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Abstract—Social Internet of Vehicles (SIoV) is an evolving
vehicular networking framework integrating the next generation
smart devices with vehicular communications. Green computing
and communication under disruptive vehicular environment is
one of the challenging tasks for enabling SIoV. In this context,
green traffic data dissemination in SIoV environments is modelled
as an NP-hard problem focusing on heterogeneous traffic data,
transmission distance from next generation smart devices and
probabilistic delay in transmissions due to disruptive vehicular
environment. An adopted meta-heuristic solution namely Two-
Way Particle Swarm Optimization (TWPSO) is developed for
the green traffic data dissemination problem in SIoV considering
software defined vehicular network architecture. Extensive simu-
lation experiments were performed to assess the performance of
TWPSO as compared to the state-of-the-art techniques. The criti-
cal analysis of the comparative results attest the green computing
oriented benefits of TWPSO under real SIoV environments.

Index Terms—Green computing, Social Internet of vehicles,
Software defined vehicular networking.

I. INTRODUCTION

INTELLIGENT Transportation System (ITS) has been en-
riching towards sensors enabled smart devices attached

with roads, traffic lights, sign boards, and vehicles with
computing and communication capabilities [1]. The sensor en-
abled smart traffic environments is transforming the traditional
vehicular networking towards Social Internet of connected
Vehicles (SIoV) [2]. Recent advancements in SIoV have given
rise to the smart services including on-road traffic information,
nearby restaurants, gas stations, hospitals and lots of other
utility services [3]. Technically, SIoV is a dynamic mobile
network that empowers information dissemination among ve-
hicles, battery powered smart devices and cloud or Fog enabled
servers [4] through advancements in communication’s gener-
ations. SIoV is an embryonic vehicular cyber-physical system
which extends vehicular adhoc networks (VANETs), Internet
of Things (IoT) and fog or edge servers in combination [5].

SIoV addresses on-road traffic safety and efficiency issues
in an complex and adaptive vehicular networking environment
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[6]. Commercialization of SIoV includes addressing the issues
related to cost of network management, frequent change in its
topology [7], unreliable Internet service, incompatibility with
personal devices, heterogeneous environment, frequent change
in the network architecture and poor management of battery
powered smart devices in traffic environment [8].

Software defined SIoV architecture decouples vehicular
network into data and control planes [9]. In the proposed archi-
tecture, the sensor enabled smart devices in traffic environment
are considered in data plane which offers the collection of
traffic data from the environment and send it to the control
plane nodes. The vehicles are considered into control plane
nodes which provides forwarding of traffic data to the cloud or
edge enabled control server (CS). Further, it enables network
control to become directly programmable and the underlying
infrastructure to be abstracted based the requirement of traffic
applications and network services. It permits the realization
of flexible vehicular edge or cloud framework as a CS entity
[10]. The rest of the control nodes including smart devices
and RSUs in traffic environments can also be treated as
Software defined Vehicular Nodes (SVN), with the flexibility
of changing the role of the control nodes via programmable
control from the CS [11].

Green computing in software defined SIoV environments
is significant for considering the heterogeneous and disrup-
tive vehicular networking environments [12]. Effective energy
utilization in SVN is critical for durable distributed operation
of various smart devices in traffic environments. The energy
utilization in SVN can be defined in terms of communica-
tion disruption centric delay, dynamic transmission distance,
and heterogeneous traffic data in SIoV environments. In this
context, this paper proposes a framework for enabling green
computing in software defined social internet of vehicles
focusing on next generation smart devices attached traffic
environment. The major contributions of the paper can be
summarized in following folds:
• Firstly, a system model for software defined social In-

ternet of Vehicles is presented by decoupling vehicular
networking architecture into data and control planes.

• Secondly, green computing in social Internet of vehicles
is modeled as an NP-hard optimization problem consider-
ing the constraints of disruptive vehicular environments.

• Thirdly, an adapted meta-heuristic solution Two-Way
Particle Swarm Optimization (TWPSO) is developed fo-
cusing on software defined vehicular networking archi-
tecture.

• Finally, a case study is performed to comparatively assess
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Fig. 1: Cyber-Physical world interactions in SIoV environment illustrating
hierarchical network architecture with SDN environment

the green computing centric performance benefits of
TWPSO with the state-of-the-art heuristic solutions.

The rest of the paper is organized as follows. The related
literature on SIoV is critically explored in Section II. The
details of the proposed green computing framework in SIoV
environment is presented in Section III. Section IV discusses
a case study with in-depth analysis of experimental results,
followed by the concluding remarks presented in Section V.

