
The Nottingham Trent University
Library & Information Services
SHORT LOAN COLLECTION

40 0736512 6

ProQuest Number: 10290344

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10290344

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Fuzzy and Multi-resolution Data Processing For

Advanced Traffic and Travel Information

A thesis submitted in partial fulfilment of the

requirements of The Nottingham Trent University

for the degree of Doctor of Philosophy

Evgeny Agafonov

February 2003

Fuzzy and Multi-resolution Data Processing For Advanced

Traffic and Travel Information

Abstract

Solutions to transportation problems have been extensively studied and developed over

the last few decades. Although a significant progress has been made, a constant growth of

the number of cars on roads cause new problems which cannot be dealt with by just

controlling traffic signals. This implies that alternative ways of managing and controlling

traffic need to be developed. A promising solution is to utilise combined information on

current traffic and public transport situation and to employ multi-modal traffic

optimisation. This solution requires the availability of very accurate real-time

information. Information on travel time across an urban road network is one of the most

important operational characteristics of the traffic system. It has been shown that existing

algorithms for travel time estimation do not provide satisfactory accuracy and possess

several disadvantages that render them inapplicable for estimation of travel time in

volatile urban traffic. In this research, a problem of accurate travel time estimation is

addressed and a novel low-level data processing methodology is presented.

Applications developed in the theoretical framework of real-time traffic systems require a

suitable software environment. Many software packages have been developed to date for

data processing, analysis and modelling. Unfortunately, most of them are either too

general and are computationally burdensome, or are too specific and cannot be applied to

solving a problem from a very specialised domain. As Transportation Research is a

relatively small niche, the software development was traditionally accomplished on the

project-to-project basis and, as a consequence, much time was spent on re-writing

software for specific needs of a particular project. In this research, a general framework

for processing traffic/travel data has been developed and its functionality has been

demonstrated on a specific traffic/transportation problem.

The copy o f this report has been supplied on the understanding that it is

copyright material, and that no quotation from the report may be published

without proper acknowledgement. This work described in this Report is the

Author's own, unless otherwise stated, and it is, as fa r as he is aware,

original

Acknowledgments

I would like to express my gratitude to Prof. Andre Bargiela for his guidance and

continual encouragement throughout this work. I am grateful to my second supervisor,

Prof. David Applebaum for his extremely useful comments and suggestions on the

theoretical part of this work.

Special thanks go to Dr Taha Osman and Dr. Evtim Peytchev for their help in the

beginning and throughout the project, Dr Andrew Argile for his humour and other friends

and colleagues at the School of Computing and Mathematics.

The financial support of the Nottingham Trent University is gratefully acknowledged.

Table of Content

Chapter 1. Introduction...1

1.1. O v e rv iew ... 1

1.2. Aims of the research.. 3

1.3. Original contribution.. 4

1.4. Organisation of the th e s is .. 4

Chapter 2. Transportation Research and the Role of Data Processing. . . 7

2.1. Introduction... 7

2.2. The transportation sy s tem ...8

2.3. Modelling and simulation of transportation systems...................................... 10

2.3.1. Modelling paradigms: macro-and microscopic models 10

2.3.2. Macroscopic modelling: problems and r e s u l t s12

2.3.2.1. Macroscopic traffic flow th e o ry ...13

2.3.2.2. Macroscopic area-wide transport system models....................... 24

2.3.2.2.1. Trip g e n e r a t io n .. 25

2.3.2.2.2. Trip d is trib u tio n ...26

2.3.2.2.3. Trip t im in g .. 26

2.3.2.2.4. Modal c h o ic e .. 27

2.3.2.2.5. Trip a s s ig n m e n t...27

2.3.2.2.6. Origin-destination m a t r i x .. 27

2.3.2.3. Conclusion on macroscopic modelling...................................... 29

2.3.3. Microscopic modelling: problems and solution............................29

2.4. The role of data processing and analysis in traffic modelling.......................31

Chapter 3. Data and In fo rm a tio n ... 33

3.1. Introduction...33

3.2. Data, Information and Research P r o c e s s ...34

3.2.1. Research process...34

3.2.2. Relationships between data and inform ation......................................37

3.2.3. Data and information in transportation research38

iii

3.3. SCOOT UTMCS and Traffic D a t a .. 40

3.3.1. SCOOT UTM CS.. 40

3.3.2. SCOOT p r in c ip le s ...41

3.3.3. SCOOT d a t a ... 44

3.3.4. Retrieving SCOOT messages...47

3.4. Uncertain in fo n n a tio n ... 51

3.4.1. In tro d u c tio n ..51

3.4.2. Measures of uncertainty.. 52

3.5. Conclusions...54

Chapter 4. The Data Processing E n v iro n m en t.. 56

4.1. Introduction...56

4.2. Review of the software tools for data processing... 58

4.2.1. The databases.. 58

4.2.2. Data processing tools for traffic p ro jec ts ..61

4.2.3. Other data processing, modelling and analysis software packages . 63

4.2.3.1. V isS im .. 63

4.2.3.2. MATLAB and S im u lin k ...65

4.2.4. C onclusions... 65

4.3. Requirem ents..66

4.3.1. Modularity...66

4.3.2. Extensibility ... 67

4.3.3. Efficiency 67

4.3.4. Concurrency...68

4.3.5. Reliability and fault to le r a n c e ...68

4.3.6. U n iversa lity ...68

4.3.7. User-friendliness...69

4.4. Analysis and d e s ig n ..69

4.4.1. Use cases s t u d y .. 69

4.4.1.1. Edit a model..71

4.4.1.2. Run simulation...71

4.4.1.3. Retrieve the r e s u l t s ...72

4.4.1.4. Edit library of m odules... 72

4.4.2. Functional modules ..73

4.4.3. Inter-module communication and data t y p i n g75

4.4.4. The system components..76

4.5. Implementation.. 77

4.5.1. Choice of p la tfo rm .. 78

4.5.2. Package architecture...82

4.5.3. Package e d u . t n t u . i sm. t r a f f i c ...82

4.6. Graphical User Interface..85

4.7. Examples.. 87

4.7.1. General purpose m o d u les ...87

4.7.2. Task-specific m odu les... 89

4.8. Evaluation of the e ffic ie n c y ..90

4.9. Conclusions... 92

Chapter 5. Travel time e s tim a tio n ..93

5.1. Introduction... 93

5.2. Travel time estimation p ro b le m ...95

5.3. Review of the existing methodologies...96

5.4. Travel time estimation in urban l i n k s ... 103

5.4.1. The urban link m o d e l ... 104

5.4.2. The methodology of estimation of travel time with the lowest

level of re so lu tio n ...106

5.4.3. Simplified traffic model and mathematical justification of the

travel time estimation methodology... 117

5.4.4. Applicability of the simplified traffic m o d e l......................................146

5.5. Conclusions... 147

Chapter 6. Empirical Study of Urban T r a f f ic ... 148

6.1. Introduction... 148

6.2. Pre-processing of SCOOT d a t a .. 149

6.2.1. The core pre-processing s o f tw a r e ... 149

v

6.2.2. Pre-processing of M14 and M l9 m e ssa g e s152

6.2.3. SCOOT message pre-processing module for the data processing

environm ent...154

6.3. Use of the processing software in traffic a n a ly s i s 155

6.4. Implementation of the travel time estimation p ro c e d u re156

6.5. Empirical study of travel time on urban lin k s .. 158

6.6. Urban Travel Time com ponents... 167

6.7. Conclusion...170

Chapter 7. Conclusions and further research ..171

7.1. Concluding rem arks... . . 1 7 1

7.2. Further re se a rc h ... 172

R eferences..175

Appendix A. DataTaker and DataGiver interfaces.

Appendix B. Example screens of the data processing environment.

Appendix C. Examples of implementation of modules for the DPE.

List of Figures

Figure 2.1. Typical speed-concentration relationship.. 15
Figure 2.2. Typical speed-flow curve... 16
Figure 2.3. Flow-concentration relationship with operational regions A, B and C 16
Figure 3.1. Induction and deduction research processes.. 36
Figure 3.2. SCOOT detectors infrastructure.. 42
Figure 3.3. SCOOT detector data flow... 42
Figure 3.4. Generation of Ml 9 messages... 46
Figure 3.5. Hierarchy of applications and forwarding of the terminal 10 streams 48
Figure 3.6. Unix daemon processes... 49
Figure 3.7. Architecture of data acquisition procedure.. 50
Figure 3.8. Architecture of data acquisition procedure with pseudo-terminals.... 51
Figure 4.1. The traffic database structure... 59
Figure 4.2. Basic use cases and actors... 70
Figure 4.3. ‘Edit a model’ use case diagram... 71
Figure 4.4. ‘Run simulation’ use case diagram.. 71
Figure 4.5. ‘Edit library of modules’ use case diagram.. 72
Figure 4.6. Bean-like environment for functional modules...................................... 73
Figure 4.7. Modules use case diagram... 73
Figure 4.8. Structure of a module wrapper..74
Figure 4.9. Illustration of the data typing system.. 76
Figure 4.10. The system’s architecture.. 77
Figure 4.11. GUI classes architecture.. 86
Figure 5.1 Definition of travel time... 95
Figure 5.2. Urban link model and travel time components...................................... 105
Figure 5.3. Merging upstream and shifted downstream time series......................... 108
Figure 5.4. Extracting pairs of neighbouring events that come from different

time series... 108
Figure 5.5. Combinations of events ahead of the current event at k 109
Figure 5.6. Illustration of the concept of dependent and independent pairs I l l
Figure 5.7. Architectures of pair of event arrival times extracted by the algorithm 113
Figure 5.8. Plot of the function (5.27) when there is only one event in each of

the time series... 114
Figure 5.9. The link model: a roundabout between two measuring points A and B

allows vehicles to leave and join traffic flow.. 118
Figure 5.10. Exponentially distributed random variables Sn and Sm compete to be

closer to time point t .. 120
Figure 5.11. Structure of the considered traffic processes.. 121
Figure 5.12. Illustration of possible outcomes for the next event after currently

chosen one.. 125
Figure 5.13. Illustration of the resulting process and procedure of choosing the

pair of events... 126
Figure 5.14. Structure of probability distribution function of random variable £i 135
Figure 5.15. Structure of probability distribution function of variables A2, A4

and A5"... 137
Figure 5.16. The events of types 1 and 3 have swapped their roles......................... 141
Figure 5.17. A typical plot of function (5.78)... 142
Figure 5.18. Schematic view ofy(0... 144

vii

Figure 5.19. Single solution of equation (5.82)... 144
Figure 6.1. Mansfield SCOOT-controlled region.. 148
Figure 6.2. The look of the SCOOT messages pre-processing module for the data

processing environment.. 154
Figure 6.3. A fragment of a model that uses a file reader and SCOOT data

pre-processor.. 154
Figure 6.4. Distribution of headways (taken from N60411M1)................................. 155
Figure 6.5. Example of traffic profiling module output visualised by Plot

module. Data used is taken for the N60411M1 detector for 16th
January 1999, Saturday (red) and 19th January 1999, Tuesday (blue)
and aggregated over 2 minutes intervals...................................... 156

Figure 6.6. Travel time estimation module..157
Figure 6.7. Cost functions calculated for different times of day. Link N60331F1-

N60421B1, 19 February, Tuesday, 1999.. 161
Figure 6.8. Histogram of the time differences produced by the algorithm that

correspond to the minimum of the cost function......................................162
Figure 6.9. Cost functions for the ‘turn-right’ type of a link: N60311K1 -

N60321C1, 19th February (Tuesday), 1999. Time windows interval is
2 hours.. 164

Figure 6.10. Cost functions for the Tight-tum’ type of a link: N60311K1 -
N60321C1, 19th February (Tuesday), 1999. All day cost function 165

Figure 6.11. Plot of travel time estimates for the ‘right-turn’ type of a link:
N60311K1 - N60321C1, 19th February (Tuesday), 1999...................... 165

Figure 6.12. Cost functions of unrelated series. A link: N60311K1 - N60321C1,
19th February (Tuesday), 1999. Calculated over all day..........................166

Figure 6.13. Cost functions of linkN60331Fl-N60421Bl in a bigger scale.
Several minimums point to the similarities due to cyclic nature of the
series. The global minimum points to the “best match” between the
series. Time shift varies from -4 minutes to 4 minutes. The global
minimum is reached at time shift equal 24.25 seconds.......................... 167

Figure 6.14. The urban link model and travel time components................................ 167
Figure 6.15. Histograms for Tpc travel time component estimates (link N60331F-

N60421B1, four days data)... 169
Figure B.l. A model implementing the discrete approximation of a step function.. B-5
Figure B.2. Simulation of the Lissajou figures..B-6
Figure B.3. Three random variables and histograms demonstration....................... B-7
Figure B.4 A model implementing the headways analysis procedure: visualisation

is done via Histogram, Plot and Display.. B-8
Figure B.5 Class Library editor screen... B-9
Figure B.6 SCOOT profiles demonstration: counter profile and occupancy profile B-10
Figure B.7 SCOOT profiles for different days: red - weekend (sat), blue -

working day (tue) (aggregation over 2 minutes).................................... B-l l
Figure B.8 SCOOT travel time estimation routine is in progress............................ B-12

List of Tables

Table 2.1. Principle traffic parameters.. 12
Table 4.1. Interfaces of e d u . t n t u . i s m . t r a f f i c package............................. 83
Table 4.2. Data object classes of e d u . t n t u . i sm. t r a f f i c package............. 84
Table 4.3. Exception classes of e d u . t n t u . i sm. t r a f f i c package............... 84
Table 4.4. System core classes... 85
Table 4.5. General purpose modules: visualisation.. 88
Table 4.6. Results of performance tests for the first group of models................... 91
Table 4.7. Results of performance tests for SCOOT data processing model 91
Table 5.1. Types of pairs classified by the values of indicator functions............... 125
Table 5.2. Probabilities for different types of pairs to occur.................................... 130
Table 6.1. Parameters of the travel time estimation module.................................... 157
Table 6.2. Values of travel time point estimates... 162

Chapter 1

Introduction

1.1 Overview

Initial purpose of the project was to investigate the feasibility of application of advances

in information theory and soft computing to traffic and transportation systems. While the

investigation of the transportation systems progressed on, it was discovered that there are

a few niches lacking development, which are meant to be the basis of a fuzzy approach to

traffic data analysis. Therefore these problems have been addressed in this research and

the results can be considered to form a basis for further research leading to the

application of the fuzzy techniques to traffic data processing and analysis.

Analysis of data has long been the basis of many applied areas of science. This is also

true of new disciplines, such as Transportation Research, where data analysis provides

the necessary foundation for modelling of transportation systems. It can be argued that

knowledge about real-life systems is represented in the form of models that explain the

system. In this sense modelling can be seen as an activity leading to improved

understanding of the principles of the systems functionality. Deterministic and statistical

modelling of systems were the only modelling techniques for centuries. However, it has

long been known that not all real-world systems can be adequately modelled using

deterministic or statistical approaches. These are systems with such number of interactive

objects that analytical description of them becomes far too complex or systems, whose

objects exhibit non-deterministic but not purely random character. In fact, most of real-

world systems have such properties. Using traditional methods it is especially difficult to

model systems with relatively large number of objects that themselves exhibit complex

non-deterministic behaviour, such as most of the social systems. Transportation systems

are such systems with complex interaction between society, technology and nature. The

need for a solution was increasingly understood in the middle of the twentieth century

and a number of new research directions were initiated. New modelling approaches

questioned the applicability of the apparatus of pure mathematics to real-life problems

and sought alternative ways. The important understanding of the crucial relationship

between the notions of information and complexity provided the motivation for the

development of the new fields of science. The relationship between information and

uncertainty has been known from the first works on information theory, which were

earned out within the framework of probability theory. Further research has revealed that

uncertainty, in fact, is a multi-dimensional concept [Klir, Folger, 1988], [Bargiela, 1998].

The fundamental modelling principles of minimum and maximum entropy have been

generalised into the principles of uncertainty, the principles that allow a better

understanding of systems’ complexity and are the tools to handle it. Several

independently developed areas based on biologically-inspired analogies have now joined

in one broad area, which is now called Computational Intelligence [Pedrycz, 1998].

Fuzzy systems, neural networks, evolutionary algorithms are all branches of the new

discipline. Many applied disciplines, being merely engineering areas, lack certain

connections with the cutting edge of the science. Transportation research has traditionally

been such a discipline. While much effort has been put to solving the transportation

problems using traditional modelling techniques, a little has been done in application of

soft computing paradigms, even though the limitations of the pure-mathematical

approach have long been known.

In Transportation Research, data was normally used to validate mathematical models

developed for certain aspects of the transportation systems, such as traffic flows, traffic

assignment models, signalling control, etc. The above models served in transportation

research for decades, but in recent years they also highlighted the fact that, in the context

of continually increasing number of cars, the traffic management need to adopt a broader

context of travel mode decisions rather than just traffic signal optimisation. This caused

the need for development of alternative ways of managing traffic in order to utilise fully

the available recourses of road and public transport infrastructure. The prominent solution

to this seems to be in the development of new generation of intelligent information

systems, which will be able to give a new scope for the improvement of the existing

traffic control strategies as well as provide additional level of control by influencing the

decision making process of the road users [Peytchev, 1999]. This new level of control, on

the trip planning level, is a promising approach and is being extensively researched at the

present time.

2

The noteworthy growth and development of the computing technology gives new

possibilities in improved utilisation of road and public transport infrastructure and the

optimisation of the common ‘good’ to all road users (urban sustainability). The new

approach requires the availability of information on traffic situation at the most accurate

level. Several well-known operational characteristics of a transportation system can be

used as optimisation criteria. Travel time seems to be the most important among them as

it is a natural measure of service provided by a road infrastructure. Although travel time,

as an operational parameter of a traffic system, has been researched extensively for

highway traffic, it is not well-researched in urban traffic systems. The problem of travel

time estimation from traffic data is addressed in this research as a methodology that

allows accurate estimation of travel times at the resolution of the data.

The development of computing hardware has been accompanied by a rapid growth in

sophistication of computer software. Many software packages have been developed to

date for data processing, analysis and modelling. Unfortunately, most of them are either

too general and are difficult to apply to a specific problem, or are too specific and cannot

be applied to solving a problem from a very specialised domain. As Transportation

Research is a relatively small niche, the software development remains to be

accomplished on the project-to-project basis and, as a consequence, much time is being

spent on re-writing software for specific needs of a particular project. In this research, a

general framework for processing traffic/travel data has been developed and its

functionality has been demonstrated on a specific traffic/transportation problem.

1.2 Aims of the research

Following the above overview, the aims of this research project are given as follows.

• To investigate the problems of multi-resolution data processing and analysis within

the area of Transportation Research

• To identify feasible solutions to traffic problems via utilising available traffic

information

• To investigate informative content of traffic data provided by the SCOOT Urban

Traffic Management and Control System (UTMCS)

• To develop a general framework for data pre-processing

3

• To develop necessary software modules, which will facilitate the theoretical research

into the content of traffic data

• To develop new algorithms for multi-resolution data processing and information

extraction

1.3 Original contribution

During the course of this research study, original contribution to the state-of-the-art of

Transportation and Computing research have been made as follows.

• A problem of automation of real-time data retrieval from SCOOT has been solved by

adapting standard services of the operating system and the IP in a novel way. The

programme uses the standard Unix services, such as telnet or rlogin, in order to

connect to SCOOT via a TCP/IP network, and pseudo-terminal capabilities of a Unix

system to simulate terminal based connection to the SCOOT system. The software

facilitates a range of research directions related to real-time traffic infonnation

systems.

• Link travel time, as an operational characteristic, has been researched in a context of

urban transportation system. A novel methodology for accurate travel time estimation

has been developed.

• A formal mathematical proof of the developed methodology for travel time

estimation has been presented for a simplified traffic model using the theory of

stochastic processes.

• A general software framework for data-processing, system modelling and simulation

has been developed. The software has several distinguishing features that lift it up

above similar commercial products. Openness, extensibility, modularity, high

portability, visual pleasantness of the environment can greatly contribute to the

efficiency of research since the researcher will have more time to concentrate on

essential problems rather than technical detail of data pre-processing.

1.4 Organisation of the thesis

This thesis consists of 7 chapters which are as follows.

4

Chapter 1 is this chapter and gives an introduction to the scope of problems and the area

in which this project has been carried out. It also gives a list of the aims of the research

and the achieved original contribution to the current state-of-the-art.

Chapter 2 presents an introduction to Transportation Research from historical

perspective. Several definitions, including the definition of transportation system, are

given. Chapter 2 also reviews standard research methodologies used in transportation

research area up to date. An insight to the complexity issues in the area is presented and

the role of data processing in transportation research is outlined.

Chapter 3 investigates the notion of information and relationships between data,

information and knowledge. Transportation systems are considered from the point of

information flows and informative content at some abstract level and important

operational characteristics of transportation systems are identified. Since traffic data used

in this research has been provided by the SCOOT system, Chapter 3 presents an overview

of functionality and features of this system. An informative content of traffic data

provided by the SCOOT system is studied. Chapter 3 discusses technical issues of the

connectivity to the SCOOT system and problems of automatic real-time data collection

and develops a solution to these problems. Also, Chapter 3 touches the modem advances

in the information theory and discusses the benefits of its application to traffic modelling.

Chapter 4 is devoted to the development of the data processing environment, the software

suite which is aimed at simplifying data study. A brief review of existing software

packages for data analysis and system modelling and simulation is presented and

disadvantages of the packages are discussed. Then follows a presentation of the set of

requirements, which the data processing environment should satisfy in order to improve

the state of the area. The software system is designed using OOP methodology. The

design follows the consideration of the available options of hardware and software

platforms and concludes with choosing the Java platform. Using the Java technology, a

data processing environment is developed and illustrated by a set of examples.

Assessment of the efficiency of the software is given at the end of the chapter.

5

Chapter 5 is devoted to the development of a novel methodology for link travel time

estimation in urban areas. The chapter presents a model of a typical urban link and

discusses the differences between urban and highway links. A literature review shows

that there is a lack of development of travel estimation algorithms for urban traffic

systems. Following the literature review, the chapter develops a novel methodology

which can be used to accurately estimate link travel time in urban areas. The

methodology does not require aggregation of traffic data and thus preserves as much

information in the data as possible. The methods of the methodology also have several

advantages, such as robustness to under- and overcounting of vehicles, instability of

occupancy profiles, etc., which are considered to have strong influence on the results of

the previously developed methods. The methodology is proved formally using the theory

of stochastic processes for a simplified traffic model.

Chapter 6 presents results of application of the developed software environment and

travel time estimation methodology to a real-life transportation system. The presented

results clearly show the feasibility of the developed methodology, which can be used to

accurately estimate median of the link travel time and allows estimation of the probability

distribution of the link travel time as random variable.

Chapter 7 contains final remarks and conclusions on the project and outlines further

research direction, exploration of which is facilitated by the results of this research study.

6

Chapter 2

Transportation Research and the Role of Data Processing

2.1 Introduction

Transportation Research has emerged on the junction between many applied and

theoretical disciplines in response to the tremendous growth of the number of vehicles in

the 1950-1960. The advances in automobile industry and affordability of the vehicles at

the time created what can now be characterised as transportation revolution. Since the

existing road infrastructure has not been designed to accommodate such volumes of

traffic, the situation has quickly created problems which have not been faced before:

traffic jams, congestions, delays as well as environmental issues related to the growing

fleet of cars - noise and pollution. Solution of the problems required systematic and

thorough attack on the major problem faced. Gradually, integrated and balanced

programmes of research were initiated in the developed countries such as the USA, the

UK and Australia and then followed by many other countries. Since the first traffic and

transportation research programmes have been carried out, the area of transportation

research grew up into a field that involves co-operation between engineers, theoretical

and applied mathematicians, sociologists and experts in many other fields. Transportation

research now includes many sub-fields that study different types of transport, such as air

or road transportation and areas that focus on certain aspects of transport-society

interactions, such as economical issues, planning, enviromnental problems etc.

Generally there are three approaches to dealing with the traffic problems. The first

approach involves creating new road infrastructure to increase the capacity of the existing

road networks. This is the most expensive of all approaches as it requires involvement of

land reconstruction procedures, engineer planning and significant labour expenses. It also

has the strongest impact on environment which normally is not desirable. On the other

hand it might be the only possible solution of the problem due to inapplicability or the

limitations of the other techniques. Nevertheless in some cases building new roads might

not be feasible due to specific nature of the environment, such as urban areas, and thus

other techniques are required. One such technique is to manage existing infrastructure in

a way that optimises its use. The idea behind this approach is to use available traffic

7

control systems but optimise this control in order to achieve desired effect (reduction of

delays, minimisation of lengths of queues, etc.). This technique has evolved from a

control performed by a human (normally a policeman controlled, monitored and

optimised a single junction) to a complex multi-layered schemes of control and

optimisation [Peytchev, 1999]. The third approach is obviously to decrease traffic

volumes by affecting road users decisions on trip planning, namely to motivate the road

users to use alternative modes of transport such as public transport or provide guidance

and travel decision support. This third approach has not been widely researched and used

in practice and therefore is a promising alternative to the first two.

Modem traffic planning, management and optimisation methodologies would normally

employ all of the three approaches in order to solve traffic problems with the maximum

efficiency and it is apparent that all of them require detailed knowledge of the behaviour

of the system. It is also obvious that transportation itself and the influence it has on day-

to-day life is very complex. It is unthinkable to give the precise answers to all

transportation problems. Thus, transportation research, as well as many other applied

disciplines, uses the systems approach in order to deal with the complexity of the

interaction processes. The systems approach has been developed as a tool for dealing

with complexity of real world and is based on decomposition of the problem into a

hierarchy of independent sub-problems that are simpler to solve and then assemble the

solved sub-components into the whole to obtain the solution of the original problem. This

approach has shown to be very effective where direct solution is impossible due to the

complexity of the underlying processes. In this chapter, several main transportation

problems and the methodologies of their solution utilising the term ‘transportation

system’ will be reviewed.

2.2 The transportation system

According to Hall [Hall, 1962], a system “is a set of objects with relationships between

the objects and between their attributes”. Transportation systems are enormously

complex socio-technical, which has been acknowledged by many researchers [Kosonen

1999, Richmond 1998], The systems involve interaction of many objects from single

vehicles, pedestrians to communities, from geography to economics, and processes such

as technological processes, operations, planning, management, and many other processes.

It is therefore clear that understanding of the behaviour of such systems is a difficult task

and, due to its socially-stochastic nature, it cannot be accomplished with a precise

deterministic result.

The systems approach essentially relies on modelling. Modelling provides the means by

which a system can be described in a formal language and standard methods of analysis

can then be applied to investigate the properties of the model. The results of the analysis

are then said to correspond to the real systems subject to the adequateness of the model.

Several models can be developed for the same system depending on what phenomena of

the system are of interest or depending on precision with which the results are required.

In order to model a system, as it follows from Hall’s [1962] definition, the system can

normally be split down into a set of independent (or assumedly independent) objects and

relationships between them that describe the way the objects interact with one another. It

is also implicit in Hall’s definition that objects themselves can be expressed as systems,

which can be modelled as sub-objects and relationships between them thus creating a

hierarchy of systems or sub-systems that constitute the initial system. A bigger depth of

the hierarchy would normally increase the precision of the model but it would also

increase the complexity of the model. To find the golden middle is one of the most

important problem in modelling and is highly task-specific. The rules of trade-off

between precision and complexity of a model are expressed as principles of maximum

and minimum entropy, which will be studied in the chapter devoted to information.

From the systems theory perspective, the transportation research can be defined as

research discipline that studies the transportation systems. There is no exact definition,

though, what a transportation system is. Informally, a transportation system can be seen

as the transfer of people or/and goods, using transport (vehicles, trains, aircrafts, etc.),

between geographically separate places [Steenbrick, 1974]. The collective movement of

transport between those places is called traffic. For the movement, the transport

infrastructure is used. Further, the transport infrastructure can be divided into two

components:

1. the fixed objects such as highways, secondary roads, city arterials, streets,

railways and so on, with certain characteristics;

9

2. the organisational system necessary to ensure that the infrastructure is well used.

It is clear from this definition, that the objects of the transportation system are

transportation infrastructure and the users of that infrastructure. It can also include other

influencing factors and objects, such as pedestrians, weather, etc. The definition, although

simple, does not reflect the complexity of the system. It should be noted that the system

consists of a multitude of independent (although restricted by constraints and

relationships) dynamic and static objects, in which the relationships themselves are

tremendously complex multi-dimension stochastic functions. In addition, the

transportation systems are part of higher level socio- and economical systems and

experience strong influence from the other peer systems. It therefore becomes apparent

that the transportation system cannot be modelled in a precise manner. In the following

section standard transportation problems and methods used to solve the problems will be

reviewed.

2.3 Modelling and Simulation of Transportation Systems

Modelling is the basic method by which systems are studied. Basically, a model is the

formal description of a system, not necessarily precise, used for studying the system.

Since transportation research is seen to be area of research, or discipline, that studies

transportation systems, it has been the primary task of the discipline to build appropriate,

or adequate, models of transportation systems. The form of models may vary widely

depending on the purpose of modelling and phenomena to be modelled. Since modelling

in transportation research forms the core of the discipline, the most important results will

be reviewed in the following sections.

2.3.1 Modelling paradigms: macro- and microscopic models

Broadly speaking, there are two approaches to modelling systems. First approach has

been to identify the objects of the system and try to establish the internal relationships

and processes within the system in an explicit form, normally by mathematical equations.

For example, a system of two material bodies with no external influence are governed by

the Newtonian mechanics, which will form the core relationships between the bodies and

describe the processes (motion) in an explicit deterministic form. Problems of such kind

have been pre-dominating in the history of science up to the nineteenth century. Another

example, taken from [Klir et al, 1989], is motion of gas molecules in the system

consisting of about 1023 them. Such system could not be studied in deterministic tenns of

Newtonian mechanics. Nevertheless, since the elements of the system, though numerous,

exhibit similar stochastic character, average statistical properties and relationships

between them can be derived and thus the behaviour of the system is adequately

modelled. Description of such systems requires developed statistical and probabilistic

apparatus. Therefore the second methodology of modelling systems is often referred to as

the probabilistic approach.

According to [Weaver, 1948], two examples above describe two poles of systems

complexity. The first pole, called organised simplicity, is represented by systems for

which adequate models can be identified and the models contain a small number of

variables. Two mass bodies is the typical example of such a system. The second pole,

called disorganised complexity, is represented by systems with very large number of

variables yet with high degree of randomness. Such systems are best modelled by the

statistical mechanics and the second example is a typical system of that sort.

Unfortunately, most of real-life systems, as are transportation systems, do not fall into the

two classes of systems described above. Such systems fall into the class of systems of

organised complexity. As Klir states, methodology of treating such systems is

undeveloped in the sense that neither analytical nor statistical methods are adequate and,

therefore, new methodology needs to be developed.

Getting back to modelling paradigms, macroscopic modelling utilises the analytical and

statistical methods in order to derive explicit description of the model in a form of

relationships between variables that form the system. Although methodology is highly

developed it represents a challenge to apply these methods to modelling transportation

systems since such systems fall into neither the class of organised simplicity nor

disorganised complexity. Nevertheless, first attempts to deal with transportation systems

have been made, with certain degree of success, from the perspective of macroscopic

models. Microscopic modelling is a very powerful method for dealing with systems, and

it allows modelling of the systems of organised complexity with satisfactory accuracy. In

contrast to the macroscopic modelling, microscopic models model individual objects of

11

the systems and relationships between them, which are normally simplified to a form of

one-to-one relationships. For example, individual vehicles are objects of many

microscopic models of traffic flow. A typical microscopic traffic flow model would

consist of a number of individual dynamical objects (vehicles, pedestrians, cyclists, etc.)

and road infrastructure modelled as a static graph. In order to obtain the insight on the

dynamics of the modelled system, simulation is used. Simulation is essentially an

iterative procedure that involves a large number of elementary calculations. This is the

main reason why microscopic modelling started to be researched into with appearance of

computers that are able to cope with such volumes of calculation. In the modem days,

when very powerful computers are widely available, microscopic simulation becomes

more and more attractive as it is normally a more precise reflection of real traffic

processes. Even further, researchers are now looking into even lower level of models, the

“nanoscopic” models, that take insight into individual vehicles and driver behaviour

[Kosonen, 1999].

Microscopic and macroscopic models are both used in transportation research but the

problems they are used for are normally different. Macroscopic models naturally provide

the tool for large-scale planning problems, such as traffic assignment problem, finding

equilibrium in the demand-supply problem and problems alike. Microscopic models can

be used in modelling any scale transportation networks and provide information that can

be used to optimise traffic at microscopic level (for instance, signals control). These two

modelling approaches will be reviewed in detail in the following sections.

2.3.2 Macroscopic modelling: problems and results

Macroscopic modelling is involved in various levels of investigation and analysis of

transportation systems. The main results formed several research areas devoted to solve

particular problems or derivation of general relationships between standard parameters,

recognised within transportation systems. Main parameters, or variables, normally

involved in transportation modelling are summarised in Table 2.1.

Table 2.1. Principle traffic parameters

Traffic Parameter Description

Volume Traffic volume, vehicles or other objects
(pedestrians, cyclists) per unit of time

12

Speed Average speed of traffic flow

Delay Delay (enforced delay)

Queue Length of a queue (at a traffic light)

Concentration (density) Vehicles per unit of length

Generation Trips per person, activity unit by vehicle
type

Parking supply Number of spaces, costs per unit of time
and per unit of space, maximum allowable
duration

Parking demand Occupancy, mean duration, turnover rate,
parking volume

Safety Number of accidents by severity class,
number of traffic conflicts

Environmental factors Noise, air pollution, vibration

Energy Fuel consumed per unit of travel

2.3.2.1 Macroscopic traffic flow theory

Knowledge of the characteristics of the traffic stream provides the means for

understanding traffic behaviour in many situations, such as overtaking, queuing, turning,

crossing and merging. These characteristics, in conjunction with travel speed, traffic

volumes and traffic density, are the major determinants of road capacity in a given traffic

environment. A knowledge of traffic behaviour and parameters provides the means for

quantitative formulation of warrants for traffic control systems, planning, policy making

and other decision making processes.

As has been mentioned, the ultimate objective of transportation research is to provide the

engineer with the methods and techniques of transportation systems optimisation. It is

apparent therefore that before a system can be optimised, a rational description of its

phenomena must be obtained. First steps towards these objectives have been made to

study traffic flow as the most apparent characteristic of a transportation system. Traffic

flow was first studied using available, at the time traditional techniques such as analytical

deterministic or stochastic modelling, which are now called macroscopic models.

Traffic flow is used to describe collective movement of discrete units across network

infrastructure (in broad sense). The infrastructure is considered to be static and described

in tenns of topology, geometric features and other static parameters. In the transportation,

the discrete units are normally road users such as vehicles, pedestrians, cyclists. Each unit

is under control of a human operator and since the operators act independently, the

collective traffic exhibits a random behaviour. Macroscopic models are not interested in

modelling individual behaviour of single units but rather processes generated by their

collective interaction. There are three main components of road systems: the driver, the

vehicle and the environment (including road infrastructure). These three components

interact with each other. Consequently the moving traffic flow has characteristics that are

quite different to those of the individual elements. Several most important results will

further be reviewed. The review is based on [Drew, 1968] and [Taylor et al, 1996].

Many results in macroscopic modelling make use of the fundamental equation of the

traffic stream, that relate mean velocity (space speed) u, mean flow (rate of flow) q and

mean density (concentration) k to each other and is expressed in the form

q-ku (2.1)

If two of the above variables are known, the third is uniquely determined. Mean volume

is the easiest parameter to measure. It can be determined by counting the vehicles N(x,T)

that pass a particular point v on the road over the time period T. Then q can be found as

(2.2)

The other two parameters can be identified using either specific indirect methods or

measured directly. For example, the density can be determined by observing the number

of vehicles on the road section X at time t, for instance by taking an aerial photograph of

the road at that time and counting the number of vehicles, say N(X,t). Then

14

(2.3)

Speed measurements can either be collected by traditional surveys, which result in giving

a set of space speed measurements, or, if appropriate equipment is available, for instance

double inductive loop detectors, spot speed measurements can be acquired in real time.

Several methods have also been developed to estimate speed from the measurements

taken from single loop detectors [Hall, 1988, 1989], [Pushkar et al, 1994], [Coifinan,

2001], [Dailey, 1999].

Equation (2.1) has long been the basis of travel time estimation until recently it was

shown to have several flaws. Since travel time as the parameter of a transportation system

is of paramount importance, other algorithms that do not rely on speed estimates obtained

from equation (2.1) have been and are still being developed. This research project

addresses the problem of travel time estimation in Chapter 5. Currently available methods

will be reviewed and a novel methodology of accurate travel time estimation using only

single inductive loop measurements will be presented. The developed methodology has

advantageous distinguishing features that make it a better choice for studying urban

traffic.

