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Abstract— Next generation wireless systems have witnessed 

significant R&D attention from academia and industries to 

enable wide range of applications for connected environment 

around us. The technical design of next generation wireless 

systems in terms of relay and transmit power control is very 

critical due to the ever-reducing size of these sensor enabled 

systems. The growing demand of computation capability in these 

systems for smart decision making further diversified the 

significance of relay and transmit power control. Towards 

harnessing the benefits of Quantum Reinforcement Leaning 

(QRL) in the design of next generation wireless systems, this 

paper presents a framework for joint optimal Relay and transmit 

Power Selection (QRL-RPS). In QRL-RPS, each sensor node 

learns using its present and past local state’s knowledge to take 

optimal decision in relay and transmit power selection. Firstly, 

RPS problem is modelled as a Markov Decision Process (MDP), 

and then QRL optimization aspect of the MDP problem is 

formulated focusing on joint optimization of energy consumption 

and throughput as network utility. Secondly, a QRL-RPS 

algorithm is developed based on Grover’s iteration to solve the 

MDP problem. The comparative performance evaluation attests 

the benefit of the proposed framework as compared to the state-

of-the-art techniques.  

Index Terms– Quantum reinforcement learning, Wireless 

Systems, Internet of Things, Energy efficiency. 
 

I. INTRODUCTION 

CONNECTED environment is growing significantly as next 

generation wireless systems around us [1]. The growing 

network of internet connected next generation wireless 

systems is termed Internet of Things (IoT) [2]. According to a 

recent report by Mckinsey, the number of connected IoT 

devices worldwide is projected to increase up to 43 billion by 

2023 [3]. In the IoT enabled connected environment, 

balancing the usage of sensor’s energy for longevity and 

maximizing the throughput of the sensor-enabled smart 

services is major concern [4, 5]. In next generation wireless 

systems, relay assisted wireless communication along with 

optimal transmit power has come out to be a favorable 

solution [6]. Nevertheless, proper relay allocation as 

forwarding sensors for data transmission is a crucial job as 

selection of relay might be led to lower throughput and higher 

energy consumption as compare to direct link transmission. 

Energy consumption can be significantly reduced by 

intelligently controlling the transmit power at IoT nodes [7].  
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In the next generation stochastic wireless network, it is 

critical to have information about channel gain, energy 

harvesting capability, and neighboring systems interference in 

future for choosing an optimal relay and transmit power [8]. 

To solve the aforementioned problem, reinforcement learning 

(RL) approach has been used for optimal decision making [9]. 

For example, channel aware RL based Multi-path Adaptive 

routing has been suggested for optimal relay selection in WSN 

[10]. The RL based relay selection has been improved using 

Q-learning for better network performance in terms of 

reliability, outage probability, bit-error rate and network 

adaptivity [11]. Towards increasing learning rate in WSN, 

Deep-RL based relay selection scheme (DQ-RSS) has been 

investigated without utilizing prior network information [12].    

Towards next generation wireless network design at 

“network-infrastructure and edge level” and “air interface and 

user-end levels” requires learning at user side, intelligent 

proactive caching, big data analytics, massive-IoT 

management, interoperability harmonization, distributed M-

MIMO with fluid-antennas [13]. The use case for the next 

generation wireless network design consists of multi-

dimension physical space, massive IoT device, High altitude 

platforms, body sensors, space shuttles etc. However, the 

classical RL technique is not suitable because of its slower 

learning performance, unexpected exploration and exploitation 

strategy and limited data analytics [14].  

In this context, this paper presents a Quantum enabled RL 

framework for joint optimal Relay and transmit Power 

Selection (QRL-RPS). The framework focuses on harnessing 

the benefits of quantum computing enabled RL for design of 

next generation wireless systems in IoT centric smart service 

environment. The major contributions of paper are as follows:   

1) Firstly, a system model is presented for sensors-enabled 

next generation IoT environment considering time varying 

energy harvesting and channel conditions. 

2) Secondly, joint optimal relay and transmit power selection 

problem is formulated as a network utility maximization 

problem with energy, channel and data buffer constraints 

under classical RL. The MDP problem is transformed into 

QRL optimization problem using quantum representation.  

3) Thirdly, a QRL-RPS algorithm is developed based on 

Grover’s Iteration to solve the MDP problem. 

Convergence analysis and feasibility study of the proposed 

algorithm is done using temporal difference learning 

method and practical realization of quantum gates using 

quantum virtual machine, respectively.  

4) The performance of the proposed algorithm is evaluated 

using Pyquil programming on Rigetti’s Forest quantum 

virtual machine, and the results of the framework is 

compared with state-of-the-art techniques.  
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We organize the rest of the paper into the following sections. 

Section II reviews the related literatures. In section III, system 

model is presented. In section IV, RPS problem is formulated 

as an MDP. In section V, formulated maximization problem is 

represented using quantum reinforcement learning method. 

Section VI represents the proposed QRL-RPS algorithm to 

solve the formulated maximization problem and discusses its 

convergence property, time complexity and feasibility. In 

section VII, results of the simulation are discussed and 

analyzed. Finally, the conclusions and future scope of the 

paper is given in section VIII. 

II. RELATED WORK 

A. Without Learning Approach  

Several efforts in the research for optimal relay and transmit 

power selection have been made in recent years. In [15], a 

cognitive small world WSN and routing protocol have been 

suggested to balance energy and large data latency. In [16], 

communication protocol in WSN has been suggested for 

selection of an optimal relay from multiple candidate relays 

that has maximum value of harmonic mean function of its 

channel gains between source and relay, and relay and 

destination nodes. However, implementation of proposed 

algorithm has been done in static environment with non EH-

nodes and does not explain the case of stochastic EH 

environment. In [17], authors have suggested a relay selection 

scheme. Here a relaying node is selected which has higher 

data transmission rate. However, the presented algorithm is 

prediction based which is not suitable for uncertain 

environment. In [18], authors have suggested optimal power 

allocation to access point and IoT devices in order to 

maximize energy efficiency of the full-duplex relay based IoT 

network. In [19-20], authors have suggested an adaptive 

online algorithm for joint relay selection, power allocation and 

time scheduling in order to optimize the system throughput. In 

most of the aforementioned research works, dynamic nature of 

environment is not considered. Further, it is assumed that 

perfect non-causal knowledge of energy arrival, channel 

fading and data arrival process in the network can be tracked 

down, which restricts its application to practical scenarios. 

B. Learning Approach 

Here, the focus has been given on utilizing RL methods for 

transmitting node to learn about the uncertain environment 

and then take optimal decision. In [11], authors have 

suggested a Q-learning based relay selection scheme (QL-

RSA) that improves throughput, outage probability and bit-

error rate of network. However, the above suggested schemes 

use a Q-table to save state-value and can only solve the 

problems with small states because the storage capacity of Q-

table is limited. To sort out the Q-learning problem, a Deep 

RL in WSN was presented, named as DQ-RSS [12]. However, 

large number of relays and sensors results in high-energy 

consumption, which can cause node failure, but authors did 

not consider any method to provide continuous energy to 

nodes. An optimal policy based Bayesian RL for transmitting 

node to decide its data packet rate and transmit power has 

been suggested in [21]. However, the scheme is not suitable 

when state and action space are large enough. The 

convergence rate of scheme becomes slow for the complex 

problems. In [22], authors have suggested a novel approach 

based on deep RL to solve the problem of energy efficient 

power allocation. However, the proposed scheme has not 

considered the impact of time-variant nature of data arrival 

and energy arrival process. Nonetheless, no work has been 

done to jointly solve the problem of optimal relay and transmit 

power selection in sensor network via leaning method.  

C. Quantum Reinforcement Learning 

Recently, QRL has witnessed significant deliberation due to 

its advancement in computer vision. The concept of QRL is 

motivated by the concept of state superposition principle and 

quantum parallelism of quantum computing [23]. QRL has 

advantage over RL in improving the learning speed 

corresponds to balance between exploitation and exploration 

strategy [24]. Even though not many researches have been 

done in this field so far, some potential research has been done 

concerning QRL in the area of robot navigation [25]. 

However, QRL approach is yet unexplored in the field of 

sensor enabled IoT. Thus, motivated by the limitations of the 

existing works, the focus of our research work is to find an 

optimal policy for joint RPS, by exploring the idea of QRL in 

EH sensor enabled IoT network.  
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Fig. 1. Illustration of energy harvesting three-hop communication scenario 

III. SYSTEM MODEL 

A. Network Model 

We consider an EH sensors-enabled IoT system consisting 

of 𝑁  nodes,  𝐹  full duplex (decode and forward) EH relay 

nodes (𝑅𝑓 , for 𝑓 = 1,2, … . , 𝐹) and a destination (sink) node, 

where nodes transfer data through three-hop relay 

communication model towards the destination node. The 

direct communication link between source and sink is 

assumed to be weak because of pathloss and fading problem. 

Therefore, the communication between source and sink is 

possible only via relays. These full-duplex relays are able to 

mitigate their self-interference and forward the data towards 

sink. For better understanding and simplicity of network, we 
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consider a scenario in which a single source 𝑁1  transfers 

generated data to a destination 𝑁4  through two optimally 

selected relays 𝑁2 and 𝑁3  as illustrated in the Fig. 1. At the 

beginning of each time slot 𝑡𝑗, source node 𝑁1 generates and 

saves 𝑅0,𝑗 bits of data into its own buffer of size 𝐷𝑚𝑎𝑥,1.  The 

relays 𝑁2  and 𝑁3  do not generate any data for transmission, 

these are only responsible for data transmission of other 

nodes. The relay 𝑁3  and 𝑁2  receive data from 𝑁2  and 𝑁1 

respectively and store data into their finite buffer of size 

𝐷𝑚𝑎𝑥,3  and 𝐷𝑚𝑎𝑥,2  respectively. The throughput of the links 

between 𝑁1and 𝑁2 , 𝑁2  and 𝑁3 , 𝑁3  and 𝑁4  are limited by the 

arrival of data from 𝑁1, 𝑁2 and 𝑁3 respectively. The objective 

of considered system is to maximize throughput of each link 

subject to minimum energy consumption. 

