
i

Energy-Latency Tradeoff for Dynamic Computation
Offloading in Vehicular Fog Computing

Rahul Yadav, Member, IEEE, Weizhe Zhang, Senior Member, IEEE, Omprakash Kaiwartya, Senior Member,
IEEE, Houbing Song, Fellow, IEEE, and Shui Yu, Senior Member, IEEE

Abstract—Vehicular Fog Computing (VFC) provides solutions
to relieves overload cloudlet nodes, reduces service latency during
peak times, and saves energy for battery-powered cloudlet nodes
by offloading user tasks to a vehicle (vehicular node) by exploiting
the under-utilized computation resources of nearby vehicular
node. However, the wide deployment of VFC still confronts
several critical challenges: lack of energy-latency tradeoff and
efficient resource allocation mechanisms. In this paper, we ad-
dress the challenges and provide an Energy-efficient dynamic
Computation Offloading and resources allocation Scheme (ECOS)
to minimize energy consumption and service latency. We first
formulate the ECOS problem as a joint energy and latency cost
minimization problem while satisfying vehicular node mobility
and end-to-end latency deadline constraints. We then propose an
ECOS scheme with three phases. In the first phase, we propose
an overload cloudlet node detection policy based on resource
utilization. In the second phase, we propose a computational
offloading selection policy to select a task from an overloaded
cloudlet node for offloading, which minimizes offloading cost and
the risk of overload. Next, we propose a heuristic approach to
solve the resource allocation problem between the vehicular node
and selected user tasks for energy-latency tradeoff. Extensive
simulations have been conducted under realistic highway and
synthetic scenarios to examine the ECOS scheme’s performance.
In comparison, our proposed scheme outperforms the existing
schemes in terms of energy-saving, service latency, and joint
energy-latency cost.

Index Terms—Vehicular fog computing, computation offload-
ing, energy-efficiency, green computing, efficient-latency, and
vehicle mobility

I. INTRODUCTION

W ITH the expansion of Internet-of-Things (IoT) and
communication technologies, there arises a critical

issue that both the computational demand and data rate grows
exponentially [1]. For example, emerging 5G applications such
as infotainment application, interactive gaming, fleet tracking,
blockchain, and natural language processing. Such complex
applications require advance computation, data communica-
tion, storage, and energy consumption techniques to handle the
complicated storage and data processing operations [2]. This
poses a new challenge to the conventional cloud computing
paradigm. It is difficult to guarantee the stringent quality

R. Yadav and W. Zhang is with the Harbin Institute of Technology, and
with Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen
518055, China. (e-mails: rahul@stu.hit.edu.cn, wzzhang@hit.edu.cn).

O. Kaiwartya is with the Nottingham Trent University, U.K. (e-mail:
omprakash.kaiwartya@ntu.ac.uk.)

H. Song is with the Embry-Riddle Aeronautical University, USA. (e-mail:
songh4@erau.edu)

S. Yu is with the University of Technology Sydney and with Peng Cheng
Laboratory, Shenzhen 518055, China. (e-mail: shui.yu@uts.edu.au)

of experience (QoE) and quality of service (QoS) require-
ments due to the long distance between remote data centers
and user equipments (UEs) [3], [4]. To resolve this issue,
a new paradigm has been proposed called fog computing,
which extends cloud-based utilities for UEs at edge networks
[5]. Zhou et al. [6] proposed a contract-learning approach
for computational offloading and resource sharing in a fog
computing environment to optimally shared the computation
and communication resources, which reduced service latency.
However, to cover a vast geographic area, deployment of a
large number of servers required, which increases maintenance
cost and energy consumption. Furthermore, considering the
dynamically time-varying demands, these servers will waste
vast amounts of resources during the off-peak time. Therefore,
how to employ a server to process ever-increasing demand in
communication and computation with moderate costs via a
demand-adaptation approach remains an open problem. The
term demand-adaptation can be described as the growing
demand of the computation resources is fulfill by using exiting
under-utilized computation resources without deploying any
new servers or Cloudlet Nodes (CNs). The small-size data
centers (such as gateway routers, switches, set-top boxes,
roadside units (RUs), etc.) are known as CNs.

To solve this problem, an alternative choice is to lever-
age the under-utilized computation resources of nearby ve-
hicles (Vehicular Node (VN)). Smart vehicles with on-board
dedicated short-range communication, high-speed computer,
and Long Term Evolution (LTE) communication devices are
known as VN. It is predicted that more than 380 million
connected vehicles will be on the road by 2021 [7], and
these vehicles owners earn extra money by providing their
under-utilized vehicle resources to UE (similar to Uber taxi
service). Hence, a large group of nearby vehicles can pro-
vide an enormous amount of computational resources during
peak time without deploying any additional computing nodes.
Moreover, the computation demand of UEs can be offloaded
to VN, whenever the CN detected overloaded to minimize
energy consumption and service latency. This new computing
paradigm is an integration of vehicular computing and fog
computing, known as vehicular fog computing (VFC) [8].
However, despite the advantages of VFC mentioned above,
the deployment of large-scale VFC still faces several critical
challenges, which are summarized as follows.

Firstly, the idea of offloading the UEs task has been explored
in some previous studies [9]–[11]. Most of the previous studies
have assumed that unconditionally selection of computational

c©2015 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE.

IEEE Transactions on Vehicular Technology

Cite As:
R. Yadav, W. Zhang, O. Kaiwartya, H. Song and S. Yu, "Energy-Latency Tradeoff for Dynamic Computation Offloading in Vehicular Fog Computing," in IEEE
Transactions on Vehicular Technology, vol. 69, no. 12, pp. 14198-14211, Dec. 2020

ii

tasks for offloading is too optimistic in practice. The cost
incurred by task offloading which depends on the resources
required by tasks. For example, the selected UE task required
a higher bandwidth for offload to VN, which significantly
increase offloading cost. Thus, the question arises, which
UEs tasks should be offload to VN. Therefore, it is of vital
importance to develop policy, which can effectively select UEs
tasks to offload to VN and optimize offloading cost.

Secondly, there lacks a near-optimal resources allocation
mechanism. This mechanism efficiently tradeoff energy con-
sumption and service latency of CN. With the existence of
different characteristics of tasks (such as CPU-intensive tasks
and latency-sensitive tasks), a critical challenge is how to
allocate VN computation resources to UEs tasks such that
minimize energy consumption and service latency of different
characteristics of the tasks without compromising QoS. Since
each UE task’s characteristic is different, it is highly possible
that each UE task needs computing resources and service la-
tency as per their characteristics. Additionally, this mechanism
should take into account the computation task requirements
and availability of computing resources at different VNs.
Therefore, an optimal resource allocation mechanism needs
to develop to balance energy consumption and service latency
as per task characteristics.

These aforementioned challenges motivate us to develop an
ECOS scheme for optimizing the energy consumption and
service latency of the CN. The benefits brought by ECOS
scheme are: (i) firstly, as a CN can be overloaded during
peak times, one can release the burdens on that CN by
directing some UEs task to offload to the neighboring VN,
thus preventing the limited computational resources on each
CN from becoming the bottleneck; (ii) secondly, selection of
computational task from overloaded CN to offload to VN with
more favorable UE task condition, thus reducing offloading
cost; (iii) finally, coordination of resource allocation to offload
UEs task across multiple VNs can help in computational
resources contention among the UEs task and optimize energy-
latency tradeoff when multiple CNs are overloaded and of-
floaded their tasks simultaneously. The main contributions of
this work are summarized as follows:
• We investigate how to optimize energy and latency

of overloaded CN during the peak time by exploring
computation energy consumption, transmission en-
ergy consumption, task transmission latency, and task
computation latency. An in-depth theoretical analysis
of the functions describing the inherent mobility of
vehicles is described to optimizing the offloading
failures. Next, we formulate the joint optimal energy
and latency task offloading problem to minimize the
Energy and Latency Efficient Cost (ELEC) under
the constraints of dynamically fluctuating limited
resources at the VN, under the constraint of VN
mobility, and hard end-to-end latency deadline con-
straint.

• To provide a tractable solution, we propose a three-
phase ECOS scheme. In the first phase, evaluate
CPU and memory demands of all UEs tasks that
are executing on the CN and calculate aggregate

CPU and memory demands for detecting an overload
CN. In the second phase, the computation offloading
selection policy introduced for selecting an optimal
UEs task from overloaded CN to offload. This policy
aims to determine which task of UEs is offloaded
onto a VN to reduces offloading cost. In the third
phase, a heuristic approach based joint energy and
latency efficient resource allocation algorithm intro-
duced, which search an efficient VN for processing
offloading tasks. The benefits brought by the pro-
posed scheme are: reduces the risk of overload, min-
imize the offloading failures, maximize the energy
saving, minimize service latency, and reduces the
time complexity.

• We present simulation results to illustrate the per-
formance of the proposed ECOS scheme by using
optimal parameter configuration found for resource
allocation, efficient energy consumption, latency, and
VN mobility.

The rest of the paper is organized as follows: Section II
provides a related literature survey on latency and energy effi-
ciency management in vehicular fog computing. The VFC sys-
tem model, the detail of the energy & latency-aware algorithm
formulation, the proposed model, and problem formulation
are described in Section III. The ECOS scheme introduced in
Section IV. Section V introduced the simulation setup for the
proposed scheme, analysis and compared the simulation results
with existing approaches. Finally, the conclusion is provided
in Section VI of the paper.

