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Abstract

Solutions to transportation problems have been extensively studied and developed over 

the last few decades. Although a significant progress has been made, a constant growth of 

the number of cars on roads cause new problems which cannot be dealt with by just 

controlling traffic signals. This implies that alternative ways of managing and controlling 

traffic need to be developed. A promising solution is to utilise combined information on 

current traffic and public transport situation and to employ multi-modal traffic 

optimisation. This solution requires the availability of very accurate real-time 

information. Information on travel time across an urban road network is one of the most 

important operational characteristics of the traffic system. It has been shown that existing 

algorithms for travel time estimation do not provide satisfactory accuracy and possess 

several disadvantages that render them inapplicable for estimation of travel time in 

volatile urban traffic. In this research, a problem of accurate travel time estimation is 

addressed and a novel low-level data processing methodology is presented.

Applications developed in the theoretical framework of real-time traffic systems require a 

suitable software environment. Many software packages have been developed to date for 

data processing, analysis and modelling. Unfortunately, most of them are either too 

general and are computationally burdensome, or are too specific and cannot be applied to 

solving a problem from a very specialised domain. As Transportation Research is a 

relatively small niche, the software development was traditionally accomplished on the 

project-to-project basis and, as a consequence, much time was spent on re-writing 

software for specific needs of a particular project. In this research, a general framework 

for processing traffic/travel data has been developed and its functionality has been 

demonstrated on a specific traffic/transportation problem.
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Chapter 1

Introduction

1.1 Overview

Initial purpose of the project was to investigate the feasibility of application of advances 

in information theory and soft computing to traffic and transportation systems. While the 

investigation of the transportation systems progressed on, it was discovered that there are 

a few niches lacking development, which are meant to be the basis of a fuzzy approach to 

traffic data analysis. Therefore these problems have been addressed in this research and 

the results can be considered to form a basis for further research leading to the 

application of the fuzzy techniques to traffic data processing and analysis.

Analysis of data has long been the basis of many applied areas of science. This is also 

true of new disciplines, such as Transportation Research, where data analysis provides 

the necessary foundation for modelling of transportation systems. It can be argued that 

knowledge about real-life systems is represented in the form of models that explain the 

system. In this sense modelling can be seen as an activity leading to improved 

understanding of the principles of the systems functionality. Deterministic and statistical 

modelling of systems were the only modelling techniques for centuries. However, it has 

long been known that not all real-world systems can be adequately modelled using 

deterministic or statistical approaches. These are systems with such number of interactive 

objects that analytical description of them becomes far too complex or systems, whose 

objects exhibit non-deterministic but not purely random character. In fact, most of real- 

world systems have such properties. Using traditional methods it is especially difficult to 

model systems with relatively large number of objects that themselves exhibit complex 

non-deterministic behaviour, such as most of the social systems. Transportation systems 

are such systems with complex interaction between society, technology and nature. The 

need for a solution was increasingly understood in the middle of the twentieth century 

and a number of new research directions were initiated. New modelling approaches 

questioned the applicability of the apparatus of pure mathematics to real-life problems 

and sought alternative ways. The important understanding of the crucial relationship



between the notions of information and complexity provided the motivation for the 

development of the new fields of science. The relationship between information and 

uncertainty has been known from the first works on information theory, which were 

earned out within the framework of probability theory. Further research has revealed that 

uncertainty, in fact, is a multi-dimensional concept [Klir, Folger, 1988], [Bargiela, 1998]. 

The fundamental modelling principles of minimum and maximum entropy have been 

generalised into the principles of uncertainty, the principles that allow a better 

understanding of systems’ complexity and are the tools to handle it. Several 

independently developed areas based on biologically-inspired analogies have now joined 

in one broad area, which is now called Computational Intelligence [Pedrycz, 1998]. 

Fuzzy systems, neural networks, evolutionary algorithms are all branches of the new 

discipline. Many applied disciplines, being merely engineering areas, lack certain 

connections with the cutting edge of the science. Transportation research has traditionally 

been such a discipline. While much effort has been put to solving the transportation 

problems using traditional modelling techniques, a little has been done in application of 

soft computing paradigms, even though the limitations of the pure-mathematical 

approach have long been known.

In Transportation Research, data was normally used to validate mathematical models 

developed for certain aspects of the transportation systems, such as traffic flows, traffic 

assignment models, signalling control, etc. The above models served in transportation 

research for decades, but in recent years they also highlighted the fact that, in the context 

of continually increasing number of cars, the traffic management need to adopt a broader 

context of travel mode decisions rather than just traffic signal optimisation. This caused 

the need for development of alternative ways of managing traffic in order to utilise fully 

the available recourses of road and public transport infrastructure. The prominent solution 

to this seems to be in the development of new generation of intelligent information 

systems, which will be able to give a new scope for the improvement of the existing 

traffic control strategies as well as provide additional level of control by influencing the 

decision making process of the road users [Peytchev, 1999]. This new level of control, on 

the trip planning level, is a promising approach and is being extensively researched at the 

present time.
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The noteworthy growth and development of the computing technology gives new 

possibilities in improved utilisation of road and public transport infrastructure and the 

optimisation of the common ‘good’ to all road users (urban sustainability). The new 

approach requires the availability of information on traffic situation at the most accurate 

level. Several well-known operational characteristics of a transportation system can be 

used as optimisation criteria. Travel time seems to be the most important among them as 

it is a natural measure of service provided by a road infrastructure. Although travel time, 

as an operational parameter of a traffic system, has been researched extensively for 

highway traffic, it is not well-researched in urban traffic systems. The problem of travel 

time estimation from traffic data is addressed in this research as a methodology that 

allows accurate estimation of travel times at the resolution of the data.

The development of computing hardware has been accompanied by a rapid growth in 

sophistication of computer software. Many software packages have been developed to 

date for data processing, analysis and modelling. Unfortunately, most of them are either 

too general and are difficult to apply to a specific problem, or are too specific and cannot 

be applied to solving a problem from a very specialised domain. As Transportation 

Research is a relatively small niche, the software development remains to be 

accomplished on the project-to-project basis and, as a consequence, much time is being 

spent on re-writing software for specific needs of a particular project. In this research, a 

general framework for processing traffic/travel data has been developed and its 

functionality has been demonstrated on a specific traffic/transportation problem.

1.2 Aims of the research

Following the above overview, the aims of this research project are given as follows.

• To investigate the problems of multi-resolution data processing and analysis within 

the area of Transportation Research

• To identify feasible solutions to traffic problems via utilising available traffic 

information

• To investigate informative content of traffic data provided by the SCOOT Urban 

Traffic Management and Control System (UTMCS)

• To develop a general framework for data pre-processing
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• To develop necessary software modules, which will facilitate the theoretical research 

into the content of traffic data

• To develop new algorithms for multi-resolution data processing and information 

extraction

1.3 Original contribution

During the course of this research study, original contribution to the state-of-the-art of

Transportation and Computing research have been made as follows.

• A problem of automation of real-time data retrieval from SCOOT has been solved by 

adapting standard services of the operating system and the IP in a novel way. The 

programme uses the standard Unix services, such as telnet or rlogin, in order to 

connect to SCOOT via a TCP/IP network, and pseudo-terminal capabilities of a Unix 

system to simulate terminal based connection to the SCOOT system. The software 

facilitates a range of research directions related to real-time traffic infonnation 

systems.

• Link travel time, as an operational characteristic, has been researched in a context of 

urban transportation system. A novel methodology for accurate travel time estimation 

has been developed.

• A formal mathematical proof of the developed methodology for travel time 

estimation has been presented for a simplified traffic model using the theory of 

stochastic processes.

• A general software framework for data-processing, system modelling and simulation 

has been developed. The software has several distinguishing features that lift it up 

above similar commercial products. Openness, extensibility, modularity, high 

portability, visual pleasantness of the environment can greatly contribute to the 

efficiency of research since the researcher will have more time to concentrate on 

essential problems rather than technical detail of data pre-processing.

1.4 Organisation of the thesis

This thesis consists of 7 chapters which are as follows.
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Chapter 1 is this chapter and gives an introduction to the scope of problems and the area 

in which this project has been carried out. It also gives a list of the aims of the research 

and the achieved original contribution to the current state-of-the-art.

Chapter 2 presents an introduction to Transportation Research from historical 

perspective. Several definitions, including the definition of transportation system, are 

given. Chapter 2 also reviews standard research methodologies used in transportation 

research area up to date. An insight to the complexity issues in the area is presented and 

the role of data processing in transportation research is outlined.

Chapter 3 investigates the notion of information and relationships between data, 

information and knowledge. Transportation systems are considered from the point of 

information flows and informative content at some abstract level and important 

operational characteristics of transportation systems are identified. Since traffic data used 

in this research has been provided by the SCOOT system, Chapter 3 presents an overview 

of functionality and features of this system. An informative content of traffic data 

provided by the SCOOT system is studied. Chapter 3 discusses technical issues of the 

connectivity to the SCOOT system and problems of automatic real-time data collection 

and develops a solution to these problems. Also, Chapter 3 touches the modem advances 

in the information theory and discusses the benefits of its application to traffic modelling.

Chapter 4 is devoted to the development of the data processing environment, the software 

suite which is aimed at simplifying data study. A brief review of existing software 

packages for data analysis and system modelling and simulation is presented and 

disadvantages of the packages are discussed. Then follows a presentation of the set of 

requirements, which the data processing environment should satisfy in order to improve 

the state of the area. The software system is designed using OOP methodology. The 

design follows the consideration of the available options of hardware and software 

platforms and concludes with choosing the Java platform. Using the Java technology, a 

data processing environment is developed and illustrated by a set of examples. 

Assessment of the efficiency of the software is given at the end of the chapter.
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Chapter 5 is devoted to the development of a novel methodology for link travel time 

estimation in urban areas. The chapter presents a model of a typical urban link and 

discusses the differences between urban and highway links. A literature review shows 

that there is a lack of development of travel estimation algorithms for urban traffic 

systems. Following the literature review, the chapter develops a novel methodology 

which can be used to accurately estimate link travel time in urban areas. The 

methodology does not require aggregation of traffic data and thus preserves as much 

information in the data as possible. The methods of the methodology also have several 

advantages, such as robustness to under- and overcounting of vehicles, instability of 

occupancy profiles, etc., which are considered to have strong influence on the results of 

the previously developed methods. The methodology is proved formally using the theory 

of stochastic processes for a simplified traffic model.

Chapter 6 presents results of application of the developed software environment and 

travel time estimation methodology to a real-life transportation system. The presented 

results clearly show the feasibility of the developed methodology, which can be used to 

accurately estimate median of the link travel time and allows estimation of the probability 

distribution of the link travel time as random variable.

Chapter 7 contains final remarks and conclusions on the project and outlines further 

research direction, exploration of which is facilitated by the results of this research study.
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Chapter 2 

Transportation Research and the Role of Data Processing

2.1 Introduction

Transportation Research has emerged on the junction between many applied and 

theoretical disciplines in response to the tremendous growth of the number of vehicles in 

the 1950-1960. The advances in automobile industry and affordability of the vehicles at 

the time created what can now be characterised as transportation revolution. Since the 

existing road infrastructure has not been designed to accommodate such volumes of 

traffic, the situation has quickly created problems which have not been faced before: 

traffic jams, congestions, delays as well as environmental issues related to the growing 

fleet of cars - noise and pollution. Solution of the problems required systematic and 

thorough attack on the major problem faced. Gradually, integrated and balanced 

programmes of research were initiated in the developed countries such as the USA, the 

UK and Australia and then followed by many other countries. Since the first traffic and 

transportation research programmes have been carried out, the area of transportation 

research grew up into a field that involves co-operation between engineers, theoretical 

and applied mathematicians, sociologists and experts in many other fields. Transportation 

research now includes many sub-fields that study different types of transport, such as air 

or road transportation and areas that focus on certain aspects of transport-society 

interactions, such as economical issues, planning, enviromnental problems etc.

Generally there are three approaches to dealing with the traffic problems. The first 

approach involves creating new road infrastructure to increase the capacity of the existing 

road networks. This is the most expensive of all approaches as it requires involvement of 

land reconstruction procedures, engineer planning and significant labour expenses. It also 

has the strongest impact on environment which normally is not desirable. On the other 

hand it might be the only possible solution of the problem due to inapplicability or the 

limitations of the other techniques. Nevertheless in some cases building new roads might 

not be feasible due to specific nature of the environment, such as urban areas, and thus 

other techniques are required. One such technique is to manage existing infrastructure in 

a way that optimises its use. The idea behind this approach is to use available traffic
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control systems but optimise this control in order to achieve desired effect (reduction of 

delays, minimisation of lengths of queues, etc.). This technique has evolved from a 

control performed by a human (normally a policeman controlled, monitored and 

optimised a single junction) to a complex multi-layered schemes of control and 

optimisation [Peytchev, 1999]. The third approach is obviously to decrease traffic 

volumes by affecting road users decisions on trip planning, namely to motivate the road 

users to use alternative modes of transport such as public transport or provide guidance 

and travel decision support. This third approach has not been widely researched and used 

in practice and therefore is a promising alternative to the first two.

Modem traffic planning, management and optimisation methodologies would normally 

employ all of the three approaches in order to solve traffic problems with the maximum 

efficiency and it is apparent that all of them require detailed knowledge of the behaviour 

of the system. It is also obvious that transportation itself and the influence it has on day- 

to-day life is very complex. It is unthinkable to give the precise answers to all 

transportation problems. Thus, transportation research, as well as many other applied 

disciplines, uses the systems approach in order to deal with the complexity of the 

interaction processes. The systems approach has been developed as a tool for dealing 

with complexity of real world and is based on decomposition of the problem into a 

hierarchy of independent sub-problems that are simpler to solve and then assemble the 

solved sub-components into the whole to obtain the solution of the original problem. This 

approach has shown to be very effective where direct solution is impossible due to the 

complexity of the underlying processes. In this chapter, several main transportation 

problems and the methodologies of their solution utilising the term ‘transportation 

system’ will be reviewed.

2.2 The transportation system

According to Hall [Hall, 1962], a system “is a set of objects with relationships between 

the objects and between their attributes”. Transportation systems are enormously 

complex socio-technical, which has been acknowledged by many researchers [Kosonen 

1999, Richmond 1998], The systems involve interaction of many objects from single 

vehicles, pedestrians to communities, from geography to economics, and processes such



as technological processes, operations, planning, management, and many other processes. 

It is therefore clear that understanding of the behaviour of such systems is a difficult task 

and, due to its socially-stochastic nature, it cannot be accomplished with a precise 

deterministic result.

The systems approach essentially relies on modelling. Modelling provides the means by 

which a system can be described in a formal language and standard methods of analysis 

can then be applied to investigate the properties of the model. The results of the analysis 

are then said to correspond to the real systems subject to the adequateness of the model. 

Several models can be developed for the same system depending on what phenomena of 

the system are of interest or depending on precision with which the results are required.

In order to model a system, as it follows from Hall’s [1962] definition, the system can 

normally be split down into a set of independent (or assumedly independent) objects and 

relationships between them that describe the way the objects interact with one another. It 

is also implicit in Hall’s definition that objects themselves can be expressed as systems, 

which can be modelled as sub-objects and relationships between them thus creating a 

hierarchy of systems or sub-systems that constitute the initial system. A bigger depth of 

the hierarchy would normally increase the precision of the model but it would also 

increase the complexity of the model. To find the golden middle is one of the most 

important problem in modelling and is highly task-specific. The rules of trade-off 

between precision and complexity of a model are expressed as principles of maximum 

and minimum entropy, which will be studied in the chapter devoted to information.

From the systems theory perspective, the transportation research can be defined as 

research discipline that studies the transportation systems. There is no exact definition, 

though, what a transportation system is. Informally, a transportation system can be seen 

as the transfer of people or/and goods, using transport (vehicles, trains, aircrafts, etc.), 

between geographically separate places [Steenbrick, 1974]. The collective movement of 

transport between those places is called traffic. For the movement, the transport 

infrastructure is used. Further, the transport infrastructure can be divided into two 

components:

1. the fixed objects such as highways, secondary roads, city arterials, streets, 

railways and so on, with certain characteristics;
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2. the organisational system necessary to ensure that the infrastructure is well used.

It is clear from this definition, that the objects of the transportation system are 

transportation infrastructure and the users of that infrastructure. It can also include other 

influencing factors and objects, such as pedestrians, weather, etc. The definition, although 

simple, does not reflect the complexity of the system. It should be noted that the system 

consists of a multitude of independent (although restricted by constraints and 

relationships) dynamic and static objects, in which the relationships themselves are 

tremendously complex multi-dimension stochastic functions. In addition, the 

transportation systems are part of higher level socio- and economical systems and 

experience strong influence from the other peer systems. It therefore becomes apparent 

that the transportation system cannot be modelled in a precise manner. In the following 

section standard transportation problems and methods used to solve the problems will be 

reviewed.

2.3 Modelling and Simulation of Transportation Systems

Modelling is the basic method by which systems are studied. Basically, a model is the 

formal description of a system, not necessarily precise, used for studying the system. 

Since transportation research is seen to be area of research, or discipline, that studies 

transportation systems, it has been the primary task of the discipline to build appropriate, 

or adequate, models of transportation systems. The form of models may vary widely 

depending on the purpose of modelling and phenomena to be modelled. Since modelling 

in transportation research forms the core of the discipline, the most important results will 

be reviewed in the following sections.

2.3.1 Modelling paradigms: macro- and microscopic models

Broadly speaking, there are two approaches to modelling systems. First approach has 

been to identify the objects of the system and try to establish the internal relationships 

and processes within the system in an explicit form, normally by mathematical equations. 

For example, a system of two material bodies with no external influence are governed by 

the Newtonian mechanics, which will form the core relationships between the bodies and 

describe the processes (motion) in an explicit deterministic form. Problems of such kind



have been pre-dominating in the history of science up to the nineteenth century. Another 

example, taken from [Klir et al, 1989], is motion of gas molecules in the system 

consisting of about 1023 them. Such system could not be studied in deterministic tenns of 

Newtonian mechanics. Nevertheless, since the elements of the system, though numerous, 

exhibit similar stochastic character, average statistical properties and relationships 

between them can be derived and thus the behaviour of the system is adequately 

modelled. Description of such systems requires developed statistical and probabilistic 

apparatus. Therefore the second methodology of modelling systems is often referred to as 

the probabilistic approach.

According to [Weaver, 1948], two examples above describe two poles of systems 

complexity. The first pole, called organised simplicity, is represented by systems for 

which adequate models can be identified and the models contain a small number of 

variables. Two mass bodies is the typical example of such a system. The second pole, 

called disorganised complexity, is represented by systems with very large number of 

variables yet with high degree of randomness. Such systems are best modelled by the 

statistical mechanics and the second example is a typical system of that sort.

Unfortunately, most of real-life systems, as are transportation systems, do not fall into the 

two classes of systems described above. Such systems fall into the class of systems of 

organised complexity. As Klir states, methodology of treating such systems is 

undeveloped in the sense that neither analytical nor statistical methods are adequate and, 

therefore, new methodology needs to be developed.

Getting back to modelling paradigms, macroscopic modelling utilises the analytical and 

statistical methods in order to derive explicit description of the model in a form of 

relationships between variables that form the system. Although methodology is highly 

developed it represents a challenge to apply these methods to modelling transportation 

systems since such systems fall into neither the class of organised simplicity nor 

disorganised complexity. Nevertheless, first attempts to deal with transportation systems 

have been made, with certain degree of success, from the perspective of macroscopic 

models. Microscopic modelling is a very powerful method for dealing with systems, and 

it allows modelling of the systems of organised complexity with satisfactory accuracy. In 

contrast to the macroscopic modelling, microscopic models model individual objects of
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the systems and relationships between them, which are normally simplified to a form of 

one-to-one relationships. For example, individual vehicles are objects of many 

microscopic models of traffic flow. A typical microscopic traffic flow model would 

consist of a number of individual dynamical objects (vehicles, pedestrians, cyclists, etc.) 

and road infrastructure modelled as a static graph. In order to obtain the insight on the 

dynamics of the modelled system, simulation is used. Simulation is essentially an 

iterative procedure that involves a large number of elementary calculations. This is the 

main reason why microscopic modelling started to be researched into with appearance of 

computers that are able to cope with such volumes of calculation. In the modem days, 

when very powerful computers are widely available, microscopic simulation becomes 

more and more attractive as it is normally a more precise reflection of real traffic 

processes. Even further, researchers are now looking into even lower level of models, the 

“nanoscopic” models, that take insight into individual vehicles and driver behaviour 

[Kosonen, 1999].

Microscopic and macroscopic models are both used in transportation research but the 

problems they are used for are normally different. Macroscopic models naturally provide 

the tool for large-scale planning problems, such as traffic assignment problem, finding 

equilibrium in the demand-supply problem and problems alike. Microscopic models can 

be used in modelling any scale transportation networks and provide information that can 

be used to optimise traffic at microscopic level (for instance, signals control). These two 

modelling approaches will be reviewed in detail in the following sections.

2.3.2 Macroscopic modelling: problems and results

Macroscopic modelling is involved in various levels of investigation and analysis of 

transportation systems. The main results formed several research areas devoted to solve 

particular problems or derivation of general relationships between standard parameters, 

recognised within transportation systems. Main parameters, or variables, normally 

involved in transportation modelling are summarised in Table 2.1.

Table 2.1. Principle traffic parameters

Traffic Parameter Description

Volume Traffic volume, vehicles or other objects 
(pedestrians, cyclists) per unit of time
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Speed Average speed of traffic flow

Delay Delay (enforced delay)

Queue Length of a queue (at a traffic light)

Concentration (density) Vehicles per unit of length

Generation Trips per person, activity unit by vehicle 
type

Parking supply Number of spaces, costs per unit of time 
and per unit of space, maximum allowable 
duration

Parking demand Occupancy, mean duration, turnover rate, 
parking volume

Safety Number of accidents by severity class, 
number of traffic conflicts

Environmental factors Noise, air pollution, vibration

Energy Fuel consumed per unit of travel

2.3.2.1 Macroscopic traffic flow theory

Knowledge of the characteristics of the traffic stream provides the means for 

understanding traffic behaviour in many situations, such as overtaking, queuing, turning, 

crossing and merging. These characteristics, in conjunction with travel speed, traffic 

volumes and traffic density, are the major determinants of road capacity in a given traffic 

environment. A knowledge of traffic behaviour and parameters provides the means for 

quantitative formulation of warrants for traffic control systems, planning, policy making 

and other decision making processes.

As has been mentioned, the ultimate objective of transportation research is to provide the 

engineer with the methods and techniques of transportation systems optimisation. It is 

apparent therefore that before a system can be optimised, a rational description of its 

phenomena must be obtained. First steps towards these objectives have been made to



study traffic flow as the most apparent characteristic of a transportation system. Traffic 

flow was first studied using available, at the time traditional techniques such as analytical 

deterministic or stochastic modelling, which are now called macroscopic models.

Traffic flow is used to describe collective movement of discrete units across network 

infrastructure (in broad sense). The infrastructure is considered to be static and described 

in tenns of topology, geometric features and other static parameters. In the transportation, 

the discrete units are normally road users such as vehicles, pedestrians, cyclists. Each unit 

is under control of a human operator and since the operators act independently, the 

collective traffic exhibits a random behaviour. Macroscopic models are not interested in 

modelling individual behaviour of single units but rather processes generated by their 

collective interaction. There are three main components of road systems: the driver, the 

vehicle and the environment (including road infrastructure). These three components 

interact with each other. Consequently the moving traffic flow has characteristics that are 

quite different to those of the individual elements. Several most important results will 

further be reviewed. The review is based on [Drew, 1968] and [Taylor et al, 1996].

Many results in macroscopic modelling make use of the fundamental equation of the 

traffic stream, that relate mean velocity (space speed) u, mean flow (rate of flow) q and 

mean density (concentration) k to each other and is expressed in the form

q-ku (2.1)

If two of the above variables are known, the third is uniquely determined. Mean volume 

is the easiest parameter to measure. It can be determined by counting the vehicles N(x,T) 

that pass a particular point v on the road over the time period T. Then q can be found as

(2.2)

The other two parameters can be identified using either specific indirect methods or 

measured directly. For example, the density can be determined by observing the number 

of vehicles on the road section X  at time t, for instance by taking an aerial photograph of 

the road at that time and counting the number of vehicles, say N(X,t). Then
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(2.3)

Speed measurements can either be collected by traditional surveys, which result in giving 

a set of space speed measurements, or, if appropriate equipment is available, for instance 

double inductive loop detectors, spot speed measurements can be acquired in real time. 

Several methods have also been developed to estimate speed from the measurements 

taken from single loop detectors [Hall, 1988, 1989], [Pushkar et al, 1994], [Coifinan, 

2001], [Dailey, 1999].

Equation (2.1) has long been the basis of travel time estimation until recently it was 

shown to have several flaws. Since travel time as the parameter of a transportation system 

is of paramount importance, other algorithms that do not rely on speed estimates obtained 

from equation (2.1) have been and are still being developed. This research project 

addresses the problem of travel time estimation in Chapter 5. Currently available methods 

will be reviewed and a novel methodology of accurate travel time estimation using only 

single inductive loop measurements will be presented. The developed methodology has 

advantageous distinguishing features that make it a better choice for studying urban 

traffic.

The deterministic approach began with a suitable algebraic equation to explain the flow- 

concentration relationship. Greensheilds [1934] chose to plot speed u against 

concentration k for one lane of traffic. A typical plot of speed-concentration relationship 

is given on the following Figure 2.1.

Concentration (k) kj

Figure 2.1. Typical speed-concentration relationship
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Figure 2.2 shows the fundamental relationship between mean speed and traffic volume. 

The relationship defines a feasible region for traffic flow under different combinations of 

volume and speed.

oo

Volume (q)

Figure 2.2. Typical speed-flow curve

The curve defines the limits to this region. The two arms of the curve represent different 

traffic flow conditions. The upper arm is for freely flowing traffic with a significant 

proportion of the vehicles travelling at their desired speeds. This proportion decreases as 

the nose of the envelope is approached. The lower arm represents congested flow 

conditions, when most of the traffic is strongly influenced by the vehicles in front of 

them. The speed-flow curve is widely used in determining the design capacity of a road, 

through the use of “levels of service”.

The last characteristic curve of the fundamental relationship (2.1) is the volume- 

concentration relationship. Figure 2.3 shows a typical volume-concentration curve.

Concentration (k) km
kj

Figure 2.3. Flow-concentration relationship with 

operational regions A, B and C
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The left arm of the curve represents free flow traffic condition, while the right ann is for 

congested flows. Thus density is the traffic parameter that can provide a full description 

of the state of a traffic stream. The curve of Figure 2.3 is split into three regions. These 

regions are for light, freely flowing traffic (region A), moderate but stable, freely flowing 

traffic (region B), and unstable, forced flows under congested conditions (region C). 

Region B is the one sought in traffic design since flows in this region achieve an 

optimum efficiency while utilising all available infrastructure.

First attempts to find the deterministic relationship that binds the above parameters have 

been made using curve fitting technique. The problem of fitting a curve to a set of points 

objectively is essentially the problem of estimating the true parameters of the curve. To 

do so the method of least squares is normally used. A common simplifying assumption is 

that the curve can be taken to be linear. This assumption is reasonable for most densities 

apart from the very small and very large densities.

Another method is the boundary-condition approach. The basis of this method is the 

differentiation of the fundamental equation (2.1) with respect to k. The result is

—L = k —  + u (2.4)
dk dk

Differentiation of the fundamental equation of state q-flk) with respect to k yields the 

wave velocity equation. Setting the wave velocity equation equal to zero yields the 

optimum concentration ktm which is that value of k for which flow is a maximum. Since a 

general relationship exists between q and u, the k corresponding to dq!dk=d can be set 

equal to km. Thus

A . dxi /A _.
0 ==k>n7 T  + U (2 '5)d&

Separating the variables and integrating both sides results in
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In u = — — + C
km

(2.6)

Application of the boundary condition at k=Q and u=Uf enables one to equate C to In Uf, 

yielding

^ = km In—  (2.7)
u

Substitution (2.7) into the general equation (2.1) gives

q = ukm In—  (2.8)
u

Edie [1961] obtained the same result by differentiating (2.1) with respect to u. Edie’s 

equation (2.8) represents an effort to make the macroscopic q-u-k relations more accurate 

for traffic densities less then optimum. He suggested that the conventional forms still be

used for densities greater than optimum, giving rise to a “discontinuous” form of the

steady-state surface. This theory as modified for non-congested traffic may help to 

describe quantitatively the sudden change of state occurring in traffic stream going from 

a relatively free-flowing condition to a crawling stop-and-go condition and back again.

Several attempts have been made to explain the relationships between the three 

fundamental parameters using analogy between traffic flow and other physical 

phenomena. One such physical analogy applied to model traffic flow was the heat-flow 

analogy. Consider the problem of one-dimensional heat flow in a long, slender insulated 

rod satisfying the differential equation

• 2 dP + <?lp
dt dx:

u2^  + - - f  = 0 (2.9)

where p  is temperature; * is distance; t is time and a2 -  sk/c, where c is coefficient of 

conductivity of material; s is specific heat and k is density.
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The boundary conditions are statements of the initial conditions at the ends of the rod at 

any time and the initial conditions throughout the rod at time zero. What is usually 

desired is a description of the temperature at any time and place along the rod or, in other 

words, a solution of the differential equation in the form

p(x,t) = f(L ,a ,x ,t)  (2.10)

On the other hand if a continuous record in time was kept of the temperature at various 

points along the rod one could solve for a and thus determine some property of the 

material such as its conductivity c.

In application of the heat-flow theory to traffic, a single traffic lane acts as a long, slender 

insulated rod (controlled access and no opportunity for lane change). If p  in (2.9) is 

allowed to assume the role of some parameter related to such conventional traffic 

variable as speed, concentration and flow, the solution (2.10) provides the means for 

evaluating some property of the highway. All that needs to be done is measure the traffic 

characteristics along the stretch of highway defined by L. The heat equation (2.9) is, in 

study of partial differential equations of physics, called the equation of diffusion. It is 

satisfied by the concentration p  of any substance which penetrates a porous solid by 

diffusion. Harr and Leonards [1961] postulated that the movements of traffic resulted 

from a motivating “pressure potential” analogous to p. In their solution the parameter was 

then eliminated (since it has no physical significance in the traffic phenomenon), leaving 

vehicular speed as a function of some properties of the highway and thus affording a 

means of rating various geometric features as a curve or grade. It is interesting to note 

that several variations of equation (2.9) have been studied in classical physics. For a rod 

in which heat is being generated at a constant rate, while the lateral surface is insulated, 

the heat equation takes the form

>2 d p +^ p  
dt dx:a2- ^  + ^ r r  = c (2.11)

where c is a positive constant. Reddy [1966] has suggested equation (2.11) as a basis for 

evaluation geometric features of the road rather than (2.9). In this manner the theory was

19



generalised to account for the effects of vehicles entering or leaving the section of 

roadways such as in the vicinity of entrance and exit ramps.

Another physical analogy that had been applied to modelling traffic flow is the fluid-flow 

analogy, or hydraulics. Consider the following equation of motion [after Greenberg, 

1959], which expresses the acceleration of the traffic stream at a given place and time as

This equation states that a driver adjusts his velocity at any instance in accordance with 

the traffic conditions about him as expressed by k~l(dk!dx). If traffic is thinning out 

(negative dk/dx) the driver accelerates (positive du/dt) and vice versa.

Equation (2.12) has the form of the equation of motion of a one-dimensional 

compressible fluid with a concentration k and a fluid velocity u. Fluid mechanics is based 

011 the principle of conservation of mass. When this principle is stated mathematically as 

an equation, it is called the equation of continuity. Considering traffic flow as a 

conserved system, the change in the number of vehicles on a length of road dx in an 

interval of time d r  must equal the difference between the number of vehicles entering the 

section at x and the number of vehicles leaving the section at x+dx. If the number of 

vehicles on the length dx at time t is kdx and the number of vehicles entering in time d r  at 

x is expressed as qdt, the conservation of vehicles can be expressed analytically as

kd x - (2.13)

Making use of q=ku yields the equation of continuity for traffic flow

dk d(ku) _
 1--------------------- —  y

dt dx
(2.14)

Taking the derivative of the product in the second term yields
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dk dk du _ . . . 1- u ----h k —  — 0 (2.15)
dt dx dx

It is well established in the theory of traffic flow that vehicular velocity varies inversely 

with the concentration of vehicles

u=Ak) (2.16)

And as a consequence of (2.16)

du _ du dx _ du _ , 
~dk~~d^'dk~~dk~U

Solving for du/dx from (2.17) and substituting in (2.15), one obtains the following 

equation of continuity of single-lane vehicular traffic flow

dk dk
™+( u  + ku')—  = 0 (2.18)
dt dx

If a more generalised equation of motion is desired than (2.12), an exponent of 

proportionality n may be utilised:

^  = (2.19)
d? dx

Making similar calculation as for the (2.12), one obtains the generalised equation of 

motion

dk c2k" dk -
— + (w + — —) — ~ = 0 (2.20)
dt u dx

The nontrivial solution of (2.18) and (2.20) is obtained by equating the quantities within 

the brackets
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O ')2 =  C 2 k {n~x) (2.21)

Finally, because of the inverse relation between velocity and concentration,

(2 .22)

Greenberg [1959] has solved (2.22) for n~-1 obtaining

u — c In
\ k

(223)

The solution of (2.22) for n > -1 is as follows:

-2 c  
n + 1

k (n+l)l2 + a (2.24)

where the constant of integration is to be evaluated by the boundary conditions inherent 

in the vehicular velocity-concentration relationship. Thus, since no movement is possible 

at jam concentration kj,

C. = n>-1
1 71 + 1 1

(2.25)

and

j£_[k(r  l)/2 _ A(».)/2] (22g)
H + 1 J V ^

Similarly, the implication exists that a driver is permitted his free speed, u/ only when 

there are no other vehicles on the highway (&=0). Therefore,

u , = ^ - k Y * ' )l2 to - 1 (2.27)
’  n +
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and the constant of proportionality takes on the following physical significance:

(n +1 )u f 
C= . ’ { n>-1

2 k .
(2.28)

Substitution of (2.28) in (2.26) yields the generalised equations of state

u — u 1 -
. k,\  J J

q = ku = kiij 1 -
f  ^ n(«+1)/2

kTj \

n>-1

ri>-1

(2.29)

(2.30)

Differentiation of (2.30) with respect to k equated to zero gives the optimum 

concentration km, which is that concentration yielding the maximum flow of vehicles:

dq
dk

1 - (» + 3)

r  , , n-2'(»+d71 + 3
kj

uf  = 0

77>-l (2.31)

Substituting (2.31) in (2.29), one obtains the optimum velocity

77 + 1
Um = —71 + 3

77>-l (2.32)

The maximum flow of vehicles of which the highway lane is capable (capacity) is 

obtained from the product of (2.31) and (2.32)

77 + 1
2 /(«+1) ( tA  _i_ Q \2 /(« + l)+ l(1/2) 1 (̂77 + 3)

uf k j , 77>-l (2.33)
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Some special cases of (2.29) through (2.33) have proven to be of significance. 

