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Abstract

To writing anything on a keyboard at all requires us to know first what to type, then to

activate motor programmes for finger movements, and execute these. An interruption in the

information flow at any of these stages leads to disfluencies. To capture this combination of

fluent typing and typing hesitations, researchers calculate different measures from

keystroke-latency data – such as mean inter-keystroke interval and pause frequencies. There

are two fundamental problems with this: first, summary statistics ignore important

information in the data and frequently result in biased estimates; second, pauses and

pause-related measures are defined using threshold values which are, in principle, arbitrary.

We implemented a series of Bayesian models that aimed to address both issues while

providing reliable estimates for individual typing speed and statistically inferred process

disfluencies. We tested these models on a random sample of 250 copy-task recordings. Our

results illustrate that we can model copy typing as a mixture process of fluent and disfluent

key transitions. We conclude that mixture models (1) map onto the information cascade that

generate keystrokes, and (2) provide a principled approach to detect disfluencies in keyboard

typing.

Keywords: Copy-task; keystroke modelling; autoregression; mixture models; Bayesian

statistical models; typing skills
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Modelling typing disfluencies as finite mixture process

Hesitations in keyboard typing are indicative of process delays on higher levels of

activation. For example, imagine you are asked to copy the word “piobaireachd.” Unless you

are familiar with Scottish Gaelic this is difficult: even though you know which word to write

and how to spell it, you will probably pause at least once in the middle of the word. The

maximum fluency when copying and composing text is restricted by how fast we can move

our fingers – plan and execute motor codes. However, sometimes upstream processes have to

catch up – when double-checking the target word’s spelling or when deciding what to say

next – meaning that the output speed decreases. These hesitations are typically referred to

as disfluencies and are invaluable to develop a theoretical understanding of an individual’s

writing dynamics.

Whether or not or how often we hesitate when copying a word gives insight into our

ability to translate visual input into motor plans (and execute these). In spontaneous

production disfluencies allow insight into the information cascade that underlies language

production from the mental generation of a message, into grammatical processing, and

finally the generation and execution of motor codes. In particular disfluencies are indicators

of process demands that arise on higher levels of mental representation (Christiansen &

Chater, 2016; Olive, 2014); for example when preplanning syntactic dependencies (Roeser et

al., 2019) or retrieving the lexical entry of a word or its spelling (Torrance et al., 2016). This

idea can be found in theoretical models of spoken language production (Bock & Ferreira,

2014), handwriting (Van Galen, 1991) and keyboard typing (Hayes, 2012). Copy-typing, in

contrast to free text production, does not require the generation and linguistic translation of

contents (Leijten & Van Waes, 2013; Van Waes et al., 2019, 2021). Hesitations, however,

arise during both copy-typing and unconstrained text production. Consequently, data from

keyboard typing involves a combination of two processes: (1) a smooth information flow

from higher into lower levels of activation and (2) hesitations at the execution stage resulting
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from inhibitions on higher levels of activation. At present there is no principled way to

detect keystroke intervals that can be considered disfluencies. In this paper we present a

series of statistical models that aim to capture this theoretical process underlying keyboard

typing as a combination of fluent and disfluent keystroke transitions.

These two processes – fluent and disfluent information flow into lower levels of

activation – are typically distinguished by writing researchers in the analysis of keystroke

transitions as those keystroke intervals that constitute a pause and those that do not.

Keystroke-logging captures this information. From these logs, researchers calculate different

process measures including measures of writing fluency (Chukharev-Hudilainen et al., 2019;

Medimorec et al., 2017; Medimorec & Risko, 2016; Van Waes & Leijten, 2015), means,

medians and standard deviations of inter-keystroke intervals (the latency between two

consecutive keystrokes), and writing hesitations such as the number of pauses or pause

duration (for an overview of frequently used keystroke measures see Conijn, Roeser, et al.,

2019). Indeed, Conijn, Roeser, et al. (2019) suggested that these aggregates are sensitive to

processing difficulty that arises on different levels of mental representation. However, there

are two substantial problems tight to the use of such summary statistics to inform theories of

how cognitive processes are coordinated throughout the writing timecourse.

First, pause frequencies, writing bursts and related measures are used to assess

writing performance (e.g. Alves & Limpo, 2015; Beers et al., 2017; Zhang et al., 2019).

These measures require a definition of what passes as a pause (Van Waes et al., 2016;

Wengelin, 2006), i.e. a pause criterion threshold often set to 2 secs (Chanquoy et al., 1996;

Kaufer et al., 1986; Sullivan & Lindgren, 2002; Wengelin, 2002) or some other lower bound

(Chukharev-Hudilainen, 2014; Connelly et al., 2012; Leijten & Van Waes, 2013). Researchers

have stipulated pause thresholds specific to their research purposes and based on thresholds

stipulated by prior research. However, ideally, these thresholds would need to be specific to

factors such as location of the keystroke transition in the text, writing task, and writing
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skills / experience of the typist (Wengelin, 2006). For example, pauses are more common

before sentences than within words: writers are more likely to plan what to say next before

they start a new sentence than at the middle of a word; pauses within words are likely to be

related to difficulty with activating spelling. Also, when comparing the frequency of pauses

larger than 2 secs for dyslexic and normal typists, one might observe more pauses for

dyslexic individuals merely because writing execution unfolds generally more slowly than for

proficient typists; indeed pauses shorter than 2 secs for proficient typists would be neglected

entirely (Wengelin, 2001). In other words, a difference in typing-execution speed would

create the illusion of a larger number of pauses in dyslexic typists. The same principle

applies to the interpretation of pausing in L2 typists and the use of other threshold criteria

(Van Waes & Leijten, 2015).

Second, data aggregation results in the loss of information of timecourse variations

such as disfluencies. Even if this variation is not of interest to the research question,

parametric aggregates such as mean and standard deviation, and even non-parametric

quantities such as median and interquartile range, are biased estimates for keystroke data.

This is because summary statistics capture some aspects of the data but neglect others. For

example, both mean and median represent the centre of a normal distribution. However, for

non-normally distributed data, the mean represents the average – extreme values pull the

mean away from the center of the distribution – but does not capture where majority of data

are located; the latter is captured by the median. This is a problem for keystroke data.

Typing speed is restricted by the time it takes to plan and execute motor programs.1 Yet,

writers can slow down typing execution and pause as long as they wish; hence keystroke

intervals have, in principle, no upper bound. The combination of these two factors renders a

distribution that has a strong positive skew. Consequently the normal distribution implied

by parametric summary statistics does not match the empirical distribution of keystroke

1 And in fact keyboard polling.
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data. Figure 1 illustrates this mismatch between. The figure shows a sample taken from the

copy-task log of two participants (from the copy-task data reported below). For the keystroke

intervals of both participant, we contrast the density function of the empirical data (dashed

line) and the normal density function (solid line). The normal density function is based on

the observed mean (dotted vertical line) and standard deviation (see figure caption). Panel A

shows the untransformed inter-keystroke intervals; Panel B shows the log-transformed data.