II. LITERATURE SURVEY

Intelligent Transportation System has been emerged as the
primary focused research area in smart cities [13]. Inclusion of
the V2V and V2I communication in ITS has enabled SIoV to
deal with traffic management, disaster management, intelligent
traffic surveillance and other emergency services [2]. SIoVs
need continuous communication among their specified group
of vehicles associated with RSUs/OBUs [3], therefore, data
routing plays a significant role in SIoVs to act in real-time
and dynamic scenarios. Generally, in SIoVs, one entity needs
to communicate with multiple entities; therefore, an effective
architecture with multicast routing feasibility is demanded.
Multicast routing is necessity to establish SIoV network, it has
been traditionally used in wireless Ad-hoc sensors networks
[14] and Vehicular Ad-hoc Networks [15].
Considering Vehicular network dynamics requirements, SD-
SIoV in transport management has progressed as a network
archetype to enable the vehicular network with dynamic,
robust, reliable with auto configurable. Following this, Sadio
et al. [16] came up with an architecture which consists of
four layers to provide programmability, flexibility, scalability
and global knowledge. These layers include cloud, SDN
controller, fog and vehicles. Further, authors [15] utilized the
SDN controller for routing packets from server to VANET.
To predict the trajectory of the vehicles an architecture was
also proposed, it performed multicast and scheduling with

minimal cost and optimal for delay-constraint applications
[4]. SD-SIoV has also been proposed for wireless networks
to add tractability to integrate exponentially growing wireless
traffic and to acclimate network configurations [17]. Despite
of feasibility of SD-SIoV to manage vehicular network with
numerous benefits, energy consumption in SD-SIoV routing
remains a matter of concern. Few methods for energy aware
routing in deterministic scenarios have been discussed in [18].
An energy aware routing protocol in vehicular networks with
the help of openflow switches and SDN controller. Further,
bandwidth and deadline constraints are considered while for-
warding the packets to other nodes, however, authors did
not account the green communication requirement [19] [20].
As the battery life of sensor nodes in SD-SIoV is limited,
therefore, this work explored a requirement of energy efficient
or green multicast routing algorithm in SIoVs to maximize
the vehicular network lifetime during the continuous data
communication on auto-configured and most demanding SD-
SIoV enabled architecture.

III. SOFTWARE DEFINED SOCIAL INTERNET OF VEHICLES

A. System Model

In software defined SIoV, the cyber-physical world of con-
nected vehicles is divided into three layered hierarchical net-
work architecture including SVNs, designated control roadside
units as traffic data pre-processor, and fog enabled control
server (CS) as network controller (see Fig. 1). It shows the
interaction between vehicular cyber and physical world with
the different clusters containing different social groups of
homogeneous vehicles for the data dissemination in order to
meet the requirement of the SIoV. Various Road Side Units
(RSUs) supporting V2I connection and V2V communication
are also shown in the given scenario. Control RSUs receive
the data from CS (traffic cloud) which is disseminated to
the respective vehicles through common RSUs or vice versa.
Highly computation oriented tasks and decision making are
done at the CS. It is clarified that Internet availability is
considered at control planes in the proposed architecture for
software defined SIoV. The data planes consist of the local area
network including vehicular resources and internet as well. By
using local area vehicular networks, RSUs receive the data
from all the SIOVs and utilizing the internet, RSUs forward
the data to the control plane. The architecture of proposed
SIoV in Fig. 1 encompasses with following characteristics of
the fundamental vehicular networking model.
• SVN performs a set of tasks in vehicular environments

(λ) i.e., traffic sensing and communication.
• SVN can be a common vehicular nodes, a smart device

attached Sensor Node (SN) in traffic environments or
Control Node (CN) as designated RSUs.

• SIoV supports multipurpose sensing identifiable with
unique identifier (ID) in the hierarchical networking ar-
chitecture.

• CS can be deployed as a Cloud/Fog server which can
communicate to all the CNs of the SIoV environments.

• SVN are dedicated to sense and forward heterogeneous
traffic data via CNs and CS.
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TABLE I: NOMENCLATURE

Symbols Description
t Number of control nodes (Control RSUs)
r Number of common nodes
CN Set of Control Nodes
SN Set of common nodes
n Total destination nodes
xi, yi co-ordinates of the ith node in space
d Distance
d− th distance threshold for communication
Eelec Dissipated energy per bit
σfs Free space model coefficient
σmp Multi-path fading coefficient
Eij

TX−SN Energy consumption for transmitting packet from ith sensor
nodes to jth node

Eij
TX−CN Transmission energy of CN to transmit k bit data

Eij
RX Packet Reception energy

EDA Energy consumption for compression and aggregation
EMT Energy consumption of multi-cast tree
EDA Energy consumption of path i
Del(i,i+1) Delay for packet communication from ith node to i+ 1th
Vn Velocity of nth particle
Xn Position of nth particle
iter Current iteration number
Xg−best Position of best particle in the population
w Inertia weight

• Each SVN is capable to act either in sensing mode or
communication mode.

• Any two vehicular nodes are connected with the sym-
metric communication links. A threshold value based
better signal strength is considered for distance estimation
between vehicles.

The proposed architecture of the Software Defined Wireless
Sensor Network (SD-SIoV) comprises one Control Server
(CS) and r + t SDSN nodes out of which; t is the number
of Control Nodes (Control RSUs) and r are common software
defined Sensor Nodes (SNs) at the road or transport infras-
tructure (corresponding to OBUs and RSUs) which are able
to connect with installed connecting devices in vehicles. CS
is distant from the CNs and SNs. SD-SIoV can be logically
represented as a connected graph G=(CS,CN,SN) where CS is
the control server, CN is the set of CNs (where CN1, CN2,
CN3, . . . ., CNt ∈ CN) and SN is the set of SNs (where
SN1, SN2, SN3,. . . ., SNr ∈ SN ). Here, the problem is to
construct an energy efficient (green) multi-cast tree to transfer
the recurrent data from the CS to a set of destination nodes
i.e., D = {d1, d2, d3, · · · , dn}. Each di belongs to SNs/CNs
with subject to dynamically configuration of the SDSNs and
re-fabrication of the communication links in a SD-SIoV of
SIoVs such that the lifetime of the SD-SIoV is maximized.

