2)
 40505 MM=0:FORJ=0TONSTEPN
 40510 IFJ=NTHENMM=N-2
 4Ø515 FORI=ØTO2:LX(I)=X(I+MM):LY(I)=Y(I+MM):NEXTI
 40520 A0 = LY(0) / ((LX(0) - LX(1)) * (LX(0) - LX(2)))
 4Ø525 A1=LY(1)/((LX(1)-LX(Ø))*(LX(1)-LX(2)))
 4Ø53Ø A2=LY(2)/((LX(2)-LX(Ø))*(LX(2)-LX(1)))
 4Ø536 A=AØ+A1+A2
 40537 IFEC=4THEN40540
 4Ø538 IFJ=ØTHENB1=A
 4Ø539 GOTO4Ø77Ø
 40540 B0 = A0 * (LX(1) + LX(2))
 40545 B1 = A1 * (LX(0) + LX(2))
 40550 B2 = A2 * (LX(0) + LX(1))
 4Ø556 B=BØ+B1+B2
 4Ø56Ø CØ=AØ*LX(1)*LX(2)
 4Ø565 C1=A1*LX(Ø)*LX(2)
 4Ø57Ø C2=A2*LX(Ø)*LX(1)
 4Ø576 C=CØ+C1+C2
 4Ø578 IFR$<>"A"THEN4Ø584
 4Ø579 GN=2*X(J)*A-B
 40580 IFJ=NTHEN40770
 4Ø581 G1=GN
 4Ø582 GOTO4Ø77Ø
 4\emptyset 584 IFJ=\emptysetTHENGX=LX(\emptyset)-(LX(1)-LX(\emptyset))
 40585 IFJ=NTHENGX=LX(2)+(LX(2)-LX(1))
 4Ø586 GY=A*GX*GX-B*GX+C
 4Ø587 IFR$="C"THEN4Ø591
 40588 IFJ=0THENG1=(LY(1)-GY)/(LX(1)-GX)
 4\emptyset 589 IFJ=NTHENGN=(GY-LY(1))/(GX-LX(1))
 4Ø59Ø GOTO4Ø77Ø
```

```
40591 IFJ=0THENG1=((LY(0)-GY)/(LX(0)-GX)+(LY(1)-LY(0))/(L
X(1) - LX(\emptyset)))/2
 4Ø592 IFJ=NTHENGN=((GY-LY(2))/(GX-LX(2))+(LY(2)-LY(1))/(L
X(2) - LX(1)))/2
 40593 GOTO40770
 40600 INPUT"ANALYTIC, EULER OR COMPOUND EULER SLOPE REQD.
(A/E/C)";R$
 40602 DIMLA(3), LY(3)
 4Ø6Ø5 MM=Ø:FORJ=ØTONSTEPN
 4Ø61Ø IFJ=NTHENMM=N-3
 4Ø615 FORI=ØTO3:LX(I)=X(I+MM):LY(I)=Y(I+MM):NEXTI
 40620 A0 = LY(0) / ((LX(0) - LX(1)) * (LX(0) - LX(2)) * (LX(0) - LX(3))
)
 40625 \text{ A1=LY(1)/((LX(1)-LX(0))*(LX(1)-LX(2))*(LX(1)-LX(3))}
)
 4Ø63Ø A2=LY(2)/((LX(2)-LX(Ø))*(LX(2)-LX(1))*(LX(2)-LX(3))
)
 4Ø635 A3=LY(3)/((LX(3)-LX(Ø))*(LX(3)-LX(1))*(LX(3)-LX(2))
)
 4Ø636 A=AØ+A1+A2+A3
 40638 IFJ=0THENAZ=A
 40639 IFEC=5THEN40770
 4Ø64Ø BØ=AØ*(LX(1)+LX(2)+LX(3))
 40645 B1 = A1 * (LX(0) + LX(2) + LX(3))
 40650 B2 = A2 * (LX(0) + LX(1) + LX(3))
 4Ø655 B3=A3*(LX(Ø)+LX(1)+LX(2))
 4Ø656 B=BØ+B1+B2+B3
 40658 IFJ=0THENBZ=B
 4Ø659 IFEC=6THEN4Ø77Ø
 4Ø66Ø CØ=AØ*(LX(1)*LX(2)+LX(2)*LX(3)+LX(1)*LX(3))
 4Ø665 C1=A1*(LX(Ø)*LX(2)+LX(2)*LX(3)+LX(Ø)*LX(3))
 4Ø67Ø C2=A2*(LX(Ø)*LX(1)+LX(1)*LX(3)+LX(Ø)*LX(3))
 4Ø675 C3=A3*(LX(Ø)*LX(1)+LX(1)*LX(2)+LX(Ø)*LX(2))
 4Ø676 C=CØ+C1+C2+C3
 4Ø678 IFR$<>"A"THEN4Ø7ØØ
 4Ø68Ø GN=3*X(J)*X(J)*A-2*X(J)*B+C
 4Ø685 IFJ=NTHEN4Ø77Ø
 40690 G1=GN
 4Ø695 GOTO4Ø77Ø
 40700 D0=LX(1)*LX(2)*LX(3)*A0
 4Ø7Ø5 D1=LX(Ø)*LX(2)*LX(3)*A1
 4Ø71Ø D2=LX(Ø)*LX(1)*LX(3)*A2
 4Ø715 D3=LX(Ø)*LX(1)*LX(2)*A3
 40720 D=D0+D1+D2+D3
 40725 IFJ=0THENGX=LX(0)-(LX(1)-LX(0))
 40730 IFJ=NTHENGX=LX(3)+(LX(3)-LX(2))
 4Ø735 GY=A*GX*GX*GX-B*GX*GX+C*GX-D
 40740 IFR$="C"THEN40750
 40745 IFJ=0THENG1=(LY(1)-GY)/(LX(1)-GX)
 40746 IFJ=NTHENGN=(GY-LY(2))/(GX-LX(2))
 4Ø748 GOTO4Ø77Ø
 4\emptyset75\emptyset IFJ=\emptysetTHENG1=((LY(\emptyset)-GY)/(LX(\emptyset)-GX)+(LY(1)-LY(\emptyset))/(L
X(1) - LX(\emptyset)))/2
 4Ø755 IFJ=NTHENGN=((GY-LY(3))/(GX-LX(3))+(LY(3)-LY(2))/(L
X(3) - LX(2)) / 2
 40760 GOTO40770
 40770 NEXTJ
```

```
397
```

```
40775 IFFT=5THEN40855
 40779 IFEC=6THEN40845
 40780 IFEC=4THEN40800
 40782 \text{ AA}(0) = -1: C(0) = 1: E(0) = 6 \times AZ \times H(0)
 40784 \text{ AA(N)}=1:A(N)=-1:E(N)=6*A*H(N-1)
 4Ø786 GOTO4Ø999
 40800 \text{ AA}(0) = H(0)/3:C(0) = H(0)/6:E(0) = (Y(1)-Y(0))/H(0)-G1
 40820 AA(N)=H(N-1)/3:A(N)=H(N-1)/6
 40830 E(N) = GN - (Y(N) - Y(N-1)) / H(N-1)