Table 1. Frequently Used Notations 
Notation  Description 

𝑅𝑓 𝑓𝑡ℎ relay node 

𝑁𝑘 𝑘𝑡ℎ sensor node 

𝑡𝑗  𝑗𝑡ℎ time slot 

𝜌 Each time slot duration 

𝑅0,𝑗 Data bits generated by source node  at  time slot 𝑡𝑗  

𝑅𝑘,𝑗 Throughput achieved at node  𝑁𝑘 at time slot 𝑡𝑗  

𝐷𝑚𝑎𝑥,𝑘 Maximum data buffer size of 𝑘𝑡ℎ sensor node 

𝐸𝑘,𝑗 Amount of energy harvested by node  𝑁𝑘 at time slot 𝑡𝑗  

𝐸𝑚𝑎𝑥,𝑘 Upper bound on  amount of energy harvested by node  𝑁𝑘 

𝐵𝑘,𝑗 Battery level of node 𝑁𝑘 at the beginning of  𝑡𝑗 

𝐵𝑚𝑎𝑥,𝑘 Maximum battery capacity of node  𝑁𝑘 

𝜂𝑘,𝑗 Energy harvesting efficiency of node  𝑁𝑘 at time slot 𝑡𝑗  

𝜀𝑘,𝑗 Energy conversion efficiency of node  𝑁𝑘 at time slot 𝑡𝑗  

𝐴𝑠𝑜𝑙𝑎𝑟
𝑘  Effective area of the photovoltaic cells mounted at the node  𝑁𝑘  

that absorb photons from solar energy 

𝐸𝑠𝑜𝑙𝑎𝑟
𝑘,𝑗

 Rate of absorbing photon from solar energy of photovoltaic cell 

mounted at the node  𝑁𝑘 at time slot 𝑡𝑗  

𝜎𝑘
2 Variance of additive white Gaussian noise at node 𝑁𝑘 

𝐻𝑘,𝑗 Path loss coefficient vector for node  𝑁𝑘 at time slot 𝑡𝑗  

ℎ𝐹
𝑘,𝑗

 Path loss coefficient of transmission channel from node 𝑁𝑘 

towards 𝑅𝑓 relay node at time slot 𝑡𝑗  

𝐷𝑘 Distance vector for node  𝑁𝑘  

𝑑𝐹
𝑘  Distance between node  𝑁𝑘 and 𝑅𝑓 relay node 

 𝑀𝑘,𝑗 Multipath fading coefficient vector for node  𝑁𝑘 at time slot 𝑡𝑗   

𝑚𝐹
𝑘,𝑗

 Multipath fading coefficient value between node  𝑁𝑘 and 𝑅𝑓 relay  

𝐺𝑘,𝑗 Channel gain vector for node  𝑁𝑘 at time slot 𝑡𝑗  

𝑔𝐹
𝑘,𝑗  Channel gain value  between node  𝑁𝑘 and 𝑅𝑓 relay node 

𝔓𝑘,𝑗  Normalized radio propagation constant of node  𝑁𝑘 at time slot  𝑡𝑗  

𝛼 Path loss exponent value 

𝑊 Channel Bandwidth 

𝑃𝑘,𝑗 Optimal transmit power of transmitting node 𝑁𝑘 at time slot  𝑡𝑗 

𝐸𝑐𝑜𝑛
𝑘,𝑗

 Energy consumption of node 𝑁𝑘 during time slot  𝑡𝑗 

𝐸𝑐𝑜𝑛
𝑗

 Total energy consumption during time slot  𝑡𝑗 

𝐷𝑘,𝑗  Data buffer level of node 𝑁𝑘 at time slot  𝑡𝑗 

𝑈𝑘,𝑗 Utility of node 𝑁𝑘 at time slot  𝑡𝑗 

B. Energy Harvesting Model 

 Nodes and relay nodes harvest energy from ambient 

sources such as wind, solar, etc. Let node  𝑁𝑘 , 𝑘 = {1,2,3}  
harvests 𝐸𝑘,𝑗 ∈  ℝ+ (𝑗𝑜𝑢𝑙𝑒𝑠) amount of energy in fixed time 

slot 𝑡𝑗 , where  𝑗 = 1,2, … . 𝐽  and  the length of each slot is 

constant and given by 𝜌𝑗 =  𝑡𝑗+1 −  𝑡𝑗 = 𝜌. The node 𝑁𝑘 can 

harvest maximum amount of energy 𝐸𝑚𝑎𝑥,𝑘  depend upon 

energy harvesting source. The harvested energy is stored into 

battery of maximum capacity 𝐵𝑚𝑎𝑥,𝑘 . It is presumed that 

sensors’ batteries are ideal in nature that means there is no 

energy loss during retrieving and storing of energy. As a 

special case, we consider solar power energy harvesting 

source. Let 𝜂𝑘,𝑗𝜖 (0,1) be energy harvesting efficiency, 

𝜀𝑘,𝑗𝜖 (0,1) be energy conversion efficiency and 𝐴𝑠𝑜𝑙𝑎𝑟
𝑘 (𝑚2) be 

effective area of photovoltaic cells mounted at nodes that 

absorb photons from solar energy at the rate of 𝐸𝑠𝑜𝑙𝑎𝑟
𝑘,𝑗

(𝑗𝑜𝑢𝑙𝑒/

𝑚2). Thus, the energy harvested 𝐸𝑘,𝑗(𝑗𝑜𝑢𝑙𝑒) by a node at time 

slot  𝑡𝑗 is computed as  

𝐸𝑘,𝑗 = 𝐸𝑠𝑜𝑙𝑎𝑟
𝑘,𝑗

× 𝐴𝑠𝑜𝑙𝑎𝑟
𝑘 × 𝜀𝑘,𝑗 × 𝜂𝑘,𝑗 (1) 
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Fig. 2. Markov chain based EH model of the network with Z states       

The amount of energy harvested by node varies over time. 

Thus, energy harvesting can be quantized to 𝑍  levels with 

𝐸𝑘,𝑗𝜖 {𝐸𝑒}1≤𝑒≤𝑍 , 𝑘 = 1,2,3 ; which are modelled as Markov 

chain accompanied by 𝑍  states as shown in Fig. 2 . The 

transition probability of 𝐸𝑘,𝑗 from 𝐸1 𝑡𝑜 𝐸2 during time slot 𝑡𝑗 

is given as   ᵽ1,2
𝑘,𝑗
= 𝑝𝑟𝑜𝑏 (𝐸𝑘,𝑗 = 𝐸2|𝐸

𝑘,𝑗−1 = 𝐸1).   

C. Channel Model 

The channel from transmitting node to receiving node is 

assumed to be quasi-static block Rayleigh fading model that 

means channel gain is different for different time slot but 

constant within time slot. The channel is assumed to be noisy 

and channel state information is known at the transmitting 

node through feedback from receiving node. Additive white 

Gaussian noise at Nk, with zero mean and variance σk
2 = σ2 

introduce impairment into the channel that results in 

degradation in the strength of transmitted signal. Hence, 

intended receiver is not able to successfully decode the 

received information.  
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Fig. 3. Markov chain based channel model of the network with C states 

Let 𝐻𝑘,𝑗 = [ℎ1
𝑘,𝑗
, ℎ2
𝑘,𝑗
…ℎ𝐹

𝑘,𝑗
]𝜖 ℂ  be path loss coefficient 

vector, 𝐷𝑘 = [𝑑1
𝑘 , 𝑑2

𝑘 …𝑑𝐹
𝑘]  be distance vector and  𝑀𝑘,𝑗 =

[𝑚1
𝑘,𝑗
, 𝑚2

𝑘,𝑗
…𝑚𝐹

𝑘,𝑗
] 𝜖 ℂ be multipath fading coefficient vector 

between transmitting and receiving node at  𝑡𝑗. Thus, channel 

gain vector 𝐺𝑘,𝑗 = [𝑔1
𝑘,𝑗
, 𝑔2
𝑘,𝑗
…𝑔𝐹

𝑘,𝑗
] 𝜖 ℂ  is computed as 

𝐺𝑘,𝑗 = |𝐻𝑘,𝑗|
2
|𝑀𝑘,𝑗|

2
, where 𝐻𝑘,𝑗 = 𝔓𝑘,𝑗(𝐷𝑘)−𝛼 , such that 

𝔓𝑘,𝑗 is normalized radio propagation constant and 𝛼  is path 

loss exponent. High channel gain value improves network 

throughput. Further, the channel state is time-variant due to 

dynamic nature of environment. Thus, channel state can be 

quantized to 𝐶  levels with 𝑔𝐹
𝑘,𝑗
𝜖 {𝑔𝑖}1≤𝑖≤𝐶 , 𝑘 = 1,2,3 ; which 

are modelled as Markov chain accompanied by  𝐶  states as 

shown in Fig. 3. The transition probability of 𝑔𝐹
𝑘,𝑗

 from 

𝑔1 𝑡𝑜 𝑔2  during time slot 𝑡𝑗  is given as  ϸ1,2
𝑘,𝑗
= 𝑝𝑟𝑜𝑏 (𝑔𝐹

𝑘,𝑗
=

𝑔2|𝑔𝐹
𝑘,𝑗−1

= 𝑔1). 
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IV. JOINT OPTIMAL RELAY AND TRANSMIT POWER SELECTION 

PROBLEM AS MARKOV DECISION PROCESS 

In this section, we aim to formulate the joint optimal relay 

and transmit power selection problem as Markov decision 

process (MDP) to represent the network utility maximization 

that jointly optimizes energy consumption and throughput. 