B. Green Computing in SIoV- The Optimization Problem

This work focuses on energy minimization in data com-
munication of SIoVs network. Thus, an energy efficient and
architectural compatible energy estimation model is required.
This work utilizes a widely adopted mathematical model of
energy consumption for data communication which is based
on path loss concept [6]. This model is comprised of multipath
fading (d4 power loss) and free space (Efs) (d2 power loss)
channel models [6]. These models are based on distance (d)
between the transmitter and receiver entities. Let, (xi, yi) and
(xj , yj) denote the coordinates of the transmitter i and receiver
j respectively. Next, the Euclidean distance (d) (between ith

transmitter and jth receiver i.e., dij) can be calculated as

√
(xj − xi)2 − (yj − yi)2. Further, the power control mecha-

nism is used to compensate this path loss. Usage of the model
is defined as if distance is less than a threshold value (dth), free
space energy model is applied; otherwise, multipath energy
model is used. To calculate the energy consumption of the
network, energy model used in [21] is utilized. If a sensor
node i transmits k-bit long packet to node j then energy
consumption will be,

Eij
TX−SN (k, dij) =

{
Eelec × k + σfs × k × d2ij , ifdij ≤ dth
Eelec × k + σmp × k × d4ij , ifdij > dth

(1)
where, Eelec is the dissipated energy per bit to run the
receiver or transmitter circuit which is dependent on several
factors such as digital coding, filtering, modulation and signal
spreading. σfs and σmp represent the coefficients of free-space
and multipath fading models respectively.
Transmission energy of the control node (CN ) to transmit
k-bit message can be calculated using Eq. 2,

Eij
TX−CN (k, dij)

=

{
(Eelec + EDA)× k + σfs × k × d2ij , ifdij ≤ dth
(Eelec + EDA)× k + σmp × k × d4ij , ifdij > dth

(2)
where, EDA represents the energy consumed by the control
node which is consumed in data aggregation. To receive a
packet of size k bits, consumed energy at node j (ERX ) will
be,

Eij
RX(k) = (Eelec + EDA)× k (3)

where, EDA denotes the energy for compression and aggre-
gation. Total consumed energy of a node will be,

Ei = Ei
TX + Ei

RX (4)

As control server communicates with control nodes which later
communicates with sensor nodes, therefore, energy consump-
tion of CS includes all.

ECS = Σ
|CN |
j=1 (Ej−CS

RX kΣ
|SN |
i=1 E

i−j
RXk) (5)

where, Ej−CS
RX denotes the energy consumed for communicat-

ing with member CNs and Ei−j
RX denotes the consumed energy

for the communication between jth CN and ith SN.
Thus, total energy of a single cluster j is

Ecluster,j = Σ
|SN |
i=1 ESNi

+ ECNj
(6)

The average residual energy of SNs can be calculated using
Eq. 7

Eavg−re−SN =

∑n
i=1EreSN

t
(7)

Where, EreSN is the residual energy of SNs installed in
vehicles. Similarly, ratio of the average distance between the
SNs and control RSUs, and between control RSUs and CS
can be calculated as:

dSN−CN =
ΣnCN

j=i ΣnSN
i=1

√
(xCNj − xSNi)2 + (yCNj − ySNi

)2

nSN
(8)
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dCN−CS =
ΣnCN

i=1

√
(xCNi − xCS)2 + (yCNi − yCS)2

nCN
(9)

where, xNODE and yNODE represent the X and Y coordinates
of the respective node ”NODE”, and nTY PE demonstrates
the number of nodes of node type ”TYPE”. Further, the energy
consumed in data transmission between the SNs and control
RSUs and between control RSUs and CS can be calculated by
Eqs. 10-11.

ESN−CN =
ΣnCN

j=1 ΣnSNj
i=1 ETX−SN (k, di,j)

nSN
(10)

ECN−CS =
ΣnCN

i=1 ETX−CN (k, di,CS)

nCN
(11)

This energy model is compatible to the topology of the
proposed architecture as shown in Fig. 1 and the energy model
is used to calculate the energy consumption of any candidate
solution. Further, the multicasting of traffic data from CS to
respective vehicles which follow the path (CS→ CNs→SNs)
or vice-versa. Total energy consumption for sending the data
packets to all destination nodes (D = {d1, d2, ...dn}) include
all paths from CS to the respective SNs which cover all
destination nodes and form a Multicast Tree (MT). If P is the
set of all paths in the selected MT then P = {P1, P2, ...PnP }
where nP is number of paths in multicast tree, and Pi

represents ith path where 1 ≤ i ≤ nP . As mentioned in
system model, each path can be formed with the combination
of SNs and CNs, and it may be designated to the CS and
vice versa. Following this notion, the problem is to minimize
the total energy consumption of the multicast tree which is
formulated as follows:

To minimize,

EMT =

|nP |∑
i=1

EPi
(12)

where,

EPi
=

{
ECS−CNi

+ ESN−CNi
, if CN = neighbor(SNi)