 4Ø84Ø GOTO4Ø999
 4\emptyset 845 \text{ AA}(\emptyset) = H(\emptyset)/6 - 1: C(\emptyset) = -H(\emptyset)/6: E(\emptyset) = 6*X(\emptyset)*AZ - 2*BZ
 40846 \text{ AA}(N)=1-H(N-1)/6:A(N)=H(N-1)/6:E(N)=6*X(N)*A-2*B
 4Ø848 GOTO4Ø999
 4Ø85Ø IFEC=6THEN4Ø89Ø
 4Ø855 IFEC=4THEN4Ø88Ø
 40860 \text{ AA}(0) = -1:C(0) = 1:E(0) = Z * Z * (Y(1) - Y(0)) + 6 * AZ * H(0)
 40865 \text{ AA}(N)=1:A(N)=-1:E(N)=Z*Z*(Y(N)-Y(N-1))+6*A*H(N-1)
 4Ø87Ø GOTO4Ø999
 4\emptyset 88\emptyset AA(\emptyset) = H(\emptyset)/3:C(\emptyset) = H(\emptyset)/6
 40882 E(0) = (Y(1) - Y(0)) / H(0) - G1 + Z * Z * H(0) * (Y(0) / 3 + Y(1) / 6)
 40885 \text{ AA(N)}=H(N-1)/3:A(N)=H(N-1)/6
 40886 E(N) = GN - (Y(N) - Y(N-1)) / H(N-1) + Z \times Z \times H(N-1) \times (Y(N) / 3 + Y(N))
-1)/6)
 4Ø888 GOTO4Ø999
 4\emptyset 89\emptyset \text{ AA}(\emptyset) = H(\emptyset)/6 - 1:C(\emptyset) = -H(\emptyset)/6
 40891 E(0) = 6 \times X(0) \times AZ - 2 \times BZ + Z \times Z \times H(0) \times (Y(0) - Y(1)) / 6 - Z \times Z \times Y(0)
 40892 \text{ AA(N)}=1-H(N-1)/6:A(N)=H(N-1)/6
 40893 = (N) = 6 \times X(N) \times A - 2 \times B + Z \times Z \times H(N-1) \times (Y(N-1) - Y(N)) / 6 + Z \times Z \times Y(N)
N)
 4Ø999 RETURN
 41000 REM TENSION SPLINE
 41ØØ1 REM ************
 41010 IFD$="F"THENGOSUB9000
 41011 IFD$="D"THENGOSUB8000
 41Ø15 INPUT"TENSION PARAMETER, Z =";Z
 41020 DIMAA(N), E(N), S2(N), H(N), A(N), C(N)
 41030 FORI=0TON-1:H(I)=X(I+1)-X(I):NEXT
 41Ø4Ø GOSUB4Ø3ØØ
 41Ø5Ø FORI=1TON-1
 41060 TS=Z*(EXP(Z*H(I-1))+EXP(-Z*H(I-1)))/(EXP(Z*H(I-1))-
EXP(-Z*H(I-1)))
 41061 \text{ TS}=TS-1/H(I-1)
 41Ø62 TS=TS+Z*(EXP(Z*H(I))+EXP(-Z*H(I)))/(EXP(Z*H(I))-EXP
(-Z*H(I)))
 41063 \text{ AA(I)} = (TS-1/H(I))/Z/Z
 41070 C(I)=-(Z*2/(EXP(Z*H(I))-EXP(-Z*H(I)))-1/H(I))/Z/Z
 41071 \text{ A}(1) = -(2*2/(EXP(2*H(I-1))-EXP(-2*H(I-1)))-1/H(I-1))
/Z/Z
 41075 \text{ AA}(I) = AA(I) - C(I-1) * A(I) / AA(I-1)
 41085 E(I)=Y(I+1)/H(I)-Y(I)/H(I)-Y(I)/H(I-1)+Y(I-1)/H(I-1)
)-E(I-1)*A(I)/AA(I-1)
 41090 NEXTI
 41100 \text{ S2(N)} = E(N) / AA(N)
 41110 FORI=N-1TOØSTEP-1
 4112\emptyset \ S2(I) = (E(I) - C(I) + S2(I+1)) / AA(I)
 4113Ø NEXTI
 4114Ø GOSUB92ØØ
```

```
398
```

4115Ø DIMP(00) 41155 FORL=ØTOOO:GOSUB4Ø2ØØ 4116Ø P=S2(K)*(EXP(Z*(X(K+1)-XX(L)))-EXP(-Z*(X(K+1)-XX(L)))))) 4117Ø P=P+S2(K+1)*(EXP(Z*(XX(L)-X(K)))-EXP(-Z*(XX(L)-X(K)))) 4118Ø P=P/(Z*Z*(EXP(Z*H(K))-EXP(-Z*H(K))))41185 PP=(Y(K)-S2(K)/Z/Z)*(X(K+1)-XX(L))+(Y(K+1)-S2(K+1)/Z)Z/Z *(XX(L)-X(K)) 41186 P(L) = P + PP/H(K)4119Ø NEXTL 41200 RETURN 42000 REM QUADRATIC SPLINE 42001 REM ************* 42003 IFD\$="F"THENGOSUB9000 42004 IFD\$="D"THENGOSUB8000 42005 DIMS1(N) 42010 PRINT: PRINT" END CONDITION AT R.H.S MAY BE 42Ø12 PRINT" 1...LINEAR SLOPE 42Ø13 PRINT" 2... S' = LAGRANGIAN QUADRATIC SLOPE (L')" 42Ø14 PRINT" 3...S'' = LAGRANGIAN QUADRATIC 2ND DERIVATIVE (L'')" 42016 INPUT"TYPE OF END CONDITION=";EC 42Ø18 IFEC=1THEN42Ø29 $42\emptyset 19 A3=Y(N)/(X(N)-X(N-2))/(X(N)-X(N-1))$ $42020 \quad A2=Y(N-1)/(X(N-1)-X(N-2))/(X(N-1)-X(N))$ 42021 A1=Y(N-2)/(X(N-2)-X(N-1))/(X(N-2)-X(N))42022 A=A1+A2+A3:B=A1*(X(N)+X(N-1))+A2*(X(N)+X(N-2))+A3*(X(N-1) + X(N-2)42Ø24 IFEC=2THEN42Ø27 42025 S1(N) = A*(X(N) - X(N-1)) + (Y(N) - Y(N-1)) / (X(N) - X(N-1)) : GOT042Ø3Ø 