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Abstract 

Performance in everyday tasks, such as driving and sport, requires allocation of attention to task-

relevant information and the ability to inhibit task-irrelevant information. Yet there are individual 

differences in this attentional function ability.  This research investigates a novel task for measuring 

attention for action, called the Multiple Object Avoidance task (MOA), in its relation to the everyday 

tasks of driving and sport. The aim in Study 1 was to explore the efficacy of the MOA task to predict 

simulated driving behaviour and hazard perception. Whilst also investigating its test-retest reliability 

and how it correlates to self-report driving measures. We found that superior performance in the 

MOA task predicted simulated driving performance in complex environments and was superior at 

predicting performance compared to the Useful Field of View task. We found a moderate test-retest 

reliability and a correlation between the attentional lapses subscale of the Driving Behaviour 

Questionnaire. Study 2 investigated the discriminative power of the MOA in sport by exploring 

performance differences in those that do and do not play sports. We also investigated if the MOA 

shared attentional elements with other measures of visual attention commonly attributed to 

sporting expertise: Multiple Object Tracking (MOT) and cognitive processing speed.  We found that 

those that played sports exhibited superior MOA performance and found a positive relationship 

between MOA performance and Multiple Object Tracking performance and cognitive processing 

speed. Collectively this research highlights the utility of the MOA when investigating visual attention 

in everyday contexts. 

 

Keywords: Visual cognition, driving, visual attention, multiple object tracking, multiple object 

avoidance, sport 
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1.1 General Introduction 

Performance in everyday tasks, such as driving and sport, requires appropriate allocation of 

attention to task-relevant information and the ability to inhibit task-irrelevant information.  Yet the 

ability of this attentional control varies across individuals. Where, for example, there are differences 

in the speed of attentional processing, the number of objects one can attend to or the ability to 

successfully inhibit attentional information.  There are countless tasks designed to target these and 

other attentional components, often with the aim to assess an individual’s attentional control and 

how this relates to performance in more complex tasks.  The overall aim of this research was to 

investigate a novel, open-source, visual-attention task called the Multiple Object Avoidance (MOA) 

task to assess visual attention function and demonstrate its relatedness to attention in everyday 

tasks.  This is a visuomotor task that was developed with the aim of creating a more active (i.e. 

involving visuomotor control) Multiple Object Tracking (MOT) task – a task that is often used in 

attention research given the proposed attentional similarities to complex everyday tasks.  The MOA 

task was originally developed in response to previous research in driving. Mackenzie & Harris (2017) 

found that MOA performance positively predicted driving performance and eye movement scanning 

in a driving task.  The findings in that study highlighted the potential importance of such a task in 

predicting driving behaviour but had several limitations including the absence of an opensource 

version of the task. As such, this research is presented that continues the line of MOA and driving 

literature before also exploring the utility of MOA in further everyday domains; that of sport. 

We first discuss the importance and development of the MOA in relation to “active vision” in the 

next section. In Study 1, we discuss the literature on visual attention and driving behaviour with a 

specific focus towards a more “action-related” visual assessment of these aspects.  In this study, we 

aimed to explore the efficacy of the MOA task in predicting driving performance and hazard 

perception when driving. In Study 2 we explored the MOA in a sporting domain and aimed to 

investigate MOA performance differences in those that play sports – a population that has often 

been found to exhibit superior visual attentional function – and those that do not play sports. In 
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order to establish a degree of construct validity we also aimed to investigate the attentional 

relatedness of the MOA to other cognitive tasks argued to be important in sporting performance. 

 

1.1.1. A role for active visual attention tasks and the development of the MOA 

Given the attentional complexity of “everyday tasks” (such as driving and sport), it is unlikely a task 

measuring a single attentional domain would predict overall task performance (Bowers et al., 2013; 

Liebherr et al., 2019).  Often, the relatedness, or lack thereof, of the cognitive task or battery to the 

attentional demands of the everyday task limits its efficacy in predicting task performance.  In the 

case of driving and sport,  whilst elements of, for example, selective attention or executive control 

are important and could be assessed using tasks such as Stroop tasks or inhibitory response tasks, 

one must also have the ability to sustain and divide attention to dynamic stimuli (Alberti, Horowitz, 

Bronstad, & Bowers, 2014; Bowers et al., 2011; Mackenzie & Harris, 2017) which these types of 

selective attention tasks do not capture.  

One task that may capture the range of attentional complexity in sport and driving is the Multiple 

Object Tracking task (MOT) (e.g. Cavanagh & Alvarez, 2005; Pylyshyn & Storm, 1988). In a simple 

MOT task, target and distractor objects are presented on-screen.  Observers are asked to attend to 

all the targets. The target objects are usually denoted as such by a temporary increase in visual 

salience of the object e.g. by flashing or changing colour.  Observers must continue to divide their 

attention across all target objects as they and the distractors move around the visual scene.  Once 

the objects have stopped, observers must identify which of the objects were originally the targets.  