The deterministic approach began with a suitable algebraic equation to explain the flow-

concentration relationship. Greensheilds [1934] chose to plot speed u against

concentration k for one lane of traffic. A typical plot of speed-concentration relationship

is given on the following Figure 2.1.

Concentration (k) kj

Figure 2.1. Typical speed-concentration relationship

15

Figure 2.2 shows the fundamental relationship between mean speed and traffic volume.

The relationship defines a feasible region for traffic flow under different combinations of

volume and speed.

oo

Volume (q)

Figure 2.2. Typical speed-flow curve

The curve defines the limits to this region. The two arms of the curve represent different

traffic flow conditions. The upper arm is for freely flowing traffic with a significant

proportion of the vehicles travelling at their desired speeds. This proportion decreases as

the nose of the envelope is approached. The lower arm represents congested flow

conditions, when most of the traffic is strongly influenced by the vehicles in front of

them. The speed-flow curve is widely used in determining the design capacity of a road,

through the use of “levels of service”.

The last characteristic curve of the fundamental relationship (2.1) is the volume-

concentration relationship. Figure 2.3 shows a typical volume-concentration curve.

Concentration (k) km
kj

Figure 2.3. Flow-concentration relationship with

operational regions A, B and C

16

The left arm of the curve represents free flow traffic condition, while the right ann is for

congested flows. Thus density is the traffic parameter that can provide a full description

of the state of a traffic stream. The curve of Figure 2.3 is split into three regions. These

regions are for light, freely flowing traffic (region A), moderate but stable, freely flowing

traffic (region B), and unstable, forced flows under congested conditions (region C).

Region B is the one sought in traffic design since flows in this region achieve an

optimum efficiency while utilising all available infrastructure.

First attempts to find the deterministic relationship that binds the above parameters have

been made using curve fitting technique. The problem of fitting a curve to a set of points

objectively is essentially the problem of estimating the true parameters of the curve. To

do so the method of least squares is normally used. A common simplifying assumption is

that the curve can be taken to be linear. This assumption is reasonable for most densities

apart from the very small and very large densities.

Another method is the boundary-condition approach. The basis of this method is the

differentiation of the fundamental equation (2.1) with respect to k. The result is

—L = k — + u (2.4)
dk dk

Differentiation of the fundamental equation of state q-flk) with respect to k yields the

wave velocity equation. Setting the wave velocity equation equal to zero yields the

optimum concentration ktm which is that value of k for which flow is a maximum. Since a

general relationship exists between q and u, the k corresponding to dq!dk=d can be set

equal to km. Thus

A . dxi /A _.
0 ==k>n7 T + U (2 '5)d&

Separating the variables and integrating both sides results in

17

In u = — — + C
km

(2.6)

Application of the boundary condition at k=Q and u=Uf enables one to equate C to In Uf,

yielding

^ = km In— (2.7)
u

Substitution (2.7) into the general equation (2.1) gives

q = ukm In— (2.8)
u

Edie [1961] obtained the same result by differentiating (2.1) with respect to u. Edie’s

equation (2.8) represents an effort to make the macroscopic q-u-k relations more accurate

for traffic densities less then optimum. He suggested that the conventional forms still be

used for densities greater than optimum, giving rise to a “discontinuous” form of the

steady-state surface. This theory as modified for non-congested traffic may help to

describe quantitatively the sudden change of state occurring in traffic stream going from

a relatively free-flowing condition to a crawling stop-and-go condition and back again.

Several attempts have been made to explain the relationships between the three

fundamental parameters using analogy between traffic flow and other physical

phenomena. One such physical analogy applied to model traffic flow was the heat-flow

analogy. Consider the problem of one-dimensional heat flow in a long, slender insulated

rod satisfying the differential equation

• 2 dP + <?lp
dt dx:

u2^ + - - f = 0 (2.9)

where p is temperature; * is distance; t is time and a2 - sk/c, where c is coefficient of

conductivity of material; s is specific heat and k is density.

18

The boundary conditions are statements of the initial conditions at the ends of the rod at

any time and the initial conditions throughout the rod at time zero. What is usually

desired is a description of the temperature at any time and place along the rod or, in other

words, a solution of the differential equation in the form

p(x,t) = f(L ,a ,x ,t) (2.10)

On the other hand if a continuous record in time was kept of the temperature at various

points along the rod one could solve for a and thus determine some property of the

material such as its conductivity c.

In application of the heat-flow theory to traffic, a single traffic lane acts as a long, slender

insulated rod (controlled access and no opportunity for lane change). If p in (2.9) is

allowed to assume the role of some parameter related to such conventional traffic

variable as speed, concentration and flow, the solution (2.10) provides the means for

evaluating some property of the highway. All that needs to be done is measure the traffic

characteristics along the stretch of highway defined by L. The heat equation (2.9) is, in

study of partial differential equations of physics, called the equation of diffusion. It is

satisfied by the concentration p of any substance which penetrates a porous solid by

diffusion. Harr and Leonards [1961] postulated that the movements of traffic resulted

from a motivating “pressure potential” analogous to p. In their solution the parameter was

then eliminated (since it has no physical significance in the traffic phenomenon), leaving

vehicular speed as a function of some properties of the highway and thus affording a

means of rating various geometric features as a curve or grade. It is interesting to note

that several variations of equation (2.9) have been studied in classical physics. For a rod

in which heat is being generated at a constant rate, while the lateral surface is insulated,

the heat equation takes the form

>2 d p +^ p
dt dx:a2- ^ + ^ r r = c (2.11)

where c is a positive constant. Reddy [1966] has suggested equation (2.11) as a basis for

evaluation geometric features of the road rather than (2.9). In this manner the theory was

19

generalised to account for the effects of vehicles entering or leaving the section of

roadways such as in the vicinity of entrance and exit ramps.

Another physical analogy that had been applied to modelling traffic flow is the fluid-flow

analogy, or hydraulics. Consider the following equation of motion [after Greenberg,

1959], which expresses the acceleration of the traffic stream at a given place and time as

This equation states that a driver adjusts his velocity at any instance in accordance with

the traffic conditions about him as expressed by k~l(dk!dx). If traffic is thinning out

(negative dk/dx) the driver accelerates (positive du/dt) and vice versa.

Equation (2.12) has the form of the equation of motion of a one-dimensional

compressible fluid with a concentration k and a fluid velocity u. Fluid mechanics is based

011 the principle of conservation of mass. When this principle is stated mathematically as

an equation, it is called the equation of continuity. Considering traffic flow as a

conserved system, the change in the number of vehicles on a length of road dx in an

interval of time d r must equal the difference between the number of vehicles entering the

section at x and the number of vehicles leaving the section at x+dx. If the number of

vehicles on the length dx at time t is kdx and the number of vehicles entering in time d r at

x is expressed as qdt, the conservation of vehicles can be expressed analytically as

kd x - (2.13)

Making use of q=ku yields the equation of continuity for traffic flow

dk d(ku) _
 1--------------------- — y

dt dx
(2.14)

Taking the derivative of the product in the second term yields

20

dk dk du _ . . . 1- u ----h k — — 0 (2.15)
dt dx dx

It is well established in the theory of traffic flow that vehicular velocity varies inversely

with the concentration of vehicles

u=Ak) (2.16)

And as a consequence of (2.16)

du _ du dx _ du _ ,
~dk~~d^'dk~~dk~U

Solving for du/dx from (2.17) and substituting in (2.15), one obtains the following

equation of continuity of single-lane vehicular traffic flow

dk dk
™+(u + ku')— = 0 (2.18)
dt dx

If a more generalised equation of motion is desired than (2.12), an exponent of

proportionality n may be utilised:

^ = (2.19)
d? dx

Making similar calculation as for the (2.12), one obtains the generalised equation of

motion

dk c2k" dk -
— + (w + — —) — ~ = 0 (2.20)
dt u dx

The nontrivial solution of (2.18) and (2.20) is obtained by equating the quantities within

the brackets

21

O ')2 = C 2 k {n~x) (2.21)

Finally, because of the inverse relation between velocity and concentration,

(2 .22)

Greenberg [1959] has solved (2.22) for n~-1 obtaining

u — c In
\ k

(223)

The solution of (2.22) for n > -1 is as follows:

-2 c
n + 1

k (n+l)l2 + a (2.24)

where the constant of integration is to be evaluated by the boundary conditions inherent

in the vehicular velocity-concentration relationship. Thus, since no movement is possible

at jam concentration kj,

C. = n>-1
1 71 + 1 1

(2.25)

and

j£_[k(r l)/2 _ A(».)/2] (22g)
H + 1 J V ^

Similarly, the implication exists that a driver is permitted his free speed, u/ only when

there are no other vehicles on the highway (&=0). Therefore,

u , = ^ - k Y * ')l2 to - 1 (2.27)
’ n +

22

and the constant of proportionality takes on the following physical significance:

(n +1)u f
C= . ’ { n>-1

2 k .
(2.28)

Substitution of (2.28) in (2.26) yields the generalised equations of state

u — u 1 -
. k,\ J J

q = ku = kiij 1 -
f ^ n(«+1)/2

kTj \

n>-1

ri>-1

(2.29)

(2.30)

Differentiation of (2.30) with respect to k equated to zero gives the optimum

concentration km, which is that concentration yielding the maximum flow of vehicles:

dq
dk

1 - (» + 3)

r , , n-2'(»+d71 + 3
kj

uf = 0

77>-l (2.31)

Substituting (2.31) in (2.29), one obtains the optimum velocity

77 + 1
Um = —71 + 3

77>-l (2.32)

The maximum flow of vehicles of which the highway lane is capable (capacity) is

obtained from the product of (2.31) and (2.32)

77 + 1
2 /(«+1) (tA _i_ Q \2 /(« + l)+ l(1/2) 1 (̂77 + 3)

uf k j , 77>-l (2.33)

23

Some special cases of (2.29) through (2.33) have proven to be of significance.

Greenshields’ [1934] linear model is obtainable by setting n—1, and Drew [1966] has

discussed the case for n -0.

2.3.2.2 Macroscopic area-wide transport system models

While traffic flow theory studies traffic flows on individual roadways, area-wide theory

studies transportation networks with many individual flows. Major changes to a traffic

system, such as introduction of a new traffic management scheme, may have effects on

traffic movement and traffic impacts at locations far away from the sites where the

changes are implemented. The optimum passage of vehicles through a network may be

sought by coordinating the traffic signal timings at successive intersections so that, for a

given direction of flow, vehicles released through one intersection will arrive at the

downstream intersection just as its signals turn to green for that traffic stream. For these

reasons, amongst others, traffic analysts need to consider the area wide, or network,

aspects of traffic flow and traffic demand. According to [Taylor et al, 1996], traffic

network analysis is important for three main reasons:

1) urban traffic control must take a network perspective. A modern control system such

as British SCOOT [Hunt et al, 1981], Australian SCATS [Sims et al, 1979], Spanish

CARS [Grau and Barcelo, 1992], attempts to coordinate signal timings at the

intersection along routes through the network, so the traffic progression can be

expedited. The specific objective is to allow the smooth passage of platoons of

vehicles along major routes, with a minimum of stops, and the preservation of the

platoons. The capacity of the intersection is a property of the intersection alone

(although the cycle time might be set by capacity considerations at some nearby

‘critical’ intersection). Achieving the best utilisation of the available capacity requires

coordination between intersections, so that platoons on intersecting roads arrive in

sequence, to use the green times on the respective approaches;

2) changes to the signal timing and geometry for different movements at one intersection

(i.e. changes to the transport infrastructure supply) may alter the pattern of traffic

usage (the travel demand) of the intersection and the surrounding network;

3) urban transport systems are multi-modal, with consideration given to other modes of

transport su6h as public transport, cyclists and pedestrians. In addition, the destination

24

choices of travellers may be made from amongst a set of alternatives. Therefore, it is

important to know what people’s travel needs and patterns are, how much usage will

be made of all the modes, how destination choice will depend on the relative

accessibility of alternative destinations, what impact congestion will have on the

choice of mode and route and the timing of trips, and what interactions will be

observed in different parts of the network.

Traffic network analysis aims to describe or forecast the distribution of traffic flows over

a road network in a given time period or over a set of time periods. Modelling is usually

undertaken in one of two main stages: in the description of an existing traffic system,

where the aim would be to calibrate or evaluate a model, and in the synthesis of a future

or alternative system (e.g. a proposed traffic management plan), where a calibrated model

would be applied to test the performance or impact of the future or proposed system.

Analysis and modelling may be applied in a series of steps, with the following five steps,

and the basic question each seeks to answer, being [after Taylor et al, 1996]:

(1) trip generation - shall I travel?

(2) trip distribution - where shall I go?

(3) trip timing - when shall I travel?

(4) modal choice - how shall I travel?

(5) trip assignment - which way shall I go?

The sequence given by steps (1), (2), (4) and (5) forms the traditional ‘four-step’

procedure which has been applied in transport planning for many years. Step (3),

regarding the timing of trips, was traditionally ignored but becomes important when

flows over time of day are considered. This information is especially needed for

Advanced Traveller Information Systems (ATIS), which are now studied extensively.

Therefore, several problems naturally arise from the above steps and are described in the

following sub-sections.

2.3.2.2.1 Trip generation

Trip generation seeks to define the numbers of trips which start (originate) at one site and

finish at another (a trip is defined as the one way movement from an origin to a

destination and there are two trip ends associated with each trip). A narrow but practical

25

definition of trip generation is useful in traffic impact analysis in that it is the measured

level of traffic activity associated with a given site, development or land use. Trip

production (Pi) is the number of trips which start (are produced) at a given site (/). Trip

attraction (Aj) is the number of trips finishing (attracted to) at site j.

Trip productions from residential areas are usually modelled in terms of average trip

rates, or by use of ‘category analysis’ tables, which classify the trip rates by household

variables such as household size, income, car ownership, etc. Trip attractions are usually

modelled by regression relationship, with the independent variables selected from the

physical or economic characteristics of the land use.

2.3.2.2.2 Trip distribution

Trip distribution follows trip generation as it is concerned with forming linkage between

the trip productions (Pi) and trip attractions (Aj) to form the trip matrix Ty, the number of

trips that will go from i to j. This matrix is called the Origin-Destination trip matrix or

O-D matrix. The origin-destination matrix plays a fundamental role in studies of wide-

area transport systems and wide-area traffic control. As a consequence, a considerable

amount of interest has been attracted to the problem of estimation of O-D matrix. A

review of the methods of obtaining O-D data is given in [Taylor et al., 1996] and

mathematical treatment of O-D estimation and related traffic assignment problems is

given in [Steenbrick, 1974]. Due to its importance, a review of methods for origin-

destination matrix estimation will be given in a separate section.

2.3.2.2.3 Trip tim ing

Modem transport and traffic planning is concerned with the timing of journeys during the

hours of day, in terms of the duration of periods of peak demand, the opportunities for

spreading peaks over longer time periods to lessen congestion levels and the influences of

congestion levels on an individual’s ability to change the times at which trips are made

through constraints imposed by non-travel activities undertaken by that person or by

interaction between the members of a household. Trip timings is normally undertaken by

considering the origin-destination matrix being a function of time, thus yielding different

O-D matrices for each individual time t.

2.3.2.2.4 Modal choice

Modal choice analysis is used to predict the number of travellers who will use the

different modes of transport available in the area. The most reliable models of modal

choice attempt to predict the probability that a given person will choose a particular

mode for a given journey. This probability will depend on the socio-economic

characteristics of the individual, the characteristics of the available transport modes (e.g.

fares, travel time, waiting time, reliability, comfort), and the proximity of the mode to the

origin and destination of the individual’s trip. The economic theory of maximum

consumer utility [Hensher and Johnson, 1981] forms the basis of modem modal choice

modelling.

2.3.2.2.5 Trip assignment

Trip assignment modelling is used to determine the route choice of drivers, and to build

up the flows on each link in the network. So the question is simply to find a feasible

solution to the network constraints. It is obvious that there are many solutions to this

general assignment, and it is possible to apply further criteria for the assignment. There

are three commonly used strategies for assignment modelling. These are Wardrop’s

principles [Wardrop, 1952] and Jewell’s principle [Jewell, 1967].

2.3.2.2.6 Origin-destination matrix

As it has been mentioned in the previous sections, the origin-destination matrix plays an

important role in describing properties of wide-area transportation system models. It has

a wide spectre of applications including long-term planning, traffic systems design, real

time traffic signal control and Advanced Traveller Information Systems (ATIS). A

variety of methods for O-D matrix estimation have been developed over the last years.

The methods are normally utilised in one of the three ways:

1) O-D matrix is constructed by direct observation using traffic surveys or

questionnaire surveys [Thompson, 1989]

2) O-D matrix is synthesised from observed flows on the link in the network; or

3) O-D matrix is modelled using, for instance, some ‘gravity’ model of trip

distributions [Wilson, 1967], [Holm, 1976]

27

Construction of O-D matrices from direct observation is a rather expensive and laborious

method, therefore more and more often methods that construct O-D matrices from

observed traffic flows are being used. Since modem traffic control systems are being

installed in more places, the cheapest data for O-D matrix construction is the traffic

counters data that can be obtained from the most traffic control systems, such as SCOOT.

Methods of O-D matrix synthesis from observed flows can also be divided to static

methods and dynamic methods. Traditionally, static estimation methods were based on

gravity model methods [Wilson, 1967], [Holm, 1976], which reduced estimation problem

of O-D matrices to calibration problems with small number of unknown parameters. Van

Zuzlen [et al., 1980] extended the gravity model to entropy-maximising technique.

Another type of static estimation methods developed in recent decades is to include

additional observation information (traffic counts, parking surveys, etc.) and then

combine it with a priori knowledge of O-D matrices. Cascetta [1984] introduced

generalised least squares approach to estimate O-D matrices from both survey data and

traffic counts. Mather [1983] proposed to use the Bayesian approach to the O-D matrix

estimation problem which results in functional forms equivalent to the generalised least

squares method. Bell [1991] presented an algorithm to improve generalised least squares

estimates by using inequality constraints.

Over the last two decades much interest has been given to the problem of the dynamic O-

D estimation. Cremer and Keller [1987] and Nihan and Davis [1987] proposed recursive

algorithms to estimate O-D matrices. Chang and Wu [1994] addressed a problem of time-

varying O-D matrices estimation and developed a recursive estimation procedure for O-D

estimation. Van der Zijp and Hamerslag [1996] developed an improved Kalman filter for

O-D estimation problem. Spiess [1990] addressed a computational complexity of the O-D

estimation problem and proposed a gradient-based algorithm that is able to cope with

relatively large transport networks. More recently Florian and Chen [1995] proposed an

iterative method of adjusting the O-D matrix that does not require the explicit route

definition, which allows handing the exponential growth of the number of O-D pairs with

the growth of the network. More recent developments were concerned with the O-D

matrices estimation in the presence of uncertainty [Li, De Moor, 2002]

28

2.3.2.3 Conclusion on macroscopic modelling

The above review touches only a few angles of transportation research problems and

methods. But it is clear that macroscopic modelling paradigm cannot give adequate

answers to several questions. What is the behaviour of spot speeds of individual vehicles

in traffic flow? How does headway depend on speed of the flow? How are congestions

built up after an accident? There are many other questions which a macroscopic model

may find difficult to answer. After digital computers became widely available, a new

direction of modelling has started to be extensively developed, namely the microscopic

modelling. The following section will give a brief review of the advances in microscopic

modelling, the scope of problems it deals with and solutions it provides.

2.3.3 Microscopic modelling: problems and solution

In contrast to macroscopic modelling, whose purpose is to describe a system by a set of

‘macroscopic’ parameters, such as flow, density, speed of flow, etc., that are normally

aggregated versions of some lower lever parameters, microscopic modelling is trying to

model individual objects of the system and thus is capable of providing information on

those lower level parameters.

In transportation, typical objects of microscopic models are vehicles, cyclists,

pedestrians, etc. Road infrastructure is provided to the model as static data. Since real

objects of a transportation system have very complex relationships, a microscopic model

of the system normally takes into account only pair-wise, or one-to-one, relationships

between the objects. Another distinguishing feature of microscopic models is that they

are simulation models, that is the modelling is accomplished via simulation. Simulation is

a process of updating the model’s state with time and, since simulation is normally

performed on a digital computer, is a cyclic numerical procedure that calculates the state

of each object of the model according to its relationships (or interaction) with the other

objects.

According to [Peytchev, 1999], functions of microscopic models can vary substantially.

The simulation model can be a basic module for traffic queues and traffic density

29

predictions in the real-time traffic control or, alternatively, can work off-line and evaluate

control strategies, which subsequently will be executed on the field according to the

current simulation.

In transportation microscopic modelling, the principle of modelling of the one-to-one

relationships between the objects led to the development of the car-following models that

lie in the basis of many microscopic models of traffic flow. The first car-following

models were proposed by [Reushel, 1950], [Pipes, 1953]. The basic idea of the first

models was that the acceleration of a vehicle is directly proportional to the speed

differential between it and the vehicle in front. This simple model had several flaws. The

model does not include any reference to the spacing between the vehicles, but a driver

can be expected to be more responsive to changes in speed if the leading vehicle is only

ten meters in front, rather than 100 meters. Gipps [1981, 1986] proposed improved car-

following model that closely mimics observed driver behaviour in congested traffic. The

more recent models allowed greater accuracy in predicting vehicle movement at the

microscopic level developing more complex models. From the point of adequacy of the

car-following models it can be noted here that car-following model is not enough to

define all possible movements of a vehicle, since in free flowing traffic the vehicle is not

in the car-following state and thus has to be modelled differently. Kosonen [1999]

developed a rule-based model that is capable of taking into account the possibility for a

vehicle to fall into a very critical area where emergency type of actions can take place,

the effects of traffic signals, speed limits, and other traffic signs.

Most of the microscopic traffic models are developed as a software tool that facilitates

certain direction of research, traffic planning and other activities related to traffic. The

tools can broadly be classified as being developed for 1) urban traffic 2) motorway traffic

and 3) combined traffic models. A typical model for simulation of urban traffic is

HUTSEM developed in Helsinki University of Technology, Finland [Kosonen, Kokkinen,

1992], [Kosonen, Niittymaki, 1995], [Kosonen, 1999]. One of the models for simulation

of motorway traffic is AUTOBAHN developed by Benz Consult GmbH, Germany [Benz,

1994], [Benz, 1995], [Benz, 1996]. An example of combined (urban and motorway)

traffic models is AIMSUN2 developed in Universitat Politecnica de Catalunya,

Barcelona, Spain [Barcelo, Ferrer, 1994], [Barcelo et al, 1995], [Barcelo et al, 1996].

30

2.4 The role of data processing and analysis in traffic modelling

According to [Bargiela, 1998], systems modelling is broadly applicable in the context of

two types of problem-solving activities: system inquiry and system design. In system

inquiry, a model is developed for the purpose of understanding and controlling some

aspects of reality, making adequate predictions or retrodictions and utilising these

capabilities for various ends. In system design, a model is developed for the purpose of

analysing the behaviour of the relevant objects before they are actually deployed so that

desirable criteria are satisfied within given constraints. It is clear that in both cases data is

the medium of information transmission, hi system inquiry a model is built based upon

some observed behaviour of the modelled system. The observations are normally made in

form of measurements of the systems’ parameters of interest. In system design, the

results of modelling come in the form of data, which is then analysed in order to make

decision regarding the models adequacy and relevance.

In the context of transportation system, it is clear that macroscopic modelling is of the

system enquiry activity. It is therefore apparent that traffic data form the basis of all

developed traffic models and all models have been developed by studying the data. Once

a model has been developed, it cannot be applied to real-life problem without validation,

which is again a process of comparing the results of modelling with real system’s

parameters, which are represented in data.

Microscopic modelling can be considered to be of the system design activity.

Microscopic models represent systems that do not have to exist yet can be studied by the

analysis of the results of modelling. Model validation is a necessary stage in microscopic

modelling, which is essentially a process of tuning the model using real-system

measurements in order to increase its adequacy to real-life systems. Once a model has

been built, it provides information about the modelled system in a variety of forms of

data.

Besides modelling, real-time traffic data is used to provide information on many spot-

parameters of a real traffic system. Real time data processing, analysis and mining are

31

finding more and more applications in modem traffic information and advice systems,

such as ATIS.

Concluding the above discussion, it is difficult to overestimate the importance of data

processing and analysis in Transportation Research. Data processing and analysis is the

basis of the most research activities within the area. Unfortunately, despite the apparent

importance of data processing, this problem has been given a little attention by

researchers. Most of projects carried out in the area of Transportation Research that dealt

with traffic data employed individual, normally in-house made tools and methods of data

processing that are suitable for a particular project only. Therefore a significant amount

of time is spent over and over again for development the tools for particular projects. This

problem has been addressed in this research project and as a consequence a flexible and

convenient software tool has been developed.

Chapter 3

Data and Information

3.1 Introduction

The problem of understanding the relationships between the process of learning and basic

information (data) has long been of a major interest. Aristotle studied the research

process nearly three thousand years ago. He suggested that knowledge can be created by

applying logic to observations in order to generate conclusions. The methods of logical

analysis that he developed still form the basis of current scientific analysis, having been

developed and given mathematical structure in the last hundred years. Aristotle realised

that necessary data could come from observations of physical experiments and that the

conclusions derived are based upon those data.

In the complex modem world, scientists are not the only people who collect data. Almost

every aspect of modem social life associated with some or another sort of data being

collected, analysed and stored. Several examples of activities that involve collecting and

analysing data and the reasons behind the need for data are as follows [after Goodman,

1995-1996]

• Market research. Enormous amounts of data are collected by commercial

organisations about buying intentions of customers; these surveys are widely used in

the social and political arenas.

• Propaganda. Some data are collected to convince other people of the rightness of

someone’s view (as well as group’s, organisation’s, government’s, etc.). Most

propaganda that involves real data is based on processing and presenting raw data in a

way that suits a particular message. This category could also include instances of

scientific fraud in which data is falsified or misrepresented to convince a scientist’s

peer group of the correctness of one’s work.

• Belief justification. Many people seek data that support the views they already hold.

• Decision support. In industry and government it is now expected that decisions be

based on careful analysis of data. Relevant data about the area to be affected are

33

collected and collated; this would then form one of the key foundations of the

decision to be made.

• Science. There are many fields of science where collecting and interpreting data is a

critical part of the process of research.

In general, data collection is accomplished in order to establish the parameters o f a

system. Data represent measurements of the system that can be obtained by one way or

another depending on the system. Data is normally regarded as the source of empirical

knowledge but data itself does not constitute the knowledge. In order to extract

knowledge from data, it first needs to be transformed into information. It is therefore

clear that knowledge is based upon information which, in turn, is based upon data.

3.2 Data, Information and Research Process

3.2.1 Research processes

The purpose of any data collection is to gain knowledge about a system. The process of

gaining new knowledge about system is conventionally called research process. This

section will describe two known research processes as they have been developed

throughout the history of science. The review is based on the lectures by [Goodman,

1995-1996].

Two fundamental research processes were identified by Aristotle nearly three thousand

years ago. Aristotle argued that knowledge begins with experience and thus the first

approach, called induction, is the necessary “leap” from unorganised experimental

experience to conclusions and generalised knowledge about the system. Induction has

been the prevalent research method until almost 19th century and still forms the basis of

scientific analysis. Induction proceeds through three main stages as follows.

1) Collection of relevant empirical data through observation. This process generates a

body of facts that, over an extended period of time, accumulates to a point where

generalisations can be made

34

2) Summarisation of collected data. The volume of data involved will require careful

ordering and classification of the data.

3) Generalisation about the system from the collected data. Organised summaries of the

raw data provide the basis for the interpretation process {exploratory analysis) that

will produce the generalisations (“laws”) that are being sought.

Although induction has been used for centuries, it has several serious flaws. Firstly,

selection of relevant data is uncertain in a sense that different researchers may collect

different data and thus the same phenomenon can be explained by different (based on

different data) Taws’. Secondly, the induction does not specify the selection of collection

method (“experimental design”), e.g. in what circumstances, how and what data is to be

collected. Also, there are no criteria for deciding exactly what technique should be used

to summarise and analyse data. And most critically, the generalisations produced by

induction are not really general in the proper sense; they are tied to the specific data that

is available and the researcher who has created them. A different researcher can draw

different conclusions from the same data and more data may lead to different conclusion.

The alternative process - deduction - has also been described by Aristotle, but it is

applicable only when a discipline has reached a certain stage on its evolution. It requires

an established body of strong generalisations (created inductively) upon which it can

build. Deduction consists of four steps as follows.

1) Identification of the object to be investigated. Deduction starts with a body of

‘theories’ that are widely accepted to be ‘true’. In this context ‘true’ means that there

is substantial amount of evidence to support the theories and little or no evidence

exists that contradicts them. The theories are always in some way incomplete, and the

aim of research is to attempt to ‘fill in’ these gaps.

2) Formulation of a reasonable hypothesis and definition of how to test it. The

hypothesis is a statement that is a) consistent with, and based upon, current theory but

contains ideas that are not accepted as part of that theory; b) it is formulated in such a

way that it can generate predictions that are capable of being shown to be either true

or false, or in other words, the hypothesis must be testable; c) the statement leads to

the formulation of an experiment that will generate data that can be used to test the

hypothesis.

35

3) Carrying out an experiment. If experiments are problematic in induction, they are

critical in deduction. The necessity to collect exactly the required data in order to test

a hypothesis drives scientists to strive for the maximum level of control over their

data collection. The success of an experiment is measured in terms of whether it

collected the right amount of the right type of data to allow the hypothesis to be

tested.

4) Testing the hypothesis. The testing of a hypothesis is performed by comparison of

predictions based upon the hypothesis with the outcome of the experiment. If these

predictions are found to be incorrect, the hypothesis is being rejected. On the

contrary, if the predictions are found to have been correct, the hypothesis is said to

have been verified.

Unlike induction, the deductive process has no specific role for subjectivity of

conclusions (‘inspiration’). It is accepted now that the analysis of experimental results

and the testing of a hypothesis is a fundamentally ‘mechanical’ process. Therefore, two

scientists should, in principle, generate equivalent results from the same experiment and

interpretation in this context is limited to deciding whether or not specific prediction have

been supported and the hypothesis is true or false. The induction and deduction research

processes are summarised in Figure 3.1.

INDUCTION DEDUCTION

ADD

DISCARD

REFUTE CONFIRM

Experiment

Model

Hypothesis

Data collection

System
phenomena

Interpretation
(information)

Conclusions
(knowledge)

Body of
generalisations

Figure 3.1. Induction and deduction research processes

Thus, a way from data to knowledge lies though these two stages. In first instance, when

there is no knowledge available about the system of interest, induction is used to create

36

the necessary ‘ground’, or a body of facts. After that, the body of facts are extended and

enriched using the deduction process. As a consequence, an established theory that

describes the behaviour of the system of interest is created.

Once a theory is established, it contains enough ‘confirmed’ hypotheses, which are

basically the models of phenomena of the system, and having a set of models that

describe the system, it becomes possible to predict or influence (control) the processes of

the real system. Thus, scientific knowledge can be defined as the understanding, in the

form of models, of the phenomena of real-life systems.

3.2.2 Relationships between data and information

In the previous section, a review of fundamental research processes has been given. Let

us get back to Figure 3.1. It can be observed from the induction diagram, what differs an

entity called data from an entity called information. The hierarchy of the inductive

research processes, emphasising the difference between the stages of the process, can be

expressed as the following cliche

“Data is not information,

Information is not knowledge,

Knowledge is not understanding,

Understanding is not wisdom" - Cliff Stoll & Gary Schubert

It has been widely recognised that concept of data and information are relative [Ahmed et

al, 1999]. That is, data is a raw material for information, and information is obtained by

processing data. Using an economical analogy, processing of data can be seen as addition

of a ‘value’ to data. But information of a certain level can in turn be raw material for a

higher level information, for which previous level information will be data, etc.

Therefore, there is no absolute information or absolute data, these concept gain their

common notion only in certain context. For example, measurements of the direction of

wind, taken from individual points is raw data, based on which the direction of the air

stream in bigger scale is information. Further, the information on directions of individual

streams of air are data for the information about the cyclone, etc. From these arguments,

37

the term of information granularity can be defined as the level (relative) of the

information within the hierarchy of informational entities that describe particular system.

The following section will establish a system within the area of transportation research,

which will further investigate various level of information and data flows that are used in

modelling the system. Particular informational granules (entities of information) of

interest of this study will be identified and the importance of understanding of their

behaviour (or underlying phenomena) emphasised.

3.2.3 Data and information in transportation research

In Chapter 2, the main directions in the road transport research has been discussed and

several systems (or sub-systems) have been presented. Since transportation research is a

relatively young discipline, it is possible to observe the ‘classical’ way of its development

from inductive formation of the knowledge base to the iterative deductive development of

certain areas of interest.

In this study, traffic systems are of main interest. The main object of such systems is

traffic and this phenomenon of the transportation system is to be studied. Traffic has been

of primary interest since transportation research has emerged as an individual scientific

discipline. Historically, traffic analysis began with the studies of traffic data, which were

collected in a variety of forms and techniques. Some classical traffic survey techniques

are on-site observers filling in specifically prepared ‘forms’, probe vehicles cruising

across the area of interest or video surveys. The body of facts eventually led to forming

theories, or models, of traffic applied with various success (see Chapter 2).

Currently, the main source of traffic data are Traffic Control Systems, which allow

automatic routine data collection. The data provided by the Traffic Control Systems is

much cheaper than those collected using classical survey techniques. Another positive

feature of automatically collected data is in its continuity (the collection is performed

continuously without interrupts). Unfortunately, it is often of worse quality than survey

data and also most difficult to process. Normally, Traffic Control Systems are designed to

perform one kind of task and the measurement equipment (inductive loop detectors) are

38

designed for that kind of specific task. As a consequence, the data may be of a poor

quality for other kinds of tasks.

In recent years, significant interest in the transportation research has been addressed to

development of traffic information systems, or ATIS (Advanced Traveller Information

System). This is caused mainly by the fact, that the traditional traffic control and

management strategies have reached their limits and are unable to optimise further

constantly increasing traffic and as a consequence, alternative ways of improving traffic

situation are being sought. Providing current traffic information to the drivers is one such

way and is thought to have a significant potential.

Summarising previous thoughts, let us identify the types of information that can affect

drivers’ decision regarding the planned journey. It is conventionally accepted that the

most important information is the expected travel time from the driver’s start to the

destination. In this context travel time across an area is information since it cannot be

measured directly but has to be extracted from data. Another example of traffic

information is the availability of alternative modes of transport (e.g. public transport). In

the latter case, public transport timetables can be considered to be data and the

availability of the transport at a particular place and time is information, since the arrival

of the transport can be affected by various factors of the current traffic situation and thus

cannot be obtained from timetables but has to be predicted from the traffic data.

There are many important information entities that have been identified within the traffic

systems. Investigating each of them requires substantial work. The problem of travel time

estimation in urban areas has been one of the less investigated areas and therefore this

research will focus on the development of the appropriate methodology for estimation of

this important operational parameter of a traffic system. The knowledge of current travel

time can be used in solving many practical problems, such as estimation of the origin-

destination matrices, assessing uncertainty associated with estimation of a journey time

and for Advanced Traveller Information systems. A review of the problems that can be

solved once travel time is estimated with required precision and uncertainty associated is

measured, will be put forward in the conclusion of this thesis as directions of further

research.

39

3.3 SCOOT UTMCS and Traffic Data

In this project, a SCOOT system’s data has been used to carry out experimental study.

SCOOT system is a typical representative of modem generation Urban Traffic Control

systems and is widely used in the UK and some other countries. A brief introduction into

SCOOT principles and functionality will be given in the following section. A

presentation of the procedure of retrieval of data from a SCOOT system follows the

description of data, its format and features. Then a relationship between data and

information will be discussed and the process of transformation one to the other will be

studied in greater detail. The review is based on the following sources [Hunt et al, 1981]

and [McDonald and Hounsell, 1991].

3.3.1 SCOOT UTMCS

SCOOT (Split Cycle and Offset Optimisation Technique) [Hunt et al, 1981] is a demand

responsive urban traffic control system. Research into SCOOT was initiated by the

Transport and Road Research Laboratory (TRRL) in 1973. In 1975, preliminary field

studies were carried out in Glasgow by a team from the TRRL, Ferranti, GEC and

Plessey with assistance from Strathclyde Regional Council. Upon successful completion

of the research stage, development of the system began by the Department of Transport

and Industry and the three traffic companies in 1976. TRRL continued research into

SCOOT and in Spring 1979 carried out a full scale trial of the system in Glasgow. In this

trial SCOOT was found to produce average journey times 6% lower than those produced

by a set of newly-prepared fixed time TRANS YT plans [Hunt et al, 1981].

As part of the development project a SCOOT system, functionally equivalent to the

Glasgow system, was installed in Coventry in 1979. A five week evaluation of the system

was carried out in Spring 1980. In this evaluation SCOOT was found to produce average

journey times 5.5% lower than those produced by a set of newly-devised fixed time plans

[Hunt et al. 1981].