ECS−CNi
+
∑

j∈Pi,j 6=CS(EjZ + ESN−CNj
Z ′), o/w

(13)
Subject to,

D = {d1, d2, ...dn} ⊆ (P1 ∪ P2 ∪ ...PnP ) (14)

EreSN ≥ EthSN

EreCN ≥ EthCN

(15)

|clusters| ≤ t (16)

r + t ≥ (|SN |+ |RSU | ⊆ P ) (17)

neighbor(CS) ⊆ CN (18)

DelMT ≥ Delth (19)

where,

DelMT = max1≤j≤D

v(Pj)∑
i=1

Del(i, i+ 1) (20)

In Eq. 13, EPi
is the energy consumption of path i during

the data communication. Z and Z’ represent flags, value of
Z is 1 when two intermediate nodes of path are part of the
cluster (either SN or normal RSU) and value of Z’ is 1 when
one between two intermediate nodes of the path is CN. In
Eqs. 15 EreSN and EreCN (residual energy of SN and CN)
have a lower bound threshold of battery of EthSN

and EthCN

respectively, which ensures that at any time if node participates
in communication, it should have minimum battery to operate.
In Eqs. 16 and 17, t and r represent the maximum number
of control nodes and normal nodes of the SIOV Network
respectively. In Eq. 19, DelMT is the total delay for delivering
the packet to all the destination of the tree, and Delth is the
delay threshold and DelMT is calculated using Eq. 20. v(Pj)
represents the node sequence of path for destination node j
from CS. Del(i,j) is the delay incurred for the communication
at any time between node i and j. The constraint in Eq. 19
ensures that the delay incurred should be less than the given
threshold value of delay to meet the real time application
requirement.

C. Two-way PSO-A Green Computing Solution for SIoV

In this section, Particle Swarm Optimization [22] is en-
hanced by analysing the problem requirements, and utilizing
the same particle as the two different solutions which is
referred as Two Way Particle Swarm Optimization (TWPSO)
algorithm. It employs the forward (original) particle and back-
ward (reverse of it) particle as the two different solutions of the
same particle, best of both will be accounted as Pbest solution
of the particle. An effective fitness function is proposed to offer
an effective multicast clustering solution in SIoV software
defined architectural scenario. The convergence of the PSO is
improved by proposing an adaptive inertia weight tuner. The
pseudo-code for the same is given in Algorithm 1.

Explanation of Algorithm 1: The proposed algorithm be-
gins with the predefined N number of randomly generated
particles; Xm

n (t), and V m
n (t) (1 ≤ n ≤ N ) are the position

and velocity of nth particle at tth iteration in mth dimension
respectively. If it is not the 0th iteration, in each iteration,
the inertia weight i.e., ω is adaptively tuned by the proposed
adaptive inertia weight tuner as defined in Eq. 26. With ω,
V m
n (t), Xm

n (t) of each particle are updated using Eqs. 23 & 24
respectively. Further, a random number (rV arn) is associated
with each nth particle aimed to decide a pre-specified range of
minimum (minCN ) and maximum (maxCN ) control nodes.
With this, initial rV arn elements of each particle is accounted
as number of CNs, where, number of control nodes can be
changed dynamically based on traffic load. Particle’s position
and velocity vectors are in the form of continuous random
values between two (minimum and maximum) pre-specified
ranges. The Smallest Position Value (SPV) rule (Section
5.2) is applied to Xn(t) vector of continuous values, and
a respective discrete value vector Sn(t) is generated. Next,
Sn(t) is evaluated using the proposed fitness function (Section
5.3) considering rV arn number of CNs. As discussed, the
proposed PSO algorithm acts in two ways, thus, utilizing same
fitness function, each particle is evaluated in two-different
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Algorithm 1: TWPSO
Input : Network, Area, Nodes
Output: XGbest

1 begin
2 N ← PosSize; XGbest ← ∞;
3 Iteration number (iter ← 0);
4 while ¬TerminationCondition do
5 if iter ≥ 1 then
6 Tune inertial weight using Eq. 26;

7 for n = 1 To N do
8 if iter == 0 then
9 Initialize Vn(0) and X0(t);

10 else
11 Vn ← Update velocity using Eq. 23;
12 Xn ← Update position using Eq. 24;

13 Sn(iter) ← SPV(Xn(iter),Vn(iter));
14 FvalFn(iter) ←

ForwardF itness(Xn(iter));
15 FvalBn(iter) ←

BackwardF itness(Reverse(Xn(iter)));
16 if Fitness(FvalFn(iter) ≥ FvalBn(iter))

then
17 xn,p best ← Reverse(Xn(iter);
18 FitV al ← FvalBn(iter);

19 else
20 xp best ← Xn(iter);
21 FitV al ← FvalFn(iter)

22 [PInd PVal] ← min(FitV al);
23 if iter == 0 then
24 GVal ← PVal; Xg best ← XPInd,p best;

25 if PVal < Gval then
26 Xg best ← XPInd,p best;

27 Return (Xg best);

28 end

ways; one is ForwardF itness which is used to calculate
the fitness value by considering initial rV arn nodes as the
CNs, and another one is used to calculate the fitness value by
considering reverse order (rV arn) nodes as CNs. Based on
that best of both fitness values of nth particle i.e., FitV al,
respective order of position vector of each particle is utilized
as the new particle for the next subsequent iterative procedure.
Based on the fitness value, personal best (Pbest) and Global
best (Gbest) of the swarm are initialized for the case of 0th

iteration, otherwise, Pbest and Gbest are updated as specified
in algorithm 1. After each iteration, the two termination criteria
of TWPSO are verified to stop procedure:i) maximum number
of iterations, ii) all particles convergence to the same point. At
the end, Gbest is returned as the final solution of the problem.