The amount of data (bits) successfully received at 𝑁4 during 

 𝑡𝑗 is defined as network throughput for respective time slot. 

The total power used for data transmission from source to 

destination is considered as total energy consumption for time 

slot  𝑡𝑗 , because energy used for data sensing and receiving 

operation is very less as compared to transmission of data. As, 

there is no direct communication between source (𝑁1 ) and 

sink (𝑁4 ), the throughput 𝑅3,𝑗   at  𝑁4  corresponds to the 

amount of data received by it from relay 𝑁3  at  𝑡𝑗 . The 

nodes 𝑁3 and 𝑁2 only send data that they have received from 

𝑁2 (𝑅2,𝑗) and 𝑁1 (𝑅1,𝑗) respectively. Thus, 𝑅3,𝑗 is restricted by 

throughput 𝑅2,𝑗 and  𝑅1,𝑗 . The throughput 𝑅1,𝑗 , 𝑅2,𝑗 and 𝑅3,𝑗 
obtained at time slot  𝑡𝑗 are computed as  

𝑅𝑘,𝑗 =  𝜌𝑊 log2(1 +
|𝑔𝑓
𝑘,𝑗
|
2
𝑃𝑘,𝑗

𝜎2
), for {𝑓 = 1,2, …𝐹; 𝑘 =

1,2,3, 𝑎𝑛𝑑 𝑗 = 1,2, … 𝐽}   (2) 

where, 𝑃𝑘,𝑗is the allocated optimal transmit power of node 𝑁𝑘 

at time slot  𝑡𝑗 , 𝑊 is the channel bandwidth and 𝑔𝑓
𝑘,𝑗
 denotes 

channel gain value  between node  Nk and Rf relay node at  𝑡𝑗 .  

Amount of energy available at 𝑁𝑘 for data transmission is 

controlled by correspondent energy harvesting process. 

Transmit power allocation at 𝑁𝑘  can be done only when the 

harvested energy has already been saved in battery. Here it is 

presumed that batteries can’t be recharged immediately. As a 

result, at  𝑡𝑗 battery only stores energy that has been harvested 

up to 𝑡𝑗−1. Consequently, there exists a causality restriction on 

energy consumption that needs to be accomplished, 

𝐸𝑐𝑜𝑛
𝑘,𝑗

= 𝜌𝑃𝑘,𝑗 ≤ 𝐵𝑘,𝑗, 𝑘 = {1,2,3}   (3) 

Where, 𝐵𝑘,𝑗is the battery level of node 𝑁𝑘 at the beginning of 

 𝑡𝑗 and can be given as 

𝐵𝑘,𝑗 = min {𝐵𝑚𝑎𝑥,𝑘, 𝐵𝑘,𝑗−1 − 𝜌𝑃𝑘,𝑗−1 + 𝐸𝑘,𝑗−1},   { 𝑘 =
1,2,3, 𝑎𝑛𝑑 𝑗 = 1,2, … 𝐽}  (4) 

The battery capacity needs to be considered finite so that 

overflow condition could be avoided in which some part of 

harvested energy is wasted due to battery full state. Thus, the 

constraint on energy overflow is given as  

𝐵𝑘,𝑗 − 𝜌𝑃𝑘,𝑗 + 𝐸𝑘,𝑗 ≤ 𝐵𝑚𝑎𝑥,𝑘 , 𝑘 = {1,2,3}  (5) 

As previously stated, data 𝑅0,𝑗  𝑏𝑖𝑡𝑠 that are generated at  𝑁1  

during time slot  𝑡𝑗  is an independent process. The data 

received at 𝑁2 and 𝑁3  depend on 𝑅1,𝑗  and 𝑅2,𝑗  respectively. 

Therefore, data buffer level 𝐷𝑘,𝑗 of node 𝑁𝑘 is computed as 

𝐷𝑘,𝑗 = ∑ 𝑅𝑘−1,𝑛
𝑗−1
𝑛=1 − ∑ 𝑅𝑘,𝑛

𝑗−1
𝑛=1 , {𝑘 = 1,2,3} (6) 

Further, the throughput 𝑅1,𝑗, 𝑅2,𝑗 and 𝑅3,𝑗 need to satisfy data 

causality constraints which make sure that 𝑁𝑘  doesn’t 

retransmit information that has not received yet and given as 

𝑅𝑘,𝑗 ≤ 𝐷𝑘,𝑗, {𝑘 = 1,2,3}   (7) 

Similar to the constraint on energy in (5),  𝑁𝑘 has constraint on 

data buffer overflow given as  

𝐷𝑘,𝑗 − 𝑅𝑘,𝑗 + 𝑅𝑘−1,𝑗 ≤ 𝐷𝑚𝑎𝑥,𝑘  (8) 

 Further, total energy consumption during  𝑡𝑗 is computed as 

𝐸𝑐𝑜𝑛
𝑗
= ∑ 𝜌𝑃𝑘,𝑗3

𝑘=1    (9) 

Additionally, the presented framework can also be used for 

any number of hop communication, where each node consists 

of an independent EH process and channel condition. So, it can 

be solved as independent point-to-point communication 

problem, when only local causal knowledge is known at source 

and relays.  Thus, local solutions for joint optimal relay and 

transmit power selection problem at each point-to-point 

communication leads to globally optimal solution for network. 

Subsequently, three point-to-point EH communication problem 

presented in fig .1 correspond to the links 𝑁1 → 𝑁2, 𝑁2 → 𝑁3 

and  𝑁3 → 𝑁4 . Notwithstanding, as 𝑅3,𝑗  is restricted by 

throughput 𝑅2,𝑗 and  𝑅1,𝑗 , the joint relay and transmit power 

selection problem for 𝑁1 , 𝑁2  and 𝑁3  is coupled. Thus, the 

utility maximization problem for node 𝑁𝑘 to choose its optimal 

relay 𝑅𝑓
𝑘,𝑗

and transmit power 𝑃𝑘,𝑗  for transmission of data 

towards sink during time slot 𝑡𝑗 independently computed as  

  𝑈𝑘,𝑗 = ln (
𝑅𝑘,𝑗

𝐸𝑐𝑜𝑛
𝑘,𝑗 )   (10)        

The logarithmic function’s concavity captures network 

utility better in terms of throughput and energy consumption. 

However, solution of above coupled utility maximization 

problem cannot be achieved by using only local causal 

knowledge, because EH-IoT nodes do not have information of 

other nodes regrading power allocation policy, data buffer, 

energy harvesting and channel. It means transmitter can’t 

minimize data buffer overflow of receiving node by reducing 

its own transmit power. To find the solution of convex 

optimization problem, we formulate each point to point 

communication problem as an MDP due to: (i) MDP provide 

decision maker (learning agent) that interact with environment 

and take decision in control manner to achieve a goal  (ii) MDP 

is able to handle the stochastic nature of EH and channel fading   

(iii) MDP estimates future utility using only casual knowledge 

of current state and taken action, it does not require non-casual 

knowledge in advance (iv) MDP build mathematical formula to 

efficiently use the QRL approach to find an optimal policy for 

selection of joint relay and transmit power. 

Each node 𝑁𝑘(𝑘 = 1, 2, 3) consists of a learning agent and 

its MDP comprises the following: (i) a set of possible 

states 𝑆𝑘 = 𝐵𝑘 × 𝐸𝑘 × 𝐷𝑘 × 𝐺𝑘. (ii) A set of possible actions 

𝐴𝑘=𝑅𝑓
𝑘 × 𝑃𝑘 . (iii) A state transition function 𝑇𝑘: 𝑆𝑘 × 𝐴𝑘 ×

𝑆𝑘 → [0,1]  that precisely identify the unpredictability about 

future transition amid states. (iv) A reward function 𝑈𝑘: 𝐴𝑘 ×
𝑆𝑘 × 𝑈𝑘 → [0,1] .  During each time slot  𝑡𝑗 , the state 