As a result of these successful evaluations, a decision was made to market SCOOT

commercially. The first commercial system was installed in Maidstone in 1983. Since

40

then, the use of SCOOT has spread and the system is now in operation in over forty large

towns and cities in the UK and overseas.

3.3.2 SCOOT principles

The basic philosophy of SCOOT is to obtain the optimum traffic signal settings, and that

any changes must be implemented with minimum disturbance to traffic movement. In

contrast to SCOOT’s predecessor TRANSYT, which used pre-calculated fixed timing

plans calculated over historical traffic profiles, SCOOT measures current traffic

conditions in real time and constructs optimised plans for those conditions. In order to

optimise traffic more efficiently, SCOOT attempts to predict particular traffic patterns

into the future. To do so a traffic model is required and such a model forms the heart of a

SCOOT system. The SCOOT traffic model produces predictions for a short time into the

future to give an estimate of traffic demand for the next cycle of the traffic lights and

further ahead for cycle time changes. In order to obtain information about traffic flow, a

SCOOT system employs an infrastructure of single-loop inductive detectors that are

embedded in the roadway. These detectors usually cover one or two lanes, and are

usually sited 10 to 15 meters downstream of the upstream junction on a link. Figure 3.2

demonstrates the organisation of the SCOOT’s detectors infrastructure. The SCOOT

traffic model is based on data collected four times a second. Figure 3.3 shows the

processing of detector data collected in 0.25 second intervals into the SCOOT model.

This data is processed and used to modify the Cyclic Flow Profiles - one for each link,

divided into four intervals. The traffic predicted to be crossing the downstream stop line

in each interval is stored in these profiles.

The model also includes all the traffic stop lines. Every stop line is controlled by nodes

and signal stages. The use of red-green information at the stop lines and traffic volumes

in the profiles allows prediction of the queues that will form for a given stage length. The

model contains a representation of traffic demand (cyclic flow profiles), stages, stops and

delays.

Congestion is directly measured from the detector. If the detector is placed beyond the

normal end of queue in the street it is never covered by stationary traffic, except the case

41

when congestion occurs. This enables the detector output to show congestion. If any four

seconds data shows traffic standing on the detector for the whole interval then this is

recorded. The number of intervals of congestion in any cycle is recorded.

© Link N100D
■ „.......Entry Link

Link N 10 ID

Entry Link

©

I To
2
% I

tq

Node 100

t ©
oo 1 <

2 1 2
i-3 £ .m< j
© i f

Node 101

Detectors

Exit Link

LinkNlOOB

E ntiy Link ©

Link N 10 IB ,

Entiy Link

Figure 3.2. SCOOT detectors infrastructure

Detector

CoToJ / — ^

Generated
00011 llOOOQOOOQOOOQOOOQOOOOjoOOQOl 11|1 lOQOO ' ’ occupancy pulses

--------- 1----- 1------1----- 1------1----- 1 j (----- 1----- 1--------- ^
Time

Figure 3.3. SCOOT detector data flow

The purpose of the traffic model is to predict the effect on street of different signal

timings. Three separate optimisers use this ability to optimise splits, offsets and cycle

time.

42

The split optimiser works on the traffic model just before each state change. It considers

the effect of advancing, retarding or holding the stage change and the effect this has on

the green duration. The test it uses is the degree of saturation of all links controlled by the

node. The degree of saturation is defined as the ratio of the average flow to the maximum

flow which can pass a stop line. The ratio of the demand flow to the maximum possible

discharge flow in SCOOT terms is the ratio of the demand of the cyclic flow profile to

the demand of the discharge rate (Saturation Occupancy) multiplied by the duration of

the effective green time. The split optimiser will try to minimise the maximum degree of

saturation on links approaching the node. If the average degree of saturation over a five

minute period is greater than 90% then cycle time will increase to give more capacity at

the critical node. This has been shown to minimise delay. If congestion is present on the

approach to the node then this must be taken into account by the split optimiser. To

enable this the proportion of the previous cycle that was congested is included with the

degree of saturation used by the optimiser when making its decision. The congestion term

will enable a congested link to tend to obtain more green time whatever the degree of

saturation shown in the model, depending on the congestion importance factor set for this

link.

The offset optimiser optimises the difference in stage start time between nodes. The

cyclic flow profiles are used by the offset optimiser to predict the queue length

throughout the cycle. Once a cycle the offset optimiser predicts the queue lengths for all

the links upstream and downstream of a particular node. The effect of ‘moving’ the nodes

‘time’ forward or backward by a small amount is predicted for these links. As the time of

arrival of traffic at the stop line is shown in the profiles, these predictions can be used to

minimise the stops and delays in the mini-area. The congestion on a link is also used in

the offset optimiser so that the congested link is given priority over links without

congestion. The degree of priority is related to the degree of congestion.

The cycle optimiser usually runs every 5 minutes. At this time it will work out the degree

of saturation at all the stop lines for each node. If any are above 90% saturated the

minimum practical cycle time is increased by a small fixed step. If all are below 90%

then the minimum practical cycle time is reduced by a small fixed step. The optimiser

considers all cycle times from the highest minimum practical cycle time of the critical

node up to the maximum region cycle time operating at that time. There is provision

43

within SCOOT for the optimiser to run twice as often if a trend of rising or falling flows

has been established. To reduce delays at very lightly loaded junctions the cycle

optimiser will double cycle time of these junctions if the delay is reduced in the network

by this action. Because this can show reduction in delay if the cycle time is changed by

large amounts, the cycle optimiser is the only optimiser that looks at the effect of large

changes. However large changes in cycle time are very disruptive so SCOOT does not

make the change in one step. The change made will be in small steps but the direction of

movement will be chosen by reference to consideration of a larger change. The cycle

time optimiser operates on a region of nodes that have progression between them.

3.3.3 SCOOT data

SCOOT functionality is not limited to producing only signal control. Many useful

parameters and information regarding the current state of the system can be obtained in

the form of messages. Access to SCOOT is normally accomplished via terminal either

connected to the SCOOT computer or remotely via rlogin or telnet protocols. SCOOT

starts printing messages to the requesting terminal as a result of a MESS command

having been given.

There are 5 types of SCOOT messages

1) “M” messages are associated with model information

2) “C” messages are associated with cycle times

3) “S” messages are associated with splits

4) “O” messages are associated with offsets

5) “W” messages are associated with detectors and warnings

All SCOOT messages have common “header” part followed by individual message’s

content. The header contains the following fields

<DAY> <TIME> <TYPE> <LINK>[<DETECT>]

where

<DAY> is day of week (‘Mo’, ‘Tu’, ‘We’, ‘Th’, ‘Fr’, ‘Sa’, ‘Su’)
<TIME> is time of the event that corresponds to the message (HH:MM:SS)
<TYPE> is the type of message (i.e., C01, W23, M14, ...)

44

<LINK> is the name of link the message corresponds to (e.g. N60331H)
<DETECT> is the detector number within the link (1,2, rarely 3)

The <DETECT> field presents in the detector-related messages only, such as M l9.

Two message types, M l4 and M l9, have been extensively used in this project and will be

discussed in detail. For the information on format and content of other types of messages

one can refer to the SCOOT User Guide.

Messages of M14 type carry information on the current state of SCOOT traffic model and

control output for the period between current and previous message. M14 messages are

generated every 4 seconds and have, in addition to the header, the following format

IVL <aa> OCC <bbbb> LQ <cccc> BQ <dddd> EB <eeee> LIT <ffff>

where

LINK is a link name (or name of inductive loop)
IVL is current interval within cycle
OCC is occupancy value arriving at stop line (LPU/interval) (-1 if link is faulty)
LQ is length of queue currently modelled (LPU)
BQ is position of back of queue (LPU)
EB exit blocked flag (l=block)
LIT is four bits giving the state of signals in previous four seconds

(l=green,0=red)

Here is given a fragment of SCOOT output flow:

Tu 09:27:16 Ml 4 N60431E IVL 0018 OCC 0 LQ -252 BQ 0 EB0 LIT 1111
Tu 09:27:16 M14 N60431F IVL 0019 OCC 10 LQ 43 BQ 43 EB0 LIT 0000
Tu 09:27:16 M14 N60431G IVL 0018 OCC 0 LQ -163 BQ 0 EB0 LIT 1111
Tu 09:27:16 M14 N60442B IVL 0019 OCC 2 LQ 13 BQ 49 EB0 LIT 1111
Tu 09:27:16 M14 N60442C IVL 0019 OCC -1 LQ 0 BQ 0 EB0 LIT 0000
Tu 09:27:16 M14 N60442I IVL 0202 OCC 0 LQ 0 BQ 0 EB0 LIT 1110
Tu 09:27:17 M14 N60311K IVL 0219 OCC 0 LQ 0 BQ 0 EBO LIT 0000

LPU stands for Link Profile Unit and is the SCOOT’s traffic flow measurement unit. An

extensive study of the accuracy of measurement of traffic flow has been carried out by

several researchers [Carden et al, 1989], [Backer et al, 1991], [Evans, 1995], [Peytchev,

1999]. The main characteristic under analysis has been LPU-to-vehicle conversion factor

(LPUCF) defined as a ratio of flow in LPU to the number of vehicles in the flow. It has

been reported that LPUCF remains relatively stable over time and does not change much

when calculated for peak and off-peak traffic (about 5% variability). It has been found

45

that the average LPUCF is 17 LPU per vehicle although LPU generated for an individual

vehicle can change substantially [Peytchev, 1999]. Since accuracy of estimation of

various traffic characteristics is the main concern of this study, a decision has been made

not to use LPU measurements for the derivation of the characteristics. Another point to

be mentioned is that the minimal time granularity of LPU measurements is 4 seconds,

which means that traffic measured in LPUs is being averaged over this period of time and

this is an additional source of uncertainty which will be inherited by the estimates based

upon the LPU measurements.

Although LPU traffic measurements carried in M14 messages will not be used, a useful

information in M l4 is the signalling stages. Knowledge of signalling stages in urban

traffic modelling and simulation is a prerequisite for a success of the study.

M l9 messages represent detector occupancy measurements taken every quarter of second

and encoded into a string of four bits. Thus, the frequency of M l9 messages is once a

second. Ml 9-specific infonnation has the following format:

DETECTOR STATE <VALUE>

The generation of M l9 messages can be illustrated using previously given Figure 3.3.

Considering Figure 3.3 and occupancy flow generated over the loop detector (let us name

it detector 1 in link N60331H, or N60331H1), a set of M19 messages generated by

SCOOT will be given below.

Detector N60331H1

1

. \ . ! ' \ | , I f Generated
OOpOOQO 11 lpOOOpOOOpOOQOOOOpOOQO 111;110Q00 ' ’ occupancy pulses
— 1-------1 1 1 1 1 1 1 1 1 ►

37 38 39 40 41 42 43 44 45 T -

Sa 08:26:38 M19 N60331H1 DETECTOR STATE 0111
Sa 08:26:39 Ml 9 N60331H1 DETECTOR STATE 0000
Sa 08:26:40 Ml 9 N60331H1 DETECTOR STATE 0000
Sa 08:26:41 Ml 9 N60331H1 DETECTOR STATE 0000
Sa 08:26 :42 Ml 9 N60331H1 DETECTOR STATE 0000
Sa 08:26:43 Ml 9 N60331H1 DETECTOR STATE 0000
Sa 08:26:44 Ml 9 N60331H1 DETECTOR STATE 0111
Sa 08:26:45 Ml 9 N60331H1 DETECTOR STATE 1100

Figure 3.4. Generation of Ml 9 messages

46

Messages M l9 are the lowest level messages (no low pressing has been applied) and with

the lowest time granularity. They allow detection of vehicle arrival events with accuracy

±lA of a second.

M l9 messages do not distinguish free travelling vehicles and vehicles that stop over the

detector (during congested periods). A convention therefore has been made to consider

all sequences of pulses longer than 8 to be related to either a stopped vehicle over the

detector or that the detector is faulty. Consequently, since there are at most 8 pulses

collected in any occupancy detection event and taking the average vehicle’s length for 5

meters, the slowest speed is 5m/(S-0.25s)=2.5m/s and the fastest speed

5m/(l-0.25s)=20m/s. Then, a series of all possible speed readings are (2.5, 2.8, 3.3, 4, 5,

6.6, 10, 20} m/s. This demonstrates the poor quality of spot-speed estimates that are

based upon SCOOT single-loop detector measurements. In Chapter 5, a methodology of

accurate travel time estimates based on single-loop measurements will be developed. The

developed methodology can then be used for a much more accurate space speed

estimation based only on single loop detectors’ readings.

3.3.4 Retrieving SCOOT messages

Before data becomes available for processing it has to be retrieved from the SCOOT

system. SCOOT system provides its users with an interactive interface, which is

developed in a form of a command-line shell. As has been already mentioned in the

previous section, a user accesses the interface either from a SCOOT terminal or remotely.

Current version of SCOOT operating system supports IP protocol and standard remote-

access services such as telnet or rlogin.

The interface needs interaction and does not provide automatic data retrieval process. In

order to automate data retrieval process, a user-simulation software is required. Such

software will send commands to the system and collect the output. Such software can

then be used as an intermediate layer between SCOOT and DIME shared memory system

[Argile et al, 1996] or send data to either a file or to an IP socket.

47

Several terminal simulation software are available that allow connecting to SCOOT

system from a remote host, such as MS Window’s standard HyperTerminal application.

Unfortunately most of them do not have capability to control the data flows of the

connection without presence of a human operator. The specificity of SCOOT operation

(such as daily resets and initialisations) makes it necessary to monitor its state and

provide necessary commands in order to keep data flow uninterrupted. The lack of

scripting capabilities in most of the terminal simulation software led to a situation, when

the researcher involved in data collection had to monitor the data collection process and

change the terminal output files on a daily basis.

A solution, proposed in this study, is to use stream based communication applications,

such as Unix’s telnet or rlogin, and using piping capabilities of a Unix system to redirect

the programs’ standard input and output streams to another application, which would then

monitor the incoming data and send commands according to the results of the monitoring.

Not all terminal-based applications can be controlled via standard input and output

streams that are offered by the Unix piping system. Some applications use so called

addressed cursors and standard terminal operations such as control characters, colours

etc. A set of capabilities that are supported by a terminal device is called a terminal

protocol. Examples of such terminal protocols are ANSI, VT100 and other terminal

protocols. In Unix, a terminal protocol support is inherited from the underlying device

driver (device such as a video card, a dumb terminal connected via serial port, etc.) and

then passed to all applications that use terminal capabilities. It can be said, that terminal

device input and output channels are being forwarded from the system to the first

terminal application and then throughout the hierarchy of applications run one from

another (see Figure 3.5).

Unix OSTerminal device

Terminal
device driver

gettystdin *>■<-Console
application

Console
application

Console
application

s t d o u t

Figure 3.5. Hierarchy of applications and forwarding of the
terminal IO streams

48

Unix daemons are processes that are run in the background mode to perform a certain

task and do not require interactive operation with the user. Therefore daemons do not

have an associated terminal device and have their standard input or output streams closed

or redirected to files (see Figure 3.6).

The application that is supposed to use rlogin or telnet in order to connect to a remote

SCOOT system, further referred to as ‘controller’, is by its nature a daemon process. It

does not need a terminal device of its own unless it is controlled directly from a console

(which is not a good thing to do anyway).

Unix OSTerminal device

Terminal
device driver

getty
s t d i n

Console
application

Console
application

Console
application

s t d o u t

sendmail inetdbind

Daemon DaemonDaemon

Figure 3.6. Unix daemon processes

Since the controller is a daemon and does not have a terminal device associated with it,

the pipes created to communicate with the intermediate application are ordinary streams

without support of the terminal capabilities (see Figure 3.7).

Many terminal I/O based application use advanced terminal capabilities which require

support for underlying hardware terminal functions. If the application process has been

started with the standard input and output streams initialised with ordinary streams (such

as file streams, sockets or pipes) the application may cease to work due to errors while

initialising terminal. SCOOT interactive interface is such an application. Although the

absence of hardware terminal functions is not a fatal error for most applications (but of

49

course, most applications become useless because of the chaos in its output), SCOOT

interface considers it a fatal error and terminates immediately. Therefore, although a

scheme of data acquisition with controller as shown on Figure 3.7 works for standard

input/output based applications (such as sh, awk, cat, etc.) it does not work for SCOOT

interface.

Controller telnet/rlogin
Commands^

Data stream
monitoring and

control logic

stream ™

Data and
^ state

COMMUNICATION
WITH SCOOT

OVER NETWORK
^information

streamU► TO THE DATA CONSUMER

IP
■^■V^Network^

SCOOT OS

TRAFFIC DATA
AND

INFORMATION

Figure 3.7. Architecture of data acquisition procedure

A solution for this problem has long been implemented in all Unix systems and is called

“pseudo-terminals”. Pseudo-terminals are bi-directional communication channels that can

be used to connect two processes or a process group to another process. What pseudo

terminals provide is a lot like two pipes, but with a support of hardware terminal

interface. The hardware terminal support is implemented as “dummy”, that is it just an

interface with no real functionality since no underlying hardware is available.

Nevertheless, this implementation is sufficient for the terminal based application to

function properly. Figure 3.8 demonstrates the application of pseudo-terminals to the data

acquisition procedure.

From Figure 3.8 it is clear that for the ‘telnet/rlogin’ part of the scheme, the standard

input and output look exactly as if they were associated with a hardware terminal and,

thus, an application on a remote location (SCOOT interface) can use standard hardware

terminal functions and therefore operate properly.

A software product realising the above scheme has been designed and implemented in the

C language on a Unix platform (Solaris). It has then been successfully used to simulate

the interactions needed to operate SCOOT in a way that is required for a flawless and

50

non-intermittent data flow. The controller application has been used to retrieve real-time

SCOOT data into DIME system [Argile et al, 1996], which then allows multiple remote

application to access the data in a consistent and efficient way.

Controller telnet/rlogin SCOOT OS

Data stream
monitoring and

control logic

COMMUNICATION
WITH SCOOT

OVER NETWORK Network

TRAFFIC DATA
AND

INFORMATION

TO THE DATA CONSUMER

Figure 3.8. Architecture of data acquisition procedure with
pseudo-terminals

3.4 Uncertain information

3.4.1 Introduction

It is now well recognised that the uncertainty associated with an aspect of a physical

reality is a reflection of the lack of precise information about this reality. That is to say

the more information that is known about a system, the less uncertainty is associated with

our knowledge of the system. It has been shown [Bargiela, 1998] that most of models of

real-life process are affected by uncertainty that appeared to be a multi-dimensional

concept. Depending on the mathematical framework employed, uncertainty may be

distinct in terms of one or more of the five types: entropy, dissonance, confusion,

nonspecificity and fuzziness.

51

A deterministic model that captures precisely all aspects of a system is certain. That is to

say it can answer any question about the system with 100% accuracy. However, real-life

systems are of a tremendous complexity in deterministic terms and therefore can hardly,

if at all, be described by a deterministic model. The complexity of real-life system makes

deterministic approach impossible to be applied for real-life system. On the other hand, a

system can be described by an uncertain model where some insignificant information has

not been included into the model, and further by a model that does not contain any

information about the system (let us call such a model an empty model). An empty model

unlike a deterministic one is fully uncertain and on the other hand as simple as empty set

from the set theory.

The two extreme poles show the relationship between informational contents and model

complexity it causes. Models of real-life systems are neither of these poles. Firstly, it is

hardly possible to obtain all the information about a system and, secondly, the purpose of

modelling is to extract relevant information about a system and avoid unimportant

details. An important problem to find a compromise between complexity and uncertainty

has been of main interest of the systems theory. The solution has been found in

application of the principles of minimum and maximum entropy [Jaynes, 1979],

[Christensen, 1981], [Williams, 1980], [Klir and Folger, 1988] in the framework of the

probabilistic information theory.

Nowadays a concept of uncertainty has been broadened [Bargiela, 1998], [Klir and

Wierman, 1999], [Wang and Klir, 1992], [Shafer, 1976] and is considered as a multi

dimension entity. The fundamental principles of minimum and maximum entropy have

been generalised and became the principles of minimum and maximum of uncertainty.

This causes the need for developing new modelling methodologies which take the

multidimensional nature of uncertainty into account.

3.4.2 Measures of uncertainty

Probabilistic uncertainty has long been the only known type of uncertainty. Since it

represents an intuitive concept of ‘chance’ it has been found in the works of Pascal

where he considered uncertainty associated with placing bets in gambling games. The

52

presence of probabilistic uncertainty in traffic modelling can be found in the example of

travel time estimation. Travel time depends on a number of factors, which can naturally

be assumed as being random variables. Since it is possible to perform many experiments

with travel time estimation, the statistics on the variable can be collected and then using

well-developed statistical apparatus, analysed. In such case, a probability distribution can

be estimated by frequency distribution. The probabilistic analysis of the travel time

estimation procedure will be given in Chapter 5 and empirical study of travel time

distributions in Chapter 6.

Two other types of uncertainty have been discovered by [Shafer, 1976] in which the

additivity of the probability measure was questioned. The two measures were called

plausibility and belief and measure dissonance and confusion types of uncertainty

accordingly [Klir, Folger, 1989]. The presence of dissonance and confusion uncertainties

can be found in the procedures that involve interaction of concurrent bodies of evidence.

For example, a procedure of turning movements estimation is affected by those kinds of

uncertainty and therefore any model based on the turning movements inherits this

uncertainty. A discussion on turning movements estimation problem will be given in

Chapter 7.

A type of uncertainty called nonspecificity is complementary to probability and puts an

emphasis on the process of selection of an alternative from the set of all available

alternatives. This ambiguity is totally resolved when one of the alternatives is selected

[Bargiela, 1998]. A procedure of establishing the correspondence between origin and

destination of particular sets of events experiences such an ambiguity. Therefore a travel

time estimation procedure, turning movements estimation procedure and others are

affected by this sort of uncertainty.

Another type of uncertainty, vagueness, is associated mainly with objects that have

“fuzzy” boundaries or it is difficult to draw precise distinction between such objects. The

theory of fuzziness is now well developed and includes a number of disciplines such as

fuzzy sets, possibility theory, fuzzy systems, fuzzy calculus and so on [Zadeh, 1965],

[Dubois and Pride, 1980], [Dubois and Pride, 1985], [Rosenfield, 1971], [Pedrycz, 1983],

It has been recognised that the fuzzy approach can be adequate even in crisp systems

where precise information is not required or cannot be obtained. In the case of traffic

53

modelling, one deals with measurements, which are by their nature crisp numbers.

Nevertheless, there are many other factors affecting traffic that cannot be measured

precisely but can be formulated in fuzzy terms and included into a model and, as a

consequence, increase its credibility.

Also a model of traffic can be developed on the basis of fuzzy numbers and fuzzy

relationships, where systems’ parameters are fuzzy numbers and relationships define their

interaction and dependencies. For example, the estimated travel time can be seen as a

fuzzy number whose membership function is the frequency distribution. This idea will be

investigated further in Chapter 6.

3.5 Conclusions

In this chapter, a relationship between data and information within the framework of

modem research process theory has been established. Transportation research, as a

relatively new area of research, has been shown to evolve through the presented stages of

theory evolution.

In this research, data collected from a SCOOT system has been used to carry out

experimental study as described in the deduction research process. A brief review on the

SCOOT functionality and parameters have been given to provide the background on the

type of data available from the system. Data formats have been given and several types of

SCOOT messages, extensively used in this research, are described in greater detail.

It has been widely recognised that uncertainty associated with knowledge about a system

is a multidimensional concept. Modem theory of information has identified several

dimensions of uncertainty and outlined directions in which current knowledge can be

improved by understanding the associated uncertainty and measuring it in an appropriate

way. After uncertainty has been identified and measured it will become possible to

master uncertainty in a way that is beneficial in some sense.

Transportation research, as a merely engineering area, has not yet benefited from the

development of information theory and there are many open problems to be solved or

current solution improved using the advances in understanding underlying systems

complexity and uncertainty.

55

Chapter 4

The Data Processing Environment

4.1 Introduction

Data is the source of empirical information and information in turn is the source of

empirical knowledge. The primary aim of any data analysis is to retrieve or extract the

information that the data can provide. Clearly, different sets of data may contain

different information as well as the same data can contain various types of information.

The nature of both entities has been discussed in the previous chapter and this chapter

will concentrate on a practical topic, namely the tool for data processing, analysis,

modelling and simulation.

The data in the discussion will be considered being related to traffic and transportation

system. This nevertheless will not affect the generality of the tool to be developed, as

one of the criteria of the design is the universality meaning that the developed tool

should not assume implicitly or explicitly the exact nature of data but to be flexible and

deal with data as an abstract entity.

In transportation, many data collection techniques have been developed and exercised

over the years [Taylor, 1996]. Traditional data collection techniques involve

sophisticated equipment or much resources thus making the collected data rather

expensive [Drew, 1968]. Obviously, data produced by different techniques will be

different in its format and semantics. This point is just another illustration of the fact

that a universal data processing tool must accommodate different types and formats of

data even if they are of the same nature.

This project is mainly interested in data that has been routinely collected by a traffic

control system (such as SCOOT) and the developed tool will be exercised on this type

of data. While the SCOOT data is easily accessible it is also rather difficult to process

and analyse. Consequently, satisfying the requirements for the processing of SCOOT

data renders the processing tool to be general and applicable to a broad spectrum of

56

data processing tasks. Additionally, it is desirable that a set of standard analytical and

statistical procedures is available to carry out numerical analysis of the properties of

data. This chapter is devoted to development and evaluation of such a tool, which

provides the basis for this research study. Several examples will be given to

demonstrate the functionality and abilities of the developed software environment.

As has been described in the section devoted to SCOOT data, the data has several

features that need to be taken into account during specification of the requirements for

the processing tool. The features are summarised below:

- Traffic data that is automatically collected by the traffic control system is

represented in a form of textual messages

SCOOT produces high volumes of messages (hundreds of megabytes per day) even

for relatively small road networks under its control

- Messages have standard fields and message-specific fields

There are nearly one hundred types of messages generated by SCOOT (different

types of data and information)

Messages can represent raw measurements of traffic flow as well as the results of

internal SCOOT traffic model (control output, higher level traffic flow estimates,

etc.)

SCOOT data is redundant in a sense that it is generated constantly regardless of the

situation on the road. Messages carry information about non-zero occupancy as well as

zero occupancy. SCOOT produces high volume of data but the actual informative

content of the data may be small and filtering out dummy messages can significantly

reduce the volume of messages that are to be analysed. Therefore it is the first task of

the data processing procedure to filter out empty messages and pass on to the further

stages of processing only significant data. Although the above features have been

recognised for SCOOT data, those features in a sense are the ‘worst’ case. Many other

traffic control systems produce data with similar characteristics and therefore the

developed software is believed to be suitable for dealing with data produced by sources

other than SCOOT.

There are several ways traffic data can be made available for processing. Firstly, it can

be redirected from the traffic control system straight to the processing software. This

will facilitate on-line real-time data processing, which can have a number of potential

applications. Secondly, data could have been collected over a past period of time and

stored for later use. In this case the historical data comes from storage devices. Thirdly

data can be generated as a result of simulation process (with the simulator located on

either a local or remote system). The fact that data may come from physically different

sources implies the design requirement that the data processing environment should be

flexible in order to implement data importing gates for different data sources. Several

examples of data sources are: files, network sockets, local system processes, keyboard,

mouse, etc.

Data analysis normally requires several stages or procedures applied sequentially. One

of the first stages would be to remove faulty data or to detect inconsistencies and handle

them appropriately. Then data would be analysed statistically. Visualisation of the

results is yet another important stage in data analysis. After all, the results of the

analysis have to be made available for the other applications or exported as documents.

Normally a user would expect all such functionality to be implemented in the

processing software or, at least, have the flexibility to extend the in-built functionality

by implementing missing functions and integrating them into the system.

Taking into account the above issues the requirements for such a software system will

be given in Section 4.3.

4.2 Review of the software tools for data processing

The importance of data processing and analysis has been already emphasised in the

previous chapters. This section will give a brief review of approaches to data

processing carried out during traffic-related projects.

4.2.1 The databases

Several researchers have proposed to use databases as the standard approach to traffic

data storage and handling [Bell, 1992], [Skabardonis et al, 1997], [Cornwell et al.].

58

Evans [1995] was concerned with processing and storing SCOOT data, which is the

same as the data used in this project. Therefore, a brief description of developing a

SCOOT database presented in [Evans, 1995] will be discussed.

The motivation behind the use of databases to store SCOOT data was the ability of

databases to store a large quantity of data in a compact, easily accessed and centralised

location. The databases also ensure that data has a consistent format with a minimum of

redundancy.

The architecture of the developed database is shown in Figure 4.1 (adapted from

[Evans, 1995])

Application
interface

User
interface

Static data
sources

Dynamic
data sources

Pre-processing
software

Relational
DBMS

Figure 4.1. The traffic database structure

It is clear from the above figure that data processing is an intermediate stage between

data sources and DBMS. Since DBMS do not support custom data processing (unless it

is implemented on the level of stored procedures) it has to be implemented as

independent layer of the data flow model. For data pre-processing, Evans [1995] uses a

suite of computer programmes written in the C and Awk languages. Awk [Aho et al,

1988] is designed to manipulate text files, which contain information that is structured

in records and fields and it has been chosen since SCOOT messages have such format.

Databases normally have static structure and design of the structure using the relational

algebra is not a trivial task. The COMIS database, presented in Evans [1995], has a

59

fixed structure that utilises the relationships between SCOOT spatial characteristics

such as links, nodes and detectors with two types of messages, namely Ml 6 and M02.

Another system, called ASTRID [Hounsell et al., 1990], was developed by

Southampton University as part of a contract funded by the TRRL. The ASTRID

system consists of a suite of data collection, pre-processing and analysis programs, that

are run on an IBM PC or compatible PC. Within the suite, data collection is carried out

using an assembly language program that reads incoming SCOOT messages and logs

them onto hard disk. This program runs in the ‘background’ so that additional tasks can

be carried out at the same time as data collection. The messages used in ASTRID are

M02, M03, M04 and they provide flow, delay, SCOOT congestion and faults for links,

nodes and regions respectively; M16 for stage lengths; C01 for regional cycle time;

C30 for degree of saturation of links; W05, W06 provide information on changes in

fault status for links. When messages have been logged, they are pre-processed by two

FORTRAN programs. One of them splits a file of raw logged messages into a set of

sub-files. Each sub-file generally contains one message type for one link, node or

region. When producing sub-files, the following additional operations are performed:

1) Unwanted fields are removed from messages;

2) Link flows and delays are scaled by site specific LPUCFs (if these have been

specified);

3) Data is aggregated over user-defined time interval

The sub-files produced by the pre-processing stage are subsequently processed by the

second FORTRAN program. This program takes one day’s worth of message sub-files

and uses them to update a set of trend and profile files. These files form the core of the

ASTRID system. Trend and profile files are manipulated for a specified set of links,

nodes and regions.

The advantages and disadvantages of using databases in traffic data processing and

analysis are apparent. While databases provide a unified structure and interface to the

data, there are several drawbacks in the data source-database-application scheme.

Briefly they are as follows:

1) In real-time and time-critical applications data is passed through the database

causing a significant overhead

60

2) There is no mechanism in databases that would notify the applications about the

arrival of new data. Due to this, applications, that require real-time data have to

scan databases continuously, which causes a significant overhead to the whole

system

3) Databases are difficult to upgrade or add new relationships

And the advantages of the database approach are also clear:

1) Databases are good when no real-time processing is required, that is for off-line

data storage and access.

2) Database Management Systems provide a high level of data safety and

consistency, especially when the database is accessed from several remote

locations.

3) Databases provide fast random access to any historical data that were stored in

it.

In the data processing environment developed within this project, the possibility of

using database is open and an interface to a database can easily be implemented thus

allowing the user to utilise the advantages provided by the database, but the software is

not based on database thus giving the user the flexibility in choosing the working

framework that is more suitable for a particular task.

4.2.2 Data processing tools for traffic projects

A set of tools for data processing and analysis have been developed during the Freeway

Service Patrol Evaluation project carried out in University of California, Berkeley

[Petty, 1995], [Petty et al., 1996]. The suite of programmes called FSP has been

developed in order to facilitate the processing and visualisation of the data that was

collected during the Freeway Service Patrol Evaluation project. The main function of

the tools was to perform diagnostics on the data, generate error reports and make plots

of various pieces of data.

The main fsp programme has been written in the C language for UNIX platform and

made free for academic use. It takes as its input arguments a file that contains a set of

61

commands that fsp is to perform, an incident filter file and incident run number. The

input of the data into the fsp program is accomplished by placing data files into the

specified directories in the file system. The hierarchy of input data directories has to be

created. A graphical user interface front-end to the fsp programme, called xfsp, allows

the user to select the input data files that are to be processed, start the data fixing

procedure, and run fsp to produce output files and browse the content of the output

files, xfsp was written in the TCL/TK scripting language and is meant to operate under

X-Windows sub-system of UNIX OS.

The data collected during the Freeway Service Patrol Evaluation project was of three

categories: the loop detector data, the probe vehicle data and incidents data. The loop

data is collected from inductive loops that are embedded in the highway. At a specific

location, each lane contains a pair of loops that are spaced about 14 feet apart (double

loop detectors). When a vehicle passes over a loop, the effective inductance in the

circuit changes and this results in a change in the current flowing in the loop and

detected by the detector using a threshold level. Binary data is generated by sampling

the result of the comparison of the current level and threshold at the frequency of 60Hz.

For a desired data output period, the fsp programme generates the following

information for each interval.

• The number of vehicles that pass over the loop location in that interval

• The fraction of the time in that interval for which the loop is occupied

• The mean speeds in that region during that interval

The fsp programme recognises and tries to fix inaccuracies or inconsistencies in the

data that occur due to a variety of reasons, such as

• The loop may not be sensitive enough to detect all the vehicles passing over

them and thus may in fact be undercounting. Also, vehicles not in the centre of

the lane may be missed, as is the case of vehicles attempting to change lanes.

On the other hand, loops may be detecting vehicles that are on neighbouring

lane and hence resulting in some overcounting

• The resolution with which the time headways can be measured is 1/60 second.

This limits the accuracy of measured vehicle speeds. Further, mismatch in

62

tuning of a pair of coupled detectors leads to errors that cannot be compensated

for.

• The detector thresholds may not be tuned properly and this can result in bias in

the measured occupancies.

The developed fsp software does what it was developed for. Unfortunately, there are

several problems associated with the use of the software for purposes other than those

specified in the Freeway Service Patrol Evaluation project:

• It lacks the generality and should data format or analysis procedures change it

will not be able to cope with the changes. It is thus a very specific

implementation of data processing software for the very specific problem.

• The input to the programme should be provided in the form of files that contain

necessary data and the output of the programme is organised in the form of

report files. This makes the use of the software in real-time processing and

analysis procedures inconvenient and clumsy.

• Another problem is that since the core programme is written in the C language it

is difficult to extend it in the sense of adding new functionality.

The above problems are analysed in this research and taken into account during the

development of the data processing environment.

4.2.3 Other data processing, modelling and analysis software packages

There are several commercial software packages that may be considered as candidates

for the use as data processing, modelling and simulation tools. Features and capabilities

of some of them will be reviewed in the following sections.

4.2.3.1 VisSim™

VisSim is a software program for the modelling and simulation of complex dynamic

systems [Visual Solution]. VisSim combines an intuitive drag & drop block diagram

interface with a powerful simulation engine. The visual block diagram interface offers a

simple method for constructing, modifying and maintaining complex system models.

63

The simulation engine provides fast and accurate solutions for linear, non-linear,

continuous time, discrete time, time varying and hybrid system designs. With VisSim,

users can quickly develop software or “virtual” prototypes of systems or processes to

demonstrate their behaviour prior to building physical prototypes. Built-in integration

tools allow users to communicate seamlessly with MATLAB and Mathcad.

The user builds his system model by selecting predefined blocks from a block library

and simply wiring (graphically connecting) the blocks into a diagram. Each block of the

diagram performs a mathematical or input/output function. These “blocks” may

represent complex algorithms, input variables, or various outputs like graphs, charts,

plots or data files. Users can also create custom blocks in C, Fortran or Pascal and add

them to the VisSim block library. After the model is configured, a simulation is run and

results of the simulation are displayed. The core product, VisSim, is used for general

modelling, simulation and control system design applications. VisSim product options

include VisSim/Analyze, for frequency domain analysis, and VisSim/Real-Time, for

real-time hardware-in-the-loop validation. In addition, there are several extension

packages that add to VisSim functionality that is necessary in particular applications

such as digital and analogue signal processing, analogue, digital or mixed-mode, end-

to-end communication systems, frequency domain analysis and other add-ons.

Due to its efficiency, intuitive block-diagram interface and simplicity of use VisSim has

become very popular in engineering circles and is mainly used for solving problems

studied in the classical control theory.

One significant disadvantage of VisSim for modelling and simulation of transportation

systems is that it only supports numerical data types whereas in the transportation

system models variables and parameters may be represented as strings, numbers,

logical values or more complex structures such as spatial characteristics of a road

network. Another disadvantage is that blocks that form a model of a system work in

synchronous mode only and also it is not a multi-threaded product (thus cannot take

advantage of parallel processor architectures).