Greenshields’ [1934] linear model is obtainable by setting n—1, and Drew [1966] has 

discussed the case for n -0.

2.3.2.2 Macroscopic area-wide transport system models

While traffic flow theory studies traffic flows on individual roadways, area-wide theory 

studies transportation networks with many individual flows. Major changes to a traffic 

system, such as introduction of a new traffic management scheme, may have effects on 

traffic movement and traffic impacts at locations far away from the sites where the 

changes are implemented. The optimum passage of vehicles through a network may be 

sought by coordinating the traffic signal timings at successive intersections so that, for a 

given direction of flow, vehicles released through one intersection will arrive at the 

downstream intersection just as its signals turn to green for that traffic stream. For these 

reasons, amongst others, traffic analysts need to consider the area wide, or network, 

aspects of traffic flow and traffic demand. According to [Taylor et al, 1996], traffic 

network analysis is important for three main reasons:

1) urban traffic control must take a network perspective. A modern control system such 

as British SCOOT [Hunt et al, 1981], Australian SCATS [Sims et al, 1979], Spanish 

CARS [Grau and Barcelo, 1992], attempts to coordinate signal timings at the 

intersection along routes through the network, so the traffic progression can be 

expedited. The specific objective is to allow the smooth passage of platoons of 

vehicles along major routes, with a minimum of stops, and the preservation of the 

platoons. The capacity of the intersection is a property of the intersection alone 

(although the cycle time might be set by capacity considerations at some nearby 

‘critical’ intersection). Achieving the best utilisation of the available capacity requires 

coordination between intersections, so that platoons on intersecting roads arrive in 

sequence, to use the green times on the respective approaches;

2) changes to the signal timing and geometry for different movements at one intersection 

(i.e. changes to the transport infrastructure supply) may alter the pattern of traffic 

usage (the travel demand) of the intersection and the surrounding network;

3) urban transport systems are multi-modal, with consideration given to other modes of 

transport su6h as public transport, cyclists and pedestrians. In addition, the destination
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choices of travellers may be made from amongst a set of alternatives. Therefore, it is 

important to know what people’s travel needs and patterns are, how much usage will 

be made of all the modes, how destination choice will depend on the relative 

accessibility of alternative destinations, what impact congestion will have on the 

choice of mode and route and the timing of trips, and what interactions will be 

observed in different parts of the network.

Traffic network analysis aims to describe or forecast the distribution of traffic flows over 

a road network in a given time period or over a set of time periods. Modelling is usually 

undertaken in one of two main stages: in the description of an existing traffic system, 

where the aim would be to calibrate or evaluate a model, and in the synthesis of a future 

or alternative system (e.g. a proposed traffic management plan), where a calibrated model 

would be applied to test the performance or impact of the future or proposed system. 

Analysis and modelling may be applied in a series of steps, with the following five steps, 

and the basic question each seeks to answer, being [after Taylor et al, 1996]:

(1) trip generation -  shall I travel?

(2) trip distribution -  where shall I go?

(3) trip timing -  when shall I travel?

(4) modal choice -  how shall I travel?

(5) trip assignment -  which way shall I go?

The sequence given by steps (1), (2), (4) and (5) forms the traditional ‘four-step’ 

procedure which has been applied in transport planning for many years. Step (3), 

regarding the timing of trips, was traditionally ignored but becomes important when 

flows over time of day are considered. This information is especially needed for 

Advanced Traveller Information Systems (ATIS), which are now studied extensively. 

Therefore, several problems naturally arise from the above steps and are described in the 

following sub-sections.

2.3.2.2.1 Trip generation

Trip generation seeks to define the numbers of trips which start (originate) at one site and 

finish at another (a trip is defined as the one way movement from an origin to a 

destination and there are two trip ends associated with each trip). A narrow but practical
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definition of trip generation is useful in traffic impact analysis in that it is the measured 

level of traffic activity associated with a given site, development or land use. Trip 

production (Pi) is the number of trips which start (are produced) at a given site (/). Trip 

attraction (Aj) is the number of trips finishing (attracted to) at site j.

Trip productions from residential areas are usually modelled in terms of average trip 

rates, or by use of ‘category analysis’ tables, which classify the trip rates by household 

variables such as household size, income, car ownership, etc. Trip attractions are usually 

modelled by regression relationship, with the independent variables selected from the 

physical or economic characteristics of the land use.

2.3.2.2.2 Trip distribution

Trip distribution follows trip generation as it is concerned with forming linkage between 

the trip productions (Pi) and trip attractions (Aj) to form the trip matrix Ty, the number of 

trips that will go from i to j. This matrix is called the Origin-Destination trip matrix or 

O-D matrix. The origin-destination matrix plays a fundamental role in studies of wide- 

area transport systems and wide-area traffic control. As a consequence, a considerable 

amount of interest has been attracted to the problem of estimation of O-D matrix. A 

review of the methods of obtaining O-D data is given in [Taylor et al., 1996] and 

mathematical treatment of O-D estimation and related traffic assignment problems is 

given in [Steenbrick, 1974]. Due to its importance, a review of methods for origin- 

destination matrix estimation will be given in a separate section.

2.3.2.2.3 Trip tim ing

Modem transport and traffic planning is concerned with the timing of journeys during the 

hours of day, in terms of the duration of periods of peak demand, the opportunities for 

spreading peaks over longer time periods to lessen congestion levels and the influences of 

congestion levels on an individual’s ability to change the times at which trips are made 

through constraints imposed by non-travel activities undertaken by that person or by

interaction between the members of a household. Trip timings is normally undertaken by

considering the origin-destination matrix being a function of time, thus yielding different 

O-D matrices for each individual time t.



2.3.2.2.4 Modal choice

Modal choice analysis is used to predict the number of travellers who will use the 

different modes of transport available in the area. The most reliable models of modal 

choice attempt to predict the probability that a given person will choose a particular 

mode for a given journey. This probability will depend on the socio-economic 

characteristics of the individual, the characteristics of the available transport modes (e.g. 

fares, travel time, waiting time, reliability, comfort), and the proximity of the mode to the 

origin and destination of the individual’s trip. The economic theory of maximum 

consumer utility [Hensher and Johnson, 1981] forms the basis of modem modal choice 

modelling.

2.3.2.2.5 Trip assignment

Trip assignment modelling is used to determine the route choice of drivers, and to build 

up the flows on each link in the network. So the question is simply to find a feasible 

solution to the network constraints. It is obvious that there are many solutions to this 

general assignment, and it is possible to apply further criteria for the assignment. There 

are three commonly used strategies for assignment modelling. These are Wardrop’s 

principles [Wardrop, 1952] and Jewell’s principle [Jewell, 1967].

2.3.2.2.6 Origin-destination matrix

As it has been mentioned in the previous sections, the origin-destination matrix plays an 

important role in describing properties of wide-area transportation system models. It has 

a wide spectre of applications including long-term planning, traffic systems design, real

time traffic signal control and Advanced Traveller Information Systems (ATIS). A 

variety of methods for O-D matrix estimation have been developed over the last years. 

The methods are normally utilised in one of the three ways:

1) O-D matrix is constructed by direct observation using traffic surveys or 

questionnaire surveys [Thompson, 1989]

2) O-D matrix is synthesised from observed flows on the link in the network; or

3) O-D matrix is modelled using, for instance, some ‘gravity’ model of trip

distributions [Wilson, 1967], [Holm, 1976]
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Construction of O-D matrices from direct observation is a rather expensive and laborious 

method, therefore more and more often methods that construct O-D matrices from 

observed traffic flows are being used. Since modem traffic control systems are being 

installed in more places, the cheapest data for O-D matrix construction is the traffic 

counters data that can be obtained from the most traffic control systems, such as SCOOT. 

Methods of O-D matrix synthesis from observed flows can also be divided to static 

methods and dynamic methods. Traditionally, static estimation methods were based on 

gravity model methods [Wilson, 1967], [Holm, 1976], which reduced estimation problem 

of O-D matrices to calibration problems with small number of unknown parameters. Van 

Zuzlen [et al., 1980] extended the gravity model to entropy-maximising technique. 

Another type of static estimation methods developed in recent decades is to include 

additional observation information (traffic counts, parking surveys, etc.) and then 

combine it with a priori knowledge of O-D matrices. Cascetta [1984] introduced 

generalised least squares approach to estimate O-D matrices from both survey data and 

traffic counts. Mather [1983] proposed to use the Bayesian approach to the O-D matrix 

estimation problem which results in functional forms equivalent to the generalised least 

squares method. Bell [1991] presented an algorithm to improve generalised least squares 

estimates by using inequality constraints.

Over the last two decades much interest has been given to the problem of the dynamic O- 

D estimation. Cremer and Keller [1987] and Nihan and Davis [1987] proposed recursive 

algorithms to estimate O-D matrices. Chang and Wu [1994] addressed a problem of time- 

varying O-D matrices estimation and developed a recursive estimation procedure for O-D 

estimation. Van der Zijp and Hamerslag [1996] developed an improved Kalman filter for 

O-D estimation problem. Spiess [1990] addressed a computational complexity of the O-D 

estimation problem and proposed a gradient-based algorithm that is able to cope with 

relatively large transport networks. More recently Florian and Chen [1995] proposed an 

iterative method of adjusting the O-D matrix that does not require the explicit route 

definition, which allows handing the exponential growth of the number of O-D pairs with 

the growth of the network. More recent developments were concerned with the O-D 

matrices estimation in the presence of uncertainty [Li, De Moor, 2002]
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2.3.2.3 Conclusion on macroscopic modelling

The above review touches only a few angles of transportation research problems and 

methods. But it is clear that macroscopic modelling paradigm cannot give adequate 

answers to several questions. What is the behaviour of spot speeds of individual vehicles 

in traffic flow? How does headway depend on speed of the flow? How are congestions 

built up after an accident? There are many other questions which a macroscopic model 

may find difficult to answer. After digital computers became widely available, a new 

direction of modelling has started to be extensively developed, namely the microscopic 

modelling. The following section will give a brief review of the advances in microscopic 

modelling, the scope of problems it deals with and solutions it provides.

2.3.3 Microscopic modelling: problems and solution

In contrast to macroscopic modelling, whose purpose is to describe a system by a set of 

‘macroscopic’ parameters, such as flow, density, speed of flow, etc., that are normally 

aggregated versions of some lower lever parameters, microscopic modelling is trying to 

model individual objects of the system and thus is capable of providing information on 

those lower level parameters.

In transportation, typical objects of microscopic models are vehicles, cyclists, 

pedestrians, etc. Road infrastructure is provided to the model as static data. Since real 

objects of a transportation system have very complex relationships, a microscopic model 

of the system normally takes into account only pair-wise, or one-to-one, relationships 

between the objects. Another distinguishing feature of microscopic models is that they 

are simulation models, that is the modelling is accomplished via simulation. Simulation is 

a process of updating the model’s state with time and, since simulation is normally 

performed on a digital computer, is a cyclic numerical procedure that calculates the state 

of each object of the model according to its relationships (or interaction) with the other 

objects.

According to [Peytchev, 1999], functions of microscopic models can vary substantially. 

The simulation model can be a basic module for traffic queues and traffic density
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predictions in the real-time traffic control or, alternatively, can work off-line and evaluate 

control strategies, which subsequently will be executed on the field according to the 

current simulation.

In transportation microscopic modelling, the principle of modelling of the one-to-one 

relationships between the objects led to the development of the car-following models that 

lie in the basis of many microscopic models of traffic flow. The first car-following 

models were proposed by [Reushel, 1950], [Pipes, 1953]. The basic idea of the first 

models was that the acceleration of a vehicle is directly proportional to the speed 

differential between it and the vehicle in front. This simple model had several flaws. The 

model does not include any reference to the spacing between the vehicles, but a driver 

can be expected to be more responsive to changes in speed if the leading vehicle is only 

ten meters in front, rather than 100 meters. Gipps [1981, 1986] proposed improved car- 

following model that closely mimics observed driver behaviour in congested traffic. The 

more recent models allowed greater accuracy in predicting vehicle movement at the 

microscopic level developing more complex models. From the point of adequacy of the 

car-following models it can be noted here that car-following model is not enough to 

define all possible movements of a vehicle, since in free flowing traffic the vehicle is not 

in the car-following state and thus has to be modelled differently. Kosonen [1999] 

developed a rule-based model that is capable of taking into account the possibility for a 

vehicle to fall into a very critical area where emergency type of actions can take place, 

the effects of traffic signals, speed limits, and other traffic signs.

Most of the microscopic traffic models are developed as a software tool that facilitates 

certain direction of research, traffic planning and other activities related to traffic. The 

tools can broadly be classified as being developed for 1) urban traffic 2) motorway traffic 

and 3) combined traffic models. A typical model for simulation of urban traffic is 

HUTSEM developed in Helsinki University of Technology, Finland [Kosonen, Kokkinen, 

1992], [Kosonen, Niittymaki, 1995], [Kosonen, 1999]. One of the models for simulation 

of motorway traffic is AUTOBAHN developed by Benz Consult GmbH, Germany [Benz, 

1994], [Benz, 1995], [Benz, 1996]. An example of combined (urban and motorway) 

traffic models is AIMSUN2 developed in Universitat Politecnica de Catalunya, 

Barcelona, Spain [Barcelo, Ferrer, 1994], [Barcelo et al, 1995], [Barcelo et al, 1996].
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2.4 The role of data processing and analysis in traffic modelling

According to [Bargiela, 1998], systems modelling is broadly applicable in the context of 

two types of problem-solving activities: system inquiry and system design. In system 

inquiry, a model is developed for the purpose of understanding and controlling some 

aspects of reality, making adequate predictions or retrodictions and utilising these 

capabilities for various ends. In system design, a model is developed for the purpose of 

analysing the behaviour of the relevant objects before they are actually deployed so that 

desirable criteria are satisfied within given constraints. It is clear that in both cases data is 

the medium of information transmission, hi system inquiry a model is built based upon 

some observed behaviour of the modelled system. The observations are normally made in 

form of measurements of the systems’ parameters of interest. In system design, the 

results of modelling come in the form of data, which is then analysed in order to make 

decision regarding the models adequacy and relevance.

In the context of transportation system, it is clear that macroscopic modelling is of the 

system enquiry activity. It is therefore apparent that traffic data form the basis of all 

developed traffic models and all models have been developed by studying the data. Once 

a model has been developed, it cannot be applied to real-life problem without validation, 

which is again a process of comparing the results of modelling with real system’s 

parameters, which are represented in data.

Microscopic modelling can be considered to be of the system design activity. 

Microscopic models represent systems that do not have to exist yet can be studied by the 

analysis of the results of modelling. Model validation is a necessary stage in microscopic 

modelling, which is essentially a process of tuning the model using real-system 

measurements in order to increase its adequacy to real-life systems. Once a model has 

been built, it provides information about the modelled system in a variety of forms of 

data.

Besides modelling, real-time traffic data is used to provide information on many spot- 

parameters of a real traffic system. Real time data processing, analysis and mining are
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finding more and more applications in modem traffic information and advice systems, 

such as ATIS.

Concluding the above discussion, it is difficult to overestimate the importance of data 

processing and analysis in Transportation Research. Data processing and analysis is the 

basis of the most research activities within the area. Unfortunately, despite the apparent 

importance of data processing, this problem has been given a little attention by 

researchers. Most of projects carried out in the area of Transportation Research that dealt 

with traffic data employed individual, normally in-house made tools and methods of data 

processing that are suitable for a particular project only. Therefore a significant amount 

of time is spent over and over again for development the tools for particular projects. This 

problem has been addressed in this research project and as a consequence a flexible and 

convenient software tool has been developed.



Chapter 3 

Data and Information

3.1 Introduction

The problem of understanding the relationships between the process of learning and basic 

information (data) has long been of a major interest. Aristotle studied the research 

process nearly three thousand years ago. He suggested that knowledge can be created by 

applying logic to observations in order to generate conclusions. The methods of logical 

analysis that he developed still form the basis of current scientific analysis, having been 

developed and given mathematical structure in the last hundred years. Aristotle realised 

that necessary data could come from observations of physical experiments and that the 

conclusions derived are based upon those data.

In the complex modem world, scientists are not the only people who collect data. Almost 

every aspect of modem social life associated with some or another sort of data being 

collected, analysed and stored. Several examples of activities that involve collecting and 

analysing data and the reasons behind the need for data are as follows [after Goodman, 

1995-1996]

• Market research. Enormous amounts of data are collected by commercial 

organisations about buying intentions of customers; these surveys are widely used in 

the social and political arenas.

• Propaganda. Some data are collected to convince other people of the rightness of 

someone’s view (as well as group’s, organisation’s, government’s, etc.). Most 

propaganda that involves real data is based on processing and presenting raw data in a 

way that suits a particular message. This category could also include instances of 

scientific fraud in which data is falsified or misrepresented to convince a scientist’s 

peer group of the correctness of one’s work.

• Belief justification. Many people seek data that support the views they already hold.

• Decision support. In industry and government it is now expected that decisions be 

based on careful analysis of data. Relevant data about the area to be affected are
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collected and collated; this would then form one of the key foundations of the 

decision to be made.

• Science. There are many fields of science where collecting and interpreting data is a 

critical part of the process of research.

In general, data collection is accomplished in order to establish the parameters o f a 

system. Data represent measurements of the system that can be obtained by one way or 

another depending on the system. Data is normally regarded as the source of empirical 

knowledge but data itself does not constitute the knowledge. In order to extract 

knowledge from data, it first needs to be transformed into information. It is therefore 

clear that knowledge is based upon information which, in turn, is based upon data.

3.2 Data, Information and Research Process

3.2.1 Research processes

The purpose of any data collection is to gain knowledge about a system. The process of 

gaining new knowledge about system is conventionally called research process. This 

section will describe two known research processes as they have been developed 

throughout the history of science. The review is based on the lectures by [Goodman, 

1995-1996].

Two fundamental research processes were identified by Aristotle nearly three thousand 

years ago. Aristotle argued that knowledge begins with experience and thus the first 

approach, called induction, is the necessary “leap” from unorganised experimental 

experience to conclusions and generalised knowledge about the system. Induction has 

been the prevalent research method until almost 19th century and still forms the basis of 

scientific analysis. Induction proceeds through three main stages as follows.

1) Collection of relevant empirical data through observation. This process generates a 

body of facts that, over an extended period of time, accumulates to a point where 

generalisations can be made
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2) Summarisation of collected data. The volume of data involved will require careful 

ordering and classification of the data.

3) Generalisation about the system from the collected data. Organised summaries of the 

raw data provide the basis for the interpretation process {exploratory analysis) that 

will produce the generalisations (“laws”) that are being sought.

Although induction has been used for centuries, it has several serious flaws. Firstly, 

selection of relevant data is uncertain in a sense that different researchers may collect 

different data and thus the same phenomenon can be explained by different (based on 

different data) Taws’. Secondly, the induction does not specify the selection of collection 

method (“experimental design”), e.g. in what circumstances, how and what data is to be 

collected. Also, there are no criteria for deciding exactly what technique should be used 

to summarise and analyse data. And most critically, the generalisations produced by 

induction are not really general in the proper sense; they are tied to the specific data that 

is available and the researcher who has created them. A different researcher can draw 

different conclusions from the same data and more data may lead to different conclusion.

The alternative process -  deduction -  has also been described by Aristotle, but it is 

applicable only when a discipline has reached a certain stage on its evolution. It requires 

an established body of strong generalisations (created inductively) upon which it can 

build. Deduction consists of four steps as follows.

1) Identification of the object to be investigated. Deduction starts with a body of 

‘theories’ that are widely accepted to be ‘true’. In this context ‘true’ means that there 

is substantial amount of evidence to support the theories and little or no evidence 

exists that contradicts them. The theories are always in some way incomplete, and the 

aim of research is to attempt to ‘fill in’ these gaps.

2) Formulation of a reasonable hypothesis and definition of how to test it. The 

hypothesis is a statement that is a) consistent with, and based upon, current theory but 

contains ideas that are not accepted as part of that theory; b) it is formulated in such a 

way that it can generate predictions that are capable of being shown to be either true 

or false, or in other words, the hypothesis must be testable; c) the statement leads to 

the formulation of an experiment that will generate data that can be used to test the 

hypothesis.
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3) Carrying out an experiment. If experiments are problematic in induction, they are 

critical in deduction. The necessity to collect exactly the required data in order to test 

a hypothesis drives scientists to strive for the maximum level of control over their 

data collection. The success of an experiment is measured in terms of whether it 

collected the right amount of the right type of data to allow the hypothesis to be 

tested.

4) Testing the hypothesis. The testing of a hypothesis is performed by comparison of 

predictions based upon the hypothesis with the outcome of the experiment. If these 

predictions are found to be incorrect, the hypothesis is being rejected. On the 

contrary, if the predictions are found to have been correct, the hypothesis is said to 

have been verified.

Unlike induction, the deductive process has no specific role for subjectivity of 

conclusions (‘inspiration’). It is accepted now that the analysis of experimental results 

and the testing of a hypothesis is a fundamentally ‘mechanical’ process. Therefore, two 

scientists should, in principle, generate equivalent results from the same experiment and 

interpretation in this context is limited to deciding whether or not specific prediction have 

been supported and the hypothesis is true or false. The induction and deduction research 

processes are summarised in Figure 3.1.

INDUCTION DEDUCTION

ADD

DISCARD

REFUTE CONFIRM

Experiment

Model

Hypothesis

Data collection

System
phenomena

Interpretation
(information)

Conclusions
(knowledge)

Body of 
generalisations

Figure 3.1. Induction and deduction research processes

Thus, a way from data to knowledge lies though these two stages. In first instance, when 

there is no knowledge available about the system of interest, induction is used to create
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the necessary ‘ground’, or a body of facts. After that, the body of facts are extended and 

enriched using the deduction process. As a consequence, an established theory that 

describes the behaviour of the system of interest is created.

Once a theory is established, it contains enough ‘confirmed’ hypotheses, which are 

basically the models of phenomena of the system, and having a set of models that 

describe the system, it becomes possible to predict or influence (control) the processes of 

the real system. Thus, scientific knowledge can be defined as the understanding, in the 

form of models, of the phenomena of real-life systems.

3.2.2 Relationships between data and information

In the previous section, a review of fundamental research processes has been given. Let 

us get back to Figure 3.1. It can be observed from the induction diagram, what differs an 

entity called data from an entity called information. The hierarchy of the inductive 

research processes, emphasising the difference between the stages of the process, can be 

expressed as the following cliche

“Data is not information,

Information is not knowledge,

Knowledge is not understanding,

Understanding is not wisdom" -  Cliff Stoll & Gary Schubert

It has been widely recognised that concept of data and information are relative [Ahmed et 

al, 1999]. That is, data is a raw material for information, and information is obtained by 

processing data. Using an economical analogy, processing of data can be seen as addition 

of a ‘value’ to data. But information of a certain level can in turn be raw material for a 

higher level information, for which previous level information will be data, etc. 

Therefore, there is no absolute information or absolute data, these concept gain their 

common notion only in certain context. For example, measurements of the direction of 

wind, taken from individual points is raw data, based on which the direction of the air 

stream in bigger scale is information. Further, the information on directions of individual 

streams of air are data for the information about the cyclone, etc. From these arguments,
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the term of information granularity can be defined as the level (relative) of the 

information within the hierarchy of informational entities that describe particular system.

The following section will establish a system within the area of transportation research, 

which will further investigate various level of information and data flows that are used in 

modelling the system. Particular informational granules (entities of information) of 

interest of this study will be identified and the importance of understanding of their 

behaviour (or underlying phenomena) emphasised.

3.2.3 Data and information in transportation research

In Chapter 2, the main directions in the road transport research has been discussed and 

several systems (or sub-systems) have been presented. Since transportation research is a 

relatively young discipline, it is possible to observe the ‘classical’ way of its development 

from inductive formation of the knowledge base to the iterative deductive development of 

certain areas of interest.

In this study, traffic systems are of main interest. The main object of such systems is 

traffic and this phenomenon of the transportation system is to be studied. Traffic has been 

of primary interest since transportation research has emerged as an individual scientific 

discipline. Historically, traffic analysis began with the studies of traffic data, which were 

collected in a variety of forms and techniques. Some classical traffic survey techniques 

are on-site observers filling in specifically prepared ‘forms’, probe vehicles cruising 

across the area of interest or video surveys. The body of facts eventually led to forming 

theories, or models, of traffic applied with various success (see Chapter 2).

Currently, the main source of traffic data are Traffic Control Systems, which allow 

automatic routine data collection. The data provided by the Traffic Control Systems is 

much cheaper than those collected using classical survey techniques. Another positive 

feature of automatically collected data is in its continuity (the collection is performed 

continuously without interrupts). Unfortunately, it is often of worse quality than survey 

data and also most difficult to process. Normally, Traffic Control Systems are designed to 

perform one kind of task and the measurement equipment (inductive loop detectors) are
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designed for that kind of specific task. As a consequence, the data may be of a poor 

quality for other kinds of tasks.

In recent years, significant interest in the transportation research has been addressed to 

development of traffic information systems, or ATIS (Advanced Traveller Information 

System). This is caused mainly by the fact, that the traditional traffic control and 

management strategies have reached their limits and are unable to optimise further 

constantly increasing traffic and as a consequence, alternative ways of improving traffic 

situation are being sought. Providing current traffic information to the drivers is one such 

way and is thought to have a significant potential.

Summarising previous thoughts, let us identify the types of information that can affect 

drivers’ decision regarding the planned journey. It is conventionally accepted that the 

most important information is the expected travel time from the driver’s start to the 

destination. In this context travel time across an area is information since it cannot be 

measured directly but has to be extracted from data. Another example of traffic 

information is the availability of alternative modes of transport (e.g. public transport). In 

the latter case, public transport timetables can be considered to be data and the 

availability of the transport at a particular place and time is information, since the arrival 

of the transport can be affected by various factors of the current traffic situation and thus 

cannot be obtained from timetables but has to be predicted from the traffic data.

There are many important information entities that have been identified within the traffic 

systems. Investigating each of them requires substantial work. The problem of travel time 

estimation in urban areas has been one of the less investigated areas and therefore this 

research will focus on the development of the appropriate methodology for estimation of 

this important operational parameter of a traffic system. The knowledge of current travel 

time can be used in solving many practical problems, such as estimation of the origin- 

destination matrices, assessing uncertainty associated with estimation of a journey time 

and for Advanced Traveller Information systems. A review of the problems that can be 

solved once travel time is estimated with required precision and uncertainty associated is 

measured, will be put forward in the conclusion of this thesis as directions of further 

research.
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3.3 SCOOT UTMCS and Traffic Data

In this project, a SCOOT system’s data has been used to carry out experimental study. 

SCOOT system is a typical representative of modem generation Urban Traffic Control 

systems and is widely used in the UK and some other countries. A brief introduction into 

SCOOT principles and functionality will be given in the following section. A 

presentation of the procedure of retrieval of data from a SCOOT system follows the 

description of data, its format and features. Then a relationship between data and 

information will be discussed and the process of transformation one to the other will be 

studied in greater detail. The review is based on the following sources [Hunt et al, 1981] 

and [McDonald and Hounsell, 1991].

3.3.1 SCOOT UTMCS

SCOOT (Split Cycle and Offset Optimisation Technique) [Hunt et al, 1981] is a demand 

responsive urban traffic control system. Research into SCOOT was initiated by the 

Transport and Road Research Laboratory (TRRL) in 1973. In 1975, preliminary field 

studies were carried out in Glasgow by a team from the TRRL, Ferranti, GEC and 

Plessey with assistance from Strathclyde Regional Council. Upon successful completion 

of the research stage, development of the system began by the Department of Transport 

and Industry and the three traffic companies in 1976. TRRL continued research into 

SCOOT and in Spring 1979 carried out a full scale trial of the system in Glasgow. In this 

trial SCOOT was found to produce average journey times 6% lower than those produced 

by a set of newly-prepared fixed time TRANS YT plans [Hunt et al, 1981].

As part of the development project a SCOOT system, functionally equivalent to the 

Glasgow system, was installed in Coventry in 1979. A five week evaluation of the system 

was carried out in Spring 1980. In this evaluation SCOOT was found to produce average 

journey times 5.5% lower than those produced by a set of newly-devised fixed time plans 

[Hunt et al. 1981].

As a result of these successful evaluations, a decision was made to market SCOOT 

commercially. The first commercial system was installed in Maidstone in 1983. Since
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then, the use of SCOOT has spread and the system is now in operation in over forty large 

towns and cities in the UK and overseas.

3.3.2 SCOOT principles

The basic philosophy of SCOOT is to obtain the optimum traffic signal settings, and that 

any changes must be implemented with minimum disturbance to traffic movement. In 

contrast to SCOOT’s predecessor TRANSYT, which used pre-calculated fixed timing 

plans calculated over historical traffic profiles, SCOOT measures current traffic 

conditions in real time and constructs optimised plans for those conditions. In order to 

optimise traffic more efficiently, SCOOT attempts to predict particular traffic patterns 

into the future. To do so a traffic model is required and such a model forms the heart of a 

SCOOT system. The SCOOT traffic model produces predictions for a short time into the 

future to give an estimate of traffic demand for the next cycle of the traffic lights and 

further ahead for cycle time changes. In order to obtain information about traffic flow, a 

SCOOT system employs an infrastructure of single-loop inductive detectors that are 

embedded in the roadway. These detectors usually cover one or two lanes, and are 

usually sited 10 to 15 meters downstream of the upstream junction on a link. Figure 3.2 

demonstrates the organisation of the SCOOT’s detectors infrastructure. The SCOOT 

traffic model is based on data collected four times a second. Figure 3.3 shows the 

processing of detector data collected in 0.25 second intervals into the SCOOT model. 

This data is processed and used to modify the Cyclic Flow Profiles -  one for each link, 

divided into four intervals. The traffic predicted to be crossing the downstream stop line 

in each interval is stored in these profiles.

The model also includes all the traffic stop lines. Every stop line is controlled by nodes 

and signal stages. The use of red-green information at the stop lines and traffic volumes 

in the profiles allows prediction of the queues that will form for a given stage length. The 

model contains a representation of traffic demand (cyclic flow profiles), stages, stops and 

delays.

Congestion is directly measured from the detector. If the detector is placed beyond the 

normal end of queue in the street it is never covered by stationary traffic, except the case
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when congestion occurs. This enables the detector output to show congestion. If any four 

seconds data shows traffic standing on the detector for the whole interval then this is 

recorded. The number of intervals of congestion in any cycle is recorded.
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The purpose of the traffic model is to predict the effect on street of different signal 

timings. Three separate optimisers use this ability to optimise splits, offsets and cycle 

time.
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The split optimiser works on the traffic model just before each state change. It considers 

the effect of advancing, retarding or holding the stage change and the effect this has on 

the green duration. The test it uses is the degree of saturation of all links controlled by the 

node. The degree of saturation is defined as the ratio of the average flow to the maximum 

flow which can pass a stop line. The ratio of the demand flow to the maximum possible 

discharge flow in SCOOT terms is the ratio of the demand of the cyclic flow profile to 

the demand of the discharge rate (Saturation Occupancy) multiplied by the duration of 

the effective green time. The split optimiser will try to minimise the maximum degree of 

saturation on links approaching the node. If the average degree of saturation over a five 

minute period is greater than 90% then cycle time will increase to give more capacity at 

the critical node. This has been shown to minimise delay. If congestion is present on the 

approach to the node then this must be taken into account by the split optimiser. To 

enable this the proportion of the previous cycle that was congested is included with the 

degree of saturation used by the optimiser when making its decision. The congestion term 

will enable a congested link to tend to obtain more green time whatever the degree of 

saturation shown in the model, depending on the congestion importance factor set for this 

link.

The offset optimiser optimises the difference in stage start time between nodes. The 

cyclic flow profiles are used by the offset optimiser to predict the queue length 

throughout the cycle. Once a cycle the offset optimiser predicts the queue lengths for all 

the links upstream and downstream of a particular node. The effect of ‘moving’ the nodes 

‘time’ forward or backward by a small amount is predicted for these links. As the time of 

arrival of traffic at the stop line is shown in the profiles, these predictions can be used to 

minimise the stops and delays in the mini-area. The congestion on a link is also used in 

the offset optimiser so that the congested link is given priority over links without 

congestion. The degree of priority is related to the degree of congestion.