One might hypothesise that performance on this task correlates to complex everyday behaviour; in 

tasks that involve sustained and divided attention to multiple dynamic stimuli whilst ignoring 

distractor stimuli. Indeed, this has been found in a number of studies where poorer performance in 

an MOT task correlated to poorer performance on road tests, and poorer ability to detect 

pedestrians during simulated driving (Alberti et al., 2014; Bowers et al., 2011).  Importantly, in the 
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work of Alberti et al., (2014), MOT was a stronger predictor of pedestrian detection than the Useful 

Field of View task which is a more reduced task that does not capture the sustained and dynamic 

elements of attention in everyday tasks. Michaels et al., (2017) investigated the relationship 

between individuals’ perceptual-cognitive capacity in a MOT task and driving behaviour.  They found 

that individuals who performed more poorly in the MOT task were at a higher crash risk – 

particularly in older adults.  Collectively, these results highlight the link between visual attentional 

function and task performance, and also the possible importance of using a more dynamic and 

sustained attention assessment in predicting behaviour. 

Mackenzie and Harris (2017) argued that whilst the MOT likely captures attentional properties 

involved in driving more than tests such as the UFOV, it is still relatively passive in nature because 

there is no active, visuomotor interaction during the motion phase.  Indeed, one of the better 

strategies to use in order to be successful in the MOT task is to make fewer eye movements and 

covertly attend to the stimuli by attempting to fixate centrally between the moving targets (Fehd & 

Seiffert, 2008; Oksama & Hyönä, 2016; Zelinsky & Neider, 2008), so that even the active exploration 

with the eyes is reduced.  In driving, for example, there is a visuomotor element in controlling the 

vehicle (Kountouriotis et al., 2012; Land & Lee, 1994; Lehtonen et al., 2014) and one must make 

many eye movements to successfully identify hazards (Konstantopoulos et al., 2012; Underwood et 

al., 2002, 2005).  Eye movements, attention and action are often intrinsically linked (Hommel, 2010; 

Humphreys et al., 2010) particularly in everyday settings, including driving (Land, 2006; Tatler et al., 

2011) and sport (Land & McLeod, 2000). In addition, different eye movement strategies are 

observed between tasks involving action (visuomotor control) and their passive analogies e.g. ‘real 

life’ versus video (Foulsham et al., 2011; Mackenzie & Harris, 2015; Risko et al., 2012). Thus, we 

argue, visual attention tasks incorporating the more active elements of attention may better predict 

performance.  
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Attempts have previously been made at capturing this more action-related element of visual 

attention by developing an interactive MOT task or iMOT (Thornton et al., 2014; Thornton & 

Horowitz, 2015).  In this task, the individual must use a touch screen to move objects and prevent 

them colliding with each other.  Following from this research, Mackenzie and Harris (2017) identified 

a task similar in nature that did not involve a touch screen element and only involved the control of 

one object (similar to driving) using a mouse.  A non-touch screen design prevented obstruction of 

the screen from hands and arms.  They termed this task the Multiple Object Avoidance (MOA) task.  

In this task, an individual controls one object (user-controlled object).  Three other objects (red 

hazard balls) are present on screen and begin moving around.  The task is to have the blue object 

avoid these red hazard objects that would move in a predictable, vector-like fashion. As the 

individual continues to manoeuvre the user-controlled object to avoid the hazard objects, the task 

gets increasingly harder as more red balls are added (one added every ten seconds).   

Arguably, a task like this involves similar attentional components to those used in complex every day 

tasks.  Namely, sustained attention to dynamic stimuli, divided attention, active vision, visuomotor 

control and planning ability (i.e. the ability to predict the motion of the objects). In Mackenzie and 

Harris' (2017) work, performance on this MOA task significantly predicted driving performance and 

also predicted more effective horizontal spread of visual search  – eye movement behaviour we 

typically see in more experienced drivers (Crundall & Underwood, 1998; Konstantopoulos, Chapman, 

& Crundall, 2010; Konstantopoulos et al., 2012; Underwood, Crundall, & Chapman, 2011).  This 

relationship was stronger for MOA than a standard MOT task and was also stronger during more 

complex scenes; scenes that would intuitively involve more scanning type eye movements to detect 

hazards.  They explain this relationship by suggesting that the active nature of the MOA which 

involves many eye movements to be successful may represent the eye movements one makes when 

driving and searching for hazards. This is important given that inattention and failures to scan the 

road are often contributing factors to accidents (Dingus et al., 2006; Lee, 2008).   
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The broad aims of this research are to replicate and extend Mackenzie and Harris (2017) and 

investigate how MOA predicts driving and driving related behaviours using a newly developed 

opensource version of the MOA task (Study 1) and begin exploring how MOA performance might 

differentiate between those with varying sporting expertise (Study 2). 