A graphical user interface, similar to VisSim’s, has been chosen as a prototype for the

data processing environment’s user interface as it is the most intuitively understandable

64

way of representing stages of data processing and transfer between individual

processing or analysis functions. Block diagrams are also a common tool for

visualisation of control system models.

4.2.3.2 MA TLAB™ and Simulink™

MATLAB and Simulink™ are products of The MathWorks, Inc. [The MathWorks].

MATLAB is an integrative environment with its own language and interpreter, which

has been especially designed for mathematical calculations. Over the years of its

evolution, many packages of functions have been developed and cover almost all topics

of applied mathematics including modern theories of neural networks and fuzzy

systems. MATLAB has been implemented for the most software and hardware

platforms including Sun (Solaris), Hewlett Packard (HP-UX), IBM PC and compatible

with MS Windows and Linux and Apple (from version 6.5), which is one of the factors

of its popularity.

Simulink is an interactive tool for modelling, simulating, and analysing dynamic,

multinomial systems. It lets a modeller build a block diagram, simulate the system's

behaviour, evaluate its performance, and refine the design. Simulink integrates

seamlessly with MATLAB, providing immediate access to an extensive range of

analysis and design tools. Its functionality is similar to VisSim. One of the advantages

is that Simulink is built on top of MATLAB and this gives a modeller access to the

powerful analysis and graphics capabilities of MATLAB. It also allows writing custom

modules on a high-level language of MATLAB whereas VisSim requires its blocks to

be written on one of the general purpose languages, such as C or Pascal.

The disadvantages of Simulink are almost the same as VisSim’s. The main

disadvantage is that it supports several, but all are numerical, data types, which include

32- and 64-bit floating-point, fixed-point and integer. It also has a less intuitive

graphical interface.

4.2.4 Conclusions

The problem of data processing as such is rarely considered by the researchers to be

worth of special treatment. Since different data requires different processing

65

procedures, researchers would normally develop a small and very task-specific

application that would allow them to transform the source data into some standard

representation (such as numerical data: vectors, matrices, etc.) in order to use standard

analytical tools to carry out further analysis. This essentially means that the software

developed for that particular task cannot be used should source data format or output

representation changes. This leads to a very little re-usability of the data processing

code, which in general implies extra costs for developing new applications for new data

formats or projects. Moreover, a wide range of general-purpose analytical tools creates

a problem of migrating from one to another. The migration is a frequent event since

there is no a single software system that provides all necessary functionality for every

project and problem escalates even further as researchers are often forced to write their

own tools and procedures to perform the analysis of the data they require.

4.3 Requirements

Having studied the disadvantages of the existing modelling and data processing and

analysis software packages, a set of requirements have been produced that the data

processing environment must satisfy. The following sections present the requirements

and discussions on their necessity.

4.3.1 Modularity

As it has been mentioned in the introduction, a typical analysis process consists of

several stages which data is passed through in order to extract certain pieces of

information. Given that the range of functions performed at each stage is vast it is

impossible to implement every function in one software system. One possible solution

is to require the system to be modular, or in other words all individual functions that

can be used for analysis be implemented as functional modules which then can be

added into the system and manipulated with. The data processing environment must

provide the means by which such functional blocks are integrated into the system and

manipulated within it (placed, parameterised, connected, controlled etc.).

4.3.2 Extensibility

Extensibility is basically the consequence of the modularity requirement, which states

that the system must be easily extensible by adding new functional modules, which will

extend the system’s functionality. Modular extensible system has great flexibility in

meeting particular analytical requirements of the user. For example, the user can

implement and integrate into the data processing system a decision support module that

will assist the user in making decision based on the data. Another possibility is the

implementation of a control system that produces control output based on data analysis.

As a consequence of the extensibility, the developer of the data processing environment

is made free from the need to implement many functions into the system since all task-

specific functionality can be added to the system in the fonn of modules.

4.3.3 Efficiency

The system must be efficient enough in order to deal with high volumes of data. Since

data processing and analysis can be a continuous real-time process, the efficiency

requirement also implies that the computational resources are to be distributed between

the functional modules accordingly. For example, as has been mentioned before, high

volume of raw data does not necessary imply high volumes of information but

extraction of relevant pieces of data can be computationally expensive process.

Therefore, the pre-processing stage can take much computational resources but should

not overshadow the rest of the analysis process.

In some cases system might not have enough computational power to cope with high

volume of data in real time. In such cases the system can only be used as off-line data

analyser and cannot be used in real-time decision-making processes.

The computational power can be significantly improved by using parallel or multi

processor hardware. In the case of such hardware being available, the system must

utilise the advantages of the resources. This idea is expressed as the following

requirement.

67

4.3.4 Concurrency

This requirement can be considered as a consequence of the efficiency requirement and

states that functional modules are executed concurrently in separate threads of

executions. In this case the underlying operating system can make use of the available

multi-processor hardware resources with the greater flexibility. One drawback of this

requirement is that there will be additional computational costs for synchronisation

between the processes, which can induce overhead of up to 10% on a single-processor

system. Nevertheless, it is a good trade-off when the system is used on a multi

processor hardware.

4.3.5 Reliability and fault tolerance

Since the user can integrate arbitrary code into the system, the system should be robust

towards the errors and crashes within the user’s code and such crashes within one block

should not affect the whole system. This nevertheless should not limit the range of

functions available to the user.

Multi-threading feature has its own impact on reliability. That is the functional modules

that are run in separate threads of execution are protected against errors that occur

within the other modules. A crash within a module can affect the other modules only in

a sense that it will stop providing data to the peer modules. This may cause the system

(or a set of modules within the system) to cease functioning (put it into a waiting state)

but such situation is not a fatal error and the system should be able to recover.

4.3.6 Universality

Data can be received in a variety of formats and representations. Different types of data

require different internal types and treated accordingly. For example, numerical data

can be represented as real numbers, integer numbers, complex numbers, vectors,

matrices and other fonns. Some data may be expressed in symbolical form and some

data in the form of textual messages. A universal data processing tool must be ready to

68

accommodate various needs for data types, from the primitive types, such as numbers,

to complex types describing sophisticated data structures.

This requirement is not satisfied by most of the commercial software packages that

allow the user building system models from basic blocks and carry out simulations in a

convenient graphical environment. This is because most of them allow only a limited

set of data types, normally numerical types, such as boolean, floating point real or

integer numbers, and vectors or matrices of numbers. Such limitation renders the

packages useless in solving problems that involve manipulations of heterogeneous

objects, as is the case with traffic data processing and analysis processes.

This feature of the data processing system to operate with custom data types and

formats will be called universality.

4.3.7 User-friendliness

Graphical user interfaces have become standard de-facto and are expected by the users.

Therefore a convenient graphical interface should be provided by the system. It is also

desirable that the user be able to manipulate the functional modules, that is, creating

instances of the modules, customising module’s parameters, placing and wiring them,

in a convenient visual environment. As a prototype of the interface, the VisSim’s

(Section 4.2.3.1) interface has been chosen as it is the most intuitive and flexible.

4.4 Analysis and Design

This section will describe the design of a new software product for data processing and

analysis. Taking into account the disadvantages of the existing software tools the new

design will follow the specified requirements. The design has been carried out with the

object-oriented paradigm in mind.

4.4.1 Use cases study

Many projects begin with use cases, as they provide a good way of obtaining an overall

picture of what is happening in the existing system or is planned to happen in the new

69

system [Bennett et al, 2001]. Use cases diagrams show use cases and actors and the

associations among them. Use cases development approach has been investigated by

[Jacobson et al, 1992], [Jacobson et al, 1999], and now forms an important part of UML

standard. In Jacobson’s approach, use cases were the starting point for the development

of a new system. Due to its simplicity and intuitive clarity, this approach has been

employed in design of the data processing system.

Edit a model

Run simulation

Retrieve the
results

User

Edit library of
modules

Figure 4.2. Basic use cases and actors

Figure 4.2 provides the basic use cases for the data processing environment. It consists

of an actor (“the user”), and four types of activities the user performs with the system.

1) Edit a model. This use case includes all activities related to addition or removal

of functional modules into/from the current model, placing connections between

the modules and updating the modules’ parameters according to the requirement

of the model.

2) Run simulation is the key activity of the system and corresponds to execution of

individual functional modules and passage of data between them.

3) Retrieve the results activity corresponds to an intermediate or final stages of

simulation, when partial or complete results of the simulation become available

and the user is able to retrieve them from the system in some conventional

format such as tables, graphical plots, etc.

70

4) Edit library o f modules activity corresponds to the extension of the system by

adding new functional modules or removing the existing ones from the system.

This activity represents the extensibility requirement of the system

The following sections develop each use case individually.

4.4.1.1 Edit a model

Edit a model use case can further be developed as given in the following figure.

Add block to
the model

Edit block’s
parameters

Remove block
from the model

Place a connection
between blocks

Remove a connection
between blocks

Figure 4.3. ‘Edit a model’ use case diagram

4.4.1.2 Run simulation

User

Change execution
mode

Initiate execution

Terminate execution

Figure 4.4. ‘Run simulation’ use case diagram

4.4.1.3 Retrieve the results

Retrieval of the results of simulation is an activity of data transfer between applications

or storage devices and is highly dependent on individual functional modules. The data

processing environment does not incorporate any centralised facility for result

collection and presentation and this functionality must be provided by particular

modules. Examples of such modules, such as plots and histograms, will be developed

later in the chapter.

4.4.1.4 Edit library o f modules

In order to create individual instances of functional modules, the data processing

environment needs the information about implementation of the particular modules.

This information is stored in the library o f modules. In order to extend the system with

a new module or remove information about a module, a user edits the library

accordingly.

The change of a module’s properties is used in a general sense without specifying

which properties are to be modified. That means the freedom is left to the

implementation to specify the properties and the ways they are changed. An example of

such properties is the graphical icon associated with the module’s implementation that

can be placed on a tools bar for instant access to the module’s instance generating

factory.

j f Add new
momoi

functional

Remove existing
functional module

Change properties of
a module >

Figure 4.5. ‘Edit library of modules’ use case diagram

72

4.4.2 Functional modules

The data processing environment itself does not provide any applied functionality. A

design decision has been made to move all applied functionality to pluggable modules.

From this standpoint, the data processing environment is the environment in which the

functional modules operate. An analogy can be drawn between this architecture and

well-known [JavaBeans™ Technology]. In this architecture, a functional module is an

independent object connected to the system via an interface or several interfaces. The

following figure demonstrates the idea.

The System’s run-time environment

Functional Modules Subsystem

Ml Interfaces

“ IC " /
M odules'' - JC

Figure 4.6. Bean-like environment for functional modules

In the above scenario, the functional modules play the role of actors in the use cases

diagram, which is given below.

Receive control from
the system >

Receive data from
the system

Data providing
module

Data receiving
module

Provide system with
data >

Figure 4.7. Modules use case diagram

From the above use case diagram it is clear that modules can appear in two roles - as

data providers and data receivers. Data providing modules produce data according to

their internal logic and pass it on to the system. From the system the data is distributed

among the data receiving modules, in order to be processed further. A module can play

both roles, as data provider and data consumer, or just one of them. The roles of a

module will be determined by interfaces that the module implements. Following from

the two roles, there are two interfaces that describe each role. The interfaces will be

developed in detail in the section devoted to implementation.

In order to simplify the task of module developer, some common functionality, such as

execution control, data passing, errors reporting and recovery, etc., can be implemented

in the system in a form of module wrapper (Figure 4.8). The concurrency requirement

imposes the need for the modules’ code to be executed in a separate thread of

execution, independent of the system’s thread. A module whose code is executed in a

separate thread of execution will be called active module. It is sufficient to implement

either of the two modules’ roles as active module. A decision has been made to make

data providing modules active since it is the most natural way. The data receiving

modules’ code will be executed from either the system’s or a data providing module’s

thread.

Module’s
state

parameters
Module’s

code

Control

Thread (in active modules)

Data interchange

Interface

Figure 4.8. Structure of a module wrapper

Thus, the functional modules subsystem of the system consists of a set of instances of

modules wrapped in appropriate wrappers as shown in the figure above. The wrappers

serve as an intermediate level between the code that implements the module

functionality and the system providing necessary functionality for control, monitoring

and data interchanging with the module.

74

4.4.3 Inter-module communication and data typing

The distinguishing feature of the data processing environment from other similar

products, as it has been noted before, is the flexible data typing system. Let us consider

two functional modules, a data provider and a data consumer.

SOCKETS

In order to connect these modules, a data structure that is called channel is used. A

channel consists of two pairs of parameters, namely

Channel = ((data provider, output socket), (data consumer, input socket))

where ‘data provider’ and ‘data consumer’ are references to instances of the modules

accordingly. When a connection between two modules is made, an instance of channel

is being created and registered with the two modules. It is obvious that, only one

channel can be registered with a particular socket of the data consuming module but

many channels can be associated with a socket of the data providing module.

A set of functional modules, together with a set of channels, form an oriented graph of

the model. Workspace of the system is the necessary container where the graph of the

current model is kept (Figure 4.10).

In order to facilitate an interchange of data of any abstract type, from the system’s

standpoint modules interchange objects (instances) of the most abstract type. In the C

language such objects can be represented by a pointer with the void type (void*), in

Java language it is an instance of the basic class object. Since no assumption about

data types is done in the system itself, it is the responsibility of the modules to insure

correctness of the data types. To do so, a special set of methods must be provided that

allow the system to check if a particular data type of a data giver is acceptable to a data

taker. Such methods must be implemented in all modules that are supposed to be

DATA
PROVIDER

DATA
DATA

CONSUMER

OUTPUT INPUT

participating in data interchange. Since data is provided by a data provider module, the

first method must allow the system to retrieve information about the type of data

provided by the module. A decision has been made to use a textual string to encode

such information, namely the system retrieves data type information as a textual string.

The format of the string is not specified but must be known to data consumer, which is

to be connected to the data provider. Thus, another method is provided by a data

consumer that informs the system if the data type obtained from the data provider is

either acceptable or not. The following Figure 4.9 demonstrates the typing system

implemented in the data processing environment.

‘Give me data
type o f socket Ny

‘Will you accept
a connection
with data type X
on socket M?’

‘Yes’ or ‘N o’‘N ’s socket
data type is X ’

Data
Provider

Data
Consumer

System

Figure 4.9. Illustration of the data typing system

If the system gets a positive response from the data consumer, a channel is being

created and registered with the both modules, creating thereby a data communication

link between the two modules.

4.4.4 The system components

From the analysis of the use cases of the system it is clear that the system must be split

onto several subsystems, each responsible for certain activity. In this section the sub

components of the system will be identified and modelled.

The obvious components of the system that can be recognised are:

1. The modules environment. This part of the system holds all necessary data

structures and infrastructure to keep current model, that is a set of functional

modules and links between them and also providing necessary interfaces to access

and control the model. This part of the system will be referred to as workspace.

76

2. Library of modules that implement functional modules. This part is a database that

keeps records about implementation of functional modules and provides a factory

for creating instances of the modules. Additional supplementary information can be

kept along with the records.

3. GUI. Graphical user interface is an important part of the system which provides

interface for a user to internals of the system and the means to control, edit and

perform other operations over the model and the library of classes.

The overall structure of the system is presented in the following Figure 4.10.

Data Processing Environment

Interaction

User

GUI

CONTROL

VISUALISATION

Functional
modules '

Workspace
nal • -
s ' ,

1/1

REQUESTS

MODULES’ PROPERTIES

UPDATES

I INSTANCES

Library of modules

Figure 4.10. The system’s architecture

4.5 Implementation

This section will present the implementation of the data processing environment

according to the previously given design. First step of the implementation is the choice

of the platform under which the software will be developed. A discussion on available

options is given in the first part of the section. The following sections will give the

overview of the implementation process for the chosen platform.

77

4.5.1 Choice of platform

Basically, the choice of the platform would consist of three main stages:

1. The choice of the hardware platform. There is a variety of hardware platforms

available such as IBM PC or compatible, Sun Workstations, Hewlett Packard,

Compaq, etc. The choice of hardware will also affect the choice of the software

platform, namely the underlying OS.

2. The choice of the underlying OS. There is a bigger variety of operating systems

since several OS can run on the same hardware platform. The most common choice

for IBM PC/compatible is Microsoft Windows family of systems (Windows 95, 98,

NT, 2000, XP) or Linux (a free UNIX-like operating system). For other hardware

platforms (Sun, HP, IBM) there is one or another variant of Unix OS (Solaris, HP-

UX, AIX).

3. The choice of the language and development environment for the chosen OS and

hardware platform. Among languages the most popular are C/C++, Java, Pascal,

ADA, Lisp, Perl, which are available for the most hardware and software platforms.

One exception from the process given above is the Java platform. Java platform has

been designed with the aim to create a highly portable and hardware/OS independent

environment, which can run on most of the platforms and software developed for it can

be run with no modifications on all of the supported platforms. It does not, therefore,

require the steps 1 and 2 in the above scheme.

There are two the most common platform groups (hardware and software) which can be

referred to as MS Windows based platforms and Unix based platforms. Another

platform is unique in some sense, namely the Java platform. These three platform

groups will be discussed further.

The first prototype of the data processing software for this project has been

implemented in the C language for Microsoft Windows 95™ as a console application.

The prototype clearly had several disadvantages and did not meet the specified

requirements. Firstly, it is very difficult to integrate new modules into the system. It

would normally require writing a C module, compiling it into the object file and then

78

linking with the whole system. This process assumes that the user is familiar with all

the stages and has access to the system in at least compiled form (as a library).

Secondly, it is next to impossible to control correctness of the added modules written in

the C language, as the modules will be compiled into the byte-code of the underlying

hardware platform. The prototype also lacked graphical user interface and concurrency.

Clearly, DOS-like console technology is obsolete and therefore is not an acceptable

choice.

Microsoft Windows™ operating systems family (MS Windows 95, 98, ME, NT, 2000,

XP) are modem systems that provide full-featured graphical window-based interface

and multi-tasking capabilities. MS Windows also allow multiple threads of execution

within one application and provides the means for dynamical loading and linking of

code, namely Dynamically Loaded Libraries (DLL). All these features are sufficient for

implementation of the requirements specified for the data processing environment. An

advantage of implementation of the system for MS Windows platform is that the

Windows system is the most popular in the sector of personal computers, the dominant

sector of computing market. Despite its popularity, MS Windows OS has been a target

of criticism regarding its unreliability and poor performance for many years.

A family of UNIX-like operating systems, which will further be referred to as Unix OS,

is another candidate. Unix has been developed as a server operating system, which

implies that the stress during its design was put to security and reliability. From the

beginning it was designed to be a multi-user and multi-tasking operating system. Since

the development of the IP protocols family, the networking support facilities are

integral part of the OS and as a consequence, Unix OS has been the system of choice

for Internet and network application servers. Since it has been designed to be a multi

tasking system it has a strong support for semaphores and shared memory system. In

addition, X I1 sub-system is a powerful and flexible graphical enviromnent that

provides all necessary functionality for building comprehensive graphical user

interfaces. The main disadvantage of Unix systems is that they are regarded by the

users to be difficult (complicated) to use and learn to use and therefore the users of

Unix OS are mostly professionals of IT and computing field (such as system

programmers and administrators) or academics.

79

The last platform to be considered is the Java platform developed by Sun

Microsystems. It differs from the traditional platforms by that its run-time environment

runs on the top of the traditional OS, such as MS Windows or Unix. It provides a

portable, interpreted, high-performance, simple, object-oriented programming

language, which, together with the run-time environment (Java machine) forms the core

of Java platform. The following overview of the Java platform is based on the Java’s

white paper by [Gosling, McGilton, 1996].

The main design goals of the Java programming language have been

1. To create a Simple, Object Oriented, and Familiar language. The Java language is

simple because the fundamental concepts of the Java technology are grasped

quickly; programmers can be productive from the very beginning. The Java

language has been designed to be object oriented from the ground up, provides a

clean and efficient object-based development platform. Keeping the Java

programming language looking like C++ as far as possible results in it being a

familiar language, while removing the unnecessary complexities of C++. Having

the Java programming language retain many of the object-oriented features and the

“look and feel” of C++ means that programmers can migrate easily to the Java

platform and be productive quickly

2. The language must be Robust and Secure. The Java programming language is

designed for creating highly reliable software. It provides extensive compile-time

checking, followed by a second level of run-time checking. Language features

guide programmers towards reliable programming habits. The memory

management model is extremely simple: objects are created with a new operator.

There are no explicit programmer-defined pointer data types, no pointer arithmetic,

and automatic garbage collection. This simple memory management model

eliminates entire classes of programming errors that bedevil C and C++

programmers. The Java language is secure since compiler and run-time system

implement several layers of defence against potentially incorrect code. The

environment starts with the assumption that nothing is to be trusted, and proceeds

accordingly

3. Architecture Neutral and Portable. Java technology is designed to support

applications that will be deployed into heterogeneous network environments. In

such environments, applications must be capable of executing on a variety of

80

hardware architectures. Within this variety of hardware platforms, applications must

execute atop a variety of operating systems and interoperate with multiple

programming language interfaces. To accommodate the diversity of operating

environments, the Java Compiler™ product generates bytecodes - an architecture

neutral intermediate format designed to transport code efficiently to multiple

hardware and software platforms. The interpreted nature of Java technology solves

both the binary distribution problem and the version problem; the same Java

programming language byte codes will run on any platform. The architecture-

neutral and portable language platform of Java technology is known as the Java

virtual machine. It's the specification of an abstract machine for which Java

programming language compilers can generate code. Specific implementations of

the Java virtual machine for specific hardware and software platforms then provide

the concrete realization of the virtual machine. The Java virtual machine is based

primarily on the POSIX interface specification--an industry-standard definition of a

portable system interface. Implementing the Java virtual machine on new

architectures is a relatively straightforward task as long as the target platform meets

basic requirements such as support for multithreading.

4. High Performance. The Java platform achieves superior performance by adopting

a scheme by which the interpreter can run at full speed without needing to check the

run-time environment. The automatic garbage collector runs as a low-priority

background thread, ensuring a high probability that memory is available when

required, leading to better performance. Applications requiring large amounts of

compute power can be designed such that compute-intensive sections can be

rewritten in native machine code as required and interfaced with the Java platform.

In general, users perceive that interactive applications respond quickly even though

they're interpreted. The overall performance of Java machine has been

tremendously improved after introduction of the Just In Time (JIT) Compiler. The

JIT compiler works in parallel with a Java application and compiles application’s

Java bytecode of the classes that are most intensively used into the native code of

the underlying platform, thus making the performance of Java applications

comparable to similar applications written in the C/C++ language.

5. Interpreted, Threaded, and Dynamic. The Java interpreter can execute Java

bytecodes directly on any machine to which the interpreter and run-time system

have been ported. In an interpreted platform such as Java technology-based system,

the link phase of a program is simple, incremental, and lightweight, thus allowing a

much faster application development cycle. The Java platform supports

multithreading at the language level with the addition of sophisticated

synchronisation primitives: the language library provides the Thread class, and the

run-time system provides monitor and condition lock primitives. While the Java

Compiler is strict in its compile-time static checking, the language and run-time

system are dynamic in their linking stages. Classes are linked only as needed

Considering the advantages and disadvantages of the above platforms, a decision has

been made to use Java platform for the implementation of the data processing

environment.

4.5.2 Package architecture

The system has been split into three packages as follows

1. e d u . t n t u . i s m . t r a f f i c contains the core classes of the system, such as basic

data structures, data objects, interfaces, workspace manager, library of classes

manager, module wrappers, etc.

2. e d u . t n t u . i s m . t r a f f i c . u i contains GUI-related classes

3. e d u . t n t u . i sm. t r a f f i c . m odu les contains implementation of standard

functional modules and examples.

The main package e d u . t n t u . i sm. t r a f f i c will be overviewed in the following

section. Package e d u . t n t u . i s m . t r a f f i c . u i will be overviewed in the section

devoted to GUI and e d u . t n t u . i sm. t r a f f i c .m o d u les in the section devoted to

examples.

4.5.3 Package e d u . t n t u . i s m . t r a f f i c

The package consists of the core classes of the data processing environment. The

classes can be split into several logical groups according to the functionality they

implement. The first group consists of the basic data structure classes and interfaces.

82

Table 4.1 presents interfaces of the first group of classes with description of their

function. Table 4.2 provides information on basic data structures and objects used in

data interchange process and inter-class communication.

Table 4.1. Interfaces of e d u . t n t u . i sm. t r a f f i c package

Interface name Description

DataGiver

This interface specifies methods and members that a

custom module should implement in order to make it

recognisable by the system as data provider

DataTaker

This interface specifies methods and members which

every custom module should implement in order to be

recognised by the system as data receiver

Indicator

This is a GUI-related class. Modules that implement

this interface support custom look. Interface defines

one method which allows the system to retrieve

information from the module's class about how it

should be rendered on the GUI’s working space.

CommandListener
Implementing classes can be controlled by sending

them commands

ComplaintListener
Implementing classes receive information about faults

in a functional module

DataListener A class that receives data (DataMessage)

ParameterChangeListener
An implementing class can be registered for

notification of changes in a parameters objects.

Structured
By implementing this interface a class states that it has

some ‘structure’ which can eventually change

StructureChangeListener

By implementing this interface a class states that it is

interested in knowing that some other class

(structured) has changed its internal structure

Table 4.2. Data object classes of e d u . t n t u . i sm. t r a f f i c package

Class name Description

CommandEvent

This class implements a ‘command’ object.

Commands are sent from commanding classes to their

CommandListener’s

ComplaintEvent

This class implements a ‘complaint’ object. Complaint

objects are sent from the module wrappers to

ComplaintListener’s in case a fault has been

detected within a module’s core class.

ParameterChangeEvent

Instances of this class carry information on a change

within a parameter class (parameters). Sent from

Parameters to ParameterChangeListener’s

StructureChangeEvent
Information on the change within a structured class.

Sent from structured to StructureChangeListener’s.

DataMessage

This is a wrapper for objects that are passed between

the functional modules. Sent from DataGiver’s to

DataTaker’s via Channel.

Table 4.3. Exception classes of e d u . t n t u . i sm. t r a f f i c package

Exception name Description

DataGiverDone

DataGiverDone exception is thrown from an

instance of DataGiver to inform the system

that there is no more data to provide

IncompatibleSocketTypeException

This exception is thrown when an attempt has

been made to connect two modules with

incompatible data types

ParameterDataException

Thrown from an instance of Parameters
class when incompatibility between

parameter type and data has been detected or

attempt has been made to access a missing

parameter

84

Table 4.4. System core classes

Class name Description

ClassLibrary

ciassLibrary is a database that keeps records of classes

that implement functional modules available to use within

the data processing environment and provides necessary

methods to access the records and create new instances of

modules

SpaceManager

SpaceManager is a database that keeps the graph of current

model and provides necessary functionality to query,

update and control the model

Channel channel represents an inter-module communication link

Dat aGive rModule A wrapper for data providing modules

DataTakerModule A wrapper for data consuming modules

DuramyDataProvider A data providing module with no underlying functionality

DummyDataConsumer A data consuming module with no underlying functionality

UniversalModule

This module encapsulates the features of data provider as

well as data consumer. This module is ‘universal’ in a

sense that it can output as well as input data, and

essentially a higher-level wrapper for functional modules

Parameters

This class represents a bunch of parameters that can be

associated with any object. This is a standard interface,

which allows the setting up and tuning a range of objects in

a unified manner

4.6 Graphical User Interface

User interface is an important part of any software and plays not the last role in the

success of the whole software product. Certain ‘unwritten’ standards for user interfaces

have been developed over years and most of the users will expect the software to

conform, to a certain degree, to these standards. It has been mentioned before, some

interfaces developed for dynamical system simulation packages showed to be intuitive

and pleasant to the users. Since the data processing environment has similar ideology of

functional block-like modelling, choosing such interface as prototype seem to be

appropriate.

The user interface for the data processing environment has been developed using JFC

[Swing] toolkit of lightweight GUI components. The following pseudo-diagram

presents the underlying architecture of the GUI system.

«extends»
«uses»

«uses»

«extends»
«extends»

«uses»
«uses»

«extends». «reflection»

«extends»

«uses»«contains>> «uses»

«creates»

«extends» «extends»

«uses»

«extends»

About
DataProcEnv

GModule

GMirrorPane

GSpaceManager

GLibraryEditor

ParametersEditor

GModuleChooser GDisplayManager

javax.swing. JFrame

javax.swing.JDialog

javax.swing.JDialog

javax.swing.JDialog

java.awt.WindowAdapter

javax.swing.JComponent

javax.swing.JPanel

javax.swing.JLayeredPane

Figure 4.11. GUI classes architecture

Appendix B provides several screenshots of visual appearance of the data processing

environment. Main features of the GUI are summarised as follows.

1. The main window contains the main menu, workspace, ‘mirror’ pane and toolbars

with shortcuts to the modules creation function

2. A user places modules on the workspace by clicking an icon on one of the toolbars

(right, left or bottom) or from ‘Module chooser’ window. After a module has been

86

selected it appears as semitransparent and follows the mouse pointer. The module

can be permanently placed at the desired location by left click of the mouse. The

placement can be cancelled by right click of the mouse.

3. Top toolbar provides buttons for instant access to the control of the module. By

clicking a certain button, the user can start, pause or stop model simulation, copy,

cut or paste modules stored in clipboard, save current workspace in a file or load a

model file into current workspace. Several buttons are provided to change

simulation modes: flow execution, delayed execution, step-by-step execution or

discarding execution (data is not passed via channels - it is discarded)

4. Library Editor is available from main menu (see Figure B.5 in Appendix B). From

the editor a short-cut to creation of a module can be placed on one of the three

toolbars. Also, a description of the module can be provided in HTML format for

future reference.

5. ‘Mirror pane’ provides a quick access to modules scattered across the workspace.

More detailed information on implementation of the GUI for data processing

environment and API for customisation of the modules’ looks and feels is available in

the technical documentation provided with the data processing environment.

4.7 Examples

Several functional modules have been implemented in order to demonstrate the

potential of the developed software. These modules are split into two groups - the

general purpose modules and the task-specific modules. These two classes will be

overviewed separately.

4.7.1 General purpose modules

Modules that are implemented into package edu. tntu. ism. traffic .modules are

general purpose modules. The list of the modules is given in the following table.

87

Table 4.5. General purpose modules: visualisation

Module
name
(class
name)

Description Visual appearance

Display

Display implements its own look that is

used to print into the incoming numerical

data. It has a fixed (1) number of inputs

and therefore can be used to monitor only

one stream of numerical data

Exponential

0.643273442

Display prints the values of

exponential random variable

Plot

Plot draws a plot of the incoming data. It

can have up to 20 inputs, which will be

drawn on the Plot’s display.

□ Plot

a o a ft [>

Plot draws exponential and

normal random variables

Histogram

Histogram is similar to Plot but instead of

plot of the input data it draws a histogram.

It has only one input.

Histogram
CV 0 Ti & EV

Mean: -0 700308E 4

-2.8202________O 1231

Histogram of a normal random

variables

ToPoint

This module converts two streams of

numerical data into one stream of two

dimensional vectors, that is two inputs x

and y are transformed into a pair (x,y). An

application can be seen in the simulation of

Lissajou figures shown in Figure B.2 of

Appendix B.

(x , y)
C>

Min

Receives several streams of numerical data

and returns the minimal value among them

on its output
t>

S3
H IM J >

Max
Same as Min but returns the maximal value

among the inputs.

Max

t>
> MAX

For demonstrational purposes, in Appendix C, Example 1 presents source code of

Display module. In Appendix B, there are shown several models that extensively use

the above standard modules to visualise the midergoing processes in the model.

4.7.2 Task-specific modules

In order to show, that the data processing environment offers functionality that is not

poorer than the reviewed commercial products for dynamical system modelling, a set of

modules for continuous numerical system modelling and simulation has been

developed into package edu. tntu . ism. traffic .modules .math.

Simulation of continuous systems on a computer always involves a discrete

approximation of continuous time. Therefore the modules must operate in a

synchronous manner. Commercial packages, such as VisSim and SIMULINK, are

essentially systems designed for a synchronous mode of operation.

By contrast, the developed data processing environment developed here, is an

asynchronous system. In order to implement a synchronous model, a mechanism must

exist to synchronise the modules with one another. Such mechanism has been

implemented into the continuous time system simulation package in the form of a

module controller, controller does not have inputs or outputs and serve

exclusively to synchronise other modules of the package.

The package also provides several abstract classes that implement most of the

intermediate functionality. A new module can be created by just extending the abstract

class and implementing its function. In Appendix C, Example 2 demonstrates

implementation of a module by extension of an abstract class.

The other implemented modules of the package for continuous systems modelling and

simulation are: Const (a constant), Derivative, Integral, SystemTime, Gain (a

coefficient), sum (summation), Product, Ratio, sin (sine), Exp (exponent),

Exponential (exponential random variable), Normal (normal random variable),

MathPiot (extended plot that scales X-axis according to the model’s time).

89

Figure B.l of Appendix B presents an example of a continuous time system. The

system in the figure demonstrates the well-known Fourier transform of the discrete

function. Figure B.2 presents the mixed model that uses modules from the continuous

time package and general-purpose modules, to simulate and visualise the Lissajou

figures. Figure B.3 presents the use of histogram and random variable modules.

4.8 Evaluation of the efficiency

Since one of the requirements that has been set upon the data processing environment is

efficiency, it is necessary to test if it is efficient enough to be used for real-time data

processing and simulation processes.

Several models have been implemented for the data processing environment using the

modules packages described in the previous sections. Also several traffic related

models, which will be described in the following section, have been evaluated. The

screenshots of the models are given in Appendix B.

A set of tests have been carried out on two PC-compatible machines with Windows 98

system installed. The first PC, PC-1, is AMD Athlon 1GHz processor bases with

256MB of RAM and the second PC, PC-2, is Intel Pentium-II 333 MHz processor

based with 32MB of RAM. Two groups of tests have been carried out. The modules

used in the first test group were the mathematical simulation models: ‘discrete

approximation’ (Appendix B, Figure B.l) - M -l, the ‘Lissajou figures’ (Figure B.2) -

M-2, ‘random variables and histograms’ (Figure B.3) - M-3. The second group of tests

have evaluated the performance of the system for SCOOT data processing. The model

used SCOOT data processing software (which will be discussed in the next chapter)

and used two file readers to read files with M14 and Ml 9 messages collected over one

full day. The model will be referred to as M-4. The SCOOT data processing model

consists of a file reader and SCOOT message pre-processor. The results of the

performance evaluation obtained for the first test group is given in the following Table

4.6.

90

Table 4.6. Results of performance tests for the first group of models

Model PC-1
with graphics

PC-1
without graphics

PC-2
with graphics

PC-2
without graphics

M-l 55 cps1 1698 cps 58 cps 442 cps

M-2 33 cps 1110 cps 38 cps 491 cps

M-3 786 cps 1046 cps 233 cps 293 cps

1 cps stands for Cycles Per Second (a cycle is one iteration of the simulation process)

The results of the SCOOT processing model evaluation is given in the following

Table 4.7. Results of performance tests for SCOOT data processing model

Model PC-1
with graphics

PC-1
without graphics

PC-2
with graphics

PC-2
without graphics

M-4 1254 ops1 2798 ops 683 ops 757 ops

1 ops stands for Objects Per Second - object here is a SCOOT data object

The volume of the two files (with one day M14 and M l9 messages, collected on 17th

January, 1999) is 244,339,391 bytes. Such volume of data has been processed within

1392 seconds, or 23 minutes 12 seconds, with some overhead induced by graphical

output for monitoring purposes. During the test, the processing modules have generated

over 1.75 million data objects (1.6 million M14 related and 150 thousand M l9 related

objects). Without graphical output the numbers are more impressive. According to the

above Table 4.7, 2798 objects per second has been the ratio of generation of data during

the processing. The volume of the two data files has been processed in less than 10

minutes 24 second (624 seconds) which is less than half of the time needed for run with

graphical output. A similar data processing routine written in the C language has

completed the same processing procedure in 4 minutes. This gives the basis to a claim

that the performance of a Java application is quite comparable to a programme of equal

functionality written in the C language.

It is clear from the above two tables that graphical output, as might be expected,

induces a significant overhead, while perfonnance of the system is quite high without

it. Since one day traffic data has been processed in about 10 minutes, the rest of the 23

hours 50 minutes time slice gives a broad room for variety of applications, which will

still be operating in real time. Of course, if a SCOOT-controlled region under

consideration gets bigger, these numbers will be different.

4.9 Conclusions

In this chapter, a novel data processing framework for discrete and continuous systems

modelling and simulation has been presented. The software has been shown to provide

highly extensible environment and has several distinguishing features that make it

choice number one for researchers who need to develop their own functional modules

and carry out extensive experiments combining different options of data sources and

pre-processing routines. It has also been shown to be efficient enough for most traffic

and other modelling and simulation applications.