II. RELATED WORK

Since VFC is envisioned as a promising approach to en-
hance the overall capacity of fog or edge computing, several
works have already studied VFC architecture [12], [13]. Lee et
al. introduced a three-tier vehicular cloud network architecture,
which combined the vehicular cloud and information-centric
network [12]. Hou et al. first introduced an idea of VFC, which
utilizes computational and communication resources of parked
and moving vehicles. In this work, a quantitative analysis of
the fog-enabled network capacity is carried out [13]. Zhu et al.
introduced a joint optimization of service latency and quality
loss for the task assignment problem and solved by exploiting
mixed-integer linear programming [14].

Some works have already investigated the design problem in
Fog/Edge computing. Fog or Edge provides computational re-
sources to network edges for reducing incoming traffic toward
clouds, which in turn reduces the response time of network
requests. Su et al. also introduced a framework for utilizing
the resources of parked vehicles as content caching nodes.
Comparing with the traditional method of content-centric
networking, which heavily relies on roadside-units (RUs), this
proposal imposes less burden on RUs, which provides higher
capacity and also allows vehicle-vehicle communication via
decentralized communication [15]. Zanni et al. proposed a task
selection algorithm for mobile edge computing environment.
This algorithm can parse an Android application autonomously
and classify all the methods based on their offloadability by

Cite As:
R. Yadav, W. Zhang, O. Kaiwartya, H. Song and S. Yu, "Energy-Latency Tradeoff for Dynamic Computation Offloading in Vehicular Fog Computing," in IEEE
Transactions on Vehicular Technology, vol. 69, no. 12, pp. 14198-14211, Dec. 2020

iii

adopting a finegrained and multi-steps analyzer [16]. Neto et
al. proposed a lightweight and efficient framework for mobile
computation offloading. It is equipped with a decision engine
that minimizes remote execution overhead, while not requiring
any modification in the devices operating system [17]. Zhou
et al. proposed a convex-concave-procedure-based contract
optimization algorithm for server recruitment, which aims to
maximize the expected utility of the operator with asymmetric
information. Then, a low-complexity and stable task offloading
mechanism are also proposed to minimize the total network
delay based on the pricing-based matching [18]. However,
most of the current works improving the performance of task
services, and they lack to consider the energy consumption of
overloaded CN which affects the performance significantly.

Based on the study of computation offloading strategies with
vehicle-vehicle and vehicle-to-infrastructure communication
modes, Zhang et al. proposed an efficient predictive scheme
for offloading tasks to fog nodes via predictive or direct relay
transmission mode [19]. Feng et al. proposed an ant colony
optimization based scheduling algorithm for vehicular tasks
[20]. Chen et al. proposed a layered network architecture for
vehicular networks’ computational capabilities [21]. Gerla et
al. proposed that vehicles can be utilized as mobile cameras by
a centralized server to provide photo services, where vehicles
serve as sensors for acquiring pictures. The collected data
can be uploaded to cloud servers via a cellular network
such that users can retrieve information from the cloud [22].
Zhou et al. studied the energy-efficient workload offloading
problem and proposed a low-complexity distributed solution
based on consensus alternating direction method of multipliers.
By incorporating a set of local variables for each UE, the
original problem, in which the optimization variables of UEs
are coupled together, is transformed into an equivalent general
consensus problem with separable objectives and constraints
[23].

Another critical challenge in VFC is how to allocate re-
sources to the offloaded tasks. Lots of works have addressed
the resource allocation problem with different optimization
strategies. Otternwalder et al. has proposed a policy that
reduces network congestion. It is a plan-based operator place-
ment and migration policy for Mobile Complex Event Pro-
cessing applications. They have also focused on the mobility
of the users, which creates a time-graph model to identify
possible migration targets. Considering the shortest path from
the data source, it selects the appropriate target instance from
the time graph model. In the selected instance, the policy
applies coordination to accommodate the migrating operator.
The main intentions of the proposed policy are to reduce
network overhead and end-to-end delay [24]. Souza et al.
has proposed a service allocation model for Fog-to-Cloud
architecture. In this model, the Fog environment is divided
into slots, while services are decomposed into atomic services;
afterward, such atomic services are allocated to the available
slots. Furthermore, each slot is connected to one of the under-
lying nodes for executing service requests. The model focuses
on the allocation of the services at fog nodes to optimize
power consumption, processing loads, and services latency
[25]. Nevertheless, most of these research works assume that

fog nodes are either fixed along a fixed path, while generally
ignoring the highly dynamic nature of the vehicular network.

In contrast to existing schemes that suffer from a poor
energy-latency tradeoff. In this paper, we concentrate on the
computation offloading process in a vehicular fog environment
and propose a heuristic approach based offloading policy to
improve the energy consumption and latency of overloaded CN
while guaranteeing the required latency constraint, resources
capacity constraint, and VN mobility constraint.

 Vehicular

Node

 Cloudlet Node

 Cloud

Layer

 Cloudlet

Layer

 UEs Layer

Cloudlet

Nodes

Zone

Manager

Service

Zone

Vehicular Node Entering

Service Zone

Fig. 1. System Architecture of Vehicular Fog Computing

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Architecture Overview

The system architecture of VFC is shown in Fig. 1, which
organized in a hierarchical order such as the Cloud layer,
Cloudlet layer, and UEs layer. In the cloudlet layer, there
exist the nodes (such as CNs and VNs) which take charge
of computation resource allocation, communication resource
coordination, and task placement. During peak time, when the
CN is overwhelmed by the incoming computation demands, a
set of VNs is employed for sharing computational resources
to solve the overload problem via task offloading. The full
details of the proposed architecture are described as follows:

1) Cloud Layer: The cloud data center consists of het-
erogeneous resources which consider as topmost layer called
Cloud Layer. It’s considered as a standalone computational
platform in this work.

2) UEs Layer: UEs layer is considered in the lowest layer
in this architecture. Any typical UE equipped with sensitive
radio transceivers, sensors, collision radars, cameras, on-board
computers, and GPS devices. This layer generates a massive
amount of raw data but cannot process it due to energy, latency,
and resource constraints.

3) Cloudlet Layer: In this layer, nodes communicate bi-
directional with each other to perform data and process man-
agement in order to support UE task requirements. CNs are
linked top to down in hierarchical order, and resources of these
nodes heterogeneous. The nodes closer to the UEs layer have

iv

less Computational, networking, and storage capabilities than
the higher or closer to the cloud layer. This layer consists of
two types of nodes, which are shown in Fig 1 and describe as
follows.
• Cloudlet Nodes: The small-size data centers (such

as gateway routers, switches, set-top boxes, roadside
units (RUs), etc.) are known as CNs. The compu-
tational resources of these CNs are heterogeneous
for executing UE tasks. Unlike Cloud data centers,
CNs are equipped with limited-capacity batteries and
limited computational resources due to their inherent
physical structure and can be deployed across the
edge of the networks [13]. Each CN has a dedicated
CN overload prediction module to monitor the uti-
lization of its resources.

• Vehicular Nodes: These computing nodes carried by
smart vehicles with on-board dedicated short-range
communication, high-speed computer, and LTE com-
munication devices. In addition, we assume that
computational capacities and other resources of all
vehicular nodes are different. When a VN establishes
communication with zone manager or enters the
service zone, zone manager responsible for assigning
offloaded UE tasks to the VN for processing and can
finish this processing before leaving the service zone.

Service Zone: In urban areas, all corners of the cities are
divided into the zone and each zone fully connected with
cellular networks. Similarly, we divided cities into service
zone, and it includes CNs as well as VNs. In each service zone
have a zone manager, which coordinates all other nodes. In the
proposed architecture, we always select an LTE base station
to be the zone manager and assume that VNs are deployed
on commercial fleets, such as buses and taxis. Whenever VN
enters or leaves the service zone, always inform the zone man-
ager, similar to cellular registration mechanisms. Moreover,
the zone manager periodically gathers all information about
VN moving directions, locations, and available resources.

B. System Model Overview

In the conventional fog system, computation and commu-
nication requests of all UEs have to be served by the CNs,
which maximize energy consumption, service latency and
make the service zone overloaded problem even worse. An
alternative solution is offloading the high volumes of UEs
tasks from CNs to vehicular nodes by joint optimization of
energy and latency under considering mobility factor in VFC
environment. We consider a VFC environment composed of
l CNs F f = ˆ(f1, f2, ..., fk, ..., fl), and n vehicular nodes
F v = (v1, v2, ..., vi, ..., vn), geographically distributed and
connected with each other. F f and F v are the sets of CNs
and VNs respectively. There is a set of UE which includes m
UEs U = (u1, u2, ..., uj , ..., um) and it is associated with a
set of task T = (t1, t2, ..., tj , ..., tm). Throughout, let T be set
of all tasks processed by F f ∪ F v .

Remark 1: The proposed VFC model is different from a
fog system where the task of UEs is offloaded to micro-
servers. Firstly, the computation and communication resources

of fog infrastructures are deployed and owned by the same
network operator and the location of these micro-servers is
fixed. However, in our proposed VFC environment, vehicles
are owned by individual users and mobility of VNs and UEs is
taken into consideration. Secondly, in both models, the service
area divided into service zones and in the fog system, UEs
within the same service zone can connect one to three micro-
servers because each service zone consist of one to three
micro-servers. However, in VFC, due to the high mobility
of vehicular nodes in the same service zone UE may be
surrounded by multiple heterogeneous VNs.