The cycle optimiser usually runs every 5 minutes. At this time it will work out the degree 

of saturation at all the stop lines for each node. If any are above 90% saturated the 

minimum practical cycle time is increased by a small fixed step. If all are below 90% 

then the minimum practical cycle time is reduced by a small fixed step. The optimiser 

considers all cycle times from the highest minimum practical cycle time of the critical 

node up to the maximum region cycle time operating at that time. There is provision
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within SCOOT for the optimiser to run twice as often if a trend of rising or falling flows 

has been established. To reduce delays at very lightly loaded junctions the cycle 

optimiser will double cycle time of these junctions if the delay is reduced in the network 

by this action. Because this can show reduction in delay if the cycle time is changed by 

large amounts, the cycle optimiser is the only optimiser that looks at the effect of large 

changes. However large changes in cycle time are very disruptive so SCOOT does not 

make the change in one step. The change made will be in small steps but the direction of 

movement will be chosen by reference to consideration of a larger change. The cycle 

time optimiser operates on a region of nodes that have progression between them.

3.3.3 SCOOT data

SCOOT functionality is not limited to producing only signal control. Many useful 

parameters and information regarding the current state of the system can be obtained in 

the form of messages. Access to SCOOT is normally accomplished via terminal either 

connected to the SCOOT computer or remotely via rlogin or telnet protocols. SCOOT 

starts printing messages to the requesting terminal as a result of a MESS command 

having been given.

There are 5 types of SCOOT messages

1) “M” messages are associated with model information

2) “C” messages are associated with cycle times

3) “S” messages are associated with splits

4) “O” messages are associated with offsets

5) “W” messages are associated with detectors and warnings

All SCOOT messages have common “header” part followed by individual message’s 

content. The header contains the following fields

<DAY> <TIME> <TYPE> <LINK>[<DETECT>]

where

<DAY> is day of week (‘Mo’, ‘Tu’, ‘We’, ‘Th’, ‘Fr’, ‘Sa’, ‘Su’)
<TIME> is time of the event that corresponds to the message (HH:MM:SS)
<TYPE> is the type of message (i.e., C01, W23, M14, ...)
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<LINK> is the name of link the message corresponds to (e.g. N60331H) 
<DETECT> is the detector number within the link (1,2, rarely 3)

The <DETECT> field presents in the detector-related messages only, such as M l9.

Two message types, M l4 and M l9, have been extensively used in this project and will be 

discussed in detail. For the information on format and content of other types of messages 

one can refer to the SCOOT User Guide.

Messages of M14 type carry information on the current state of SCOOT traffic model and 

control output for the period between current and previous message. M14 messages are 

generated every 4 seconds and have, in addition to the header, the following format

IVL <aa> OCC <bbbb> LQ <cccc> BQ <dddd> EB <eeee> LIT <ffff>

where

LINK is a link name (or name of inductive loop)
IVL is current interval within cycle
OCC is occupancy value arriving at stop line (LPU/interval) (-1 if link is faulty)
LQ is length of queue currently modelled (LPU)
BQ is position of back of queue (LPU)
EB exit blocked flag (l=block)
LIT is four bits giving the state of signals in previous four seconds

(l=green,0=red)

Here is given a fragment of SCOOT output flow:

Tu 09:27:16 Ml 4 N60431E IVL 0018 OCC 0 LQ -252 BQ 0 EB0 LIT 1111
Tu 09:27:16 M14 N60431F IVL 0019 OCC 10 LQ 43 BQ 43 EB0 LIT 0000
Tu 09:27:16 M14 N60431G IVL 0018 OCC 0 LQ -163 BQ 0 EB0 LIT 1111
Tu 09:27:16 M14 N60442B IVL 0019 OCC 2 LQ 13 BQ 49 EB0 LIT 1111
Tu 09:27:16 M14 N60442C IVL 0019 OCC -1 LQ 0 BQ 0 EB0 LIT 0000
Tu 09:27:16 M14 N60442I IVL 0202 OCC 0 LQ 0 BQ 0 EB0 LIT 1110
Tu 09:27:17 M14 N60311K IVL 0219 OCC 0 LQ 0 BQ 0 EBO LIT 0000

LPU stands for Link Profile Unit and is the SCOOT’s traffic flow measurement unit. An 

extensive study of the accuracy of measurement of traffic flow has been carried out by 

several researchers [Carden et al, 1989], [Backer et al, 1991], [Evans, 1995], [Peytchev, 

1999]. The main characteristic under analysis has been LPU-to-vehicle conversion factor 

(LPUCF) defined as a ratio of flow in LPU to the number of vehicles in the flow. It has 

been reported that LPUCF remains relatively stable over time and does not change much 

when calculated for peak and off-peak traffic (about 5% variability). It has been found
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that the average LPUCF is 17 LPU per vehicle although LPU generated for an individual 

vehicle can change substantially [Peytchev, 1999]. Since accuracy of estimation of 

various traffic characteristics is the main concern of this study, a decision has been made 

not to use LPU measurements for the derivation of the characteristics. Another point to 

be mentioned is that the minimal time granularity of LPU measurements is 4 seconds, 

which means that traffic measured in LPUs is being averaged over this period of time and 

this is an additional source of uncertainty which will be inherited by the estimates based 

upon the LPU measurements.

Although LPU traffic measurements carried in M14 messages will not be used, a useful 

information in M l4 is the signalling stages. Knowledge of signalling stages in urban 

traffic modelling and simulation is a prerequisite for a success of the study.

M l9 messages represent detector occupancy measurements taken every quarter of second 

and encoded into a string of four bits. Thus, the frequency of M l9 messages is once a 

second. Ml 9-specific infonnation has the following format:

DETECTOR STATE <VALUE>

The generation of M l9 messages can be illustrated using previously given Figure 3.3. 

Considering Figure 3.3 and occupancy flow generated over the loop detector (let us name 

it detector 1 in link N60331H, or N60331H1), a set of M19 messages generated by 

SCOOT will be given below.

Detector N60331H1

1

. \  . ! ' \ | , I f  Generated
OOpOOQO 11 lpOOOpOOOpOOQOOOOpOOQO 111;110Q00 '  ’ occupancy pulses
— 1-------1 1 1 1 1 1 1 1 1 ►

37 38 39 40 41 42 43 44 45 T -

Sa 08:26:38 M19 N60331H1 DETECTOR STATE 0111
Sa 08:26:39 Ml 9 N60331H1 DETECTOR STATE 0000
Sa 08:26:40 Ml 9 N60331H1 DETECTOR STATE 0000
Sa 08:26:41 Ml 9 N60331H1 DETECTOR STATE 0000
Sa 08:26 :42 Ml 9 N60331H1 DETECTOR STATE 0000
Sa 08:26:43 Ml 9 N60331H1 DETECTOR STATE 0000
Sa 08:26:44 Ml 9 N60331H1 DETECTOR STATE 0111
Sa 08:26:45 Ml 9 N60331H1 DETECTOR STATE 1100

Figure 3.4. Generation of Ml 9 messages
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Messages M l9 are the lowest level messages (no low pressing has been applied) and with 

the lowest time granularity. They allow detection of vehicle arrival events with accuracy 

±lA of a second.

M l9 messages do not distinguish free travelling vehicles and vehicles that stop over the 

detector (during congested periods). A convention therefore has been made to consider 

all sequences of pulses longer than 8 to be related to either a stopped vehicle over the 

detector or that the detector is faulty. Consequently, since there are at most 8 pulses 

collected in any occupancy detection event and taking the average vehicle’s length for 5 

meters, the slowest speed is 5m/(S-0.25s)=2.5m/s and the fastest speed 

5m/(l-0.25s)=20m/s. Then, a series of all possible speed readings are (2.5, 2.8, 3.3, 4, 5, 

6.6, 10, 20} m/s. This demonstrates the poor quality of spot-speed estimates that are 

based upon SCOOT single-loop detector measurements. In Chapter 5, a methodology of 

accurate travel time estimates based on single-loop measurements will be developed. The 

developed methodology can then be used for a much more accurate space speed 

estimation based only on single loop detectors’ readings.

3.3.4 Retrieving SCOOT messages

Before data becomes available for processing it has to be retrieved from the SCOOT 

system. SCOOT system provides its users with an interactive interface, which is 

developed in a form of a command-line shell. As has been already mentioned in the 

previous section, a user accesses the interface either from a SCOOT terminal or remotely. 

Current version of SCOOT operating system supports IP protocol and standard remote- 

access services such as telnet or rlogin.

The interface needs interaction and does not provide automatic data retrieval process. In 

order to automate data retrieval process, a user-simulation software is required. Such 

software will send commands to the system and collect the output. Such software can 

then be used as an intermediate layer between SCOOT and DIME shared memory system 

[Argile et al, 1996] or send data to either a file or to an IP socket.
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Several terminal simulation software are available that allow connecting to SCOOT 

system from a remote host, such as MS Window’s standard HyperTerminal application. 

Unfortunately most of them do not have capability to control the data flows of the 

connection without presence of a human operator. The specificity of SCOOT operation 

(such as daily resets and initialisations) makes it necessary to monitor its state and 

provide necessary commands in order to keep data flow uninterrupted. The lack of 

scripting capabilities in most of the terminal simulation software led to a situation, when 

the researcher involved in data collection had to monitor the data collection process and 

change the terminal output files on a daily basis.

A solution, proposed in this study, is to use stream based communication applications, 

such as Unix’s telnet or rlogin, and using piping capabilities of a Unix system to redirect 

the programs’ standard input and output streams to another application, which would then 

monitor the incoming data and send commands according to the results of the monitoring. 

Not all terminal-based applications can be controlled via standard input and output 

streams that are offered by the Unix piping system. Some applications use so called 

addressed cursors and standard terminal operations such as control characters, colours 

etc. A set of capabilities that are supported by a terminal device is called a terminal 

protocol. Examples of such terminal protocols are ANSI, VT100 and other terminal 

protocols. In Unix, a terminal protocol support is inherited from the underlying device 

driver (device such as a video card, a dumb terminal connected via serial port, etc.) and 

then passed to all applications that use terminal capabilities. It can be said, that terminal 

device input and output channels are being forwarded from the system to the first 

terminal application and then throughout the hierarchy of applications run one from 

another (see Figure 3.5).

Unix OSTerminal device

Terminal 
device driver

gettystdin *>■<-Console
application

Console
application

Console
application

s t d o u t

Figure 3.5. Hierarchy of applications and forwarding of the 
terminal IO streams
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Unix daemons are processes that are run in the background mode to perform a certain 

task and do not require interactive operation with the user. Therefore daemons do not 

have an associated terminal device and have their standard input or output streams closed 

or redirected to files (see Figure 3.6).

The application that is supposed to use rlogin or telnet in order to connect to a remote 

SCOOT system, further referred to as ‘controller’, is by its nature a daemon process. It 

does not need a terminal device of its own unless it is controlled directly from a console 

(which is not a good thing to do anyway).

Unix OSTerminal device

Terminal 
device driver

getty
s t d i n

Console
application

Console
application

Console
application

s t d o u t

sendmail inetdbind

Daemon DaemonDaemon

Figure 3.6. Unix daemon processes

Since the controller is a daemon and does not have a terminal device associated with it, 

the pipes created to communicate with the intermediate application are ordinary streams 

without support of the terminal capabilities (see Figure 3.7).

Many terminal I/O based application use advanced terminal capabilities which require 

support for underlying hardware terminal functions. If the application process has been 

started with the standard input and output streams initialised with ordinary streams (such 

as file streams, sockets or pipes) the application may cease to work due to errors while 

initialising terminal. SCOOT interactive interface is such an application. Although the 

absence of hardware terminal functions is not a fatal error for most applications (but of
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course, most applications become useless because of the chaos in its output), SCOOT 

interface considers it a fatal error and terminates immediately. Therefore, although a 

scheme of data acquisition with controller as shown on Figure 3.7 works for standard 

input/output based applications (such as sh, awk, cat, etc.) it does not work for SCOOT 

interface.

Controller telnet/rlogin
Commands^

Data stream 
monitoring and 

control logic

stream ™

Data and 
^  state

COMMUNICATION 
WITH SCOOT 

OVER NETWORK
^information

streamU► TO THE DATA CONSUMER

IP
■^■V^Network^

SCOOT OS

TRAFFIC DATA 
AND 

INFORMATION

Figure 3.7. Architecture of data acquisition procedure

A solution for this problem has long been implemented in all Unix systems and is called 

“pseudo-terminals”. Pseudo-terminals are bi-directional communication channels that can 

be used to connect two processes or a process group to another process. What pseudo

terminals provide is a lot like two pipes, but with a support of hardware terminal 

interface. The hardware terminal support is implemented as “dummy”, that is it just an 

interface with no real functionality since no underlying hardware is available. 

Nevertheless, this implementation is sufficient for the terminal based application to 

function properly. Figure 3.8 demonstrates the application of pseudo-terminals to the data 

acquisition procedure.

From Figure 3.8 it is clear that for the ‘telnet/rlogin’ part of the scheme, the standard 

input and output look exactly as if they were associated with a hardware terminal and, 

thus, an application on a remote location (SCOOT interface) can use standard hardware 

terminal functions and therefore operate properly.

A software product realising the above scheme has been designed and implemented in the 

C language on a Unix platform (Solaris). It has then been successfully used to simulate 

the interactions needed to operate SCOOT in a way that is required for a flawless and
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non-intermittent data flow. The controller application has been used to retrieve real-time 

SCOOT data into DIME system [Argile et al, 1996], which then allows multiple remote 

application to access the data in a consistent and efficient way.

Controller telnet/rlogin SCOOT OS

Data stream 
monitoring and 

control logic

COMMUNICATION 
WITH SCOOT 

OVER NETWORK Network

TRAFFIC DATA 
AND 

INFORMATION

TO THE DATA CONSUMER

Figure 3.8. Architecture of data acquisition procedure with 
pseudo-terminals

3.4 Uncertain information

3.4.1 Introduction

It is now well recognised that the uncertainty associated with an aspect of a physical 

reality is a reflection of the lack of precise information about this reality. That is to say 

the more information that is known about a system, the less uncertainty is associated with 

our knowledge of the system. It has been shown [Bargiela, 1998] that most of models of 

real-life process are affected by uncertainty that appeared to be a multi-dimensional 

concept. Depending on the mathematical framework employed, uncertainty may be 

distinct in terms of one or more of the five types: entropy, dissonance, confusion, 

nonspecificity and fuzziness.
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A deterministic model that captures precisely all aspects of a system is certain. That is to 

say it can answer any question about the system with 100% accuracy. However, real-life 

systems are of a tremendous complexity in deterministic terms and therefore can hardly, 

if at all, be described by a deterministic model. The complexity of real-life system makes 

deterministic approach impossible to be applied for real-life system. On the other hand, a 

system can be described by an uncertain model where some insignificant information has 

not been included into the model, and further by a model that does not contain any 

information about the system (let us call such a model an empty model). An empty model 

unlike a deterministic one is fully uncertain and on the other hand as simple as empty set 

from the set theory.

The two extreme poles show the relationship between informational contents and model 

complexity it causes. Models of real-life systems are neither of these poles. Firstly, it is 

hardly possible to obtain all the information about a system and, secondly, the purpose of 

modelling is to extract relevant information about a system and avoid unimportant 

details. An important problem to find a compromise between complexity and uncertainty 

has been of main interest of the systems theory. The solution has been found in 

application of the principles of minimum and maximum entropy [Jaynes, 1979], 

[Christensen, 1981], [Williams, 1980], [Klir and Folger, 1988] in the framework of the 

probabilistic information theory.

Nowadays a concept of uncertainty has been broadened [Bargiela, 1998], [Klir and 

Wierman, 1999], [Wang and Klir, 1992], [Shafer, 1976] and is considered as a multi

dimension entity. The fundamental principles of minimum and maximum entropy have 

been generalised and became the principles of minimum and maximum of uncertainty. 

This causes the need for developing new modelling methodologies which take the 

multidimensional nature of uncertainty into account.

3.4.2 Measures of uncertainty

Probabilistic uncertainty has long been the only known type of uncertainty. Since it 

represents an intuitive concept of ‘chance’ it has been found in the works of Pascal 

where he considered uncertainty associated with placing bets in gambling games. The
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presence of probabilistic uncertainty in traffic modelling can be found in the example of 

travel time estimation. Travel time depends on a number of factors, which can naturally 

be assumed as being random variables. Since it is possible to perform many experiments 

with travel time estimation, the statistics on the variable can be collected and then using 

well-developed statistical apparatus, analysed. In such case, a probability distribution can 

be estimated by frequency distribution. The probabilistic analysis of the travel time 

estimation procedure will be given in Chapter 5 and empirical study of travel time 

distributions in Chapter 6.

Two other types of uncertainty have been discovered by [Shafer, 1976] in which the 

additivity of the probability measure was questioned. The two measures were called 

plausibility and belief and measure dissonance and confusion types of uncertainty 

accordingly [Klir, Folger, 1989]. The presence of dissonance and confusion uncertainties 

can be found in the procedures that involve interaction of concurrent bodies of evidence. 

For example, a procedure of turning movements estimation is affected by those kinds of 

uncertainty and therefore any model based on the turning movements inherits this 

uncertainty. A discussion on turning movements estimation problem will be given in 

Chapter 7.

A type of uncertainty called nonspecificity is complementary to probability and puts an 

emphasis on the process of selection of an alternative from the set of all available 

alternatives. This ambiguity is totally resolved when one of the alternatives is selected 

[Bargiela, 1998]. A procedure of establishing the correspondence between origin and 

destination of particular sets of events experiences such an ambiguity. Therefore a travel 

time estimation procedure, turning movements estimation procedure and others are 

affected by this sort of uncertainty.

Another type of uncertainty, vagueness, is associated mainly with objects that have 

“fuzzy” boundaries or it is difficult to draw precise distinction between such objects. The 

theory of fuzziness is now well developed and includes a number of disciplines such as 

fuzzy sets, possibility theory, fuzzy systems, fuzzy calculus and so on [Zadeh, 1965], 

[Dubois and Pride, 1980], [Dubois and Pride, 1985], [Rosenfield, 1971], [Pedrycz, 1983], 

It has been recognised that the fuzzy approach can be adequate even in crisp systems 

where precise information is not required or cannot be obtained. In the case of traffic
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modelling, one deals with measurements, which are by their nature crisp numbers. 

Nevertheless, there are many other factors affecting traffic that cannot be measured 

precisely but can be formulated in fuzzy terms and included into a model and, as a 

consequence, increase its credibility.

Also a model of traffic can be developed on the basis of fuzzy numbers and fuzzy 

relationships, where systems’ parameters are fuzzy numbers and relationships define their 

interaction and dependencies. For example, the estimated travel time can be seen as a 

fuzzy number whose membership function is the frequency distribution. This idea will be 

investigated further in Chapter 6.

3.5 Conclusions

In this chapter, a relationship between data and information within the framework of 

modem research process theory has been established. Transportation research, as a 

relatively new area of research, has been shown to evolve through the presented stages of 

theory evolution.

In this research, data collected from a SCOOT system has been used to carry out 

experimental study as described in the deduction research process. A brief review on the 

SCOOT functionality and parameters have been given to provide the background on the 

type of data available from the system. Data formats have been given and several types of 

SCOOT messages, extensively used in this research, are described in greater detail.

It has been widely recognised that uncertainty associated with knowledge about a system 

is a multidimensional concept. Modem theory of information has identified several 

dimensions of uncertainty and outlined directions in which current knowledge can be 

improved by understanding the associated uncertainty and measuring it in an appropriate 

way. After uncertainty has been identified and measured it will become possible to 

master uncertainty in a way that is beneficial in some sense.

Transportation research, as a merely engineering area, has not yet benefited from the 

development of information theory and there are many open problems to be solved or



current solution improved using the advances in understanding underlying systems 

complexity and uncertainty.
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Chapter 4

The Data Processing Environment

4.1 Introduction

Data is the source of empirical information and information in turn is the source of 

empirical knowledge. The primary aim of any data analysis is to retrieve or extract the 

information that the data can provide. Clearly, different sets of data may contain 

different information as well as the same data can contain various types of information. 

The nature of both entities has been discussed in the previous chapter and this chapter 

will concentrate on a practical topic, namely the tool for data processing, analysis, 

modelling and simulation.

The data in the discussion will be considered being related to traffic and transportation 

system. This nevertheless will not affect the generality of the tool to be developed, as 

one of the criteria of the design is the universality meaning that the developed tool 

should not assume implicitly or explicitly the exact nature of data but to be flexible and 

deal with data as an abstract entity.

In transportation, many data collection techniques have been developed and exercised 

over the years [Taylor, 1996]. Traditional data collection techniques involve 

sophisticated equipment or much resources thus making the collected data rather 

expensive [Drew, 1968]. Obviously, data produced by different techniques will be 

different in its format and semantics. This point is just another illustration of the fact 

that a universal data processing tool must accommodate different types and formats of 

data even if they are of the same nature.

This project is mainly interested in data that has been routinely collected by a traffic 

control system (such as SCOOT) and the developed tool will be exercised on this type 

of data. While the SCOOT data is easily accessible it is also rather difficult to process 

and analyse. Consequently, satisfying the requirements for the processing of SCOOT 

data renders the processing tool to be general and applicable to a broad spectrum of
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data processing tasks. Additionally, it is desirable that a set of standard analytical and 

statistical procedures is available to carry out numerical analysis of the properties of 

data. This chapter is devoted to development and evaluation of such a tool, which 

provides the basis for this research study. Several examples will be given to 

demonstrate the functionality and abilities of the developed software environment.

As has been described in the section devoted to SCOOT data, the data has several 

features that need to be taken into account during specification of the requirements for 

the processing tool. The features are summarised below:

- Traffic data that is automatically collected by the traffic control system is 

represented in a form of textual messages

SCOOT produces high volumes of messages (hundreds of megabytes per day) even 

for relatively small road networks under its control

- Messages have standard fields and message-specific fields

There are nearly one hundred types of messages generated by SCOOT (different 

types of data and information)

Messages can represent raw measurements of traffic flow as well as the results of 

internal SCOOT traffic model (control output, higher level traffic flow estimates, 

etc.)

SCOOT data is redundant in a sense that it is generated constantly regardless of the 

situation on the road. Messages carry information about non-zero occupancy as well as 

zero occupancy. SCOOT produces high volume of data but the actual informative 

content of the data may be small and filtering out dummy messages can significantly 

reduce the volume of messages that are to be analysed. Therefore it is the first task of 

the data processing procedure to filter out empty messages and pass on to the further 

stages of processing only significant data. Although the above features have been 

recognised for SCOOT data, those features in a sense are the ‘worst’ case. Many other 

traffic control systems produce data with similar characteristics and therefore the 

developed software is believed to be suitable for dealing with data produced by sources 

other than SCOOT.



There are several ways traffic data can be made available for processing. Firstly, it can 

be redirected from the traffic control system straight to the processing software. This 

will facilitate on-line real-time data processing, which can have a number of potential 

applications. Secondly, data could have been collected over a past period of time and 

stored for later use. In this case the historical data comes from storage devices. Thirdly 

data can be generated as a result of simulation process (with the simulator located on 

either a local or remote system). The fact that data may come from physically different 

sources implies the design requirement that the data processing environment should be 

flexible in order to implement data importing gates for different data sources. Several 

examples of data sources are: files, network sockets, local system processes, keyboard, 

mouse, etc.

Data analysis normally requires several stages or procedures applied sequentially. One 

of the first stages would be to remove faulty data or to detect inconsistencies and handle 

them appropriately. Then data would be analysed statistically. Visualisation of the 

results is yet another important stage in data analysis. After all, the results of the 

analysis have to be made available for the other applications or exported as documents. 

Normally a user would expect all such functionality to be implemented in the 

processing software or, at least, have the flexibility to extend the in-built functionality 

by implementing missing functions and integrating them into the system.

Taking into account the above issues the requirements for such a software system will 

be given in Section 4.3.

4.2 Review of the software tools for data processing

The importance of data processing and analysis has been already emphasised in the 

previous chapters. This section will give a brief review of approaches to data 

processing carried out during traffic-related projects.

4.2.1 The databases

Several researchers have proposed to use databases as the standard approach to traffic 

data storage and handling [Bell, 1992], [Skabardonis et al, 1997], [Cornwell et al.].
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Evans [1995] was concerned with processing and storing SCOOT data, which is the 

same as the data used in this project. Therefore, a brief description of developing a 

SCOOT database presented in [Evans, 1995] will be discussed.

The motivation behind the use of databases to store SCOOT data was the ability of 

databases to store a large quantity of data in a compact, easily accessed and centralised 

location. The databases also ensure that data has a consistent format with a minimum of 

redundancy.

The architecture of the developed database is shown in Figure 4.1 (adapted from 

[Evans, 1995])

Application
interface

User
interface

Static data 
sources

Dynamic 
data sources

Pre-processing
software

Relational
DBMS

Figure 4.1. The traffic database structure

It is clear from the above figure that data processing is an intermediate stage between 

data sources and DBMS. Since DBMS do not support custom data processing (unless it 

is implemented on the level of stored procedures) it has to be implemented as 

independent layer of the data flow model. For data pre-processing, Evans [1995] uses a 

suite of computer programmes written in the C and Awk languages. Awk [Aho et al, 

1988] is designed to manipulate text files, which contain information that is structured 

in records and fields and it has been chosen since SCOOT messages have such format.

Databases normally have static structure and design of the structure using the relational 

algebra is not a trivial task. The COMIS database, presented in Evans [1995], has a
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fixed structure that utilises the relationships between SCOOT spatial characteristics 

such as links, nodes and detectors with two types of messages, namely Ml 6 and M02.

Another system, called ASTRID [Hounsell et al., 1990], was developed by 

Southampton University as part of a contract funded by the TRRL. The ASTRID 

system consists of a suite of data collection, pre-processing and analysis programs, that 

are run on an IBM PC or compatible PC. Within the suite, data collection is carried out 

using an assembly language program that reads incoming SCOOT messages and logs 

them onto hard disk. This program runs in the ‘background’ so that additional tasks can 

be carried out at the same time as data collection. The messages used in ASTRID are 

M02, M03, M04 and they provide flow, delay, SCOOT congestion and faults for links, 

nodes and regions respectively; M16 for stage lengths; C01 for regional cycle time; 

C30 for degree of saturation of links; W05, W06 provide information on changes in 

fault status for links. When messages have been logged, they are pre-processed by two 

FORTRAN programs. One of them splits a file of raw logged messages into a set of 

sub-files. Each sub-file generally contains one message type for one link, node or 

region. When producing sub-files, the following additional operations are performed:

1) Unwanted fields are removed from messages;

2) Link flows and delays are scaled by site specific LPUCFs (if these have been 

specified);

3) Data is aggregated over user-defined time interval

The sub-files produced by the pre-processing stage are subsequently processed by the 

second FORTRAN program. This program takes one day’s worth of message sub-files 

and uses them to update a set of trend and profile files. These files form the core of the 

ASTRID system. Trend and profile files are manipulated for a specified set of links, 

nodes and regions.

The advantages and disadvantages of using databases in traffic data processing and 

analysis are apparent. While databases provide a unified structure and interface to the 

data, there are several drawbacks in the data source-database-application scheme. 

Briefly they are as follows:

1) In real-time and time-critical applications data is passed through the database 

causing a significant overhead
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2) There is no mechanism in databases that would notify the applications about the 

arrival of new data. Due to this, applications, that require real-time data have to 

scan databases continuously, which causes a significant overhead to the whole 

system

3) Databases are difficult to upgrade or add new relationships

And the advantages of the database approach are also clear:

1) Databases are good when no real-time processing is required, that is for off-line 

data storage and access.

2) Database Management Systems provide a high level of data safety and 

consistency, especially when the database is accessed from several remote 

locations.

3) Databases provide fast random access to any historical data that were stored in 

it.

In the data processing environment developed within this project, the possibility of 

using database is open and an interface to a database can easily be implemented thus 

allowing the user to utilise the advantages provided by the database, but the software is 

not based on database thus giving the user the flexibility in choosing the working 

framework that is more suitable for a particular task.

4.2.2 Data processing tools for traffic projects

A set of tools for data processing and analysis have been developed during the Freeway 

Service Patrol Evaluation project carried out in University of California, Berkeley 

[Petty, 1995], [Petty et al., 1996]. The suite of programmes called FSP has been 

developed in order to facilitate the processing and visualisation of the data that was 

collected during the Freeway Service Patrol Evaluation project. The main function of 

the tools was to perform diagnostics on the data, generate error reports and make plots 

of various pieces of data.

The main fsp programme has been written in the C language for UNIX platform and 

made free for academic use. It takes as its input arguments a file that contains a set of
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commands that fsp is to perform, an incident filter file and incident run number. The 

input of the data into the fsp program is accomplished by placing data files into the 

specified directories in the file system. The hierarchy of input data directories has to be 

created. A graphical user interface front-end to the fsp programme, called xfsp, allows 

the user to select the input data files that are to be processed, start the data fixing 

procedure, and run fsp to produce output files and browse the content of the output 

files, xfsp was written in the TCL/TK scripting language and is meant to operate under 

X-Windows sub-system of UNIX OS.

The data collected during the Freeway Service Patrol Evaluation project was of three 

categories: the loop detector data, the probe vehicle data and incidents data. The loop 

data is collected from inductive loops that are embedded in the highway. At a specific 

location, each lane contains a pair of loops that are spaced about 14 feet apart (double

loop detectors). When a vehicle passes over a loop, the effective inductance in the 

circuit changes and this results in a change in the current flowing in the loop and 

detected by the detector using a threshold level. Binary data is generated by sampling 

the result of the comparison of the current level and threshold at the frequency of 60Hz. 

For a desired data output period, the fsp programme generates the following 

information for each interval.

• The number of vehicles that pass over the loop location in that interval

• The fraction of the time in that interval for which the loop is occupied

• The mean speeds in that region during that interval

The fsp programme recognises and tries to fix inaccuracies or inconsistencies in the 

data that occur due to a variety of reasons, such as

• The loop may not be sensitive enough to detect all the vehicles passing over

them and thus may in fact be undercounting. Also, vehicles not in the centre of

the lane may be missed, as is the case of vehicles attempting to change lanes. 

On the other hand, loops may be detecting vehicles that are on neighbouring 

lane and hence resulting in some overcounting

• The resolution with which the time headways can be measured is 1/60 second.

This limits the accuracy of measured vehicle speeds. Further, mismatch in
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tuning of a pair of coupled detectors leads to errors that cannot be compensated 

for.

• The detector thresholds may not be tuned properly and this can result in bias in 

the measured occupancies.

The developed fsp software does what it was developed for. Unfortunately, there are 

several problems associated with the use of the software for purposes other than those 

specified in the Freeway Service Patrol Evaluation project:

• It lacks the generality and should data format or analysis procedures change it 

will not be able to cope with the changes. It is thus a very specific 

implementation of data processing software for the very specific problem.

• The input to the programme should be provided in the form of files that contain 

necessary data and the output of the programme is organised in the form of 

report files. This makes the use of the software in real-time processing and 

analysis procedures inconvenient and clumsy.

• Another problem is that since the core programme is written in the C language it 

is difficult to extend it in the sense of adding new functionality.

The above problems are analysed in this research and taken into account during the 

development of the data processing environment.

4.2.3 Other data processing, modelling and analysis software packages

There are several commercial software packages that may be considered as candidates 

for the use as data processing, modelling and simulation tools. Features and capabilities 

of some of them will be reviewed in the following sections.

4.2.3.1 VisSim™

VisSim is a software program for the modelling and simulation of complex dynamic 

systems [Visual Solution]. VisSim combines an intuitive drag & drop block diagram 

interface with a powerful simulation engine. The visual block diagram interface offers a 

simple method for constructing, modifying and maintaining complex system models.
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The simulation engine provides fast and accurate solutions for linear, non-linear, 

continuous time, discrete time, time varying and hybrid system designs. With VisSim, 

users can quickly develop software or “virtual” prototypes of systems or processes to 

demonstrate their behaviour prior to building physical prototypes. Built-in integration 

tools allow users to communicate seamlessly with MATLAB and Mathcad.

The user builds his system model by selecting predefined blocks from a block library 

and simply wiring (graphically connecting) the blocks into a diagram. Each block of the 

diagram performs a mathematical or input/output function. These “blocks” may 

represent complex algorithms, input variables, or various outputs like graphs, charts, 

plots or data files. Users can also create custom blocks in C, Fortran or Pascal and add 

them to the VisSim block library. After the model is configured, a simulation is run and 

results of the simulation are displayed. The core product, VisSim, is used for general 

modelling, simulation and control system design applications. VisSim product options 

include VisSim/Analyze, for frequency domain analysis, and VisSim/Real-Time, for 

real-time hardware-in-the-loop validation. In addition, there are several extension 

packages that add to VisSim functionality that is necessary in particular applications 

such as digital and analogue signal processing, analogue, digital or mixed-mode, end- 

to-end communication systems, frequency domain analysis and other add-ons.

Due to its efficiency, intuitive block-diagram interface and simplicity of use VisSim has 

become very popular in engineering circles and is mainly used for solving problems 

studied in the classical control theory.

One significant disadvantage of VisSim for modelling and simulation of transportation 

systems is that it only supports numerical data types whereas in the transportation 

system models variables and parameters may be represented as strings, numbers, 

logical values or more complex structures such as spatial characteristics of a road 

network. Another disadvantage is that blocks that form a model of a system work in 

synchronous mode only and also it is not a multi-threaded product (thus cannot take 

advantage of parallel processor architectures).

A graphical user interface, similar to VisSim’s, has been chosen as a prototype for the 

data processing environment’s user interface as it is the most intuitively understandable
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way of representing stages of data processing and transfer between individual 

processing or analysis functions. Block diagrams are also a common tool for 

visualisation of control system models.