Density Empirical Normal

Participant id: 75

Participant id: 72

250 500 750 1000 1250 1500

0.000

0.001

0.002

0.003

0.004

0.000

0.001

0.002

0.003

0.004

IKIs [in msecs]

D
en

si
ty

A

Participant id: 75

Participant id: 72

4.5 5.0 5.5 6.0 6.5 7.0 7.5

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

log-scaled IKIs [in msecs]

B

Figure 1

Example for mean as biased estimator for the inter-keystroke intervals (IKIs) for two partici-

pants (participant 72 in the top panels; participant 75 in the bottom panels). All panels show

the empirical density of the data and the normal-density function entailed by the observed

mean (represented as dotted vertical line) and the standard deviation (SD): participant 72:

mean=431 (SD=448), participant 75: mean=256 (SD=98). The untransformed IKIs are

shown in plot A and the log-scaled IKIs are shown in plot B.



MODELLING TYPING DISFLUENCIES 7

Figure 1 shows a poor match between the parametric summary measures of both the

untransformed and the log-scaled keystroke data of participants 72 and 75 and the normal

distribution. Importantly, this mismatch is not only due to the positive skew in the

keystroke data but is related to a bimodal tendency that can be seen best in the log-scaled

keystroke-intervals shown in Figure 1B; the empirical-density function shows two peaks in

both participants. This mixture of short and long keystroke intervals is going to influence

what the obtained summary statistics represent.

Therefore, data aggregation may lead to incorrect inference about the writing process

(Baaijen & Galbraith, 2018). To address biases in these estimates researchers have used data

transformation, and data trimming (Hoaglin & Iglewicz, 1987) to remove data that were

considered outliers, or separated disfluencies (or pauses) from short keystroke transitions.

However log-transformation may account for positive skew but does not address the

bimodality, as illustrated in Figure 1B. From existing research we know that keystroke data

are not merely positively skewed, which can be addressed with log-normal transformations,

but heavily right tailed (Almond et al., 2012; Baaijen et al., 2012; Chukharev-Hudilainen,

2014; Guo et al., 2018). Further, using fixed threshold values to distinguish between normal

and delayed typing intervals will inevitably impact more on struggling writers but also

learners and dyslexic individuals more generally leading to larger data loss, less reliable

typing estimates and therefore incorrect conclusions about the hypothesis tested. A pause

threshold would need to be participant-specific (Wengelin, 2006) but is more difficult to

determine for individuals with a larger variability (e.g. participant 72 in Figure 1A).

Our overall aim was to provide a statistical model that captures data from keyboard

typing and fits its underlying cognitive process. The challenge in developing such a model is

to distinguish fluent keystroke transition from typing hesitations that resulted from upstream

delays and, at the same time, accounting for sample-specific properties of the data

(e.g. individual typing style, key-pair identity). Importantly, for reasons discussed above,



MODELLING TYPING DISFLUENCIES 8

modelling keystroke data as two independent processes should by-pass data aggregation,

data trimming, and threshold criteria. Such a model, that allows the statistical estimation of

writing disfluencies as independent of fluent keystroke transitions, has implications for

writing research (Hayes, 2012; Kaufer et al., 1986; Van Waes et al., 2016; Wengelin, 2006).

To test the models that we describe in the following section we use data from two

copy-tasks that are part of the default Dutch Inputlog copy task (Van Waes et al., 2019).

Using a constrained writing context such as a copy task rather than data from spontaneous

text production was fundamentally important. This is because, first, we can reduce the

influence of higher level processes: text production involves the generation of content and its

linguistic encoding but copy-typing does not. In other words, the cognitive source of

keystroke hesitations is less ambiguous. Second, spontaneous text production comes with a

considerable variability between what participants write. In a copy task we can largely

control this variability. Using data from a copy task can therefore, reduce the number of

confounding factors. Opportunities for future research to apply the presented models to data

from free writing tasks are discussed.

Method

Modelling the copy-typing process

As a guiding principle, we aim to produce a statistical model that can represent the

mental process that generates the keystroke data. Keystrokes, in copy-typing and free text

production, are the end of a cascade of mental processes. Latencies between subsequent

keypresses, for example, the transitions c∧a∧t for the word cat, where ∧ indicates the

inter-keystroke intervals (IKI) between pressing <c> and <a>, and <a> and <t>, increase

when the information flow into motor execution was interrupted at a higher level. Keystroke

intervals reflect at minimum two states of this information flow: (1) either activation can

flow into motor plans and keystroke transitions are maximal fluent; (2) activation flow was

inhibited at a higher level and therefore the time between two keystrokes increased.
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For example, writing a word involves the retrieval of its name and, then, its spelling.

If the writer knows both, activation can flow smoothly into the execution of the

corresponding motor codes. However if the writer struggles to retrieve the spelling or the

lexical entry of a word, the activation flow is interrupted. Inhibition is then resulting in

process disfluencies expressed in a larger lag between adjacent keystrokes. In copy-typing

tasks we can constrain the underlying cognitive process by removing higher-level processes

such as lexical planning and orthographic retrieval (Grabowski, 2008; Wallot & Grabowski,

2013). Figure 2 illustrates a basic model of the copy-typing process (Logan & Crump, 2011;

Salthouse, 1984; see also Yamaguchi & Logan, 2014).2 At the top level, some chunk of letters

has to be visually encoded. The size of this chunk is to some extent specific to task, target

string, individual typing skill / style, but mainly constrained the verbal working memory of

the participant. The visually encoded sequence has to be buffered and, then, corresponding

motor codes have to be activated. If there are no more motor codes that can be generated

from the buffered information, visual encoding is required to update the buffer.

The consequence of buffer updates is a slowdown in keystroke intervals (i.e. a pause, a

hesitation) that cannot necessarily be explained on the basis of difficulty with specific

bigrams. Figure 3 shows the by-bigram IKIs of three participants copy-typing the (Dutch

equivalent of the) phrase a chaotic cowboy. These example data illustrate disfluencies are not

bigram specific. Participant 241 shows a longer IKI for <c> and <h> but no other notable

slowdown; participant 105 shows a large IKI for <o> and <t>; participant 232 shows a

smaller and a larger peak in IKIs. Importantly, although to-be-copied words were the same,

the number, location, and size of the slowdown varied across participants. Our statistical

2 This flowchart is a simplification of the basic components involved in copy typing and ignores that both

copy typing (Van Waes et al., 2021) and free text production (Olive, 2014) involve a cascading information

flow that operates in parallel for subsequent planning units. This means that planning of unit n + 1 can

begin as soon as a processing level is free for input, i.e. when planning unit n was submitted to the next

processing level.
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model should provide a systematic way of capturing process disfluencies, even though their

occurrence is, to some extent, non-deterministic – disfluent keystroke transitions within a

sequence of letters that cannot be predicted on the basis of letter identity or bigram location.