The preference of a VN towards resource allocation is
quantified as its energy-latency cost. A VN with lower energy-
latency cost is more willing to allocate resources to UEs
and compared to a high energy-latency cost VN. Thus, it is
intuitive for the zone manager to employ lower energy-latency
cost VN in a same service zone. Since each service zone have
a finite number of VNs. So, the set of VN for sharing their
resources is a discrete and finite space. We describe the energy
consumption model in VFC is a combination of computing
and communication energy consumption. We are discussing
computational energy consumption and communication energy
consumption as follows.

Computational Energy Consumption: In VFC, computing
energy consumption is determined by the energy consumed by
CPU in CNs. The computational energy consumed by nodes
is determined by the energy consumes per clock cycle directly
propositional to the square of the supply voltage. In the CPU
chip of node, the dynamic voltage scaling technology is often
used to save the energy consumption, and the supply voltage
is assumed approximately proportional to the clock frequency
[26]. Computing energy consumption model of the node is
described as follows:

Epj,k = λSj,kϕ(Uj,k)2 (1)

where (Uj,k) represents computing capacity of node in
cloudlet layer is allocated to UE uj task as GHz, Sj,k
represents total size of UE uj task in bits, λ is computation
workload, i.e., the total number of CPU cycles required for
each bit of UE uj task. The computation power of the CN
CPU in Joule/Mc is given as ϕ(Uj,k)2, where ϕ = 10−8 [27].

Transmission Energy Consumption:
When a task offloaded to VN required communication

link to exchange the information. it includes two phases in
sequence: (i) transmitting phase and (ii) receiving phase. In
the transmitting phase, UE task tj input data transmits with
the certain specification to the VN vi through a wireless uplink
channel. In the receiving phase, UE uj receives output data of
task tj from the VN vi through the wireless downlink channel.
The energy consummation of the transmitting task tj is based
on the total transmission time of UE task tj . We show how to
derive the explicit communication consumption model, which
is giving by

Eti,j = η(P basei,j + paP
t
i,j)(l

t
i,j + ß) (2)

where Eti,j represents energy consumes by multiple hops for
transmitting UE uj task to VN vi. η, pa and ß represents

v

number of hops that task tj traverse hops to reach VN for
processing, efficient factor of power amplifier, and a round-
trip overhead between a VN vi and UE uj respectively.
P basei,j and P ti,j represents the static power consummation,
transmission power of UEs respectively. The lti,j represents
task transmission latency and the value of lti,j is estimated
using equation 4.

Then, overall energy consumption is defined as summation
of both equation (1) and (2), which is given as

Ei,j = Epi,j + Eti,j (3)

1) System Latency Model: In offloading mode, the zone
manager offload UEs computation tasks from overloaded CNs
to VNs to reduce the total number of transmission hops. The
latency in the VFC environment is composed of the task
transmission delay and the task computation delay discussed
as follows.

Task Transmission Latency: Given the limited bandwidth,
the task transmission delay depends on the offloaded task
size, which required to be transmitted from UEs to VN with
the help of zone manager. In this work, we ignored the
co-channel interference among UEs by assuming that each
UE is allocated with an orthogonal spectrum resource block.
Furthermore, the large-scale fading is modeled by using a
free-space propagation path-loss model. If the task of UE uj
offloaded to vehicular node vi, latency lti,j of an offloaded task
is depends on the available bandwidth, task size Sj , j ∈ T ,
and transmission data rate rj . Since the task is completely
offloaded to vehicular node vi ∈ F v , the transmission time
required by uj can be obtained as

lti,j =
Sj
rj

(4)

rj = Bi,jLog2

(
1 +

P ti,jd
−α
i,j |hi,j |2

N0

)
(5)

where di,j denotes the transmission distance between vehic-
ular node vi and UE uj . hi,j is the Rayleigh channel coefficient
with a complex Gaussian distribution. α denotes the path-loss
exponent and N0 is the power noise.

Task Computation Latency When the task is offloaded to
VN vi, execution time of the task is depends on computational
size Sj of the task tj and computation capacity Ui of VN vi.
Then the task computation latency lci,j can be expressed by

lci,j =
δi,jλSj
Ui

(6)

where A binary variable δi,j ∈ (0, 1) is defined to indicate
whether the UE uj task offloaded to VN vi. Under the above
system latency model, when task tj of UE uj is assigned to
VN vi, the total latency Li,j is a sum of task computation
latency and task transmission latency. It can be expressed as

Li,j = lci,j + η
(
lti,j + ß

)
(7)

The communication link between the UE uj and CN is
considered to be one-hop. When a task tj of UE uj is offloaded
to VN, the number of hops task traverse affects the overall
latency. In this work, η represents the total number of hops
task tj traverse. ß refers to a round trip overhead between a
VN vi and a UE uj .

Fig. 2. The highway scenario.

Z
V

Y

θ

ϴ

Θ

Θ

Θ

Type equation here.

a

b
d

Moving direction of

the vehicular node

Distance between vehicular node

and zone manager

Zone manager location

Service zone radius

Service zone

Vehicular node location

Fig. 3. Proposed mobility model for initialise VN probability

Definition 1 (Energy and Latency Efficient Cost (ELEC)).
ELEC is defined as the weighted sum of total energy consump-
tion (Ei,j) and total latency (Li,j). Thus the ELEC of UE uj
task is given by

ELEC = Ψe
i,jEi,j + Ψl

i,jLi,j (8)

where Ψe
i,j and Ψl

i,j ∈ [0, 1] denote the two scalar weights
of energy consumption and overall latency for CN fk (kth

cloudlet node) making decision on UE uj task, respectively.
To provide rich modeling flexibility, we allow that CN changed
weighting parameters (Ψe

i,j and Ψl
i,j) as per the current

characteristics (CPU-intensive and latency-sensitive) of UE
task. For example, when a CN is at a low battery state and
it is running CPU-intensive task which required more energy,
then it would be better to put more weight (Ψe

i,j ∈ [0, 1])
on energy consumption(a larger Ei,j) in the decision making,
in order to save more energy. On the other-hand, when a CN
is running a latency-sensitive UE task (video streaming), then
put more weight (Ψl

i,j ∈ [0, 1]) on the overall latency (a larger
Li,j), in order to reduce the delay.

C. Constraints

Mobility: The mobility of VNs plays a significant role in
overall service latency and communication failure. Since we
consider the highway scenario, we assume that VNs travel on a
two-lane two-directional road is shown in Fig 2. Due to the fast
mobility of the VN vi, it might be move out the same service
zone of UE uj during data transmission, thereby an offloading
failure. Therefore, the mobility model based on the article in
[28], dwell time Dt

i,j of VN vi within the same service zone
of UE uj plays significant role because an offloading failure
occurs if lti,j > Dt

i,j . The dwell time of a VN is defined as a
time of VN stay in one service zone. Therefore, estimating the
probability of an offloading failure on VN vi is PFi,j within the
service zone and probability of an offloading success is PSi,j .

As shown in Fig 3, we assume that zone manager of UE
uj service zone located at point Z having coverage radius of

vi

b and the current location of VN vi located at point V which
are moving towards the point Y direction with a angle θ. The
d and a denoted as a distance of moving VN vi within the
service zone of UE uj and distance between zone manager
& VN vi respectively. Since we assume that all VNs are
uniformly distributed within the service zone circle with fixed
radius b [29], the probability density function (pdf) of VNs
with Cartesian coordinates (x,y) is given as:

f(x, y) =
1

πb2
, ∀(x, y) ∈ (x2 + y2 ≤ b2) (9)

Transforming equation (9) from Cartesian (x,y) to Polar (a,θ)
coordinates is given by

f(a, θ) =
a

πb2
, a ∈ [0, b] & θ ∈ [0, 2π] (10)

where x = a cos θ, y = a sin θ and a denoted the distance
between the VN vi and zone manager within a service zone
of UE uj . Therefore, the marginal pdf of a can be derived by
integrating out θ from equation (10) is given as

fa(a) =
2a

b2
(11)

We assume that the current location of VN vi and moving
direction θ are independent. The moving direction θ of VN vi
follows the uniform distribution, where θ ∈ [0,2π] [30]. As
we shown in Fig. 3, we can limit the value of θ ∈ [0, π] due
to the symmetry of the service zone. Thus the joint pdf of a
(distance between current location V of VN vi and service
manager location Z) and θ (moving direction of VN vi) are
given as

fa,θ(a, θ) =
1

π
× 2a

b2
(12)

Due to fast mobility of VN vi might be move out the same
service zone of UE uj during the data transmission, as result
of that an offloading failure. Therefore, we need to obtain
the distribution of d (distance between current location V of
VN vi and end position Y of service zone) by determine its
relationship with a and θ using law of cosines is given as b2 =
a2 + d2 + 2ad cos θ. Thus θ is a inverse cosine function can
be written as I(a, d) ≡ arccos (b

2−a2−d2
2ad), d ∈ [b − r, b + r].