4.2.3.2 MA TLAB™ and Simulink™

MATLAB and Simulink™ are products of The MathWorks, Inc. [The MathWorks]. 

MATLAB is an integrative environment with its own language and interpreter, which 

has been especially designed for mathematical calculations. Over the years of its 

evolution, many packages of functions have been developed and cover almost all topics 

of applied mathematics including modern theories of neural networks and fuzzy 

systems. MATLAB has been implemented for the most software and hardware 

platforms including Sun (Solaris), Hewlett Packard (HP-UX), IBM PC and compatible 

with MS Windows and Linux and Apple (from version 6.5), which is one of the factors 

of its popularity.

Simulink is an interactive tool for modelling, simulating, and analysing dynamic, 

multinomial systems. It lets a modeller build a block diagram, simulate the system's 

behaviour, evaluate its performance, and refine the design. Simulink integrates 

seamlessly with MATLAB, providing immediate access to an extensive range of 

analysis and design tools. Its functionality is similar to VisSim. One of the advantages 

is that Simulink is built on top of MATLAB and this gives a modeller access to the 

powerful analysis and graphics capabilities of MATLAB. It also allows writing custom 

modules on a high-level language of MATLAB whereas VisSim requires its blocks to 

be written on one of the general purpose languages, such as C or Pascal.

The disadvantages of Simulink are almost the same as VisSim’s. The main 

disadvantage is that it supports several, but all are numerical, data types, which include 

32- and 64-bit floating-point, fixed-point and integer. It also has a less intuitive 

graphical interface.

4.2.4 Conclusions

The problem of data processing as such is rarely considered by the researchers to be 

worth of special treatment. Since different data requires different processing
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procedures, researchers would normally develop a small and very task-specific 

application that would allow them to transform the source data into some standard 

representation (such as numerical data: vectors, matrices, etc.) in order to use standard 

analytical tools to carry out further analysis. This essentially means that the software 

developed for that particular task cannot be used should source data format or output 

representation changes. This leads to a very little re-usability of the data processing 

code, which in general implies extra costs for developing new applications for new data 

formats or projects. Moreover, a wide range of general-purpose analytical tools creates 

a problem of migrating from one to another. The migration is a frequent event since 

there is no a single software system that provides all necessary functionality for every 

project and problem escalates even further as researchers are often forced to write their 

own tools and procedures to perform the analysis of the data they require.

4.3 Requirements

Having studied the disadvantages of the existing modelling and data processing and 

analysis software packages, a set of requirements have been produced that the data 

processing environment must satisfy. The following sections present the requirements 

and discussions on their necessity.

4.3.1 Modularity

As it has been mentioned in the introduction, a typical analysis process consists of 

several stages which data is passed through in order to extract certain pieces of 

information. Given that the range of functions performed at each stage is vast it is 

impossible to implement every function in one software system. One possible solution 

is to require the system to be modular, or in other words all individual functions that 

can be used for analysis be implemented as functional modules which then can be 

added into the system and manipulated with. The data processing environment must 

provide the means by which such functional blocks are integrated into the system and 

manipulated within it (placed, parameterised, connected, controlled etc.).



4.3.2 Extensibility

Extensibility is basically the consequence of the modularity requirement, which states 

that the system must be easily extensible by adding new functional modules, which will 

extend the system’s functionality. Modular extensible system has great flexibility in 

meeting particular analytical requirements of the user. For example, the user can 

implement and integrate into the data processing system a decision support module that 

will assist the user in making decision based on the data. Another possibility is the 

implementation of a control system that produces control output based on data analysis. 

As a consequence of the extensibility, the developer of the data processing environment 

is made free from the need to implement many functions into the system since all task- 

specific functionality can be added to the system in the fonn of modules.

4.3.3 Efficiency

The system must be efficient enough in order to deal with high volumes of data. Since 

data processing and analysis can be a continuous real-time process, the efficiency 

requirement also implies that the computational resources are to be distributed between 

the functional modules accordingly. For example, as has been mentioned before, high 

volume of raw data does not necessary imply high volumes of information but 

extraction of relevant pieces of data can be computationally expensive process. 

Therefore, the pre-processing stage can take much computational resources but should 

not overshadow the rest of the analysis process.

In some cases system might not have enough computational power to cope with high 

volume of data in real time. In such cases the system can only be used as off-line data 

analyser and cannot be used in real-time decision-making processes.

The computational power can be significantly improved by using parallel or multi

processor hardware. In the case of such hardware being available, the system must 

utilise the advantages of the resources. This idea is expressed as the following 

requirement.
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4.3.4 Concurrency

This requirement can be considered as a consequence of the efficiency requirement and 

states that functional modules are executed concurrently in separate threads of 

executions. In this case the underlying operating system can make use of the available 

multi-processor hardware resources with the greater flexibility. One drawback of this 

requirement is that there will be additional computational costs for synchronisation 

between the processes, which can induce overhead of up to 10% on a single-processor 

system. Nevertheless, it is a good trade-off when the system is used on a multi

processor hardware.

4.3.5 Reliability and fault tolerance

Since the user can integrate arbitrary code into the system, the system should be robust 

towards the errors and crashes within the user’s code and such crashes within one block 

should not affect the whole system. This nevertheless should not limit the range of 

functions available to the user.

Multi-threading feature has its own impact on reliability. That is the functional modules 

that are run in separate threads of execution are protected against errors that occur 

within the other modules. A crash within a module can affect the other modules only in 

a sense that it will stop providing data to the peer modules. This may cause the system 

(or a set of modules within the system) to cease functioning (put it into a waiting state) 

but such situation is not a fatal error and the system should be able to recover.

4.3.6 Universality

Data can be received in a variety of formats and representations. Different types of data 

require different internal types and treated accordingly. For example, numerical data 

can be represented as real numbers, integer numbers, complex numbers, vectors, 

matrices and other fonns. Some data may be expressed in symbolical form and some 

data in the form of textual messages. A universal data processing tool must be ready to
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accommodate various needs for data types, from the primitive types, such as numbers, 

to complex types describing sophisticated data structures.

This requirement is not satisfied by most of the commercial software packages that 

allow the user building system models from basic blocks and carry out simulations in a 

convenient graphical environment. This is because most of them allow only a limited 

set of data types, normally numerical types, such as boolean, floating point real or 

integer numbers, and vectors or matrices of numbers. Such limitation renders the 

packages useless in solving problems that involve manipulations of heterogeneous 

objects, as is the case with traffic data processing and analysis processes.

This feature of the data processing system to operate with custom data types and 

formats will be called universality.

4.3.7 User-friendliness

Graphical user interfaces have become standard de-facto and are expected by the users. 

Therefore a convenient graphical interface should be provided by the system. It is also 

desirable that the user be able to manipulate the functional modules, that is, creating 

instances of the modules, customising module’s parameters, placing and wiring them, 

in a convenient visual environment. As a prototype of the interface, the VisSim’s 

(Section 4.2.3.1) interface has been chosen as it is the most intuitive and flexible.

4.4 Analysis and Design

This section will describe the design of a new software product for data processing and 

analysis. Taking into account the disadvantages of the existing software tools the new 

design will follow the specified requirements. The design has been carried out with the 

object-oriented paradigm in mind.

4.4.1 Use cases study

Many projects begin with use cases, as they provide a good way of obtaining an overall 

picture of what is happening in the existing system or is planned to happen in the new
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system [Bennett et al, 2001]. Use cases diagrams show use cases and actors and the 

associations among them. Use cases development approach has been investigated by 

[Jacobson et al, 1992], [Jacobson et al, 1999], and now forms an important part of UML 

standard. In Jacobson’s approach, use cases were the starting point for the development 

of a new system. Due to its simplicity and intuitive clarity, this approach has been 

employed in design of the data processing system.

Edit a model

Run simulation

Retrieve the 
results

User

Edit library of 
modules

Figure 4.2. Basic use cases and actors

Figure 4.2 provides the basic use cases for the data processing environment. It consists 

of an actor (“the user”), and four types of activities the user performs with the system.

1) Edit a model. This use case includes all activities related to addition or removal 

of functional modules into/from the current model, placing connections between 

the modules and updating the modules’ parameters according to the requirement 

of the model.

2) Run simulation is the key activity of the system and corresponds to execution of 

individual functional modules and passage of data between them.

3) Retrieve the results activity corresponds to an intermediate or final stages of 

simulation, when partial or complete results of the simulation become available 

and the user is able to retrieve them from the system in some conventional 

format such as tables, graphical plots, etc.
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4) Edit library o f modules activity corresponds to the extension of the system by 

adding new functional modules or removing the existing ones from the system. 

This activity represents the extensibility requirement of the system

The following sections develop each use case individually.

4.4.1.1 Edit a model

Edit a model use case can further be developed as given in the following figure.

Add block to 
the model

Edit block’s 
parameters

Remove block 
from the model

Place a connection 
between blocks

Remove a connection 
between blocks

Figure 4.3. ‘Edit a model’ use case diagram

4.4.1.2 Run simulation

User

Change execution 
mode

Initiate execution

Terminate execution

Figure 4.4. ‘Run simulation’ use case diagram



4.4.1.3 Retrieve the results

Retrieval of the results of simulation is an activity of data transfer between applications 

or storage devices and is highly dependent on individual functional modules. The data 

processing environment does not incorporate any centralised facility for result 

collection and presentation and this functionality must be provided by particular 

modules. Examples of such modules, such as plots and histograms, will be developed 

later in the chapter.

4.4.1.4 Edit library o f modules

In order to create individual instances of functional modules, the data processing 

environment needs the information about implementation of the particular modules. 

This information is stored in the library o f modules. In order to extend the system with 

a new module or remove information about a module, a user edits the library 

accordingly.

The change of a module’s properties is used in a general sense without specifying 

which properties are to be modified. That means the freedom is left to the 

implementation to specify the properties and the ways they are changed. An example of 

such properties is the graphical icon associated with the module’s implementation that 

can be placed on a tools bar for instant access to the module’s instance generating 

factory.

j f  Add new 
momoi

functional

Remove existing 
functional module

Change properties of 
a module >

Figure 4.5. ‘Edit library of modules’ use case diagram
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4.4.2 Functional modules

The data processing environment itself does not provide any applied functionality. A 

design decision has been made to move all applied functionality to pluggable modules. 

From this standpoint, the data processing environment is the environment in which the 

functional modules operate. An analogy can be drawn between this architecture and 

well-known [JavaBeans™ Technology]. In this architecture, a functional module is an 

independent object connected to the system via an interface or several interfaces. The 

following figure demonstrates the idea.

The System’s run-time environment

Functional Modules Subsystem

Ml Interfaces

“ IC "  /
M odules'' - JC

Figure 4.6. Bean-like environment for functional modules

In the above scenario, the functional modules play the role of actors in the use cases 

diagram, which is given below.

Receive control from 
the system >

Receive data from 
the system

Data providing 
module

Data receiving 
module

Provide system with 
data >

Figure 4.7. Modules use case diagram

From the above use case diagram it is clear that modules can appear in two roles -  as 

data providers and data receivers. Data providing modules produce data according to 

their internal logic and pass it on to the system. From the system the data is distributed



among the data receiving modules, in order to be processed further. A module can play 

both roles, as data provider and data consumer, or just one of them. The roles of a 

module will be determined by interfaces that the module implements. Following from 

the two roles, there are two interfaces that describe each role. The interfaces will be 

developed in detail in the section devoted to implementation.

In order to simplify the task of module developer, some common functionality, such as 

execution control, data passing, errors reporting and recovery, etc., can be implemented 

in the system in a form of module wrapper (Figure 4.8). The concurrency requirement 

imposes the need for the modules’ code to be executed in a separate thread of 

execution, independent of the system’s thread. A module whose code is executed in a 

separate thread of execution will be called active module. It is sufficient to implement 

either of the two modules’ roles as active module. A decision has been made to make 

data providing modules active since it is the most natural way. The data receiving 

modules’ code will be executed from either the system’s or a data providing module’s 

thread.

Module’s
state

parameters
Module’s

code

Control

Thread (in active modules)

Data interchange

Interface

Figure 4.8. Structure of a module wrapper

Thus, the functional modules subsystem of the system consists of a set of instances of 

modules wrapped in appropriate wrappers as shown in the figure above. The wrappers 

serve as an intermediate level between the code that implements the module 

functionality and the system providing necessary functionality for control, monitoring 

and data interchanging with the module.
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4.4.3 Inter-module communication and data typing

The distinguishing feature of the data processing environment from other similar 

products, as it has been noted before, is the flexible data typing system. Let us consider 

two functional modules, a data provider and a data consumer.

SOCKETS

In order to connect these modules, a data structure that is called channel is used. A 

channel consists of two pairs of parameters, namely

Channel = ((data provider, output socket), (data consumer, input socket))

where ‘data provider’ and ‘data consumer’ are references to instances of the modules 

accordingly. When a connection between two modules is made, an instance of channel 

is being created and registered with the two modules. It is obvious that, only one 

channel can be registered with a particular socket of the data consuming module but 

many channels can be associated with a socket of the data providing module.

A set of functional modules, together with a set of channels, form an oriented graph of 

the model. Workspace of the system is the necessary container where the graph of the 

current model is kept (Figure 4.10).

In order to facilitate an interchange of data of any abstract type, from the system’s 

standpoint modules interchange objects (instances) of the most abstract type. In the C 

language such objects can be represented by a pointer with the void type (void*), in 

Java language it is an instance of the basic class object. Since no assumption about 

data types is done in the system itself, it is the responsibility of the modules to insure 

correctness of the data types. To do so, a special set of methods must be provided that 

allow the system to check if a particular data type of a data giver is acceptable to a data 

taker. Such methods must be implemented in all modules that are supposed to be

DATA
PROVIDER

DATA
DATA

CONSUMER

OUTPUT INPUT



participating in data interchange. Since data is provided by a data provider module, the 

first method must allow the system to retrieve information about the type of data 

provided by the module. A decision has been made to use a textual string to encode 

such information, namely the system retrieves data type information as a textual string. 

The format of the string is not specified but must be known to data consumer, which is 

to be connected to the data provider. Thus, another method is provided by a data 

consumer that informs the system if the data type obtained from the data provider is 

either acceptable or not. The following Figure 4.9 demonstrates the typing system 

implemented in the data processing environment.

‘Give me data 
type o f socket Ny

‘Will you accept 
a connection 
with data type X 
on socket M?’

‘Yes’ or ‘N o’‘N ’s socket 
data type is X ’

Data
Provider

Data
Consumer

System

Figure 4.9. Illustration of the data typing system

If the system gets a positive response from the data consumer, a channel is being 

created and registered with the both modules, creating thereby a data communication 

link between the two modules.

4.4.4 The system components

From the analysis of the use cases of the system it is clear that the system must be split 

onto several subsystems, each responsible for certain activity. In this section the sub

components of the system will be identified and modelled.

The obvious components of the system that can be recognised are:

1. The modules environment. This part of the system holds all necessary data 

structures and infrastructure to keep current model, that is a set of functional 

modules and links between them and also providing necessary interfaces to access 

and control the model. This part of the system will be referred to as workspace.
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2. Library of modules that implement functional modules. This part is a database that 

keeps records about implementation of functional modules and provides a factory 

for creating instances of the modules. Additional supplementary information can be 

kept along with the records.

3. GUI. Graphical user interface is an important part of the system which provides 

interface for a user to internals of the system and the means to control, edit and 

perform other operations over the model and the library of classes.

The overall structure of the system is presented in the following Figure 4.10.

Data Processing Environment

Interaction

User

GUI

CONTROL

VISUALISATION

Functional 
modules '

Workspace
nal • -
s ' ,

1/1

REQUESTS

MODULES’ PROPERTIES

UPDATES

I INSTANCES

Library of modules

Figure 4.10. The system’s architecture

4.5 Implementation

This section will present the implementation of the data processing environment 

according to the previously given design. First step of the implementation is the choice 

of the platform under which the software will be developed. A discussion on available 

options is given in the first part of the section. The following sections will give the 

overview of the implementation process for the chosen platform.
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4.5.1 Choice of platform

Basically, the choice of the platform would consist of three main stages:

1. The choice of the hardware platform. There is a variety of hardware platforms 

available such as IBM PC or compatible, Sun Workstations, Hewlett Packard, 

Compaq, etc. The choice of hardware will also affect the choice of the software 

platform, namely the underlying OS.

2. The choice of the underlying OS. There is a bigger variety of operating systems 

since several OS can run on the same hardware platform. The most common choice 

for IBM PC/compatible is Microsoft Windows family of systems (Windows 95, 98, 

NT, 2000, XP) or Linux (a free UNIX-like operating system). For other hardware 

platforms (Sun, HP, IBM) there is one or another variant of Unix OS (Solaris, HP- 

UX, AIX).

3. The choice of the language and development environment for the chosen OS and 

hardware platform. Among languages the most popular are C/C++, Java, Pascal, 

ADA, Lisp, Perl, which are available for the most hardware and software platforms.

One exception from the process given above is the Java platform. Java platform has 

been designed with the aim to create a highly portable and hardware/OS independent 

environment, which can run on most of the platforms and software developed for it can 

be run with no modifications on all of the supported platforms. It does not, therefore, 

require the steps 1 and 2 in the above scheme.

There are two the most common platform groups (hardware and software) which can be 

referred to as MS Windows based platforms and Unix based platforms. Another 

platform is unique in some sense, namely the Java platform. These three platform 

groups will be discussed further.

The first prototype of the data processing software for this project has been 

implemented in the C language for Microsoft Windows 95™ as a console application. 

The prototype clearly had several disadvantages and did not meet the specified 

requirements. Firstly, it is very difficult to integrate new modules into the system. It 

would normally require writing a C module, compiling it into the object file and then
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linking with the whole system. This process assumes that the user is familiar with all 

the stages and has access to the system in at least compiled form (as a library). 

Secondly, it is next to impossible to control correctness of the added modules written in 

the C language, as the modules will be compiled into the byte-code of the underlying 

hardware platform. The prototype also lacked graphical user interface and concurrency. 

Clearly, DOS-like console technology is obsolete and therefore is not an acceptable 

choice.

Microsoft Windows™ operating systems family (MS Windows 95, 98, ME, NT, 2000, 

XP) are modem systems that provide full-featured graphical window-based interface 

and multi-tasking capabilities. MS Windows also allow multiple threads of execution 

within one application and provides the means for dynamical loading and linking of 

code, namely Dynamically Loaded Libraries (DLL). All these features are sufficient for 

implementation of the requirements specified for the data processing environment. An 

advantage of implementation of the system for MS Windows platform is that the 

Windows system is the most popular in the sector of personal computers, the dominant 

sector of computing market. Despite its popularity, MS Windows OS has been a target 

of criticism regarding its unreliability and poor performance for many years.

A family of UNIX-like operating systems, which will further be referred to as Unix OS, 

is another candidate. Unix has been developed as a server operating system, which 

implies that the stress during its design was put to security and reliability. From the 

beginning it was designed to be a multi-user and multi-tasking operating system. Since 

the development of the IP protocols family, the networking support facilities are 

integral part of the OS and as a consequence, Unix OS has been the system of choice 

for Internet and network application servers. Since it has been designed to be a multi

tasking system it has a strong support for semaphores and shared memory system. In 

addition, X I1 sub-system is a powerful and flexible graphical enviromnent that 

provides all necessary functionality for building comprehensive graphical user 

interfaces. The main disadvantage of Unix systems is that they are regarded by the 

users to be difficult (complicated) to use and learn to use and therefore the users of 

Unix OS are mostly professionals of IT and computing field (such as system 

programmers and administrators) or academics.
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The last platform to be considered is the Java platform developed by Sun 

Microsystems. It differs from the traditional platforms by that its run-time environment 

runs on the top of the traditional OS, such as MS Windows or Unix. It provides a 

portable, interpreted, high-performance, simple, object-oriented programming 

language, which, together with the run-time environment (Java machine) forms the core 

of Java platform. The following overview of the Java platform is based on the Java’s 

white paper by [Gosling, McGilton, 1996].

The main design goals of the Java programming language have been

1. To create a Simple, Object Oriented, and Familiar language. The Java language is 

simple because the fundamental concepts of the Java technology are grasped 

quickly; programmers can be productive from the very beginning. The Java 

language has been designed to be object oriented from the ground up, provides a 

clean and efficient object-based development platform. Keeping the Java 

programming language looking like C++ as far as possible results in it being a 

familiar language, while removing the unnecessary complexities of C++. Having 

the Java programming language retain many of the object-oriented features and the 

“look and feel” of C++ means that programmers can migrate easily to the Java 

platform and be productive quickly

2. The language must be Robust and Secure. The Java programming language is 

designed for creating highly reliable software. It provides extensive compile-time 

checking, followed by a second level of run-time checking. Language features 

guide programmers towards reliable programming habits. The memory 

management model is extremely simple: objects are created with a new operator. 

There are no explicit programmer-defined pointer data types, no pointer arithmetic, 

and automatic garbage collection. This simple memory management model 

eliminates entire classes of programming errors that bedevil C and C++ 

programmers. The Java language is secure since compiler and run-time system 

implement several layers of defence against potentially incorrect code. The 

environment starts with the assumption that nothing is to be trusted, and proceeds 

accordingly

3. Architecture Neutral and Portable. Java technology is designed to support 

applications that will be deployed into heterogeneous network environments. In 

such environments, applications must be capable of executing on a variety of
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hardware architectures. Within this variety of hardware platforms, applications must 

execute atop a variety of operating systems and interoperate with multiple 

programming language interfaces. To accommodate the diversity of operating 

environments, the Java Compiler™ product generates bytecodes - an architecture 

neutral intermediate format designed to transport code efficiently to multiple 

hardware and software platforms. The interpreted nature of Java technology solves 

both the binary distribution problem and the version problem; the same Java 

programming language byte codes will run on any platform. The architecture- 

neutral and portable language platform of Java technology is known as the Java 

virtual machine. It's the specification of an abstract machine for which Java 

programming language compilers can generate code. Specific implementations of 

the Java virtual machine for specific hardware and software platforms then provide 

the concrete realization of the virtual machine. The Java virtual machine is based 

primarily on the POSIX interface specification--an industry-standard definition of a 

portable system interface. Implementing the Java virtual machine on new 

architectures is a relatively straightforward task as long as the target platform meets 

basic requirements such as support for multithreading.

4. High Performance. The Java platform achieves superior performance by adopting 

a scheme by which the interpreter can run at full speed without needing to check the 

run-time environment. The automatic garbage collector runs as a low-priority 

background thread, ensuring a high probability that memory is available when 

required, leading to better performance. Applications requiring large amounts of 

compute power can be designed such that compute-intensive sections can be 

rewritten in native machine code as required and interfaced with the Java platform. 

In general, users perceive that interactive applications respond quickly even though 

they're interpreted. The overall performance of Java machine has been 

tremendously improved after introduction of the Just In Time (JIT) Compiler. The 

JIT compiler works in parallel with a Java application and compiles application’s 

Java bytecode of the classes that are most intensively used into the native code of 

the underlying platform, thus making the performance of Java applications 

comparable to similar applications written in the C/C++ language.

5. Interpreted, Threaded, and Dynamic. The Java interpreter can execute Java 

bytecodes directly on any machine to which the interpreter and run-time system 

have been ported. In an interpreted platform such as Java technology-based system,



the link phase of a program is simple, incremental, and lightweight, thus allowing a 

much faster application development cycle. The Java platform supports 

multithreading at the language level with the addition of sophisticated 

synchronisation primitives: the language library provides the Thread class, and the 

run-time system provides monitor and condition lock primitives. While the Java 

Compiler is strict in its compile-time static checking, the language and run-time 

system are dynamic in their linking stages. Classes are linked only as needed

Considering the advantages and disadvantages of the above platforms, a decision has 

been made to use Java platform for the implementation of the data processing 

environment.

4.5.2 Package architecture

The system has been split into three packages as follows

1. e d u . t n t u  . i s m .  t r a f f i c  contains the core classes of the system, such as basic 

data structures, data objects, interfaces, workspace manager, library of classes 

manager, module wrappers, etc.

2. e d u . t n t u . i s m . t r a f f i c . u i  contains GUI-related classes

3. e d u . t n t u . i sm.  t r a f f i c  . m odu les  contains implementation of standard 

functional modules and examples.

The main package e d u . t n t u .  i sm.  t r a f f i c  will be overviewed in the following 

section. Package e d u . t n t u . i s m . t r a f f i c . u i  will be overviewed in the section 

devoted to GUI and e d u . t n t u . i sm.  t r a f f i c  .m o d u les  in the section devoted to 

examples.

4.5.3 Package e d u . t n t u .  i s m . t r a f f i c

The package consists of the core classes of the data processing environment. The 

classes can be split into several logical groups according to the functionality they 

implement. The first group consists of the basic data structure classes and interfaces.
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Table 4.1 presents interfaces of the first group of classes with description of their 

function. Table 4.2 provides information on basic data structures and objects used in 

data interchange process and inter-class communication.

Table 4.1. Interfaces of e d u .  t n t u .  i sm.  t r a f f i c  package

Interface name Description

DataGiver

This interface specifies methods and members that a 

custom module should implement in order to make it 

recognisable by the system as data provider

DataTaker

This interface specifies methods and members which 

every custom module should implement in order to be 

recognised by the system as data receiver

Indicator

This is a GUI-related class. Modules that implement 

this interface support custom look. Interface defines 

one method which allows the system to retrieve 

information from the module's class about how it 

should be rendered on the GUI’s working space.

CommandListener
Implementing classes can be controlled by sending 

them commands

ComplaintListener
Implementing classes receive information about faults 

in a functional module

DataListener A class that receives data (DataMessage)

ParameterChangeListener
An implementing class can be registered for 

notification of changes in a parameters objects.

Structured
By implementing this interface a class states that it has 

some ‘structure’ which can eventually change

StructureChangeListener

By implementing this interface a class states that it is 

interested in knowing that some other class 

(structured) has changed its internal structure



Table 4.2. Data object classes of e d u . t n t u . i sm.  t r a f f i c  package

Class name Description

CommandEvent

This class implements a ‘command’ object. 

Commands are sent from commanding classes to their 

CommandListener’s

ComplaintEvent

This class implements a ‘complaint’ object. Complaint 

objects are sent from the module wrappers to 

ComplaintListener’s in case a fault has been 

detected within a module’s core class.

ParameterChangeEvent

Instances of this class carry information on a change 

within a parameter class (parameters). Sent from 

Parameters to ParameterChangeListener’s

StructureChangeEvent
Information on the change within a structured class. 

Sent from structured to StructureChangeListener’s.

DataMessage

This is a wrapper for objects that are passed between 

the functional modules. Sent from DataGiver’s to 

DataTaker’s via Channel.

Table 4.3. Exception classes of e d u . t n t u . i sm.  t r a f f i c  package

Exception name Description

DataGiverDone

DataGiverDone exception is thrown from an 

instance of DataGiver to inform the system 

that there is no more data to provide

IncompatibleSocketTypeException

This exception is thrown when an attempt has 

been made to connect two modules with 

incompatible data types

ParameterDataException

Thrown from an instance of Parameters 
class when incompatibility between 

parameter type and data has been detected or 

attempt has been made to access a missing 

parameter
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Table 4.4. System core classes

Class name Description

ClassLibrary

ciassLibrary is a database that keeps records of classes 

that implement functional modules available to use within 

the data processing environment and provides necessary 

methods to access the records and create new instances of 

modules

SpaceManager

SpaceManager is a database that keeps the graph of current 

model and provides necessary functionality to query, 

update and control the model

Channel channel represents an inter-module communication link

Dat aGive rModule A wrapper for data providing modules

DataTakerModule A wrapper for data consuming modules

DuramyDataProvider A data providing module with no underlying functionality

DummyDataConsumer A data consuming module with no underlying functionality

UniversalModule

This module encapsulates the features of data provider as 

well as data consumer. This module is ‘universal’ in a 

sense that it can output as well as input data, and 

essentially a higher-level wrapper for functional modules

Parameters

This class represents a bunch of parameters that can be 

associated with any object. This is a standard interface, 

which allows the setting up and tuning a range of objects in 

a unified manner

4.6 Graphical User Interface

User interface is an important part of any software and plays not the last role in the 

success of the whole software product. Certain ‘unwritten’ standards for user interfaces 

have been developed over years and most of the users will expect the software to 

conform, to a certain degree, to these standards. It has been mentioned before, some 

interfaces developed for dynamical system simulation packages showed to be intuitive



and pleasant to the users. Since the data processing environment has similar ideology of 

functional block-like modelling, choosing such interface as prototype seem to be 

appropriate.

The user interface for the data processing environment has been developed using JFC 

[Swing] toolkit of lightweight GUI components. The following pseudo-diagram 

presents the underlying architecture of the GUI system.
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«uses»

«extends»
«extends»

«uses»
«uses»

«extends». «reflection»

«extends»

«uses»«contains>> «uses»

«creates»
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About
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GModule

GMirrorPane

GSpaceManager

GLibraryEditor

ParametersEditor

GModuleChooser GDisplayManager

javax.swing. JFrame

javax.swing.JDialog

javax.swing.JDialog

javax.swing.JDialog

java.awt.WindowAdapter

javax.swing.JComponent

javax.swing.JPanel

javax.swing.JLayeredPane

Figure 4.11. GUI classes architecture

Appendix B provides several screenshots of visual appearance of the data processing 

environment. Main features of the GUI are summarised as follows.

1. The main window contains the main menu, workspace, ‘mirror’ pane and toolbars 

with shortcuts to the modules creation function

2. A user places modules on the workspace by clicking an icon on one of the toolbars 

(right, left or bottom) or from ‘Module chooser’ window. After a module has been
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selected it appears as semitransparent and follows the mouse pointer. The module 

can be permanently placed at the desired location by left click of the mouse. The 

placement can be cancelled by right click of the mouse.

3. Top toolbar provides buttons for instant access to the control of the module. By 

clicking a certain button, the user can start, pause or stop model simulation, copy, 

cut or paste modules stored in clipboard, save current workspace in a file or load a 

model file into current workspace. Several buttons are provided to change 

simulation modes: flow execution, delayed execution, step-by-step execution or 

discarding execution (data is not passed via channels -  it is discarded)

4. Library Editor is available from main menu (see Figure B.5 in Appendix B). From 

the editor a short-cut to creation of a module can be placed on one of the three 

toolbars. Also, a description of the module can be provided in HTML format for 

future reference.

5. ‘Mirror pane’ provides a quick access to modules scattered across the workspace.

More detailed information on implementation of the GUI for data processing 

environment and API for customisation of the modules’ looks and feels is available in 

the technical documentation provided with the data processing environment.

4.7 Examples

Several functional modules have been implemented in order to demonstrate the 

potential of the developed software. These modules are split into two groups -  the 

general purpose modules and the task-specific modules. These two classes will be 

overviewed separately.

4.7.1 General purpose modules

Modules that are implemented into package edu. tntu. ism. traffic .modules are 

general purpose modules. The list of the modules is given in the following table.

87



Table 4.5. General purpose modules: visualisation

Module
name
(class
name)

Description Visual appearance

Display

Display implements its own look that is 

used to print into the incoming numerical 

data. It has a fixed (1) number of inputs 

and therefore can be used to monitor only 

one stream of numerical data

Exponential

0.643273442

Display prints the values of 

exponential random variable

Plot

Plot draws a plot of the incoming data. It 

can have up to 20 inputs, which will be 

drawn on the Plot’s display.

□  Plot

a o a ft [>

Plot draws exponential and 

normal random variables

Histogram

Histogram is similar to Plot but instead of 

plot of the input data it draws a histogram. 

It has only one input.

Histogram
CV 0  Ti &  EV

Mean: -0 700308E 4

-2.8202________O 1231

Histogram of a normal random 

variables

ToPoint

This module converts two streams of 

numerical data into one stream of two 

dimensional vectors, that is two inputs x 

and y are transformed into a pair (x,y). An 

application can be seen in the simulation of 

Lissajou figures shown in Figure B.2 of 

Appendix B.

( x , y )
C>

Min

Receives several streams of numerical data 

and returns the minimal value among them 

on its output
t>

S3
H IM  J >

Max
Same as Min but returns the maximal value 

among the inputs.

Max

t>
> MAX



For demonstrational purposes, in Appendix C, Example 1 presents source code of 

Display module. In Appendix B, there are shown several models that extensively use 

the above standard modules to visualise the midergoing processes in the model.

4.7.2 Task-specific modules

In order to show, that the data processing environment offers functionality that is not 

poorer than the reviewed commercial products for dynamical system modelling, a set of 

modules for continuous numerical system modelling and simulation has been 

developed into package edu. tntu . ism. traffic .modules .math.

Simulation of continuous systems on a computer always involves a discrete 

approximation of continuous time. Therefore the modules must operate in a 

synchronous manner. Commercial packages, such as VisSim and SIMULINK, are 

essentially systems designed for a synchronous mode of operation.

By contrast, the developed data processing environment developed here, is an 

asynchronous system. In order to implement a synchronous model, a mechanism must 

exist to synchronise the modules with one another. Such mechanism has been 

implemented into the continuous time system simulation package in the form of a 

module controller, controller does not have inputs or outputs and serve 

exclusively to synchronise other modules of the package.

The package also provides several abstract classes that implement most of the 

intermediate functionality. A new module can be created by just extending the abstract 

class and implementing its function. In Appendix C, Example 2 demonstrates 

implementation of a module by extension of an abstract class.

The other implemented modules of the package for continuous systems modelling and 

simulation are: Const (a constant), Derivative, Integral, SystemTime, Gain (a 

coefficient), sum (summation), Product, Ratio, sin (sine), Exp (exponent), 

Exponential (exponential random variable), Normal (normal random variable), 

MathPiot (extended plot that scales X-axis according to the model’s time).
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Figure B.l of Appendix B presents an example of a continuous time system. The 

system in the figure demonstrates the well-known Fourier transform of the discrete 

function. Figure B.2 presents the mixed model that uses modules from the continuous 

time package and general-purpose modules, to simulate and visualise the Lissajou 

figures. Figure B.3 presents the use of histogram and random variable modules.