Statistical models can be used to characterize the theoretically assumed

data-generating process as a function of parameters. For example, if we assume that the

data come from a single underlying process – as in linear-regression models – we can describe

this process with a normal distribution that takes two parameters, the mean µ and the

variance σ2. The values of the parameters µ and σ2 are unknown and typically used to

represent and compare task and population-specific (typing) performance. This model can

be written as y ∼ Normal(µ, σ2); i.e. the data y come from a single process that follows a

normal distribution with an unknown mean µ and an error variance σ2. We can then feed

data into our statistical model to estimate the model’s parameter values. The resulting

parameter estimates can then be interpreted in the realm of the assumed data-generating

(cognitive) process; i.e. a single process that generates normal distributed data.

Visual encoding

“een chaotische cowboy”

Buffer

Motor planning

Update
buffer?

een chao. . .

no

yes

Figure 2

Basic model of copy typing; example for “een chaotische cowboy” (a chaotic cowboy).
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Figure 3

Example of the inter-keystroke intervals (IKIs) from three participants, shown as different

linetypes, copy-typing “een chaotische cowboy” (a chaotic cowboy).

Log-normal mixed-effects model of typing

For the first model, the baseline model, we will assume that IKIs follow a log-normal

distribution (e.g. Almond et al., 2012; Guo et al., 2018) because IKIs are positively skewed.3

This model is characterising the information cascade that generates keystroke intervals as a

single process with a population mean-keystroke transition.

To estimate the mean we need to be able to account for variability related to the

sampling process. This can be achieved with log-normal (linear) mixed-effects models (LMM)

which have been used in the literature to model keystroke data (Leijten et al., 2011; Quené &

Van den Bergh, 2004; Van Waes et al., 2010, 2021). The LMM in equation 1 is an extension

of the simple example above. We know that some participants are faster typists than other

3 We discussed above that the heavy tail associated with keystroke data is not necessarily fitting a

log-normal distribution. We use a log-normal models as this is equivalent to the standard statistical method

used in the field (e.g. fitting parametric models to log-transformed data).
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participants and some bigrams can be typed faster than others. Writers vary generally in

how fast they type, or how quickly they are performing in the given task. Further, more

frequent bigrams (as part of words with a large number of occurrences in a corpus or

bigrams that occur in many different words) are typically typed faster than low frequency

bigrams; bigrams that are part of words are typed faster than novel bigrams; bigrams within

morphological boundaries are typed faster than bigrams that cross morphological boundaries

with similar effects for syllable boundaries (Feldman et al., 2019; Gentner et al., 1988;

Nottbusch et al., 2005; Pinet et al., 2016; Sahel et al., 2008; Weingarten et al., 2004).

In other words, IKIs for participants and bigrams are varying around a common

(population) mean. These sources of random-error variance as captured by u for participants

and w for keystroke bigrams in equation 1. The population mean is then captured by the

parameter β after accounting for variance associated with participants and bigrams.

yij ∼ LogNormal(µ, σ2
e)

µij = β + ui + wj

(1)

Each participant i has keystroke latency, expressed as ui, different from the

population mean β with some participants being faster than average (i.e. < 0) and other are

being slower than average (i.e. > 0); these differences should be normally distributed with a

between-participants variance σ2
u with i = 1, . . . , I, where I is the number of participants

(see 2). Because σ2
u is a variance it can not be negative so we can cut off the normal

distribution at zero – constrain the prior distribution to be larger than zero. This type of

distribution is known as a half-normal. We used a prior of 2.5 for the variance of the variance

σ2
u to regulate the random intercepts for participants to be normal distributed around the

population average (Gelman, 2006). This is because the majority of participants should have,

by definition, an average IKI close to the population estimate with fewer participants being

much faster or slower than the average. A variance of 2.5 is an informative prior that ensures
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that the variability across participants is approximately normal.

ui ∼ Normal(0,σ2
u)

σu ∼ Normal(0,2.5)

constraint: σu > 0

(2)

Similar to variability between participants we can model variation between keystroke

pairs (i.e. letter bigrams) as random-intercepts term; w in equation 1 (Van Waes et al., 2019,

2021). IKIs of bigrams differ due to factors such as bigram frequency, position of keys on

keyboard, and hand combination. These factors are not independent but affect keystroke

latencies in combination. To account for these factors that render some bigrams faster than

others we included a difference wj for each bigram j with j = 1, . . . , J , where J is the total

number of bigrams. Similar to random participant intercepts, the difference for random

bigram intercepts wj is distributed around 0 with a between-bigram variance σ2
w (equation 3).

wj ∼ Normal(0,σ2
w)

σw ∼ Normal(0,2.5)

constraint: σw > 0

(3)

The parameter of interest, the mean β in equation 1, is the marginalised value after

taking into account random variation between participants and bigrams. In all models we

parameterised the mean β as non-centered with regulating priors (equation 4; following

Gelman et al., 2014; Papaspiliopoulos et al., 2007). Non-centering parameters can be used to

aid sampling efficiency of the model by adding additional parameters that capture

uncertainty (i.e. the scale ε and the variance σβ). In other words, a more reliable parameter

estimate can be achieved with the same number of iterations. This can be helpful for small

data sets. For the mean µβ of the population mean β, we used a prior that is normally
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distributed around a value of 5 log msecs (i.e. ≈ 150 msecs) with a variance of 2 log msecs

which is putting the majority of prior probability of the true parameter for fluent key

transitions between ≈ 80 msecs and ≈ 215 msecs (i.e. e5 ± 1.96 ·
√
e5+2 because for a normal

distribution 95% are ±1.96 standard deviations from the mean) which are plausible

estimates for fluent keystroke typing given existing analyses (Van Waes et al., 2021).

β = µβ + σβ · ε

µβ ∼ Normal(5,2)

σβ ∼ Normal(0,1)

ε ∼ Normal(0,1)

constraint: σβ > 0

(4)

For the unexplained residual variance σ2
e , we used an uninformative half-Cauchy prior

(equation 5; as mentioned in Gelman et al., 2014). The Cauchy is a heavy tailed distribution;

a centre of 0 indicates that the residual variance should be close to 0 and a scale of 2.5

makes the prior uninformative by allowing larger values. As the residual variance must be

positive, we constrained σe to be larger than 0, and therefore the prior to be half-Cauchy.