𝑠𝑘,𝑗𝜖 𝑆𝑘 = [𝐵𝑘,𝑗 × 𝐸𝑘,𝑗 × 𝐷𝑘,𝑗 × 𝐺𝑘,𝑗]  of node 𝑁𝑘  includes 

current battery level, amount of harvested energy, data buffer 

level, and channel states to 𝐹  relays that takes any value in 

continuous range. The action set 𝑎𝑘,𝑗(𝑠𝑘,𝑗) 𝜖𝐴𝑘 =

(𝑅𝑓
𝑘,𝑗 , 𝑃𝑘,𝑗) for corresponding state 𝑠𝑘,𝑗  consists of all 

candidate relays {𝑅𝑓
𝑘, 𝑓 = 1,2, … . , 𝐹} in the range of 𝑁𝑘 and 

transmit power values 𝑃𝑘,𝑗 = { 𝛿𝑘, 2𝛿𝑘, … 𝐵𝑚𝑎𝑥,𝑘}  that 𝑁𝑘 
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selects, and 𝛿𝑘  is the step size. The state transition function 

refers to transition probabilities from 𝑠𝑘,𝑗  to 𝑠𝑘,𝑗+1  when an 

action 𝑎𝑘,𝑗(𝑠𝑘,𝑗) is taken. The reward function 𝑈𝑘,𝑗 is defined 

as the immediate reward in terms of utility obtained in time 

duration 𝜌 for taking an action 𝑎𝑘,𝑗(𝑠𝑘,𝑗) under state 𝑠𝑘,𝑗. The 

utility 𝑈𝑘,𝑗 is only known at 𝑁𝑘 (transmitter) at the end of time 

slot 𝑡𝑗 i.e, at 𝑡𝑗+1 which is computed using throughput received 

as a feedback from the receiver and its energy consumption, to 

assess the quality of selected action. The main objective of 

learning agent at 𝑁𝑘  is to obtain an optimal policy, 𝜋𝑘(𝑠𝑘,𝑗) →

 (𝑅𝑓
𝑘,𝑗 , 𝑃𝑘,𝑗) and it is a corresponding solution to the MDP 

problem.  Further, 𝜋𝑘(𝑠𝑘,𝑗) can be assessed using state-value 

function 𝑉𝜋(𝑠𝑘,𝑗), which is illustrated as the expected reward 

starting from state 𝑠𝑘,𝑗 , choosing (𝑅𝑓
𝑘,𝑗 , 𝑃𝑘,𝑗)  and following 

𝜋𝑘 afterwards. The optimal policy 𝜋𝑘
∗
 consists of state value 

that is greater than or equal to state value of other policies for 

each state. The correspondent state-value for 𝜋𝑘
∗

 is 

represented as 𝑉𝜋∗(𝑠𝑘,𝑗) . Therefore, the expected sum of 

discounted reward for each state is given as   

𝑉𝜋(𝑠𝑘,𝑗) = 𝐸{𝑈𝑘,𝑗+1 + γ𝑈𝑘,𝑗+2 +⋯ |𝑠𝑘,𝑗, 𝜋𝑘} =  

    𝐸{𝑈𝑘,𝑗+1 + γ𝑉𝜋(𝑠𝑘,𝑗+1) + ⋯ |𝑠𝑘,𝑗 , 𝜋𝑘}     (11) 

And, the temporal difference (TD) one step updating rule [26] 

of 𝑉(𝑠𝑘,𝑗) is given as 

𝑉(𝑠𝑘,𝑗) ← V(𝑠𝑘,𝑗) + ζ(𝑈𝑘,𝑗 + γV(𝑠𝑘,𝑗+1) − 𝑉(𝑠𝑘,𝑗)) (12) 

where, ζ ϵ [0,1] represent the learning rate, γϵ [0,1] is discount 

factor and 𝑈𝑘,𝑗 is obtained reward for corresponding action.  

As the repercussion of only casual knowledge at transmitter, 

there exit a trade-off between power allocation in the current 

time slot to avoid battery and buffer overflow and energy is 

stored for next time slot might for bad channel condition. To 

consider this uncertainty, we prefer to maximize the network 

utility in current time slot over future time slot. Besides, a 

discount factor  0 ≤ γ ≤ 1 is included to weight the higher 

network utility in current time slot versus attain higher 

network utility in future. As, γ close to zero give priority to 

current time slot and γ close to unity future time slot consider 

for utility maximization.  In turn, the objective function (Eq. 

10) i.e., joint optimal relay and transmit power allocation 

problem for network utility maximization of three linksN1 →
N2 , N2 → N3  and N3 → N4  is replaced by expected utility as 

the novelty of problem can be expressed as  

(Rf,opt
k,j

, Popt
k,j
) =  

argmax

{R
f
k,j
,Pk,j}

lim
J→∞

𝔼[∑ γjUk,j
J
j=1 ]   (13) 

Subject to- C1:∑ ρPk,j
J
j=1 ≤ ∑ Ek,j

J−1
j=1 , ∀k, j = 1,2, . . J  

                   C2: ∑ Ek,j − ∑ ρPk,j
J
j=1 ≤ Bmax,k

J
j=1 , ∀k, j = 1,2, . . J

      C3:  ∑ Rk,j ≤ ∑ Rk−1,j
J−1
j=1

J
j=1 , ∀k, j = 1,2, . . J       

    C4: ∑ Rk−1,j
J
j=1 − ∑ Rk,j

J
j=1 ≤ Dmax,k,∀k, j = 1,2, . . J 

     C5:Pmin ≤ P
k,j ≤ Pmax, ∀k, j = 1,2, . . J      

Where C1 indicates constraints on transmit power over each 

time slot (ρ)  during  tj . C2 indicates constraint on energy 

overflow condition after power allocated to nodes; C3 specifies 

restriction on data rate. C4 indicates constraints on data buffer 

overflow. C5 indicates boundary condition constraint on 

allocated power  Pk,j , value of lower bound Pmin  and upper 

bound Pmax  controlled by power amplifier’s hardware circuit 

corresponds to Eq. (3), (5), (7), (8) and (9) respectively. The 

formulated problem in (13) can be optimally solved by QRL 

method motivated by the concepts of quantum mechanics. 

V. QUANTUM OPTIMIZATION ASPECT OF MDP PROBLEM 

The quantum computation in QRL is related to state 

superposition and quantum parallelism. Quantum bit (qubit) is 

the key to quantum computation similar to classical bits used 

in traditional computation. A single qubit consists of two basic 

states denoted by |0〉 and |1〉 (Dirac representation), 

corresponding to states 0 and 1. Moreover, qubit also exits in 

superposition state of |0〉 and |1〉. Thus, state of a qubit |𝛹〉 can 

be represented as linear combination of |0〉 and |1〉 defined as 

state superposition principle.  
|𝛹〉 = €|0〉 + ¥|1〉  (14) 

where, € and ¥ are complex probability amplitude of state |0〉 
and |1〉 with magnitude (occurrence probability) |€|2  and 

|¥|2 respectively, satisfying the sum of probability 

condition |€|2 + |¥|2 = 1,  and |0〉 and |1〉 form a set of 

orthonormal bases in Hilbert space. Applying, unitary 

transformation on superposition state of qubits simultaneously 

transforms all states (basis vectors) and provides new 

superposition state with different values known as quantum 

parallelism. Quantum gates such as Hadamard gate and phase 

gate are used to achieve quantum parallelism. To represent 

states of network system, we need multiple qubits. Let there 

are 2𝑢  states then we require u-qubits quantum gates for 

computation. The quantum state |𝛹𝑢〉  of u qubits (base-10) 

denoted as linear combination of orthonormal states given as  

|𝛹𝑢〉 = ∑ Ɣ𝑖|𝑖 〉
2𝑢−1
𝑖=0 = Ɣ0 |000. . .0〉⏞      

𝑢

+ Ɣ1 |000. . .1〉⏞      
𝑢

+⋯ +

Ɣ2𝑢−1 |111. . .1〉⏞      
𝑢

  And,  ∑ |Ɣ𝑖|
22𝑢−1

𝑖=0 = 1 (15) 

The advantage of QRL over traditional RL carried out by 

three strategies, (i) exploration policy in QRL depends upon 

collapse postulate rather than greedy or Boltzmann policy 

[26], which provides better balance between exploration and 

exploitation of available actions. (ii) QRL updates all the 

states simultaneously using unitary transformation method in 

synchronized manner. (iii) QRL algorithm is robust in nature 

because it adapts different learning rates and discount factor 

for unknown environment quickly. The robustness 

characteristic turnout as learning performance for the QRL 

algorithm as verified in the simulation section VII-B -3, 4. 

A. Quantum State and Action Representation 

QRL boosts the action selection probability and 

reinforcement strategy of classical RL algorithm by adopting 

the idea of Quantum computation. Collapse postulate and 

amplitude amplification are the policy of quantum 

computation used for selection of probabilistic action and 

action reinforcement respectively. The orthogonal quantum 

state |𝑠𝑙
𝑘,𝑗
〉  and its corresponding action |𝑎𝑤

𝑘,𝑗
 〉  (Eigen state 

and Eigen action respectively) of node 𝑁𝑘 at 𝑡𝑗in QRL are the 

quantized representation of same state (𝑠𝑙
𝑘,𝑗

) and action (𝑎𝑤
𝑘,𝑗

) 

in RL. The total number of discrete states can be written as a 

set  𝑆𝑘 = {|𝑠1
𝑘〉, |𝑠2

𝑘〉, |𝑠3
𝑘〉 … . . |𝑠𝑙

𝑘〉 … }  and corresponding 
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action set for state ( |𝑠𝑙
𝑘〉 ) is given as  𝐴𝑘(𝑠𝑙

𝑘) =

{|𝑎1
𝑘〉, |𝑎2

𝑘〉, |𝑎3
𝑘〉 … , |𝑎𝑤

𝑘 〉 … }. Let 𝑁𝑠𝑡 and 𝑁𝑎𝑐 be the number of 

Eigen states and Eigen actions of a node, then we choose 𝑢 

and 𝑣 number of qubits to represent them, which satisfy the 

following inequalities 

𝑁𝑠𝑡 ≤ 2
𝑢 ≤ 2𝑁𝑠𝑡  , 𝑁𝑎𝑐 ≤ 2

𝑣 ≤ 2𝑁𝑎𝑐  (16) 