It can be proved that I(a, d) is a monotonically increasing
function of d. Therefore, applying Jacobian transformation
into equation 11 and making change of variable in inverse
cosines function I(a, d) [31]. Afterword the joint distribution
of distance |ZV | a and distance |V Y | d in Fig. 3 is given as

fd,a(d, a) =
2a

πb2
× det

∣∣∣∣ 1 0
δI(a,d)
δa

δI(a,d)
δd

∣∣∣∣ (13)

=
2a

πb2
×
∣∣∣ δI(a.d)

δd

∣∣∣
where,

δI(a, d)

δd
=

b2−a2+d2
2ad2√

1−
(
b2−a2+d2

2ad2

)2 (14)

By the substituting of the equation (13) into equation (14)
to derived distribution function fd,a(d, a):

fd,a(d, a) =
b2 − a2 + d2

πb2d2

√
1−

(
b2−a2+d2

2ad2

)2 (15)

Thus the marginal pdf of remaining distance of VN vi in
a UE uj service zone d can be derived by integrating out a
from equation (15) along with the integral region where VN
vi move from initial distance to diameter of service zone is
2b, which is described in equation (10) is given as

fd(d) =

∫ b

|b−d|
f(d, a)da, d ∈ [0, 2b] (16)

With the help of equation (16) and (15), we can rewrite fd(d)
function is given as

fd(d) =
1

πb2

∫ b

|b−d|

b2 − a2 + d2

d2

√
1−

(
b2−a2+d2

2ad2

)2 da
=

1

πb2d

∫ b

|b−d|

2a(b2 − a2 + d2)√
(2ad)2 − (b2 − a2 + d2)2

da (17)

By making change of variable as x = a2, we have rewrite
the equation (17)

fd(d) =
1

πb2d

∫ b2

(b−d)2

b2 − x+ d2√
(2ad)2 − (b2 − x+ d2)2

dx (18)

Then one more time we have apply change of variable rule as
t = b2 − x+ d2, we have rewrite the equation (18)

fd(d) = − 1

πb2d

∫ d2

2bd

t√
(2ad)2 − t2

dt

=
1

πb2d

∫ 2bd

d2

t√
(2ad)2 − t2

dt

= − 1

πb2d

√
(4b2d2 − t2

∣∣∣2bd
d2

=
1

πb2

√
(4b2 − d2 (19)

To estimate the VN vi dwell time Dt
i,j in a service zone of

UE uj , simply use the average velocity ϑi,j and di,j (distance
between current location of vi and end point Y of the service
zone diameter in the VN heading direction). So, the dwell time
of the VN vi is derived as Dt

i,j =
di,j
ϑi,j

. Thus the pdf of dwell
time Dt

i,j is given as

fD
t
i;j(t) = vi,jf(tϑi,j)

=
ϑi,j
πb

√
4b2 − (ϑi,jt)2 (20)

As we discussed earlier, an offloading failure of UE uj task to
VN vi occurs if lti,j > Dt

i,j . Therefore, dwell time also plays
important role in data transmission because UE uj can only
offload the tasks to VN vi when they remain connected. Thus,
an offloading request is admissible iff lti,j < Dt

i,j . So, the
probability of an offloading failure within the communication
range of UE uj can be obtained as follows

PFi,j = P (Dt
i,j < lti,j)

=

∫ lti,j

0

f(t)dt (21)

vii

We used integration by substitution rule in equation (21) to
estimate the probability of an offloading failure.

P
F
i,j =

1 lti,j ≥ 2b

ϑi,j
,

2arcsin
(lti,jvi,j

2b

)
+ lti,jvi,j

√
1−

(lt
i,j

ϑi,j

2b

)2

π
0 ≤ lti,j < 2b

ϑi,j
,

Therefore, the probability of an offloading success on VN vi
within the service zone of UE uj is derived as PSi,j = 1−PFi,j .
The higher value of PSi,j means vi is a most desirable VN for
process offloaded task.

Remark: 2 In this work, we assume that the real-time
GPS information of VN is known by the zone manager.
The simulation scenario was built using a realistic vehicular
mobility pattern from Luxembourg SUMO Traffic [32]. In this
simulation scenario, 2070 different real-time bus traces were
used to evaluate the ϑi,j and Dt

i,j .
Capacity: The offloaded task of UE uj required certain

amount of computing (C), network (N), and storage (M)
resources from VN vi to execute these tasks. However, the
total demand received by a VN vi can’t exceed its capacity
Ωi(C,M,N). Ωi(C,M,N) is denoted as the total resources
capacity of VN vi, and ωj(C,M,N) denoted as the resources
demand of UE uj task. The resources capacity constraint is
given as.∑

∀uj∈U

ωj(C,M,N) ≤ Ωi(C,M,N), ∀vi ∈ F v (22)

Assignment: A binary variable δi,j is defined to indicate
whether the UE uj task offloaded to VN vi. The value of
δi,j = 1 indicate that offloaded UE uj task is assign to VN vi
otherwise δi,j = 0 indicate that offloaded UE uj task is not
assign to VN vi. In assignment constraint, each offloaded UE
uj task assign to only one VN vi. It is given as.∑

∀vi∈Fv

δi,j = 1, ∀ uj ∈ U (23)

D. Problem Formulation

The purpose of this work is to relieve the heavy burden of
the CN, minimise energy consumption and reduce the overall
latency by leveraging the under-utilized resources of VNs.
Hence, the energy-latency tradeoff is investigated and the joint
objective function is defined as Ψe

i,jEi,j+Ψl
i,jLi,j , where Ψe

i,j

and Ψl
i,j ∈ [0, 1] are two scalar weights. χ = δi,j is used to

assignment of task decision between n UEs and m VNs. δi,j ,
is defined as a binary value. δi,j = 1 means that the UE uj
offloaded task is assigned to VN vi. Otherwise, δi,j = 0. The
optimization problem is formulated as:

Υ :min
χ

n∑
i=1

m∑
j=1

δi,j(Ψ
e
i,jEi,j + Ψl

i,jLi,j) (24)

s.t.

C1 : Li,j ≤ Lup, ∀vi ∈ F v,∀uj ∈ U,

C2 :
∑
uj∈U

ωj(C,M,N) ≤ Ωi(C,M,N), ∀vi ∈ F v,

C3 :
∑
vi∈Fv

δi,j ≤ 1, ∀uj ∈ U,

C4 :
∑
uj∈U

δi,j ≤ 1, ∀vi ∈ F v,

C5 : PSi,j = 1− PFi,j , ∀vi ∈ F v,∀uj ∈ U,
C6 : ωj(C,M,N) ≥ 0, ∀uj ∈ U,
C7 : Ψe

i,j + Ψl
i,j = 1

Here, constraint C1 is latency constraint which specifies that
the overall latency of UE uj task is bounded by the required
maximum latency (Lup). A second constraint (C2) have to
add to ensure that available resources of VN vi is sufficient
for processing the UE uj tasks. C4 and C3 guarantee that
there is a one-to-one correspondence among VNs and UEs.
C5 ensures that offloaded UE uj task successfully assign to
the VN vi and vi is within same service zone as UE uj . C6 is
the non-negative constraint on the resources requirements of
the UEs task. C7 ensure that the sum of energy and latency
weight parameters always equal to one.

Remark 3: It is infeasible to find a polynomial-time solution
for Υ due to integer constraint δi,j ∈ {0, 1}. It’s made Υ
an integer programming problem, which is in general NP-
hard. The NP-hardness of the problem Υ implies that the
problem size of Υ grows enormously fast with the number
of UEs. Therefore, it is impractical to obtain a globally
optimal solution in a real-time manner because the VN has
to collect every detailed piece of information from all UEs.
Thus, an efficient scheme design with low-complexity is highly
desirable. Motivated with these facts we introduced the ECOS
scheme based on a heuristic approach.

Algorithm 1: Cloudlet Overload Detection
Input: The UE task workload T cpu

j,k and Tmem
j,k ∀fk ∈ F f

Output: CloudletNodeOverload

1 begin
2 Sort All Element Of F f as per total utilization in descending order

functionisCloudletNodeOverUtilized(Zcpu
k , Zmem

k)
CloudletNodeOverload ← false;

3 Ucpu
k ←

∑
T cpu
j , ∀k ∈ F f : ψ(k) = j;

4 Umem
k ←

∑
Tmem
j , ∀k ∈ F f : ψ(k) = j;

5 if (Ucpu
k > Ccpu

k ‖ Umem
k > Cmem

k) then
6 CloudletNodeOverload ← true;
7 end
8 return CloudletNodeOverload;
9 end function

10 end

IV. COMPUTATION OFFLOADING MECHANISM FOR ECOS

In this section, we discuss the computation offloading
procedure in detail. Firstly, we provide a brief introduction

viii

of the CN overload prediction policy. Then, we introduce the
computation offloading selection policy. Next, we provide a
detail introduction of the resources allocation policy. Finally,
we analyze the complexity properties.

A. Phase 1: Cloudlet Overload Prediction (COP) Policy
Instead to predict all overloaded CNs, our proposed algo-

rithm (shown in Algorithm 1) gives only one overloaded CN
at a time and solves a smaller optimization problem to decide
where to offload UEs task that is currently processing on the
predicted overloaded CN. In each CN in the service zone
is dedicated a COP policy module. The COP policy module
assigned for fetches required CPU and memory demands for
the UE task that is executing on the CN fk and calculates
predicted aggregate CPU and memory demands of CN fk.
Whenever new task comes to CN for processing the COP
policy will estimate the overall current workload of CN, if
the current workload exceeding the capacity of the resources
of CN then the current CN expected to an overload. The
aggregate CPU and memory demands of CN fk is given as.