σe ∼ Cauchy(0,2.5)

constraint: σe > 0
(5)

Typing as autoregressive process

The previous model captures variation associated with bigrams but implies that

bigrams are independent and thus their locations in the string are, in principle, exchangeable.

In other words, keystroke intervals depend on the identity of the associated bigram but are
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not affected by preceding keystroke interval.4

IKIs are not necessarily independent of preceding keystroke intervals; an IKI yi might

be related to the IKI yi−1 preceding it. For example, disfluencies might impacts on

neighbouring keystroke intervals (Conijn, Van Zaanen, et al., 2019). The relationship

between subsequent keystrokes can be captured by predicting an IKI with the IKI preceding

it. This is called an autoregressive process (Eltahir et al., 2004); in equation 6 the

relationship between subsequent IKIs is captured by the parameter φ. As the degree of

autocorrelation might vary with typing skill, we assumed that the autocorrelation varies

between participants φi with a centered mean µφ and a variance η. The prior on µφ is

centred around 0 (no autocorrelation) with a large weakly-informative variance of 1 as

autocorrelation is ranging between -1 (speedup in keystrokes intervals) and 1 (slowdown in

keystroke intervals). The variance η is a half-Cauchy constrained as > 0: this prior favours

positive values close to 0 but also allows for more extreme values.

yij ∼ LogNormal(µij, σ2
e)

µij = β + φi · log(yij−1) + ui + wj

where

φi ∼ Normal(µφ, η2)

µφ ∼ Normal(0, 1)

η ∼ Cauchy(0, 1)

constraint: η > 0

(6)

4 The independence of bigrams is not merely a problem of model choice but related to within-word bigrams

more generally. Typing random combinations of letters can be thought of as independent if we randomise

their locations across participants. However, this is not easily possible for bigrams within a syllable,

morpheme, word, and even phrase.
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Typing as mixture process

So far we constructed models that account for the keystroke-interval differences

associated with different typists, bigrams and that accounts for autocorrelation between

subsequent keystroke intervals. Next we model keystroke intervals as the result of a

combination of two independent processes. For this purpose we used a finite mixture-process

model.

Mixture models are a straight-forwarded tool of representing data that come from a

combination of different processes (e.g. Farrell & Lewandowsky, 2018; Gelman et al., 2014).

Finite-mixture models have been used to represent cognitive processes in which larger values

– process inhibitions – arise probabilistically (see e.g. Vasishth, Chopin, et al., 2017; Vasishth,

Jäger, et al., 2017). Keystroke disfluencies in writing can be represented in a similar way.

For keystroke data, the assumed process is a combination of two processes: (1) normal

typing, when activation flows smoothly from higher into lower levels; (2) typing disfluencies,

when activation flow is interrupted at higher levels (e.g. for a buffer update). In other words,

we fixed the number of underlying distributions to two, namely 2 log-Gaussian (log-normal)

distributions, of which one represents fluent typing – shorter IKIs – and the other represents

disfluencies – longer IKIs.

This model can be parameterised as in equation 7, following Vasishth, Chopin, et al.

(2017). The first and second line express that the data y are modelled as the sum of two

weighted log-normal distributions: The first distribution has a weight – called mixing

proportion – of θ and the other distribution receives a weight of 1− θ. The mixing

proportion of both distributions must sum to 1. In this parameterisation, θ represents the

unknown probability of process disfluencies. This was achieved by using an identical mean β

for both distributions but adding a parameter δ, that was constrained to be positive, to the

first distribution. As prior on δ we used a normal distribution with a mean of 0 and a

variance of 1, thus favouring hesitations that are close to β – the population mean of fluent
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key transitions. In other words the population mean of the first distribution is β + δ but only

β for the second distribution. The δ parameter is therefore capturing the hesitation size of

process disfluencies with θ indicating the probability of disfluencies to occur. The probability

of disfluent IKIs was allowed to vary across participants i and stored in θi. This is because

the probability to exhibit disfluencies can be assumed to depend on individual typing style

(and skills).

yij ∼ θi · LogNormal(β + δ + ui + wj, σ
2
e′)+

(1− θi) · LogNormal(β + ui + wj, σ
2
e)

where

δ ∼ Normal(0,1)

constraint: δ > 0

(7)

To increase sampling efficiency we placed a continuous prior on the logit of the

individual mixing proportions αi, which was transformed to range between 0 and 1, using

the inverse-logit function, and stored in θi. This is shown in equation 8. We used a normal

prior for the logit of individual mixing proportions αi with a mean µα that captures the logit

of the population disfluency-probability (with an error variance τ). The hyper-prior on the

population mixing-proportion µα was assumed to have a mean of logit 0 and a variance of

logit 1. On the proportion scale this means that the mixing proportion favours a θ of 0.5

(both fluent and hesitant keystrokes are equally likely) and a variance of ≈ 0.73 (logit 1);

thus the prior is weakly informative.
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θi = Logit−1(αi)

αi ∼ Normal(µα,τ 2)

µα ∼ Normal(0,1)

τ ∼ Cauchy(0,1)

constraint: τ > 0

(8)

As longer latencies are known to be associated with a larger variances for both

response-time data in particular (Wagenmakers & Brown, 2007) and human motor behaviour

in general (Schöner, 2002; Wing & Kristofferson, 1973), we constrained the variance σe′

associated with the distribution of typing disfluencies to be larger than the variance for

normal typing σe; see equation 9 (see Vasishth, Chopin, et al., 2017; Vasishth, Jäger, et al.,

2017). This was achieved by introducing a parameter σdiff that was constrained to be

positive. This parameter is centred around 0 with a variance of 1 so that σe′ , the variance of

the first mixture component, is larger than σ and σe, the variance of the second mixture

component, is smaller than σ.

σe′ = σ + σdiff

σe = σ − σdiff

σdiff ∼ Normal(0,1)

σ ∼ Cauchy(0,2.5)

constraint: σ, σdiff, σe′ , σe > 0

(9)

Typing as autoregressive mixture process

The mixture model, as well as the LMM, assumes that lags between subsequent letter

bigrams are independent of each other; the argument against this was introduced above for

autoregressive models. We implemented another mixture model that is largely equivalent to
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the model presented in the previous section but includes an autoregressor as in equation 6;

see equation 10 for the autoregressive mixture-process model.

yij ∼ θi · LogNormal(β + δ + φi · log(yij−1) + ui + wj, σ
2
e′)+

(1− θi) · LogNormal(β + φi · log(yij−1) + ui + wj, σ
2
e)

(10)

Copy-task data

To test which model captures the typing process best, we applied the four models

described in the previous section to data from a subset of the Dutch copy-task corpus

(Leijten & Van Waes, 2013; Van Waes et al., 2019, 2021). An overview of all models can be

found in Table 1.