Chapter 6 will present series of experimental studies carried out using the developed

software.

92

Chapter 5

Travel time estimation

5.1 Introduction

The importance of processing and analysis of real data has been emphasised in the

previous chapters. Data processing and analysis techniques have been the main tool of

investigation of transportation systems. Since transportation systems belong to the class

of systems of organised complexity, precise analytical modelling of them is almost

impossible. Therefore the majority of models of transportation systems are of empirical

character. Empirical models essentially rely on data analysis and represent findings of

relationships within the data.

One of the important problems recognised within the transportation research is the

problem of travel time estimation from routinely collected data. Travel time is one of the

most important operational characteristics of transportation systems and plays an

important part in many criteria of transportation system optimisation. Knowledge of

travel time, its behaviour and factors that affect it gives traffic control and travel

information systems the opportunity to manage traffic demand and supply factors more

efficiently. Therefore significant attention has been given to investigation of these traffic

and travel characteristics.

Many traffic control strategies implemented into UTMC systems rely heavily on the

efficiency and accuracy of travel time estimation. Travel time information is a

fundamental parameter in many intelligent traffic and travel information systems and

their success highly depends on the accuracy, availability and granularity of travel time

estimates. Traditional survey-based travel time estimations are notoriously expensive and

inefficient and the applicability of surveys is restricted only to off-line monitoring and

analysis. With the development and installation of new generation of Traffic Control

Systems that operate on the basis of real-time traffic measurements, it has become

possible to carry out travel time estimations using the measurements taken by the control

systems. Most of the systems, due to economical reasons, utilise single-loop detectors. It

is known, that single loop detectors are incapable of accurate spot speeds estimation due

93

to their physical limitations. Therefore, much effort has been put into investigation and

development of methodologies of travel time estimation that rely only 011 occupancy

measurements, as is the case with single-loop detectors.

In Chapter 2, three fundamental macroscopic characteristics - speed, volume and density,

have been identified. It has also been mentioned that of these three characteristics volume

is the easiest to measure whereas speed is more difficult. The situation gets worse when

there is no equipment available that is capable of measuring speed with adequate

accuracy. It is known that double-loop detectors, called “speed traps” are capable of

accurate measuring spot speed of individual vehicles, but unfortunately most of the

installed traffic control systems are equipped with single loop detectors whose speed

estimates are very rough. In addition, spot speed, even measured accurately by double

loop detectors, does not necessarily give adequate measure of space speed which is used

in the fundamental traffic flow equation. In the case, when speed cannot be measured

directly one essentially arrives to the problem of estimation of travel time between

consecutive single-loop detectors. The travel time found in this study can then be used to

estimate speed.

The apparent importance of travel time estimation led to a strong interest of researchers

in solving the problem. Significant progress has been made during the last two decades

and the main results of the development of the field will be reviewed in the following

sections.

This chapter will review the advances in solution of the problem of travel time estimation

from automatically collected data and describe new algorithms that have been developed

within this research study. A novel methodology for travel time estimation at the minimal

resolution level will be presented and a discussion of several algorithms will be given.

The first part of this chapter gives a definition of travel time that will be used throughout

the chapter and presents a brief overview on previous works carried out in the area of

travel time estimation. The second part will develop a novel methodology that allows

very accurate estimation of travel times and without the need for data aggregation that is

used in most procedures developed up to date.

94

5.2 Travel time estimation problem

Travel time is defined here as the time that is required for a vehicle to traverse between

two consecutive measuring points through a part of road infrastructure in condition of

non-stopping journey. This general definition does not specify the conditions of the

traffic or network topology thus allowing to speak of freeway travel time, urban link

travel time or any other types in the same terms.

Basically, as the definition states, there must be some information about traffic processes

provided at the entrance point, which will be referred to as upstream point, and exit point,

which will be referred to as downstream point. It is normally assumed that the upstream

and downstream measuring devices are capable of measuring presence of a vehicle at a

moment of time thus providing temporal characteristic of arrival process. This capability

forms the basis for most of the estimation procedures. Having such a device is also

follows that it can act as a counter. Since counters have been used in many traffic studies,

it is also a desired feature.

Traffic counterTraffic counter

Intermediate
road

infrastructure

Traffic flowTraffic flow

Figure 5.1 Definition of travel time

Figure 5.1 illustrates the definition of travel time. Basically, there may be several paths

that lead from point A to point B, which is shown on the figure as intermediate

infrastructure. Since travel time is essentially a characteristic of a certain path, the

definition becomes ambiguous. In order to overcome this ambiguity, an additional

condition has to be added to the definition, namely which path will be considered for the

travel time analysis. Therefore, here and thereafter, unless stated otherwise, the shortest

(in length) path from point A to point B will be considered for the analysis and be called

a link. It is implicitly assumed that the link exists, that is traffic can proceed from A to B.

As a result of a link being the shortest path from A to B, most traffic will use the link as

95

the natural behaviour of drivers. It is nevertheless not mandatory that traffic at point A is

the same as at the point B since vehicles are allowed to leave and join the link in-between

the points.

5.3 Review of the existing methodologies

Early attempts to estimate link travel time have used the general traffic flow relationship

in order to estimate speed [Wardrop, 1952], [Lighthill, Whitham, 1955], [Wirasinghe,

1978], [Hall, 1987], [Hall and Persaud, 1988], [Persaud and Hurdle, 1988], which in turn

allows calculation of the travel time since the link length is a constant parameter. The

relationship used is

speed = ----------- (5.1)
occupancy ■ g

where l/g is the average effective car length - the sum of the car length and the width of

the loop detector in the correct units. The factor g basically converts occupancy to

density. In [Hall, Persaud, 1989] and [Pushkar, et al., 1994] the authors investigated the

relationship (5.1) and showed that the accuracy of the equation (5.1) is a function of

many factors including location and weather. They also provided results suggesting that it

is prone to a systematic bias with respect to occupancy.

[Dailey, 1997] attempted to improve the speed estimates by taking into account the

stochastic nature of measurements of volume and occupancy. He considers measurements

from a traffic management system to be realisations from statistical distributions. To

address the variability of the observations he employs extended Kalman filter. Using the

filter Dailey derived estimates of the effective car length and speed and then combined

them in order to obtain the travel time estimate. The link travel time is derived as a

polynomial of the following form.

t .»+i 2 Ax +
(a s

SM +

(Asty
+

5 . - . , + 5 ..

(5.2)
V ° /+ i

96

where zv+i is the next estimate of the link travel time, Ax is the length of the link, s& \ and

Si are (z+l)th and zth estimates of speed accordingly and Asj=Si+\-Sj.

The disadvantage of the Dailey’s filtering approach is that it requires several parameters

that must be properly estimated plus the combined disadvantages inherited horn the

underlying traffic model based on the speed-flow-concentration relationship.

There have been attempts to improve speed estimation upon single loop detectors

[Dailey, 1999], [Coiffnan, 2001]. Coifman’s algorithm is based on explicit identification

of sources of errors and suggests the way to reduce their impact. In the previous works

the authors, while recognising the stochastic nature of the parameters involved in the

estimation procedure, did not address the possibility that their probability distributions

can change over time. Coifman presented the results of study showing that the mean

vehicle length is a function of time of day and showed that variance of the vehicle length

is a function of time, too. He observed that during ffee-flow traffic condition the

estimation of the vehicle length is very noisy whereas during congested periods the

estimates are more stable. Taking into account those points, Coifman derives a simple

procedure that allows improved speed estimation based upon single-loop data.

As has been mentioned before, all speed estimation based algorithms inherit a set of

problems from the underlying traffic model based on the fundamental traffic flow

relationship such as the dependence on many factors that are difficult to measure (link

location, length, weather, etc.). Moreover, in the problem of travel time estimation the

estimation of speed is a side effect. Most applications are interested in travel time rather

than in speed. Consequently, several methodologies that do not rely on speed estimates

have been proposed.

In [Dailey, 1993] the author presents a method of estimation of the mean space speed that

is independent of the mean value of the volume. In order to estimate speed of traffic flow

he first estimates the mean delay time for propagation between two loops, which is

essentially the mean of the link travel time. To estimate the mean of the link travel time

Dailey models highway traffic as a continuous flow with some average concentration

97

about which there is some statistical fluctuation. The value of the concentration at a point

on the highway is a function of several parameters:

1. The concentration a (x , t) from an upstream point (the position of an inductive

loop located at x {) that has propagated to this location (the position of an inductive

loop located at *2) at time t.

2. The change in concentration from addition or removal of vehicles [S(x, 0]

3. A dispersion factor that represents the lack of rigidity of the statistical fluctuation

relative to the mean concentration (b)

4. Uncorrelated fluctuations and loop failure [r c (0 3
and can be written

*2
a (x 2 , t) = b a (x t , t + t 0) + J $ (x , t) d x + n (t) (5.3)

*1

where tq is the mean time for the traffic to propagate from x \ to x 2.

The concentration may be represented as the sum of a time-independent mean value and a

time-varying fluctuation

a (x , t) = a 0 + 5 a (x , t) (5.4)

where

1 Tc
a 0 = — \ a (x , t) d t (5.5)

2 jJ,

This representation assumes that the traffic is in steady-state flow during the period

over which a (x , t) is being considered. If the concentration is mean centred, the

fluctuating part of the downstream station is written

*2
Sa(x2,t) = bSa(x1,t + T0) + jSS(x,t)dx + 5 n (t) (5.6)

And this is the time series of the traffic flow to be examined. In order to estimate the

delay time between two loops the cross-correlation function is used. The cross-correlation

function in the given context can be written

1R12(t ,T) = — jSa (xXit)Sa(x2,t - r)d t (5.7)

Considering the property of the time series and the cross-correlation function, Dailey

claims that the point of maximum of the cross-correlation function will correspond to the

mean delay between the two series. In order to apply the method to real data he then

develops the model in the discrete framework. Then he constructs discrete time series of

the traffic volume by summing the occupancy counts over 5 seconds. That is the data is

being aggregated by the time intervals of 5 seconds. Then the time series are being

centred by constructing

(5.8)

where Volik is the kth point in the series of length N from the z'th station.

The discrete cross-correlation function is then written as

N

2 0 +*)

for \/k e [0, N] (5.9)

where

(5.10)

are the standard deviations of the series 1 and 2.

99

Finally, the link travel time can be found as

t = arg max ̂ (r* , T) (5.11)

The disadvantages of the cross-correlation approach are apparent. While cross-correlation

can lead to accurate estimation of the mean of travel time, it does not provide the

information on other characteristics of travel time as random variable. Second j
V

disadvantage is the need for aggregation of traffic counts in order to obtain the desired t%
time series, which can lead to the loss of information and worsen the accuracy of the 4

algorithm for certain traffic conditions. Third point discussed in [Petty et al., 1998] is that

aggregation level of 5 seconds can be too big for some applications. This, for example,

makes the algorithm inherently inaccurate in the situations where the mean travel time is

as little as 15 seconds, which is the case with the urban links.

In [Petty et al, 1998] the authors developed a more general model of traffic flow which

has certain relationships to the Dailey’s cross-correlation approach. Their methodology

for estimating travel times between single loop detectors is based on a stochastic model,

which suggests practical procedures that lead to accurate travel time estimates and is

briefly reviewed below.

The authors assume that during a given interval of time the travel times may be regarded

as drawn from the same probability distribution. They then estimate that distribution from

the cumulative upstream and downstream arrival processes.

The arrival point process is considered over a time interval [Tb, 7>] and the arrivals are I

assumed to be exchangeable, that is no distinction is made upon different types of

vehicles. The cumulative number of upstream arrivals is denoted by X(t) and the

cumulative number of downstream arrivals by 7(/). Denoting the upstream arrival times a

by C7i and the travel times by Tj and summation for all possible a;- yields

(5.12)
i

dY (t) ~ T j) d t (5.13)

100

——------■ 5-... . - ■=

where <5(-) is Dirac’s delta function. The model postulates that conditional on a;- tj has a

distribution independent of i, O/ for TB< It is following from the assumption that

no change of traffic regime is allowed during the time interval under consideration and

that the probability distribution does not change with time.

Provided thaty(-) denotes the marginal density of r(- under those assumptions, /?(•) denotes

the conditional density of oj- given 7s<C/<7> and q(-) denotes the density of oj+t/ the

arrival time at the downstream detector given TB< <Ji<TF. If TB =-°o then conditional on

X(-), the expected process of downstream arrivals satisfies

E[dY{t) | X] = -T j) f(r
- 0 0 j

= Y4f(t-crj)dt
j

(' ^
= \ f (t~ v)d X (v) (5.14)

V - 0 0 J

where E(-) is the expectation operator.

However, Tg=-oo is unrealisable. On the other hand, if vehicles arrive before TB, equation

(5.14) does not hold without further requirement. The most natural condition is that

0< a < T i < b which implies that f=0 is outside [a , b] . The interval [a , b \ will be referred to

as the fit window. Following further, for TB+b<t< Tp+a, equation (5.14) holds since -oo

can be replaced with TB. Then (5.14) can be rewritten as

q(t)= \ f { t - v) p (v) d v for TB+b<t<Tp+a (5.15)
T»

To apply the method to real situation, the processes need to be aggregated in discrete

units of length A. If/(*)> X ’)> <?(') are approximated by discrete mass functions f s, ps, qs,

where qs is the mass in the interval [sA, (s+1) A], the discrete approximation of (5.15) can

be written as

101

—

a
(5.16)

This in turn leads to a natural estimation scheme in which qt and p v are replaced with the

counters yh xv of arrivals at the downstream and upstream detectors in consecutive

intervals and apply a natural measure of discrepancy, least squares, to fit equation (5.16).

That is, the estimation off s is accomplished by minimising

T[?+a j ^

T + b

A V

—1 \ 2

-» min (5.17)

over (f: f s>0, AZ/?=1}.

The equation (5.17) forms the basis of [Petty et al., 1998] scheme. Having estimated

the probability distribution f s the authors proposed to use the mode as the estimation of

the travel time as the mean is more sensitive to disturbances.

Several difficulties associated with the above methodology have been recognised by the

authors. First essential difficulty is the choice of the parameters a and b. Having earned

out empirical study of the effect of choosing different a and b they found that an adaptive

choice is required for generally satisfactory results in both congested and uncongested

periods. The width of the fit window b-a can be taken as fairly small and fixed since the

range of speed of vehicles during homogeneous regimes is not great. But the centre of the

window, (a+b)/2, has to move. The authors found that using equation (5.1) with a

reasonable value of g can work well. Second difficulty is the choice of the ‘stationary’

periods [Tb, Tf]. It is clear that the larger the interval the better precision of the scheme.

However, the larger the interval the bigger the risk of getting a transition in regime during

this period. The authors state that it is possible to detect the transitions in regime and

choose the interval according to the available information. They do not provide the

methodology but state that the measure of density can be used as an indicator of the

transitions in traffic regime. Third problem is associated with the choice of appropriate

102

aggregation level A. The authors provide a thorough empirical study of the effects of

different levels of aggregation on the results of the scheme. Since this problem is

important for many other methods and algorithms a brief review will follow.

In order to investigate the effect of aggregation on the accuracy of travel time estimation,

the authors use double-loop speed estimates to compare against the estimates produced

by the scheme. They define the average distance L between these two estimates as a

function of aggregation level A:

£ (A) = - l i > } - r , | <5-18)

By comparing the values of the above function, the authors found that the best results are

given by aggregation levels of 3 seconds and 11 seconds. While 3 seconds aggregation

gives results that are a bit worse than those obtained for aggregation of 11 seconds the

latter level is surrounded by very poor results provided for 10 and 12 seconds aggregation

levels. Later in this chapter a methodology is introduced that does not make use of

aggregation and therefore is free of the above problems.

Several authors [Blue et al, 1994], [Dia,1999] proposed to use artificial neural networks

as estimators of freeway travel time. The reported results have clearly demonstrated the

feasibility of using neural networks for travel time estimation problem. In addition, it was

found that neural networks are capable of predicting travel times up to 15 minutes into

the future with a high degree of accuracy (93%-95%). The methodology has been tested

on sites where travel times are about 5 to 10 minutes, which are too big compared to short

urban links and therefore it is unclear if the same results will be obtained for urban links.

5.4 Travel time estimation in urban links

Most of the travel time estimation methods have been developed for freeway traffic.

Unfortunately, urban links have several distinguishing features that do not allow direct

application of the freeway methods without additional modifications. Firstly, the distance

between consecutive junctions is relatively short compared to freeway links. On such a

link, vehicle’s travel time can be as little as 15 seconds, which makes the methods that

103

rely on aggregated traffic counters inherently inaccurate. On urban networks one

normally deals with sums of many link travel times in order to obtain the full journey

travel time and therefore the estimation of individual link travel times must be as accurate

as possible. This renders the aggregation-based algorithms an inappropriate choice.

Secondly, an urban link normally has several unobserved (no traffic measurements are

taken) side-roads, which allow vehicles that entered the link leave the flow unnoticed (no

information on their leaving available) or new vehicles join the flow without being

counted on the entrance, thus making the distributions of counters on the entrance and the

exit of the link different. The second feature of urban links violates the assumptions of

the methods that rely on comparison of the entering and exiting distributions, which

therefore cannot be used without modifications that take the unmeasured leaving and

joining of vehicles into account.

Taking into consideration all above points, a new methodology for link travel time

estimation has been developed within this research study. Formal mathematical

justification of the methodology in its general form is complicated due to the complex

nature of traffic processes. Nevertheless for a simple traffic model it has become possible

to carry out rigorous analytical calculations that prove the correctness of the scheme for

that model. The study and the results are presented in the following section.

5.4.1 The urban link model

A typical urban link is shown in Figure 5.2. The main feature that distinguishes a typical

urban link from freeway links is the presence of a controlled junction in-between the

detectors.

The control at the junction is performed in order to allow different traffic flow to use a

single resource - the piece of land that belongs to more than one road (the junction). The

effect of the control is such that the traffic measured at the point A and the traffic

measured at the point B may be completely different and uncorrelated. The situation

becomes even worse as at the junction part of traffic from the origin A can turn away

from the road and not be measured at the destination B and some traffic from the side

104

road can join the link A-B and be measured at point B. These features make the link travel

estimation problem a challenge.

DETECTORS
STOP LINE

Figure 5.2. Urban link model and travel time components

It is also clear from the figure that total travel time (T t) on an urban link can be split into

two components, which are Tsl (SL stands for Stop Line) - travel time from the upstream

measurement point up to the stop line and Tpc (PC stands for Passage of Crossroad) -

travel time from the stop line to the downstream measurement point. The purpose of such

division is that the total time may often include the delay induced by the traffic control

which contradicts the definition of travel time made in Section 5.2. Therefore Tsl

becomes the main measure of travel time in urban links. This measure basically provides

the information about the link length and typical time that vehicles spend to traverse the

link. It is also worth mentioning that some UTMC systems (for instance, SCOOT) use

Tsl in order to optimise traffic and produce optimal control. The division of total travel

time into two components can also be used for estimation of other important

characteristics of traffic such as turning movements. This possibility will be investigated

later in this thesis.

The necessity of splitting the total travel time across an urban link has been justified.

Unfortunately, the components cannot be measured directly in most cases. Therefore, an

estimation procedure for each component has to be developed. The estimation procedure

for the total travel time is being developed and studied in the following section. In

Chapter 6, an empirical study of the other components of urban link travel time will be

presented together with the demonstration of the (developed in this chapter) methodology

of estimation of the Tt component (see Figure 5.2).

105

5.4.2 The methodology of estimation of travel time with the lowest level of
resolution

The main objective pursued here is the development of a methodology that is suitable for

estimation of travel time in urban conditions. The specificity of urban links, as has been

emphasised in the previous sections, is that travel time between nodes of a link is short

compared to similar freeway links and therefore aggregation of traffic measurements is

not desirable. The developed methodology allows carrying out travel time estimations

with the resolution of measurement data, thus does not have limitations of previously

developed techniques. Another specificity of urban link is the high probability of a

vehicle leaving the link or another vehicle joining the link in-between the traffic

measurement devices and therefore not being accounted at one of the nodes. This

problem has not yet been addressed within the area of travel time estimation research and

all developed methodologies assume that traffic flow does not change from uplink to

downlink measurement points. The developed methodology is proposed as a heuristic

which is intuitively appealing. Unfortunately, the methodology cannot be proved in a

general case with mathematical rigour for the reasons that are discussed later in the

thesis. Nevertheless, for a simplified model it has become possible to derive precise

results, which gave a rationale behind the use of the methodology in its more general

form in practice. This section will give a description of the developed algorithm and

discuss its possible applications. The following section will present the mathematical

proof of the methodology for a simplified model of a link and with certain assumptions

regarding traffic flow processes. Then will follow a discussion on applicability of the

simplified model used in the proof, a simulation study of the problem and examples of

the results obtained for real urban traffic system.

Consider Figure 5.2 that illustrates a typical urban link. Assume that measurements that

come from detectors A and B represent time of arrival of a vehicle at that particular

detector. Then the set of measurements forms a time series, or a process, of arrival times.

Let us denote the upstream time series by {A(t), t > 0} and the downstream time series by

It is further assumed, that traffic forms a free flow from A to B\ that is it does not stop at

the stop line as shown on the figure. This requirement is necessary since only free

flowing traffic carries information about the travel time between the nodes of the link

since stopped traffic has a delay induced by the waiting time at the stop line. It is

nevertheless possible to separate these times from the whole time of the travel with a

simple pre-processing. Since in urban links traffic is normally controlled by a UTMC

system, the problem of filtering the part of traffic flow that corresponds to that, which has

been stopped and part that forms free flow will be addressed later.

Since time series A(t) and B(t) represent counting process, they are discrete and

countable. Let us enumerate and denote individual arrival times of the above time series

by {<?,} and {bj}. It is intuitively appealing that if at is the arrival time of a vehicle at the

upstream detector and bj is the arrival time of the same vehicle at the downstream

detector, then subject to the free traffic flow condition, cii and bj are related through a

relationship of the form

bj = cii + £ (5.19)

where e is a stochastic component that represents the delay between arrival of a vehicle at

upstream and downstream points and takes into account variation in the speeds of the

vehicle and fluctuation of speed with time. It also seems rational that for a short distance,

as is the case with urban links, that variable s be considered to have a symmetrical bell

shaped distribution, such as normal. Then s can well be characterised by its mean and

standard deviation: e =e (TV, o) . Then the problem of travel time estimation essentially

reduces to the problem of estimation of the parameters of random variable s (TV, cr).

Another point to be mentioned is that vehicles in real traffic tend to keep microscopic

structure of the flow over significant periods of time; that is the headways between

consecutive vehicles change insignificantly. This feature of traffic lies behind the success

of the developed methodology.

Arrival times of downstream process are first being shifted into the past by a time r, that

is the following linear transformation is performed.

b*j ~ b j - t (5.20)

107

The choice of parameter t will be discussed later. Then the upstream time series is

combined with the modified downstream time series in a way, that keeps their order. The

following Figure 5.3 illustrates the above idea.

Travel time

Upstream time
series - 0 - 0 CrfO

Downstream
time series "O

Combined

1.1 n i l - —b m—H-

Events: arrival o f vehicles to the
detector
O - upstream amval events
ED - downstream arrival events

-© (St-
Time

-G-

t \|/
time series OUT-©-C3O0---- 0 ----- G —C----- ®— ©--- IS

Time

Time

Figure 5.3. Merging upstream and shifted downstream time series

The dashed arrows on the figure point to the related events, that is linking the upstream

arrival events to the corresponding downstream arrival events. Next step is, using the

combined process, to extract pairs of neighbouring arrival times that are from different

sources, that is upstream arrival time is associated with the closest in time downstream

arrival. The following Figure 5.4 illustrates the pair extraction procedure.

Combined Time
time series -□ -----©------- □—m~m----- Q 1!-------- 0 —0 --------- ffl—►

4 4 4___4 4______ 4
dj 4r+i dj+2

Figure 5.4. Extracting pairs of neighbouring events that come from

different time series

As a result, algorithm produces series of pairs of events Pk={ai, bj} where a{ is the arrival

time of the upstream event and bj is the arrival time of the downstream event that form

the pair. Several methods of extracting pairs Pk from the combined time series can be

suggested. The most effective method would be to extract the pairs in such way, that the

sum of corresponding time differences dk is minimal among all possible choices of pairs.

108

Although this method will yield the result with higher accuracy, it is not efficient.

Complexity of the optimal algorithm is 0(A2), where N is the number of elements in the 4

sample of combined time series. A method that chooses pairs using local optimisation has ■$

been tested and showed that its accuracy is close to the optimal algorithm but has 4,

complexity of 0(A), that is it is much more efficient. An algorithm with local $

optimisation is described below. £
*

After the upstream and downstream times series have been combined into the resulting

time series, a step of the algorithm is given as follows. Assume that current position of an

event in the resulting time series is k. Then there are six possible configurations of events,

characterised by the event arrival times, as illustrated in Figure 5.5.

,-k+l Time Case 1: current upstream event is
■<§>' O--------------► followed by another upstream

event

/•* rk+[Time Case 2: current downstream event is
□ --------------------- S3--------------► followed by another downstream

event

n rk+, fk+2 Time Case 3: current upstream event is
-©-----------□ ------------H----------► followed by downstream event

which is followed by another
downstream event

rk rM rkk2 Time Case 4: current downstream event is
-H ----------O------------©----------► followed by upstream event

which is followed by another
upstream event

rk rk+2 Time Case 5: current upstream event is
--------- H-------------O----------► followed by downstream event

which is followed by upstream
event

rk rkH rk+2 Time Case 6: current downstream event is
-H-----------©------------□ ----------► followed by upstream event

which is followed by downstream
event

Figure 5.5. Combinations of events ahead of the current event at k

In the cases 1 and 2 above, the algorithm does not produce pairs since the current event at

k cannot be associated with the following event since they have the same origin. If case 1

or case 2 is encountered at step k, the algorithm makes event k+1 its current and repeats

the procedure. In cases 3 and 4 there are clear pairs formed by events at k and k+1, since

event at k+1 cannot form a pair with event at k+2 because of their same origin. Thus, if

109

case 3 or 4 is encountered, a pair of events at k and k+l is formed and the algorithm

makes its current event for the next cycle the event at k+2. In cases 5 and 6 it is not clear

which pair is to be taken, the one formed by events at k and k+l or events at k+l and k+2.

In these cases, the algorithm forms pairs of such events, whose difference is smaller. That

is if rfrH-r* < r*f2-r*+i then algorithm produces a pair formed by events k and k+l, and

advances to k+2 as its current event for the next cycle and produces a pair formed by k+l

and k+2 otherwise, advancing to k+3 as its current event for the next cycle.

The above algorithm ensures that if an event is associated with a pair, it is associated with

that pair only. It also performs a local minimisation of the time differences associated

with pairs as shown above for cases 5 and 6. It is also clear that the algorithm’s

complexity is 0(A) where N is the number of events in the resulting (merger) time series.

Once a set of pairs Pk has been obtained, an average of time differences between the

events of a pair is calculated. It is calculated for currently applied time shift r and thus

being considered a function of r. Let us denote the arrival time of an upstream event that

forms part of pair k by ak and the arrival time of a downstream event that forms part of

the same pair k by bk. Then

where N is the number of pairs.

All pairs selected by the algorithm can be split into two classes - the ones that are formed

by independent upstream and downstream events and those formed by the events that are

related through relationship (5.19). Figure 5.6 below illustrates this concept. Assume that

the set of independent pairs is denoted by Q, and the set of dependent pairs is denoted by

Qrf. Then their cardinalities A,=|Q/| and iVf/=|Qr/| satisfy N=Nt+N(i and (5.21) can then be

written as the following sum

(5.21)

110

N
\ * /
y TV

1 ^ ,
— Y W - b l

\ N d 4 $,

\

q{r)(Xi (t) + (1 - q{v))Xd (r); 0 < q(r) < 1 (5.22)

where X .(t) is the average of time differences {d,} for independent pairs and X d (r) is

the average of time differences {4}for dependent pairs and q(T)=Ni/N.

Left the link

fl/+1 fl/+2 rt/+3

Dependent pairs

(lj+4 Time

Joined the link

Time

Time
■O— O-

1 J
- © - - - - - - E Z 3 — O

1 J

Independent pairs

Figure 5.6. Illustration of the concept of dependent and independent pairs

It is difficult to express explicitly the relationship between differences {(/,} produced by

independent pairs and time shift rbut it can be anticipated that such a relationship will be

weaker (or more irregular) than that of differences produced by dependent events. Using

(5.19) and (5.20), the relationship between dependent difference dj and r can be

expressed as

d j (r) = b* - a i - b j - r — a. = s(Tr , c r) - T (5.23)

The properties of this relationship will further be investigated. First of all, let us calculate

the expectation of \dj{f)\ as a random variable

-foo T +00
E | s (Tt,(t) - t |= j \ x - T \ f e (x) d x = j (x - r) f e (x) d x ~ j (x - T) f £ (x) d x =

~oo -00 r

111

- 2 jy,(*)<fc + E„ + r (2 F ,(r) - l) = AT/r) (5.24)
-00

In order to obtain the extrema of the function (5.24), its derivative is to be taken

■£- X j(r) = -2 A W , (*)<& + A [2zP (r) - r] =
d r d r J d r-oo

- 2 ^ (r) + 2F,(r) + 2 g r,(r)-l = 2 F ,(r) - l (5.25)

In the point of extremum the derivative is zero

A
— X d(r) = Q => 2Fe(r) -1 = 0, or
d r

= | (5.26)

It is clear from (5.24) that X d (r) -> +co whenever r-> ±00, therefore the found extremum

is minimum. Consequently, it follows from (5.26) that X d(r) reaches its minimum

whenever r is the median of s (TV, cr). I f £ (TV, cr) is assumed to be normally distributed

then its median equals its mode and equals its mean TV Therefore, if the mean of

independent differences does not change significantly with r, then it is reasonable to

expect (5.22) to reach its minimum in the point r= TV

The above argumentation can be considered being a heuristic, as it cannot be formally

proven in its general form. Nevertheless, it is strongly appealing and a number of

experiments with real traffic data, which will be presented in Chapter 6, have shown it to

be correct. Another point for the correctness of this approach is that when r approaches

TV, coefficient (1 -q(r)) in (5.22) tends to grow while q(t) itself decreases subject to that cr

of s(Tt, o) is smaller than average time gap between consecutive arrival events. This, in

turn, makes the second term of the sum (5.22) to have stronger influence on the whole

sum and thus minimum in the point t=Tt is being stronger emphasised.

112

Consider now the problem of choosing t on each step of the algorithm. It is obvious that

a scheme of choosing a step of shift on each iteration of the algorithm will depend on the

algorithm of pair extraction used. Nevertheless, a general idea of the step-choosing

scheme is the same and will be given here.

As has been mentioned before, the algorithm produces series of pairs of arrival times of

events that come from different sources, Pk~{au bj}. There are three possible

configurations of event arrival times at and b*j relative to each other, namely b*j follows

at, b*j matches (equals) and at follows b j as illustrated in Figure 5.7.

Direction of movement
of b with t Case 1: b follows a

t
Time
— ►

dj
Direction of movement
of b* with t Case 2: b matches a

dj=0
Direction of movement
of b* with t

Time
— ►

Case 3: a follows b

b*
t

Time
— ►

dj
Figure 5.7. Architectures of pair of event arrival times extracted

by the algorithm

Then it is clear from Figure 5.7 that there are two classes of pairs that behave differently

with changing of r. Arrival time b* of the pairs of the first class (case 1 on the figure) will

advance towards a linearly with the growth of t whereas arrival time b* of the second

class (case 2 and case 3) will recede from a also linearly with the growth of t. Since pairs

representing the second case in the picture can be seen as special case of either case 1 or

case 3 and it will be associated with the second class of pairs. Thus it can be assumed that

whenever b* of the pair of the first class reaches a, this pair moves from the first class of

pairs to the second class of pairs. Assume now that N\ is the total number of pairs of the

first class and N2 is the total number of pairs of the second class.

Then for a given t (5.21) can be expresses in the terms of these two classes of pairs as

follows

where Qi is a set of indices of pairs that belong to the first class as specified above, Q2 is

a set of indices of pairs that belong to the second class and ik, jk are indices of

corresponding arrival times of individual time series. It is important to mention that

process of transferring of pairs from class 2 to class 1 is continuous. In order to clarify

this statement let us illustrate the transfer process. Assume that upstream and downstream

time series consist of only one event arrival time, such as shown on Figure 5.7. Then

using (5.20), (5.27) will take the following form

F (t) =| b* ~a |=| b - v - a | (5.28)

Then it is clear that the above function is continuous piece-wise linear with respect to t .

One pair of
class 1

One pair of
class 2

b -a

Figure 5.8. Plot of the function (5.27) when there is only one event
in each of the time series

It is also clear that a life cycle of a pair from class 1 is to move to class 2. From class 2

pairs disappear, that is the individual arrival times are being recombined and new pair(s)

are formed. It is also clear that once the algorithm has performed one of its cycles and

formed a set of pairs, then with continuous movement of r new pairs are born into the

114

class 1. Therefore, the process of movement of x (as shown in Figure 5.7) is associated

with the process of forming new pairs into class 1, transferring pairs from class 1 to class

2 and destruction (recombination of the forming events) of pairs of class 2.

Assume that the algorithm has produced the set of pairs. Let pair Pk={al, b*1} belong to

class 1 and its corresponding time difference |<4|>0 and pair Pm={a2, b*2} belong to class

2 and its corresponding time difference dm. It is clear, if one moves x by a small (such

that does not affect class property of the pairs Pk and Pm) value Az>0, the differences will

change in such a way that the change induced by moving r by A x will be compensated by

both pairs. That is, if for a given x=x\ |*4(ri)|=xi>0 then |c4(ri+Az)|=xi-Ar (since xi>0 Ax

can always be chosen such, that xi-Ar>0). Analogically, if for the same x=X]

\clm(Ti)\=X2>0 then \dm{T\ +A z)|=X2+Ax. Then since these two differences are summed

using (5.21), these two terms appear in the sum as

£= ...+ | dk(x\ +At)|+. . .+\dm(x\ +Ar)|+. . .=

. . . + X l - A z + . . .+X2+ A t+ . . .=

. . . + X i + . . .+X2+ . . . =

...+ |^ (n)|+ ...+ K (ri)|+ ...= (5.29)

It is clear from (5.29) that with changing of x (by appropriately chosen Ar>0) the sum of

modules of the two differences does not change. Now let us get back to definitions used

in (5.27). It is also clear from (5.29) that the total sum can change with x (provided that

the structure of classes does not change) if and only if N&N2 , that is the pairs of class 1

cannot compensate or be compensated by the pairs of class 2. If N\>Ni, then the sum

(5.27) rises by (Ni-N2)A t and N\<N2, then the sum declines by (N2-N\)Ax for any Ar>0

such that preserve the pairs in their classes. Consequently, it is clear that the sum (5.27) is

linear on the intervals where structure of classes of pairs does not change. Let us now

investigate the conditions when the structure of the two classes changes. By the change of

the structure of the classes will be understood a process of migration pairs from class 1 to

class 2 and destruction, and as a consequence formation of new pairs into class 1, of pairs

of class 2.

115

It is obvious that pairs from class 1 migrate into class 2 for such At that makes the

corresponding difference equal to zero. Then as it is stated above, if N\>N2 then the

average (5.27) will decrease until classes change. And since the process of migration is

continuous the minimum of the average (5.27) will be in the point when one of the pairs

from classl migrates to class 2. For this case, the advance of r, At, can be chosen such

that makes differences of one (or more) pair from class 1 equal to zero, or in other words

Ar can be chosen to be the minimal difference d(of pairs of class 1.

A t1 = min | d t | W (. = akj - b]f ,i e Q l (5.30)

Second situation when the structure of classes of pairs change is when a pair from class 2

is being destroyed. The situations are illustrated below.

Direction of movement
of b* with x

b'JH Time
J ►

In the case above a pair (ai} b*j) of class 2 will disappear and new pair (ah b y+i) of class 1

will be formed, if the time shift is advanced as shown in the picture. Among all situations

as in the above picture, At must be taken minimal non-zero. For the above illustration, At

can be found as

Ar = — - - a , (5.31)

Then if all A t that correspond to configuration above are enumerated by index /, the final

Arfor this class of configurations is taken as

A r^ m in A r , V/ (5.32)

Another situation which leads to a destruction of a pair from class 2 is shown in the

illustration below.

116

Direction of movement
of b* with r

«/ b'j ciM Time
— 1 - - - - - - - - - - - - - - - - - -

— *1
— i — ►

1 t
H A r ^

In the figure above if r is changed by A t , then the pair (at+u b*j) of class 2 will be

destructed and a new pair (ait b*j) of class 1 formed. In order to make the above situation

realise, A t must be chosen as follows

Ar — b] + (5.33)
2

Then considering all such structures, minimal A t among them must be taken as the

increment of t. Let us denote the minimal A t among those that are produced by the above

situation by Ar3. Then summarising the cases that lead to changes of the classes’

structure, the minimal among A t 1, A t 2 and A t 3 should be taken in order for the algorithm

to encounter all changes in behaviour of the resulting sum (5.27).