42027 S1(N)=2*A*X(N)-B:GOTO42030 $42029 \ S1(N) = (Y(N) - Y(N-1)) / (X(N) - X(N-1))$ 42030 FORI=N-1TO0STEP-1 42040 S1(I)=2*(Y(I+1)-Y(I))/(X(I+1)-X(I))-S1(I+1)42Ø5Ø NEXT 42060 GOSUB9200 42070 DIMP(00) 42080 FORL=0T000 42Ø9Ø GOSUB4Ø2ØØ $42100 P(L) = S1(K+1)/(X(K+1)-X(K))*(XX(L)-X(K))^2$ $42102 P(L) = (P(L) + (S1(K) * (XX(L) - X(K+1))^2) / (X(K) - X(K+1)) + S$ 1(K)*(X(K+1)-X(K)))/242105 P(L) = P(L) + Y(K)4211Ø NEXTL:SL=S(K) 4212Ø RETURN 43000 REM PIECEWISE LINEAR 43001 REM ************ 43003 IFD\$="F"THENGOSUB9000 43004 IFD\$="D"THENGOSUB8000 43020 GOSUB9200 43Ø3Ø DIMP(00) 43Ø4Ø FORL=ØTOOO:GOSUB4Ø2ØØ 43050 P(L) = (Y(K+1)*(XX(L)-X(K))-Y(K)*(XX(L)-X(K+1)))/(X(K))+1) - X(K))

43060 NEXT: SL=(Y(K+1)-Y(K))/(X(K+1)-X(K)): REM SLOPE 43070 RETURN 50000 REM STINEMAN INTERPOLATION 50010 IFD\$="F"THENGOSUB9000 50015 IFD\$="D"THENGOSUB8000 50020 DIM C(N) 50040 Z=Y(1)-Y(0):X=X(1)-X(0):FORJ=1TON-1:Y=Z:Z=Y(J+1)-Y(0) J): W=X: X=X(J+1)-X(J)50050 U=X*X+Z*Z:V=W*W+Y*Y:C(J)=(Y*U+Z*V)/(W*U+X*V):NEXT $5\emptyset\emptyset6\emptyset \ U=(Y(1)-Y(\emptyset))/(X(1)-X(\emptyset)): Y=(Y(N)-Y(N-1))/(X(N)-X(N))$ -1))50070 IFU=0ANDC(1)=0THENC(0)=0:GOTO50100 50080 IF(U>0ANDU>C(1))OR(U<0ANDU<C(1))THENC(0)=U+U-C(1):G OT05Ø1ØØ 50090 C(0) = C(1) + ABS(U) * (U - C(1)) / (ABS(U) + ABS(U - C(1)))5Ø1ØØ IFV=ØANDC(N-1)=ØTHENC(N)=Ø:GOTO5Ø115 50110 C(N) = C(N-1) + ABS(V) * (V-C(N-1)) / (ABS(V) + ABS(V-C(N-1)))) 5Ø115 GOSUB92ØØ 5Ø117 DIMP(00) 5Ø12Ø FORL=ØT000 5Ø122 GOSUB4Ø2ØØ 50130 UU=(Y(K+1)-Y(K))/(X(K+1)-X(K)):V=Y(K)+UU*(XX(L)-X(K)))) 50140 Z0=Y(K)+C(K)*(XX(L)-X(K))-V:Z1=Y(K+1)+C(K+1)*(XX(L))-X(K+1)) - V: Z2 = ZØ * Z15Ø15Ø IFZ2=ØTHENP(L)=V:GOTO5Ø18Ø 5Ø16Ø IFZ2>ØTHENP(L)=V+ZØ*Z1/(ZØ+Z1):GOTO5Ø18Ø 5Ø17Ø P(L)=V+Z2*(XX(L)-X(K)+XX(L)-X(K+1))/((ZØ-Z1)*(X(K+1) - X(K)))50180 NEXT:SL=UU 5Ø19Ø RETURN 60000 REM BEZIER BLENDING 60001 REM ************ 60010 IFD\$="F"THENGOSUB9000 60015 IFD\$="D"THENGOSUB8000 6ØØ2Ø GOSUB92ØØ 6ØØ22 DIMU(OO), P(OO) 6ØØ25 FORJ=ØT000 60028 U(J)=J/OO:XSUM=0:YSUM=0:T=0 6ØØ3Ø FORI=ØTON 6ØØ35 IFI=ØTHEN6ØØ46 6ØØ4Ø K=N:GOSUB6Ø2ØØ:T=F 6ØØ42 K=I:GOSUB6Ø2ØØ:T=T/F 6ØØ44 K=N-I:GOSUB6Ø2ØØ:T=T/F:GOTO6ØØ5Ø 6ØØ46 T=1 6ØØ5Ø T=T*U(J)^I*(1-U(J))^(N-I) 60060 XSUM=XSUM+T*X(I):YSUM=YSUM+T*Y(I) 6ØØ7Ø NEXTI 60075 IFJ<>0THEN60080 6ØØ76 XSUM=X(Ø):YSUM=Y(Ø) 60080 XX(J)=XSUM:P(J)=YSUM:NEXTJ 60090 RETURN 60200 REM FACTORIALS 6Ø21Ø F=1:FORG=1TOK:F=F*G:NEXT 60220 RETURN

2 DOPEN#1, "BKGBLURB", D1, W 3 DOPEN#10, "BKGDAT10", D1, W 4 DOPEN#11, "BKGDAT11", D1, W 5 PRINT#1 6 PRINT#10 7 PRINT#11 8 DCLOSE#10:DCLOSE#11:DCLOSE#1 9 INPUT"NUMBER OF PROGRAMS....1...OR...2";NP 10 INPUT"FIRST PROGRAM NUMBER=";P1 15 INPUT"NUMBER IN FIRST SAMPLE=";S1 17 INPUT"NUMBEROF REPEAT COUNTS/VIAL"; R1 20 INPUT"NUMBER OF CYCLES OF FIRST SAMPLE=";C1 25 IF NP=1THEN55 30 INPUT"SECOND PROGRAM NUMBER="; P2 35 INPUT"NUMBER IN SECOND SAMPLE=";S2 36 INPUT"NUMBEROF REPEAT COUNTS/VIAL"; R2 40 INPUT"NUMBER OF CYCLES OF SECOND SAMPLE=";C2 55 OPEN1, 5: PRINT#1, CHR\$(255); "FE2GA": CLOSE1 56 OPEN2,6 57 APPEND#10, "BKGDAT10", D1 58 APPEND#11, "BKGDAT11", D1 59 IFNP=1THEN70 60 D=C1-C2 63 IFD<OTHEN65 64 CC=C2:GOTO70 65 CC=C1 70 FORC=1TOC1 75 GOSUB7000 110 IF NP=1THEN