The qubit representation of a state and its corresponding action 

during  𝑡𝑗 time slot is given as 

|𝑠𝑙
𝑘,𝑗〉 = |𝐵𝑘,𝑗 × 𝐸𝑘,𝑗 × 𝐷𝑘,𝑗 × 𝐺𝑘,𝑗〉 = {𝑞1, 𝑞2, 𝑞3… . 𝑞𝑢} (17) 

 |𝑎𝑤
𝑘,𝑗
(𝑠𝑙
𝑘,𝑗
)〉 = |𝑅𝑓

𝑘,𝑗, 𝑃𝑘,𝑗〉 = {𝑞1, 𝑞2, 𝑞3… . 𝑞𝑣}      (18) 

To explore QRL, Eigen states and its corresponding Eigen 

actions are represented in superposition state and action 

respectively. This superposition state, ( |𝑠𝑙
𝑘,𝑗𝑁𝑠𝑡〉) 

(action , |𝑎𝑤
𝑘,𝑗𝑁𝑎𝑐

(𝑠𝑙
𝑘,𝑗
)〉 ) is the sum of all existing quantum 

states (actions) in the system.    

|𝑠𝑙
𝑘,𝑗𝑁𝑠𝑡〉 = ∑ 𝐿𝑙|𝑠𝑙

𝑘,𝑗〉𝑁𝑠𝑡
𝑙=1 ↔ |𝑠𝑙

𝑘,𝑗𝑢〉 = ∑ 𝐿
𝑠𝑙
𝑘|𝑠𝑙

𝑘,𝑗〉11....1⏞  
𝑢

𝑠𝑙
𝑘=00..0

     (19) 

|𝑎𝑤
𝑘,𝑗𝑁𝑎𝑐

(𝑠𝑙
𝑘,𝑗
)〉 = ∑ 𝐿𝑤|𝑎𝑤

𝑘,𝑗〉𝑁𝑎𝑐
𝑤=1 ↔|𝑎𝑤

𝑘,𝑗𝑣
(𝑠𝑙
𝑘,𝑗
)〉 =

                               ∑ 𝐿𝑎𝑤𝑘 |𝑎𝑤
𝑘,𝑗〉11....1⏞  

𝑣

𝑎𝑤
𝑘 =00…0

                           (20) 

The probability amplitude of Eigen state  𝐿
𝑠𝑙
𝑘  and 

corresponding Eigen action  𝐿𝑎𝑤𝑘  are represented as complex 

number. When superposition state |𝑠𝑙
𝑘,𝑗𝑁𝑠𝑡〉  is measured, it 

collapses into |𝑠𝑙
𝑘,𝑗〉 with probability | 𝐿

𝑠𝑙
𝑘|
2

.  Also valid for 

measuring an action |𝑎𝑤
𝑘,𝑗𝑁𝑎𝑐

(𝑠𝑙
𝑘,𝑗
)〉, collapse into |𝑎𝑤

𝑘,𝑗〉 with 

probability of  |𝐿𝑎𝑤𝑘 |
2

.  The  𝐿
𝑠𝑙
𝑘  and 𝐿𝑎𝑤𝑘  satisfy the basic 

probability condition  

∑ | 𝐿
𝑠𝑙
𝑘|
2

11....1⏞  
𝑢

𝑠𝑙
𝑘=00….0

= 1,       and  ∑ |𝐿𝑎𝑤𝑘 |
2

11....1⏞  
𝑣

𝑎𝑤
𝑘 =00…0

= 1  (21) 

B. QRL based Action Selection Policy 

The probability of selecting an action in current Eigen state 

depends on collapse postulate of quantum computation. 

Collapse postulate is defined as when an action 

|𝑎𝑤
𝑘,𝑗𝑣
(𝑠𝑙
𝑘,𝑗
)〉 = ∑ 𝐿𝑎𝑤𝑘 |𝑎𝑤

𝑘,𝑗〉11....1⏞  
𝑣

𝑎𝑤
𝑘 =00…0

is measured, it will be 

randomly selected and collapse into one of its Eigen action 

|𝑎𝑤
𝑘,𝑗〉  and action state changes with corresponding 

probability  (|〈𝑎𝑤
𝑘,𝑗
|𝑎𝑤
𝑘,𝑗𝑣
(𝑠𝑙
𝑘,𝑗
)〉|

2

) . 

(|〈𝑎𝑤
𝑘,𝑗
|𝑎𝑤
𝑘,𝑗𝑣
(𝑠𝑙
𝑘,𝑗
)〉|

2

) = |(|𝑎𝑤
𝑘,𝑗
〉)∗ |𝑎𝑤

𝑘,𝑗𝑣
(𝑠𝑙
𝑘,𝑗
)〉|

2

=

  |( |𝑎𝑤
𝑘,𝑗
〉)∗ ∑ 𝐿𝑎𝑤𝑘𝑤 |𝑎𝑤

𝑘,𝑗〉|2 = |𝐿𝑎𝑤𝑘 |
2

    (22) 

In QRL, the agent selects an action according to sum of 

expected discounted reward at each state. The agent learns 

action selection policy 𝜋:  𝑆𝑘 ×∪
𝑠𝑙
𝑘,𝑗
∈ 𝑆𝑘

𝐴𝑘(𝑠𝑙
𝑘) → [0,1], 

which maximizes the expected reward by updating state value. 

i.e., it is a mapping from state to action 𝑓(𝑠𝑙
𝑘) = 𝜋:  𝑆𝑘 → 𝐴𝑘. 

𝑓(𝑠𝑙
𝑘) =

|𝑎1
𝑘〉

|𝐿1|
2 +

|𝑎2
𝑘〉

|𝐿2|
2 +⋯ = ∑

|𝑎𝑤
𝑘 〉

|𝐿𝑤|
2𝑤 = ∑ 𝐿𝑎𝑤𝑘 |𝑎𝑤

𝑘 〉11....1⏞  
𝑣

𝑎𝑤
𝑘 =00…0

 

(23)  

Where, 𝐿𝑎𝑤𝑘  satisfies equation (21).  

C. QRL based State Value Updating  

In QRL, every possible state | 𝑆𝑘〉 =
{|𝑠1

𝑘〉, |𝑠2
𝑘〉, |𝑠3

𝑘〉 … . . |𝑠𝑙
𝑘〉… . }  transformed into orthogonal 

Eigen states by unitary transformation |𝑠𝑙
𝑘,𝑗〉 ∶ | 𝑆𝑘〉 =

∑ 𝐿𝑙|𝑠𝑙
𝑘,𝑗〉𝑁𝑠𝑡

𝑙=1 .  By applying quantum parallelism to 𝑢  qubit 

states, which gives 2𝑢 number of states and their state-values 

are parallelly updated according to one-step TD(0) updating 

rule.  

𝑉(𝑠𝑙
𝑘,𝑗
) ← V(𝑠𝑙

𝑘,𝑗
) + ζ(𝑈𝑘,𝑗 + γV(𝑠𝑙

𝑘,𝑗+1
) − 𝑉(𝑠𝑙

𝑘,𝑗
))        (24) 

For 𝑢  qubit, there are 2𝑢 exponential computation spaces 

required for simultaneous state-values updating operation 

improving the speed of learning over traditional RL.  

D. Updating of Probability Amplitude 

The selection of an Eigen action  |𝑎𝑤
𝑘,𝑗
〉  related to 

superposition action |𝑎𝑤
𝑘,𝑗𝑁𝑎𝑐

(𝑠𝑙
𝑘,𝑗
)〉  depends upon their 

occurrence probability |𝐿𝑎𝑤𝑘 |
2

 according to collapse postulate. 

After taking an action, reward of system defines the action 

property either “good” or “bad” actions. The probability 

amplitude of an action is updated (amplify or shrink) 

according to corresponding reward. Therefore, updating the 

amplitude of an action is the key to exploration (trial-and-

error) and exploitation (experience) strategy for QRL agent. 

For 𝑣  qubit action states, the Eigen actions in superposition 

state consist of 2𝑣  actions. Choosing an action  |𝑎𝑤
𝑘,𝑗
〉  is 

directly related to updating its probability amplitude based on 

Grover’s iteration. First of all, assign the probability amplitude 

of all possible Eigen actions 2𝑣 of 𝑣 qubits with same weight. 

Applying Hadamard transformation (𝐻⊗𝑣 ) on each 𝑣  qubit 

with initial state (|0〉⊗𝑣=|0〉) assigns equal probability weight 

to each action.  

𝐻⊗𝑣 |00. . .0〉⏞    
𝑣

=
1

√2𝑣
(∑ | 𝑎𝑤

𝑘,𝑗
〉11....1⏞  

𝑣

𝑎𝑤=00…0
) = |𝑎0

𝑘,𝑗(𝑣)
 〉 (25) 

The probability amplitude of selecting an Eigen action | 𝑎𝑤
𝑘,𝑗
〉 

irrespective of its value  𝑎𝑤
𝑘,𝑗

 is given as  

|〈 𝑎𝑤
𝑘,𝑗
|𝑎0
𝑘,𝑗(𝑣)〉| =

1

√2𝑣
   (26) 

Grover’s iteration is used to reinforce the probability 

amplitude of good action based on obtained reward. The 

Grover’s iteration is composed of two unitary reflections. First 

reflection corresponds to oracle transformation (𝑈
 𝑎𝑤
𝑘,𝑗), which 

negate the amplitude of selected Eigen action.  

𝑈
 𝑎𝑤
𝑘,𝑗 = 𝐼 − 2| 𝑎𝑤

𝑘,𝑗
〉〈 𝑎𝑤

𝑘,𝑗
|   (27) 
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Fig. 4. Flowchart of the proposed QRL-RPS algorithm 

The second reflection corresponds to diffusion transformation 

(𝑈
𝑎0
𝑘,𝑗(𝑣)

), which enhances the amplitude of good action and 

suppresses the amplitude of other actions.  