U cpuk =
∑

T cpuj , ∀k ∈ F f : ψ(k) = j (25)

Umemk =
∑

Tmemj , ∀k ∈ F f : ψ(k) = j (26)

where T cpuj and Tmemj denoted UE uj task required the
CPU and memory for execution respectively. The CN fk
CPU and memory capacity denoted as Ccpuk and Cmemk ,
respectively. ψ : U → F f is the UE to CN mapping function,
with ψ(k) = j meaning that UE uj task is executed on CN fk.
Afterwords, zone manager compares the calculated aggregate
memory and CPU demands, Umemk and U cpuk respectively. If
U cpuk > Ccpuk or Umemk > Cmemk , then the COP policy module
notifies the zone manager that CN fk is expected to have an
overload in the coming period. The COP policy module also
forwards to the zone manager the predicted CPU and memory
demands, T cpuj and Tmemj , for each UE uj task processed
on CN fk. These predictions will be used for selecting the
computation task for offloading.

An Algorithm 1 shown a basic procedure of detecting
overload CN. At first, the algorithm procedure inquires in the
context of the current CN utilization. The current utilization of
CN is calculated using equation 25 and equation 26 (from line
3 to line 5). If CPU and memory utilization of the current node
exceed overall resources capacity then this CN recognised as
an overloaded node. Afterward, zone manager gather current
information and enable offloading mode.

B. Phase 2: Computation Offloading Selection (CoS) Policy
The zone manager equipped with the CoS module which

is responsible for selecting a task from overloaded CN.
Computation offloading selection is an initial task after CN
fk detected overload. The CoS policy aims to determine
which tasks of UEs (where ∀k ∈ F f : ψ(k) = j) are offloaded
onto the VN such that cost of energy consumption, cost of
offloading, and risk of overload is minimized while task-
precedence requirement is preserved. This policy selects a UE
uj task for offloading from overload CN fk given as.

Algorithm 2: Computation offloading Selection
Input: CloudletOverload
Output: OffloadingTask

1 begin
2 TaskCount ← Min;
3 OffloadingTask ← Null;
4 TaskList ← CloudletOverlod.getTaskList();
5 OptimalNodeCluster← Null;
6 for (task:TaskList) do
7 TaskRatio ← Sk

i,j ;
8 if (TaskRatio > TaskCount) then
9 TaskCount ← TaskRatio;

10 OffloadingTask ← task
11 end
12 end
13 return OffloadingTask
14 end

max
[
Ski,j =

T cpuj

Tmemj

, ∀k ∈ F f : ψ(k) = j
]

(27)

It is clear that the risk of CN overload will minimise by
maximise the equation (27). The intuition here is that select a
high CPU task j which required higher CPU utilization and
lower memory utilization, thereby reduce the risk of overload
and reduce offloading cost by lowering the network bandwidth
requirement. A lower value of Tmemj means that task has less
memory requirement need to transfer or offload less number
of bits from CN fk to VN vi, thereby cost of offloading also
reduce. It means CPU utilization directly proportional to the
CN overload, and the required memory (size of the task) is
directly proportional to the offloading cost. Therefore, select
an UE uj task (j ∈ U) with the maximum value of Ski,j for
task offloading.

An Algorithm 2 shown the basic procedure to select a
computation offloading task from overloaded CN, which helps
to reduces offloading cost and service latency. At first, the
algorithm makes a list of tasks running on overloaded CN
(line 4). Next, it calculate TaskRatio of each task on that
list using the equation (27) (line 7). Finally, the proposed
algorithm selects a task from overloaded CN whose TaskRatio
maximum than other tasks on the same overloaded node (from
line 8 to 11 line). The next phase is a resource allocation for
computation offloading.

C. Phase 3: Resources Allocation for Computation Offloading

Instead of deciding where to assign all UEs computation
tasks that are currently processing on the overloaded CNs,
our proposed heuristic algorithm (shown in Algorithm 3) takes
only one UE task which is selected using Algorithm 2. Another
feature adopted by a proposed heuristic that minimise the
complexity further is to consider only a set of VNs within the
same service zone of UE. The real-time mobility of the VNs
formed by the mobility function (PickSameZoneNodes)
using PSi,j = 1−PFi,j . The all VNs giving real-time information
about their location to the zone manager for providing all
this valuable information to Algorithm 3 module. Using this
information Algorithm 3 module calculate PSi,j of all VNs in

ix

Algorithm 3: Resources allocation for Offloaded Compu-
tation

Input: Selected Offloaded UE Task
Output: Allocation of Offloaded UE Task

1 begin
2 MinELAC← Max;
3 AllocateVehicularNode← Null;
4 SameZoneNodeList ← PickSameZoneNodes();
5 Sort SameZoneNodeList in descending order;
6 for (VehicularNode:SameZoneNodeList) do
7 if (Vehicular node has enough resorces & satisfied all

constraints) then
8 valueELAC ← EstimateELAC();
9 if (valueELAC< MinELAC) then

10 AllocateVehicularNode← VehicularNode;
11 MinELAC ← valueELAC;
12 end
13 end
14 end
15 return Allocation of Offloaded UE Task
16 end

the same service zone as overloaded CN and then Algorithm
3 module returned list of VN with their PSi,j (line 4). Next,
using the PSi,j value of all VNs in the return list is sorted
in descending order. The intuition here is that the VN with
the largest PSi,j value has the highest probability to finish the
processing of offloaded task before leaving a service zone. The
heuristic then iteratively compares joint energy and latency
cost of ∀ VN ∈ SameZoneNodeList. Afterward, it returned
efficient VN (from line 5 to line 15) that have a higher
probability to stay longer time in a UE service zone and
minimum value of ELEC metric. The intuition here is that the
VN the higher probability to stay longer time in a UE service
zone have enough time for processing the offloaded task which
lower chances of offloading failure. The heuristic algorithm
will be executed until adding any of the possible options
such as offloading task causes in-feasibility, and the minimum
optimal joint energy and latency cost of task offloaded to VN
is larger than the minimum joint cost of the previous iteration.
Hence, the proposed heuristic algorithm minimized offloading
cost, energy consumption, overall latency, and probability to
trigger an overload CN.

D. Time Complexity and Overhead Analysis

In the process of overload CN detection, the sorting of
all CNs and selecting an overloaded CN are O(l log l)
and O(l), respectively. Assuming worst-case scenario that all
UEs task running on overload CN then time complexity for
selection computation offloading task is O(m). In the process
of resources allocation for computational offloading, for each
selected UE task, the complexity is O(n) then total complexity
of all UEs task is O(mn).

The real-time mobility information gathering from VNs
is the major overhead while resource allocation in phase-
3 considering the scaled vehicular fog networking scenario
in realistic traffic environment. However, our consideration
of zone-based implementation of computation offloading and
resource allocation effectively address this concern for real
traffic environment.

TABLE I
SIMULATION PARAMETERS SETTING

Parameter Value

Number of UEs 5-20

Velocity of vehicular node 2 - 20 m/s

Cell diameter 300 - 600 m

Latency constraint Lup 0.05 - 0.7 s

Cloudlet layer resources 2-4GHz, 2-3GB

Noise power -114 dBm

Data size of UE’s task 100 - 200 Mb

Path loss exponent -3.4

Bandwidth of UEs 20 MHz

Transmission power of UEs 31 dBm

Efficient factor of power amplifier 18

Static transmission power 26 dBm

V. PERFORMANCE EVALUATION

In particular, we evaluate the ELEC metric of the pro-
posed ECOS scheme by numerical analysis in Section 5B
and demonstrate the impact of weights, Ψe

i,j and Ψl
i,j on

the total latency and the energy consumption in Section 5D.
Furthermore, we compare energy saving, total latency, and
the probability of moving out in Sections 5C, 5E, and 5F,
respectively.

We compare the proposed ECOS scheme with the following
approaches:

1) LocalOnly: in which all UE task processed locally in
the CN.

2) CloudOnly: in which tasks from overloaded CN offload
only to the centralized cloud server [4].

3) Random: in which computation offloading task select
randomly and randomly allocate computation resources to
offloaded task without considering the mobility pattern of VN.

4) Chen: in which computation tasks offload to the cloud
servers and an offloading decision is depend on the application
characteristics [33].

5) Sun: in which computation tasks offload to the cloud
servers and an offloading decision is based on the multi-armed
bandit theory [9].

6) Mao: in which computation offloading policy based on
Lyapunov optimization. At each time slot task is offloaded to
the node without considering mobility [10] .

A. Simulation Setup Under Synthetic Scenario

To evaluate the performance of the proposed ECOS scheme,
we carry out simulations in this section. We first consider a
simple urban simulation scenario. In this synthetic scenario,
parameters are based on the simulation scenario was built
using real-world mobility traces of buses to simulate vehicular
mobility patterns from Luxembourg SUMO Traffic [32]. We
evaluate proposal solution under different VN mobility speed
and different density scenario. The overall parameters used in
our simulation are shown in Table I. the performance of the

x

proposed ECOS scheme is evaluated by extensive simulation
on Matlab. Then simulate a realistic highway scenario using
system level simulator VeinsLTE [34] to further verify the
proposed ECOS scheme.

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7
2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0

1 0 0 0 0

EL
EC

 L a t e n c y C o n s t r a i n t (s)

 L o c a l
 C l o u d
 E C O S

Fig. 4. ELEC vs Lup

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7
0

2

4

6

8

1 0

En
erg

y S
avi

ng
 (J)

 L a t e n c y C o n s t r a i n t (s)

 R a n d o m
 S u n
 M a o
 C h e n
 E C O S

Fig. 5. Energy Saving vs Lup.