The copy-task corpus consists of keystroke data collected via a Javascript-based web

application as part of Inputlog 8 (available on www.inputlog.net) with the source code

released on github.com/lvanwaes/Inputlog-Copy-Task and zenodo.org/record/2908966. In a

set of different subtasks participants had to produce keyboard-typed responses. We used a

Table 1

Overview of typing-process models. All models were fitted with random intercepts for

participants and bigrams.

Models Type Equation Description

M1 LMM 1 Baseline model

M2 AR 6 Autocorrelation between subsequent IKIs

M3 MoG 7 Mixture process of fluent and disfluent typing

M4 AR + MoG 10 As M3 but with autocorrelation component

Note. LMM = Linear mixed-effects models; AR = Autoregressive model; MoG =

Mixture of log-Gaussians

www.inputlog.net
https://github.com/lvanwaes/Inputlog-Copy-Task
https://zenodo.org/record/2908966
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random sample of 250 participants (175 females, 71 males, 4 unknown) from the age range of

18 to 25 years (median age = 22 years). In this analysis we focus on the difference between

key-down presses rather than key lifts or combinations of key presses and lifts. Before

analysis we excluded spaces and editing operations from the data. Spaces were removed from

the analysis as hesitations at string edges are more common than within strings and should

be modelled as an additional factor.5 In contrast, hesitations within strings / words are to

some extent probabilistic and cannot always be predicted from bigram-specific properties.

In this analysis we focus on the consonants task and the low-frequency (LF) bigrams

task. In the consonants task, participants saw and copy-typed a single time four blocks of six

consonants; i.e. “tjxgfl pgkfkq dtdrgt npwdvf.” This task is intended to measure typing skills

in a non-lexical environment (Grabowski et al., 2010). The consonants task is an extreme

test case of a typing task that is ridden by disfluencies: because this is a relative unnatural

typing task, typists are likely to hesitate more than usual. Therefore, this task provides

scope for our models to detect typing disfluencies. We repeated the analysis for the

LF-bigrams task to contrast the non-lexical consonants task and a more natural lexical copy

task. In the LF-bigram task, participants typed three-word combinations seven times (een

chaotische cowboy ‘a chaotic cowboy’ in the Dutch version) of which four bigrams are low

frequent.6 For comparability to the consonants task, we removed all repetitions after the first

time the three-word sequence was copied.

Importantly for the present purpose, fluent copying and pausing may be thought of as

a function of (1) the familiarity with the letter sequences (or lexicality) and (2) the

participant’s memory span and typing skill; for example touch-typists may depend less on

5 This walkthrough gives an example how other factors can be added to a mixture model:

rpubs.com/jensroes/765467.

6 Note, we refer to this task as LF -bigrams task as in Van Waes et al. (2019). The majority of bigrams in

the target-word group are highly frequent.

https://rpubs.com/jensroes/765467
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memory representation of the to-be typed bigrams for fluent copying than hunt-and-peck

typists. Indeed these – relying on memory and hunt-and-pecking – might be two distinct

processes that both could affect typing fluency relatively independent. For both these

possibilities, the resulting keystroke intervals are a combination of fluent typing and typing

interruptions. In other words, for these tasks we need to be able to disentangle fluent and

disfluent IKIs.

Bayesian models, as used in this paper, are ideal for the estimation of parameter

values: Bayesian parameter estimation goes beyond point estimates and expresses the

uncertainty associated with parameter values as probability distribution (Farrell &

Lewandowsky, 2018; Gelman et al., 2014; Lee & Wagenmakers, 2014). To achieve this,

Bayesian models require the explicit inclusion of prior information, i.e. existing knowledge

about parameter values. For small data sets priors influence the inferred parameter estimates

(known as posterior); for larger data sets weakly informative and vague priors are quickly

overcome by the data (i.e. automatic Ockham’s razor, Jefferys & Berger, 1992). In other

words the choice of priors values has less impact on the posterior. In the present paper, we

use weakly informative priors to aid model convergence by constraining the parameter space

(see e.g. Lambert, 2018; McElreath, 2016). The predictive performance (i.e. fit) of these

models is compared in the Results section using leave-one-out cross-validation.

Results

Data overview

The IKI data for the LF-bigrams task and the consonants task are visualized in

Figure 4. The upper panels of the LF-bigrams task and the consonants task in Figure 4A

show the data for each participant. In the lower panels of Figure 4A, different measures of

central tendency are shown. The density function of the IKI data are shown in Figure 4B

with vertical lines corresponding to the central tendency measures in Figure 4A.
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Figure 4

Data overview. Plot A illustrates IKIs over bigram position (time-course) by participant in the upper rows and as different

measures of central tendency (with standard error [SE]) in the lower rows for each the LF-bigrams task and the consonants task.

Plot B shows the density distribution of IKI data with the same central-tendency descriptors as in plot A.
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These visualisations highlight two points for the present data that were discussed in

the introduction section: (1) aggregating data neglects individual time-course variability in

the data; (2) the choice of central-tendency measure leads to different conclusions about the

data. As for the first point, Figure 4A shows that participants slowdowns and speedups

throughout the trial but do not show consistent patterns for the same letter bigrams as might

be concluded from the corresponding summary statistics. If we disregard by-participant

variability, central-tendency measures in the lower panels of Figure 4A suggest that some

slowdowns and speedups might be bigram specific. For example, in the LF-bigrams task, the

first bigram is followed by a faster IKI; in the consonants task, the first bigram is followed by

a slowdown. Importantly though, there is a substantial variability between participants.

As for the second point, the choice of central-tendency measure might affect whether

we consider an observation a disfluency, or a participant to be prone to disfluent typing. In

particular, means are systematically longer than the median and mode. Figure 4B illustrates

why this is the case. Shown are the density functions for the LF-bigrams and the consonants

task. Even log-scaled data show skewed distributions with a heavy right tail. While in a

normal distribution the mean, median and mode have identical values, the conceptual

differences between these three measures of central tendency lead to different values in

non-normal distributed data. In particular, means are known to be sensitive to extreme

values; these are inevitable for zero-bound IKIs with, in principle, no upper bound. For

keystroke data, large means might be the consequence of a few larger IKIs that over-shadow

largely normal typing behaviour. Means are closer to the horizontal middle of the data space

which, for right-skewed distributions, is on the right of the distribution’s peak (the value

with the highest kernel density). The latter is being represented by the mode. Regardless of

which measure is used, all three central tendency indicators ignore important properties of

the distribution. That is, measures of central tendency neglect the variability in the data;

keystroke data might indeed represent a combination of processes; e.g. normal typing and

disfluencies. Central tendency measures do not allow us to distinguish between IKIs that are
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the results of fluent typing and IKIs that reflect process lags.