1) Particle Encoding and Updation: A particle consists of
its respective position and velocity vector, the length of vector
is equal to the number of nodes (|SNs|+ |CNs| = SDSNs)
in the network. Let, the position and velocity of nth particle

in mth dimensional search space is denoted by the position
vector i.e., Xn = X1

n, X2
n, X3

n ,. . . .., Xm
n and velocity

vector i.e., Vn = V 1
n , V 2

n , V 3
n , . . . .., V m

n . The minimum
and maximum ranges of position vector [Xmin, Xmax ] and
velocity vector [Vmin, Vmax ] for each particle are defined
using the periphery of search space. These ranges in the
planned model are anticipated to be [0.0, 4.0] and [-4.0, 4.0]
for the position vector and velocity vector respectively. At 0th

iteration, position vector corresponding to the mth dimension
is generated by Eq. 21.

Xm
n (0) = Xmin + (Xmax −Xmin) ∗ r (21)

where, r variable signifies uniform random distribution
between 0 and 1. Likewise, initial velocity vector is randomly
generated using the following Eq. 22.

V m
n (0) = Vmin + (Vmax − Vmin) ∗ r (22)

Further, in 0th successive iterations of the PSO, the velocity
and position vectors of the particles are updated [23] using
Eq. 23 and Eq. 24 respectively.

V m
n (iter) = ω × Vi(iter − 1) + c1 × r1(Pbesti(iter − 1)

−Xi(iter − 1)) + c2 × r2(Gbest−Xi(iter − 1))
(23)

Xm
n (iter) = Xi(iter − 1) + Vi(iter) (24)

where iter represents the current iteration, Pbest and Gbest
represent local and global best particles respectively. r1 and r2
are the random variables and c1 and c2 are the constants used
to maintain the tradeoff between exploration and exploitation.
To understand the encoding in a better way, consider the
example of a scenario of SIoV (as shown in Fig.1). That is
consisting of scattered road lane infrastructure, upon which
multi-functional sensor nodes are laid with heavy traffic load
i.e., 24 vehicles which are communicating with 15 software
defined RSUs sensing units out of which 5 control RSUs
formed the clusters. The encoding for the same is shown
in Table 1. The first/last (as two way approach) 5 nodes of
the particle represent the control RSUs and the rest of the
nodes are considered as common nodes which are connected to
anyone of the 5 control RSUs. The nodes in a particular cluster
are subjected to change after certain transmissions depending
upon their residual energy content. Thus, the number of
control RSUs and SNs have dynamic behaviour during the
data transmission. Therefore, the problem is to form optimal
clusters for the data routing considering dynamism with the
objective of minimized energy consumption and delay in data
communication.

2) Smallest Position Value: As discussed, initial encoding
of the particles is in continuous values vector, however,
solution is required to be in the form of discrete value
vector. Therefore, there is need to convert continuous values
vector into discrete values vector. To do this, Smallest
Position Value (SPV) operator is employed. SPV [24] is a
heuristic rule which is used to convert the continuous value
vector into discrete value vector for all class of sequencing
problem. Same is utilized with the PSO which enables the
conversion of continuous position vector X of the particle
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TABLE II: Initial encoding and velocity of a particle

K 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

X 1.83 2.1 4.7 1 0.79 2 1.56 4 0.51 4.1 1.61 3.62 2.85 3.02 3.99
V -1.02 4 -0.2 3 -1 -0.28 3.69 -1.9 4.99 -3.8 -0.35 1.72 -2.9 -3.9 1

into the discrete valued position vector S. It uses a sort()
function which arranges the particle’s dimension indexes in
an increasing order w.r.t. position to produce the discrete
value vector corresponding to its continuous position vector.

3) Fitness Function: In order to maximize the lifetime of
the network, a novel fitness function is proposed through
selection of the most competent clustered tree for multicast
routing in SIoV. The formation of clusters includes the selec-
tion of optimized number of control RSUs and the selection
of the location of respective control RSUs in SD-SIoV. In the
proposed fitness function, the inclination is towards selecting
control RSUs with greater residual energy and minimum
distance from the CS and destination nodes. In order to meet
our requirements towards a novel fitness function, the fitness
function is composed of three sub components i.e., f1, f2 and
f3. f1 denotes the ratio of average residual energy of control
RSUs to other SNs. Maximizing f1 signifies the selection of
higher residual energy for control RSUs. f2 denotes the ratio
of the average distance between the SNs and control RSUs,
and between control RSUs and CS which can be calculated
using Eq. 8 and Eq. 9 respectively. Further, f3 component of
the fitness function emphasizes towards maximizing number
of destination nodes in a same cluster to minimize energy
consumption in data routing. Each sub-component f1, f2 and
f3 of the fitness function is accompanied by a constant α, β
and γ respectively, where, α+β+γ = 1. In our experiments,
equal weight to all components offer good results. For the
selection of control RSUs with greater residual energy and
balanced trade-off between distance and energy, a combined
and novel fitness function is formulated in Eq. 25.