𝑈
𝑎0
𝑘,𝑗(𝑣)

= 2|𝑎0
𝑘,𝑗(𝑣)

〉〈𝑎0
𝑘,𝑗(𝑣)

| − 𝐼   (28) 

where, 𝐼 denotes the unitary matrix with suitable dimension. 

Thus, Grover transformation is represented as 

𝑈𝐺𝑟 = 𝑈
𝑎0
𝑘,𝑗(𝑣)

𝑈
 𝑎𝑤
𝑘,𝑗     (29) 

The repeated number of Grover’s transformation 𝑈𝐺𝑟  

applies on action  (𝑎0
𝑘,𝑗(𝑣)

)  and amplifies the probability 

amplitude of good action. When an action 𝑎𝑤
𝑘,𝑗

 is carried out in 

Eigen state|  𝑠𝑙
𝑘,𝑗
〉 respective reward is obtained. Then, 

according to the obtained reward, probability amplitude of 

good action is amplified by iterating 𝐺  times of Grover’s 

transformation. The number of iteration can be calculated 

as  𝐺 = 𝑖𝑛𝑡[𝑔(𝑈𝑘,𝑗 + V(𝑠𝑙
𝑘,𝑗+1

)], where  𝑔  is proportionality 

constant. After each updating, probability amplitude 

normalizes to ∑ |𝐿 𝑎𝑤𝑘 |
2

11....1⏞  
𝑣

 𝑎𝑤
𝑘 =00…0

= 1. Thus, the optimal policy 

for joint relay and transmit power (action) can be constructed 

by simply selecting an action with higher amplitude value in 

each state using quantum collapse postulates. 

VI. QRL BASED JOINT OPTIMAL RELAY AND TRANSMIT POWER 

SELECTION (QRL-RPS) 

Initially, we establish a relationship between action (state) 

of RL and Eigen action (Eigen state) of QRL by choosing an 

observable of quantum system. Observable provides a set of 

Eigen vectors of dimension 2𝑣  actions (for 2𝑢 Eigen states), 

that form a complete set of orthonormal bases in a Hilbert 

space. When quantum superposition action (𝑎0
𝑘,𝑗(𝑣)

)  is 

observed, an Eigen action  𝑎𝑤
𝑘,𝑗

 is obtained. The action is 

selected according to collapse postulate using Eq. (23). After 

execution of obtained Eigen action 𝑎𝑤
𝑘,𝑗

, node state changes to 

next state 𝑠𝑙
𝑘,𝑗+1

 with its state value  V(𝑠𝑙
𝑘,𝑗+1

)  and 

corresponding reward 𝑈𝑘,𝑗 during  𝑡𝑗 . To update state value 

𝑉(𝑠𝑙
𝑘,𝑗
) one-step TD (0) rule is used. The reward 𝑈𝑘,𝑗and state 

value V(𝑠𝑙
𝑘,𝑗+1

)  are used to determine the value of 𝐺  for 

amplification of probability amplitude of good action. The 

learning process repeats to small positive number 𝑒  such 

that |∆𝑉(𝑠𝑙
𝑘,𝑗
)| ≤ 𝑒, where ∆𝑉(𝑠𝑙

𝑘,𝑗
) is the difference between 

previous and current state-value and  𝑒 = 10−3 . For better 

understanding of workflow of proposed framework, a 

flowchart is given in Fig. 4. The quantum black box (oracle ( 

)) modify system state using phase shift by π radian if the 

system is already into correct state or do nothing. Simply, 

oracle function negates probability amplitude of system and 

leaves the system in correct state [27]. Further, an algorithm is 

also presented (Algorithm-1) to show the working in terms of 

starting from MDP and their solution using quantum learning. 

Algorithm-1: QRL-RPS 

1. Initialization: 

I. Initialize the value of  ζ, γ,𝑔, 𝑒 and time slot 𝑗; 

II. For a node 𝑁𝑘(𝑗), observe the Quantum Eigen state |𝑠𝑙
𝑘,𝑗𝑢〉 =

∑ 𝐿𝑠𝑙𝑘
|𝑠𝑙
𝑘,𝑗〉11....1⏞  

𝑢

𝑠𝑙
𝑘=00….0

 and its corresponding Eigen action 

|𝑎𝑤
𝑘,𝑗𝑣
(𝑠𝑙
𝑘,𝑗
)〉 = ∑ 𝐿𝑎𝑤𝑘 |𝑎𝑤

𝑘,𝑗〉11....1⏞  
𝑣

𝑎𝑤
𝑘=00…0

  

III. Initialize the state-value  𝑉(𝑠𝑙
𝑘,𝑗
)  of each state  |𝑠𝑙

𝑘,𝑗
〉 

corresponding to its available Eigen actions |𝑎𝑤
𝑘,𝑗𝑣
(𝑠𝑙
𝑘,𝑗
)〉.   

IV. Observe initial state |𝑠𝑙
𝑘,𝑗〉 of node 𝑁𝑘(𝑗)  and its 

corresponding all available Eigen actions |𝑎𝑤
𝑘,𝑗〉.  
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V. Initialize all the action qubits (𝑣 ) to zero using quantum 

identity gate for observed state |𝑠𝑙
𝑘,𝑗
 〉. 

VI. Apply Hadamard gate on each action qubits to provide equal 

amplitude value to each available actions of state |𝑠𝑙
𝑘,𝑗
 〉. 

VII. Select an action using quantum collapse postulate Eq.(23) 

and get |𝑎𝑤
𝑘,𝑗
〉. 

2. Repeat (for each episode ) 

While (|∆𝑉(𝑠𝑙
𝑘,𝑗
)| ≤ 𝑒) 

I. Execute the action |𝑎𝑤
𝑘,𝑗
〉  i.e. relay node is selected and 

transmit power is allocated to 𝑁𝑘 in state |𝑠𝑙
𝑘,𝑗
 〉. 

II. 𝑁𝑘  transmits information to selected relay using allocated 

transmit power 

III. Relay sends the calculated throughput 𝑅𝑘,𝑗 to 𝑁𝑘 as feedback 

IV. 𝑁𝑘  evaluates the utility 𝑈𝑘,𝑗  using throughput  𝑅𝑘,𝑗  and  

energy consumption 𝐸𝑐𝑜𝑛
𝑘,𝑗

. 

V. Observe the next state |𝑠𝑙
𝑘,𝑗+1

 〉 and its corresponding action 

|𝑎𝑤
𝑘,𝑗+1〉 using collapse postulate. 

VI. Update the state value  𝑉(𝑠𝑙
𝑘,𝑗
) using Eq.(24)  

*/amplify the probability amplitude of good action using 

Grover’s Iteration*/ 

VII. For (G=1 to 𝑖𝑛𝑡[𝑔(𝑈𝑘,𝑗 + V(𝑠𝑙
𝑘,𝑗+1

)]) 

𝑈𝐺𝑟|𝑎𝑤
𝑘,𝑗
〉 = 𝑈

𝑎0
𝑘,𝑗(𝑣)𝑈𝑎𝑤

𝑘,𝑗|𝑎𝑤
𝑘,𝑗
〉 

VIII. Set |𝑠𝑙
𝑘,𝑗〉 ← |𝑠𝑙

𝑘,𝑗+1
 〉 and |𝑎𝑤

𝑘,𝑗
〉 ← |𝑎𝑤

𝑘,𝑗+1
〉 

End While 

A. Analysis of the Proposed QRL-RPS Algorithm 

 In this section, some conceptual characteristic of the 

proposed algorithm has been discussed. Three major 

properties are presented including: (1) an asymptotic analysis 

of convergence property, (2) time complexity and (3) 

feasibility study for QRL-RPS algorithm.  

1. Convergence Property- For updating of state-value in 

QRL, TD(0) method is used. For the proposed learning 

problem, QRL algorithm converges to its optimal value 

𝑉∗(𝑠𝑙
𝑘,𝑗
)  by utilizing appropriate exploration strategy under 

the following condition- 

lim
𝑇→∞

∑ ζ𝑗 = ∞,       
𝑇
𝑗=1 lim

𝑇→∞
∑ ζ𝑗

2 < ∞𝑇
𝑗=1      (30) 

In QRL, we use same one-step TD(0)  updating rule as in 

traditional RL. So, the convergence property of the proposed 

QRL is same as traditional TD algorithm in RL [26].    

2. Time Complexity Analysis- The time complexity of the 

proposed algorithm mainly depends upon updating of state-

value 𝑉(𝑠𝑙
𝑘,𝑗
) and Grover’s iteration in the line number VI and 

VII, respectively. The updating Eq. (24) for value iteration 

take time complexity of O(|𝑁𝑠𝑡 × 𝑂(𝑣)|), for each updation of 

single state-value  𝑉(𝑠𝑙
𝑘,𝑗
), because it uses collapse postulate 

to measure superposition action-state (measure 𝑣  number of 

qubits) and provide the action with maximum probability in 

constant time O(𝑣). And the amplitude amplification of action 

is done by Grover’s iteration (VII) in 𝑂(|√𝑁𝑎𝑐|).  The value 

update and Grover’s amplitude amplification sweeps through 

state-space 𝑁𝑠𝑡   in order to converge the algorithm till 

(|∆𝑉(𝑠𝑙
𝑘,𝑗
)| ≤ 𝑒) that includes another factor of 𝑁𝑠𝑡 , making 

overall time complexity 𝑂 (𝑁𝑠𝑡 × (|𝑁𝑠𝑡 × 𝑂(𝑣)|+|√𝑁𝑎𝑐  |)) 

i.e. 𝑂 (𝑁𝑠𝑡 × (|𝑁𝑠𝑡|+|√𝑁𝑎𝑐  |)). 