For our data, aggregation does not just neglect participant-specific typing patterns

but the choice of central-tendency measure leads to different conclusions about the data

(e.g. which IKIs can be considered pauses). To ensure accurate statistical inference, we need

to be able to account for participant-specific typing patterns as expressed across the typing

time-course.

Model fit

All models were implemented as Bayesian models (see e.g. Gelman et al., 2014;

Lambert, 2018; McElreath, 2016) in the probabilistic programming language Stan

(Carpenter et al., 2016; Hoffman & Gelman, 2014; Stan Development Team, 2015a, 2015b).

Data, R scripts and Stan code are available on OSF (osf.io/y3p4d). A detailed walkthrough

document shows how R can be used to apply the Stan code of a mixture model to copy-task

data (rpubs.com/jensroes/765467). Models were fitted with 30,000 iterations (15,000

warm-up) on 3 MCMC chains. Convergence was tested via the Rubin-Gelman statistic

(Gelman & Rubin, 1992), trace plots and cross-validation (Vehtari et al., 2015, 2017).

The predictive performance of the models was established using leave-one-out

cross-validation. Cross-validation, in contrast to more conventional model-comparison

metrics such as R2, are not subject to model overfitting: models with more parameters do

not necessarily render a better fit to the data (see Farrell & Lewandowsky, 2018; Lambert,

2018; Lee & Wagenmakers, 2014; McElreath, 2016). The out-of-sample predictive

performance was determined via Pareto smoothed importance-sampling (Vehtari et al., 2015,

2017). To compare the predictive quality of our models we used the sum of the expected log

predictive density (êlpd). Model comparisons can be found in Table 2. Model comparisons

revealed higher predictive performance for both mixture models M3 and M4 for both

copy-task components. The increase in predictive performance is larger for the LF bigrams

https://osf.io/y3p4d
https://rpubs.com/jensroes/765467
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task compared to the consonants task. The differences in predictive performance of all

models shows the same pattern in both copy-task components. For both tasks, the

combination of the mixture model and the autoregressive-process model as implemented in

model M4 (see equation 7) revealed the highest predictive performance with a small

advantage over mixture model M3 (see equation 10). We therefore chose model M4 for

parameter evaluation of both copy-task components.

Parameter evaluation

The copy-typing process can be characterized by the posterior of the mixture model’s

parameter values. These parameters values are summarised in Table 3 and in Figure 5.

Table 3 summarises the population and variance estimates as posterior mean with 95%

probability intervals (PI). Estimates are shown for the LF-bigrams task and the consonants

task. After accounting for process disfluencies, keystroke intervals were longer for the

consonants task (429 msecs, PI: 356 – 515) compared to the LF-bigrams task (158 msecs, PI:

139 – 180). The slowdown for disfluencies was about four times longer for the consonants

task. For the LF-bigrams task, the model determined a slowdown of 95 msecs (PI: 76 – 116)

with a probability of 0.34 (PI: 0.31 – 0.38); for the consonants task we found a slowdown of

414 msecs (PI: 333 – 509) with a probability of 0.73 (PI: 0.66 – 0.80). In other words, in the

consonants disfluent keystroke transitions were three times more likely to occur than fluent

transitions; in the LF-bigrams task, only one out of three transitions constitutes a disfluency.

The size of the slowdown in the consonants task suggest higher level processes such as

reading of the target string. This is unlikely to be the case for the short slowdown in the

LF-bigrams task. Instead, the slowdown in the LF-bigrams task might be a

bigram-frequency effect. Four out of 16 bigrams in the LF-bigrams have a low frequency

(i.e. 4
16 ≈ 0.19). In other words, the magnitude for disfluencies and hence their cognitive

source in the typing process is task-specific. Further autocorrelation between subsequent

keystrokes was non-different from zero in the LF-bigrams task; keystroke transitions in the
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Table 2

Model comparisons expressed as expected log predictive

density (êlpd). The top row of each copy-task component

shows the model with the highest predictive performance.

Differences in predictive performance are shown as ∆êlpd

contrasting for each copy-task component the model in the

first row and the remaining models. Standard errors (SE)

are shown in brackets.

Model Type ∆êlpd êlpd

Consonants

M4 AR + MoG 0 (0) -37,032 (102)

M3 MoG -38 (7) -37,069 (101)

M2 AR -264 (25) -37,295 (100)

M1 LMM -318 (25) -37,350 (99)

LF bigrams

M4 AR + MoG 0 (0) -33,148 (113)

M3 MoG -30 (8) -33,178 (113)

M2 AR -1,011 (64) -34,159 (121)

M1 LMM -1,025 (64) -34,173 (121)

Note. LMM = Linear mixed-effects models; AR =

Autoregressive model; MoG = Mixture of log-Gaussians
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consonants task were in general followed by a -0.08 times faster keystroke transition; PI:

-0.10 – -0.05. Variance components are reported for completeness.

Figure 5 summarises by-participant model estimates. The modelled IKIs for fluent

typing are shown in Figure 5A. This figure shows the estimated typing speed of each

participant (i.e. a random sample of 75 participants for visualisation) after accounting for

typing disfluencies. Each horizontal line represents the statistically inferred estimate for a

Table 3

Parameter estimates with 95% PIs separated into population

estimates and estimates for variance components. Parameters are

shown as used in equations with a brief description of their

conceptual meaning in parentheses. Estimates are shown for the

LF-bigrams task and the consonants task.