GOTO310 150 GOSUB8000 310 NEXTC 315 IF NP=1THEN330 318 IFD=OTHEN330 320 FOR G=1TOABS(D) 325 IFCC=C1THEN GOSUB8000 328 IFCC=C2THEN GOSUB7000 329 NEXT G 330 DCLOSE#10:DCLOSE#11 350 PRINT"DONE" 400 END 1000 GET#2, A\$: IFST=2THEN1000 1010 RETURN 2000 IF MARK=1THEN2010 2005 PRINT#10, VAL(X\$) 2007 GOTO2020 2010 PRINT#11, VAL(X\$) 2020 RETURN 3000 APPEND#1, "BKGBLURB", D1 3001 REM ROLLING STRING LOOKS FOR "PROG" TO IDENTIFY A PR OGRAM START 3003 AA\$="":Z\$="" 3005 FORI=1T04:GOSUB1000

```
3006 AA$=AA$+A$:NEXTI
3007 IFAA$="PROG"THEN3019
3010 GOSUB1000:AA$=AA$+A$
3012 AA$=RIGHT$(AA$,4):GOTO3007
3018 REM Z$ LOOKS FOR CORRECT PROGRAM NUMBER
3019 FORI=1T010:GOSUB1000
3020 Z$=Z$+A$:NEXTI
3021 IF VAL(RIGHT$(Z$,2))=P1THEN3100
3024 GOTO3003
3100 PRINT#1, AA$+Z$
3115 FORI=1T05:GOSUB1000:NEXTI
3116 FORI=1TO68:GOSUB1000:PRINT#1,A$;
3118 NEXTI:PRINT#1
3120 FORI=1T05:GOSUB1000:NEXTI
3122 FORI=1T068:GOSUB1000:PRINT#1,A$;
3130 NEXTI:PRINT#1
3135 FORI=1T05:GOSUB1000:NEXTI
3140 FORI=1T068:GOSUB1000:PRINT#1,A$;
3141 NEXTI:PRINT#1
3143 FORI=1T05:GOSUB1000:NEXTI
3145 FORI=1TO47:GOSUB1000:PRINT#1,A$;
3148 NEXTI:PRINT#1
3150 FORI=1TO4:GOSUB1000:NEXTI
3155 FORI=1T076:GOSUB1000:PRINT#1,A$;
3158 NEXTI:PRINT#1
3160 FORI=1T011:GOSUB1000:NEXTI
3170 DCLOSE#1
3205 RETURN
4000 P$="":S$="":CT$="":CA$="":IA$=""
4002 CB$="":IB$="":CC$="":IC$="":QIP$=""
4004 SC$="":RT$=""
4006 GOSUB1000
4008 IFASC(A$)=18THEN4012
4010 GOTO4006
4012 GOSUB1000
4016 FORI=1TO2
4018 GOSUB1000:P$=P$+A$
4020 NEXTI:X$=P$
4024 FORI=1T05
4026 GOSUB1000:S$=S$+A$
4028 NEXTI:X$=S$
4032 FORI=1T07
4034 GOSUB1000:CT$=CT$+A$
4036 NEXTI:X$=CT$
4038 GOSUB2000
4040 FORI=1T08
4042 GOSUB1000:CA$=CA$+A$
4044 NEXTI:X$=CA$:GOSUB2000
4046 FORI=1T05
4048 GOSUB1000: IA$=IA$+A$
4050 NEXTI:X$=IA$
4052 FORI=1T08
4054 GOSUB1000:CB$=CB$+A$
4056 NEXTI:X$=CB$:GOSUB2000
4058 FORI=1T05
4060 GOSUB1000: IB$=IB$+A$
4062 NEXTI
4064 FORI=1T08
```

4066 GOSUB1000:CC\$=CC\$+A\$ 4068 NEXTI:X\$=CC\$:GOSUB2000 4070 FORI=1T05 4072 GOSUB1000:IC\$=IC\$+A\$ 4074 NEXTI 4076 FORI=1T06 4078 GOSUB1000:QIP\$=QIP\$+A\$ 4080 NEXTI:X\$=QIP\$ 4082 GOSUB2000 4084 FORI=1T07:GOSUB1000 4086 NEXTI 4088 FORI=1T07 4090 GOSUB1000:SC\$=SC\$+A\$ 4092 NEXTI:X\$=SC\$ 4096 FORI=1T05 4098 GOSUB1000:RT\$=RT\$+A\$ 4100 NEXTI:X\$=RT\$ 4106 FORI=1T06 4108 GOSUB1000 4110 NEXTI 4150 RETURN 6000 AA\$="":Z\$="" 6005 FORI=1T04:GOSUB1000 6006 AA\$=AA\$+A\$:NEXTI 6007 IFAA\$="PROG"THEN6019 6009 GOSUB1000:AA\$=AA\$+A\$ 6011 AA\$=RIGHT\$(AA\$, 4):GOTO6007 6019 FORI=1T010:GOSUB1000 6020 Z\$=Z\$+A\$:NEXTI 6021 IF VAL(RIGHT\$(Z\$,2))=P1THEN6100 6025 IF VAL(RIGHT\$(Z\$,2))=P2THEN6100 6034 GOT06000 6100 RETURN 7000 MARK=0 7010 IFC>1THEN7040 7020 GOSUB3000 7030 GOTO 7060 7040 GOSUB6000 7060 FORS=1TOS1 7062 IFR1=1THEN7070 7064 FORR=1TOR1 7066 GOSUB4000:PRINT#10 7067 NEXT 7068 GOSUB9000:GOT07090 7070 GOSUB4000 7080 PRINT#10 7090 NEXTS 7100 RETURN 8000 MARK=1 8010 IFC>1THEN8040 8020 GOSUB3000 8030 GOT08060 8040 GOSUB6000 8060 FOR SS=1TOS2 8062 IFR1=1THEN8070 8064 FORR=1TOR1 8066 GOSUB4000:PRINT#11 8067 NEXT

8068 GOSUB9000:GOTO8090 8070 GOSUB4000 8080 PRINT#11 8090 NEXTSS 8100 RETURN 9000 FORI=1TO81 9010 GOSUB1000 9020 NEXT 9030 RETURN : 7

.