1) Comparison of Energy and Latency Efficient Cost:
In this subsection, we compare the proposed ECOS scheme
with the other two baselines execution policy, i.e., CloudOnly
policy and LocalOnly policy [35], under the hard latency
deadline constraint Lup. CloudOnly policy demonstrates that
all UEs tasks are offloaded to the cloud servers for execution.
LocalOnly policy implies that all UEs tasks are executed
locally on the CN. Fig 4 plots the comparison of energy
and latency efficient costs of the between proposed ECOS
scheme, CloudOnly policy, and LocalOnly policy for the same
application profile.

We can draw several observation from Fig. 4. Firstly,
compared to LocalOnly policy, the proposed ECOS scheme
significantly minimize 47% the energy and latency efficient
cost. This is because that proposed ECOS scheme can opti-
mally select UEs uj ∀ ∈ U task to be offloaded on the VN vi to
execute according to the energy consumption cost and overall
service latency. Secondly, compared to CloudOnly policy, the
proposed ECOS scheme has also lower energy and latency
efficient cost when CloudOnly policy becomes applicable. In
the case of low latency deadline constraint (Lup), CloudOnly
policy for the cloud execution can’t be used because of longer
time taken by the CloudOnly Policy for the remote execution
to transmit the input data, which violate constraint C1 of
the UE task. Thirdly, as Lup value increases the energy and
latency efficient cost decreases rapidly, then become stable
when Lup = 0.5. This is because at the low value of Lup

, most of the UEs tasks are executed on the CN. Moreover,
Whenever the value of Lup is low the task process in CN
or locally because lower value of Lup violate service latency
deadline constraint, thereby task could not offloaded to VN.

2) Comparison of Energy Saving: In this subsection, we
first consider the impact of the latency constraint Lup on
the energy-saving with respect to LocalOnly method. The
proposed ECOS scheme compare with the offloading game
policy in [33] named Chen, the task scheduling algorithm in
[10] named Mao, the resources allocation policy in [9] named
Sun, and the random allocation algorithm for different value of
Lup. These policies are implemented on the real testbed with
same parameter setting and channel condition. Fig. 5 depicts
the energy saving of the above given policies.

We can observe that the proposed ECOS scheme always

has more energy saving compared to Random, Sun, Mao,
and Chen policies, which is justified since ECOS scheme not
only select an efficient task from overloaded CN for reducing
communication cost but also takes energy-efficient offloading
mechanism to save more energy. Fig. 5 shows that as the value
of Lup increases, the number of offloading tasks increases
from overloaded CN fk to VN vi for exploit under-utilized
resources rather than being processed by the overloaded CN
with limited computation resources. This will dramatically
save more energy. Numerical results also demonstrate that
the proposed ECOS scheme can achieve close to optimal
performance under all the investigated scenarios.

In Fig.6 shows the energy-saving versus the service zone
coverage diameter with different numbers of UEs. Expanding
the coverage area of service zone has a positive impact
on energy saving. It does not only reduce the probability
of offloading failures which satisfied constraint C5 but also
increase the eligible VNs for processing offloaded tasks. How-
ever, when the service zone coverage area reaches a certain
value, the improvement in energy saving saturated because
the optimal energy and latency have already been achieved.
Furthermore, when the number of UEs is increases, energy-
saving also increases. The reason is that numbers of offloaded
UEs tasks from overloaded CN reduce the energy consumption
of CN.

3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0

4

6

8

1 0

En
erg

y S
avi

ng
 (J)

C e l l D i a m e t e r (m)

 5 U E s
 1 0 U E s
 1 5 U E s
 2 0 U E s

Fig. 6. Energy vs Cell diameter

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

2

4

6

8

1 0

En
erg

y S
avi

ng
 (J)

V e l o c i t y o f V e h i c u l a r N o d e s (m / s)

 R a n d o m
 S u n
 M a o
 C h e n
 E C O S

Fig. 7. Energy vs VN’s Velocity

Fig. 7 shows energy-saving versus velocity of VN. Increas-
ing the velocity of VN has a negative impact on energy saving.
It does not only increase the chances of offloading failures
but also maximize the energy consumption of overloaded CN.
The reason is that the number of eligible VN for processing
offloaded tasks are decreases because more and more VN leav-
ing the service zone that violate the probability constraint C5.
Thereby, it is less likely for offloading UE task to satisfactory
VN, and the corresponding task can only be executed locally
on overloaded CN. In comparison, energy-saving saturated
constant as the velocity of VN is increased. Simulation results
demonstrate that the proposed ECOS scheme is more robust
to negative impact caused by the high mobility of VN.

3) Impact of Weights Ψe
i,j and Ψl

i,j: In this subsection, we
evaluate the impact of weights, Ψe

i,j and Ψl
i,j on ELEC metric

and overall latency. Fig. 8 depicts the comparison of latency
versus number of UEs for different setting of Ψe

i,j and Ψl
i,j .

We can observe that increasing the value Ψl
i,j has a positive

impact on overall latency of the task. If the application is
latency-sensitive, a large value of Ψl

i,j is beneficial to improve
the Quality of Experience (QoE). Fig. 9 shows total reverse

xi

5 1 0 1 5 2 0
5 0

1 0 0

1 5 0

2 0 0
La

ten
cy

(µs
)

N u m b e r o f U E s

 Ψ e
i , j =0.7,Ψl

i , j = 0 . 3
 Ψ e

i , j =0.5,Ψl
i , j = 0 . 5

 Ψ e
i , j =0.3,Ψl

i , j = 0 . 7

Fig. 8. Latency vs UEs

5 1 0 1 5 2 0
1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

4 0 0 0

4 5 0 0

5 0 0 0

EL
EC

N u m b e r o f U E s

 Ψ e
i , j =0.7,Ψl

i , j = 0 . 3
 Ψ e

i , j =0.5,Ψl
i , j = 0 . 5

 Ψ e
i , j =0.3,Ψl

i , j = 0 . 7

Fig. 9. Energy vs VN’s Velocity

relation to Fig. 8. We can observe that increasing value Ψl
i,j

has a negative impact on ELEC metric but increasing value
Ψe
i,j has a positive impact on ELEC metric. Here, we can

observe that if the application is not latency-sensitive, a large
value of Ψe

i,j saves more energy for overloaded CN. The
reason is that a large Ψe

i,j increases the number of eligible
VN for executing offloaded task from overloaded CN.

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0
5 0 0
5 5 0
6 0 0
6 5 0

La
ten

cy
(µs

)

V e l o c i t y o f V e h i c u l a r N o d e (m / s)

 R a n d o m
 S u n
 M a o
 C h e n
 E C O S

Fig. 10. Latency vs VN’s Velocity

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0
5 0 0
5 5 0
6 0 0
6 5 0

To
tal

La
ten

cy
(µs

)

 L a t e n c y C o n s t r a i n t (s)

 R a n d o m
 S u n
 M a o
 C h e n
 E C O S

Fig. 11. Latency vs Lup

4) Comparison of Total Latency: In this subsection, we
compare the overall service latency versus velocity of VN
and latency constraint Lup. In the simulation, we employ the
constant-velocity model [13], [36], and randomly generated
velocity of VN within the range (from 2 to 20) meter/second.
Fig. 10 plots total latency for a different settings of VN
velocity. We can observe from Fig. 10 that the total latency in-
creases with the VN velocity. The reason is that higher velocity
leads to frequently offloading failures. Thereby, the offloading
cost or communication cost of the UE task increases. In
comparison, the total latency of the proposed scheme remains
constant when the VN velocity increases from 12 to 20 m/s.
The reason is that UE tasks are less likely to satisfied the
constraint C5, which means VN moving out from service zone
communication range. Simulation results demonstrate that the
proposed ECOS scheme is more robust to the negative impact
caused by the high velocity of VN.

Fig. 11 shows the total latency versus latency constraint of
the computation task. The number of eligible VNs increases, as
the latency constraint increases. Thereby, more and more task
can be offloaded from overloaded CNs to VN to exploit under-
utilized computational resources, which is dramatically reduce
the total latency for UE. Simulation results also demonstrate
that the proposed ECOS scheme giving optimal performance
compare to other policies under all investigated scenarios.

5) Comparison Probability of Moving Out : In this subsec-
tion, we evaluate the impact of VN mobility on the probability
of VN moving out from UE uj service zone range with

different setting of service zone diameter (from 300 to 600 m).
Fig. 12 shows the comparison of VN probability of moving out
from service zone range plotted against the velocity of VN.
The simulation results demonstrate that the probability of VN
moving out from service zone dramatically increases with the
increment of VN velocity or mobility. Clearly, as the velocity
of VN increases, the proportion of satisfactory VNs decreases
for processing offloaded task but we can also observed that
increasing the diameter of service zone positively impact on
moving out probability.