Parameter LF bigrams Consonants

Population estimates

β (fluent typing) 158 [139, 180] 429 [356, 515]

δ (disfluency slowdown) 95 [76, 116] 414 [333, 509]

θ (disfluency probability) 0.34 [0.31, 0.38] 0.73 [0.66, 0.8]

φ (autoregressor) 0 [-0.02, 0.02] -0.08 [-0.1, -0.05]

Variance estimates

σ2 (residual error) 0.73 [0.7, 0.75] 0.54 [0.52, 0.56]

σ2
e (fluent typing) 0.29 [0.27, 0.3] 0.29 [0.26, 0.32]

σ2
e′ (disfluency) 1.16 [1.12, 1.21] 0.79 [0.77, 0.81]

η2 (autoregressor) 0.04 [0.04, 0.05] 0.01 [0, 0.02]

σ2
u (between-participants) 0.03 [0, 0.08] 0.27 [0.23, 0.31]

σ2
w (between-bigrams) 0.22 [0.17, 0.3] 0.24 [0.17, 0.33]
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participant. The vertical dotted line shows the estimated population mean. Figure 5B shows

the disfluency probabilities, i.e. the probability to exhibit a typing disfluency for each

participant. For each participant the model captures varying pausing probabilities that

express individual but also task-specific typing difficulty. Although, on the population level,

disfluencies are likely to occur in the consonants task, not all all participants show a more

disfluent than fluent keystrokes (as indicated by individual estimates below 0.5 in Figure 5B

representing a larger probability of fluent keystroke transitions) or more disfluencies in the

consonants task than in the LF-bigrams task. In fact, some participants paused more often

in the LF-bigrams task than in the consonants task (see Figure 5E).
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By-participant parameter values for LF-bigrams and consonants task. Plot A and Plot B show the average IKIs for fluent typing
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by-participant mean-posterior estimates of the consonants task and the LF-bigrams task for fluent typing (C), the autoregressor

(D), and the disfluency probability (E).
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Figure 5C-E show between LF bigrams and consonants correlations for the

by-participant estimates of the fluent-typing interval duration (C), the autocorrelation

between subsequent keystroke intervals (D), and the disfluency probability. The correlations

show that individuals with longer keystroke intervals for the LF-bigrams task also show

longer keystroke intervals in the consonants task (Figure 5C); a similar relationship can be

seen for autoregression although in the consonants task participants generally show faster

keystroke intervals across bigrams while for the LF bigrams task some participants speedup

and other slowdown (Figure 5D). No such correlation was found for the disfluency

probability (Figure 5E). Participants that exhibit many disfluencies in the consonants task

do not necessarily show more disfluencies in the LF-bigrams task. In other words, the model

parameters do not just capture individual differences but also task-specific differences with

regards to typing speed and pausing behaviour.

Faster participants might, in principle, show larger disfluency magnitudes; i.e. the size

of the disfluency magnitude may vary by participant. To test this possibility we also

implemented two models that are largely identical to model M3 (see equation 7): first, we

allowed both the disfluency probability θ and the disfluency magnitude δ to vary by

participant; second, δ but not θ was allowed to vary by participant. We compared the

predictive performance of either model to model M3. Neither model was convincingly better

than model M3, neither for the consonants task nor for the LF-bigrams task. For the

consonants data, allowing δ and θ to vary by participant resulted in negligibly better

predictive performance compared to model M3 (∆êlpd=7, SE=4); holding the disfluency

probability θ constant while allowing the disfluency magnitude δ to vary by participant

revealed a lower predictive performance (∆êlpd=-100, SE=50). The same patterns was

found for LF bigrams: allowing δ to vary rendered no predictive gain (∆êlpd=-1, SE=0.50);

fixing θ and allowing δ to vary showed a decrease in predictive performance (∆êlpd=-30,

SE=8). This comparison suggests that it is not the magnitude of the disfluencies (δ) that

varies across participants but the disfluency probability (mixing proportion θ).



MODELLING TYPING DISFLUENCIES 31

Overall, the values of the three process-central model parameters – fluent typing

speed, disfluency probability, and slowdown magnitude for disfluencies – were found to be

task sensitive. The LF-bigrams task shows shorter typing intervals, a lower disfluency

probability compared to the consonants task and a shorter slowdown magnitude for typing

disfluencies. Individual typing style was characterized by random variation in typing speed

and in the probability but not in the magnitude of process disfluencies.

Discussion

Our aim was to provide a statistical model that allows to account for process

disfluencies in keyboard-typing data. To address this aim we tested a series of Bayesian

models on a lexical and a non-lexical copy-typing task. Model comparisons revealed that

finite mixture models provided a better fit to inter-keystroke intervals of both copy-tasks

compared to standard linear mixed-effects models. In other words, we showed that, among

the models tested, data from copy-typing can be modelled best as a combination of fluent

and disfluent typing intervals by means of an unknown individual mixing weight. We

demonstrated how the model posterior can be used to infer estimates for three typing

characteristics for individual participants and on the population level.

The best fitting model summarizes the typing process as a function of three

process-relevant parameter values. Those are: (1) the population-level and by-participant

keystroke transitions for fluent typing after accounting for process disfluencies; (2)

population-level and by-participant mixing proportions indicating the probability of disfluent

keystroke transitions; (3) the population-level disfluency magnitude, i.e. slowdown in

keystroke transitions. These parameter estimates are interesting for two reasons: first, they

allow us to characterize the writing task at hand as a mixture of fluent and disfluent

keystroke transitions as represented in Figure 67; second, by-participant parameter estimates

7 This model is just one possibility of how the mixture-model parameters map onto copy-typing. Disfluencies

might as well arise on a lower level, for example, when the typist is struggling to find the correct key
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allow us to extract characteristics for individual typists. On the basis of the population-level

and individual parameter estimates, we can determine whether an individual is a fast / slow

typist or has unusually high / low probability to exhibit disfluencies compared to the

population estimates. Thus, the model can be used diagnostically to identify participants

with larger disfluency probabilities or to compare pausing across groups of participants.

The strength of this model is that it allows us to characterize the writing process and

detect disfluencies in a principled way in line with what we know about keyboard typing. In

particular, keyboard typing can be thought of as a process in which information cascades

from higher to lower levels of activation; process inhibition on higher levels causes lags

downstream. We have captured this process by characterizing the typing process as a

mixture of fluent and disfluent keystroke transitions. Typing speed and the proportion of

Visual encoding

“tjxgfl pgkfkq dtdrgt npwdvf”

Buffer

Motor planning

Update
buffer?

tjxgfl. . .

no: 1 − θ

yes: θ

IKI: α

IKI: δ

Figure 6

Basic model of copy typing with mixture-model parameters. Disfluencies are the sum of α

and δ, where δ is the additional time that results from updating the letters buffered for motor

encoding. The probability of disfluencies is indicated as θ mapping onto looks to the target

string.
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disfluent transitions depend on each typist’s copying style. This is important because not

distinguishing between between fluent and disfluent keystroke transitions can lead to

incorrect inference about fluent typing. For example, collapsing across fluent and disfluent

transitions might lead to the conclusion that task-related difficulty impacts on the execution

of keystrokes even though the overall increased keystroke-transition duration was in fact the

results of more frequent and longer pauses while typing speed itself may remain constant.