Arfinal = m inlA r^A r2, A t 3} (5.34)

If the next shift is chosen according to above equation (5.34), the algorithm is ensured to

discover the global minimum of the cost function (5.27). Nevertheless, there is one

serious drawback in the above scheme, namely the step ATfmai tends to get smaller with

the growth of the number of events in the upstream and downstream time series. As a

limit, when the upstream and downstream time series are considered infinite, A Tfinai

becomes equal to zero. It might therefore be better to use the above scheme of choosing

A r in cases, when a neighbourhood of the minimum has been identified and exact value

of it is sought.

5.4.3 Simplified traffic model and mathematical justification of the travel time
estimation methodology

In order to prove that the proposed methodology indeed gives the solution, a simplified

model will be formally investigated. The model of the considered link is shown on Figure

5.9. This model simplifies the traditional urban link in a way that there are no control

devices installed between the measuring points, and thus traffic is uncontrolled.

Nevertheless the model is realistic in a sense that it allows vehicles to leave the link and

new vehicles are allowed to join the link at the roundabout located between the detectors.

It is worth noticing that there is no additional information available besides the two series

of measurements that come from upstream counter A and downstream counter B.

Outgoing traffic
counter: B

Incoming traffic
counter: A

Figure 5.9. The link model: a roundabout between two measuring

points A and B allows vehicles to leave and join traffic flow

The model also assumes that traffic flows can be adequately modelled by a homogeneous

Poisson process. The applicability of such a model will be discussed later. Another

simplification that is necessary to make is that the travel time between the measurement

points is constant, that is if a vehicle intends to travel from A to B then it does not move

repeatedly in the roundabout and the mean space speed is a constant (spot speed can

change). The need for such assumption will be clear later when the mathematical

formulation of the processes will be made.

Let us assume that traffic at the counter A forms an arrival process that is the

homogeneous Poisson process N{t) with parameter A, and traffic at the counter B forms an

arrival process that is the homogeneous Poisson process M{t) with parameter ju. Let us

denote arrival times at the counter A by a, and arrival times at the counter B by bj. It

should be noted here that the above variables and parameters are observed from the

traffic counters and thus considered to be available.

118

It is assumed that the flow of leaving vehicles and the flow of joining vehicles form two

independent Poisson processes N\(t) and M\{t) with parameters X\ and ju\ accordingly.

Then part of the upstream flow that moves to the downstream point forms a Poisson

process Lu(t) that is independent o f N\(t) and M\(t). Let us denote its parameter by a. The

part of downstream process that has originated from the upstream will be denoted by

Ld(t). Further, the upstream arrival events that correspond to process Lu{t) will incur

downstream arrival events with a certain constant delay (travel time). That idea can be

expressed in the form of arrival times as follows. Provided travel time T is constant

V<2 . e L u(t) 3bj e L d(t): bj =ai +T and also (5.35)

Vbk e L d(t) 3a i e L u(t): bk = a , + T

where cii or ai is an event’s arrival time that belongs to Lu(t) and bj or bt is an event’s

arrival time that belongs to Ld{t). It then follows that process Ld(t) is Lu{t) shifted in time

by a constant T, or Ld(t) = Lu{t-T). The following results will be required for further

analysis.

Lemma 1. Shifting a homogeneous Poisson process N(t) with parameter X in time by a

constant rdoes not affect its probabilistic properties.

Proof.

The result of Lemma 1 follows directly from the well-known property of the Poisson

process, namely if {N(t), £>0} is a homogeneous Poisson process with parameter X, than

process defined as

N t z+t)-N(t)

is also a homogeneous Poisson process with parameter X.

Lemma 2. Given a merger S(t) of two independent homogeneous Poisson processes N(t)

with parameter X and M{t) with parameter /u, that is S(t) = N(t) + M(t). Than an event

Xrandomly chosen from process S(t) will originate from N(t) with probability ------ and
X + f.i

originate from M(t) with probability ——— .
X + fi

Proof.

First of all, let us note that the sum of two independent homogeneous Poisson processes

with densities X and //, results in homogeneous Poisson process with density X+ju. [Feller,

1968], [Karlin et al, 1975].

Let us choose a random point t>0, then the event of process S(t) that follows point t will

be called a randomly chosen event of process S(t). Consider processes N(t) and M(t) 011

the same time axis (Figure 5.10).

Time from the chosen point
to the next event of N(t): SN Arrival times of events of

m
►

Time

Time from the chosen point
to the next event of M(t): Sm Arrival times of events of

m
Figure 5.10. Exponentially distributed random variables Sn and

Sm compete to be closer to Time point t.

Since interarrival times of processes N(t) and M{t) are distributed according to

exponential distribution with parameters X and /u accordingly and following the

memoryless property of exponential distribution random variables Sm and Sn, as shown

on the illustration, are distributed according to exponential distribution with parameters

X and jj, accordingly. Then provided t>0 is chosen randomly, the following event arrival

time of process S(t) will correspond to either of the two events of processes N(t) and M(t)

that happen after t. Let Q\ stand for the event that the arrival following t will correspond

to N{t) and Q2 otherwise. Thus, the probability that the first arrival after time t will

correspond to N{t) will be equal to probability that the minimum of S n and Sm equals Sn,

or

120

and

P {Q\} - P { min (Sn , Sm) - S n }

P {Q2} = P {mm(SN, Sm) ~ S m } = 1 - ¥ { Q i}

The probability P{ min(^Y, Sm) = Sn } can be written in the form of convolution of two

independent and exponentially distributed random variables Sn and Sm as

P{0i} = P{ minOSfo Sm)=Sn } = P{ Sn<Sm } = P{ Sn-Sm<0 }=

+00 +00 +CO *

JV " jJue-,adxdt=

X + (j.

and

p { e2} = i - p { e ,} :
X + JLl

Which completes the proof.

The observable processes N(t) and M(t) can be expressed in tenns of the component

processes as

N(t)=Nx(t)+Lu(t)

M(t)=Mx(t)+Ld(i)

where arrival times of processes Lu(t) and Ld(t) are subject to the conditions (5.35).

Thus, the observable upstream and downstream processes can be considered as being

mergers of two independent processes. Figure 5.11 illustrates this idea.

Process N\(t) - Process L(t) - vehicles
leaving vehicles that traverse from A to B

Measuring w Measuring
N(t)=N\(t)+Ltl(t) Process M x(t) - M{t)=Mx(t)+LXt)

joining vehicles

Figure 5.11. Structure of the considered traffic processes

Following from the description, the problem of travel time estimation can be formulated

as follows. Given two homogeneous processes N(t) and M(t), and taking into account the

above assumption, find the constant T. From the previously described methodology, the

algorithmic procedure used to estimate travel time T is as follows.

Algorithm X.

The downstream process M(t) is being shifted by a time t . Then upstream and the shifted

downstream processes are merged into R(t, t)

R(t, r)=N(t)+M(t-r) (5.36)

One condition applied to the merging procedure is that if the arrival time of an upstream

event equals the arrival time of a downstream event, then the upstream arrival time is

given a preference and is placed in front of the downstream arrival time. N(t) and M(t- r)

are Poisson processes but the compound process R(t) is obviously not a Poisson process

since the processes N(t) and M(t) are not independent. Let us denote the arrival times of

the compound process R(t) by r,(z). In order to distinguish arrival times r,(z) by their

original process (N(t) or M(t)), let us introduce the indicator function /(r,(r)) as

{0 if r,{r) originates from process N(t)
(5.37)

1 if r({z) originates from process M{t)

The algorithm extracts series of interarrival times r,+i - n as follows.

1. &=1; z=l; Initialisation

2. While 7(r,(r))=1; i=i+1; Looking for an event from the upstream process

3. if I(rI+i(r))=0; i=i+1; go to 2; Skip this event if next is not from downstream

4. Ak(r)- n+i(r) - rz(r); Save the found interarrival time at k-s position

k=k+l; i=i+1; go to 2;

122

As a result, the algorithm produces a series of interarrival times of the resulting process

with the feature that they are produced by arrival times of both the upstream and

downstream processes. The procedure above is infinite but in the real world it can be

stopped when either processes N(t) and M{t) are exhausted, or necessary precision is

reached. The main result can then be formulated as the following theorem.

Theorem 1.

Consider the scheme of processes as shown in Figure 5.11. The processes N\{t), M\(t),

Lu(t) and Ld(i) are Poisson processes with parameters X\, jli\ , a and a respectively and

parameters of N(t)~ N\(t)+Lu(t) and M(t)= M\(t)+Ld(t), X and ju, are related as follows

Assume that /l>0 and ju>0 and consider the average of the values A*(r) (a sample of

interarrival times of process R(t, t)) produced by Algorithm 1 and assume that N of such

values have been produced. The average is given as

X—Xi+GC

jU F = j u \ + a

(5.38)

If N increases infinitely we have

F*(r) = lim FK(Y)
co

(5.39)

Then, Fn(t) converges to a finite limit F*(t) in probability and the travel time T can be

found as

T = argmin F* (t) (5.40)

123

Proof

Assume that T~t > 0. In order to find the analytical form of function it is required

to investigate the properties of the interarrival times extracted by the algorithm.

During the first step the algorithm shifts the downstream process by a constant time r.

Lemma 1 states that shifted processes do not change their probabilistic properties unless

the shifted process is compared to another dependent process. Therefore, the shift does

not have effect on independent processes and this property will be exercised in the proof.

The second step of the algorithm is to find an event that is originated from upstream flow.

Since processes Lu(t) and Ni(t) that form the observed upstream process N(t) are

independent it follows from Lemma 2 that the probability for the algorithm to pick an

cc ctevent that corresponds to part Lu{t) of N(t) i s ---------= — and the probability that the next
a + Aj A

event of upstream process corresponds to part N\(t) i s — = — .
ex + Aj A

Once the algorithm has chosen the next event from the upstream process, it checks if the

following event of the merged process R(t) corresponds to the downstream process. There

are three possibilities for the next event of process R(t):

1. Next event originates from upstream.

2. Next event originates from downstream from its Lci(t) part

3. Next event originates from downstream from its M\(t) part

Figure 5.12 illustrates the above outcomes. Let us introduce an extended indicator

function in order to distinguish the above combinations.

0 if n(r) originates from process N\(t)

1 if rt(r) originates from process Lu(t)
(5 .41)

2 if originates from process M\{t)

3 if r,(t) originates from process L,^t)

CASE 1

«(fl/+i Upstream process
- - - - - - - - - - - - - - - O - - - - - - - ® - - - - - - - - - - - - - - - - - ►

' ^ bj Downstream process
------------ 1------- M p --------►

1 A- 'A+i1 /•*« Merge
- - - - - - - - - - - - - - - O - - - - - - - O — L Z S - - - - - - - - - - ^

/ N
Current event Event from N(t)

CASE 2

fl/ Upstream process
 ® ►

1 J Downstream proc< 1---- □------------ ►
1 rk ' rk+x Merge

------------©---- B -------------- ►

/ N
Current event Event from L J j)

Figure 5.12. Illustration of possible outcomes for the next event
after currently chosen one

Thus, the algorithm basically deals with 6 types of pairs of events. Let us represent type

of a pair (r,(r), r,+i(r)) of consequent events of process i?(t) by the pair of their indicator

functions (/(r,(r)), 7(r,+i(r))). Then the types of pairs the algorithm deals with are given in

the following table

Table 5.1. Types of pairs classified by the values of indicator functions

Type

Xo

Pair of indicator

functions
Comment

1 (0 , 2) First event is from N\(t) and second event is from M\(t)

2 (0, 3) First event is from N\(t) and second event is from Ld{t)

3 (0 , 0), (0 , 1) First event is from N\(t) and second event is from N(t)

4 (1 , 2) First event is from Lu(t) and second event is from M\(t)

5 (1,3) First event is from Lu(t) and second event is from Ld(t)

6 (1 , 0), (1 , 1) First event is from Lu(t) and second event is from N(t)

Pairs of type 3 are not distinguished as they are of no interest (skipped by the algorithm).

Same applies for pairs of type 6 .

CASE 3

Joined the link
at / Upstream process

 ® ►
1 bu i Downstream process

 1— — f K ---------►
' f k :r*H Va+ 2 Merge

 ©— O—£3------- V

/ V
Current event Event from M \{t)

125

The purpose of such distinction of the pairs is that the corresponding time differences

form random variables of different types and in order to derive the properties of the sum

of them, they need to be investigated separately.

Let us denote an event that the algorithm has chosen an event from N\(t) by Q\ and by Q2

an event that the algorithm has chosen an event from Lu(t). It has already been noted that

P { e ,} = A and P { 6 2 } = ^ (5.42)
A A

It follows from the independence of processes N\(t) and Lu{t) that events Q\ and Q2 are

independent. Assume that event Q\ has taken place and calculate probabilities for the

algorithm to encounter pairs of types 1, 2 and 3.

The following figure is helpful in visualising the undergoing procedure. The circles on

the time axis represent events of the merged process and the numbers within the circles

show the value of indicator function (the source process) of the event.

T-x

Lj
— © •

Lu
<■>

Currently chosen event
from upstream: r,-

■i l e a v e s joins Ld

-© ----- (3>
l e a v e s

O -

T-x

Time

Figure 5.13. Illustration of the resulting process and procedure of

choosing the pair of events

On the figure above, arrows emphasise the dependency between co-related events from

Lu{t) and Lci(t). The distance between corresponding events from Lu(t) and Ld(t) is T-r due

to the shift r introduced by the algorithm.

Given the above assumption, the probability that the event following the currently chosen

one will be from M\(t) (indicator function equals 2) can then be calculated as

126

T - x +00

P{ /(f,+i)=21 Q,} = J f t e -"1' f(a + a+ +
0 /

+00 +00

e - a (T - r , | ,-m J(a + Al)e~{a*l')x dxdt (5.43)
T - X

The first component of the above sum represents the fact that on the interval [0, T-t] four

independent exponentially distributed random variables are active. The process L(i{t) has

effect at the distance from rt- that does not exceed T-t , since its generating event from

Z„(t) has to be before r,- and not further from rt then T-t. The probability of the event that

an event originated from Lu(t) lies within the interval [rt-{T-T), 77] equals l -e~a(r~T)

(following from properties of exponentially distributed random variable) and thus the

second component of the sum (5.43) represent the case when it does not happen. In the

case if Lu(t) does not lie within the interval [r,-(7-z), r j , there is no process LJf) acting

and the second component of the sum represents this fact by omitting one alpha-

parameter (that corresponds to process La(t)). Bearing in mind that X=ofrX\ and jLr=a+iu\,

equation (5.43) can then be calculated as

T - x +oo
P{ I(rM)=2 | Q, > = f{i ,e-(/,+A>,dt + e a<J-T) j ^ ^ ' d t =

0 T - r

_ ifl_ (l _ g -(A+^Xr-r) ̂ + e - a (T - r) Ml g + + A Xr-r) __
X + jU X + JUy

Mi l + __^__ e-(*+MXT-T) (5.44)
X + fj. X + jU\

Using the same arguments, the following probability for pairs of type 3 can be calculated

T - x +oo

P{ l(ri+i) = 0 o r/(rz+i)=l j Q\ } = J Xe M J(ct + Hi)e {a+Mi)xdxdt +
o /

+00 +00

e j fo -v ^M]e~fvdxdt =
T - x t

X fl
(a \l + _ £ _ e-(^xr-r) (5>45)

A + th J

127

_ - - - - - —

The probability of an event of choosing a pair of type 2 is different in that that the effect

of process L(i{t) lies in the interval [77, rj+(T-f)] only due to the previously discussed

reasons. Then,

T - t + 0 0

P{7(rJ+i)=3 | Q\ } - J ae~at J(a + A, + n x)e~{a+Xl+̂)xdxdt =
o t

—— (l - e~(X+̂ T-T)) (5.46)
/I + jU

Equations (5.44), (5.45), (5.46) form a partition of the space that consist of outcomes of

the experiment of trying the type of the next event that follows the chosen n. It can be

easily checked that

P{ /(»!)=2 | 0 i }+ P{ I(ri+l)=3 | Qx }+ P{ l(rw H or 7(»0=1 | Qx } = 1

as required.

Now, assume that Qi has taken place while the algorithm was choosing the upstream

event. Then together with the following event ri+i the pair can be of types 4, 5 or 6 as

given in the table. Let us calculate the probabilities of the above types.

Consider the outcome that leads to a pair of type 4. Since the current upstream even 77

originates from process Lu{t), it is known that within the interval of length T-x there is a

related event originated from Ldif). Therefore r/+i are of the M\(t) process if and only if

they happen before the expected event from L(i{t). It is also known that on the interval

[r/, ri+(T-r)] events from Lu(t), N\(t) and uncorrelated L(i(t) can take place. Then the

probability that the outcome is of type 4 will be

T - v +oo
P{/(r,+1) = 2 |e 2 }= J/Uie ~n ' f (a + \ + a) e ~ i'x*i '*a)xdxdt =

0 t

f dt = — —(1 - (5 47)
o X

128

Now consider the outcome that leads to a pair of type 5. In this case there are two

possible outcomes. First one is when the events that form a pair are not related. In this

case the difference is a random variable. Its distribution will be studied later. The second

outcome is when the events that form the pair are related. Then their difference equates to

T-r is a constant provided that t is fixed. Let us study the probabilities of the above

outcomes.

The events rt and r,+i will be independent if ri+i-rt<T-T. Therefore, the probability of such

outcome, denoted by Pi, is

T - t + 0 0

Pi { /0,+i)=31 Q2}= f a e ^ ' f (a =
0 t

_ £ L _ (i - e - < * * p x r - r) -) (5 4 8)

/ I + fJL

The probability for rt and ri+\ that correspond to independent events to be such that

n+i-n =T-t is zero and thus can be neglected. Therefore, if no events of processes Lu(t),

N\(t), L(i{t) have happened in the interval [rif r^T-z) then n and ri+\ are dependent

and the probability for this event is

P2{ /(rw)=3 | S i }=e-<A+"Xr- ') (5.49)

Together Pi and P2 as defined in (5.48) and (5.49) give the total probability for the pair to

be of the type 5 and is calculated as

P{ 7(rm)=3 | 0 2 } = Pi {I(rm)=3 \Q i}+ P2{ I(ri+1)= 3 | Q2 }=

a - (1 - e“(A+'u)(r-r>) + e-v+/*XT-T)

+ (5,50)
X + fj, X + fi

129

The last possible outcome for the pair is to be of type 6 . In this case the events with

arrival times r, and ri+\ are produced by the upstream and thus the algorithm will skip

over them. The probability for the pair to be of type 6 equals the probability of an

exponentially distributed random variable with parameter X (upstream) to be greater than

another independent exponentially distributed random variable with parameter ju

(downstream). Therefore

T - t + 0 0

P{ 7(rI+i)=0 or/(r,+i)=l | Q2 }= fXe~** jjue~fadxdt =
o t

- 2 — (l-e ~ H+',)(7'-r)) (5.51)
X ju

All the above probabilities have been calculated conditional on the occurrence of Q\ and

Q2. Then the probabilities for the algorithm to encounter a certain type of a pair in a step

of its cycle are given as full probabilities

P{ Q b ^ } = P (Q ,} P{^4 I Qi } and
P{Q 2 ,A }= P {Q 2 } ? { A \Q 2 }

where A is one of the following outcomes { 7(r<+1)= 0 or 7(r/+i)=l, I(ri+\)=2, I(ri+\)=3 }.

Probabilities P{Qi} and P{Q2} have been given in (5.42).

The probabilities of the pair types that the algorithm follows through can now be

calculated and are summarised in Table 5.2.

Table 5.2. Probabilities for different types of pairs to occur

Type Pair of indicators

(7(n),7(rm))
Full probability

1 (0 , 2)
3 (\ A l M\ j (a c-(A+̂)(7'-r)
X X + /u ̂ X + fj.y j

2 (0, 3)
K a q c-(A+̂)(r-r)N
X X + JU

3 (0, 0), (0, 1) ^1 ^ f i | a
X X + /u ̂ X + fj.] j

4 (1 , 2) a Ml Q -̂(A+A)(r-r)\
X X + ju

5

5 a

5b

(1,3) Both: a (a + A + /t,
X\KX + ju X + fi j

Independent: a a {i g - t ^ X r - o)
X X + JU 1

Dependent: e~{X+t‘XT~T)

6 (1 , 0), (1 , 1) a ^ (1 -~M+/0(r-r))
X X + iu

From the description of the algorithm it follows that it extracts only pairs of types 1, 2, 4

and 5 and sends the corresponding difference r,+i-r,- to the resulting series. Thus it is

required to calculate the probability with which a certain type of differences goes into the

resulting series. Let us denote by Ak, an event that the current type of a pair encountered

by the algorithm is k. Then the difference of the pair will go to the resulting series if and

only if one of A\, A2 , A4 or As has taken place. Then among outcomes A\, A2, A4 or A5 the

probability for the difference of type k to go into the resulting series is given by the

conditional probability

Pk=P\Ak | I M }=■
i s { 1 , 2 , 4 , 5 a , 5 b } J

P W

IM
/ e { l , 2 ,4 ,5 f l , 5 M

A?=l,2,4,5tf,56 (5.52)

Since the Ak’s are disjoint, (5.52) can be rewritten as

P{At }
pt= — y) ■ *= U A 5a’5b (5'53)

j'e{l,2,4,5a,56}

It can be easily calculated that

£ P{At) = -JLJ _ £ L . e - M w - o A
f e d , 2,4,50,54] ^ + M\A + M l

(5.54)

Finally, the calculated probabilities P* are given as

„ _ V i r, _«A, l-e-W ^xr-o n ! _ e-(^xr-o
H 4 2 “ ^4

hju 1 + _ _ ^ _ _ e -(^/4)(r-r) /I// 1+ g- _ c-(^ x r-r)
A. + jul X + fix

a * J .g -c^ x r-r) a(A + A/) e ^ x r - r ,

^ 1 + a e-(A+M)(T-r) A// ̂+ # g-(A+/iXr-r)
/I + //j /I + /^

Now consider equation (5.38). It is the average of the elements of the resulting series. As

has been mentioned before, the algorithm gives four types of differences as elements of

the series. Let us denote these differences by Ak where k is its type (as in Table 5.2). The

algorithm does not recognise dependent and independent differences of type 5 but they

will be distinguished here and thereafter as A5a for independent and A5b for dependent

differences. Thus, the sum (5.38) can be expanded onto a five sub-sums that contain

elements only of certain type:

i n 1 (l«* I
W = - l A i W = - £ 5 > ‘ (r)

N t i
r in*) ^

(5.55)
V ^ e { l ,2 ,4 ,5 f l , 5 6 } i e Q k

where Q* is a set of indices that correspond to differences A of type k, &e (1,2,4,5a,5b}

upper index of the A-s shows the type of this difference and |Q*|=A ̂is the cardinality of

Further

I H*

As N->co according to the strong law of large numbers the terms V A* (r) converge
N k ien4

with probability 1 to the expectations E[A* (r)] of the random variables Ak , and

N
according to the weak law of large numbers (Bernoulli’s theorem), frequencies ~ -

converge (in probability) to the probabilities Pr* of a certain type of differences to get into

the resulting series [Feller, 1968]. It is a well-known fact that if sequence XN converges to

X almost surely (with probability 1) and YM converges to Y in probability, then X^Ym

converges to XY in probability. Therefore Fn(t) converges to F*(t) in probability and

F * (r)= lim F „ (r)= £ P r t E[A*(r)] (5.57)
00 i e { l , 2 , 4 , 5 « , 5 6 }

In order to calculate the expectations of the above random variables, their properties have

to be investigated.

The first type of the differences, A1, is produced by rt and ri+\ such that I(n)=0 and

/(r/+i)=2, that is rt and ri+\ correspond to the events that belong to processes N\(t) and

M\(t) accordingly. These two processes are independent and also independent of Lu(t) and

Ld(t). Let us denote the random variable whose realizations are A1 by £1 and calculate its

probability distribution function. Assume that r,- is fixed and /(rf)=0 and consider a

random variable x that represents the time from rt to the occurrence of an event from

either of the processes, that is ^=r,+i-r,. Then can be considered as being conditional 011

X such that it is produced by a pair of type 1 (or 7(r/+i)=2 subject to /(r,)=0). This fact will

be denoted as ^e(0,2). Formally, it can be written as follows

F ,(0 = Pr(x < 11 x £ (°>2)} = Pr^ < X (’°-2-̂ (5.58)VC IX K , J ! Pr}* e (0,2)} V

The dividend in the above formula represents the probability that from the given time r{

first arrival event will correspond to the process M\(t) and the distance from n to that

event is less than t. Taking into account that process L(i(i) is active only on the interval

[rt, n+T-v], and does not realise on that interval with probability e a{r~T\ that probability

133

can be calculated as follows (similar arguments to those used in derivation of equation

(5.44) can be applied)

P r{ j < t n x G (0,2)} = j /q e j*(A, + a + a)e {Xx*a+a)ydydx
0 x

Mi
X + ju

t<T-x

V x { x < tn j e (0 ,2)} =

/h
t +M

X + ju r -r

_ / f l _ (l — g -t^ + ^ x r -r) ̂+ g-a(r-r) _ _ / f l_ _ ^ - (A + / / ,) (r - r) _ g -W +/< ,)^ t>T-x
X + (A, X + /ij

(5.59)

It can be easily seen that the denominator in the equation (5.58) is the same as (5.44), that

is (Q\ represents an event that 7(r,)=0)

Pr{X6 (0 ,2)} = Pr{/(;%.,) = 2 1 e,} = +
X + fj. X fi j

(5.60)

Finally, substitution of (5.59) and (5.60) in (5.58) yields the following probability

distribution function for random variable

1 - e ~(X+n)t

1 | — g -^ x r-r)
A + yt/

l - g - (^) (r~r) -u(t-t) (X + iu) (e - ^ ')iT~r) - e HX+Mx)l)

1 | g c-(̂ +A«xr-r)
/I +

■ + e , t > T-x

(5.61)

In order to obtain the expectation of £i, its probability density function is needed. From

(5.61) the probability density function of £i is obtained as

134

U 0

X + jj ,

1 I a c~(A+*iXT~T)
X + jux

< e [0 , r - T)

(5.62)
(X + JLl)6 - a (T - r)

1 I a
£ € [T - T ,+ oo)

+ //j

An illustration of the above probability density function is given in Figure 5.14. It is

worth noticing that the probability density function is continuous in the point of t=T-r.

Four processes
are active

Three processes are
active

Time
Figure 5.14. Structure of probability distribution function of

random variable £i

Having calculated the probability distribution function of the random variable it is

possible to calculate its expectation using the definition

-t~oo

e k ,]=

E[£,] =
l + _ ^ r) o

X + /j,x

T - t

|(A + iu)<e'(,l+‘")'* +

2 - + // „-atr-T)
1 . +00 A + JU j

(5.63)

The integration can be accomplished using integration by parts. The following result is

standard

\k tektdt = - e kt\ t + -
k

+ C , (5.64)

where C is an arbitrary constant and k£0.

Using (5.64), it follows from (5.63) that

E K J =
1 + a

(t +
T - t

- (A + ^) (r - r) X + fi
+

X + //j
(5.65)

X + JLl j

1 1 a A +
+ 00

r - r
/I + //j

After elementary calculation and simplifications, the final form of the resulting

expectation of £i can be found as

1 + a

£[#,] =
A + /u X +

r - r + 1
+

1 r)

1 +
(5.66)

-(A+//)(r-r)
/I + //j

Now consider differences A2, A4, A5". Despite the fact that these differences are produced

by events that belong to different Poisson processes, they can be considered as

realisations of the same random variable that will be denoted by This result is implied

by the fact that events, whose arrival times produce the above differences belong to either

of the processes Lu(t) or Ld{t) (see Figure 5.13, events of types 1 and 3). For example,

consider events that generate differences of the 2nd class. The indicator functions for such

a pair of events are J(r/)=0 and /(rm)=3. Due to the relationship between the processes

Lu(t) and L(i{t), it is known, that at the time ri+i-T+r there is an event from Lu{t) that has

136

taken place. Therefore, the event from N \(t) that happened at time n and produced the

difference cannot be located into the past further then ri+\-T+r. From this argument it

follows that all differences of the second type do not exceed the value of T -t. N ow

consider time interval [>,•; r i+i-T+T]. On this interval four independent exponentially

distributed random variables are acting. Thus, random variable £2 can be seen as being

exponentially distributed but with the restriction that its values are not greater than T -t.

Therefore, its probability density function is the head of the exponential density cut at the

point T -t. The following figure illustrates such a distribution.

Four exponential
variables are active
g-(A,+p,+flf+a) _ e ~(X+n)

Time

T -t

Figure 5.15. Structure of probability distribution function of

variables A2, A4 and A5a.

It can also be shown that random variables that produce differences A4 and A50 have the

same form of distribution function. Since £2 is exponentially distributed but conditional

on not being greater than T -t, it can be defined via a proper exponentially distributed

random variable as having a conditional probability distribution function as follows

= P r{^ < t \ y / < T - t }

where (//is an exponentially distributed random variable with parameter A+ju.

Then, following from the definition of conditional probability

Pr{^ < m in(/,r - t) }

(5.67)

Pr{y/ < 1 1 y/ < T - t)
Pr { y / <T - t)

137

1 _ p -(A+p)t
V f e [0 , r - r) (5.68)

- W + P W - T)l - e

Finally, the random variable that corresponds to differences A2, A4, A5a has the following

probability density function

4 W H

— A ± E — e~ ^ te [0 ,T -

0 everywhereelse ^

To calculate the expectation of £2 equation (5.64) can be used. Using the definition of the

expectation of a random variable and the integration formula (5.64), one obtains

-t-cu

e[&3= f
e [|2]

1
1 _ e-(*+MXr-r)

I

T - x

l — e V A + (i

T - t

0

And finally

E[?2] =
A + JLl

T - T +
A + jLl

,-(A+/iXr-r)

- { A + f t X T - x)
(5.70)

The last type of the differences left to be considered is A5b. The differences of this type

correspond to the events of the processes Lu(t) and Ld{t) that are bound by the relationship

given in (5.35). Therefore, the arrival time r,- that corresponds to an event of process Lu(t)

and arrival time r /+1 that corresponds to the related event of process Lci{t) are bound by the

relationship that follows from (5.35):

138

n +1 = r t + T -t

Therefore, the differences A5b are not random variables but a constant

A5b = ri+i - n = r-r; (5.71)

Thus, all components for the equation (5.56) have been identified. The final analytical

limit form of the average Fn(t), as given in (5.39), of the time series A produced by the

algorithm is given as

F \ t)= £ P r t ElA*(r)J=
fc e { l ,2 ,4 ,5 « ,5 £ > }

E SP. + E I,
* e { 2 ,4 ,5 f l}

(5.72)

The first component of the sum is

1
+

a

ESPr =
X + fi X + jû

T - t +
1

+
1

X + fd A, -\- ju j Xxfj,x

1 +
X + JU\

XjLl
(5.73)

It can be shown, that

_ a(X + /ux) ! - g-<^xr-r)

* 6 { 2 ,4 ,5 fl} ^ , { 1 | j a e ~ (* + H W - T)

X + JÛ

Therefore, the second component of the sum (5.72) is

1 (T -r 1
Efc I P* =

£ e { 2 ,4 ,5 a }

X ju X + n
- (A + / /) (r - r)

-(A+/0(r-r)

139

a (X + /u x) X + ju
1 - \ T - t + 1

X + JU

Xju 14. a g -<*+*Xr-r)

And the last component of the sum (5.72) is simply

(r - r) p 56 =(r-r) g(A + /<) e-(^xr-r)

J + g e-(A+rt(r-r)
/L + /i,

Substitution of equations (5.73), (5.74), (5.75) in (5.72) yields

1 a + •
F \ t)

X + ju X + jux
T - T + - 1 — +

X + ju X + jj.x
-(A+/0(r-r)

1 I ** c-(^^xr-r)
2 . +

+

1

a(X + fij) A + //
r ~ T +

1

X + ju
/l/i ̂+ Q? g _ (A + / /) { r _ r)

/i +

g(yl + //) g -t^ x r-o

^ 1 + a e -W+PXT-r)
X + /ij

+

(T-r)

After certain simplifications F (t) can be obtained as

1 a
+

F \ t) =
X + ju Xju

^ (T - r
X + jux X + jux

X + jux
^X + jux X + /u j X ju

1 1+

\ + — e-V+MT-r)
X + yt/j

140

---- 1

(5.74)

(5.75)

(5.76)

The above calculation have been conducted with the assumption that T -t > 0. Since the

algorithm does not know T a priori, it can choose t such that T -t<0. Assume now that

T-v<0 and calculate F *(t).

Since T -t<0 the dependency picture on the Figure 5.13 will change as follows

Currently chosen event
from upstream: r,-

T - t

 © - ■© ® ---------- © — ©■ ■ © — ►

T - t

Figure 5.16. The events of types 1 and 3 have swapped their roles

It is clear from comparison of Figure 5.13 and Figure 5.16 that the dependency between

events of processes Lu{t) and Ld(t) became backward from Lu{t) to L(i{t). That means that

every event of Lu(t) will have a correspondent event of LJj) but in the past, located away

by time T -t. Since the algorithm looks ahead for a candidate for the pair, the currently

chosen event’s type will not affect the algorithm’s choice, that is the following events of

M{t) will be known to be independent of the currently chosen event of N{t). Therefore, a

separate consideration of N\(t) and Lu(t), as it has been done for the case of T - t> 0, is not

required.

Analogous to the previously considered case of the area of activeness of the process La{t)

from a randomly chosen time point t provided that T -t > 0, it is process Lu(t) now that is

limited in the area of [t, t+ T -f] from a randomly chosen time point t. Similarly to previous

case of Ld(t), if an event of Lu(t) is removed further than T -t from the point t, it will be

known that there will be an event of Ld(t) lying at the distance T -t into the past from the

event of Lu(t), and thus masking out the event from Lu(t).

Taking into account the above arguments, the pairs of events taken out by the algorithm

will be identically distributed random variables with the probability density function

shown on Figure 5.14 and thus have the mean function given by equation (5.66) with the

only difference that T -t must be replaced with t-T.

141

Since there is only one type of random variables the algorithm will be discovering in the

case of T -t<0, the equation (5.39) will take the following form

1
+

a

F * (t) =
X + / j . X + jU \

t - T +
1

+
1

X + jU X + JLl\

1 + a
(5.77)

X + H \

Finally, (5.76) and (5.77) together give the full solution for the limit version of the cost

function (5.38) as follows

1 a 1 1 1 -L
A + / / , e - (X + MX T - T)

t
X + j u X / u

y l I) t
X + X + /J .\

T
^ X / j , | X + / j . y >4, + f i

1 a
-L

1+ “ ^
X + / j ,\

\ r - r + 1 + 1 1

* n Y T - r)

_ - (A + | i X r - r)
I

X + n X + f i ^ X + f j . X + f j . \

J

1 1 a c - (^ M X r - T)

X + f u i

(5.78)

A typical plot of the above function is given in the following Figure 5.17.

Parameters:

T
Figure 5.17. A typical plot of function (5.78)

142

It has therefore been shown that the limit (in probability) (5.39) exists and is finite and its

analytical form has been identified in the form of the equation (5.78). In order to prove

the last statement of the theorem it is required to show that (5.78) has a single global

minimum at the point of T-v=0, or t =T.

Consider again cases T-t>0 and T-v<0 separately. Assume first that T~r>0. In order to

investigate the properties of the function (5.78), let us introduce the following

parameters.

a, =
X + fi

a
X + JUX

, a,
a

Xju
X + JUx Xx/Llx
X + ju X + jux

1 + 1

X + jux X + juJ _

k = X + n and t - T - z (5.79)

Assume that a>0. It is obvious that a\>0 and a2 > 0 as it follows from the definitions of X

and ju. Let us show that <23 is also greater than zero, e.g. ci3>0 . First let us notice that

a
Xju

than zero.

>0 , therefore it is sufficient to show that the term in the square brackets is greater

X + jux Xxjux
X + ju X + jux

(X + /ux) 3

1 1

^X + jux X + ju j

Xx/ux (2/1 + /u + jux)

> 0

>0

(5.80)

(/I + jux) 2 (X + ju) (A + jux) 2 (/I + /u)

(X + jux) 3 — Xx jux (2/1 + ju + jux) > 0

(X +jux) 3 - (X -a) ju x(2X + 2jux+ a)> 0 ■=>

(X + jux) 3 - 2X2 jux - 2X/ux - aXjux + 2aXfux + 2a/ux + a 2 jux > 0 =>

X? + ?>X2 /ux +3Xjux + jux — 2AX/ux —2X/ux +ocX{ix + 2ct/ux + cc2 /u,x >0 ^5*

X3 + X2 jux + Xjux2 + jux3 + aXjux + 2ajux2 + a 2 jux > 0

Obviously, the above statement is true. It is therefore shown that «3>0 .