4.8 Evaluation of the efficiency

Since one of the requirements that has been set upon the data processing environment is 

efficiency, it is necessary to test if it is efficient enough to be used for real-time data 

processing and simulation processes.

Several models have been implemented for the data processing environment using the 

modules packages described in the previous sections. Also several traffic related 

models, which will be described in the following section, have been evaluated. The 

screenshots of the models are given in Appendix B.

A set of tests have been carried out on two PC-compatible machines with Windows 98 

system installed. The first PC, PC-1, is AMD Athlon 1GHz processor bases with 

256MB of RAM and the second PC, PC-2, is Intel Pentium-II 333 MHz processor 

based with 32MB of RAM. Two groups of tests have been carried out. The modules 

used in the first test group were the mathematical simulation models: ‘discrete 

approximation’ (Appendix B, Figure B.l) -  M -l, the ‘Lissajou figures’ (Figure B.2) -  

M-2, ‘random variables and histograms’ (Figure B.3) -  M-3. The second group of tests 

have evaluated the performance of the system for SCOOT data processing. The model 

used SCOOT data processing software (which will be discussed in the next chapter) 

and used two file readers to read files with M14 and Ml 9 messages collected over one 

full day. The model will be referred to as M-4. The SCOOT data processing model 

consists of a file reader and SCOOT message pre-processor. The results of the 

performance evaluation obtained for the first test group is given in the following Table 

4.6.
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Table 4.6. Results of performance tests for the first group of models

Model PC-1 
with graphics

PC-1 
without graphics

PC-2 
with graphics

PC-2 
without graphics

M-l 55 cps1 1698 cps 58 cps 442 cps

M-2 33 cps 1110 cps 38 cps 491 cps

M-3 786 cps 1046 cps 233 cps 293 cps

1 cps stands for Cycles Per Second (a cycle is one iteration of the simulation process)

The results of the SCOOT processing model evaluation is given in the following

Table 4.7. Results of performance tests for SCOOT data processing model

Model PC-1 
with graphics

PC-1 
without graphics

PC-2 
with graphics

PC-2 
without graphics

M-4 1254 ops1 2798 ops 683 ops 757 ops

1 ops stands for Objects Per Second -  object here is a SCOOT data object

The volume of the two files (with one day M14 and M l9 messages, collected on 17th 

January, 1999) is 244,339,391 bytes. Such volume of data has been processed within 

1392 seconds, or 23 minutes 12 seconds, with some overhead induced by graphical 

output for monitoring purposes. During the test, the processing modules have generated 

over 1.75 million data objects (1.6 million M14 related and 150 thousand M l9 related 

objects). Without graphical output the numbers are more impressive. According to the 

above Table 4.7, 2798 objects per second has been the ratio of generation of data during 

the processing. The volume of the two data files has been processed in less than 10 

minutes 24 second (624 seconds) which is less than half of the time needed for run with 

graphical output. A similar data processing routine written in the C language has 

completed the same processing procedure in 4 minutes. This gives the basis to a claim 

that the performance of a Java application is quite comparable to a programme of equal 

functionality written in the C language.

It is clear from the above two tables that graphical output, as might be expected, 

induces a significant overhead, while perfonnance of the system is quite high without 

it. Since one day traffic data has been processed in about 10 minutes, the rest of the 23 

hours 50 minutes time slice gives a broad room for variety of applications, which will



still be operating in real time. Of course, if a SCOOT-controlled region under 

consideration gets bigger, these numbers will be different.

4.9 Conclusions

In this chapter, a novel data processing framework for discrete and continuous systems 

modelling and simulation has been presented. The software has been shown to provide 

highly extensible environment and has several distinguishing features that make it 

choice number one for researchers who need to develop their own functional modules 

and carry out extensive experiments combining different options of data sources and 

pre-processing routines. It has also been shown to be efficient enough for most traffic 

and other modelling and simulation applications.

Chapter 6 will present series of experimental studies carried out using the developed 

software.
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Chapter 5 

Travel time estimation

5.1 Introduction

The importance of processing and analysis of real data has been emphasised in the 

previous chapters. Data processing and analysis techniques have been the main tool of 

investigation of transportation systems. Since transportation systems belong to the class 

of systems of organised complexity, precise analytical modelling of them is almost 

impossible. Therefore the majority of models of transportation systems are of empirical 

character. Empirical models essentially rely on data analysis and represent findings of 

relationships within the data.

One of the important problems recognised within the transportation research is the 

problem of travel time estimation from routinely collected data. Travel time is one of the 

most important operational characteristics of transportation systems and plays an 

important part in many criteria of transportation system optimisation. Knowledge of 

travel time, its behaviour and factors that affect it gives traffic control and travel 

information systems the opportunity to manage traffic demand and supply factors more 

efficiently. Therefore significant attention has been given to investigation of these traffic 

and travel characteristics.

Many traffic control strategies implemented into UTMC systems rely heavily on the 

efficiency and accuracy of travel time estimation. Travel time information is a 

fundamental parameter in many intelligent traffic and travel information systems and 

their success highly depends on the accuracy, availability and granularity of travel time 

estimates. Traditional survey-based travel time estimations are notoriously expensive and 

inefficient and the applicability of surveys is restricted only to off-line monitoring and 

analysis. With the development and installation of new generation of Traffic Control 

Systems that operate on the basis of real-time traffic measurements, it has become 

possible to carry out travel time estimations using the measurements taken by the control 

systems. Most of the systems, due to economical reasons, utilise single-loop detectors. It 

is known, that single loop detectors are incapable of accurate spot speeds estimation due
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to their physical limitations. Therefore, much effort has been put into investigation and 

development of methodologies of travel time estimation that rely only 011 occupancy 

measurements, as is the case with single-loop detectors.

In Chapter 2, three fundamental macroscopic characteristics - speed, volume and density, 

have been identified. It has also been mentioned that of these three characteristics volume 

is the easiest to measure whereas speed is more difficult. The situation gets worse when 

there is no equipment available that is capable of measuring speed with adequate 

accuracy. It is known that double-loop detectors, called “speed traps” are capable of 

accurate measuring spot speed of individual vehicles, but unfortunately most of the 

installed traffic control systems are equipped with single loop detectors whose speed 

estimates are very rough. In addition, spot speed, even measured accurately by double 

loop detectors, does not necessarily give adequate measure of space speed which is used 

in the fundamental traffic flow equation. In the case, when speed cannot be measured 

directly one essentially arrives to the problem of estimation of travel time between 

consecutive single-loop detectors. The travel time found in this study can then be used to 

estimate speed.

The apparent importance of travel time estimation led to a strong interest of researchers 

in solving the problem. Significant progress has been made during the last two decades 

and the main results of the development of the field will be reviewed in the following 

sections.

This chapter will review the advances in solution of the problem of travel time estimation 

from automatically collected data and describe new algorithms that have been developed 

within this research study. A novel methodology for travel time estimation at the minimal 

resolution level will be presented and a discussion of several algorithms will be given.

The first part of this chapter gives a definition of travel time that will be used throughout 

the chapter and presents a brief overview on previous works carried out in the area of 

travel time estimation. The second part will develop a novel methodology that allows 

very accurate estimation of travel times and without the need for data aggregation that is 

used in most procedures developed up to date.
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5.2 Travel time estimation problem

Travel time is defined here as the time that is required for a vehicle to traverse between 

two consecutive measuring points through a part of road infrastructure in condition of 

non-stopping journey. This general definition does not specify the conditions of the 

traffic or network topology thus allowing to speak of freeway travel time, urban link 

travel time or any other types in the same terms.

Basically, as the definition states, there must be some information about traffic processes 

provided at the entrance point, which will be referred to as upstream point, and exit point, 

which will be referred to as downstream point. It is normally assumed that the upstream 

and downstream measuring devices are capable of measuring presence of a vehicle at a 

moment of time thus providing temporal characteristic of arrival process. This capability 

forms the basis for most of the estimation procedures. Having such a device is also 

follows that it can act as a counter. Since counters have been used in many traffic studies, 

it is also a desired feature.

Traffic counterTraffic counter

Intermediate
road

infrastructure

Traffic flowTraffic flow

Figure 5.1 Definition of travel time

Figure 5.1 illustrates the definition of travel time. Basically, there may be several paths 

that lead from point A to point B, which is shown on the figure as intermediate 

infrastructure. Since travel time is essentially a characteristic of a certain path, the 

definition becomes ambiguous. In order to overcome this ambiguity, an additional 

condition has to be added to the definition, namely which path will be considered for the 

travel time analysis. Therefore, here and thereafter, unless stated otherwise, the shortest 

(in length) path from point A to point B will be considered for the analysis and be called 

a link. It is implicitly assumed that the link exists, that is traffic can proceed from A to B. 

As a result of a link being the shortest path from A to B, most traffic will use the link as
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the natural behaviour of drivers. It is nevertheless not mandatory that traffic at point A is 

the same as at the point B since vehicles are allowed to leave and join the link in-between 

the points.

5.3 Review of the existing methodologies

Early attempts to estimate link travel time have used the general traffic flow relationship 

in order to estimate speed [Wardrop, 1952], [Lighthill, Whitham, 1955], [Wirasinghe, 

1978], [Hall, 1987], [Hall and Persaud, 1988], [Persaud and Hurdle, 1988], which in turn 

allows calculation of the travel time since the link length is a constant parameter. The 

relationship used is

speed = -----------   (5.1)
occupancy ■ g

where l/g  is the average effective car length -  the sum of the car length and the width of 

the loop detector in the correct units. The factor g  basically converts occupancy to 

density. In [Hall, Persaud, 1989] and [Pushkar, et al., 1994] the authors investigated the 

relationship (5.1) and showed that the accuracy of the equation (5.1) is a function of 

many factors including location and weather. They also provided results suggesting that it 

is prone to a systematic bias with respect to occupancy.

[Dailey, 1997] attempted to improve the speed estimates by taking into account the 

stochastic nature of measurements of volume and occupancy. He considers measurements 

from a traffic management system to be realisations from statistical distributions. To 

address the variability of the observations he employs extended Kalman filter. Using the 

filter Dailey derived estimates of the effective car length and speed and then combined 

them in order to obtain the travel time estimate. The link travel time is derived as a 

polynomial of the following form.
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where zv+i is the next estimate of the link travel time, Ax is the length of the link, s& \ and 

Si are (z+l)th and zth estimates of speed accordingly and Asj=Si+\-Sj.

The disadvantage of the Dailey’s filtering approach is that it requires several parameters 

that must be properly estimated plus the combined disadvantages inherited horn the 

underlying traffic model based on the speed-flow-concentration relationship.

There have been attempts to improve speed estimation upon single loop detectors 

[Dailey, 1999], [Coiffnan, 2001]. Coifman’s algorithm is based on explicit identification 

of sources of errors and suggests the way to reduce their impact. In the previous works 

the authors, while recognising the stochastic nature of the parameters involved in the 

estimation procedure, did not address the possibility that their probability distributions 

can change over time. Coifman presented the results of study showing that the mean 

vehicle length is a function of time of day and showed that variance of the vehicle length 

is a function of time, too. He observed that during ffee-flow traffic condition the 

estimation of the vehicle length is very noisy whereas during congested periods the 

estimates are more stable. Taking into account those points, Coifman derives a simple 

procedure that allows improved speed estimation based upon single-loop data.

As has been mentioned before, all speed estimation based algorithms inherit a set of 

problems from the underlying traffic model based on the fundamental traffic flow 

relationship such as the dependence on many factors that are difficult to measure (link 

location, length, weather, etc.). Moreover, in the problem of travel time estimation the 

estimation of speed is a side effect. Most applications are interested in travel time rather 

than in speed. Consequently, several methodologies that do not rely on speed estimates 

have been proposed.

In [Dailey, 1993] the author presents a method of estimation of the mean space speed that 

is independent of the mean value of the volume. In order to estimate speed of traffic flow 

he first estimates the mean delay time for propagation between two loops, which is 

essentially the mean of the link travel time. To estimate the mean of the link travel time 

Dailey models highway traffic as a continuous flow with some average concentration
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about which there is some statistical fluctuation. The value of the concentration at a point 

on the highway is a function of several parameters:

1. The concentration a (x ,  t) from an upstream point (the position of an inductive 

loop located at x { )  that has propagated to this location (the position of an inductive 

loop located at *2) at time t.

2. The change in concentration from addition or removal of vehicles [S(x, 0]

3. A dispersion factor that represents the lack of rigidity of the statistical fluctuation 

relative to the mean concentration (b)

4. Uncorrelated fluctuations and loop failure [ r c ( 0 3  
and can be written

*2
a ( x 2 , t )  = b a ( x t , t  + t 0) + J $ ( x , t ) d x  + n ( t )  (5.3)

*1

where tq is the mean time for the traffic to propagate from x \  to x 2.

The concentration may be represented as the sum of a time-independent mean value and a 

time-varying fluctuation

a ( x ,  t )  = a 0 + 5 a ( x ,  t ) (5.4)

where

1 Tc
a 0 = — \ a ( x , t ) d t  (5.5)

2 jJ,

This representation assumes that the traffic is in steady-state flow during the period

over which a ( x ,  t) is being considered. If the concentration is mean centred, the

fluctuating part of the downstream station is written

*2
Sa(x2,t) = bSa(x1,t + T0 ) +  jSS(x,t)dx + 5 n ( t ) (5.6)



And this is the time series of the traffic flow to be examined. In order to estimate the 

delay time between two loops the cross-correlation function is used. The cross-correlation 

function in the given context can be written

1R12(t ,T) = —  jSa (xXit)Sa(x2,t - r )d t (5.7)

Considering the property of the time series and the cross-correlation function, Dailey 

claims that the point of maximum of the cross-correlation function will correspond to the 

mean delay between the two series. In order to apply the method to real data he then 

develops the model in the discrete framework. Then he constructs discrete time series of 

the traffic volume by summing the occupancy counts over 5 seconds. That is the data is 

being aggregated by the time intervals of 5 seconds. Then the time series are being 

centred by constructing

(5.8)

where Volik is the kth point in the series of length N  from the z'th station.

The discrete cross-correlation function is then written as

N

2 0 +*)

for \/k  e [0, N] (5.9)

where

(5.10)

are the standard deviations of the series 1 and 2.
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Finally, the link travel time can be found as

t  = arg max ̂ (r* , T) (5.11)

The disadvantages of the cross-correlation approach are apparent. While cross-correlation 

can lead to accurate estimation of the mean of travel time, it does not provide the 

information on other characteristics of travel time as random variable. Second j
V

disadvantage is the need for aggregation of traffic counts in order to obtain the desired t%
time series, which can lead to the loss of information and worsen the accuracy of the 4

algorithm for certain traffic conditions. Third point discussed in [Petty et al., 1998] is that 

aggregation level of 5 seconds can be too big for some applications. This, for example, 

makes the algorithm inherently inaccurate in the situations where the mean travel time is 

as little as 15 seconds, which is the case with the urban links.

In [Petty et al, 1998] the authors developed a more general model of traffic flow which 

has certain relationships to the Dailey’s cross-correlation approach. Their methodology 

for estimating travel times between single loop detectors is based on a stochastic model, 

which suggests practical procedures that lead to accurate travel time estimates and is 

briefly reviewed below.

The authors assume that during a given interval of time the travel times may be regarded 

as drawn from the same probability distribution. They then estimate that distribution from 

the cumulative upstream and downstream arrival processes.

The arrival point process is considered over a time interval [Tb, 7>] and the arrivals are I

assumed to be exchangeable, that is no distinction is made upon different types of 

vehicles. The cumulative number of upstream arrivals is denoted by X(t) and the 

cumulative number of downstream arrivals by 7(/). Denoting the upstream arrival times a

by C7i and the travel times by Tj and summation for all possible a;- yields

(5.12)
i

dY ( t ) ~ T j ) d t  (5.13)
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where <5(-) is Dirac’s delta function. The model postulates that conditional on a;- tj has a 

distribution independent of i, O/ for TB< It is following from the assumption that

no change of traffic regime is allowed during the time interval under consideration and 

that the probability distribution does not change with time.

Provided thaty(-) denotes the marginal density of r(- under those assumptions, /?(•) denotes 

the conditional density of oj- given 7s<C/<7> and q(-) denotes the density of oj+t/ the 

arrival time at the downstream detector given TB< <Ji<TF. If TB =-°o then conditional on 

X(-), the expected process of downstream arrivals satisfies

E[dY{t) | X] = -T j) f(r
- 0 0  j

= Y4f(t-crj)dt
j

( '  ^
= \ f ( t~ v )d X (v )  (5.14)

V - 0 0  J

where E(-) is the expectation operator.

However, Tg=-oo is unrealisable. On the other hand, if vehicles arrive before TB, equation 

(5.14) does not hold without further requirement. The most natural condition is that 

0< a < T i < b  which implies that f=0 is outside [a ,  b ] .  The interval [ a ,  b \ will be referred to 

as the fit window. Following further, for TB+b<t< Tp+a, equation (5.14) holds since -oo 

can be replaced with TB. Then (5.14) can be rewritten as

q(t)= \ f { t - v ) p ( v ) d v  for TB+b<t<Tp+a (5.15)
T»

To apply the method to real situation, the processes need to be aggregated in discrete 

units of length A. If/(*)> X ’)> <?(') are approximated by discrete mass functions f s, ps, qs, 

where qs is the mass in the interval [sA, (s+1) A], the discrete approximation of (5.15) can 

be written as

101

—



a
(5.16)

This in turn leads to a natural estimation scheme in which qt and p v are replaced with the 

counters yh xv of arrivals at the downstream and upstream detectors in consecutive 

intervals and apply a natural measure of discrepancy, least squares, to fit equation (5.16). 

That is, the estimation off s is accomplished by minimising

T[?+a j ^

T + b

A V

—1 \ 2

-» min (5.17)

over (f: f s>0, AZ/?=1}.

The equation (5.17) forms the basis of [Petty et al., 1998] scheme. Having estimated 

the probability distribution f s the authors proposed to use the mode as the estimation of 

the travel time as the mean is more sensitive to disturbances.

Several difficulties associated with the above methodology have been recognised by the 

authors. First essential difficulty is the choice of the parameters a and b. Having earned 

out empirical study of the effect of choosing different a and b they found that an adaptive 

choice is required for generally satisfactory results in both congested and uncongested 

periods. The width of the fit window b-a can be taken as fairly small and fixed since the 

range of speed of vehicles during homogeneous regimes is not great. But the centre of the 

window, (a+b)/2, has to move. The authors found that using equation (5.1) with a 

reasonable value of g  can work well. Second difficulty is the choice of the ‘stationary’ 

periods [Tb, Tf ].  It is clear that the larger the interval the better precision of the scheme. 

However, the larger the interval the bigger the risk of getting a transition in regime during 

this period. The authors state that it is possible to detect the transitions in regime and 

choose the interval according to the available information. They do not provide the 

methodology but state that the measure of density can be used as an indicator of the 

transitions in traffic regime. Third problem is associated with the choice of appropriate
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aggregation level A. The authors provide a thorough empirical study of the effects of 

different levels of aggregation on the results of the scheme. Since this problem is 

important for many other methods and algorithms a brief review will follow.

In order to investigate the effect of aggregation on the accuracy of travel time estimation, 

the authors use double-loop speed estimates to compare against the estimates produced 

by the scheme. They define the average distance L between these two estimates as a 

function of aggregation level A:

£ ( A ) = - l i > } - r , |  <5-18)

By comparing the values of the above function, the authors found that the best results are 

given by aggregation levels of 3 seconds and 11 seconds. While 3 seconds aggregation 

gives results that are a bit worse than those obtained for aggregation of 11 seconds the 

latter level is surrounded by very poor results provided for 10 and 12 seconds aggregation 

levels. Later in this chapter a methodology is introduced that does not make use of 

aggregation and therefore is free of the above problems.

Several authors [Blue et al, 1994], [Dia,1999] proposed to use artificial neural networks 

as estimators of freeway travel time. The reported results have clearly demonstrated the 

feasibility of using neural networks for travel time estimation problem. In addition, it was 

found that neural networks are capable of predicting travel times up to 15 minutes into 

the future with a high degree of accuracy (93%-95%). The methodology has been tested 

on sites where travel times are about 5 to 10 minutes, which are too big compared to short 

urban links and therefore it is unclear if the same results will be obtained for urban links.

5.4 Travel time estimation in urban links

Most of the travel time estimation methods have been developed for freeway traffic. 

Unfortunately, urban links have several distinguishing features that do not allow direct 

application of the freeway methods without additional modifications. Firstly, the distance 

between consecutive junctions is relatively short compared to freeway links. On such a 

link, vehicle’s travel time can be as little as 15 seconds, which makes the methods that
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rely on aggregated traffic counters inherently inaccurate. On urban networks one 

normally deals with sums of many link travel times in order to obtain the full journey 

travel time and therefore the estimation of individual link travel times must be as accurate 

as possible. This renders the aggregation-based algorithms an inappropriate choice. 

Secondly, an urban link normally has several unobserved (no traffic measurements are 

taken) side-roads, which allow vehicles that entered the link leave the flow unnoticed (no 

information on their leaving available) or new vehicles join the flow without being 

counted on the entrance, thus making the distributions of counters on the entrance and the 

exit of the link different. The second feature of urban links violates the assumptions of 

the methods that rely on comparison of the entering and exiting distributions, which 

therefore cannot be used without modifications that take the unmeasured leaving and 

joining of vehicles into account.

Taking into consideration all above points, a new methodology for link travel time 

estimation has been developed within this research study. Formal mathematical 

justification of the methodology in its general form is complicated due to the complex 

nature of traffic processes. Nevertheless for a simple traffic model it has become possible 

to carry out rigorous analytical calculations that prove the correctness of the scheme for 

that model. The study and the results are presented in the following section.

5.4.1 The urban link model

A typical urban link is shown in Figure 5.2. The main feature that distinguishes a typical 

urban link from freeway links is the presence of a controlled junction in-between the 

detectors.

The control at the junction is performed in order to allow different traffic flow to use a 

single resource -  the piece of land that belongs to more than one road (the junction). The 

effect of the control is such that the traffic measured at the point A and the traffic 

measured at the point B may be completely different and uncorrelated. The situation 

becomes even worse as at the junction part of traffic from the origin A can turn away 

from the road and not be measured at the destination B and some traffic from the side
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road can join the link A-B and be measured at point B. These features make the link travel 

estimation problem a challenge.

DETECTORS
STOP LINE

Figure 5.2. Urban link model and travel time components

It is also clear from the figure that total travel time ( T t )  on an urban link can be split into 

two components, which are Tsl (SL stands for Stop Line) -  travel time from the upstream 

measurement point up to the stop line and Tpc (PC stands for Passage of Crossroad) -  

travel time from the stop line to the downstream measurement point. The purpose of such 

division is that the total time may often include the delay induced by the traffic control 

which contradicts the definition of travel time made in Section 5.2. Therefore Tsl 

becomes the main measure of travel time in urban links. This measure basically provides 

the information about the link length and typical time that vehicles spend to traverse the 

link. It is also worth mentioning that some UTMC systems (for instance, SCOOT) use 

Tsl in order to optimise traffic and produce optimal control. The division of total travel 

time into two components can also be used for estimation of other important 

characteristics of traffic such as turning movements. This possibility will be investigated 

later in this thesis.

The necessity of splitting the total travel time across an urban link has been justified. 

Unfortunately, the components cannot be measured directly in most cases. Therefore, an 

estimation procedure for each component has to be developed. The estimation procedure 

for the total travel time is being developed and studied in the following section. In 

Chapter 6, an empirical study of the other components of urban link travel time will be 

presented together with the demonstration of the (developed in this chapter) methodology 

of estimation of the Tt component (see Figure 5.2).
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5.4.2 The methodology of estimation of travel time with the lowest level of 
resolution

The main objective pursued here is the development of a methodology that is suitable for 

estimation of travel time in urban conditions. The specificity of urban links, as has been 

emphasised in the previous sections, is that travel time between nodes of a link is short 

compared to similar freeway links and therefore aggregation of traffic measurements is 

not desirable. The developed methodology allows carrying out travel time estimations 

with the resolution of measurement data, thus does not have limitations of previously 

developed techniques. Another specificity of urban link is the high probability of a 

vehicle leaving the link or another vehicle joining the link in-between the traffic 

measurement devices and therefore not being accounted at one of the nodes. This 

problem has not yet been addressed within the area of travel time estimation research and 

all developed methodologies assume that traffic flow does not change from uplink to 

downlink measurement points. The developed methodology is proposed as a heuristic 

which is intuitively appealing. Unfortunately, the methodology cannot be proved in a 

general case with mathematical rigour for the reasons that are discussed later in the 

thesis. Nevertheless, for a simplified model it has become possible to derive precise 

results, which gave a rationale behind the use of the methodology in its more general 

form in practice. This section will give a description of the developed algorithm and 

discuss its possible applications. The following section will present the mathematical 

proof of the methodology for a simplified model of a link and with certain assumptions 

regarding traffic flow processes. Then will follow a discussion on applicability of the 

simplified model used in the proof, a simulation study of the problem and examples of 

the results obtained for real urban traffic system.

Consider Figure 5.2 that illustrates a typical urban link. Assume that measurements that 

come from detectors A and B represent time of arrival of a vehicle at that particular 

detector. Then the set of measurements forms a time series, or a process, of arrival times. 

Let us denote the upstream time series by {A(t), t > 0} and the downstream time series by

It is further assumed, that traffic forms a free flow from A to B\ that is it does not stop at 

the stop line as shown on the figure. This requirement is necessary since only free



flowing traffic carries information about the travel time between the nodes of the link 

since stopped traffic has a delay induced by the waiting time at the stop line. It is 

nevertheless possible to separate these times from the whole time of the travel with a 

simple pre-processing. Since in urban links traffic is normally controlled by a UTMC 

system, the problem of filtering the part of traffic flow that corresponds to that, which has 

been stopped and part that forms free flow will be addressed later.

Since time series A(t) and B(t) represent counting process, they are discrete and 

countable. Let us enumerate and denote individual arrival times of the above time series 

by {<?,} and {bj}. It is intuitively appealing that if at is the arrival time of a vehicle at the 

upstream detector and bj is the arrival time of the same vehicle at the downstream 

detector, then subject to the free traffic flow condition, cii and bj are related through a 

relationship of the form

bj =  cii + £  (5.19)

where e is a stochastic component that represents the delay between arrival of a vehicle at 

upstream and downstream points and takes into account variation in the speeds of the 

vehicle and fluctuation of speed with time. It also seems rational that for a short distance, 

as is the case with urban links, that variable s  be considered to have a symmetrical bell

shaped distribution, such as normal. Then s  can well be characterised by its mean and 

standard deviation: e =e (TV, o ) .  Then the problem of travel time estimation essentially 

reduces to the problem of estimation of the parameters of random variable s  (TV, cr). 

Another point to be mentioned is that vehicles in real traffic tend to keep microscopic 

structure of the flow over significant periods of time; that is the headways between 

consecutive vehicles change insignificantly. This feature of traffic lies behind the success 

of the developed methodology.

Arrival times of downstream process are first being shifted into the past by a time r, that 

is the following linear transformation is performed.

b*j  ~ b j -  t  (5.20)
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The choice of parameter t will be discussed later. Then the upstream time series is 

combined with the modified downstream time series in a way, that keeps their order. The 

following Figure 5.3 illustrates the above idea.

Travel time

Upstream time
series - 0 - 0  CrfO

Downstream 
time series "O

Combined

1.1 n i l - —b m—H-

Events: arrival o f vehicles to the 
detector
O - upstream amval events 
ED - downstream arrival events

-© (St-
Time

-G-

t  \|/
time series OUT-©-C3O0---- 0 ----- G —C----- ®— ©--- IS

Time

Time

Figure 5.3. Merging upstream and shifted downstream time series

The dashed arrows on the figure point to the related events, that is linking the upstream 

arrival events to the corresponding downstream arrival events. Next step is, using the 

combined process, to extract pairs of neighbouring arrival times that are from different 

sources, that is upstream arrival time is associated with the closest in time downstream 

arrival. The following Figure 5.4 illustrates the pair extraction procedure.

Combined Time
time series -□ -----©------- □—m~m----- Q 1!-------- 0 —0 --------- ffl—►

4 4 4___4 4______ 4
dj 4r+i dj+2

Figure 5.4. Extracting pairs of neighbouring events that come from

different time series

As a result, algorithm produces series of pairs of events Pk={ai, bj} where a{ is the arrival 

time of the upstream event and bj is the arrival time of the downstream event that form 

the pair. Several methods of extracting pairs Pk from the combined time series can be 

suggested. The most effective method would be to extract the pairs in such way, that the 

sum of corresponding time differences dk is minimal among all possible choices of pairs.
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Although this method will yield the result with higher accuracy, it is not efficient. 

Complexity of the optimal algorithm is 0(A2), where N  is the number of elements in the 4

sample of combined time series. A method that chooses pairs using local optimisation has ■$

been tested and showed that its accuracy is close to the optimal algorithm but has 4,

complexity of 0(A), that is it is much more efficient. An algorithm with local $

optimisation is described below. £
*

After the upstream and downstream times series have been combined into the resulting 

time series, a step of the algorithm is given as follows. Assume that current position of an 

event in the resulting time series is k. Then there are six possible configurations of events, 

characterised by the event arrival times, as illustrated in Figure 5.5.

,-k+l Time Case 1: current upstream event is
■<§>' O--------------► followed by another upstream

event

/•* rk+[ Time Case 2: current downstream event is
□ --------------------- S3--------------► followed by another downstream

event

n rk+, fk+2 Time Case 3: current upstream event is
-©-----------□ ------------H----------► followed by downstream event

which is followed by another 
downstream event

rk rM rkk2 Time Case 4: current downstream event is
-H ----------O------------©----------► followed by upstream event

which is followed by another 
upstream event

rk rk+2 Time Case 5: current upstream event is
--------- H-------------O----------► followed by downstream event

which is followed by upstream 
event

rk rkH rk+2 Time Case 6: current downstream event is
-H-----------©------------□ ----------► followed by upstream event

which is followed by downstream 
event

Figure 5.5. Combinations of events ahead of the current event at k

In the cases 1 and 2 above, the algorithm does not produce pairs since the current event at 

k cannot be associated with the following event since they have the same origin. If case 1 

or case 2 is encountered at step k, the algorithm makes event k+1 its current and repeats 

the procedure. In cases 3 and 4 there are clear pairs formed by events at k and k+1, since 

event at k+1 cannot form a pair with event at k+2 because of their same origin. Thus, if
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case 3 or 4 is encountered, a pair of events at k and k+l is formed and the algorithm 

makes its current event for the next cycle the event at k+2. In cases 5 and 6 it is not clear 

which pair is to be taken, the one formed by events at k and k+l or events at k+l and k+2. 

In these cases, the algorithm forms pairs of such events, whose difference is smaller. That 

is if rfrH-r* < r*f2-r*+i then algorithm produces a pair formed by events k and k+l, and 

advances to k+2 as its current event for the next cycle and produces a pair formed by k+l 

and k+2 otherwise, advancing to k+3 as its current event for the next cycle.

The above algorithm ensures that if an event is associated with a pair, it is associated with 

that pair only. It also performs a local minimisation of the time differences associated 

with pairs as shown above for cases 5 and 6. It is also clear that the algorithm’s 

complexity is 0(A) where N  is the number of events in the resulting (merger) time series.

Once a set of pairs Pk has been obtained, an average of time differences between the 

events of a pair is calculated. It is calculated for currently applied time shift r  and thus 

being considered a function of r. Let us denote the arrival time of an upstream event that 

forms part of pair k  by ak and the arrival time of a downstream event that forms part of 

the same pair k by bk. Then

where N  is the number of pairs.

All pairs selected by the algorithm can be split into two classes -  the ones that are formed 

by independent upstream and downstream events and those formed by the events that are 

related through relationship (5.19). Figure 5.6 below illustrates this concept. Assume that 

the set of independent pairs is denoted by Q, and the set of dependent pairs is denoted by 

Qrf. Then their cardinalities A,=|Q/| and iVf/=|Qr/| satisfy N=Nt+N(i and (5.21) can then be 

written as the following sum

(5.21)
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q{r)(Xi ( t )  + (1 -  q{v))Xd (r); 0 < q(r) < 1 (5.22)

where X .(t) is the average of time differences {d,} for independent pairs and X d (r) is 

the average of time differences {4}for dependent pairs and q(T)=Ni/N.