3. Feasibility Analysis- The proposed algorithm mainly 

depends upon two operations such as initialization of equally 

weighted superposition state and Grover’s iteration. As, 

Grover’s search algorithm also uses above specified 

operations. And, these operations can be done by using 

quantum gates and realization of these gates (Hadamard and 

Identity) are possible through creating quantum virtual 

machines on classical machines using available software 

development kits such as Rigetti’s Forest, Scikit-quantum 

python module. Thus, already implemented Grover’s search 

algorithm proves feasibility of our proposed algorithm.  

V.  SIMULATION AND RESULT ANALYSIS 

A. Simulation Environment Settings  

The simulation of the proposed framework for network 

utility maximization is implemented using quantum virtual 

machine (QVM) hosted on Rigetti’s Forest platform with 

supporting programming language: quantum instruction 

language (Quil) which requires pyQuil Python-package and 

Python 3.8.1. The major inbuilt functions of pyQuil that are 

included in simulation script of proposed framework, are as 

follows. 1) get_qc(): to get a simulated quantum computer on 

the local server machine. 2) local_forest_runtime(): to make 

sure both QVM and Quil complier are available. 3) 

qvm.run_and_measure(): run program; collapse the state with 

a measurement and return result. 4) declare(): to get stored 

result in quantum register. The major quantum gates used in 

simulation are I(): Identity gate, and H(): Hadamard gates. The 

MATLAB Simulink model of photovoltaic cell panel is used 

to implement the energy-harvesting model [28].  

We consider an EH communication scenario consisting of a 

source node, 16 full-duplex relay nodes and a sink node that 

are randomly scattered over 100 × 100 𝑚2 network area. The 

reasons behind consideration of full-duplex relay nodes over 

half-duplex relay nodes in results is two folds: (i) It doubles 

the throughput of network without scavenging any extra 

channel resource. (ii) Using separate antennas for receiving 

and transmitting signal can reduce self-interference in static 

relay makes it more spectrally efficient and delay-tolerant in 

practical channel conditions [29]. Thus, for using half-duplex 

relay node in network force us to allocate two orthogonal time 

or frequency channel for data communication. Which puts 

extra cost in network and throughput of network also 

degrades. The network system can be in any state from the 

considered eight states |𝑠𝑘,𝑗〉  and each state has 

corresponding  𝐴𝑘(𝑠𝑘,𝑗) = {|𝑎0
𝑘,𝑗
〉, |𝑎1

𝑘,𝑗
〉, … . , |𝑎15

𝑘,𝑗〉} actions. 

Eight state and its corresponding 16 actions are represented by 

𝑢 = 3 and 𝑣 = 4 qubits in QVM. The channel bandwidth of 

all communication links is considered 1000 𝐻𝑧 and entire link 

experience Rayleigh flat fading. The MATLAB function is 

used to generate time-varying Rayleigh fading channel value 

𝑚𝑘,𝑗 and channel coefficient value ℎ𝑘,𝑗  [30], which is 

randomly generated while satisfying its statistical properties. 

The initial energy level of all sensors is considered 10 𝑚𝐽. 

B. Result Analysis 

1) Convergence Performance Against Time Slots 
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Fig. 5-7. illustrates the convergence property of the 

proposed technique and the state-of-the-art techniques in terms 

of throughput, energy consumption and utility respectively 

against time slot  tj of the learning phase using parameter ζ =

0.05  and γ = 0.85. We observed in the fig. 5, the throughput 

of the proposed technique increases as the time slot increases 

until  tj = 180 and after that, it converges to optimal value for 

each state of the system. However, for DQ-RSS and QL-RSA 

the technique converges to optimal throughput value for each 

state after  tj = 410 and  tj = 580  respectively. Additionally, 

from the fig.6, it is observed that energy consumption 

decreases with increase in time slot and converges after  tj =

180, 410 and 580  for QRL-RPS, DQ-RSS and QL-RSA 

respectively. Thus, the proposed technique learns the optimal 

policy faster and converges in less time, which in turn reduces 

the energy consumption for data transmission using different 

selected relay and transmit power that enhances the 

throughput as compared to the other techniques. Further, as 

the utility is computed in terms of throughput and energy 

consumption, so on combining the result of the fig. 5 and fig. 

6 the utility mapped with time slot is shown in the fig. 7. It can 

be observed from the fig. 7, the proposed technique achieves 

higher utility (Uk,j)  after  tj = 180   as time slot increases 

whereas DQ-RSS and QL-RSA lagging behind by 27 % and 

40% respectively. Therefore, the proposed algorithm 

adaptively obtains optimal policy for joint relay and transmits 

power selection after its convergence in less time. 

 
Fig. 5. Convergence performance comparison of throughput

 
Fig. 6 .Convergence performance comparison of energy consumption 

This is due to the fact that the proposed technique uses the 

concept of quantum information processing. The quantum 

processing utilizes the concept of state superposition and 

quantum parallelism. Further, for optimal relay and transmit 

power selection (action) it utilizes amplitude amplification of 

actions using Grover’s iteration and quantum collapse 

postulates. However, QL-RSA and DQ-RSS uses random and 

𝜖 -greedy policy respectively, which provides slow learning 

speed and is not preferable for complex problem having large 

number of state and action space. Furthermore, the random 

selection policy randomly selects any relay and transmits 

power which is not optimal and makes the system to consume 

more energy and have lower throughput that leads to less 

utility.  

 
Fig. 7. Convergence performance comparison of utility 

2) System Performance Against SNR 

 

Fig. 8. Throughput as a function of SNR 

A comparison of average throughput and average energy 

consumption between QRL-RPS and state-of-the-art 

techniques with different SNR value are presented in Fig. 8 

and Fig. 9 respectively. The throughput and energy 

consumption of all considered techniques are a monotonically 

increasing function of SNR of the communication channel 

with parameters ζ = 0.05  and  𝛾 = 0.85 . This can be 

attributed to the reason that high SNR value indicates the 

signal is less distorted by channel noise and the possibility of 

successful and correct data decoding at the receiver side 

enhances, which as a result require more energy. It can be 

clearly observed that after a certain SNR value (29 dB) 

average throughput and average energy consumption becomes 

saturated is fourfold (i) self-interference cancellation 

capability of full-duplex relay node reaches up to maximum 

capability (ii) the limited computational capability of IoT node 

to decode the received signal; (iii) QRL-RPS has to fulfilled 

the constraint C3 and C4; such that throughput of relay nodes 

depends upon the data arrival from the previous EH-IoT node 

to defer the buffer overflow condition. (iv) and, selection of 

transmit power is bounded by constraint defined in C5. It is 

evident from the results that QRL-RPS outperforms DQ-RSS 

and QL-RSA by improving the throughput and reducing the 

energy consumption. As, the utility enhances by increasing the 

throughput and lowering down the energy consumption. The 

results in Fig. 8 and Fig. 9 are in favor of enhancing the 
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average utility of the QRL-RPS technique as compared to DQ-

RSS and QL-RSA as shown in Fig. 10.  

The QRL-RPS technique achieves such good performance 

by taking the advantage of the quantum property such as 

quantum superposition and quantum parallelisms used for 

selection of joint optimal relay and transmit power at each 

network state. The QL-RSA and DQ-RSS use random and 𝜖-
greedy policy respectively. The problem with these schemes is 

that the 𝜖-greedy policy selects equally among all available 

actions while exploring. In addition, it is difficult to select a 

proper value for 𝜖, which can provide a balance between the 

exploration and exploitation strategy for action selection. 

Whereas, the QRL-RPS technique utilizes the probabilistic 

approach for optimal action selection, that is motivated by the 

collapse postulate of quantum measurement which do not 

require any parameter settings and overcome the problem of 

QL-RSA and DQ-RSS. Thus, the proposed technique makes 

the learning agent to learn an optimal policy faster in an 

uncertain environment as compared to the other techniques. 

The random technique shows worst performance as compared 

to the other techniques.   

  
Fig. 9. Energy consumption as a function of SNR 

                                   
Fig. 10. Utility as a function of SNR 

3)  Learning Performance of the Proposed Technique with 

Different Learning Rates 
The result in the Fig. 11 (a) shows the impact of varying 

learning rates i.e.  ζ = {0.005, 0.05, 0.5}  on QRL-RPS 

convergence rate.  It can be clearly observed that for smaller 

value of learning rate (i.e.,ζ = 0.005), the learning agent in 

initial trail of learning takes more than 1000 steps to learn 

optimal policy.  This can be attributed to the reason that at 

initial trail learning agent behaves naive, does not have 

knowledge about environment, and spends more number of 

steps in exploring the environment. Further, as the number of 

learning trails increases, learning agent settle down between 

380 to 440 steps to reach convergence. This is because the 

learning agent gains knowledge about environment and not 

always wastes the steps in exploration. It is worthy to note that 

for learning rate ζ = 0.05, the proposed technique takes less 

number of steps for convergence as compared to  ζ =
0.005 and 0.5 . This observation affirms that learning agent is 

able to balance between exploration of environment and 

exploitation of knowledge. The reason behind is Grover’s 

amplitude amplification method makes the learning agent 

smarter to learn the optimal policy faster while searching over 

all the available action space. Only for the initial trail of 

learning rate ζ = 0.05, the learning agent takes 590 steps and 

thereafter for most of the upcoming trails learning agent learns 

the optimal policy at the cost of between 160 to 210 trials. It is 

also notable from the result that for  ζ = 0.5 , the proposed 

technique is unable to converge to suitable value. This 

observation affirms that the learning agent frequently updates 

the old reward and is not able to learn the optimal policy. 