۰.

.

....

•

Abstract

QUENCH CORRECTION IN LIQUID SCINTILLATION COUNTING

I. Lilley

Quench correction in liquid scintillation counting has been investigated. A detailed comparison of the curve fitting routines compatible with a microcomputer has been made for the quench calibration curve and concludes that a cubic spline with natural end conditions is most suitable. The effect of colour/chemical quenching on the calibration curve and the choice of regions for dual and triple radionuclide counting is studied.

A new computer simulation of the LS counter has been created and proven to be a useful tool in LS counting. Modelling of the LSC has led to the invention of several novel quench correction techniques which are independent of colour and/or chemical quench for homogeneous solutions. A fully worked example of the use of one of the techniques (the SumDiff quench correction method) is presented. The successful application and modular design of the simulation has established a LS research program from which future discoveries are anticipated.

A STUDY OF CURVE FITTING TO LIQUID SCINTILLATION COUNTER CALIBRATION DA'

J.N. CROOKES and I. LILLEY

Department of Physical Sciences, Trent Polytechnic, Clifton Lane, Nottingham, England

Received 2 May 1986 and in revised form 17 October 1986

A comprehensive study is made of the various curve fitting procedures available for representing the calibration data used i dpm assay of LSC samples and compatible with the limited memory storage available in modern instruments. The output data the LSC are echoed to a microcomputer allowing the utilisation of user developed algorithms for data processing and analysis evidence shows that the normal practice of the machine selecting a curve without choice by the user may not produce the best re In general the cubic spline interpolation with natural end conditions is found to give the best representation for standards invo errors of less than 1.5% for ³H and ¹⁴C. However, for ¹⁴C and higher energy β -emitters there is strong evidence for the u Stineman interpolation.

> Reprinted from NUCLEAR INSTRUMENTS AND METHOD IN PHYSICS RESEARCH

A STUDY OF CURVE FITTING TO LIQUID SCINTILLATION COUNTER CALIBRATION DATA

J.N. CROOKES and I. LILLEY

Department of Physical Sciences, Trent Polytechnic, Clifton Lane, Nottingham, England

Received 2 May 1986 and in revised form 17 October 1986

A comprehensive study is made of the various curve fitting procedures available for representing the calibration data used in the dpm assay of LSC samples and compatible with the limited memory storage available in modern instruments. The output data from the LSC are echoed to a microcomputer allowing the utilisation of user developed algorithms for data processing and analysis. The evidence shows that the normal practice of the machine selecting a curve without choice by the user may not produce the best result. In general the cubic spline interpolation with natural end conditions is found to give the best representation for standards involving errors of less than 1.5% for ³H and ¹⁴C. However, for ¹⁴C and higher energy β -emitters there is strong evidence for the use of Stineman interpolation.

1. Introduction

Modern liquid scintillation counters (LSCs) allow many useful functions, such as batch handling of samples, counting efficiency vs quench calibration and multilabelled radioassay, to be performed automatically. However, the advances in machine design which have led to the provision of such facilities tend to remove the user from the analysis of the basic data which are obtained and the results are presented as a fait accompli. The most important stage in the analysis of results is the generation of the standards' counting efficiency vs quench calibration curves from which the activity of subsequently counted samples can be calculated. This applies whichever parameter is used to indicate the degree of quench in a sample, whether it is based on internal or external standards, H# numbers [1] or spectral indices [2], and whether the quenching is colour or chemical [3] in nature.

Since different curve fitting routines are better matched to some data sets than others, the fitting of curves through efficiency vs quench calibration data should be dependent on the form of the data set for best results. This availability of a choice of curve fitting routines is not provided on commercial liquid scintillation counters with manufacturers choosing one particular procedure, e.g. Packard use double fixed point least-squares quadratic interpolations and Beckman use cubic spline with natural end conditions. This is reasonable with the good and almost equispaced data provided by commercial calibration standards but the more frequently produced inhouse standards are often less regular.

There are a multitude of algorithms to which re-

0168-9002/87/\$03.50 © Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division) course may be made in order to fit a curve to LSC efficiency vs quench calibration data. In this work a restriction is made to those algorithms which could be installed in a modern stand-alone counter and/or dedi cated microcomputer operating in a real time mode.

2. Experimental

All samples were counted with a United Technolo gies Packard 300C model liquid scintillation counter and the data were stored on disk via a 3D GPIB, Serier 4000 CBM microcomputer and CBM 4022 disk drive Data were obtained on this equipment through use of a BASIC program which recognised the number of the internal program commenced by the LSC and began data capture on identification of the correct batch o samples. Disk storage of results allowed repeated use o data sets for comparison purposes.

Postcounting analysis was performed by a BASIC and 6502 machine code program offering a menu o curve fitting routines with screen plotting, screen dump and printed output. When fitting to experimenta calibration data the program allowed comparisons o the resulting assayed activities with samples of known dispensed activity. The types of curve fitting offered by the program are:

- 1) Lagrangian polynomial (using Newton's method) [4]
- Piecewise linear (piecewise polynomials of degree ≥ 2 unsuitable).
- 3) Quadratic splines (end conditions linear, spline slope = Lagrangian quadratic slope, or spline 2nd deriva tive = Lagrangian quadratic 2nd derivative).
- 4) Cubic splines (end conditions natural, parabolic

cantilever, Forsythe's, Swartz and Varga's, or spline 2nd derivative \equiv Lagrangian cubic 2nd derivative) [5,6].

5) Tension (cubic) spline.

6) Stineman interpolation [7].

7) Bezier blending.