F = αf1 + βf2 + γf3

= α
ECNTOCS

ESNTOCN
+ β

1
dSNTOCN+dCNTOCS

2

+ γ
1

|clusters|
(25)

where, α + β + γ = 1, the default values for the α, β and γ
are 0.5, 0.25 and 0.25 respectively. As the main objective of
this work is to obtain green communication, therefore, higher
weight-age is given to α.

4) Inertia weight: Inertial weight (ω) plays a very signif-
icant role in the convergence of the PSO algorithm. During
initialization of PSO, particles are randomly scattered in multi-
dimensional search space and in the successive iterations, they
re-defines their positions following the PSO rules during the
run with the help of ω. The balance between local search and
global search is controlled by the inertia weight ω to determine
optimal solution. It’s increasing value contributes to global
search whereas its decreasing value denotes its inclination
towards local search. Following the adaptive ω tuner (Eq. 26),
an effective trade-off is maintained between exploration and

exploitation by accounting successive iteration number.

w = wmax −
wmax − wmin

itermax
× iter (26)

where wmax and wmin are the maximum and minimum limits
of the inertia weight respectively. iter denotes the current
iteration number and itermax maximum number of iterations.
This inertia function helps to control the current velocity by
considering past velocity. Moreover, this function provides
better performance with the proposed fitness function.

5) Cluster formation: Once, the control nodes are selected
through the solution (Gbest) offered by the proposed TWPSO
algorithm, each control RSU introduces itself to the network
by broadcasting a minor advertisement message (ADV). It
makes use of a non-persistent carrier-sense multiple access
(CSMA) MAC protocol. The ADV message composed of
control RSU’s ID and a header that differentiates advertise-
ment message. Each common node determines its cluster
by choosing the control RSU that entails the minimum data
transmission energy utilizing the strength of the ADV message.
Once, each common node has decided as to which cluster it
belongs, it must inform other control RSUs of its decision
by transmitting a LINK-REQ message. This message is also
a short message which consists of node’s ID, the belonging
control RSU’s ID and the sender’s residual energy. In this
way, the clusters are formed and the responsibility of each
node in the network is determined. Control RSU in a cluster
acts as the control head which collects the data from other SNs
and aggregate it then transfer to CS or vice-versa. This way,
clusters setup phase is completed, and the data transmission
phase begins with the determined topology [18].

IV. CASE STUDY

A. Parameter Settings

All experiments were conducted on Intel i5 processor with
4GB RAM in Matlab tool. For the simulation, different OBUs
based vehicles and RSUs were generated in the given area
using various distribution methods in order to analyze the
performance of TWPSO in sparse and dense vehicular net-
works. For the experimentation, number of destination nodes,
initial energy of nodes, number of control RSUs and number
of vehicles were varied. Meanwhile, for TWPSO parameters,
results are collected for the varied population size and number
of iterations. Experimental evaluation also includes the results
for number of transferred packets to control RSUs, sum of
energy and number of rounds. The range, [minimum maxi-
mum] of TWPSO parameters such as population and number
of iterations are varied in range 30-80 and 5-50 respectively.
Particles were randomly generated in multidimensional search
space where position and velocity vectors of particles lie in
interval [0,4] and [-4,4] respectively as in [24]. To verify the
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TABLE III: Sensitivity of PSO Parameters in TWPSO

Case wmax wmin C1 C2 Fitness value
1 0.3 0.1 0.5 2.0 5.106
2 0.5 0.1 0.5 2.0 5.606
3 0.3 0.1 1.0 2.0 5.105
4 0.5 0.2 1.0 2.0 4.604
5 0.7 0.2 0.5 1.5 4.602
6 0.7 0.4 1.0 1.5 5.106
7 0.5 0.2 1.5 1.0 4.602
8 0.3 0.2 2.0 0.5 5.105
9 0.9 0.4 0.5 2.0 5.104

10 0.9 0.2 2.0 2.0 5.612
11 0.9 0.2 1.5 2.0 5.103
12 0.5 0.1 2.0 2.0 5.1

effect of TWPSO parameters, different training experiments
were conducted for inertia weight, cognitive parameter and
social parameter. Table 2 shows different combinations of
these parameters and the performance of TWPSO in terms
of fitness. For each input combination, algorithm’s behavior is
observed, and best fitness producing combination is selected.
From Table 2, it can be concluded that case 10 (C1 = 2.0, C2

= 2.0, wmax = 0.9 and wmin = 0.2) offers better results.
As algorithm behaves stochastically, therefore, a statistical

test is performed to evaluate the significance of the obtained
results. Mean and standard deviation compared the overall
performance whereas statistical test considers the results of
each run to prove the significance of the results. The Kruskal-
Wallis H Test (non-parametric) [25] is conducted over the
obtained results of the fitness for α = 0.5. Three scenarios
of the network were considered to solve the given problem
including 100, 200 and 500 nodes respectively. Test metrics
are given in Table 3, and obtained HSTAT using the test is
8.5 which is greater than 5.9 (critical value). Therefore, the
three probabilities are distributed as same. Similarly, test is
done over similar scenarios and initialization parameters for
NWPSO. Mean Time To Failure (MTTF) of the network is one
of the metrics for performance measurement.The performance
of TWPSO is compared with NWPSO [18] and LEACH [26]
algorithms to verify its effectiveness.