Left the link

fl/+1 fl/+2 rt/+3

Dependent pairs

(lj+4 Time

Joined the link

Time

Time
■O— O- 

1 J
- © - - - - - - E Z 3 — O

1 J

Independent pairs

Figure 5.6. Illustration of the concept of dependent and independent pairs

It is difficult to express explicitly the relationship between differences {(/,} produced by 

independent pairs and time shift rbut it can be anticipated that such a relationship will be 

weaker (or more irregular) than that of differences produced by dependent events. Using 

(5.19) and (5.20), the relationship between dependent difference dj and r can be 

expressed as

d j (r) = b* -  a i  - b j - r  — a. = s(Tr , c r ) - T  (5.23)

The properties of this relationship will further be investigated. First of all, let us calculate 

the expectation of \dj{f)\ as a random variable

-foo T  +00
E | s (Tt,(t ) - t  |= j \ x - T \  f e ( x ) d x  =  j ( x - r ) f e ( x ) d x ~  j ( x - T ) f £ ( x ) d x  =

~oo -00 r
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- 2  jy,(*)<fc + E„ + r (2 F ,( r ) - l )  = AT/r) (5.24)
-00

In order to obtain the extrema of the function (5.24), its derivative is to be taken

■£- X j(r)  = -2  A  W ,  (*)<& + A  [2zP (r) -  r] = 
d r d r  J d r-oo

- 2 ^ ( r )  + 2F,(r) + 2 g r,(r)-l = 2 F ,( r ) - l  (5.25)

In the point of extremum the derivative is zero

A
— X d(r) = Q => 2Fe( r ) -1  = 0, or 
d r

= |  (5.26)

It is clear from (5.24) that X d (r) ->  +co whenever r-> ±00, therefore the found extremum

is minimum. Consequently, it follows from (5.26) that X d(r) reaches its minimum

whenever r  is the median of s  (TV, cr). I f £ (TV, cr) is assumed to be normally distributed 

then its median equals its mode and equals its mean TV Therefore, if the mean of 

independent differences does not change significantly with r, then it is reasonable to 

expect (5.22) to reach its minimum in the point r=  TV

The above argumentation can be considered being a heuristic, as it cannot be formally 

proven in its general form. Nevertheless, it is strongly appealing and a number of 

experiments with real traffic data, which will be presented in Chapter 6, have shown it to 

be correct. Another point for the correctness of this approach is that when r approaches 

TV, coefficient (1 -q(r)) in (5.22) tends to grow while q(t) itself decreases subject to that cr 

of s(Tt, o) is smaller than average time gap between consecutive arrival events. This, in 

turn, makes the second term of the sum (5.22) to have stronger influence on the whole 

sum and thus minimum in the point t=Tt is being stronger emphasised.
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Consider now the problem of choosing t  on each step of the algorithm. It is obvious that 

a scheme of choosing a step of shift on each iteration of the algorithm will depend on the 

algorithm of pair extraction used. Nevertheless, a general idea of the step-choosing 

scheme is the same and will be given here.

As has been mentioned before, the algorithm produces series of pairs of arrival times of 

events that come from different sources, Pk~{au bj}. There are three possible 

configurations of event arrival times at and b*j relative to each other, namely b*j follows 

at, b*j matches (equals) and at  follows b j  as illustrated in Figure 5.7.

Direction of movement 
of b  with t Case 1: b  follows a

t
Time 
— ►

dj
Direction of movement 
of b*  with t Case 2: b  matches a

dj=0
Direction of movement 
of b*  with t

Time 
— ►

Case 3: a  follows b

b*
t

Time 
— ►

dj
Figure 5.7. Architectures of pair of event arrival times extracted

by the algorithm

Then it is clear from Figure 5.7 that there are two classes of pairs that behave differently 

with changing of r. Arrival time b* of the pairs of the first class (case 1 on the figure) will 

advance towards a  linearly with the growth of t  whereas arrival time b* of the second 

class (case 2 and case 3) will recede from a  also linearly with the growth of t. Since pairs 

representing the second case in the picture can be seen as special case of either case 1 or 

case 3 and it will be associated with the second class of pairs. Thus it can be assumed that 

whenever b* of the pair of the first class reaches a,  this pair moves from the first class of 

pairs to the second class of pairs. Assume now that N\ is the total number of pairs of the 

first class and N2 is the total number of pairs of the second class.



Then for a given t  (5.21) can be expresses in the terms of these two classes of pairs as 

follows

where Qi is a set of indices of pairs that belong to the first class as specified above, Q2 is 

a set of indices of pairs that belong to the second class and ik, jk are indices of 

corresponding arrival times of individual time series. It is important to mention that 

process of transferring of pairs from class 2 to class 1 is continuous. In order to clarify 

this statement let us illustrate the transfer process. Assume that upstream and downstream 

time series consist of only one event arrival time, such as shown on Figure 5.7. Then 

using (5.20), (5.27) will take the following form

F (t) =| b* ~a  |=| b - v - a  | (5.28)

Then it is clear that the above function is continuous piece-wise linear with respect to t .

One pair of 
class 1

One pair of 
class 2

b -a

Figure 5.8. Plot of the function (5.27) when there is only one event 
in each of the time series

It is also clear that a life cycle of a pair from class 1 is to move to class 2. From class 2 

pairs disappear, that is the individual arrival times are being recombined and new pair(s) 

are formed. It is also clear that once the algorithm has performed one of its cycles and 

formed a set of pairs, then with continuous movement of r  new pairs are born into the
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class 1. Therefore, the process of movement of x (as shown in Figure 5.7) is associated 

with the process of forming new pairs into class 1, transferring pairs from class 1 to class 

2 and destruction (recombination of the forming events) of pairs of class 2.

Assume that the algorithm has produced the set of pairs. Let pair Pk={al, b*1} belong to 

class 1 and its corresponding time difference |<4|>0 and pair Pm={a2, b*2} belong to class 

2 and its corresponding time difference dm. It is clear, if one moves x by a small (such 

that does not affect class property of the pairs Pk and Pm) value Az>0, the differences will 

change in such a way that the change induced by moving r by A x will be compensated by 

both pairs. That is, if for a given x=x\ |*4(ri)|=xi>0 then |c4(ri+Az)|=xi-Ar (since xi>0 Ax 

can always be chosen such, that xi-Ar>0). Analogically, if for the same x=X] 

\clm(Ti)\=X2>0 then \dm{T\ +A z)|=X2+Ax. Then since these two differences are summed 

using (5.21), these two terms appear in the sum as

£= ...+  | dk(x\ +At)|+. . .+\dm(x\ +Ar)|+. . .=

. .  . + X l - A z + . . .+X2+ A t+ .  . .=

. .  . + X i + . . .+X2+ . . . =

...+ |^ (n )|+ ...+ K (ri)|+ ...=  (5.29)

It is clear from (5.29) that with changing of x (by appropriately chosen Ar>0) the sum of 

modules of the two differences does not change. Now let us get back to definitions used 

in (5.27). It is also clear from (5.29) that the total sum can change with x (provided that 

the structure of classes does not change) if and only if N&N2 , that is the pairs of class 1 

cannot compensate or be compensated by the pairs of class 2. If N\>Ni, then the sum 

(5.27) rises by (Ni-N2)A t and N\<N2, then the sum declines by (N2-N\)Ax for any Ar>0 

such that preserve the pairs in their classes. Consequently, it is clear that the sum (5.27) is 

linear on the intervals where structure of classes of pairs does not change. Let us now 

investigate the conditions when the structure of the two classes changes. By the change of 

the structure of the classes will be understood a process of migration pairs from class 1 to 

class 2 and destruction, and as a consequence formation of new pairs into class 1, of pairs 

of class 2.
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It is obvious that pairs from class 1 migrate into class 2 for such At that makes the 

corresponding difference equal to zero. Then as it is stated above, if N\>N2 then the 

average (5.27) will decrease until classes change. And since the process of migration is 

continuous the minimum of the average (5.27) will be in the point when one of the pairs 

from classl migrates to class 2. For this case, the advance of r, At, can be chosen such 

that makes differences of one (or more) pair from class 1 equal to zero, or in other words 

Ar can be chosen to be the minimal difference d( of pairs of class 1.

A t1 = min | d t | W (. = akj - b]f ,i e Q l (5.30)

Second situation when the structure of classes of pairs change is when a pair from class 2 

is being destroyed. The situations are illustrated below.

Direction of movement 
of b* with x

b'JH Time 
J  ►

In the case above a pair (ai} b*j) of class 2 will disappear and new pair (ah b y+i) of class 1 

will be formed, if the time shift is advanced as shown in the picture. Among all situations 

as in the above picture, At must be taken minimal non-zero. For the above illustration, At 

can be found as

Ar = —  - - a ,  (5.31)

Then if all A t  that correspond to configuration above are enumerated by index /, the final 

Arfor this class of configurations is taken as

A r^ m in A r ,  V/ (5.32)

Another situation which leads to a destruction of a pair from class 2 is shown in the 

illustration below.
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Direction of movement 
of b* with r

«/ b'j ciM Time
— 1 - - - - - - - - - - - - - - - - - -

— *1
— i — ►

1 t
H A r ^

In the figure above if r  is changed by A t ,  then the pair (at+u b*j) of class 2  will be 

destructed and a new pair (ait b*j) of class 1 formed. In order to make the above situation 

realise, A t must be chosen as follows

Ar — b] + (5.33)
2

Then considering all such structures, minimal A t  among them must be taken as the 

increment of t. Let us denote the minimal A t  among those that are produced by the above 

situation by Ar3. Then summarising the cases that lead to changes of the classes’

structure, the minimal among A t 1, A t 2 and A t 3 should be taken in order for the algorithm

to encounter all changes in behaviour of the resulting sum (5.27).

Arfinal =  m inlA r^A r2, A t 3} (5.34)

If the next shift is chosen according to above equation (5.34), the algorithm is ensured to 

discover the global minimum of the cost function (5.27). Nevertheless, there is one 

serious drawback in the above scheme, namely the step ATfmai tends to get smaller with 

the growth of the number of events in the upstream and downstream time series. As a 

limit, when the upstream and downstream time series are considered infinite, A Tfinai 

becomes equal to zero. It might therefore be better to use the above scheme of choosing 

A r in  cases, when a neighbourhood of the minimum has been identified and exact value 

of it is sought.

5.4.3 Simplified traffic model and mathematical justification of the travel time 
estimation methodology

In order to prove that the proposed methodology indeed gives the solution, a simplified 

model will be formally investigated. The model of the considered link is shown on Figure



5.9. This model simplifies the traditional urban link in a way that there are no control 

devices installed between the measuring points, and thus traffic is uncontrolled. 

Nevertheless the model is realistic in a sense that it allows vehicles to leave the link and 

new vehicles are allowed to join the link at the roundabout located between the detectors. 

It is worth noticing that there is no additional information available besides the two series 

of measurements that come from upstream counter A and downstream counter B.

Outgoing traffic 
counter: B

Incoming traffic 
counter: A

Figure 5.9. The link model: a roundabout between two measuring 

points A and B allows vehicles to leave and join traffic flow

The model also assumes that traffic flows can be adequately modelled by a homogeneous 

Poisson process. The applicability of such a model will be discussed later. Another 

simplification that is necessary to make is that the travel time between the measurement 

points is constant, that is if a vehicle intends to travel from A to B then it does not move 

repeatedly in the roundabout and the mean space speed is a constant (spot speed can 

change). The need for such assumption will be clear later when the mathematical 

formulation of the processes will be made.

Let us assume that traffic at the counter A forms an arrival process that is the 

homogeneous Poisson process N{t) with parameter A, and traffic at the counter B forms an 

arrival process that is the homogeneous Poisson process M{t) with parameter ju. Let us 

denote arrival times at the counter A by a, and arrival times at the counter B by bj. It 

should be noted here that the above variables and parameters are observed from the 

traffic counters and thus considered to be available.
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It is assumed that the flow of leaving vehicles and the flow of joining vehicles form two 

independent Poisson processes N\(t) and M\{t) with parameters X\ and ju\ accordingly. 

Then part of the upstream flow that moves to the downstream point forms a Poisson 

process Lu(t) that is independent o f N\(t) and M\(t). Let us denote its parameter by a. The 

part of downstream process that has originated from the upstream will be denoted by 

Ld(t). Further, the upstream arrival events that correspond to process Lu{t) will incur 

downstream arrival events with a certain constant delay (travel time). That idea can be 

expressed in the form of arrival times as follows. Provided travel time T is constant

V<2 . e L u(t) 3bj e L d(t): bj =ai +T and also (5.35)

Vbk e L d(t) 3a i e L u(t): bk = a , + T

where cii or ai is an event’s arrival time that belongs to Lu(t) and bj or bt is an event’s 

arrival time that belongs to Ld{t). It then follows that process Ld(t) is Lu{t) shifted in time 

by a constant T, or Ld(t) = Lu{t-T). The following results will be required for further 

analysis.

Lemma 1. Shifting a homogeneous Poisson process N(t) with parameter X in time by a 

constant rdoes not affect its probabilistic properties.

Proof.

The result of Lemma 1 follows directly from the well-known property of the Poisson 

process, namely if {N(t), £>0} is a homogeneous Poisson process with parameter X, than 

process defined as

N t z+t)-N( t) 

is also a homogeneous Poisson process with parameter X.

Lemma 2. Given a merger S(t) of two independent homogeneous Poisson processes N(t) 

with parameter X and M{t) with parameter /u, that is S(t) = N(t) + M(t). Than an event



Xrandomly chosen from process S(t) will originate from N(t) with probability ------  and
X + f.i

originate from M(t) with probability ——— .
X + fi

Proof.

First of all, let us note that the sum of two independent homogeneous Poisson processes 

with densities X and //, results in homogeneous Poisson process with density X+ju. [Feller, 

1968], [Karlin et al, 1975].

Let us choose a random point t>0, then the event of process S(t) that follows point t will 

be called a randomly chosen event of process S(t). Consider processes N(t) and M(t) 011 

the same time axis (Figure 5.10).

Time from the chosen point
to the next event of N(t): SN Arrival times of events of

m
►

Time

Time from the chosen point 
to the next event of M(t): Sm Arrival times of events of

m
Figure 5.10. Exponentially distributed random variables Sn and 

Sm compete to be closer to Time point t.

Since interarrival times of processes N(t) and M{t) are distributed according to 

exponential distribution with parameters X and /u accordingly and following the 

memoryless property of exponential distribution random variables Sm and Sn, as shown 

on the illustration, are distributed according to exponential distribution with parameters 

X and jj, accordingly. Then provided t>0 is chosen randomly, the following event arrival 

time of process S(t) will correspond to either of the two events of processes N(t) and M(t) 

that happen after t. Let Q\ stand for the event that the arrival following t will correspond 

to N{t) and Q2 otherwise. Thus, the probability that the first arrival after time t will 

correspond to N{t) will be equal to probability that the minimum of S n  and Sm equals Sn, 

or
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and

P {Q\} -  P { min (Sn , Sm) -  S n }

P {Q2} = P {mm(SN, Sm) ~ S m } = 1 - ¥ { Q i}

The probability P{ min(^Y, Sm) = Sn } can be written in the form of convolution of two 

independent and exponentially distributed random variables Sn  and Sm  as

P{0i} = P{ minOSfo Sm)=Sn } = P{ Sn<Sm } = P{ Sn-Sm<0 }=

+00 +00 +CO *

JV " jJue-,adxdt=

X + (j.

and

p { e2} = i - p { e ,} :
X + JLl

Which completes the proof.

The observable processes N(t) and M(t) can be expressed in tenns of the component 

processes as

N(t)=Nx(t)+Lu(t)

M(t)=Mx(t)+Ld(i)

where arrival times of processes Lu(t) and Ld(t) are subject to the conditions (5.35).

Thus, the observable upstream and downstream processes can be considered as being 

mergers of two independent processes. Figure 5.11 illustrates this idea.

Process N\(t) -  Process L(t) -  vehicles
leaving vehicles that traverse from A to B

Measuring w Measuring
N(t)=N\(t)+Ltl(t) Process M x(t) -  M{t)=Mx(t)+LXt) 

joining vehicles

Figure 5.11. Structure of the considered traffic processes



Following from the description, the problem of travel time estimation can be formulated 

as follows. Given two homogeneous processes N(t) and M(t), and taking into account the 

above assumption, find the constant T. From the previously described methodology, the 

algorithmic procedure used to estimate travel time T is as follows.

Algorithm X.

The downstream process M(t) is being shifted by a time t . Then upstream and the shifted 

downstream processes are merged into R(t, t)

R(t, r)=N(t)+M(t-r) (5.36)

One condition applied to the merging procedure is that if the arrival time of an upstream 

event equals the arrival time of a downstream event, then the upstream arrival time is 

given a preference and is placed in front of the downstream arrival time. N(t) and M(t- r) 

are Poisson processes but the compound process R(t) is obviously not a Poisson process 

since the processes N(t) and M(t) are not independent. Let us denote the arrival times of 

the compound process R(t) by r,(z). In order to distinguish arrival times r,( z) by their 

original process (N(t) or M(t)), let us introduce the indicator function /(r,(r)) as

{0 if r,{r) originates from process N(t)
(5.37)

1 if r({z) originates from process M{t)

The algorithm extracts series of interarrival times r,+i - n  as follows.

1. &=1; z=l; Initialisation

2. While 7(r,( r))=1; i=i+1; Looking for an event from the upstream process

3. if I(rI+i(r))=0; i=i+1; go to 2; Skip this event if next is not from downstream

4. Ak(r)- n+i(r) - rz(r); Save the found interarrival time at k-s position

k=k+l; i=i+1; go to 2;
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As a result, the algorithm produces a series of interarrival times of the resulting process 

with the feature that they are produced by arrival times of both the upstream and 

downstream processes. The procedure above is infinite but in the real world it can be 

stopped when either processes N(t) and M{t) are exhausted, or necessary precision is 

reached. The main result can then be formulated as the following theorem.

Theorem 1.

Consider the scheme of processes as shown in Figure 5.11. The processes N\{t), M\(t), 

Lu(t) and Ld(i) are Poisson processes with parameters X\, jli\ ,  a  and a  respectively and 

parameters of N(t)~ N\(t)+Lu(t) and M(t)= M\(t)+Ld(t), X and ju, are related as follows

Assume that /l>0 and ju>0 and consider the average of the values A*(r) (a sample of 

interarrival times of process R(t, t)) produced by Algorithm 1 and assume that N  of such 

values have been produced. The average is given as

X—Xi+GC

jU F = j u \ + a

(5.38)

If N  increases infinitely we have

F*(r) = lim FK(Y)
co

(5.39)

Then, Fn(t) converges to a finite limit F*(t) in probability and the travel time T can be 

found as

T = argmin F* (t) (5.40)
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Proof

Assume that T~t > 0. In order to find the analytical form of function it is required 

to investigate the properties of the interarrival times extracted by the algorithm.

During the first step the algorithm shifts the downstream process by a constant time r. 

Lemma 1 states that shifted processes do not change their probabilistic properties unless 

the shifted process is compared to another dependent process. Therefore, the shift does 

not have effect on independent processes and this property will be exercised in the proof. 

The second step of the algorithm is to find an event that is originated from upstream flow. 

Since processes Lu(t) and Ni(t) that form the observed upstream process N(t) are 

independent it follows from Lemma 2 that the probability for the algorithm to pick an

cc ctevent that corresponds to part Lu{t) of N(t) i s ---------= — and the probability that the next
a  + Aj A

event of upstream process corresponds to part N\(t) i s   — = — .
ex + Aj A

Once the algorithm has chosen the next event from the upstream process, it checks if the 

following event of the merged process R(t) corresponds to the downstream process. There 

are three possibilities for the next event of process R(t):

1. Next event originates from upstream.

2. Next event originates from downstream from its Lci(t) part

3. Next event originates from downstream from its M\(t) part

Figure 5.12 illustrates the above outcomes. Let us introduce an extended indicator

function in order to distinguish the above combinations.

0 if n(r) originates from process N\(t)

1 if rt( r) originates from process Lu(t)
(5 .41)

2 if originates from process M\{t)

3 if r,( t) originates from process L,^t)



CASE 1

«( fl/+i Upstream process
- - - - - - - - - - - - - - - O - - - - - - - ® - - - - - - - - - - - - - - - - - ►

' ^  bj Downstream process
------------ 1------- M p --------►

1 A- 'A+i1 /•*« Merge
- - - - - - - - - - - - - - - O - - - - - - - O — L Z S - - - - - - - - - - ^

/  N
Current event Event from N(t)

CASE 2

fl/ Upstream process
 ® ►

1 J Downstream proc< 1---- □------------ ►
1 rk ' rk+x Merge

------------©---- B -------------- ►

/  N
Current event Event from L J j)

Figure 5.12. Illustration of possible outcomes for the next event 
after currently chosen one

Thus, the algorithm basically deals with 6  types of pairs of events. Let us represent type 

of a pair (r,(r), r,+i(r)) of consequent events of process i?(t) by the pair of their indicator 

functions (/(r,(r)), 7(r,+i(r))). Then the types of pairs the algorithm deals with are given in 

the following table

Table 5.1. Types of pairs classified by the values of indicator functions

Type

Xo

Pair of indicator 

functions
Comment

1 (0 , 2 ) First event is from N\(t) and second event is from M\(t)

2 (0, 3) First event is from N\(t) and second event is from Ld{t)

3 (0 , 0 ), (0 , 1) First event is from N\(t) and second event is from N(t)

4 (1 , 2 ) First event is from Lu(t) and second event is from M\(t)

5 (1,3) First event is from Lu(t) and second event is from Ld(t)

6 (1 , 0 ), (1 , 1) First event is from Lu(t) and second event is from N(t)

Pairs of type 3 are not distinguished as they are of no interest (skipped by the algorithm). 

Same applies for pairs of type 6 .

CASE 3

Joined the link 
at /  Upstream process

 ®  ►
1 bu  i Downstream process

 1— — f K ---------►
' f k :r*H Va+ 2  Merge

 ©— O—£3------- V

/  V
Current event Event from M \{t)
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The purpose of such distinction of the pairs is that the corresponding time differences 

form random variables of different types and in order to derive the properties of the sum 

of them, they need to be investigated separately.

Let us denote an event that the algorithm has chosen an event from N\(t) by Q\ and by Q2 

an event that the algorithm has chosen an event from Lu(t). It has already been noted that

P { e ,} = A  and P { 6 2 } = ^  (5.42)
A  A

It follows from the independence of processes N\(t) and Lu{t) that events Q\ and Q2 are 

independent. Assume that event Q\ has taken place and calculate probabilities for the 

algorithm to encounter pairs of types 1, 2 and 3.

The following figure is helpful in visualising the undergoing procedure. The circles on 

the time axis represent events of the merged process and the numbers within the circles 

show the value of indicator function (the source process) of the event.

T-x

Lj
— © •

Lu
<■>

Currently chosen event 
from upstream: r,-

■i l e a v e s joins Ld

-© ----- (3>
l e a v e s

O -

T-x

Time

Figure 5.13. Illustration of the resulting process and procedure of 

choosing the pair of events

On the figure above, arrows emphasise the dependency between co-related events from 

Lu{t) and Lci(t). The distance between corresponding events from Lu(t) and Ld(t) is T-r due 

to the shift r introduced by the algorithm.

Given the above assumption, the probability that the event following the currently chosen 

one will be from M\(t) (indicator function equals 2) can then be calculated as
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T - x  +00

P{ /(f,+i)=21 Q,} = J f t e -"1' f(a + a+ +
0 /

+00 +00

e - a ( T - r ,  |  ,-m  J(a + Al)e~{a*l')x dxdt (5.43)
T - X

The first component of the above sum represents the fact that on the interval [0, T-t]  four 

independent exponentially distributed random variables are active. The process L(i{t) has 

effect at the distance from rt- that does not exceed T-t , since its generating event from 

Z„(t) has to be before r,- and not further from rt then T-t.  The probability of the event that 

an event originated from Lu(t) lies within the interval [rt-{T-T), 77] equals l -e~a(r~T) 

(following from properties of exponentially distributed random variable) and thus the 

second component of the sum (5.43) represent the case when it does not happen. In the 

case if Lu(t) does not lie within the interval [r,-(7-z), r j ,  there is no process LJf) acting 

and the second component of the sum represents this fact by omitting one alpha- 

parameter (that corresponds to process La(t)). Bearing in mind that X=ofrX\ and jLr=a+iu\, 

equation (5.43) can then be calculated as

T - x +oo
P{ I(rM)=2 | Q, > = f{i ,e-(/,+A>,dt + e a<J-T) j ^ ^ ' d t  =

0 T - r

_ ifl_ (l _ g -(A+^Xr-r) ̂  +  e - a ( T - r )  Ml g + + A Xr-r) __
X + jU X + JUy

Mi l + __^__ e-(*+MXT-T) (5.44)
X + fj. X + jU\

Using the same arguments, the following probability for pairs of type 3 can be calculated

T - x  +oo

P{ l(ri+i) = 0  o r/(rz+i)=l j Q\ } = J Xe M J(ct + Hi)e {a+Mi)xdxdt +
o /

+00 +00 

e j  fo -v  ^M]e~fvdxdt =
T - x  t

X fl
( a  \l + _ £ _ e-(^xr-r) (5>45)

A + th J
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The probability of an event of choosing a pair of type 2 is different in that that the effect 

of process L(i{t) lies in the interval [77, rj+(T-f)] only due to the previously discussed 

reasons. Then,

T - t  + 0 0

P{7(rJ+i)=3 | Q\ } -  J ae~at J(a + A, + n x)e~{a+Xl+̂ )xdxdt =
o  t

——  ( l - e~(X+̂ T-T)) (5.46)
/I + jU

Equations (5.44), (5.45), (5.46) form a partition of the space that consist of outcomes of 

the experiment of trying the type of the next event that follows the chosen n. It can be 

easily checked that

P{ /(»!)=2 | 0 i }+ P{ I(ri+l)=3 | Qx }+ P{ l(rw H  or 7(»0=1 | Qx } = 1

as required.

Now, assume that Qi has taken place while the algorithm was choosing the upstream 

event. Then together with the following event ri+i the pair can be of types 4, 5 or 6 as 

given in the table. Let us calculate the probabilities of the above types.

Consider the outcome that leads to a pair of type 4. Since the current upstream even 77 

originates from process Lu{t), it is known that within the interval of length T-x there is a 

related event originated from Ldif). Therefore r/+i are of the M\(t) process if and only if 

they happen before the expected event from L(i{t). It is also known that on the interval 

[r/, ri+(T-r)] events from Lu(t), N\(t) and uncorrelated L(i(t) can take place. Then the 

probability that the outcome is of type 4 will be

T - v +oo
P{/(r,+1) = 2 |e 2 }=  J/Uie ~n ' f ( a  +  \ +  a ) e ~ i'x*i '*a)xdxdt =

0 t

f dt = — —(1 -  (5 47)
o X
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Now consider the outcome that leads to a pair of type 5. In this case there are two 

possible outcomes. First one is when the events that form a pair are not related. In this 

case the difference is a random variable. Its distribution will be studied later. The second 

outcome is when the events that form the pair are related. Then their difference equates to 

T-r is a constant provided that t is fixed. Let us study the probabilities of the above 

outcomes.

The events rt and r,+i will be independent if ri+i-rt<T-T. Therefore, the probability of such 

outcome, denoted by Pi, is

T - t  + 0 0

Pi { /0,+i)=31 Q2}= f a e ^ '  f ( a  =
0 t

_ £ L _ ( i - e - < * * p x r - r ) - )  ( 5  4 8 )

/ I  +  fJL

The probability for rt and ri+\ that correspond to independent events to be such that 

n+i-n =T-t is zero and thus can be neglected. Therefore, if no events of processes Lu(t), 

N\(t), L(i{t) have happened in the interval [rif r^T-z) then n  and ri+\ are dependent 

and the probability for this event is

P2{ /(rw)=3 | S i }=e-<A+"Xr- ') (5.49)

Together Pi and P2 as defined in (5.48) and (5.49) give the total probability for the pair to 

be of the type 5 and is calculated as

P{ 7(rm)=3 | 0 2  } = Pi {I(rm)=3 \Q i}+  P2{ I(ri+1 )= 3  | Q2 }=

a  - (1 -  e“(A+'u)(r-r>) + e-v+/*XT-T)

+ (5,50)
X + fj, X + fi
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The last possible outcome for the pair is to be of type 6 . In this case the events with 

arrival times r, and ri+\ are produced by the upstream and thus the algorithm will skip 

over them. The probability for the pair to be of type 6  equals the probability of an 

exponentially distributed random variable with parameter X (upstream) to be greater than 

another independent exponentially distributed random variable with parameter ju 

(downstream). Therefore

T - t  + 0 0

P{ 7(rI+i)=0 or/(r,+i)=l | Q2 }= fXe~** jjue~fadxdt =
o t

- 2 — (l-e ~ H+',)(7'-r)) (5.51)
X ju

All the above probabilities have been calculated conditional on the occurrence of Q\ and 

Q2. Then the probabilities for the algorithm to encounter a certain type of a pair in a step 

of its cycle are given as full probabilities

P{ Q b ^  } = P (Q ,} P{^4 I Qi } and 
P{Q 2 ,A }= P {Q 2 } ? { A \Q 2 }

where A is one of the following outcomes { 7(r<+1 )= 0  or 7(r/+i)=l, I(ri+\)=2, I(ri+\)=3 }. 

Probabilities P{Qi} and P{Q2} have been given in (5.42).

The probabilities of the pair types that the algorithm follows through can now be 

calculated and are summarised in Table 5.2.

Table 5.2. Probabilities for different types of pairs to occur

Type Pair of indicators 

(7(n),7(rm ))
Full probability

1 (0 , 2)
3 (  \  A l M\ j ( a  c-(A+̂ )(7'-r)
X X + /u  ̂ X + fj.y j

2 (0, 3)
K  a  q c-(A+̂ )(r-r)N 
X X  +  JU



3 (0, 0), (0, 1) ^1 ^  f i  | a  
X X + /u  ̂ X + fj.] j

4 (1 , 2 ) a Ml Q -̂(A+A)(r-r)\
X X  + ju

5

5 a 

5b

(1,3) Both: a (  a  + A + /t,
X\KX + ju X + fi j

Independent: a  a  {i g - t ^ X r - o )
X X  + JU 1

Dependent: e~{X+t‘XT~T)

6 (1 , 0 ), (1 , 1) a  ^  (1 -~M+/0(r-r))
X X  + iu

From the description of the algorithm it follows that it extracts only pairs of types 1, 2, 4 

and 5 and sends the corresponding difference r,+i-r,- to the resulting series. Thus it is 

required to calculate the probability with which a certain type of differences goes into the 

resulting series. Let us denote by Ak, an event that the current type of a pair encountered 

by the algorithm is k. Then the difference of the pair will go to the resulting series if and 

only if one of A\, A2 , A4 or As has taken place. Then among outcomes A\, A2, A4 or A5 the 

probability for the difference of type k to go into the resulting series is given by the 

conditional probability

Pk=P\Ak | I M  }=■
i s  { 1 , 2 , 4 , 5  a , 5  b }  J

P W

IM
/ e { l , 2 ,4 ,5 f l , 5 M

A?=l,2,4,5tf,56 (5.52)

Since the Ak’s are disjoint, (5.52) can be rewritten as

P{At }
pt= — y  ) ■ *= U A  5a’5b (5'53)

j'e{l,2,4,5a,56}

It can be easily calculated that



£  P{At) = -JLJ _ £ L . e - M w - o A
f e d , 2,4,50,54] ^  +  M\A +  M l

(5.54)

Finally, the calculated probabilities P* are given as

„ _ V i  r, _«A, l-e-W ^xr-o n ! _ e-(^xr-o
H     4 2 “ ^4

hju 1 + _ _ ^ _ _ e -(^/4)(r-r) /I// 1+ g- _ c-(^ x r-r )
A. + jul X + fix

a * J .g -c^ x r-r)  a(A + A/) e ^ x r - r ,

^  1 + a  e-(A+M)(T-r) A//  ̂+ # g-(A+/iXr-r)
/I + //j /I + /^

Now consider equation (5.38). It is the average of the elements of the resulting series. As 

has been mentioned before, the algorithm gives four types of differences as elements of 

the series. Let us denote these differences by Ak where k  is its type (as in Table 5.2). The 

algorithm does not recognise dependent and independent differences of type 5 but they 

will be distinguished here and thereafter as A5a for independent and A5b for dependent 

differences. Thus, the sum (5.38) can be expanded onto a five sub-sums that contain 

elements only of certain type:

i n 1 (  l«* I
W = -  l A i W  = -  £  5 > ‘ (r)

N t i
r in*) ^

(5.55)
V ^ e { l ,2 ,4 ,5 f l , 5 6 }  i e Q k

where Q* is a set of indices that correspond to differences A of type k, &e (1,2,4,5a,5b} 

upper index of the A-s shows the type of this difference and |Q*|=A  ̂is the cardinality of 
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I  H*

As N->co according to the strong law of large numbers the terms  V A* (r) converge
N k ien4

with probability 1 to the expectations E[A* (r)] of the random variables Ak , and

N
according to the weak law of large numbers (Bernoulli’s theorem), frequencies ~ -

converge (in probability) to the probabilities Pr* of a certain type of differences to get into 

the resulting series [Feller, 1968]. It is a well-known fact that if sequence XN converges to 

X  almost surely (with probability 1) and YM converges to Y in probability, then X^Ym 

converges to XY  in probability. Therefore Fn(t) converges to F*(t) in probability and

F * (r)= lim F „ (r)=  £ P r t E[A*(r)] (5.57)
00 i e { l , 2 , 4 , 5 « , 5 6 }

In order to calculate the expectations of the above random variables, their properties have 

to be investigated.