Sample No. ^{a)}	QIP	Dispensed DPM	Piecewise linear DPM $\pm \Delta$ DPM	Lst-squares °3 polynomial	Lst-squares °4 polynomial	Quadratic spline natural EC
A1	177	69691	58429 ± 2161	49439±11394	71956±12395	54789±1891
A2	235	86294	83320 ± 1327	69691 ± 4694	85248 ± 3625	90245 ± 1340
٨3	272	87006	83646 ± 1006	76781 ± 3727	84816 ± 2441	79972 ± 905
Λ4	593	96780	97470 ± 446	96304 ± 1150	95658 ± 713	95382± 713
A5	609	86128	87213 ± 423	85609± 1107	85598 ± 710	85237 ± 410
B1	130	78102	×	×	×	×
B2	235	86294	83320 ± 1327	73463 ± 6117	85164 ± 2952	86401 ± 1283
B3	272	87006	83646 ± 1006	76513 ± 4353	85029 ± 2061	83211 ± 942
B4	593	96780	96512 ± 442	96746 ± 1326	95809± 645	96628 ± 438
B5	655	82244	82249 ± 398	80882± 1093	81883 ± 589	81519 ± 392
CI	269 .	89800	83197 ± 1644	81376 ± 1583	67638± 6378	77712 ± 1429
C2	534	99801	99127 ± 518	98534± 505	101374 ± 1402	97193 ± 495
C3	562	80162	80645 ± 453	80244 ± 462	82363 ± 1201	79208 ± 437
C4	622	102579	103317 ± 473	102627 ± 520	104015 ± 1421	103631 ± 469
C5	815	90829	91341± 376	91616± 429	89479 <u>+</u> 979	91341 ± 375
Dl	219	93827	100601 ± 3675	118035 ± 7356	×	83028 ± 2677
D2	256	85400	81874 ± 1805	82286 ± 2623	70185 ± 10648	93330 ± 1980
D3	534	99801	98789 ± 517	98465 ± 505	100766 ± 1696	99420 ± 506
D4	669	89202	89535 ± 409	88377 ± 401	88652 ± 1176	89844 ± 407
D5	865	82009	82304 ± 350	82445 ± 356	82257 ± 923	82304 ± 349

Quadratic spline $L' = S'$	Cubic spline natural	Cubic spline parabolic	Cubic spline Swartz S' = L'	Cubic spline Forsythe S $''' = L'''$	Stineman
59526 ± 2054	65104 ± 2321	64343 ± 2304	64383±2305	64448 ± 2306	63940±2395
87628 ± 1301	84744 ± 1326	84775 ± 1326	84774 <u>+</u> 1326	84771 ± 1326	84470±1348
82118± 929	84798±1013	84775 ± 1013	84777 ± 1013	84779 ± 1013	85099 ± 1026
96575± 437	96764 ± 443	96764 ± 443	96859± 444	96759± 443	96551 ± 442
86365± 415	86509 <u>+</u> 420	86509± 420	86611 ± 421	86504 ± 420	86329 ± 419
×	×	×	×	×	×
88630 ± 1316	84888 ± 1325	84720 ± 1326	84687 ± 1327	84661 <u>+</u> 1327	86401 ± 1283
81267 ± 920	84692 ± 1013	84816 ± 1013	84841 ± 1013	84860 ± 1013	83211 ± 941
96246± 436	96350 ± 442	96350 ± 442	96348 ± 442	96352 ± 442	96628± 438
82027± 395	81945 ± 397	81945 ± 397	81959± 397	81934± 397	81519 <u>+</u> 392
79379±1459	85168±1646	84976±1648	84978 <u>+</u> 1647	84946±1648	84758±1679
97785± 495	98814 ± 517	98812± 518	98816 <u>+</u> 517	98813 ± 517	98842± 516
79648 ± 439	80262 ± 451	80261 ± 451	80266 ± 451	80262 ± 451	80329 ± 451
103168± 467	102836 ± 473	102836 ± 473	102827 ± 473	102835 ± 473	102974 ± 472
90854± 373	90945 ± 375	90945 ± 375	90664± 374	90902± 375	91310± 376
86956±2804	96188 <u>+</u> 3359	90386 ± 3031	86769±2856	89257 <u>+</u> 2974	102119 ± 3743
90070 ± 1910	86294 ± 1884	87616±1889	88554±1896	87899 ± 1891	82644 ± 1823
99071 ± 505	98671 ± 516	98672 ± 516	98672± 516	98673± 516	98685 ± 516
89378 ± 405	89007 ± 407	89007 ± 407	88961 ± 407	88996 ± 407	88938 ± 406
82116± 349	82177 ± 350	82177 ± 350	82018 ± 349	82139± 350	82314 ± 350

^{a)} A and B groups are two chemically quenched calibration curves with different standards. C and D groups are two colour quenched calibration curves with different standards.

Table 1

Comparison of calculated and dispensed DPM for ³H single label

8) Linear least-squares polynomials of degree 2, 3, 4 or 5 [4].

Standards were prepared by accurately weighing out quantities of a 10 g1⁻¹ solution of b-PBD in pXylene (Fisons "Scintran" grade), and quantities of CCl₄ or disperse Orange-7 as chemical and colour quenchers respectively. Weights were taken to ± 0.0002 g. All liquids and glassware were first purged of oxygen using a vacuum and freezing degassing technique. The dye was recrystallised from acetone and dried prior to dissolving in the same batch of b-PBD/pXylene solution used throughout the sample preparation.

3. Results and discussion

1

2

3

Tables 1 and 2 give the results for the standards and samples prepared experimentally. Those entries marked \times were not computed because of the observed occurrence of grossly inaccurate results. Chemically quenched and colour quenched tritium standards and/or samples of known activity range from SIE of 865 down to an SIE of 130 corresponding to ³H detection efficiencies of approximately 55% to 0.1%. The ¹⁴C samples were taken only from the region of rapid change of the efficiency curve gradient and the region of very high quench, SIE < 500 (fig. 1). The calculation of the error bounds associated with each curve-generated dpm value is based on the errors in the count, the SIE and the dispensed DPM of the standards used for calibration curve production and the errors in the count and the SIE of the samples (of supposedly unknown activity). The experimental procedure used resulted in error bounds of $\pm 0.06\%$ and $\pm 0.02\%$ for the dispensed DPMs of ³H and ¹⁴C respectively with the manufacturers' absolute uncertainties of $\pm 3\%$ and $\pm 1.5\%$ being con-

Table 2

Fig. 1. Typical ¹⁴C efficiency vs QIP curve showing data group types.