B. Green Computing Efficiency

Swarm based optimization algorithms have an influential
parameter named as diversity as it quantifies the exploration
and exploitation [23]. For demonstrating the correct behavior
of the algorithm, diversity measures the particle’s dispersion.
Diversity accurately quantifies the search behaviour of the
swarm in terms of exploration and exploitation with in the
boundaries of the search space. It provides the results over
various courses of the iterations. Consideration of each varia-
tion of the diversity measure is not possible, thus, Euclidean
distance based metric is utilized for the same. Whenever
normalization is needed then diameter is used. Network sce-
narios of the Poisson distribution are deployed for performance
measurements. These metrics are defined as follows:
Swarm diameter and radius: Maximum distance between
any two particles of the swarm is termed as the diameter of

the swarm which is calculated as follows:

|D| = max(j 6=i)∈[1,|S|](

K∑
k=1

√
(xjk − xik)2) (27)

where, |S| represents total swarms and k represents dimensions
of the stated problem, and xjk shows the position of kth

dimension of jth particle. The radius of the search space of
the swarm can be calculated as the distance between the center
of the swarm and farthest particle from it. Diameter is used
to measure the diversity.
Average Distance around the center of Swarm: This metric
helps to calculate the diversity of the swarm. Higher value
indicates high dispersion of the particles around center and
lower value indicates that the swarm convergence around the
center.

Dc =
1

|S|
maxj∈[1,|S|](

K∑
k=1

√
(xjk − xj)2) (28)

where, x2j shows the mean value of jth particle position.
The Normalized Average Distance around the Swarm
Center: It can be calculated as:

Dn =
1

|S|.K
maxj∈[1,|S|](

K∑
k=1

√
(xjk − xj)2) (29)

Fig. 2 illustrates the performance of the proposed algorithm in
terms of swarm diameter, average distance around the swarm,
normalized average distance around the swarm and swarm
fitness for 50-1000 iterations. Fig. 2a, fig. 2b and fig. 2c show
the aforementioned results for 50 nodes, 100 nodes and 500
nodes plotted against the iteration numbers. It illustrates the
swarm diversity which is returned by the normalized average
distance present around the swarm center relative to best
particle’s fitness.

C. Green Computing Benefits

In order to make the fair comparative study, a set of
experiments are conducted on the same set of parameters as
mentioned in Section 6.1. To observe the behavior of TWPSO
over different population size and number of iterations, a set
of experiments are conducted with different combinations of
these parameters which are mentioned with the respective
results. From the Fig. 3, it is inferred that the TWPSO achieves
optimal fitness value at 30 iterations and 50 population size.
Thus, combination of 30 iterations and 50 particles is con-
sidered for rest of the experiments as fitness is maximum at
this combination that is desired. Once, the population size and
number of iterations are fixed, the performance of TWPSO is
compared with NWPSO and LEACH algorithms to verify its
effectiveness.
Fig. 4a presents the results in terms of MTTF on varied number
of control RSUs which are shown on X axis of the plot,
and rest of the parameters are set as default parameters as
mentioned in Section 6.1. From the results, it is observed
that the TWPSO algorithm outperforms other state of the art
algorithms when number of control RSUs varies; it proves
the scalability feature of the TWPSO. This is due to the
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(a) 50 vehicles scenario
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(b) 100 vehicles scenario
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(c) 500 vehicles scenario

Fig. 2: Normalized Average Distance for different scenarios with respect to Fitness, Diameter and Average Distance

TABLE IV: Fitness Values of TWPSO on 20 runs for Kruskal-Wallis H test

Number of runs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
N/W Scenario1 100 Nodes 7.51 7.51 8.01 7.01 6.01 6.01 7.01 7.01 7.01 6.51 7.01 5.51 6.51 8.51 7.01 7.01 8.01 7.01 7.01 7.01
N/W Scenario2 200 Nodes 6.49 4.99 5.49 4.99 6.5 5.99 4.99 6.5 8.5 7 5.48 6.49 6.5 8.49 6.99 5.5 5.49 6 6.5 8
N/W Scenario3 500 Nodes 8.36 6.9 6.39 7.38 6.37 6.42 7.38 6.39 6.39 6.37 6.87 7.89 6.39 6.39 8.38 6.88 6.39 7.39 6.38 7.39