The first type of the differences, A1, is produced by rt and ri+\ such that I(n)=0 and 

/(r/+i)=2, that is rt and ri+\ correspond to the events that belong to processes N\(t) and 

M\(t) accordingly. These two processes are independent and also independent of Lu(t) and 

Ld(t). Let us denote the random variable whose realizations are A1 by £1 and calculate its 

probability distribution function. Assume that r,- is fixed and /(rf)=0 and consider a 

random variable x  that represents the time from rt to the occurrence of an event from 

either of the processes, that is ^=r,+i-r,. Then can be considered as being conditional 011

X such that it is produced by a pair of type 1 (or 7(r/+i)=2 subject to /(r,)=0). This fact will 

be denoted as ^e(0,2). Formally, it can be written as follows

F ,(0 = Pr(x < 11 x  £ (°>2)} = Pr^  < X (’°-2-̂  (5.58)VC IX K , J !  Pr}* e (0,2)} V

The dividend in the above formula represents the probability that from the given time r{

first arrival event will correspond to the process M\(t) and the distance from n  to that

event is less than t. Taking into account that process L(i(i) is active only on the interval 

[rt, n+T-v], and does not realise on that interval with probability e a{r~T\  that probability
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can be calculated as follows (similar arguments to those used in derivation of equation 

(5.44) can be applied)

P r{ j < t n  x  G (0,2)} = j /q e  j*(A, + a  + a)e {Xx*a+a)ydydx
0 x

Mi
X + ju

t<T-x

V x { x < tn  j e ( 0 ,2 )} =

/h
t +M

X + ju r -r

_ / f l _ ( l  — g -t^ + ^ x r -r )   ̂+  g-a(r-r) _ _ / f l_ _ ^ - ( A + / / , ) ( r - r )  _  g -W +/< ,)^  t>T-x
X + (A, X  + /ij

(5.59)

It can be easily seen that the denominator in the equation (5.58) is the same as (5.44), that 

is (Q\ represents an event that 7(r,)=0)

Pr{X6  (0 ,2 )} = Pr{/(;%.,) = 2 1 e,} = +
X + fj. X fi j

(5.60)

Finally, substitution of (5.59) and (5.60) in (5.58) yields the following probability 

distribution function for random variable

1 - e ~(X+n)t

1 | — g -^ x r-r)
A + yt/

l - g - ( ^ ) ( r~r) -u(t-t) (X + iu ) ( e - ^ ')iT~r) - e HX+Mx)l)

1 | g  c-(̂ +A«xr-r) 
/I +

■ +  e , t > T-x

(5.61)

In order to obtain the expectation of £i, its probability density function is needed. From

(5.61) the probability density function of £i is obtained as
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U  0

X  + jj ,

1 I a c~(A+*iXT~T)
X + jux

< e [ 0 , r - T )

(5.62)
(X + JLl)6 - a ( T - r )

1 I a
£ € [T -  T ,+  oo)

+ //j

An illustration of the above probability density function is given in Figure 5.14. It is 

worth noticing that the probability density function is continuous in the point of t=T-r.

Four processes 
are active

Three processes are 
active

Time
Figure 5.14. Structure of probability distribution function of 

random variable £i

Having calculated the probability distribution function of the random variable it is 

possible to calculate its expectation using the definition

-t~oo

e k ,]=

E[£,] =
l +  _ ^  r) o

X + /j,x

T - t

|(A + iu)<e'(,l+‘")'*  +

2 - + // „-atr-T)
1 . +00 A + JU j

(5.63)



The integration can be accomplished using integration by parts. The following result is 

standard

\k tektdt = - e kt\ t + -
k

+ C , (5.64)

where C is an arbitrary constant and k£0.

Using (5.64), it follows from (5.63) that

E K J =
1 + a

(t +
T - t

- ( A + ^ ) ( r - r ) X + fi
+

X + //j
(5.65)

X + JLl j

1 1 a A +
+ 00 

r - r
/I + //j

After elementary calculation and simplifications, the final form of the resulting 

expectation of £i can be found as

1 + a

£[#,] =
A + /u X +

r - r  + 1
+

1 r)

1 +
(5.66)

-(A+//)(r-r)
/I + //j

Now consider differences A2, A4, A5". Despite the fact that these differences are produced 

by events that belong to different Poisson processes, they can be considered as 

realisations of the same random variable that will be denoted by This result is implied

by the fact that events, whose arrival times produce the above differences belong to either 

of the processes Lu(t) or Ld{t) (see Figure 5.13, events of types 1 and 3). For example, 

consider events that generate differences of the 2nd class. The indicator functions for such 

a pair of events are J(r/)=0 and /(rm)=3. Due to the relationship between the processes 

Lu(t) and L(i{t), it is known, that at the time ri+i-T+r there is an event from Lu{t) that has
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taken place. Therefore, the event from N \(t)  that happened at time n  and produced the 

difference cannot be located into the past further then ri+\-T+r. From this argument it 

follows that all differences of the second type do not exceed the value of T -t. N ow  

consider time interval [>,•; r i+i-T+T]. On this interval four independent exponentially 

distributed random variables are acting. Thus, random variable £2 can be seen as being 

exponentially distributed but with the restriction that its values are not greater than T -t. 

Therefore, its probability density function is the head of the exponential density cut at the 

point T -t. The following figure illustrates such a distribution.

Four exponential 
variables are active
g-(A,+p,+flf+a) _  e ~(X+n)

Time

T -t

Figure 5.15. Structure of probability distribution function of 

variables A2, A4 and A5a.

It can also be shown that random variables that produce differences A4 and A50 have the 

same form of distribution function. Since £2 is exponentially distributed but conditional 

on not being greater than T -t, it can be defined via a proper exponentially distributed 

random variable as having a conditional probability distribution function as follows

= P r{^  < t \ y /  < T  - t }

where (//is an exponentially distributed random variable with parameter A+ju. 

Then, following from the definition of conditional probability

Pr{^ < m in(/,r -  t ) }

(5.67)

Pr{y/ < 1 1 y/ < T - t )
Pr { y /  <T - t )
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1 _  p -(A+p)t
V f e [ 0 , r - r )  (5.68)

- W + P W - T )l - e

Finally, the random variable that corresponds to differences A2, A4, A5a has the following 

probability density function

4 W  H

— A ± E — e~ ^  te [ 0 ,T -

0  everywhereelse ^

To calculate the expectation of £2 equation (5.64) can be used. Using the definition of the 

expectation of a random variable and the integration formula (5.64), one obtains

-t-cu

e[&3= f
e [ |2]

1
1 _ e-(*+MXr-r)

I

T - x

l — e V A + (i

T - t

0

And finally

E[?2] =
A + JLl

T - T  +
A + jLl

,-(A+/iXr-r)

- { A + f t X T - x )
(5.70)

The last type of the differences left to be considered is A5b. The differences of this type 

correspond to the events of the processes Lu(t) and Ld{t) that are bound by the relationship 

given in (5.35). Therefore, the arrival time r,- that corresponds to an event of process Lu(t) 

and arrival time r /+1 that corresponds to the related event of process Lci{t) are bound by the 

relationship that follows from (5.35):
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n +1 = r t + T -t

Therefore, the differences A5b are not random variables but a constant

A5b = ri+i - n  = r-r; (5.71)

Thus, all components for the equation (5.56) have been identified. The final analytical 

limit form of the average Fn( t),  as given in (5.39), of the time series A produced by the 

algorithm is given as

F \ t)=  £ P r t ElA*(r)J=
fc e { l ,2 ,4 ,5 « ,5 £ > }

E SP. + E I,
* e { 2 ,4 ,5 f l}

(5.72)

The first component of the sum is

1
+

a

ESPr =
X + fi X + jû

T - t +
1

+
1

X + fd A, -\- ju j Xxfj,x

1 +
X + JU\

XjLl
(5.73)

It can be shown, that

_ a(X + /ux) ! - g-<^xr-r)

* 6 { 2 ,4 ,5 fl}  ^ , { 1  |  j a  e ~ ( * + H W - T )

X + JÛ

Therefore, the second component of the sum (5.72) is

1 (T -r  1
Efc I P* =

£ e { 2 ,4 ,5 a }

X ju X + n
- ( A + / / ) ( r - r )

-(A+/0(r-r)
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a ( X  +  /u x )  X  +  ju
1 - \ T - t + 1

X + JU

Xju 14. a  g -<*+*Xr-r)

And the last component of the sum (5.72) is simply

( r - r ) p 56 =(r-r) g(A + /<) e-(^xr-r)

J + g  e-(A+rt(r-r) 
/L + /i,

Substitution of equations (5.73), (5.74), (5.75) in (5.72) yields

1 a  + •
F \ t)

X + ju X + jux
T - T  + - 1 —  +

X + ju X + jj.x
-(A+/0(r-r)

1 I ** c-(^^xr-r)
2 . +

+

1

a(X + fij) A + //
r ~ T  +

1

X + ju
/l/i  ̂+ Q? g _ ( A + / / ) { r _ r )

/i +

g(yl + //) g -t^ x r-o  

^  1 + a  e -W+PXT-r)
X + /ij

+

(T-r)

After certain simplifications F  (t) can be obtained as

1 a
+

F \ t) =
X + ju  Xju

^  ( T - r
X + jux X + jux

X + jux
^X + jux X + /u j  X ju

1 1+

\ + —  e-V+MT-r)
X + yt/j
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The above calculation have been conducted with the assumption that T -t  > 0. Since the 

algorithm does not know T  a priori, it can choose t  such that T -t<0. Assume now that 

T-v<0 and calculate F *(t).

Since T -t<0 the dependency picture on the Figure 5.13 will change as follows

Currently chosen event 
from upstream: r,- 

T - t

 © - ■© ® ---------- © — ©■ ■ © — ►

T - t

Figure 5.16. The events of types 1 and 3 have swapped their roles

It is clear from comparison of Figure 5.13 and Figure 5.16 that the dependency between 

events of processes Lu{t) and Ld(t) became backward from Lu{t) to L(i{t). That means that 

every event of Lu(t) will have a correspondent event of LJj) but in the past, located away 

by time T -t. Since the algorithm looks ahead for a candidate for the pair, the currently 

chosen event’s type will not affect the algorithm’s choice, that is the following events of 

M{t) will be known to be independent of the currently chosen event of N{t). Therefore, a 

separate consideration of N\(t) and Lu(t), as it has been done for the case of T - t> 0, is not 

required.

Analogous to the previously considered case of the area of activeness of the process La{t) 

from a randomly chosen time point t provided that T -t > 0, it is process Lu(t) now that is 

limited in the area of [t, t+ T -f] from a randomly chosen time point t. Similarly to previous 

case of Ld(t), if an event of Lu(t) is removed further than T -t  from the point t, it will be 

known that there will be an event of Ld(t) lying at the distance T -t  into the past from the 

event of Lu(t), and thus masking out the event from Lu(t).

Taking into account the above arguments, the pairs of events taken out by the algorithm 

will be identically distributed random variables with the probability density function 

shown on Figure 5.14 and thus have the mean function given by equation (5.66) with the 

only difference that T -t must be replaced with t-T.
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Since there is only one type of random variables the algorithm will be discovering in the 

case of T -t<0, the equation (5.39) will take the following form

1
+

a

F * ( t ) =
X  +  / j .  X  +  jU \

t - T  +
1

+
1

X  +  jU  X  +  JLl\

1 + a
(5.77)

X  +  H \

Finally, (5.76) and (5.77) together give the full solution for the limit version of the cost 

function (5.38) as follows

1 a 1 1 1 -L
A  +  / / , e - ( X + MX T - T )

t
X  +  j u  X / u

y l  I  )  t
X  +  X  +  /J .\

T
^ X  / j , | X  +  / j . y >4, +  f i

1 a
-L

1+  “  ^  
X  +  / j ,\

\ r - r +  1 +  1 1

* n Y T - r )  

_ - ( A + | i X r - r )
I

X  +  n  X  +  f i ^ X  +  f j .  X  +  f j . \

J

1 1 a  c - ( ^ M X r - T )

X  +  f u i

(5.78)

A typical plot of the above function is given in the following Figure 5.17.

Parameters:

T
Figure 5.17. A typical plot of function (5.78)
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It has therefore been shown that the limit (in probability) (5.39) exists and is finite and its 

analytical form has been identified in the form of the equation (5.78). In order to prove 

the last statement of the theorem it is required to show that (5.78) has a single global 

minimum at the point of T-v=0, or t =T.

Consider again cases T-t>0 and T-v<0 separately. Assume first that T~r>0. In order to 

investigate the properties of the function (5.78), let us introduce the following 

parameters.

a, =
X + fi

a
X +  JUX

, a,
a

Xju
X + JUx Xx/Llx
X + ju X + jux

1 + 1

X + jux X + juJ _

k = X + n  and t - T - z (5.79)

Assume that a>0. It is obvious that a\>0 and a2 > 0  as it follows from the definitions of X

and ju. Let us show that <23 is also greater than zero, e.g. ci3>0 . First let us notice that

a  
Xju

than zero.

>0 , therefore it is sufficient to show that the term in the square brackets is greater

X + jux Xxjux
X + ju X + jux 

(X + /ux ) 3

1 1

^X + jux X + ju j 

Xx/ux (2/1 + /u + jux)

> 0

>0

(5.80)

(/I + jux ) 2 (X + ju) (A + jux) 2 (/I + /u)

(X + jux ) 3 — Xx jux (2/1 + ju + jux) > 0

(X +jux) 3 - (X -a ) ju x(2X + 2jux+ a)>  0 ■=>

(X + jux) 3 -  2X2 jux -  2X/ux - aXjux + 2aXfux + 2a/ux + a 2 jux > 0 =>

X? + ?>X2 /ux +3Xjux + jux — 2AX/ux —2X/ux +ocX{ix + 2ct/ux + cc2 /u,x >0 ^5* 

X3 + X2 jux + Xjux2 + jux3 + aXjux + 2ajux2 + a 2 jux > 0

Obviously, the above statement is true. It is therefore shown that «3>0 .
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Using (5.79), the function (5.78) can be rewritten in the following form.

= a, + (a2< - a 3V
1 + a2e

(5.81)

where a\>0 , a2>0 , aj>0 , k> 0  and ?>0 .

Using elementary calculus and transformations, it can be shown that the condition f\t)= 0  

leads to the following equation.

—At ^e kt = — t -
^ 1 ka, ka, ^ 1 L +---1

ya2 a\ a2 ,
(5.82)

Let us denote by y{t) the right part of the above equation. Then y(t) is a linear function.

The condition t=0 yields y(0)=
 ̂ 1 ka, ka, ^

\^a2 a2 a2 j
<0 , and the condition y(t) = 0  yields

1 dt=— + —  + a, >0. Therefore, the functiony(t) can be represented as in Figure 5.18. 
k a2

K0)= -  _  + _ f +

Figure 5.18. Schematic view ofy(t)

It is now obvious, that since e kt is a monotonous decreasing function for t>0, equation 

(5.82) has a single solution. It is illustrated in Figure 5.19.

y(t)

k  (  1 k a 3 le a ,
y(0=—H — + - f + —L

a ,  \  a 2 a 2 a 2

Figure 5.19. Single solution of equation (5.82).



It has therefore been shown that function (5.78) has a single extremum at t=tm or, equally, 

r=Tm, where rm- T - tm on the interval T -t>0. It can be easily shown by checking the sign of 

the derivative f ’(t) that the extremum is maximum. Since F*(t) is increasing on the 

interval (-oo,-rm) and decreasing on the interval (r,„, T], it is required to show that 

F*(-co)>F*(7). It is clear that

Then,

F '(T )

x  + M\ i + X + (U\ Xlji] f  1

X + ju Xju X + ju X + /ij KX + jux
+

X + ju , and

lim F \ t ) =
X + ju

X + y£/| =3.+

1 TT
1

+ \ X\JU\
X + ju Xji X + ju 3.+

X + ju

X + ji{ =1+'w'S
1 X + ji\ X\ji\

X + ju Xju X + ju X + JU\

1 1------- 1-------

<
X + ji

==>

1 1------- 1------- <1

1 - a a{X + juy)
X + ju X/u 

a a(X + ji{)

X + //j /Ij ju]
+  ■

X + ju X + ju^\^X + jû  X + ju

X + ju Xju
X + ju j Xl jû I 1

■ +

X + ju X + jî  >X + jî  X + ju

<1

<0 (5.83)

The term in the square brackets has been already shown to be greater than zero 

(inequality (5.80)), therefore, the above inequality (5.83) holds. It is important to notice 

that the equality (5.83) holds if and only if <2 = 0  (which is a trivial case).

Now, assume that T-t<0. To prove the theorem it is sufficient to show that

1 + a

F \ r )  =
X +  JJ, X +  yt/j

T - T  + 1 + 1

X + fi X + yWj
>

1 + a -(A+z/Xr-r) X + jU
(5.84)
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1 a  
+

A  +  jU A  +  JUJ

1 1
t - T  + --------- +

A  ju X  + / / j

- ( A + M t - T ) l (
1 I a  g~(A+̂ )(r~r)

>
A  +  JU l / l  +  yddj

l l a

1 a+
X + j»i X + /./j

A + yWj

l lr - T  +------- + ■
/ l  +  JU X  +  yddj

, - ( A + / / ) ( r - D

I , a  c-(*+PXr-r)
A  +  yi/j

2  , a  c - ( A + / / ) ( r - p

A + /q

1 a:+
A  +  JLl A  +  yddj

1 + _ ^ _ e -(A+//)(r-D 
A + yWj

r - r  + - J —  + 1

1 I a  c-<^xr-D
>0:

A  +  yddj

A  +  jj. A  +  / i j
_(A+//)(r-r) 1 1 a  e -(A+^)(r-r)

A  +  yW A  +  / /  A  +  / / ,
>0

l  +  _ _ ^ ___ g-(A+/«Xr-r)

A  +  yddj

a
A  +  yddj

r - r + — L -  + 1 l

a
A  +  yddj

r - r  +

A  +  ydd A - f y d / j  A  +  f.i 

1

A + yddj
-(A+/0(r-H > 0 ,

e-(A+̂ Xr-n > Q

(5.85)

which is obvious ( f>T). The equality in (5.85) holds if and only if a= 0.

It has been shown that function (5.78) has a single global minimum at the point of v=T, 

provided that a>0. In the case a=0, function (5.78) becomes a constant, which is a 

special case and is of no interest. The proof is complete.

5.4.4 Applicability of the simplified traffic model

The model described above makes two main assumptions regarding traffic flow and 

travel time as a random variable. First, the processes involved in the calculations have to 

be homogeneous Poisson processes. The adequateness of modelling road traffic as a 

Poisson process started to be investigated in the fifties [Gerlough, 1955], [Gerlough and 

Barnes, 1971]. It has been shown that light highway traffic reasonably fits into the



Poisson process model. Many other models of traffic have been proposed [Cowan, 1975]. 

Unfortunately, it is well known from the theory of stochastic processes, that the Poisson 

process is the only renewal process with the property that a sum of two independent 

Poisson processes is also a Poisson process. Derivation of closed analytical results for the 

other renewal processes is cumbersome, if at all possible [Karlin, 1975].

The second assumption is that the travel time of vehicles traversing the distance from A 

to B is constant. This requirement was necessary in order to keep the downstream process 

being Poisson. In case of a non-constant travel time, the convolution of a gamma- 

distributed arrival times at point A with a non-constant time (which would require a 

normal-like distribution) will yield a distribution that is certainly not gamma distribution 

and therefore, the downstream fails to be Poisson. This assumption is also reasonable in 

very short distances, as is the case with urban links.

5.5 Conclusions

In this chapter, a review of the current state of the art in solving the problem of travel 

time estimation from traffic data has been reviewed. A conclusion has been made that 

most algorithms have certain disadvantages for the application in urban areas. Following 

the review, a problem of travel time estimation for an urban link has been formulated and 

novel methodology of solving the problem has been developed. The methodology has 

been proven analytically for a simplified traffic model using the theory of stochastic 

processes.

The following Chapter 6  will present the results of empirical study of a real urban 

network based on the automatically collected traffic data and using the software and 

theoretical methodology developed during the course of this study.



Chapter 6 

Empirical Study of Urban Traffic

6.1 Introduction

Previous chapters have developed necessary tools (Chapter 4 has developed the software 

environment for system modelling and simulation and Chapter 5 has developed a novel 

methodology of travel time estimation on urban areas) in order to facilitate the empirical 

study of real-life traffic system. In this chapter, such an empirical study of urban traffic 

will be carried out.
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Figure 6.1. Mansfield SCOOT-controlled region

Chapter 3 has introduced the SCOOT system since it provides data for the current study. 

The SCOOT system used in this study is installed in a town of Mansfield, UK. The
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SCOOT controlled region map is given on Figure 6.1. References to the links on the map 

will be made throughout this chapter.

The structure of this chapter is as follows. In the first section, necessary software modules 

will be developed in order to facilitate the SCOOT data processing and analysis. Then 

follows a set of demonstrations on the use of developed data processing environment 

with integrated modules for SCOOT data processing and analysis. Several standard data 

analysis procedures will be carried out and results presented. Section 6.4 will be solely 

devoted to the implementation of the travel time methodology developed in Chapter 5. 

Empirical study of travel times using Mansfield SCOOT data will be given in Section 

6.5. The study of travel times in urban links will be finalised in Section 6 .6  with the 

estimation of its components as given in Chapter 5, Section 5.5.1. Finally, the chapter 

will be closed with conclusions.

6.2 Pre-processing of SCOOT data

Raw SCOOT messages in the form of textual strings are not very convenient format for 

carrying out data analysis. It is more desirable that messages are processed into higher 

level data structures and the informative fields of the messages are properly parsed and 

filled in to the structure. Moreover, low level messages are often redundant in a sense that 

they are generated but do not carry useful information (filled in with dummy data). The 

two message types, described in Chapter 3, M14 and M l9 are such messages. Therefore, 

it would be beneficial to filter out empty messages while creating proper information 

stream of useful messages to the data analysis algorithm.

Even though this study uses only two types of SCOOT messages, it is a good practice to 

develop a pre-processing software in such a way, that it would allow, in principle, 

processing any other kind of messages. Such pre-processing software has been developed 

as a functional module for the data processing environment and will be described here.

6.2.1 The core pre-processing software

The SCOOT messages pre-processing software will be developed as a package named, 

m o d u l e s . s c o o t . d a t a .



Since all SCOOT messages have spatial attributes, such as the node, link and detector 

information, the first data structure to be defined is the one that describes such spatial 

attribute. Such structure has been designed and initially called NodeName. The 

following model represents the NodeName class.

NodeName

getArea()
getNode()
getLink()
getDetector()
getRaw()

From the model of the NodeName class, it is clear that the spatial paratemer of the 

SCOOT messages have the following attributes: Area, Node, Link and Detector, as 

follows from the corresponding methods.

The basic data structure that will be associated with a SCOOT message is named 

ScootData. ScootData is implemented as a Java interface and describes a set of 

methods that all implementing classes should have. The methods of ScootData 
interface are designed to reflect the common fields that all SCOOT messages possess. 

The following model of the interface describes its structure.

«interface»
ScootData

getTime() 
getNode() 
getTypeQ 
getMessageT ype() 
getRawQ

{NodeName}

Since ScootData is an interface, it is an abstraction of the real SCOOT data objects. 

There is no requirement that data objects correspond to SCOOT messages since some 

SCOOT messages might produce data of different nature. An example of such message is 

M14 which carries SCOOT modelling results in the form of predictions of the lengths of 

the queues and accompanied signal control outputs, which can be considered as 

independent piece of information. Based on this argument, a decision to split M14 

messages into two SCOOT data objects has been made. The detail of implementation will 

be presented later in this section.
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The minimal implementation of the ScootData interface is called ScootMessage. 
ScootMessage is used to parse the header of any SCOOT message and leave the type- 

specific information of a message in its raw form.

To satisfy the requirement for the pre-processing core to be able to process any kind of 

SCOOT message, a standard Java technique of using a class factory has been employed. 

A class factory is normally a class, which is used to create instances of other classes 

based on the given specification. The class factory technique extensively uses interfaces 

and abstract classes mechanisms. A class factory has been implemented to create 

instances of SCOOT data objects according to the availability of implementation of the 

classes for particular messages types. In case when no implementation is available, the 

most general form of a SCOOT data object, implemented by the ScootMessage class 

is used. The following diagram gives an outlook on the SCOOT class factory structure.

«class»
ScootDataFactory

getScootData(rawMessage) _ { ScootDataQ }

When g e t  S c o o tD a ta  (raw M essage) method is invoked, it parses the 

raw M essage into an instance of the S co o tM essag e  class, from which the type of the 

message can be obtained (as a string in the form of ‘M14’, CW 03\ etc.). After the type of 

the message has been obtained, the factory will try to locate a class with the following 

name ScootData<TYPE>, for example, ScootD ataM 14 for M14 messages. In case 

if such class is not found, the factory will return the S co o tM essag e  object, since no 

further processing can be done. If ScootData<TYPE>, has been found, the factory will 

invoke a static method called p r o c e s s ,  which is specified as follows

ScootData [] process(ScootMessage msg, HashMap store)
throws WrongTypeException, BadDataException;

The above method of the ScootData<TYPE> class will know how to parse that type of 

message into an instance of itself or other related SCOOT data objects. Since it is 

possible that one raw message is processed into more than one instance of SCOOT data
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objects, the p r o c e s s  method returns an array of such objects. 

W rongT ypeE xcep tion  and B a d D a ta E x c e p tio n  are thrown if the process has 

been invoked for a different type of message or the format of the message is violated.

It follows from the use of factory as described above, that there is no requirement to 

implement ScootData<TYPE> classes for all possible types of messages since basic 

pre-processing is implemented as a S co o tM essag e  class. On the contrary, it is easy to 

add the functionality for the system to process the required message type by simply 

creating a class with the name of the form ScootData<TYPE> and implement the 

p r o c e s s  method as given above.

The above scheme has been implemented, tested and shown to be both flexible and 

efficient.

6.2.2 Pre-processing of M14 and M19 messages

Pre-processing class factories have been implemented for the two message types, M l4 

and M l9, which will be used in further analysis.

M14 processing factory, ScootDataM14, produces two objects of SCOOT data, 

namely the SCOOT modelling data object and SCOOT control data object. The SCOOT 

modelling data is returned as a dynamically created instance of ScootDataM14, with 

the fields filled with data parsed from the raw message. The following model presents an 

instance of ScootDataM14 class.

In addition M14 processing factory creates instances of ScootDataSignal class, 

which represents the changes in signalling stages at a particular link.

«class»
ScootDataMl4

ScootData

getlvl()
getOcc()
getLQ()
getBQ()
getEBQ
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ScootDataQ
«class»

ScootDataSignal

getSignalO
isGreen()
isRedQ

ScootDataSignal provides methods (as shown above) that allow checking the 

current signalling stage at a link.

M19 processing factory, ScootDataM19, searches non-zero occupancy strings in the 

flow of occupancy pulses generated by a particular detector. Let us get back to Figure 3.4

Detector N60331H1

, \  | | i | | , ^  Generated
00,0000,011 fOOOQOOOQOOOQOOOOpOOOpl 1 ljl 10Q00 ' ’ occupancy pulses 

-1 1 1 1 1 1 1 ►
37 38 39 40 41 42 43 44 45 Time

Sa 08:26:38 Ml 9 N60331H1 DETECTOR STATE 0111
Sa 08 :26:39 Ml 9 N60331H1 DETECTOR STATE 0000
Sa 08:26:40 M19 N60331H1 DETECTOR STATE 0000
Sa o CD to G\ H Ml 9 N60331H1 DETECTOR STATE 0000
Sa 08:26:42 Ml 9 N60331H1 DETECTOR STATE 0000
Sa 08:26:43 Ml 9 N60331H1 DETECTOR STATE 0000
Sa 08:26:44 Ml 9 N60331H1 DETECTOR STATE 0111
Sa 08:26:45 M19 N60331H1 DETECTOR STATE 1100

The Ml 9 factory will receive a flow of messages as shown above and try to reconstruct 

the string of pulses as pointed in the figure under “Generated occupancy pulses”. Having 

constructed a continuous string of pulses, the factory will extract strings that contain 

continuous strings of l ’s, as 111 and 11111 on the figure, and create the instances of 

ScootDataM19 initialised with the time of a string of l ’s appearance and the number 

of pulses in the string. Thus, from the example above two M l9 data objects will be 

created:
Time N° of pulses

08:26:38.25 3

08:26:44.25 5

The model of Ml 9 data class is given below.
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ScootDatao «class» 
ScootDataM 19

getPulses()

6.2.3 SCOOT message pre-processing module for the data processing environment

A module for pre-processing SCOOT messages has been implemented as part of 

modules . scoot. data package and shown in the following Figure 6.2.

The module accepts SCOOT messages in their raw textual form on its input and produces 

a stream of ScootData objects that correspond to the parsed messages. In order to 

process the textual messages, a SCOOT data processing factory, as described in Section

6.2.1, is used.

The raw messages can be obtained from various sources such as files, network, keyboard, 

or directly from SCOOT as described in Section 3.3.4. A typical scheme of using a file 

reader and SCOOT pre-processing modules is shown on the following Figure 6.3.

M19 N60311E1 16-Feb-1999 03:09:27
M19 N60321I1 16-Feb-1999 03:09:27
M19 N60331N1 16-Feb-1999 03:09:28

S C O O T
SCOOT data pre-processor

Figure 6.2. The look of the SCOOT messages pre-processing 
module for the data processing environment

File string reader SCOOT data pre-processor 
SCO O T

H  scootPririter
A.

ScootPrinter

Figure 6.3. A fragment of a model that uses a file reader and 
SCOOT data pre-processor
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6.3 Use of the processing software in traffic analysis

The developed software for data traffic processing can be used in many standard traffic 

analysis procedures. As examples, two procedures -  headways study and traffic profiles 

will be presented here.

Headway is the time gap between successive vehicles in a traffic stream. Analysis of 

headways is used in many transportation decision making processes, such as saturation 

flow and traffic signals design [Adams, Hummer, 1993], or gap acceptance studies 

[Troutbeck, 1993].

A module for extraction of headways from traffic data stream has been developed and 

tested. As an example of a module implementation, full source code of the module is 

given in Appendix C, Example 3. Appendix B, Figure B.4 shows the screen of the data 

processing environment with a model that implements headway data extraction and 

visualisation using plot, histogram and display modules. From the headways plot, it is 

noticeable how traffic control affects formation of platoons. Platoons of cars correspond 

to the low little changing areas on the plot and peaks represent a delay induced by the 

change of the signalling stage at the intersection. A typical distribution of headways is 

given on the following Figure 6.4.
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Traffic profiles also play an important role in traffic control strategies. For example, 

SCOOT can use historical traffic profile data to optimise traffic signals in case if detector 

hardware gave a fault. Also, traffic profiles give a global outlook on changes in traffic 

volumes depending on season, weather and other factors.

A module for construction of traffic profiles using SCOOT data has been developed (see 

example screen of the data processing environment with profiling module in Appendix B, 

Figure B.6 and Figure B.7).

Typical traffic profiles for weekend (red) and working day (blue) are shown in the 

following Figure 6.5.

Traffic volume
(number of vehicles)

Universal lime (in

Figure 6.5. Example of traffic profiling module output visualised by Plot module. Data
used is taken for the N60411M1 detector for 16th January 1999, Saturday (red) and 
19th January 1999, Tuesday (blue) and aggregated over 2 minutes intervals.

Other modules for traffic analysis can be developed as required in particular application.

6.4 Implementation of the travel time estimation procedure

Travel time estimation procedure has been implemented as a functional module to the 

data processing environment. It has one input, as shown in Figure 6.6, and three outputs.
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A stream of S c o o tD a ta  objects is received on the input and three types o f information 

regarding travel time estimation are sent out from the three outputs.

ScootTravelTime

Figure 6.6. Travel time estimation module 

The following parameters are used within the travel time estimation module.

Table 6.1. Parameters of the travel time estimation module

Parameter name Type Description

UPSTREAM String Upstream detector name

DOWNSTREAM String Downstream detector name

TW long Time window within which the module 
will collect input vectors (in seconds)

DS boolean Do stops for every new time window 
(true) or not (false)

CS boolean Take signalling stages on the uplink into 
account (true) or do not (false)

LSB long Left boundary for time shifts (in 
milliseconds)

RSB long Left boundary for time shifts (in 
milliseconds)

STEP long Step of the shift (in milliseconds)

The scheme of the module’s functionality is as follows. Once the parameters have been 

set up, a module is ready to carry out travel time estimation. The first two parameters, the 

upstream and downstream detector names are necessary parameters. Considering Figure

6.1, examples of couples of detectors can be given as N60311G 1-N60321B 1, N60321B1 -
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N60331F1, N60331F1-N60421B1, etc. One module estimates travel time for just one 

couple of upstream-downstream detectors. Time window (TW) is the time interval during 

which input data will be collected into two input vectors of event arrival times (refer to 

Chapter 5 for details on the requirements for the travel estimation procedure). If CS 

parameter is set to ‘true’ then the module will discard the downstream arrival events 

during the red phase of the signals on the uplink. No discarding is done if CS is set to 

‘false’. After the flow of SCOOT data objects is initiated on the input of the module, the 

module starts filtering M l9 objects that correspond to upstream or downstream detectors 

and building up the upstream and downstream arrival events vectors. After the arrival 

time vectors have been built over a period of time equal TW, the input is blocked and the 

algorithm of travel time estimation is started. The algorithm implemented as described in 

Section 5.4.2 of Chapter 5 is a local optimisation algorithm.

The algorithm produces three types of results. The first result is the cost function of time 

shift. The function is represented as an array of two-dimensional points (x,y) where x is 

the time shift and y  is the value of cost function for that shift. The argument x which 

minimises the function is the estimation of the median of travel time variable, as 

described in Section 5.4.2, and is the point estimation of the link travel time. This is the 

second type of result. The third result is the series of time differences produced by the 

algorithm for the shift that minimises the cost function. This series can be used for 

estimation of travel time probability distribution or other characteristics.

After the above results have been obtained, the module forward them to the outputs. 

Thus, the first output corresponds to the cost function, the second corresponds to the 

series of time differences and the third corresponds to the point estimation of the travel 

time. Several experiments of link travel time estimation have been carried out for some 

links of the Mansfield SCOOT controlled region showed in Figure 6.1. The results are 

outlined in the following section.

6.5 Empirical study of travel time on urban links

The following set of travel time estimates has been obtained for the pair of detectors 

N60331F1 as the upstream detector and N60421B1 as the downstream detector. The time



window was chosen to be one hour (3600 seconds) and the cost functions were obtained 

for time shifts from the interval [0, 40] seconds with the step of 0.25 second (lowest 

resolution of the data). The following set of plots presents the cost functions calculated 

over different times (one hour window).