143

Using (5.79), the function (5.78) can be rewritten in the following form.

= a, + (a2< - a 3V
1 + a2e

(5.81)

where a\>0 , a2>0 , aj>0 , k> 0 and ?>0 .

Using elementary calculus and transformations, it can be shown that the condition f\t)= 0

leads to the following equation.

—At ^e kt = — t -
^ 1 ka, ka, ^ 1 L +---1

ya2 a\ a2 ,
(5.82)

Let us denote by y{t) the right part of the above equation. Then y(t) is a linear function.

The condition t=0 yields y(0)=
 ̂ 1 ka, ka, ^

\^a2 a2 a2 j
<0 , and the condition y(t) = 0 yields

1 dt=— + — + a, >0. Therefore, the functiony(t) can be represented as in Figure 5.18.
k a2

K0)= - _ + _ f +

Figure 5.18. Schematic view ofy(t)

It is now obvious, that since e kt is a monotonous decreasing function for t>0, equation

(5.82) has a single solution. It is illustrated in Figure 5.19.

y(t)

k (1 k a 3 le a ,
y(0=—H — + - f + —L

a , \ a 2 a 2 a 2

Figure 5.19. Single solution of equation (5.82).

It has therefore been shown that function (5.78) has a single extremum at t=tm or, equally,

r=Tm, where rm- T - tm on the interval T -t>0. It can be easily shown by checking the sign of

the derivative f ’(t) that the extremum is maximum. Since F*(t) is increasing on the

interval (-oo,-rm) and decreasing on the interval (r,„, T], it is required to show that

F*(-co)>F*(7). It is clear that

Then,

F '(T)

x + M\ i + X + (U\ Xlji] f 1

X + ju Xju X + ju X + /ij KX + jux
+

X + ju , and

lim F \ t) =
X + ju

X + y£/| =3.+

1 TT
1

+ \ X\JU\
X + ju Xji X + ju 3.+

X + ju

X + ji{ =1+'w'S
1 X + ji\ X\ji\

X + ju Xju X + ju X + JU\

1 1------- 1-------

<
X + ji

==>

1 1------- 1------- <1

1 - a a{X + juy)
X + ju X/u

a a(X + ji{)

X + //j /Ij ju]
+ ■

X + ju X + ju^\^X + jû X + ju

X + ju Xju
X + ju j Xl jû I 1

■ +

X + ju X + jî >X + jî X + ju

<1

<0 (5.83)

The term in the square brackets has been already shown to be greater than zero

(inequality (5.80)), therefore, the above inequality (5.83) holds. It is important to notice

that the equality (5.83) holds if and only if <2 = 0 (which is a trivial case).

Now, assume that T-t<0. To prove the theorem it is sufficient to show that

1 + a

F \ r) =
X + JJ, X + yt/j

T - T + 1 + 1

X + fi X + yWj
>

1 + a -(A+z/Xr-r) X + jU
(5.84)

145

1 a
+

A + jU A + JUJ

1 1
t - T + --------- +

A ju X + / / j

- (A + M t - T) l (
1 I a g~(A+̂)(r~r)

>
A + JU l / l + yddj

l l a

1 a+
X + j»i X + /./j

A + yWj

l lr - T +------- + ■
/ l + JU X + yddj

, - (A + / /) (r - D

I , a c-(*+PXr-r)
A + yi/j

2 , a c - (A + / /) (r - p

A + /q

1 a:+
A + JLl A + yddj

1 + _ ^ _ e -(A+//)(r-D
A + yWj

r - r + - J — + 1

1 I a c-<^xr-D
>0:

A + yddj

A + jj. A + / i j
_(A+//)(r-r) 1 1 a e -(A+^)(r-r)

A + yW A + / / A + / / ,
>0

l + _ _ ^ ___ g-(A+/«Xr-r)

A + yddj

a
A + yddj

r - r + — L - + 1 l

a
A + yddj

r - r +

A + ydd A - f y d / j A + f.i

1

A + yddj
-(A+/0(r-H > 0 ,

e-(A+̂ Xr-n > Q

(5.85)

which is obvious (f>T). The equality in (5.85) holds if and only if a= 0.

It has been shown that function (5.78) has a single global minimum at the point of v=T,

provided that a>0. In the case a=0, function (5.78) becomes a constant, which is a

special case and is of no interest. The proof is complete.

5.4.4 Applicability of the simplified traffic model

The model described above makes two main assumptions regarding traffic flow and

travel time as a random variable. First, the processes involved in the calculations have to

be homogeneous Poisson processes. The adequateness of modelling road traffic as a

Poisson process started to be investigated in the fifties [Gerlough, 1955], [Gerlough and

Barnes, 1971]. It has been shown that light highway traffic reasonably fits into the

Poisson process model. Many other models of traffic have been proposed [Cowan, 1975].

Unfortunately, it is well known from the theory of stochastic processes, that the Poisson

process is the only renewal process with the property that a sum of two independent

Poisson processes is also a Poisson process. Derivation of closed analytical results for the

other renewal processes is cumbersome, if at all possible [Karlin, 1975].

The second assumption is that the travel time of vehicles traversing the distance from A

to B is constant. This requirement was necessary in order to keep the downstream process

being Poisson. In case of a non-constant travel time, the convolution of a gamma-

distributed arrival times at point A with a non-constant time (which would require a

normal-like distribution) will yield a distribution that is certainly not gamma distribution

and therefore, the downstream fails to be Poisson. This assumption is also reasonable in

very short distances, as is the case with urban links.

5.5 Conclusions

In this chapter, a review of the current state of the art in solving the problem of travel

time estimation from traffic data has been reviewed. A conclusion has been made that

most algorithms have certain disadvantages for the application in urban areas. Following

the review, a problem of travel time estimation for an urban link has been formulated and

novel methodology of solving the problem has been developed. The methodology has

been proven analytically for a simplified traffic model using the theory of stochastic

processes.

The following Chapter 6 will present the results of empirical study of a real urban

network based on the automatically collected traffic data and using the software and

theoretical methodology developed during the course of this study.

Chapter 6

Empirical Study of Urban Traffic

6.1 Introduction

Previous chapters have developed necessary tools (Chapter 4 has developed the software

environment for system modelling and simulation and Chapter 5 has developed a novel

methodology of travel time estimation on urban areas) in order to facilitate the empirical

study of real-life traffic system. In this chapter, such an empirical study of urban traffic

will be carried out.

I

fNWMW)
Q N6Q34,P y

[N60411 I (KM12) J

(N60321)
\ J C'H*03z1n)\ ̂ I wown)

ag g L g ssr® *\\

N60341

A T (H>0431Al)
N60341C

Q (N80341C2)

fNstaaiEij
50331EN40331M1

(̂>032101)
(NBOJaiJl)

N60331
CHM411MI) Q ^

N60421L

N60421

HflOWKI J
(HeO<2IJl) Cjjl

(NKH21C1

N60431HD ► (N6043in)

N60431r
N60431

(nsmzmT)

(weoaiim)

(HBQ32I91)

NoOoliH

N60311
N60J11K

fweoanM)

(>8043101) c b

Figure 6.1. Mansfield SCOOT-controlled region

Chapter 3 has introduced the SCOOT system since it provides data for the current study.

The SCOOT system used in this study is installed in a town of Mansfield, UK. The

148

SCOOT controlled region map is given on Figure 6.1. References to the links on the map

will be made throughout this chapter.

The structure of this chapter is as follows. In the first section, necessary software modules

will be developed in order to facilitate the SCOOT data processing and analysis. Then

follows a set of demonstrations on the use of developed data processing environment

with integrated modules for SCOOT data processing and analysis. Several standard data

analysis procedures will be carried out and results presented. Section 6.4 will be solely

devoted to the implementation of the travel time methodology developed in Chapter 5.

Empirical study of travel times using Mansfield SCOOT data will be given in Section

6.5. The study of travel times in urban links will be finalised in Section 6 .6 with the

estimation of its components as given in Chapter 5, Section 5.5.1. Finally, the chapter

will be closed with conclusions.

6.2 Pre-processing of SCOOT data

Raw SCOOT messages in the form of textual strings are not very convenient format for

carrying out data analysis. It is more desirable that messages are processed into higher

level data structures and the informative fields of the messages are properly parsed and

filled in to the structure. Moreover, low level messages are often redundant in a sense that

they are generated but do not carry useful information (filled in with dummy data). The

two message types, described in Chapter 3, M14 and M l9 are such messages. Therefore,

it would be beneficial to filter out empty messages while creating proper information

stream of useful messages to the data analysis algorithm.

Even though this study uses only two types of SCOOT messages, it is a good practice to

develop a pre-processing software in such a way, that it would allow, in principle,

processing any other kind of messages. Such pre-processing software has been developed

as a functional module for the data processing environment and will be described here.

6.2.1 The core pre-processing software

The SCOOT messages pre-processing software will be developed as a package named,

m o d u l e s . s c o o t . d a t a .

Since all SCOOT messages have spatial attributes, such as the node, link and detector

information, the first data structure to be defined is the one that describes such spatial

attribute. Such structure has been designed and initially called NodeName. The

following model represents the NodeName class.

NodeName

getArea()
getNode()
getLink()
getDetector()
getRaw()

From the model of the NodeName class, it is clear that the spatial paratemer of the

SCOOT messages have the following attributes: Area, Node, Link and Detector, as

follows from the corresponding methods.

The basic data structure that will be associated with a SCOOT message is named

ScootData. ScootData is implemented as a Java interface and describes a set of

methods that all implementing classes should have. The methods of ScootData
interface are designed to reflect the common fields that all SCOOT messages possess.

The following model of the interface describes its structure.

«interface»
ScootData

getTime()
getNode()
getTypeQ
getMessageT ype()
getRawQ

{NodeName}

Since ScootData is an interface, it is an abstraction of the real SCOOT data objects.

There is no requirement that data objects correspond to SCOOT messages since some

SCOOT messages might produce data of different nature. An example of such message is

M14 which carries SCOOT modelling results in the form of predictions of the lengths of

the queues and accompanied signal control outputs, which can be considered as

independent piece of information. Based on this argument, a decision to split M14

messages into two SCOOT data objects has been made. The detail of implementation will

be presented later in this section.

150

The minimal implementation of the ScootData interface is called ScootMessage.
ScootMessage is used to parse the header of any SCOOT message and leave the type-

specific information of a message in its raw form.

To satisfy the requirement for the pre-processing core to be able to process any kind of

SCOOT message, a standard Java technique of using a class factory has been employed.

A class factory is normally a class, which is used to create instances of other classes

based on the given specification. The class factory technique extensively uses interfaces

and abstract classes mechanisms. A class factory has been implemented to create

instances of SCOOT data objects according to the availability of implementation of the

classes for particular messages types. In case when no implementation is available, the

most general form of a SCOOT data object, implemented by the ScootMessage class

is used. The following diagram gives an outlook on the SCOOT class factory structure.

«class»
ScootDataFactory

getScootData(rawMessage) _ { ScootDataQ }

When g e t S c o o tD a ta (raw M essage) method is invoked, it parses the

raw M essage into an instance of the S co o tM essag e class, from which the type of the

message can be obtained (as a string in the form of ‘M14’, CW 03\ etc.). After the type of

the message has been obtained, the factory will try to locate a class with the following

name ScootData<TYPE>, for example, ScootD ataM 14 for M14 messages. In case

if such class is not found, the factory will return the S co o tM essag e object, since no

further processing can be done. If ScootData<TYPE>, has been found, the factory will

invoke a static method called p r o c e s s , which is specified as follows

ScootData [] process(ScootMessage msg, HashMap store)
throws WrongTypeException, BadDataException;

The above method of the ScootData<TYPE> class will know how to parse that type of

message into an instance of itself or other related SCOOT data objects. Since it is

possible that one raw message is processed into more than one instance of SCOOT data

151

f t - ‘T *1. .« _• i

objects, the p r o c e s s method returns an array of such objects.

W rongT ypeE xcep tion and B a d D a ta E x c e p tio n are thrown if the process has

been invoked for a different type of message or the format of the message is violated.

It follows from the use of factory as described above, that there is no requirement to

implement ScootData<TYPE> classes for all possible types of messages since basic

pre-processing is implemented as a S co o tM essag e class. On the contrary, it is easy to

add the functionality for the system to process the required message type by simply

creating a class with the name of the form ScootData<TYPE> and implement the

p r o c e s s method as given above.

The above scheme has been implemented, tested and shown to be both flexible and

efficient.

6.2.2 Pre-processing of M14 and M19 messages

Pre-processing class factories have been implemented for the two message types, M l4

and M l9, which will be used in further analysis.

M14 processing factory, ScootDataM14, produces two objects of SCOOT data,

namely the SCOOT modelling data object and SCOOT control data object. The SCOOT

modelling data is returned as a dynamically created instance of ScootDataM14, with

the fields filled with data parsed from the raw message. The following model presents an

instance of ScootDataM14 class.

In addition M14 processing factory creates instances of ScootDataSignal class,

which represents the changes in signalling stages at a particular link.

«class»
ScootDataMl4

ScootData

getlvl()
getOcc()
getLQ()
getBQ()
getEBQ

152

ScootDataQ
«class»

ScootDataSignal

getSignalO
isGreen()
isRedQ

ScootDataSignal provides methods (as shown above) that allow checking the

current signalling stage at a link.

M19 processing factory, ScootDataM19, searches non-zero occupancy strings in the

flow of occupancy pulses generated by a particular detector. Let us get back to Figure 3.4

Detector N60331H1

, \ | | i | | , ^ Generated
00,0000,011 fOOOQOOOQOOOQOOOOpOOOpl 1 ljl 10Q00 ' ’ occupancy pulses

-1 1 1 1 1 1 1 ►
37 38 39 40 41 42 43 44 45 Time

Sa 08:26:38 Ml 9 N60331H1 DETECTOR STATE 0111
Sa 08 :26:39 Ml 9 N60331H1 DETECTOR STATE 0000
Sa 08:26:40 M19 N60331H1 DETECTOR STATE 0000
Sa o CD to G\ H Ml 9 N60331H1 DETECTOR STATE 0000
Sa 08:26:42 Ml 9 N60331H1 DETECTOR STATE 0000
Sa 08:26:43 Ml 9 N60331H1 DETECTOR STATE 0000
Sa 08:26:44 Ml 9 N60331H1 DETECTOR STATE 0111
Sa 08:26:45 M19 N60331H1 DETECTOR STATE 1100

The Ml 9 factory will receive a flow of messages as shown above and try to reconstruct

the string of pulses as pointed in the figure under “Generated occupancy pulses”. Having

constructed a continuous string of pulses, the factory will extract strings that contain

continuous strings of l ’s, as 111 and 11111 on the figure, and create the instances of

ScootDataM19 initialised with the time of a string of l ’s appearance and the number

of pulses in the string. Thus, from the example above two M l9 data objects will be

created:
Time N° of pulses

08:26:38.25 3

08:26:44.25 5

The model of Ml 9 data class is given below.

153

ScootDatao «class»
ScootDataM 19

getPulses()

6.2.3 SCOOT message pre-processing module for the data processing environment

A module for pre-processing SCOOT messages has been implemented as part of

modules . scoot. data package and shown in the following Figure 6.2.

The module accepts SCOOT messages in their raw textual form on its input and produces

a stream of ScootData objects that correspond to the parsed messages. In order to

process the textual messages, a SCOOT data processing factory, as described in Section

6.2.1, is used.

The raw messages can be obtained from various sources such as files, network, keyboard,

or directly from SCOOT as described in Section 3.3.4. A typical scheme of using a file

reader and SCOOT pre-processing modules is shown on the following Figure 6.3.

M19 N60311E1 16-Feb-1999 03:09:27
M19 N60321I1 16-Feb-1999 03:09:27
M19 N60331N1 16-Feb-1999 03:09:28

S C O O T
SCOOT data pre-processor

Figure 6.2. The look of the SCOOT messages pre-processing
module for the data processing environment

File string reader SCOOT data pre-processor
SCO O T

H scootPririter
A.

ScootPrinter

Figure 6.3. A fragment of a model that uses a file reader and
SCOOT data pre-processor

154

6.3 Use of the processing software in traffic analysis

The developed software for data traffic processing can be used in many standard traffic

analysis procedures. As examples, two procedures - headways study and traffic profiles

will be presented here.

Headway is the time gap between successive vehicles in a traffic stream. Analysis of

headways is used in many transportation decision making processes, such as saturation

flow and traffic signals design [Adams, Hummer, 1993], or gap acceptance studies

[Troutbeck, 1993].

A module for extraction of headways from traffic data stream has been developed and

tested. As an example of a module implementation, full source code of the module is

given in Appendix C, Example 3. Appendix B, Figure B.4 shows the screen of the data

processing environment with a model that implements headway data extraction and

visualisation using plot, histogram and display modules. From the headways plot, it is

noticeable how traffic control affects formation of platoons. Platoons of cars correspond

to the low little changing areas on the plot and peaks represent a delay induced by the

change of the signalling stage at the intersection. A typical distribution of headways is

given on the following Figure 6.4.

Frequency 1

0.83

08

0.7S

0.7

0 6*

OM

0.4

0.2

0.1!

0.0!

0
0.5 4.075 7 0S 11.225 14.8 18375 2185 25525 28 1 32.673 38 23

Headway

Figure 6.4. Distribution of headways (taken from N60411M1)

3 08825

1
8ji
§1;ILI

mI m

155

Traffic profiles also play an important role in traffic control strategies. For example,

SCOOT can use historical traffic profile data to optimise traffic signals in case if detector

hardware gave a fault. Also, traffic profiles give a global outlook on changes in traffic

volumes depending on season, weather and other factors.

A module for construction of traffic profiles using SCOOT data has been developed (see

example screen of the data processing environment with profiling module in Appendix B,

Figure B.6 and Figure B.7).

Typical traffic profiles for weekend (red) and working day (blue) are shown in the

following Figure 6.5.

Traffic volume
(number of vehicles)

Universal lime (in

Figure 6.5. Example of traffic profiling module output visualised by Plot module. Data
used is taken for the N60411M1 detector for 16th January 1999, Saturday (red) and
19th January 1999, Tuesday (blue) and aggregated over 2 minutes intervals.

Other modules for traffic analysis can be developed as required in particular application.

6.4 Implementation of the travel time estimation procedure

Travel time estimation procedure has been implemented as a functional module to the

data processing environment. It has one input, as shown in Figure 6.6, and three outputs.

156

A stream of S c o o tD a ta objects is received on the input and three types o f information

regarding travel time estimation are sent out from the three outputs.

ScootTravelTime

Figure 6.6. Travel time estimation module

The following parameters are used within the travel time estimation module.

Table 6.1. Parameters of the travel time estimation module

Parameter name Type Description

UPSTREAM String Upstream detector name

DOWNSTREAM String Downstream detector name

TW long Time window within which the module
will collect input vectors (in seconds)

DS boolean Do stops for every new time window
(true) or not (false)

CS boolean Take signalling stages on the uplink into
account (true) or do not (false)

LSB long Left boundary for time shifts (in
milliseconds)

RSB long Left boundary for time shifts (in
milliseconds)

STEP long Step of the shift (in milliseconds)

The scheme of the module’s functionality is as follows. Once the parameters have been

set up, a module is ready to carry out travel time estimation. The first two parameters, the

upstream and downstream detector names are necessary parameters. Considering Figure

6.1, examples of couples of detectors can be given as N60311G 1-N60321B 1, N60321B1 -

157

N60331F1, N60331F1-N60421B1, etc. One module estimates travel time for just one

couple of upstream-downstream detectors. Time window (TW) is the time interval during

which input data will be collected into two input vectors of event arrival times (refer to

Chapter 5 for details on the requirements for the travel estimation procedure). If CS

parameter is set to ‘true’ then the module will discard the downstream arrival events

during the red phase of the signals on the uplink. No discarding is done if CS is set to

‘false’. After the flow of SCOOT data objects is initiated on the input of the module, the

module starts filtering M l9 objects that correspond to upstream or downstream detectors

and building up the upstream and downstream arrival events vectors. After the arrival

time vectors have been built over a period of time equal TW, the input is blocked and the

algorithm of travel time estimation is started. The algorithm implemented as described in

Section 5.4.2 of Chapter 5 is a local optimisation algorithm.

The algorithm produces three types of results. The first result is the cost function of time

shift. The function is represented as an array of two-dimensional points (x,y) where x is

the time shift and y is the value of cost function for that shift. The argument x which

minimises the function is the estimation of the median of travel time variable, as

described in Section 5.4.2, and is the point estimation of the link travel time. This is the

second type of result. The third result is the series of time differences produced by the

algorithm for the shift that minimises the cost function. This series can be used for

estimation of travel time probability distribution or other characteristics.

After the above results have been obtained, the module forward them to the outputs.

Thus, the first output corresponds to the cost function, the second corresponds to the

series of time differences and the third corresponds to the point estimation of the travel

time. Several experiments of link travel time estimation have been carried out for some

links of the Mansfield SCOOT controlled region showed in Figure 6.1. The results are

outlined in the following section.

6.5 Empirical study of travel time on urban links

The following set of travel time estimates has been obtained for the pair of detectors

N60331F1 as the upstream detector and N60421B1 as the downstream detector. The time

window was chosen to be one hour (3600 seconds) and the cost functions were obtained

for time shifts from the interval [0, 40] seconds with the step of 0.25 second (lowest

resolution of the data). The following set of plots presents the cost functions calculated

over different times (one hour window).

Tuesday, 19 Feb, 1999
3:00:00

Tuesday, 19 Feb, 1999
5:00:00

Tuesday, 19 Feb, 1999
6 :00:00

Tuesday, 19 Feb, 1999
7:00:00

Tuesday, 19 Feb, 1999
8 :00:00

Tuesday, 19 Feb, 1999
10:00:00

Tuesday, 19 Feb, 1999
9:00:00

159

Tuesday, 19 Feb, 1999
12:00:00

Tuesday, 19 Feb, 1999
11:00:00

».«7«

tm

Tuesday, 19 Feb, 1999
14:00:00

Tuesday, 19 Feb, 1999
13:00:00

Tuesday, 19 Feb, 1999
15:00:00

Tuesday, 19 Feb, 1999
16:00:00

Tuesday, 19 Feb, 1999
17:00:00

Tuesday, 19 Feb, 1999
18:00:00

Tuesday, 19 Feb, 1999
20 :00:00

Tuesday, 19 Feb, 1999
19:00:00

Tuesday, 19 Feb, 1999
22 :00:00

Tuesday, 19 Feb, 1999
21:00:00

Figure 6.7. Cost functions calculated for different times of day. Link N60331F1-
N60421B1, 19 February, Tuesday, 1999.

It is clear from the above plots that the cost functions all have minimum at about 20-25

seconds. The following plot demonstrates the point estimates of travel times that

correspond to each plot above.

161

T ravel tim e estim ates
(in m illiseconds)

T im e o f day
(in seconds)

The values of travel time estimates are given in the following table (in seconds).

Table 6.2. Values of travel time point estimates

20.75 22.00 23.25 22.25 24.75

24.50 24.00 25.00 23.25 21.25

23.50 23.25 19.50 23.00 21.75

25.50 22.50 23.00 24.25 23.25

The set of time differences used in calculation of the cost function can be analysed

separately and can provide useful information on the distribution of travel time as a

random variable. Figure 6.8 presents the histogram of the series of differences produced

by the algorithm.

ulL

Figure 6.8. Histogram of the time differences produced by the algorithm that
correspond to the minimum of the cost function

162

The mean value of the series of time differences for the above link is -0.0475 and the

standard deviation is 6.31. Since the series of time differences contain noise together with

travel time corresponding differences (see Chapter 5 for details on related and non-related

time differences), the value of the standard deviation is higher than the real deviation of

travel time. Thus, it can be said that standard deviation of travel time is not higher than

6.31 for the above case.

From Table 6.2 the mean travel time can be calculated. The result is 23.025 seconds with

standard deviation of 1.5 second. This gives another estimate of the real deviation of

travel time random variable.

It can be mentioned that the travel time estimation methodology does not make any

assumption on the mutual location of the upstream and downstream detectors relatively to

each other. Therefore, the methodology can be applied to estimate all types of links, the

straight link and the turning link. The following results show the cost functions calculated

for a ‘turn-right’ type of link, namely from N60311K1 to N60321C1 (see the region map

in Figure 6.1). The link must have smaller travel time than previously considered link

since the upstream detector is placed immediately before the junction (turning vehicles

counter). Also, since the upstream detector counts only turning vehicles, the cost

functions are expected to be clearer than the ones of the previously considered link. The

following plots confirm the above expectations. The cost functions given in Figure 6.9

have been calculated over the period of two hours and using the data collected on the 19th

February (Tuesday), 1999.

Tuesday, 19 Feb, 1999
03:00:00-05:00:00

Tuesday, 19 Feb, 1999
05:00:00-07:00:00

163

Tuesday, 19 Feb, 1999
09:00:00-11:00:00

Tuesday, 19 Feb, 1999
07:00:00-09:00:00

Tuesday, 19 Feb, 1999
11:00:00-13:00:00

Tuesday, 19 Feb, 1999
13:00:00-15:00:00

-

Tuesday, 19 Feb, 1999
17:00:00-19:00:00

Tuesday, 19 Feb, 1999
15:00:00-17:00:00

Tuesday, 19 Feb, 1999
19:00:00-21:00:00

Tuesday, 19 Feb, 1999
21:00:00-23:00:00

Figure 6.9. Cost functions for the ‘turn-right’ type of a link: N60311K1 - N60321C1,
19th February (Tuesday), 1999. Time windows interval is 2 hours.

Clearly, the minimum of the functions point to the same neighbourhood of about 10

seconds. The following plot shows the cost function calculated for all the day.

164

Figure 6.10. Cost function for the ‘right-tum’ type of a link: N60311K1 -
N60321C1, 19th February (Tuesday), 1999. All day cost
function.

All estimates of the travel time for the link N60311K1-N60321C1 throughout the day are

given in the following plot.

Travel time
in milliseconds)

Time of day
(in seconds)

73.242 1 78.021

Figure 6.11. Plot of travel time estimates for the ‘right-tum’ type of a link:
N60311K1 - N60321C1, 19th February (Tuesday), 1999.

The values of the travel time estimates are as follows.

19,25 10,25 11,00 09,75 10,00 10,00 09,00 09,75 07,25 09,75
10,50 09,75 06,75 09,50 09,25 10,75 11,25 10,25 11,50

The mean value of the estimates is 10.29 seconds and standard deviation is 2.47 seconds.

165

Although some similarity can be found in all time series collected from the detectors of

the same SCOOT controlled region (since SCOOT operates on the same cycle length in

all region), the cost functions calculated for unrelated series are more irregular. The

following plot demonstrates a cost function calculated for such a link.

Figure 6.12. Cost function of unrelated series. A link: N60311K1 -

N60321C1, 19th February (Tuesday), 1999. Calculated over

all day.

Despite the similarities between any two series taken from a region controlled by SCOOT

due to its cyclic nature, the global minimum of the cost function points to the travel time

if the series are related. The following plot (Figure 6.13) demonstrates the same cost as

shown Figure 6.7 but in a bigger scale.

It is clear that the global minimum points to the real travel time, since only this time shift

provides the best match between the series even among the similar cyclic profiles.

The model of the travel time estimation procedure used in the above experiments is

shown in Figure B.8 of Appendix B.

166

Figure 6.13. Cost function of link N60331F1-N60421B1 in a bigger scale. Several
minimums point to the similarities due to cyclic nature of the series.
The global minimum points to the “best match” between the series.
Time shift varies from -4 minutes to 4 minutes. The global minimum
is reached at time shift equal 24.25 seconds.

6.6 Urban Travel Time components

In Chapter 5 a model of an urban link has been given and the link travel time has been

defined as a sum of two components, namely the travel time from the upstream detector

to the stop line and from the stop line to the downstream detector. The full travel time

between two detectors (defined as Tt - see Figure 6.14) has been studied in previous

sections.
DETECTORS

Tt

Figure 6.14. The urban link model and travel time components

STOP LINE

In some applications one is interested in Tsl rather than Tt- An example of such an

application is the SCOOT traffic model, which strongly relies on the T Sl parameter. T Sl

is typically provided to SCOOT as a constant at the time of installation. Another use of

T Sl parameter is the estimation of turning movements that is based on tracking individual

vehicles rather than on the analysis of aggregated traffic flows. It is therefore important to

estimate this parameter from traffic data.

If only counter data is available it is impossible to distinguish the travel time components.

In this case additional information is required. Fortunately, if information on signalling

stages at the junction is available it becomes possible to carry out the estimation of TPc

parameter. A Tpc component estimation scheme based on the knowledge of signalling

stages has been developed. The main idea behind the scheme is the correlation of the time

of change of the signal from “red” to “green” with the time of arrival of the first vehicle

to the downstream detector.

The estimation requires knowledge of signalling times and the knowledge that there has

been a queue formed during “red” phase of the traffic light. Signalling time series is

available directly from SCOOT (in M14 messages). However, the knowledge regarding

the presence of a queue at the stop line during the “red” phase of the signals is uncertain,

as there is no information regarding the queue growth process. Lane occupancy 011 the

upstream detector cannot be used as indicator of the queue growth as the travel time

between the upstream detector and the stop line is unknown and therefore the moment of

time when a vehicle has joined the queue is unknown as well. For example, at the time of

arrival of the vehicle at the end of the queue the signalling stage can change and at that

moment queue will not exist.

The possible solution to this problem is to collect statistics of estimations under the

assumption that during busy hours the presence of a queue is more likely. An algorithm

based on this assumption has been developed and is described below.

The basic idea of the algorithm is to collect a set of time differences when signal changes

from “red” to “green” and the first car arrives at the downstream detector. After a set of

such differences has been collected, it can be analysed statistically. So, the algorithm

consists of two stages. The first is the stage of data collection (time differences) and the

second stage is data analysis (extraction of information about T p c) . During data collection

stage, the algorithm watches the data flow from the SCOOT and extracts relevant pieces

of data (differences) from the main data flow. This stage is time-consuming and requires

big volume of SCOOT data (not less then one-day data for robust estimation) to be

processed as every SCOOT cycle produces not more then one time difference. The data

analysis stage involves statistical analysis leading to the identification of the parameter

T p c -

The data collected at the first stage necessarily contains some poor estimates representing

times measured for vehicles that were not stationary at the time of red-green transition.

The set needs to be therefore analysed statistically. The statistical analysis carried by

data-processing algorithm, relies on assumption that the queue at a stop line is more

common situation than free flow that is not being stopped at the stop line. This

assumption appeals to common sense and the fact, that on a busy road normally at least

one car is being caught by ‘red’ signal, which is enough for the algorithm to work

properly.

A set of experiments has been carried out on the data collected for four days. Figure 6.15

shows histograms that represent the frequencies of appearance of particular values

extracted by the data-collecting algorithm. The histograms clearly show domination of

values in the time interval between 2.5 and 7.5 seconds with the maximum frequency at

approximately 5 seconds.

Figure 6.15. Histograms for Tpc travel time component estimates (link

N60331F-N60421B1, four days data)

169

Obviously, the above estimates of Tpc component cannot be used directly to estimate Tsl

since TPc and Tt have been estimated for different regimes of traffic flow; Tt is estimated

from free-flowing traffic regime and TPc is estimated from stop-and-go traffic regime. In

order to translate TPc into equivalent to free-flowing traffic, it has to be corrected taking

into account the acceleration of the vehicle from stopped to full-speed moving. This

problem requires further investigation and is proposed as an extension of this research.

After both parameters, T t and T Pc , are estimated, the third component, T Sl , can be

derived using the following relationship (6.1) between the three parameters.

T t = T Pc + T s l (6 . 1)

A particular method of obtaining Tsl from Tt and TPc will depend on the representation

of the estimates of Tt and TPc. For example, Tt and TPc can be represented as fuzzy

numbers with membership function estimated from traffic data. Then Tsl will be

obtained using fuzzy addition.

6.7 Conclusion

In this chapter, SCOOT data processing package has been developed for the data

processing environment. A number of traffic data analysis procedures have been carried

out as a demonstration of the potential of the developed software.

Travel time methodology has been implemented as a module for the data processing

environment. A set of experiments has shown that the methodology indeed works as

anticipated. In addition to the point travel time estimation, the algorithm provides

additional information, which allows estimation of other useful characteristics of the

travel time random variable.

170

Chapter 7

Conclusions and further research

7.1 Concluding remarks

The main purpose of this research was to investigate techniques for data processing in the

area of Transportation Research. Data processing and analysis techniques have been

under development for many years but it is apparent that general data analysis is not

always sufficient in application to a specific problem.

One particular problem within the area of transportation research has been identified,

namely the travel time estimation problem. Although several methodologies have been

developed up to date to solve the problem, the solutions are not satisfactory in some

applications. As it has been discussed, in modern traffic systems the information about

current traffic conditions must be obtained with the maximum possible accuracy and on a

real-time basis. Only availability of such information can improve the quality of traffic

control. New levels of control, such as trip making decision support, also require most

accurate information and assessment of uncertainty associated with such decision making

process.

In this research, a novel methodology for travel time estimation has been developed. It is

shown to be advantageous over the previously developed techniques and provides travel

time estimates with the resolution of traffic data. That means that the accuracy of the

estimates is only limited by the underlying measurement hardware. The developed

methodology has opened new ways of improving other traffic-related parameters and

operational characteristics, such as the origin-destination matrices. The possibilities

opened by the methodology developed for the travel time estimation are discussed in

Section 7.2.

An investigation of available software tools for data processing and analysis has been

carried out. It has shown that most of the available general-purpose data analysis, system

modelling and simulation packages do not provide satisfactory functionality to support

171

real-time traffic data processing. This problem has been addressed with the development

of a novel software environment that is free of the identified disadvantages of the existing

packages. This software has been successfully used in the simulation study of arrival

processes and travel time estimation procedures.

7.2 Further research

Although traffic processes have been investigated extensively, there are still many

unsolved problems. This is primarily because neither microscopic nor macroscopic traffic

abstractions capture fully the complexity of real-life traffic. Microscopic models deal

with modelling detailed behaviour of individual cars and may be considered as numerical

methods of solving complex dynamical systems. This makes it impossible to use such

models in the context of real-life processes which have undetermined stochastic

character. Macroscopic models, on the other hand, deal with aggregated traffic processes

as modelling objects. However, the macroscopic level of aggregation frequently renders

such models too far removed from reality. They can be used to give approximate view of

traffic behaviour, but cannot be used to make accurate short-time predictions of traffic.

The present situation on the roads is such, that traditional approaches of controlling and

managing traffic have exhausted their potential. It is apparent, therefore, that new traffic

management and control techniques need to be developed. A potential for improvement

of the quality of the current traffic management and control seems to be in the use of all

available traffic infonnation and utilisation of all layers of control of traffic. The research

into the understanding of traffic information has been by this time the use of traditional

schemes of data analysis and system modelling. It is now apparent that the transportation

research can greatly benefit from the recent advances in the development of information

science, such as granular and soft computing, computational intelligence, fuzzy systems

and neural networks. Some of these new techniques of handling information have been

applied to solving specific transportation problems over two decades ago [Mamdani,

Pappis, 1977]. However, there are still many problems solution of which can greatly

benefit from the advances in the information science.

172

In this research, a step towards a better understanding of traffic processes has been made.

The developed methodology of travel time estimation allows estimation of travel times

with a greater accuracy and also provides additional useful information on traffic

patterns. The next step in the development of the methodology will be to investigate the

profile of time differences produced by the algorithms of the methodology in order to

separate useful travel time measurements and random noise. It is also possible, from the

series of time differences, to identify individual vehicles, with some measurable

uncertainty, that traverse the link from upstream to downstream detectors. This

information will allow tracing individual vehicles across the road network and thus, allow

much more accurate estimation of the origin-destination matrices. Assessment of

uncertainty associated with such estimation is also facilitated by the developed

methodology. Uncertainty, shown to be a multi-dimensional entity, will be quantified not

only by its probabilistic appearance (entropy), but also as a confusion, dissonance,

nonspecificity and fuzziness. Understanding of uncertainty associated with the

information extraction algorithms will enable the tool to manage this uncertainty and use

that knowledge for better control of traffic. Summarising the above thoughts, the further

research directions can be outlined as follows.

• To investigate the series of time differences produced by the algorithm and

develop techniques for extraction of travel time characteristics from the series.

• To investigate the feasibility of the use of the series of time differences for

identification of individual vehicles that traverse a link

• To investigate the dimensions of uncertainty associated with the above

estimations

• To investigate the ways of reducing the uncertainty or the uses of the knowledge

of uncertainty in the decision support system (ATIS)

• Develop novel algorithms based upon the developed travel time estimation

methodology for very accurate estimation of the origin-destination matrices.

• Develop a traffic and travel information system that will fully utilise available

information on the current state of the traffic processes across whole network, and

which will be aimed at providing a new level of control of traffic by affecting trip

planning process of individual road users.