TABLE V: Comparative results of TWPSO Fitness

Network scenario TWPSO NWPSO LEACH
Mean STD Mean STD Mean STD

50 8.06 0.17 6.56 0.16 6.05 0.10
100 7.06 0.63 7.06 0.42 6.55 0.31
200 7.56 0.74 6.74 0.34 6.03 0.32
300 7.53 0.52 6.14 0.46 6.35 0.34
400 8.56 0.76 8.06 0.45 6.05 0.42
500 7.43 0.64 7.12 0.51 6.86 0.52
600 7.82 0.72 6.41 0.42 6.14 0.21

fact of effectiveness of the proposed fitness function and
the two-way implementation approach of the PSO algorithm.
Following this, TWPSO optimizes the cluster formation with
minimal energy consumption in data communication which
results in higher MTTF. Further, to verify the effectiveness
of the algorithm on varied number of destinations (target
vehicles), a set of experiments are conducted and results are
presented in Fig. 4b. Fig. 4b shows the lifetime of the network
for different set of destinations varying between 5 and 40
for a VANET of 100 nodes. From the results, it is analyzed
that despite of increasing number of targeted vehicles (for
data dissemination), MTTF of the network remains balanced
even when load on control RSUs increases. Reason for the
same is that TWPSO focuses on clustering of control RSUs
among the destinations such that more number of destinations
becomes member of the same cluster. This helps to decrease
the number of control packet exchanges, and thus contributes
toward increasing network lifetime. This is due to the fitness
function which is technically designed for the same objective.
It evidences the significance of the proposed fitness function.

As OBUs/RSUs communication devices are battery oper-
ated and battery life of these devices affected with the size
of vehicular networks. Thus, there is need to analyze the
behavior of the algorithm for different number of vehicular
networks. Thus, to evaluate the performance of the algorithm
on different size of vehicular networks, a set of experiments
are conducted by varying the number of vehicles between 300
and 600. In order to conduct this set of experiments, except
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Fig. 3: Influence of the PSO Parameters on TWPSO

the number of vehicular nodes, all the testing parameters are
taken as the default. Fig. 4c demonstrate the pronged lifetime
of the network on different network scenarios as the algorithm
minimizes the number of message exchange between control
RSUs and control server by preventing irrelevant RSUs to
communicate with the server. As a result, the energy is
conserved which can be seen in Fig. 4c.
In SDN enabled environment, few RSUs are selected as the
control nodes which communicate with their member RSUs
and vehicles. As all the data packets of the respective cluster
are forwarded through the respective control RSU only, this
way, a huge amount of energy is consumed in data commu-
nication. With the advent of technology, it is allowed that
communication can take place even if few RSU units have less
energy by skipping high distant transmission through them.
Thus, with time, control RSUs will also be re-elected, but
it will result in several packet exchanges, therefore, there is
need to select the optimal control RSUs. In order to simulate
this, we conducted a set of experiments in which nodes are
equipped with initial energy between 0.5 J to 2.0 J as shown
in Fig. 4d. From the results (Fig. 4d), it can be observed
that MTTF for TWPSO is better than NWPSO at high initial
energy as well as at low initial energy availability. Further, it
can be observed that with the increased battery power, lifetime
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Fig. 4: Comparative performance analysis of TWPSO with the state-of-the-art models
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Fig. 6: MTTF comparison for different distributions

of nodes increases which helps the network to work for longer
period without any failure. Thus, nodes the with high battery
power are selected for multicasting as the control nodes.
In order to test the stability in the performance, the proposed
algorithm is compared with NWPSO and LEACH on 100 runs
for each test instance. The results are shown in Table 4 on
different network scenarios with mean and standard deviation
(STD). From the Table 4, it can be observed that the mean
of fitness is better for TWPSO than other two comparative
algorithms. The reason for the same is that the proposed
algorithm searches for the solution in both directions with
the balanced trade-off between exploration and exploitation.
Further, to analyze the network performance for delay and
delay jitter metrics, results have been compared with NWPSO
for various network size. Fig. 5a shows that delay in communi-
cation for TWPSO is lesser than the delay for other algorithms.
Formation of clusters helps to reduce the load on network
as control RSUs take care of message dissemination among
vehicles, which helps to reduce the delay. Further, TWPSO
handles the issue of loop formation with less computation,

and it selects lesser control RSUs in the route formation. Thus,
irrelevant nodes for cluster formation are ignored which help
in reducing delay for the data transmission to the targeted
destination vehicles. Average jitter throughout the transmission
is proportional to delay; therefore, delay jitter for small delay
is also less which can be observed in Fig. 5b.
In vehicular networks, a set of experiments are conducted
on three types of node distributions in vehicular network:
Random Distribution (RD), Poisson Distribution (PD) and
Normal Distribution (ND), and results are compared with its
counterpart algorithm (NWPSO). A set of vehicular networks
are randomly generated on various network scenarios by
varying the number of nodes between 50 and 600. As node
distributions strategy affects the performance of the algorithm,
thus, to test the distribution stability of the algorithm, this set
of experiment is conducted. Fig. 6 shows that the MTTF of the
network following these distributions is compared, and results
indicate that MTTF of TWPSO is higher for all the scenarios
in comparison to NWPSO for the given node densities.

V. CONCLUSION

This work explored software defined architecture for SIoV
data communication with the objective of life-time maximiza-
tion of Software Defined-Social Internet of Vehicle (SD-SIoV).
In order to offer dynamic multi-cast routing utilizing SD-
SIoV architecture, a Two-Way PSO (TWPSO) meta-heuristic
algorithm is presented. TWPSO is an enhanced form of PSO.
With TWPSO, CNs are selected to handle dynamic tasks
which are controlled through CS. As an experimental evidence,
TWPSO outperforms state-of-the-art techniques and signifi-
cantly maximizes the life-time of the network with minimum
delay for data transmission. This protocol can be a good
candidate for the future SIoV’s green data communication.
In future, the proposed SD-SIoV architecture will be explored
to enabled smart traffic services on-road environments.
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