From the present analysis we know that merely one-quarter of the data from the consonants

task and two-thirds of the data from the LF-bigrams task were found to correspond to fluent

keystroke transitions. Even after accounting for disfluent keystroke transitions, fluent typing

was found to be two times slower in the consonants task compared to the LF-bigrams task.

Not accounting for task-specific disfluency probabilities would result in biased estimates and,

therefore, affect conclusions about task-related difference in typing speed.

Our results suggest that the probability and size of disfluencies are sensitive to task

related factors. In the consonants task, disfluencies are indeed more probable than fluent

transitions. This was not the case in the LF-bigrams task. Across participants the

probability of typing disfluencies was relatively homogeneous in the LF-bigrams task but

showed a larger variability in the consonants task. Similarly the average by-participant

typing speed was more diverse in the consonants task compared to the LF-bigrams task.

This contrast might be the result of a larger range of strategies that participants applied to

copy consonant sequences than when copying the word triplet in the LF-bigrams task. For

example, participants may have used n-grams (one letter at a time or more) or spaces to

chunk consonants before generating motor codes; in the lexical LF-bigrams task, word(s) or

the entire phrase are better candidates for chunking than individual letters.

The variability in typing strategies across the sample may be understood as a

function of typing skills and cognitive factors. For example, non-touch typists depend on

memory resources to correctly copy the target string. This is because participants with poor
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typing skills have to shift gaze between keyboard and text more often than touch typists.

Consequently, memory resources are more important for poor typists such that participants

with a shorter memory span might update their memory representation of the target string

more frequently than participants with a long memory span expressed as an increased

disfluency probability. This might be less important for the typing performance of touch

typists to the extent that touch typists have less need to search for keys corresponding to

target letters. In contrast, the lower variability found for the LF-bigrams task can be

understood as a more uniform use of copy-typing strategies across participants. Copy-typing

strategies might have been more consistent for the LF-bigrams task because participants,

especially those with poor typing skills, can make use existing knowledge (e.g. lexical

meaning of words, motor codes for bigrams) to relief memory demands. This is not possible

for the consonants task. However, our results did not support a trade-off between typing

speed and disfluency probability. This might be because disfluencies are not merely the

result of a memory-representation update but are also related to difficulty finding the correct

key and individual memory-span differences. Therefore the disfluency probability can be

understood as an estimate for all non-typing related activities. As such the disfluency

probability may be an indicator of memory span (Grabowski et al., 2010; Olive, 2014), low

level reading skill (De Smet et al., 2018) and individual typing skills. To evaluate to what

extent memory resources involved in copy-typing in combination with typing skills (touch

typists) impact on the model parameters one would need to model these as additional

factors. The prediction is that individuals with access to more memory resources would

display lower disfluency-probability values.

A central advantage of using a mixture model to account for typing disfluencies is

that we can by-pass pause threshold-values and instead by-participant pausing proportions

and fluent typing speed; this can then be used as individual typing-skill characteristic. Our

mixture model provides estimates for fluent typing while accounting for disfluencies by

modelling fluent and disfluent typing as a mixture process. At the same time, the model
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provides disfluency estimates as expression for individual and task-specific typing difficulty.

Stipulating threshold values ignores that some participants are generally slower typists and

some tasks are more difficult. Mixture models allow us to capture disfluencies as a latent

process in a principled manner. This is important because disfluencies must be understood

as relative to an individuals’ typing speed given the task at hand (Wengelin, 2006). In the

context of the copy task that aims to measure typing skills (Van Waes et al., 2019, 2021),

researchers could use mixture models to obtain by-participant estimates of typing speed and

pause frequencies. These estimates can be used as individual-differences indicators or to

identify individuals that struggle with those skills assessed in the components of the copy

task; this information can then be carried forward into the analysis of data from a free

writing task to, for example, compare different groups of typists or to controll for typing

skills as model covarietes.

Because mixture models do not require us to stipulate pause thresholds, they allow us

to test predictions about typing disfluencies in certain populations such as learning typists,

L2 typists and individuals with genuine typing difficulty after account for individual

differences in typing speed or vice versa. For example, some individuals that might be

classified as having typing problems might not have excessive numbers of pauses but merely

longer key transitions, while proficient typists use pauses to prepare larger linguistic units.

In other words, the presented model can be used to test hypotheses about psychological

factors (e.g. memory demands, writing experience, proficiency in writing in a second

language) that might affect the ratio of disfluencies in the writing process. If disfluencies are

crucial to identify poor typists in a sample, mixture models might be used as diagnostic tool.

Also, mixture models allow us to directly test whether the number of disfluencies can be

changed as response to a keyboard-typing intervention. As an avenue for future research,

mixture models as presented in this paper can be used for different types of writing tasks

and particular populations.
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We demonstrated how keystroke data can be modelled as a mixture processes

distinguishing between keystroke transitions that are resulting from (1) a smooth

information flow into motor processes and (2) delays on higher levels of activation. We

focused on key transitions from within string / word bigram pairs collected in a copy task.

However, it is possible that our results do not generalise to free text production – hesitations

cannot be modelled as mixture process. There is some research that has used a

mixture-model framework in the context of spontaneous text production (Almond et al.,

2012; Baaijen et al., 2012; Guo et al., 2018; Roeser et al., 2020). Therefore is scope for future

research to apply the mixture models presented in this paper to model hesitations in free

text production. For example, one could model the disfluency probability and magnitude for

different locations in the text: this is because hesitations within words might be smaller and

less frequent than hesitations before words, or before sentences. In our mixture-model

walkthrough8 we describe how researchers can model and compare the mixture process

across different factors. We are confident that mixture models will prove useful for data from

free text production. This is because mixture models can capture long latencies as the the

consequences of a processing delay in the information cascade which affects both copy typing

and free text production (Olive, 2014; Van Waes et al., 2021).

For spontaneous text production, there is scope to extent the models we presented in

this paper. Text production as opposed to copy typing involves processing on various levels.

A delay on any of these levels causes disfluencies. For copy typing process can be described

using a binary distinction between fluent and disfluent typing. However for text production

lags on different levels of activation might be associated with different disfluency magnitudes

and might be cumulative. If the size of the disfluency is assumed to depend on the inhibited

process upstream or combination of processes, this can be implemented as additional

mixture component(s) (similar to Baaijen et al., 2012; see also Almond et al., 2012) to

8 rpubs.com/jensroes/765467

https://rpubs.com/jensroes/765467
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address different types of disfluencies (Medimorec et al., 2017; Medimorec & Risko, 2016;

Wengelin, 2001). In other words extensions of mixture models allow us to test different

hypotheses about the cascade of processes involved in writing and language production.
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