Fig. 12. VN’s Velocity vs VN’s
Probability

0 . 3 0 . 4 0 . 5 0 . 6 0 . 7

1 8 0

1 9 0

2 0 0

2 1 0

2 2 0

2 3 0

2 4 0

2 5 0

 B

Y e

La
ten

cy
 (µ

s)

Y e = 0 . 3 , Y l = 0 . 7

Y e = 0 . 6 , Y l = 0 . 4

Y e = 0 . 4 , Y l = 0 . 6

Y e = 0 . 5 , Y l = 0 . 5

Y e = 0 . 7 , Y l = 0 . 3

0 . 7

0 . 6

0 . 5

0 . 4

0 . 3

Yl

Fig. 13. Latency vs weight parame-
ters at the arrival probability of VN is
0.1

B. Simulation Setup Under Realistic Highway Scenario

We consider system-level simulator VeinsLTE [34], in or-
der to evaluate the average latency of the proposed scheme
under a realistic highway scenario. The simulation platform
VeinsLTE combined with a traffic Simulation of Urban Mo-
bility (SUMO), a network simulator OMNeT++, and enables
to use real maps from Open Street Map (OSM). Specifically,
SUMO manages the mobility of the vehicular node, while
with the framework VeinsLTE implementation, VNs can ei-
ther exchange data with CN through Dedicated Short-range
Communication (DSRC), or connect to zone manager over
LTE networking technologies. In this work, VNs are used
DSRC channels for data transmission between CNs. On the
other hand, LTE is used for communications between VNs
and the corresponding zone manager to notifying the current
status of VNs, such as leaving or entering a service zone.
To obtain a realistic simulation scenario, we used an 8 km
segment of the Jingzang highway in Beijing, exported from
OSM, and used it in our simulation, with two lanes and two
ramps. We have homogeneously deployed a set of the RUs
to cover the whole area. We define each RUs position based
on its communication range. These RUs work as CNs, and
thus each CN is responsible for managing UEs tasks within
its coverage area based on services available in that area. We
also define the zone managers, which can communicate with
CNs and VNs. The maximum speed of VN is set to 20 m/s.
The arrival of VNs is modeled by Bernoulli distribution, with
probability ranging from 0.1 to 0.2.

1) Comparison of Latency: Fig. 13 and Fig. 14 explore
the impact of VNs arrival rate on latency. The number of
VNs in a corresponding service zone of UE increases, as
the probability of arrival rate increases from 0.1 to 0.2. As
a result, The number of eligible VNs increases for processing

xii

UE tasks. Thereby, more and more tasks can be offloaded from
overloaded CNs to VN to exploit under-utilized computational
resources, which dramatically reduces the service latency for
UE. Simulation results also demonstrate that the proposed
ECOS scheme significantly reduces the service latency.

0 . 3 0 . 4 0 . 5 0 . 6 0 . 7

1 6 0

1 7 0

1 8 0

1 9 0

2 0 0

2 1 0

 B

Y e

La
ten

cy
 (µ

s)

Y e = 0 . 3 , Y l = 0 . 7

Y e = 0 . 6 , Y l = 0 . 4

Y e = 0 . 4 , Y l = 0 . 6

Y e = 0 . 5 , Y l = 0 . 5

Y e = 0 . 7 , Y l = 0 . 3

0 . 7

0 . 6

0 . 5

0 . 4

0 . 3

Yl

Fig. 14. Latency vs weight parame-
ters with 0.2 VN arrival probability

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

La
ten

cy(
µs)

 L a t e n c y C o n s t r a i n t (s)

 5 U E s
 1 0 U E s
 1 5 U E s
 2 0 U E s

Fig. 15. Latency vs UEs at the
arrival probability of VNs is 0.2

In Fig.15 shows the latency versus the latency constraint
with different numbers of UEs. Increases latency constraint
has a positive impact on service latency. It not only reduces
the probability of offloading failures that satisfy constraint C5

but also increases the eligible VNs for processing offloaded
tasks. However, when the latency constraint reaches a certain
value, the improvement in service latency saturated because
the optimal latency has already been achieved. Furthermore,
when the number of UEs is increases, service latency also
increases. The reason is that the number of offloaded UEs
tasks from overloaded CN is increased.

VI. CONCLUSIONS

In this paper, we have investigated joint energy and latency
efficient task offloading and computation resources allocation
for VFC with mobility and end-to-end latency constraints. We
proposed an ECOS scheme to minimize the weighted sum of
service latency and energy consumption of CN. We find that
computation offloading selection policy is determined by not
only the computing workload of a task but also memory used
by the task. Furthermore, we observe that efficient tradeoff of
energy and latency of task depends on the balance between the
weight of computation latency and that of energy consumption,
and the cost for the required application completion time dead-
line. Finally, we implement the ECOS scheme in a real based
scenario and simulation results demonstrate that compared to
the baseline policies, the proposed scheme can effectively
minimize the energy consumption and service latency, by
taking advantage of mobility constraint.

For future work, we will investigate the inter-operability of
vehicular nodes. Because many edge facilities are involved
in the task, it is important to seek an effective common
inter-operability framework for heterogeneous devices and
communication technologies.

ACKNOWLEDGMENT

This work is supported in part by the Key-Area Research
and Development Program of Guangdong Province under
grant No. 2019B010136001, the National Key Research and
Development Plan under grant No. 2017YFB0801801, the

National Natural Science Foundation of China (NSFC) under
grant No. 61672186, 61872110, support this work. Corre-
sponding author is Professor Weizhe Zhang.

REFERENCES

[1] O. Kaiwartya, A. H. Abdullah, Y. Cao, J. Lloret, S. Kumar, R. R. Shah,
M. Prasad, and S. Prakash, “Virtualization in wireless sensor networks:
Fault tolerant embedding for internet of things,” IEEE Internet of Things
Journal, vol. 5, no. 2, pp. 571–580, 2017.

[2] Z. Zhou, P. Liu, J. Feng, Y. Zhang, S. Mumtaz, and J. Rodriguez,
“Computation resource allocation and task assignment optimization in
vehicular fog computing: A contract-matching approach,” IEEE Trans-
actions on Vehicular Technology, vol. 68, no. 4, pp. 3113–3125, 2019.

[3] R. Yadav, W. Zhang, O. Kaiwartya, P. R. Singh, I. A. Elgendy, and
Y.-C. Tian, “Adaptive energy-aware algorithms for minimizing energy
consumption and sla violation in cloud computing,” IEEE Access, vol. 6,
pp. 55 923–55 936, 2018.

[4] R. Yadav, W. Zhang, K. Li, C. Liu, M. Shafiq, and N. K. Karn, “An
adaptive heuristic for managing energy consumption and overloaded
hosts in a cloud data center,” Wireless Networks, pp. 1–15, 2018.

[5] Y. Cao, H. Song, O. Kaiwartya, B. Zhou, Y. Zhuang, Y. Cao, and
X. Zhang, “Mobile edge computing for big-data-enabled electric vehicle
charging,” IEEE Communications Magazine, vol. 56, no. 3, pp. 150–156,
2018.

[6] Z. Zhou, H. Liao, B. Gu, S. Mumtaz, and J. Rodriguez, “Resource
sharing and task offloading in iot fog computing: A contract-learning
approach,” IEEE Transactions on Emerging Topics in Computational
Intelligence, 2019.

[7] B. Intelligence, “Automotive industry trends: Iot connected smart
cars & vehicles,” Dec. 2016, https://www.concentrix.com/infographs/
connected-vehicles.pdf.

[8] A. Aliyu, A. H. Abdullah, O. Kaiwartya, Y. Cao, M. J. Usman, S. Kumar,
D. Lobiyal, and R. S. Raw, “Cloud computing in vanets: architecture,
taxonomy, and challenges,” IETE Technical Review, vol. 35, no. 5, pp.
523–547, 2018.

[9] Y. Sun, X. Guo, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Learning-based
task offloading for vehicular cloud computing systems,” in 2018 IEEE
International Conference on Communications (ICC). IEEE, 2018, pp.
1–7.

[10] Y. Mao, J. Zhang, S. Song, and K. B. Letaief, “Power-delay tradeoff
in multi-user mobile-edge computing systems,” in 2016 IEEE Global
Communications Conference (GLOBECOM). IEEE, 2016, pp. 1–6.

[11] T. Darwish, K. A. Bakar, O. Kaiwartya, and J. Lloret, “Trading: Traffic
aware data offloading for big data enabled intelligent transportation
system,” IEEE Transactions on Vehicular Technology, 2020.

[12] E. Lee, E.-K. Lee, M. Gerla, and S. Y. Oh, “Vehicular cloud networking:
architecture and design principles,” IEEE Communications Magazine,
vol. 52, no. 2, pp. 148–155, 2014.

[13] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular
fog computing: A viewpoint of vehicles as the infrastructures,” IEEE
Transactions on Vehicular Technology, vol. 65, no. 6, pp. 3860–3873,
2016.

[14] C. Zhu, J. Tao, G. Pastor, Y. Xiao, Y. Ji, Q. Zhou, Y. Li, and A. Ylä-
Jääski, “Folo: Latency and quality optimized task allocation in vehicular
fog computing,” IEEE Internet of Things Journal, 2018.

[15] Z. Su, Y. Hui, and S. Guo, “D2d-based content delivery with parked
vehicles in vehicular social networks,” IEEE Wireless Communications,
vol. 23, no. 4, pp. 90–95, 2016.

[16] A. Zanni, S.-Y. Yu, P. Bellavista, R. Langar, and S. Secci, “Automated
selection of offloadable tasks for mobile computation offloading in edge
computing,” in 2017 13th international conference on network and
service management (CNSM). IEEE, 2017, pp. 1–5.

[17] J. L. D. Neto, S.-Y. Yu, D. F. Macedo, J. M. S. Nogueira, R. Langar, and
S. Secci, “Uloof: A user level online offloading framework for mobile
edge computing,” IEEE Transactions on Mobile Computing, vol. 17,
no. 11, pp. 2660–2674, 2018.