173

This research has also developed a software tool that greatly simplifies a data analysis

process. The software can also be used in a range of system modelling activities since it

provides a very flexible environment. There are several directions in which the software

can be improved and are outlined below.

• Introduction of a hierarchy of modules. That is, a new type of modules will be

developed. The modules of the new type will not have a Java implementing class

associated with them but will be a system of the generic DPE modules, which can

be handled as a module. This hierarchy will greatly reduce the visual complexity

of modelled systems.

• Introduction of code editor. Since the Java technology allows run-time linkage of

new classes, such classes can be written, compiled and linked into the system

right from the system itself. This will eliminate the need for a researcher (or a

programmer) to edit and compile the module classes outside the environment.

• At present time, classes camiot be reloaded run-time. This problem requires

investigation of the mechanism of Java class loaders and most likely a new class

loader will need to be written, which will track the changes of the byte-code of the

module classes and re-load the classes whenever it is necessary. This will

eliminate the need to restart the system whenever the class of a module has been

modified.

• Development of new modules. Several packages will be helpful in the theoretical

research outlined above, such as fuzzy reasoning modules, neural network

modules, etc.

• A feasibility of the integration of the environment with geographical information

systems needs to be investigated. The use of geographical information systems

can benefit the traffic analysis and visualisation.

REFERENCES

Adams, J.C., Hummer, J.E., 1993, Effects of u-turns on left-tum saturation flow rate.

Transportation Research Record 1398, pp 90-100.

Ahmed, S., Blessing, L.T.M., Wallace, K.M., 1999, The relationship between data,

information and knowledge based on a preliminary study of engineering designers. ASME

Design Theory and Methodology, Las Vegas, Nevada, USA.

Aho, A.V., Kemighan, B.W., Weinberger, P.J., 1988, The Awk Programming Language.

Addison-Wesley, Reading, Massachusetts.

Argile, A., Peytchev, E., Bargiela, A., Kosonen, I., 1996, DIME: A shared memory

environment for distributed simulation, monitoring and control of urban areas. Proc

ESS'96, Genoa, Vol. 1, pp 152-156.

Backer, R,T., Wood, K., 1991, The use of SCOOT detectors to measure traffic flows.

TRRL working paper WP/TO/76, Transport and Road Research Laboratory, Crowthome,

Berkshire.

Barcelo J. and Ferrer J.L., 1994, Microscopic simulation of vehicle guidance systems

with AIMSUN2. Xlllth Euro Conference, Glasgow.

Barcelo J., Ferrer J., Grau R, Florian M, Chabini, Le Saux E., 1995, A Route Based

Version of the AIMSUN2 Micro-Simulation Model. Second World Congress on ITS,

Yokohama.

Barcelo J., Ferrer J., Garcia D., Florian M., Le Saux E., 1996, The Parallelisation of

AIMSUN2 microscopic simulator for ITS applications. Third World Congress on ITS,

Orlando.

Bargiela, A., 1998, Uncertainty - A Key For Better Understanding of Systems (Plenary

Lecture), Proc. European Simulation Symposium ESS'98, pp 11-19.

175

Bell, M.C., Bennet, L.D., Evans, R.G., 1992, The 'Instrumented city' project: towards an

integrated transport database. Proceedings o f the first meeting o f the EURO Working

Group on Urban Traffic and Transportation, Landshut, Germany.

Bell, M.G.H., 1991, The estimation of origin-destination matrices by constrained least

squares. Transportation Research B25, pp 13-22.

Bennett, S., Skelton, J., Lunn, K. Schaum's Outline ofUML. Schaum's Outlines Series.

McGraw-Hill, 2001.

Benz, T., 1994, Traffic Flow Effects of Intelligent Vehicles. Traffic Technology

International.

Benz, T., 1995, ASIS 4.0 : Flexible Microscopic Traffic Flow Simulation in Motorway

and Urban Networks. Workshop Proceedings "East-West Co-operation in Road Traffic

Operations", Prague.

Benz, T., 1996, Automatic Distance Keeping in a High Speed Environment - ICC

Parameter Design. Proceedings o f the Third ITS World Congress, Orlando.

Carden, P.J.C, Hounsell, N.B, McDonald, M. 1989, SCOOT model accuracy. TRRL

Contractor Report 153, Transport and Road Research Laboratory, Crowthome,

Berkshire.

Cascetta, E., 1984, Estimation of trip matrices from traffic counts and survey data: a

generalized least squares approach estimator. Transportation Research B18, pp 289-299,

Chang, G., Wu, J., 1994, Recursive estimation of time-varying origin-destination flows

from traffic counts in feeway corridors. Transportation Research B, Vol. 28B, No. 2, pp.

141-160.

Christensen, R., 1981, Entropy Minimax Sourcebook. Vol. I: General Description.

Entropy. Lincoln, Mass.

176

Coifman, B., 2001, Improved Velocity Estimation Using Single Loop Detectors.

Transportation Research: Part A, vol 35, no 10, pp 863-880.

Cornwell, I., Coleman, J. Archer, S., Glen, J. ITS Integration through a common

database. http://www.mottmac.com/html/02/pdf/its_integration.pdf

Cortes, C., Lavanya, R., Oh, J., Jayakrishnan, R., 2002, General Purpose Methodology

for Link Travel Time Estimation Using Multiple Point Detection of Traffic. Annual

meeting o f the Transportation Research Board (TRB), Washington, D.C.

Cowan, R.J., 1975, Useful Headway Models. Transportation Research, 9(6), pp 371-375.

Cremer, M., Keller, H., 1987, A new class of dynamic methods for the identification of

origin-destination flows. Transportation Research B21, pp 117-132.

Dahlgren, J.W., Turner, S.M., Garcia, R.C., 2002, Collecting, Processing, Archiving and

Disseminating Traffic Data to Measure and Improve Traffic Performance. Annual

meeting o f the Transportation Research Board (TRB), Washington, D.C.

Dailey, D.J., 1993, Travel time estimation using cross-correlation techniques.

Transportation Research Part B, 27B (2), pp 97-107.

Dailey, D.J., 1997, Travel time estimates using a series of single loop volume and

occupancy measurements. Transportation Research Board, 76th Annual Meeting,

Washington.

Dailey, D.J., 1999, A statistical algorithm for estimating speed from single loop volume

and occupancy measurements. Transportation Research B. Vol. 33, pp 313-322.

Dia, H., 1999, Freeway travel time estimation using neural networks. Processings o f the

ITSA'99 4th International Conference Smart Solutions at Work, Adelaide, Australia.

177

http://www.mottmac.com/html/02/pdf/its_integration.pdf

Drew, D.R., 1966, A study o f freeway traffic congestion. Doctoral dissertation, Texas

A&M University, College Station.

Drew, D. R., 1968, Traffic flow theory and control. McGraw-Hill, Inc.

Dubois, D., Prade, 1980, H. Fuzzy Sets and Systems: Theory and Applications. Academic

Press, New York.

Dubois, D., Prade, H., 1985, A review of fuzzy set aggregation connectives. Information

Sciences, 36, pp 85-121.

Edie, L.C., 1961, Car-following and steady state theory for non-congested traffic.

Operations Research, vol.9, no.l, pp 66-67.

Evans, R.G., 1995, The identification and control o f recurrent urban traffic congestion

using SCOOT data. PhD thesis, Department of Civil Engineering, University of

Nottingham.

Feller, W., 1968, An introduction to Probability Theory and Its Applications. Third

edition. Volume 1. John Wiley & Sons, Inc.

Florian, M., Chen, Y., 1995, A Coordinate Descent Method for the Bi-level OD Matrix

Adjustment Problem. International Transactions in Operations Research, Vol. 2, No. 2,

pp. 165-175.

Gerlough, D. L., 1955, Use of Poisson distribution in highway traffic. The Eno

Foundation for Highway Traffic Control, Saugatuck, Conn.

Gerlough, D. L., Barnes, F. C., 1971, The Poisson and other probability distributions in

highway traffic. In Poisson and other distributions in traffic. The Eno Foundation for

Transportation, Saugatuck, Conn.

Goodman, A., 1995-1996, Introduction to Data Collection and Analysis. Lecture notes,

http ://www. deakin. edu. auAagoodman/sci 101 /index .html

178

Gosling, J., McGilton, H., 1996, The Java Language Environment. A white paper,

http ://j ava.sun.com/docs/white/langenv/index .html.

Grau, R., Babcelo, J., 1992, A review o f objective functions in the CARS demand-

responsive traffic control system. Department d'Estadistica i Investigacio Operativa,

Secco d'Informatica, Universitat Politecnica de Catalunya, Research Report.

Greenberg, H., 1959, An analysis of traffic flow. Operations Research, vol. 7, no.l, pp

79-85.

Greenshields, B. D., 1934, A study in highway capacity. Highway Research Board, Proc.

14, pp 448-477.

Hall, A.D., 1962, A methodology for System Engineering. D.Van Nostrand Company,

Inc. Princeton.

Hall, F.L., 1987, An interpretation of speed-flow-concentration relationships using

catastrophe theory. Transportation Research Part A, Vol.21A, No. 3, pp. 191-201.

Hall, F.L., Persaud, B.N., 1988, Estimation speeds from freeway traffic management

systems. IT E 1988 Compendium o f Technical Papers, pp. 166-171,

Hall, F.L., Persaud, B.N., 1989, Evaluation of speed estimates made with single-detector

data from freeways traffic managemtnt systems. Transportation Research Record 1232,

pp 9-16.

Harr, M.E., Leonards, G.E., 1961, A theory of traffic flow for evaluation of the geometric

aspects of highways. Highway Research Board Bulletin, 308.

Hauer, E., Pagitsas, E., Shin, B.T., 1981, Estimation of turning flows from automatic

counts. Transportation Research Record 795, pp 1-8.

179

Hensher, D.A., Johnson, L.W., 1981, Applied discrete choice modelling. Croom Helm,

New York.

Holm, J., Jensen, T., Nielsen, S.K., 1976, Calibrating traffic models on traffic census

results only. Traffic Eng. Control 17, 137-140.

Hounsell, N.B., McLeod, F., 1990, ASTRID: Automatic SCOOT Traffic Information

System. TRRL Contractor Report 235, Transport and Road Research Laboratory,

Crowthome, Berkshire.

Hunt, P.B., Robertson, D.I., Bretherton, R.D., Winton, R.I., 1981, SCOOT - A traffic

responsive method of co-ordinating signals. TRRL Report LR1014. Transport and Road

Research Laboratory.

Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G., 1992, Object-Oriented

Software Engineering: A Use Case Driven Approach. Addison-Wesley.

Jacobson, I., Booch, G., Rumbaugh, J. 1999, The Unified Software Development Process.

Addison-Wesley, ACM Press.

JavaBeans Technology™. Sun Microsystems, http://java.sun.com/products/javabeans

Jaynes, E.T., 1979, Prior probabilities. IEEE Transactions on Systems Science and

Cybernetics, SSC-4, pp 227-241.

Jewell, W.S., 1967, Models for traffic assignments. Transportation Research 1, pp 31-46.

Karlin, S., Taylor, H.M., 1975, A first course in stochastic processes. Second edition.

Academic Press.

Klir, G.J, Wierman, M.J., 1999, Uncertainty-Based Information: Elements o f Generalized

Information Theory (Studies in Fuzziness and Soft Computing). Springer Verlag.

180

http://java.sun.com/products/javabeans

Klir, G.J., Folger, T.A., 1988, Fuzzy Sets, Uncertainty and Information. Prentice Hall,

New York.

Kosonen, I., Kokkinen, M., 1992, A new simulation system for traffic signal control

evaluation. ITE 62nd annual meeting, Compendium of technical papers, Washington D.C.,

USA, pp 250-254.

Kosonen, I., Niittymaki, J., 1995, Simulation tool for traffic analysis. High technology in

Finland 1995. The Finnish Academy o f Technology. Espoo. Pp 202-203.

Kosonen, I., 1999, HUTSIM - Urban Traffic Simulation and Control Model: Principles

and Applications. Dissertation for the degree of Doctor of Technology.

Leutzbach, W., 1988, Introduction to the Theory o f Traffic Flow. Springer-Verlag.

Li, B., De Moor, B., 2002, Dynamic identification of origin-destination matrices in the

presence of incomplete observations. Transportation Research Part B V. 36, pp 37-57.

Lighthill, M., Whitham, G., 1955, On kinematic waves, a theory of traffic flow on long

crowded roads. Proc. Royal Society, London, pp 229-317.

Mamdani, E.H., Pappis, C.P., 1977, A fuzzy logic controller for a traffic junction. IEEE

Transactions on Systems, Man, and Cybernetics, SMC-7, pp 707-717.

Mather, M.J., 1983, Inferences on trip matrices from observations on link volumes: a

Bayesian statistical approach. Transportation Research B17, pp 435-447.

McDonald, M., Hounsell, N.B., 1991, Road Traffic Control: TRANSYT and SCOOT, hi

Concise Encyclopaedia o f Traffic and Transportation Systems, ed. M.Papageorgiou,

Oxford, Pergamon Press.

Nihan, N, Davis, G., 1987, Recursive estimation of origin-destination matrices from

input/output counts. Transportation Research B21, 149-163.

181

Pedrycz, W., 1983, Fuzzy relational equations with generalized connectives and their

applications. Fuzzy Sets and Systems, 10, pp 185-201.

Pedrycz, W., 1998, Computational Intelligence: An Introduction. CRC Press, New York.

Persaud, B.N., Hurdle, V.F. 1988, Some new data that challenges some old ideas about

speed-flow relationships. Transportation Research Record, 1194, TRB, National

Research Council, Washington, D.C., pp 191-198.

Petty, K. F., 1995, Freeway Service Patrol (FSP) 1.1: The Analysis Software for the FSP

Project, California PATH Research Report, UCB-ITS-PRR-95-20, Institute of

Transportation Studies, University of California, Berkeley.

Petty, K., Noeimi, H., Sanwal, K., Rydzewski, D., Skabardonis, A., Varaiya, P., Al-Deek,

H., 1996, The Freeway Service Patrol Evaluation Project: Database Support Programs,

and Accessibility. Transportation Research Part C, vol. 4, no. 3.

Petty, K., Bickel, P., Jiang, J., Ostland, M., Rice, J., Ritov, Y., Schoenberg, F., 1998,

Accurate estimation of travel times from single-loop detectors. Transportation Research,

Part B: Methodological, 32(1), pp 1-17

Peytchev, E.T. 1999, Integrative framework for discrete systems simulation and

monitoring. PhD dissertation, The Nottingham Trent University.

Pipes, L.A., 1953, An operational analysis of traffic dynamics. Application in Physics,

24, pp 274-281.

Pushkar, A., Hall, F.L., Acha-Daza, J.A., 1994, Estimation of speeds from single-loop

freeway travel times in real time from flow measurements. Journal o f Transportation

Engineering, 122, pp. 185-191.

Reddy, M.S., 1966, Quantitative evaluation o f the effect o f merging vehicles on freeway

operation. Doctoral dissertation, Texas A&M University, College Station.

182

Reushel, R. 1950, Fahrzeugbewegungen in der Kolonne bei gleichformig beschleunigtem

oder verzogertem. Leihffahrzeug. Z. Osterr. Ing. Arch. Ver., 95, pp 52-62, 73-77.

Richmond, Jonathan E.D., 1998, Simplicity and Complexity in Design for Transportation

Systems and Urban Forms, Journal o f Planning Education and Research, Vol. 17, No. 3,

pp 220-230

Rosenfield, A., 1971, Fuzzy groups. Journal o f Math. Analysis and Applications, 35, pp

512-517.

Shafer, G., 1976, Mathematical Theory o f Evidence. Princeton University Press.

Sims, A.G., Dobinson, K.W., 1979, SCAT: the Sydney coordinated adaptive traffic

system - philosophy and benefits. Proc. Int. Symp. on Traffic Control Systems 2B, pp 9-

42. Institute of Transportation Studies, University of California, Berkeley.

Skabardonis, A., Noeimi, H., Petty, K., Rydzewski, D., Varaiya, P., Al-Deek, H., 1995,

Freeway Service Patrol Evaluation. California PATH Research Report, UCB-ITS-PRR-

95-5, Institute of Transportation Studies, University of California, Berkeley.

Skabardonis, A., Petty, K. F., Bertini, R. L., Varaiya, P. P., 1997, The 1-880 Field

Experiment: Analysis of the Incident Data. Paper 970121, The 76th Annual Meeting

Transportation Research Board, Washington, DC.

Spiess, H., 1990, A Gradient Approach for the OD Matrix Adjustment Problem,

Publication No. 693, Centre de Recherche sur les Transports, Universite de Montreal.

Steenbrick, Peter A., 1974, Optimization o f transport networks. John Wiley & Sons Ltd.

Swing™package. Sun Microsystems, http://java.sun.com/products/jfc

Taylor, M.A.P., Young, W., Bonsall, P.W., 1996, Understanding Traffic Systems: Data,

analysis and presentation. Ashgate Publishing Limited.

183

http://java.sun.com/products/jfc

The MathWorks, Incorporated, http://www.mathworks.co.uk

Thompson, R.G., 1989, A sampling technique for origin-destination surveys. Australian

Road Research 19 (3), pp 230-233.

Troutbeck, R.J., 1993, Effect of heavy vehicles at Australian traffic circles and

unsignalised intersections. Transportation Research Record 1398, pp 54-60.

Van der Zijp, N.J. and Hamerslag, R., 1996, Improved Kalman Filtering Approach for

Estimating Origin-Destination Matrices for Freeway Corridors. Transportation Research

Record 1443, pp.54-64.

Van Zuzlen, H.J., Willumsen, L.G. 1980, The most likely trip matrix estimated from

traffic counts. Transportation Research B14, pp 281-293.

Visual Solutions, Incorporated, http://www.vissim.com

Wang, Z., Klir, G.J., 1992, Fuzzy Measure Theory. Plenum Press.

Wardrop, J., 1952, Some Theoretical Aspects of Road Traffic Research. Proc. Inst. Civil

Engineers, Part 2, pp. 325-378.

Weaver, W., 1948, Science and Complexity. American Scientist, 36, pp 536-544.

Williams, P.M., 1980, Bayesian conditionalisation and the principle of minimum

information. British Journal for the Philosophy o f Science, 31, pp 131-144.

Wilson, A.J., 1967, A statistical theory of spatial distribution models. Transportation

Research 1, pp 253-269.

Wirasinghe, S., 1978, Determination of traffic delays from shock-wave analysis.

Transportation Research, 12, pp 343-348.

Zadeh, L. A., 1965, Fuzzy sets. Information and Control, 8, pp 338-353.

184

http://www.mathworks.co.uk
http://www.vissim.com

Zadeh, L.A., 1971, Similarity relations and fuzzy orderings. Information Sciences, 3, pp

177-200.

185

Appendix A

DataTaker and DataGiver interfaces

This appendix provides a source for the DataTaker and DataGiver interfaces which are

the basis of any functional module, written for the data processing environment. In order

to make a module recognisable by the system, the module’s class should implement one

of or both of the above interfaces.

/*
* O (#)DataGiver.java 1.0 25/06/2002
*

* Copyright 2002 E.Agafonov. All rights reserved.
* PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
* /

package edu.tntu.ism.traffic;

import java.util.*;
import edu.tntu.i s m . t r a f f i c ;
j * ★
* This interface specifies methods and members that the user's module
* should implement in order to make it recognisable by the system
* as a data provider
*
* (aversion 1.0 25/06/2002
* @author Eugene Agafonov
*

* ©see DataTaker
* ©see Structured
* @see Parameters
* @see DataMessage
* /

public interface DataGiver extends Structured {
j * *
* Variable in the parameters that specified the module's name
* {it will be used as a label)
* /

String GIVER_NAME="Name";
/**
* @return number of output sockets of the module
* /

int giverSocketsNumber();
/ * *

* @return type of the specified socket
* /

String giverGetSocketType(int socket);
/**

* Returns the <code>Parameters</code> object of this
* <code>DataGiver</code>
*
* ©return <code>Parameters</code> object
* /

Parameters giverGetParameters();
/ * *

* Initialisation procedure. An extrnal <code>Parameters</code> object can
* be passed into the <code>DataGiver</code> so as to use for its own
* parameters (it should be passed unlocked but the <code>DataGiver</code>
* can lock it after filling it in)<p>
*

A-l

* One of the initialise procedures should be called before the
* object is engaged into functioning<p>
*

* @param external external <code>Parameters</code> object to be
* initialised with.
*/

void initialiseGiver(Parameters external);
/**
* This procedure would normally not be called from within the system
* and is left for backward compatibility only. The typical implementation
* would look like the following:<p>
* <blockquote>
* <pre>
* public void initialiseGiver(){
* initialiseGiver(new Parameters());
* }
* </pre>
* </blockquote>
*/

void initialiseGiver();
/**
* This method is fundamental for the <code>DataGiver</eode> module. It will be
* called by the system in order to retrieve data the module
* wants to pass further on. The method should return either <code>null</code>
* if data is not available or an array of <code>DataMessage</code> objects
* whose elements will correspond to the output sockets of the module
* as follows:<p>
* <pre>
* [0] -> socket #0
* [1] -> spcket #1,
* ... etc
* </prexp>
* where [N] represents the elements of the resulting array. <p>
* The elements of the resulting array must be either null, if
* the module does not wish to pass any data to the corresponding
* output, or objects of <code>DataMessage</code> class with data
* of proper type.*
* ©return array of <code>DataMessage</code> objects, each element to
* each output socket
* ©exception DataGiverDone thrown when this module has exhausted its data
* resources (reached end of file or similar conditions)
* ©exception InterruptedException if reading operation has been
* interrupted
*/

DataMessage [] readNextO throws InterruptedException, DataGiverDone;
/* *
* Resets the module. A chance to re-set its internal variables
* and validate the parameters
*/

void giverReset();
j -k -k
* Called upon disposal of the module. Allows to do some final cleaning-up
* (stop executing threads, closing streams etc)
*/

void giverDispose();

* ® (#)DataGiver.java 1.0 13/02/2002*
* Copyright 2002 E.Agafonov. All rights reserved.
* PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.*
*/

package edu.tntu.ism.traffic;
/**
* This interface specifies methods and members which every data
* consumer (receiver) should implement in order to be recognisable by
* the system as a data receiver

A-2

* @version 1.1 12/07/2002
* ®author Eugene Agafonov*
* @see DataTaker
* ©see Structured
* @see Parameters
* ©see DataMessage
*/

public interface DataTaker extends Structured {/* *
* Variable in the parameters that specified the module's name
* (it will be used as a label)
*/

String TAKER_NAME="Name";

int TAKER_NO_COMMAND=-1; // no commands for the data source
int TAKER_PAUSE=1; // pause the data source
int TAKER_RESUME=2; // resume data source operations
int TAKER_DISCARD=3; // discard mode of the reader... it stops

// forwarding data to this taker but does
// stop functioning...

/**
* Returns the number of input sockets available for the
* system. The number of input sockets is a structural characteristic
* and whenever this changes, all registered
* <code>StructureChangeListener</code>-s should be notified.*
* @return the number of input sockets
* @see StructureChangeListener
*/

int takerSocketsNumber();
j ★ ★
* Returns the type of the specified <code>socket</code> encoded as a
* String*
* ©param socket the socket ID whose type is enquired about
* @return String object that is the encoded type or null if
* socket ID is out of range
*/

String takerGetSocketType(int socket);
/**

* Tests if the specified data type will be accepted on the
* specified socket.*
* @param socket ID of the socket that is being tested for type
* compliance
* @param type <code>String</code>-encoded type that is tested
* for compliance with the socket type
* @return false if data type is not acceptable or socket ID is
* out of range and true otherwise
*/

boolean takerAcceptable(int socket, String type);
/**
* Returns the <code>Parameters</code> object of this
* <code>DataTaket</code>*
* @return <code>Parameters</code> of the <code>DataTaker</code>
* ©see Parameters
*/

Parameters takerGetParameters();
/**

* Initialisation procedure. An extrnal <code>Parameters</code> object
* can be passed into the <code>DataTaker</code> so as to use for its
* own parameters (it should be passed unlocked but the dataGiver can
* lock it after filling it in)<p>*
* The implementation should make use of this object instead of creating
* its own in order to make the parameters persistent. Otherwise
* the restoration of the state (save and load) of the module would
* not be possible

A-3

*
* @param extenal external Parameters object
*/

void initialiseTaker(Parameters external);
j * *
* This procedure would not normally be called from within the system
* and is left for backward compatibility only. The typical implementation
* would look like the following:<p>
* <blockquote>
* <pre>
* public void initialiseTaker(){
* initialiseTaker(new Parameters());
* }
* </pre>
* </blockquote>
*/

void initialiseTaker();
j * it

* This is the interface procedure which is used by the system
* to provide the module with new data*
* this procedure should return as quick as possible*
* @param data <code>DataMessage</code> object containing new data
* ©param socket the socket in which data is sent to
* ©return commands for each socket. The command will be passed through
* to the module-source of data
* ©throws InterruptedException
*/

int [] processNext(DataMessage data, int socket) throws InterruptedException
/**
* Called whenever the system wants the module to reset its state
*/

void takerReset();
/**
* Called before the module is disposed of from the system. Allows
* the module to do some clean up
*/

void takerDispose();

A-4

Figure
B.l. A

m
odel im

plem
enting

the
discrete

approxim
ation

of a
step

function

A ppendix B

Exam ple screens o f the data processing environm ent

B-5

D
ata

Processing
E

nvironm
ent

(cj
TN

TU
.

D
ept

of
C

om
puting

and
M

ath,
ISM

H
0

n

Figure
B.2. Sim

ulation
of the

Lissajou
figures

B-6

D
ata

P
io

cessin
g

E

n
v

iio
n

m
en

l
(c)

T
N

T
U

.
D

ept
of

C
om

puting
and

M
ath

.
ISM

h

r
a

n

Figure
B.3. Three

random
variables and

histogram
s dem

onstration

B-7

D
ata

Piocessing
E

nviionm
enl

(c)
T

N
TU

.
D

epl
ol

C
om

puting
and

M
ath.

ISM

Figure
B.4

A
m

odel im
plem

enting
the

headways analysis
procedure: visualisation

is done via
H

istogram
, Plot and

D
isplay.

B-8

D
ata

Piocessing
E

nviionm
enl

(c)
TN

TU
. D

ept
of

C
om

puting
and

M
ath. ISM

H
F

IE
3

Figure
B.5

Class Library
editor screen

B-9

D
ata

PfD
cessing

Envkonm
ent

(c)
T

N
T

U
.

D
ept

of
C

iim
pu

Bnq
an

ti'M
efh

.
I

Figure
B.6

SCOOT
profiles dem

onstration: counter profile
and

occupancy
profile

M 0 m CP E3 P

B-10

 ̂
D

ata
Piocessing

Fnviionm
ent

|c)
T

N
II).

D
ept

of
C

om
puting

and
M

ath. ISM

Figure
B.7

SCOOT
profiles for different days: red

-
weekend

(sat), blue
-

working
day

(tue) (aggregation
over 2

m
inutes)

B-ll

D
ata

Piocessing
E

nviionm
enl

(cj
T

N
T

U
.

D
ept

ol
C

om
puting

dnd
M

dth. ISM
E3

Figure
B.8

SCOOT
travel time

estim
ation

routine
is in

progress

B-12

'did
Piocessing

tnviionm
enl

|c|
IN

T
U

.
D

epl
ol

C
om

puting
and

H
ath. ISM

hr
n

Appendix C

Examples of implementation of modules for the DPE

Example 1. Display module source

/*
* @ (#)Display.java 1.0 22/08/2002*
* Copyright 2002 E.Agafonov. All rights reserved.
* PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*/

package edu.tntu.ism.traffic.modules;

import java.text.*;
import j ava.io.*;

import j ava.awt.*;
import j avax.swing.*;
import j avax.swing.border.*;

import edu.tntu.ism.traffic.*;
import edu.tntu.ism.traffic.ui.*;
/* *
* Display is a module that prints out the values of the incoming
* signal to its shape object {see {©link edu.tntu.ism.traffic.ui.ModuleLook#getShape{)}*
* ©version 1.0 22/08/2002
* ©author Eugene Agafonov
*/

public class Display extends DefaultModuleLook
implements DataTaker, Indicator, Runnable {

final static Font displayFont=new Font("Arial", Font.PLAIN, 10);
Parameters params;

protected JLabel label;
protected double value;

private NumberFormat formatter = NumberFormat.getlnstance();

private static final int WIDTH=100, HEIGHT=15;
/**
* Constructs a new object of Display class
*/

public Display(){
super(new JLabel());
formatter.setMaximumFractionDigits(9);
label=(JLabel)shape;
label.setOpaque(true);
label.setBackground(Color.WHITE);
label.setBorder(new LineBorder(Color.BLACK,1));
label.setFont(displayFont);
label.setHorizontalAlignment(JLabel.RIGHT);
label.setVerticalAlignment(JLabel.CENTER);

}
// the number of sockets for Display is always 1

public int takerSocketsNumber(){
return 1;

}
// data type we will expect in our socket -
// the name of Number class

public String takerGetSocketType(int socket){

return Number.class.getName();
}

// Check if the proposed to connect data type is acceptable for us
public boolean takerAcceptable(int socket, String type){

if (socket!=0) return false;
try {

Class c=Class.forName(type);
return Number.class.isAssignableFrom(c);

}catch(Exception e){
}
return false;

}
// return our parameters object

public Parameters takerGetParameters(){
return params;

}
// necessary initialisation procedure before we become operational

public void initialiseTaker(Parameters external){
params=external;
takerReset{);

}
// initialisation with our own parameters

public void initialiseTaker(){
initialiseTaker(new Parameters());

}
// call for us to reset our internal state

public synchronized void takerReset(){
value=0.0;
SwingUtilities.invokeLater(this);

}
// disposal procedure - we have nothing to dispose of

public void takerDispose(){
}

// here we get a new piece of data and paint it on our look object
public synchronized int [] processNext(DataMessage data, int socket){

if (socket!=0) return null;

value=((Number)data.getData()).doubleValue();
// call for repaint

SwingUtilities.invokeLater(this);
return null;

}
// we are structured but our structure doesn't change

public void addStructureChangeListener(StructureChangeListener scl){
// doesn't ever change...

}
public void removeStructureChangeListener(StructureChangeListener scl){

// doesn't ever change...
}

/***************************************
* Extension of the default look * ***************************************/

public Dimension getSize(int orientation){
return new Dimension(WIDTH, HEIGHT);

}
public boolean isSticky(){

return false;
}
public Icon getIcon(){

return UITools.getlconResource("display.gif");
}
public ModuleLook getLookQ {

return this;
}

// this is used to repaint our look object. We can only do it from the
// GUI event dispatching thread

C-14

public void run(){
label. setText (formatter. format (value))

}

Example 2. The use o f abstract classes to simplify

modules development process

The package of continuous systems modelling and simulation provides several abstract

classes which immensely simplify the development of new modules. In this appendix, a

module that implements mathematical sin (&/+/) function by extending an abstract class

unaryoperator is presented. It is clear that most of the code is devoted to handling the

parameters, whether the real module’s functionality is given in a single line of code.

/ *
* @(#)Sin.java 1.0 22/08/2002*
* Copyright 2002 E.Agafonov. All rights reserved.
* PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
* /

package edu.tntu.ism.traffic.modules.math;

import edu.tntu.ism.traffic.*;
import edu.tntu.ism.traffic.ui.*;
import j avax.swing.*;
/ * *

* Mathematical sine module. Extends UnaryOperator and implements its own function
*

* ©version 1.1 16/09/2002
* ©author Eugene Agafonov
* /

public class Sin extends UnaryOperator {

private static final String PHASE="Initial phase";
private static final String COEFF="Coefficient";
private static final String FREQ="Frequency (omega)";

private double phase, coeff, freq;

public Sin() {
super();

}

protected void initParameters(){
params.addDouble(COEFF, 1.0, true);
params.addDouble(PHASE, 0.0, true);
params.addDouble(FREQ, 1.0, true);

}

protected void updateParameters(){
try {

phase=params.getDouble(PHASE).doubleValue();
}catch(Exception e){

phase=0;
}
try {

coeff=params.getDouble(COEFF).doubleValue{);
}catch(Exception e){

coeff=1.0;
}

C-15

try {
freq=params.getDouble(FREQ).doubleValue();

}catch(Exception e) {
freq=l.0;

}
}

// this is the functionality of this module
protected double result(double value){

return coeff*Math.sin(freq*value+phase);
)
private final Icon icon=UITools.getlconResource("mathsin.gif");
private final ModuleLook look=new MathModuleLook(1\u223C', icon);
public ModuleLook getLook(){

return look;
}

}

Example 3. Implementation o f SCOOT headways module

/*
* @(#)ScootHeadways.java 1.1 28/08/2002
*

* Copyright 2002 E.Agafonov. All rights reserved.
* PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
* /

package edu.tntu.ism.traffic.modules.scoot;

import j ava.io.*;
import j ava.ut i1.*;

import j ava.awt.*;
import j avax.swing.*;

import edu.tntu.ism.traffic.*;
import edu.tntu.ism.traffic.ui.*;
import edu.tntu.ism.traffic.modules.scoot.data.*;
/ * *

*

* This class implements a module that produces series of headways for
* certain link based on M19 data. The link name (with detector) should be
* provided as a parameter
*

* ©version 1.0 21/12/2002
* ©author Eugene Agafonov
* /

public class ScootHeadways implements
DataGiver, DataTaker, Indicator, ParameterChangeListener {

// only one parameter; the name of a detector
private final static String LINK="Link name (with detector)";

// for synchronization purpose
private final Object locker=new Object();

private Parameters params;

private long previousTime, headway, time;
private String linkName;

// the module has only 1 input socket
public int takerSocketsNumber(){

return 1;
}

// the data type will be expected to be ScootData.class.getName ()
public String takerGetSocketType(int socket){

if (socket!=0) return null;
return ScootData.class.getName();

C-16

}

// the module only accepts ScootData on its input
public boolean takerAcceptable(int socket, String type){

if (socket!=0) return false;
try {

Class c=Class.forName(type);
return ScootData.class.isAssignableFrom(c);

}catch(Exception e){
}return false;

}

// returns parameters
public Parameters takerGetParameters(){

return params;
}

// initialisation procedures
public void initialiseTaker(){

initialiseTaker(new Parameters());
}

public void initialiseTaker(Parameters external){
params=external;
params.addParameterChangeListener(this);
params.addstring(LINK, true);
takerReset();

}

// reset the internal state of the module
public void takerReset(){

previousTime=-l;
headway=-l;
try {

linkName=params.getString(LINK);
}catch(Exception e){

linkName="";
}

}

// We have receive a data object on our input. The data
// is being checked for being of M19 message and from a
// detector of interest. Then a headway is being calculated
// and pushed on to our data providing part

public int [] processNext(DataMessage data, int socket)
throws InterruptedException {

if (socket!=0) return null;

// wrong data type
if (!(data.getData() instanceof ScootDataM19)) return null;
ScootDataM19 ml9=(ScootDataM19)data.getData();

I I check if this is from our link...
if (!ml9.getNode().getRaw().equals(linkName)) return null;

if (previousTime>0){
synchronized(locker){

while(headway>=0) locker.wait();

headway=ml9.getTime()-previousTime;
time=previousTime;
locker.notify();

previousTime=ml9.getTime();

return null;
}

public void takerDispose(){
params.removeParameterChangeListener(this);

}

C-17

s
.1

I
!
1
i
■i
’I

i
1
i
'i
i
■I

J

•1

t

4n
J
J
1

I
j
•1

'J

/ ★ a * /

/* data providing part *//**/
// send current headway out as Float value (in seconds)

public DataMessage [] readNextO throws InterruptedException, DataGiverDone {
DataMessage [] res=null;

synchronized(locker){
while(headway<0) locker.wait();
res=new DataMessage [) {

new DataMessage(this, new Float(headway/1000.Of),
Number.class.getName(), time)

} ;
headway=-l;
locker.notify();

}

return res;
}

// the module has only 1 output
public int giverSocketsNumber(){

return 1;
}

// the output data type is numerical (object of Number class)
public String giverGetSocketType(int socket){

if (socket!=0) return null;
return Number.class.getName<);

}
// paramteres

public Parameters giverGetParameters(){
return params;

}

// these are redundant, since initialisation will be done in
// receiving part

public void initialiseGiver{){
}
public void initialiseGiver(Parameters external){
}
public void giverReset(){
}
public void giverDispose(){
}

// out look is an instance of ScootModuleLook object
private final ModuleLook look =

new ScootModuleLook (UITools .getlconResource ("scootheadways . gif11)) ;
public ModuleLook getLookO {

return look;
}

// structure of the module doesn't change
public void addStructureChangeListener(StructureChangeListener scl){

public void removeStructureChangeListener(StructureChangeListener scl){
}
protected void fireStructureChangeEvent(StructureChangeEvent e){
}

// ParameterListener: if a change in the parameters occur
// the module resets its state according to the parameters

public void parameterChanged(ParameterChangeEvent pee){
takerReset();

}

C-18