Tuesday, 19 Feb, 1999 
3:00:00

Tuesday, 19 Feb, 1999 
5:00:00

Tuesday, 19 Feb, 1999 
6 :00:00

Tuesday, 19 Feb, 1999 
7:00:00

Tuesday, 19 Feb, 1999 
8 :00:00

Tuesday, 19 Feb, 1999 
10:00:00

Tuesday, 19 Feb, 1999 
9:00:00
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Tuesday, 19 Feb, 1999 
12:00:00

Tuesday, 19 Feb, 1999 
11:00:00

».«7«

tm

Tuesday, 19 Feb, 1999 
14:00:00

Tuesday, 19 Feb, 1999 
13:00:00

Tuesday, 19 Feb, 1999 
15:00:00

Tuesday, 19 Feb, 1999 
16:00:00

Tuesday, 19 Feb, 1999 
17:00:00

Tuesday, 19 Feb, 1999 
18:00:00



Tuesday, 19 Feb, 1999 
20 :00:00

Tuesday, 19 Feb, 1999 
19:00:00

Tuesday, 19 Feb, 1999 
22 :00:00

Tuesday, 19 Feb, 1999 
21:00:00

Figure 6.7. Cost functions calculated for different times of day. Link N60331F1- 
N60421B1, 19 February, Tuesday, 1999.

It is clear from the above plots that the cost functions all have minimum at about 20-25 

seconds. The following plot demonstrates the point estimates of travel times that 

correspond to each plot above.
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T ravel tim e estim ates  
(in m illiseconds)

T im e o f  day 
(in seconds)

The values of travel time estimates are given in the following table (in seconds).

Table 6.2. Values of travel time point estimates

20.75 22.00 23.25 22.25 24.75

24.50 24.00 25.00 23.25 21.25

23.50 23.25 19.50 23.00 21.75

25.50 22.50 23.00 24.25 23.25

The set of time differences used in calculation of the cost function can be analysed 

separately and can provide useful information on the distribution of travel time as a 

random variable. Figure 6.8 presents the histogram of the series of differences produced 

by the algorithm.

ulL

Figure 6.8. Histogram of the time differences produced by the algorithm that 
correspond to the minimum of the cost function
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The mean value of the series of time differences for the above link is -0.0475 and the 

standard deviation is 6.31. Since the series of time differences contain noise together with 

travel time corresponding differences (see Chapter 5 for details on related and non-related 

time differences), the value of the standard deviation is higher than the real deviation of 

travel time. Thus, it can be said that standard deviation of travel time is not higher than 

6.31 for the above case.

From Table 6.2 the mean travel time can be calculated. The result is 23.025 seconds with 

standard deviation of 1.5 second. This gives another estimate of the real deviation of 

travel time random variable.

It can be mentioned that the travel time estimation methodology does not make any 

assumption on the mutual location of the upstream and downstream detectors relatively to 

each other. Therefore, the methodology can be applied to estimate all types of links, the 

straight link and the turning link. The following results show the cost functions calculated 

for a ‘turn-right’ type of link, namely from N60311K1 to N60321C1 (see the region map 

in Figure 6.1). The link must have smaller travel time than previously considered link 

since the upstream detector is placed immediately before the junction (turning vehicles 

counter). Also, since the upstream detector counts only turning vehicles, the cost 

functions are expected to be clearer than the ones of the previously considered link. The 

following plots confirm the above expectations. The cost functions given in Figure 6.9 

have been calculated over the period of two hours and using the data collected on the 19th 

February (Tuesday), 1999.

Tuesday, 19 Feb, 1999 
03:00:00-05:00:00

Tuesday, 19 Feb, 1999 
05:00:00-07:00:00
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Tuesday, 19 Feb, 1999 
09:00:00-11:00:00

Tuesday, 19 Feb, 1999 
07:00:00-09:00:00

Tuesday, 19 Feb, 1999 
11:00:00-13:00:00

Tuesday, 19 Feb, 1999 
13:00:00-15:00:00

-

Tuesday, 19 Feb, 1999 
17:00:00-19:00:00

Tuesday, 19 Feb, 1999 
15:00:00-17:00:00

Tuesday, 19 Feb, 1999 
19:00:00-21:00:00

Tuesday, 19 Feb, 1999 
21:00:00-23:00:00

Figure 6.9. Cost functions for the ‘turn-right’ type of a link: N60311K1 -  N60321C1, 
19th February (Tuesday), 1999. Time windows interval is 2 hours.

Clearly, the minimum of the functions point to the same neighbourhood of about 10 

seconds. The following plot shows the cost function calculated for all the day.
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Figure 6.10. Cost function for the ‘right-tum’ type of a link: N60311K1 -  
N60321C1, 19th February (Tuesday), 1999. All day cost 
function.

All estimates of the travel time for the link N60311K1-N60321C1 throughout the day are 

given in the following plot.

Travel time
in milliseconds)

Time of day 
(in seconds)

73.242 1 78.021

Figure 6.11. Plot of travel time estimates for the ‘right-tum’ type of a link: 
N60311K1 -  N60321C1, 19th February (Tuesday), 1999.

The values of the travel time estimates are as follows.

19,25 10,25 11,00 09,75 10,00 10,00 09,00 09,75 07,25 09,75 
10,50 09,75 06,75 09,50 09,25 10,75 11,25 10,25 11,50

The mean value of the estimates is 10.29 seconds and standard deviation is 2.47 seconds.
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Although some similarity can be found in all time series collected from the detectors of 

the same SCOOT controlled region (since SCOOT operates on the same cycle length in 

all region), the cost functions calculated for unrelated series are more irregular. The 

following plot demonstrates a cost function calculated for such a link.

Figure 6.12. Cost function of unrelated series. A link: N60311K1 -  

N60321C1, 19th February (Tuesday), 1999. Calculated over 

all day.

Despite the similarities between any two series taken from a region controlled by SCOOT 

due to its cyclic nature, the global minimum of the cost function points to the travel time 

if the series are related. The following plot (Figure 6.13) demonstrates the same cost as 

shown Figure 6.7 but in a bigger scale.

It is clear that the global minimum points to the real travel time, since only this time shift 

provides the best match between the series even among the similar cyclic profiles.

The model of the travel time estimation procedure used in the above experiments is 

shown in Figure B.8 of Appendix B.
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Figure 6.13. Cost function of link N60331F1-N60421B1 in a bigger scale. Several 
minimums point to the similarities due to cyclic nature of the series. 
The global minimum points to the “best match” between the series. 
Time shift varies from -4 minutes to 4 minutes. The global minimum 
is reached at time shift equal 24.25 seconds.

6.6 Urban Travel Time components

In Chapter 5 a model of an urban link has been given and the link travel time has been 

defined as a sum of two components, namely the travel time from the upstream detector 

to the stop line and from the stop line to the downstream detector. The full travel time 

between two detectors (defined as Tt -  see Figure 6.14) has been studied in previous 

sections.
DETECTORS

Tt

Figure 6.14. The urban link model and travel time components

STOP LINE



In some applications one is interested in Tsl rather than Tt- An example of such an 

application is the SCOOT traffic model, which strongly relies on the T Sl parameter. T Sl 

is typically provided to SCOOT as a constant at the time of installation. Another use of 

T Sl  parameter is the estimation of turning movements that is based on tracking individual 

vehicles rather than on the analysis of aggregated traffic flows. It is therefore important to 

estimate this parameter from traffic data.

If only counter data is available it is impossible to distinguish the travel time components. 

In this case additional information is required. Fortunately, if information on signalling 

stages at the junction is available it becomes possible to carry out the estimation of TPc 

parameter. A Tpc component estimation scheme based on the knowledge of signalling 

stages has been developed. The main idea behind the scheme is the correlation of the time 

of change of the signal from “red” to “green” with the time of arrival of the first vehicle 

to the downstream detector.

The estimation requires knowledge of signalling times and the knowledge that there has 

been a queue formed during “red” phase of the traffic light. Signalling time series is 

available directly from SCOOT (in M14 messages). However, the knowledge regarding 

the presence of a queue at the stop line during the “red” phase of the signals is uncertain, 

as there is no information regarding the queue growth process. Lane occupancy 011 the 

upstream detector cannot be used as indicator of the queue growth as the travel time 

between the upstream detector and the stop line is unknown and therefore the moment of 

time when a vehicle has joined the queue is unknown as well. For example, at the time of 

arrival of the vehicle at the end of the queue the signalling stage can change and at that 

moment queue will not exist.

The possible solution to this problem is to collect statistics of estimations under the 

assumption that during busy hours the presence of a queue is more likely. An algorithm 

based on this assumption has been developed and is described below.

The basic idea of the algorithm is to collect a set of time differences when signal changes 

from “red” to “green” and the first car arrives at the downstream detector. After a set of 

such differences has been collected, it can be analysed statistically. So, the algorithm



consists of two stages. The first is the stage of data collection (time differences) and the 

second stage is data analysis (extraction of information about T p c ) .  During data collection 

stage, the algorithm watches the data flow from the SCOOT and extracts relevant pieces 

of data (differences) from the main data flow. This stage is time-consuming and requires 

big volume of SCOOT data (not less then one-day data for robust estimation) to be 

processed as every SCOOT cycle produces not more then one time difference. The data 

analysis stage involves statistical analysis leading to the identification of the parameter 

T p c -

The data collected at the first stage necessarily contains some poor estimates representing 

times measured for vehicles that were not stationary at the time of red-green transition. 

The set needs to be therefore analysed statistically. The statistical analysis carried by 

data-processing algorithm, relies on assumption that the queue at a stop line is more 

common situation than free flow that is not being stopped at the stop line. This 

assumption appeals to common sense and the fact, that on a busy road normally at least 

one car is being caught by ‘red’ signal, which is enough for the algorithm to work 

properly.

A set of experiments has been carried out on the data collected for four days. Figure 6.15 

shows histograms that represent the frequencies of appearance of particular values 

extracted by the data-collecting algorithm. The histograms clearly show domination of 

values in the time interval between 2.5 and 7.5 seconds with the maximum frequency at 

approximately 5 seconds.

Figure 6.15. Histograms for Tpc travel time component estimates (link 

N60331F-N60421B1, four days data)
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Obviously, the above estimates of Tpc component cannot be used directly to estimate Tsl 

since TPc and Tt have been estimated for different regimes of traffic flow; Tt is estimated 

from free-flowing traffic regime and TPc is estimated from stop-and-go traffic regime. In 

order to translate TPc into equivalent to free-flowing traffic, it has to be corrected taking 

into account the acceleration of the vehicle from stopped to full-speed moving. This 

problem requires further investigation and is proposed as an extension of this research.

After both parameters, T t  and T Pc ,  are estimated, the third component, T Sl , can be 

derived using the following relationship (6.1) between the three parameters.

T t = T Pc + T s l  ( 6 . 1 )

A particular method of obtaining Tsl from Tt and TPc will depend on the representation 

of the estimates of Tt and TPc. For example, Tt and TPc can be represented as fuzzy 

numbers with membership function estimated from traffic data. Then Tsl will be 

obtained using fuzzy addition.

6.7 Conclusion

In this chapter, SCOOT data processing package has been developed for the data 

processing environment. A number of traffic data analysis procedures have been carried 

out as a demonstration of the potential of the developed software.

Travel time methodology has been implemented as a module for the data processing 

environment. A set of experiments has shown that the methodology indeed works as 

anticipated. In addition to the point travel time estimation, the algorithm provides 

additional information, which allows estimation of other useful characteristics of the 

travel time random variable.
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Chapter 7

Conclusions and further research

7.1 Concluding remarks

The main purpose of this research was to investigate techniques for data processing in the 

area of Transportation Research. Data processing and analysis techniques have been 

under development for many years but it is apparent that general data analysis is not 

always sufficient in application to a specific problem.

One particular problem within the area of transportation research has been identified, 

namely the travel time estimation problem. Although several methodologies have been 

developed up to date to solve the problem, the solutions are not satisfactory in some 

applications. As it has been discussed, in modern traffic systems the information about 

current traffic conditions must be obtained with the maximum possible accuracy and on a 

real-time basis. Only availability of such information can improve the quality of traffic 

control. New levels of control, such as trip making decision support, also require most 

accurate information and assessment of uncertainty associated with such decision making 

process.

In this research, a novel methodology for travel time estimation has been developed. It is 

shown to be advantageous over the previously developed techniques and provides travel 

time estimates with the resolution of traffic data. That means that the accuracy of the 

estimates is only limited by the underlying measurement hardware. The developed 

methodology has opened new ways of improving other traffic-related parameters and 

operational characteristics, such as the origin-destination matrices. The possibilities 

opened by the methodology developed for the travel time estimation are discussed in 

Section 7.2.

An investigation of available software tools for data processing and analysis has been 

carried out. It has shown that most of the available general-purpose data analysis, system 

modelling and simulation packages do not provide satisfactory functionality to support
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real-time traffic data processing. This problem has been addressed with the development 

of a novel software environment that is free of the identified disadvantages of the existing 

packages. This software has been successfully used in the simulation study of arrival 

processes and travel time estimation procedures.

7.2 Further research

Although traffic processes have been investigated extensively, there are still many 

unsolved problems. This is primarily because neither microscopic nor macroscopic traffic 

abstractions capture fully the complexity of real-life traffic. Microscopic models deal 

with modelling detailed behaviour of individual cars and may be considered as numerical 

methods of solving complex dynamical systems. This makes it impossible to use such 

models in the context of real-life processes which have undetermined stochastic 

character. Macroscopic models, on the other hand, deal with aggregated traffic processes 

as modelling objects. However, the macroscopic level of aggregation frequently renders 

such models too far removed from reality. They can be used to give approximate view of 

traffic behaviour, but cannot be used to make accurate short-time predictions of traffic.

The present situation on the roads is such, that traditional approaches of controlling and 

managing traffic have exhausted their potential. It is apparent, therefore, that new traffic 

management and control techniques need to be developed. A potential for improvement 

of the quality of the current traffic management and control seems to be in the use of all 

available traffic infonnation and utilisation of all layers of control of traffic. The research 

into the understanding of traffic information has been by this time the use of traditional 

schemes of data analysis and system modelling. It is now apparent that the transportation 

research can greatly benefit from the recent advances in the development of information 

science, such as granular and soft computing, computational intelligence, fuzzy systems 

and neural networks. Some of these new techniques of handling information have been 

applied to solving specific transportation problems over two decades ago [Mamdani, 

Pappis, 1977]. However, there are still many problems solution of which can greatly 

benefit from the advances in the information science.
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In this research, a step towards a better understanding of traffic processes has been made. 

The developed methodology of travel time estimation allows estimation of travel times 

with a greater accuracy and also provides additional useful information on traffic 

patterns. The next step in the development of the methodology will be to investigate the 

profile of time differences produced by the algorithms of the methodology in order to 

separate useful travel time measurements and random noise. It is also possible, from the 

series of time differences, to identify individual vehicles, with some measurable

uncertainty, that traverse the link from upstream to downstream detectors. This 

information will allow tracing individual vehicles across the road network and thus, allow 

much more accurate estimation of the origin-destination matrices. Assessment of 

uncertainty associated with such estimation is also facilitated by the developed 

methodology. Uncertainty, shown to be a multi-dimensional entity, will be quantified not 

only by its probabilistic appearance (entropy), but also as a confusion, dissonance, 

nonspecificity and fuzziness. Understanding of uncertainty associated with the 

information extraction algorithms will enable the tool to manage this uncertainty and use 

that knowledge for better control of traffic. Summarising the above thoughts, the further 

research directions can be outlined as follows.

• To investigate the series of time differences produced by the algorithm and 

develop techniques for extraction of travel time characteristics from the series.

• To investigate the feasibility of the use of the series of time differences for 

identification of individual vehicles that traverse a link

• To investigate the dimensions of uncertainty associated with the above 

estimations

• To investigate the ways of reducing the uncertainty or the uses of the knowledge 

of uncertainty in the decision support system (ATIS)

• Develop novel algorithms based upon the developed travel time estimation 

methodology for very accurate estimation of the origin-destination matrices.

• Develop a traffic and travel information system that will fully utilise available 

information on the current state of the traffic processes across whole network, and 

which will be aimed at providing a new level of control of traffic by affecting trip 

planning process of individual road users.
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This research has also developed a software tool that greatly simplifies a data analysis 

process. The software can also be used in a range of system modelling activities since it 

provides a very flexible environment. There are several directions in which the software 

can be improved and are outlined below.

• Introduction of a hierarchy of modules. That is, a new type of modules will be 

developed. The modules of the new type will not have a Java implementing class 

associated with them but will be a system of the generic DPE modules, which can 

be handled as a module. This hierarchy will greatly reduce the visual complexity 

of modelled systems.

• Introduction of code editor. Since the Java technology allows run-time linkage of 

new classes, such classes can be written, compiled and linked into the system 

right from the system itself. This will eliminate the need for a researcher (or a 

programmer) to edit and compile the module classes outside the environment.

• At present time, classes camiot be reloaded run-time. This problem requires 

investigation of the mechanism of Java class loaders and most likely a new class 

loader will need to be written, which will track the changes of the byte-code of the 

module classes and re-load the classes whenever it is necessary. This will 

eliminate the need to restart the system whenever the class of a module has been 

modified.

• Development of new modules. Several packages will be helpful in the theoretical 

research outlined above, such as fuzzy reasoning modules, neural network 

modules, etc.

• A feasibility of the integration of the environment with geographical information 

systems needs to be investigated. The use of geographical information systems 

can benefit the traffic analysis and visualisation.
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Appendix A 

DataTaker and DataGiver interfaces

This appendix provides a source for the DataTaker and DataGiver interfaces which are 

the basis of any functional module, written for the data processing environment. In order 

to make a module recognisable by the system, the module’s class should implement one 

of or both of the above interfaces.

/*
* O (#)DataGiver.java 1.0 25/06/2002
*

* Copyright 2002 E.Agafonov. All rights reserved.
* PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
* /

package edu.tntu.ism.traffic;

import java.util.*;
import edu.tntu.i s m . t r a f f i c ;
j  * ★
* This interface specifies methods and members that the user's module
* should implement in order to make it recognisable by the system
* as a data provider
*
* (aversion 1.0 25/06/2002
* @author Eugene Agafonov
*

* ©see DataTaker
* ©see Structured
* @see Parameters
* @see DataMessage 
* /

public interface DataGiver extends Structured { 
j  * *
* Variable in the parameters that specified the module's name
* {it will be used as a label)
* /

String GIVER_NAME="Name";
/**
* @return number of output sockets of the module 
* /

int giverSocketsNumber();
/ * *

* @return type of the specified socket 
* /

String giverGetSocketType(int socket);
/**

* Returns the <code>Parameters</code> object of this
* <code>DataGiver</code>
*
* ©return <code>Parameters</code> object 
* /

Parameters giverGetParameters();
/ * *

* Initialisation procedure. An extrnal <code>Parameters</code> object can
* be passed into the <code>DataGiver</code> so as to use for its own
* parameters (it should be passed unlocked but the <code>DataGiver</code>
* can lock it after filling it in)<p>
*

A-l



* One of the initialise procedures should be called before the
* object is engaged into functioning<p>
*

* @param external external <code>Parameters</code> object to be
* initialised with.
*/

void initialiseGiver(Parameters external);
/**
* This procedure would normally not be called from within the system
* and is left for backward compatibility only. The typical implementation
* would look like the following:<p>
* <blockquote>
* <pre>
* public void initialiseGiver(){
* initialiseGiver(new Parameters());
* }
* </pre>
* </blockquote>
*/

void initialiseGiver();
/**
* This method is fundamental for the <code>DataGiver</eode> module. It will be
* called by the system in order to retrieve data the module
* wants to pass further on. The method should return either <code>null</code>
* if data is not available or an array of <code>DataMessage</code> objects
* whose elements will correspond to the output sockets of the module
* as follows:<p>
* <pre>
* [0] -> socket #0
* [1] -> spcket #1,
* ... etc
* </prexp>
* where [N] represents the elements of the resulting array. <p>
* The elements of the resulting array must be either null, if
* the module does not wish to pass any data to the corresponding
* output, or objects of <code>DataMessage</code> class with data
* of proper type.*
* ©return array of <code>DataMessage</code> objects, each element to
* each output socket
* ©exception DataGiverDone thrown when this module has exhausted its data
* resources (reached end of file or similar conditions)
* ©exception InterruptedException if reading operation has been
* interrupted 
*/

DataMessage [] readNextO throws InterruptedException, DataGiverDone;
/* *
* Resets the module. A chance to re-set its internal variables
* and validate the parameters 
*/

void giverReset();
j  -k -k
* Called upon disposal of the module. Allows to do some final cleaning-up
* (stop executing threads, closing streams etc)
*/

void giverDispose();

* ® (#)DataGiver.java 1.0 13/02/2002*
* Copyright 2002 E.Agafonov. All rights reserved.
* PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.*
*/

package edu.tntu.ism.traffic;
/**
* This interface specifies methods and members which every data
* consumer (receiver) should implement in order to be recognisable by
* the system as a data receiver
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* @version 1.1 12/07/2002
* ®author Eugene Agafonov*
* @see DataTaker
* ©see Structured
* @see Parameters
* ©see DataMessage 
*/

public interface DataTaker extends Structured {/* *
* Variable in the parameters that specified the module's name
* (it will be used as a label)
*/

String TAKER_NAME="Name";

int TAKER_NO_COMMAND=-1; // no commands for the data source
int TAKER_PAUSE=1; // pause the data source
int TAKER_RESUME=2; // resume data source operations
int TAKER_DISCARD=3; // discard mode of the reader... it stops

// forwarding data to this taker but does
// stop functioning...

/**
* Returns the number of input sockets available for the
* system. The number of input sockets is a structural characteristic
* and whenever this changes, all registered
* <code>StructureChangeListener</code>-s should be notified.*
* @return the number of input sockets
* @see StructureChangeListener 
*/

int takerSocketsNumber(); 
j ★ ★
* Returns the type of the specified <code>socket</code> encoded as a
* String*
* ©param socket the socket ID whose type is enquired about
* @return String object that is the encoded type or null if
* socket ID is out of range 
*/

String takerGetSocketType(int socket);
/**

* Tests if the specified data type will be accepted on the
* specified socket.*
* @param socket ID of the socket that is being tested for type
* compliance
* @param type <code>String</code>-encoded type that is tested
* for compliance with the socket type
* @return false if data type is not acceptable or socket ID is
* out of range and true otherwise 
*/

boolean takerAcceptable(int socket, String type);
/**
* Returns the <code>Parameters</code> object of this
* <code>DataTaket</code>*
* @return <code>Parameters</code> of the <code>DataTaker</code>
* ©see Parameters 
*/

Parameters takerGetParameters();
/**

* Initialisation procedure. An extrnal <code>Parameters</code> object
* can be passed into the <code>DataTaker</code> so as to use for its
* own parameters (it should be passed unlocked but the dataGiver can
* lock it after filling it in)<p>*
* The implementation should make use of this object instead of creating
* its own in order to make the parameters persistent. Otherwise
* the restoration of the state (save and load) of the module would
* not be possible
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*
* @param extenal external Parameters object 
*/

void initialiseTaker(Parameters external); 
j * *
* This procedure would not normally be called from within the system
* and is left for backward compatibility only. The typical implementation
* would look like the following:<p>
* <blockquote>
* <pre>
* public void initialiseTaker(){
* initialiseTaker(new Parameters());
* }
* </pre>
* </blockquote>
*/

void initialiseTaker();
j * it

* This is the interface procedure which is used by the system
* to provide the module with new data*
* this procedure should return as quick as possible*
* @param data <code>DataMessage</code> object containing new data
* ©param socket the socket in which data is sent to
* ©return commands for each socket. The command will be passed through
* to the module-source of data
* ©throws InterruptedException 
*/

int [] processNext(DataMessage data, int socket) throws InterruptedException 
/**
* Called whenever the system wants the module to reset its state 
*/

void takerReset();
/**
* Called before the module is disposed of from the system. Allows
* the module to do some clean up
*/

void takerDispose();
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Appendix C 

Examples of implementation of modules for the DPE

Example 1. Display module source

/*
* @ (#)Display.java 1.0 22/08/2002*
* Copyright 2002 E.Agafonov. All rights reserved.
* PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*/

package edu.tntu.ism.traffic.modules;

import java.text.*; 
import j ava.io.*;

import j ava.awt.*; 
import j avax.swing.*; 
import j avax.swing.border.*;

import edu.tntu.ism.traffic.*; 
import edu.tntu.ism.traffic.ui.*;
/* *
* Display is a module that prints out the values of the incoming
* signal to its shape object {see {©link edu.tntu.ism.traffic.ui.ModuleLook#getShape{)}*
* ©version 1.0 22/08/2002
* ©author Eugene Agafonov 
*/

public class Display extends DefaultModuleLook
implements DataTaker, Indicator, Runnable { 

final static Font displayFont=new Font("Arial", Font.PLAIN, 10);
Parameters params;

protected JLabel label; 
protected double value;

private NumberFormat formatter = NumberFormat.getlnstance(); 

private static final int WIDTH=100, HEIGHT=15;
/**
* Constructs a new object of Display class 
*/

public Display(){
super(new JLabel());
formatter.setMaximumFractionDigits(9);
label=(JLabel)shape;
label.setOpaque(true);
label.setBackground(Color.WHITE);
label.setBorder(new LineBorder(Color.BLACK,1));
label.setFont(displayFont);
label.setHorizontalAlignment(JLabel.RIGHT);
label.setVerticalAlignment(JLabel.CENTER);

}
// the number of sockets for Display is always 1

public int takerSocketsNumber(){ 
return 1;

}
// data type we will expect in our socket - 
// the name of Number class

public String takerGetSocketType(int socket){



return Number.class.getName();
}

// Check if the proposed to connect data type is acceptable for us 
public boolean takerAcceptable(int socket, String type){ 

if (socket!=0) return false; 
try {

Class c=Class.forName(type);
return Number.class.isAssignableFrom(c);

}catch(Exception e){
}
return false;

}
// return our parameters object

public Parameters takerGetParameters(){ 
return params;

}
// necessary initialisation procedure before we become operational

public void initialiseTaker(Parameters external){ 
params=external; 
takerReset{);

}
// initialisation with our own parameters

public void initialiseTaker(){
initialiseTaker(new Parameters());

}
// call for us to reset our internal state

public synchronized void takerReset(){ 
value=0.0;
SwingUtilities.invokeLater(this);

}
// disposal procedure - we have nothing to dispose of 

public void takerDispose(){
}

// here we get a new piece of data and paint it on our look object 
public synchronized int [] processNext(DataMessage data, int socket){ 

if (socket!=0) return null;

value=((Number)data.getData()).doubleValue();
// call for repaint 

SwingUtilities.invokeLater(this); 
return null;

}
// we are structured but our structure doesn't change

public void addStructureChangeListener(StructureChangeListener scl){
// doesn't ever change...

}
public void removeStructureChangeListener(StructureChangeListener scl){

// doesn't ever change...
}

/***************************************
* Extension of the default look * ***************************************/

public Dimension getSize(int orientation){ 
return new Dimension(WIDTH, HEIGHT);

}
public boolean isSticky(){ 

return false;
}
public Icon getIcon(){

return UITools.getlconResource("display.gif");
}
public ModuleLook getLookQ { 

return this;
}

// this is used to repaint our look object. We can only do it from the 
// GUI event dispatching thread
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public void run(){
label. setText (formatter. format (value) )

}

Example 2. The use o f abstract classes to simplify 

modules development process

The package of continuous systems modelling and simulation provides several abstract 

classes which immensely simplify the development of new modules. In this appendix, a 

module that implements mathematical sin (&/+/) function by extending an abstract class 

unaryoperator is presented. It is clear that most of the code is devoted to handling the 

parameters, whether the real module’s functionality is given in a single line of code.

/ *
* @(#)Sin.java 1.0 22/08/2002*
* Copyright 2002 E.Agafonov. All rights reserved.
* PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
* /

package edu.tntu.ism.traffic.modules.math;

import edu.tntu.ism.traffic.*; 
import edu.tntu.ism.traffic.ui.*; 
import j avax.swing.*;
/ * *

* Mathematical sine module. Extends UnaryOperator and implements its own function
*

* ©version 1.1 16/09/2002
* ©author Eugene Agafonov 
* /

public class Sin extends UnaryOperator {

private static final String PHASE="Initial phase"; 
private static final String COEFF="Coefficient"; 
private static final String FREQ="Frequency (omega)";

private double phase, coeff, freq;

public Sin() { 
super();

}

protected void initParameters(){
params.addDouble(COEFF, 1.0, true); 
params.addDouble(PHASE, 0.0, true); 
params.addDouble(FREQ, 1.0, true);

}

protected void updateParameters(){ 
try {

phase=params.getDouble(PHASE).doubleValue();
}catch(Exception e){ 

phase=0;
}
try {

coeff=params.getDouble(COEFF).doubleValue{);
}catch(Exception e){ 

coeff=1.0;
}
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try {
freq=params.getDouble(FREQ).doubleValue();

}catch(Exception e) { 
freq=l.0;

}
}

// this is the functionality of this module 
protected double result(double value){

return coeff*Math.sin(freq*value+phase);
)
private final Icon icon=UITools.getlconResource("mathsin.gif"); 
private final ModuleLook look=new MathModuleLook(1\u223C', icon); 
public ModuleLook getLook(){ 

return look;
}

}

Example 3. Implementation o f SCOOT headways module

/*
* @(#)ScootHeadways.java 1.1 28/08/2002
*

* Copyright 2002 E.Agafonov. All rights reserved.
* PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
* /

package edu.tntu.ism.traffic.modules.scoot;

import j ava.io.*; 
import j ava.ut i1.*;

import j ava.awt.*; 
import j avax.swing.*;

import edu.tntu.ism.traffic.*;
import edu.tntu.ism.traffic.ui.*;
import edu.tntu.ism.traffic.modules.scoot.data.*;
/ * *

*

* This class implements a module that produces series of headways for
* certain link based on M19 data. The link name (with detector) should be
* provided as a parameter
*

* ©version 1.0 21/12/2002
* ©author Eugene Agafonov 
* /

public class ScootHeadways implements
DataGiver, DataTaker, Indicator, ParameterChangeListener { 

// only one parameter; the name of a detector
private final static String LINK="Link name (with detector)";

// for synchronization purpose 
private final Object locker=new Object();

private Parameters params;

private long previousTime, headway, time; 
private String linkName;

// the module has only 1 input socket 
public int takerSocketsNumber(){ 

return 1;
}

// the data type will be expected to be ScootData.class.getName ()
public String takerGetSocketType(int socket){ 

if (socket!=0) return null; 
return ScootData.class.getName();
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}

// the module only accepts ScootData on its input
public boolean takerAcceptable(int socket, String type){ 

if (socket!=0) return false; 
try {

Class c=Class.forName(type);
return ScootData.class.isAssignableFrom(c);

}catch(Exception e){
}return false;

}

// returns parameters
public Parameters takerGetParameters(){ 

return params;
}

// initialisation procedures
public void initialiseTaker(){

initialiseTaker(new Parameters());
}

public void initialiseTaker(Parameters external){ 
params=external;
params.addParameterChangeListener(this); 
params.addstring(LINK, true);
takerReset();

}

// reset the internal state of the module
public void takerReset(){ 

previousTime=-l; 
headway=-l; 
try {

linkName=params.getString(LINK);
}catch(Exception e){ 

linkName="";
}

}

// We have receive a data object on our input. The data 
// is being checked for being of M19 message and from a 
// detector of interest. Then a headway is being calculated 
// and pushed on to our data providing part

public int [] processNext(DataMessage data, int socket)
throws InterruptedException {

if (socket!=0) return null;

// wrong data type 
if ( !(data.getData() instanceof ScootDataM19) ) return null; 
ScootDataM19 ml9=(ScootDataM19)data.getData();

I I  check if this is from our link... 
if (!ml9.getNode().getRaw().equals(linkName)) return null;

if (previousTime>0){
synchronized(locker){

while(headway>=0) locker.wait();

headway=ml9.getTime()-previousTime; 
time=previousTime; 
locker.notify();

previousTime=ml9.getTime(); 

return null;
}

public void takerDispose(){
params.removeParameterChangeListener(this);

}

C-17

s
.1

I
!
1
i
■i
’I

i
1
i
'i
i
■I

J

•1

t

4n
J
J
1

I
j
•1

'J



/ ★ a * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

/* data providing part *//********************************************************************/
// send current headway out as Float value (in seconds)

public DataMessage [] readNextO throws InterruptedException, DataGiverDone { 
DataMessage [] res=null;

synchronized(locker){
while(headway<0) locker.wait(); 
res=new DataMessage [) {

new DataMessage(this, new Float(headway/1000.Of),
Number.class.getName(), time)

} ;
headway=-l; 
locker.notify();

}

return res;
}

// the module has only 1 output
public int giverSocketsNumber(){ 

return 1;
}

// the output data type is numerical (object of Number class) 
public String giverGetSocketType(int socket){ 

if (socket!=0) return null; 
return Number.class.getName<);

}
// paramteres

public Parameters giverGetParameters(){ 
return params;

}

// these are redundant, since initialisation will be done in 
// receiving part

public void initialiseGiver{){
}
public void initialiseGiver(Parameters external){
}
public void giverReset(){
}
public void giverDispose(){
}

// out look is an instance of ScootModuleLook object
private final ModuleLook look =

new ScootModuleLook (UITools .getlconResource ("scootheadways . gif11) ) ; 
public ModuleLook getLookO { 

return look;
}

// structure of the module doesn't change
public void addStructureChangeListener(StructureChangeListener scl){

public void removeStructureChangeListener(StructureChangeListener scl){
}
protected void fireStructureChangeEvent(StructureChangeEvent e){
}

// ParameterListener: if a change in the parameters occur 
// the module resets its state according to the parameters

public void parameterChanged(ParameterChangeEvent pee){ 
takerReset();

}
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