stant throughout the samples. Coupled with these is the error due to the counting statistics with the percent deviation automatically calculated and printed by the Packard 300C. The SIE values were assumed to be correct to the nearest integer value (error range of ± 0.5 , and letting $3\sigma = 100\%$ of range then $\sigma \simeq 0.17$ for SIE number probability constant from X - 0.5 to X + 0.5), but the effect of this error on the efficiency value is dependent on the slope/form of the calibration curve. The efficiency error $e \simeq q \, dE/dQ$, where q is the error

500000000000000000000000000000000000000		0 101 04110 110	8.0000						
	Piecewise linear	Least squares 3° polynomial	Quadratic spline	Quadratic spline	Cubic spline	Cubic spline	Cubic spline	Cubic spline	Stineman
End conditions			Natural	L' = S'	Natural	Parabolic	Swartz	Forsythe	
³ H mean error [%]	2.95	8.10	4.37	3.21	1.48	1.70	1.96	1.77	2.11
¹⁴ C mean error [%]	0.69	5.41	0.30	0.34	0.30	0.25	0.23	0.22	0.08
Mean of ³ H and ¹⁴ C	1.82	6.76	2.34	1.78	0.89	0.97	1.10	1.00	1.10

Table 3 Summary of errors for ³H and ¹⁴C for curve fitting routines

in the SIE value and dE/dQ is the rate of change of efficiency with respect to SIE at an SIE value of Q (fig. 1). These errors are all combined using the expression:

Fractional dpm_{unknown} error,

$$d_{u} = \left\{ \left(\frac{\% \text{dev}_{\text{unk}}}{100}\right)^{2} + \left(\frac{\% \text{dev}_{\text{stds}}}{100}\right)^{2} + \left(\frac{\% \text{DPM}_{\text{error}}}{100}\right)^{2} + 2 \times \frac{\% (\text{SIE} \times \text{slope}_{\text{error}})}{100} \right\}^{1/2}.$$

The listed values of average percentage differences refer to the differences between the dispensed dpms and calculated dpms.

Selection of the best curve fitting routine for LSC efficiency vs quench calibration data depends on the judgement criteria used. For example, if the resultant curve is to be smooth (with continuous first derivatives) then piecewise linear fitting is ruled out. Calibration curves are normally based on ten reasonably well spaced standards, and so the results of the routines presented in tables 1 and 2 are taken to be suitable judgement criteria.

4. Conclusion

It may be concluded that cubic spline interpolation with natural end conditions is the best of the LSC efficiency vs quench curve fitting routines tested, but also noted that cubic splines with Forsythe's or parabolic end conditions and Stineman interpolation give good results for tritium and carbon-14 efficiency curves respectively. This assertion follows from the rankings of the routines (see table 3). Indeed, Stineman interpolation has an additional advantage of being more robust and better at fitting curves with sharply changing gradients, i.e. ¹⁴C and more energetic β -sources.

Not all the routines tested are displayed in tables 1 and 2 due to their total inadequacy. For example, the Lagrangian polynomial produced large oscillations due to the experimental errors in the standards.

The currently used LSC machine routines are therefore found to be acceptable, but it should be emphasised that if calibration standards are poorly spaced then curve fitting by interpolation introduces large errors (even with perfect standards) and visual display of the resultant calibration curve is essential unless some mechanism for rejecting the fit is triggered. This may be accomplished by setting a data spacing tolerance limit or switching to a generally less accurate but more universally applicable least-squares fitting routine as a backup.

References

- D.L. Horrocks, Liquid Scintillation Science and Technology, eds., A.A. Noujaim et al. (Academic Press, New York, 1976).
- [2] J.G. Ring, D.C. Nguyen and L.J. Everett, Liquid Scintillation Counting, Recent Applications and Development, vol. 1, eds., C.T. Peng et al. (Academic Press, New York, 1980).
- [3] S.A. McQuarrie, C. Edisse and L.I. Wiebe, Int. J. Appl. Radiat. Isot. 34 (1983) 1009.
- [4] J.S. Vandergraft, Introduction to numerical computations, 2nd ed. (Academic Press, New York, 1983).
- [5] P.M. Prenter, Splines and variational methods (Wiley, New York, 1975).
- [6] J.H. Ferziger, Numerical methods for engineering application (Wiley, New York, 1981).
- [7] R.W. Stineman, Creative Computing (1980) 54.

Appl. Radiat. Isot. Vol. 38, No. 4, pp. 301-302, 1987 Int. J. Radiat. Appl. Instrum. Part A © Pergamon Journals Ltd 1987. Printed in Great Britain 0883-2889/87 \$3.00 + 0.00

Detection of Drift in Radioactive Counting Using the Cusum Technique

J. N. CROOKES and I. LILLEY

Physical Science Department, Trent Polytechnic, Clifton, Nottingham NG11 8NS, England

(Received 17 March 1986; in revised form 17 October 1986)

A comparison of the cusum method and kurtosis as the indicator of drift in radioactive counting is made.

Modern programmable counters are tested and interesting features are observed with alternate counting of different radionuclides. Patterns of repeated counts suggest that an initial "settling" period is advisable following a change of radionuclide.

Introduction

The characteristics of a scintillation counter are critically dependent on the stability of the counting conditions. Instabilities in the system produce a drift in the counting efficiency.⁽¹⁾ Such changes are often associated with drift in the EHT supply due to temperature or mains fluctuations or deterioration of the sample in liquid scintillation counting. Unless remedial action is to be taken the source of the drift is not so important. However, it is essential to know the magnitude and time when any drift occurs. The literature shows very little work on the monitoring of counter performance^(2,3) and this has used traditional indicators of change in a Poissonian distribution such as standard deviation, skew and kurtosis. Although producing confidence limits, typically 95%, these indicators have been shown to lack the sensitivity of other methods as well as producing no indication of the onset of drift. This work studies the detection of drift using a cusum method^(4,5) and compares its scope and sensitivity with the traditional method.

Cusum Method

The cumulative sum chart (or cusum chart) is a highly informative means of presenting data that can be ordered into a logical sequence. A detailed exposition of the methodology is given in a British Standard Guide to data analysis and quality control using cusum techniques (BS 5703, parts, 1, 2, 3, 4). For observations x_1, x_2, \ldots, x_n obtained sequentially having a target value, T, which may be the mean, \mathbf{X} , for retrospective analysis, the cusum is defined as

$$C_i = \sum_{r=1}^{i} (x_r - T).$$

A cusum chart displays C_i against *i*.