Whereas fig 11 (b) shows the learning performance of the 

presented technique in terms of taken steps until convergence 

regard to learning rate  ζ ϵ {0.02, 0.05, 0.1}  is about 230. It 

provide guarantees to faster and better selection of the joint 

transmit power and relay for the dynamic environment 

attributed as robust technique.  

                  
Fig. 11 (a-b) Convergence of the QRL-RPS technique with ζ 

4) Convergence of the Proposed Technique with Different    

Discount Factor and Learning Rate 

 The result in Fig. 12 shows the joint impact of varying 

discount factor (0.1 ≤ 𝛾 ≤ 1) and learning rate (0.01 ≤ ζ ≤
0.1)  on average utility of QRL-RPS technique. It can be 

clearly observed that QRL-RPS experiences higher utility 

(0.86) for trained optimal policy at γ = 0.85  and  ζ = 0.05 . 

This observation affirms that the achieved reward in recent 

time slots has more impact on utility for the current time slot 

rather than the reward achieved in longer time horizon. It is 

evident from the result that for 𝛾 = 1, and ζ =0.1, the learning 

agent gives equal chance to all the previous reward under 

unbalanced exploration and exploitation strategy, respectively.  

Thus, it contains most irrelevant reward of longer time 

horizons at the cost of large fluctuations, which have less 

impact in calculation of long-term expected utility. However, 

when 𝛾  value is too small, i.e., in range {0.1, 0.5}, and 

learning rate is set to any value,  the trained optimal policy 

pays more attention to the most immediate reward rather than 

future rewards and utility converges to bad value. It is worthy 

to note that for the lower value of 𝛾 = 1 − 1 ∗ 𝑒−10, the utility 

of the proposed technique plunges to much lower value.  This 

can be attributed to the reason that very long time old rewards 

cannot estimate the network behavior perfectly in terms of 

utility. It is also important to note that, QRL-RPS keeps good 
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learning performance in the range of 𝛾 𝜖 {0.65, 0.9} 
and  ζ 𝜖 {0.05, 0.1},and maximize the network utility above 

0.73. Thus, the QRL-PRS is much more robust as learning 

performance is in control manner for wider range of learning 

rate and discount factor. This can be attributed to much more 

practical learning environment such as joint optimal relay and 

transmit power selection. 

 

Fig. 12. Utility as a function of ζ & 𝛾 

5)  Impact of Data Buffer Size on Average Utility 

A comparison of average utility between QRL-RPS and 

state-of the-art techniques with varying data buffer size factor 

is presented in Fig. 13. For all considered techniques, the 

buffer size at relay node 𝑁2  and 𝑁3  is taken 𝐷𝑚𝑎𝑥,2 =

µ𝑅1,𝑗
(𝐵𝑚𝑎𝑥,2)

 and 𝐷𝑚𝑎𝑥,3 = µ𝑅2,𝑗
(𝐵𝑚𝑎𝑥,3)

 respectively, where 

µ denotes a tunable parameter, and 𝑅1,𝑗and 𝑅2,𝑗  are expected 

throughput of 𝑁2 and 𝑁3 respectively. The selection of optimal 

relay and transmit power depends upon current buffer level of 

nodes 𝑁2 and 𝑁3 in each time slot. It is evident from the result 

that QRL-RPS technique handles the data buffer overflow 

condition better, and its average utility is higher as compared 

to other techniques for the considered range of µ. This can be 

attributed to the reason that QRL-RPS uses the concepts of 

amplitude amplification and collapse postulates of quantum 

mechanics for action selection, which handles the overflow 

condition better than state-of-the-art techniques. Further, it 

makes the learning agent to better explore the available 

options of relays and transmit powers in order to increase the 

long-term average utility in an uncertain environment with 

only casual knowledge (buffer level) available at the 

transmitter. DQ-RSS and QL-RSA techniques use 𝜖 -greedy 

and random policy for action selection respectively, whose 

exploration and exploitation strategy is not so good. And, the 

selected relay and transmit power of node 𝑁2 and 𝑁3 are not 

able to handle the buffer overflow condition properly. The 

average utility of random technique is the lowest, as it does 

not have any learning agent and it selects the relay and 

transmit power randomly for data transmission.  

Further, it can be observed that all the considered 

techniques achieve less utility using small value of  µ because 

data received from 𝑁1 and 𝑁2 are not completely stored in the 

data buffer of 𝑁2 and 𝑁3 respectively and are dropped. As, this 

scenario increases the probability of data retransmission and 

further increases the total energy consumption. As evident 

from the result that the average utility saturates and data buffer 

overflow conditions happen less frequently for all the 

techniques at approx. value of µ = 2.7 when the data buffer 

size is more at 𝑁2  and 𝑁3  as compared to the data rate 

received from 𝑁1 and 𝑁2 respectively. However, for large data 

buffer size (large value of µ) as compared to 𝑅1,𝑗 and 𝑅2,𝑗 for 

𝑁2 and 𝑁3 respectively, its effect on the network performance 

is minimum. Because there is limitation on data size arrival at 

𝑁2  and 𝑁3  (because of limited power available at 𝑁1  and 𝑁2 

respectively) which can be stored in proper buffer size for µ =
  3, Therefore, larger value of buffer size does not affect much 

the network performance in terms of utility.    

 
Fig. 13. Utility as a function of data buffer size factor (µ) 

6) Grover’s Amplitude Value and Occurrence Probability of 

Different Actions 

The result in Fig. 14 shows the amplitude value and 

occurrence probability for different actions of QRL-RPS 

learning agent after applying Grover’s transformation. The 

heart of the proposed QRL-RPS technique for joint optimal 

relay and transmit power selection (action) is its amplitude 

amplification method, and it depends upon Grover’s iteration 

process. It helps the learning agent to take better decision for 

action selection in each time slot in order to learn the optimal 

policy. The aforementioned method amplifies the amplitude of 

“good action” in each Grover’s iteration.   

For the simulation, single state |𝑠3
1,100〉 of the source node 

𝑁1 and its corresponding 16 actions (4 qubit representations) 

in time slot 𝑡𝑗 = 100 with parameters ζ = 0.05, 𝛾 = 0.85 and 

 𝑔 = 3  are considered. The superposition action for state,   

|𝑠3
1,100〉 = {0.08𝐽, 0.025𝐽, 12 ∗ 103𝑏𝑖𝑡𝑠, [0.062, 0.047, 0.074,

0.616, 0.097, 0.0357, 0.0017, 0.0253]} of 𝑁1  in 𝑡𝑗 = 100 

after amplitude amplification is computed as  

|𝑎𝑤0..15
1,100 4(𝑠3

1,100)〉 = (0.1 + 0𝑗)|0000〉 + (0.1 + 0𝑗)|0001〉

+ (0.1 + 0𝑗)|0010〉 + (𝟎. 𝟖𝟔 + 𝟎𝒋)|𝟎𝟎𝟏𝟏〉
+ (0.1 + 0𝑗)|0100〉 + (0.1 + 0𝑗)|0101〉
+ (0.1 + 0𝑗)|0110〉 + (0.1 + 0𝑗)|0111〉
+ (0.1 + 0𝑗)|1000〉 + (0.33 + 0𝑗)|1001〉
+ (0.1 + 0𝑗)|1010〉 + (0.1 + 0𝑗)|1011〉
+ (0.1 + 0𝑗)|1100〉 + (0.1 + 0𝑗)|1101〉
+ (0.1 + 0𝑗)|1110〉 + (0.1 + 0𝑗)|1111〉 

where, sum of the occurrence probability of action after 

amplitude amplification is equal to 1. It is evident from the 

results that the action collapse phenomenon collapses the 

superposition action |𝑎𝑤0..15
1,100 4(𝑠3

1,100)〉  to action |0011〉 

(|𝑅𝑓
𝑘,𝑗 , 𝑃𝑘,𝑗〉 = |𝑟4, 0.8 𝑑𝐵𝑚〉) with amplitude (0.86 + 0𝑗) and 

occurrence probability |(0.86 + 0𝑗)|2 = 0.75.  
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Fig. 14. Grover’s transformation versus action number 

VII. CONCLUSIONS AND FUTURE SCOPE 

In this paper, a novel QRL-based framework is proposed to 

inspect the problem of joint optimal relay and transmit power 

selection for network utility maximization in energy-

constrained sensor enabled-IoT. The states of the environment 

and actions of the corresponding state are represented by 

qubits using the concept of quantum superposition and action 

selection is motivated by the collapse phenomenon of 

quantum computing. A QRL-RPS algorithm is proposed to 

provide optimal policy for the formulated selection problem. 

The simulation results show that the proposed technique 

performs better as compare to state-of-the-art techniques in 

terms of convergence speed and network utility by 40% and 

27% against QL-RSA and DQ-RSS respectively. Our 

proposed idea not only enhances the working of the current 

learning algorithm on conventional computers, but also 

encourages the evolution of related research fields like 

machine learning and quantum computation. In our future 

research, the team will investigate more use cases for quantum 

learning enabled green computing in next generation networks 

such as in connected traffic networks, big data processing and 

visualization [31, 32]. Integrating traditional optimization 

approach with quantum learning for green communication will 

also be the quest [33]. 
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