[18] Z. Zhou, H. Liao, X. Zhao, B. Ai, and M. Guizani, “Reliable task of-
floading for vehicular fog computing under information asymmetry and
information uncertainty,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 9, pp. 8322–8335, 2019.

[19] K. Zhang, Y. Mao, S. Leng, Y. He, and Y. Zhang, “Mobile-edge
computing for vehicular networks: A promising network paradigm with
predictive off-loading,” IEEE Vehicular Technology Magazine, vol. 12,
no. 2, pp. 36–44, 2017.

https://www.concentrix.com/infographs/connected-vehicles.pdf
https://www.concentrix.com/infographs/connected-vehicles.pdf

xiii

[20] J. Feng, Z. Liu, C. Wu, and Y. Ji, “Ave: Autonomous vehicular edge
computing framework with aco-based scheduling,” IEEE Transactions
on Vehicular Technology, vol. 66, no. 12, pp. 10 660–10 675, 2017.

[21] X. Chen and L. Wang, “Exploring fog computing-based adaptive vehic-
ular data scheduling policies through a compositional formal method-
pepa,” IEEE Communications Letters, vol. 21, no. 4, pp. 745–748, 2017.

[22] M. Gerla, J. T. Weng, and G. Pau, “Pics-on-wheels: Photo surveillance in
the vehicular cloud,” in International Conference on Computing, 2013.

[23] Z. Zhou, J. Feng, Z. Chang, and X. Shen, “Energy-efficient edge
computing service provisioning for vehicular networks: A consensus
admm approach,” IEEE Transactions on Vehicular Technology, vol. 68,
no. 5, pp. 5087–5099, 2019.

[24] B. Ottenwälder, B. Koldehofe, K. Rothermel, and U. Ramachandran,
“Migcep: operator migration for mobility driven distributed complex
event processing,” in Proceedings of the 7th ACM international confer-
ence on Distributed event-based systems. ACM, 2013, pp. 183–194.

[25] V. B. Souza, X. Masip-Bruin, E. Marin-Tordera, W. Ramirez, and
S. Sanchez, “Towards distributed service allocation in fog-to-cloud (f2c)
scenarios,” in Global Communications Conference, 2017.

[26] C. Xian, Y.-H. Lu, and Z. Li, “Dynamic voltage scaling for multitasking
real-time systems with uncertain execution time,” IEEE Transactions on
computer-aided design of integrated circuits and systems, vol. 27, no. 8,
pp. 1467–1478, 2008.

[27] J. Cheng, Y. Shi, B. Bai, and W. Chen, “Computation offloading in
cloud-ran based mobile cloud computing system,” in Communications
(ICC), 2016 IEEE International Conference on. IEEE, 2016, pp. 1–6.

[28] K. Mohd Zaini, A. R. Mohd Shariff, and Z. Shi, “A calculation
of wlan dwell time model for wireless network selection,” Journal
of Telecommunication, Electronic and Computer Engineering, vol. 8,
no. 10, pp. 73–76, 2016.

[29] M. Abdulla and Y. Shayan, “Cellular-based statistical model for mobile
dispersion,” in 2009 IEEE 14th International Workshop on Computer
Aided Modeling and Design of Communication Links and Networks.
IEEE, 2009, pp. 1–5.

[30] I. F. Akyildiz and W. Wang, “The predictive user mobility profile
framework for wireless multimedia networks,” IEEE/ACM Transactions
On Networking, vol. 12, no. 6, pp. 1021–1035, 2004.

[31] J. A. Gubner, Probability and random processes for electrical and
computer engineers. Cambridge University Press, 2006.

[32] L. Codeca, R. Frank, and T. Engel, “Luxembourg sumo traffic (lust)
scenario: 24 hours of mobility for vehicular networking research,” in
2015 IEEE Vehicular Networking Conference (VNC). IEEE, 2015, pp.
1–8.

[33] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 4, pp. 974–983, 2014.

[34] F. Hagenauer, F. Dressler, and C. Sommer, “Poster: A simulator for
heterogeneous vehicular networks,” in 2014 IEEE Vehicular Networking
Conference (VNC). IEEE, 2014, pp. 185–186.

[35] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-
optimal mobile cloud computing under stochastic wireless channel,”
IEEE Transactions on Wireless Communications, vol. 12, no. 9, pp.
4569–4581, 2013.

[36] Z. Su, Q. Xu, Y. Hui, M. Wen, and S. Guo, “A game theoretic approach
to parked vehicle assisted content delivery in vehicular ad hoc networks,”
IEEE Transactions on Vehicular Technology, vol. 66, no. 7, pp. 6461–
6474, 2016.

Rahul Yadav (M’20) is currently working as a
Postdoctoral Research Fellowat the Peng Cheng
Laboratory. He received his Ph.D. degree in Com-
puter Science from Harbin Institute of Technology,
Harbin, China, in 2020. He served as a Guest Editor
in Wireless Communications and Mobile Computing
journal. He is actively involved in the research on
IoT, computation offloading, efficient-energy man-
agement, cloud/fog/edge computing, Vehicular fog
computing, optimal utilization of data center re-
sources, cost-efficient virtual machine consolidation,

and delay estimation.

Weizhe Zhang (M06) is currently a Professor with
the School of Computer Science and Technology,
Harbin Institute of Technology, China. He has au-
thored over 100 academic papers in journals, books,
and conference proceedings. His research interests
are primarily in parallel computing, distributed com-
puting, cloud and grid computing, and computer
network. He serves on a number of journal editorial
boards. He has edited more than 10 international
journal special issues as a guest editor and has served
for many international conferences as the chair or a

committee member

Omprakash Kaiwartya (M14, SM’19) is currently
working as a Senior Lecturer at the Department
of Computer Science, Nottingham Trent University,
UK. Previously, He was a Research Associate at
the Northumbria University, Newcastle, UK, in 2017
and a Postdoctoral Research Fellow at the Uni-
versity of Technology Malaysia (UTM) in 2016.
He received his Ph.D. degree in Computer Science
from Jawaharlal Nehru University, New Delhi, India,
in 2015. He is the Fellow in Higher Education
Academy (FHEA), UK. He is also Senior Member

in IEEE, USA and Professional Member in British Computer Society (BCS),
UK. His research interest includes Drone Enabled Networking, E-Mobility
Centric Electric Vehicles, IoT Enabled Smart Services, Connected Vehicles,
and Next Generation Wireless Systems. He is serving as Associate Editor
and/or Guest Editor in IEEE Internet of Things Journal, IEEE Access, IET
Intelligent Transport Systems, EURASIP Journal on Wireless Communication
and Networking, MDPI Sensors and Electronics.

Houbing Song (M12SM14) received the Ph.D. de-
gree in electrical engineering from the University
of Virginia, Charlottesville, VA, in August 2012,
and the M.S. degree in civil engineering from the
University of Texas, El Paso, TX, in December
2006. In August 2017, he joined the Department
of Electrical, Computer, Software, and Systems En-
gineering, Embry-Riddle Aeronautical University,
Daytona Beach, FL, where he is currently an As-
sistant Professor and the Director of the Security
and Optimization for Networked Globe Laboratory

(SONG Lab, www.SONGLab.us). He served on the faculty of West Virginia
University from August 2012 to August 2017. In 2007 he was an Engineering
Research Associate with the Texas A&M Transportation Institute. He is the
author of more than 100 articles. His research interests include cyber-physical
systems, cybersecurity and privacy, internet of things, edge computing, big
data analytics, unmanned aircraft systems, connected vehicle, smart and
connected health, and wireless communications and networking. His research
has been featured by popular news media outlets, including USA Today, U.S.
News & World Report, Fox News, Forbes, WFTV, and New Atlas.

Shui Yu received the Ph.D. degree in computer
science from Deakin University, Geelong, VIC, Aus-
tralia, in 2004. He is a Professor with the School
of Computer Science, University of Technology
Sydney, Sydney, NSW, Australia. He initiated the
research field of networking for big data in 2013. His
H-index is 37. He has published two monographs
and edited two books, over 280 technical papers,
including top journals and top conferences. His cur-
rent research interests include security and privacy,

networking, big data, and mathematical modeling.

	Introduction
	Related Work
	System Model and Problem Formulation
	System Architecture Overview
	Cloud Layer
	UEs Layer
	Cloudlet Layer

	System Model Overview
	System Latency Model

	Constraints
	Problem Formulation

	Computation Offloading Mechanism for ECOS
	Phase 1: Cloudlet Overload Prediction (COP) Policy
	Phase 2: Computation Offloading Selection (CoS) Policy
	Phase 3: Resources Allocation for Computation Offloading
	 Time Complexity and Overhead Analysis

	Performance Evaluation
	LocalOnly
	CloudOnly
	Random
	Chen
	Sun
	Mao

	Simulation Setup Under Synthetic Scenario
	Comparison of Energy and Latency Efficient Cost
	Comparison of Energy Saving
	Impact of Weights i,je and i,jl
	Comparison of Total Latency
	Comparison Probability of Moving Out

	Simulation Setup Under Realistic Highway Scenario
	Comparison of Latency

	Conclusions
	References
	Biographies
	Rahul Yadav
	Weizhe Zhang
	Omprakash Kaiwartya
	Houbing Song
	Shui Yu