Where the observations are from a population having a mean equal to the target value the graph will generally be horizontal with random fluctuations about the line. A systematic fluctuation from the target value will result in a change in the slope of the chart. An estimate of the local average in a particular segment is given by the slope of the cusum chart. Consider the segment from sample i + 1 to j. The relevant change in cusum is from C_i to C_j over i to j. (For the first segment i = 0and $C_o = 0$). Hence the average shift from the target (mean) value for the segment is

$$\frac{C_j - C_i}{i - i}.$$

Thus the local average is

$$\mathbf{X}_{i+1,j} = T + \frac{C_j - C_i}{j-i}.$$

The application of the cusum method to the detection of drift in a parameter requires the establishment of decision rules to distinguish between real changes in the cusum slope and the normal variability of the data. The essential features of the cusum chart relevant to the detection of changes in the underlying average level are the steepness of the cusum slope and the number of samples over which the slope persists. When the parameter (e.g. count) is running at the target level, i.e. an acceptable quality level AOL, there will, because of the random nature of counting, inevitably be occasions when the cusum path apparently diverges from the horizontal. The decision rule should not give false alarms that indicate that such sequences represent significant departure from AQL. On the other hand, when the process moves to an unsatisfactory condition, i.e. a rejectable quality level, RQL, the decision rule should give as rapid a response as possible. The number of events between drift occurring and its detection by the cusum indicate the magnitude of the drift. If the true process is at or near the AQL, then this number should be large i.e. a few false alarms, whereas if it is near the RQL, then it should be short i.e. rapid detection.

Decision Interval Scheme

The method adopted in this study is entirely numerical in nature and hence readily computed. A reference level, K, for deviations from the mean is established where $K = T \pm f\sigma_e$ where

$$\sigma_e = \left(\sum_{i=1}^{m-1} \frac{(X_i - X_{i+1})^2}{2(m-1)}\right)^{1/2}$$

for *m* samples. If f = 0.5 then the reference level lies midway between AQL and RQL. Each count (x_i) is compared with *K*. If x_i is within the limits defined by *K* then no action is taken. However, if x_i lies outside the *K* limits, then a cusum is commenced of the algebraic differences from the appropriate *K*, i.e.

$$C = \sum_{i=1}^{J} (x_i - K)$$

where j represents the end point of the cusum determined by one of the following two conditions: (a) if C falls to below

Table 1. Results of drift experiments on Packard 300C liquid scintillation counter

Experiments Number		Kurtosis	h _{min}	
1	1999	2.98	0	2.1
2*	¹⁴ C	2.44	11	>10
	³ H	2.24	11	>10
3	¹⁴ C	3.00	7	9.5
	³ H	2.97	3	7.5

* 500 counts of each sample.

zero or (b) C > H where $H = h\sigma_e$ is a decision level, typically h = 5. If (a) applies then no action is taken until $T - f\sigma_e > x_i > T > f\sigma_e$ again and a new cusum is commenced. If (b) applies then drift is deemed to have occurred, *i* representing the onset of the cusum but not necessarily the onset of drift, since allowance has to be made for statistical fluctuation, j - i representing the number of samples from onset to detection.

In order to detect the onset and magnitude of drift, a value of h = 3 was fixed representing a value outside the spread of h_{\min} derived from normal data sets and allowing for statistical fluctuations.

Instrument Tests

Experiments were conducted on three instruments, namely, the Nuclear Enterprises SR3 and Packard auto gamma counter with NaI crystals and the Packard 300C liquid scintillation counter. A PET microcomputer, connected on-line to each in turn, acquired 1000 counts for various counting configurations. For the gamma-detectors the counts across a ¹³⁷Cs photopeak at optimum EHT produced no detectable drift. The h_{min} values lie within the 95% confidence range for 1000 simulated data sets with no drift.

The tests on the liquid scintillation counter were rather more extensive and designed to assess the presence of drift (a) while counting a given radionuclide and (b) with alternations between two radionuclides. A single ¹⁴C source was subjected to 1000 one minute counts with 43 s cycle time intervals between each count. The kurtosis was within the 95% confidence levels and an h_{min} value of 2.1 showed a very low degree of drift (Experiment 1, Table 1). Consequently, the instrument produced a high degree of stability for continuous counting of the same radionuclide.

To examine the effect of two radionuclides, single samples of ³H and ¹⁴C were counted alternately with the counting conditions varied appropriate to the radionuclide by the automatic programming of the counter. Although only 500 counts were taken for each sample in this case, considerable drift was detected by both the kurtosis and cusum techniques (Experiment 2, Table 1). In order to investigate this effect further, rather than single counts of each radionuclide, 25 repeated counts of each i.e. 25 counts of ³H followed by 25 counts of ¹⁴C, was performed a total of 40 times. The results showed much less drift. Indeed for both radionuclides the kurtosis values were within the 95% confidence levels. However, the cusum technique demonstrated its better sensitivity and detected some drift for both samples (Exeriment 3, Table 1). Hence the test demonstrated that a "settling down" period following the changed programme settings between radionuclides to be desirable.

An analysis of the drifts indicated for h = 3 showed that the 10 drifts (7 for ¹⁴C and 3 for ³H) ranged from 0.14% per sample to 0.06%, although these readings are subject to quite large errors which are difficult to estimate.

Conclusion

The cusum technique when applied to radioisotope counting is both more sensitive and more informative than the use of kurtosis. A simple computer analysis with a decision level of $3\sigma_e$ determined from theoretical data produced a statement of the instrument behaviour. From the experiments performed using the Packard 300C liquid scintillation counter the stability during long counts of a particular isotope is better than the sensitivity of the cusum technique. However, using the parameters chosen above, drift occurred when alternate single counts of ${}^{3}\text{H}{-}^{14}\text{C}$ were made. When the samples were subject to repeated counts during each cycle drift was less severe.

References

- I. Pazdur M. F. Int. J. Appl. Radiat. Isot. 27, 179 (1976).
- 2. Galloway R. B. Nucl. Instrum. Methods 172, 431 (1980).
- 3. Annand J. R. M. and Galloway R. B. Nucl. Instrum. Methods 201, 381 (1982).
- 4. Ewan W. D. Technometrics 5, 1 (1963).
- 5. Wetherill G. B. Sampling Inspection and Quality Control. (Chapman and Hall, London, 1977).