 

2.1 Study 1: The Multiple Object Avoidance task and driving behaviour. 

Driving is a complex visuomotor everyday task. It requires the ability to control the vehicle whilst 

also attending to possible hazards. One’s own visual attentional functioning (that is, performance 

within specific facets of visual attention e.g. divided attention, speed of processing, working memory 

capacity etc.), is often therefore a predictor of driving behaviour and driving performance. For 

example, better ability within these visual attentional components relates to better driving overall 

and the individual elements of driving, e.g. hazard perception (Wood et al., 2016), vehicle control 

(Aksan et al., 2017; Louie & Mouloua, 2019) and, importantly, road accidents (Karimi et al., 2015).  

Thus, the importance of investigating and evaluating visual attention tasks that may help to predict, 

assess, or even train, driving behaviour is highlighted.  In this study, we aimed to replicate and 

extend the results of Mackenzie and Harris (2017) by exploring the MOA task’s ability to predict 

simulated driving performance and hazard perception behaviour, and also how it may relate to other 

measures used in driving such as the Useful Field of View and the Driving Behaviour Questionnaire. 

 

2.1.1 Measuring visual attentional functioning and driving performance 

The relationship between visual attentional function and driving ability is evident in a number of 

studies where superior driving performance is predicted by superior performance in tasks 

measuring, for example, overall executive functions (Pope et al., 2016), divided attention (Morris, 

2018), processing speed (Ross et al., 2016) and sustained attention (Tabibi et al., 2015).  Early work 

demonstrates how the Useful Field of View (UFOV) test (Ball et al., 1990) relates to driving behaviour 

and performance – particularly in older adults.   Broadly, this test involves a range of executive 
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functions measuring the ability to process multiple (divided attention) rapidly presented pieces of 

information (speed of visual processing) whilst ignoring distractors (executive control).  Better 

performance in this test seems correlated to better driving performance, at least in older adults 

(Ball, Owsley, Sloane, Roenker, & Bruni, 1993; Bedard, Weaver, Dārzin, & Porter, 2008; Clay et al., 

2005; Owsley & McGwin, 2010).  The link between visual attention function and driving found with 

many UFOV studies (and other attention task studies) can perhaps be explained by the attentional 

similarities in what is required in driving and the UFOV task.  In driving, one must also be able to 

process visual information effectively (e.g. hazards), divide attention to several elements of the 

environment (e.g. control of the vehicle, looking out for hazards etc) and, importantly, ignore 

distractors.  One may argue that if a driver exhibits better attentional function, then they are better 

able to handle these attentional demands of the road.   

It is, however, important to also highlight that some of the relationship between visual-cognitive 

tools and driving performance in older adults may simply reflect normal ageing.  Bédard et al. (2016) 

investigated this idea using the ANT (Attentional Network Task) and UFOV tasks by running 

correlations between age and task performance within certain age groups (under 65 and over 65) 

rather than using the full age range of participants.  When age was partialled out, correlations in task 

performance within these age groups disappeared. In the case of UFOV we know that visual 

processing speed (which the UFOV largely measures) is a cognitive function where the variability in 

processing speed is lower within younger populations, the decline is measurably marked with age 

and there are large differences between younger and older populations (Guest et al., 2015, 2017). It 

is therefore unsurprising that such a task would capture attentional and driving differences when 

used across these age groups. The research by Bédard et al. (2016) demonstrates that a large 

amount of the variability in task performance is simply accounted for by age. It also highlights issues 

in developing cognitive tasks to predict driving behaviour. We attempt to address this limitation here 

by developing a tool that correlates with driving performance within a younger adult population 
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where variability of cognitive decline due to normal aging is unlikely to contribute to the variability in 

task performance. 

Nevertheless, there has been some evidence that links performance in paradigms utilising static or 

brief presentation of stimuli to driving behaviour within adult (non-older) populations. Paradigms 

such as, for example, the Deceleration Detection Flicker Task, a task that measures ability to respond 

to a perceived reduction in driver headway (see Crundall, 2009; Lee et al., 2020), and the Attentional 

Network Task (ANT), a task that measures attention alerting, attention orienting and executive 

control (Fan et al., 2009). Weaver, Bédard, McAuliffe, & Parkkari (2009) conducted a study 

comparing performance on the ANT to both simulated and on-road driving performance.  They 

found moderate relationships between overall ANT performance and driving scores (although this 

was stronger for simulated driving). However, the strength of the relationships between the 

individual attentional components and driving scores were quite weak.  This may be surprising given 

that these attentional components would likely be used in driving where one must, for example, be 

vigilant for oncoming hazards (attention alerting), orient attention to potentially hazardous areas 

(attention orienting) and attend to hazardous areas whilst ignoring non-hazardous areas of the 

scene (executive control).  However, in the study, they used a more general measure of driving (i.e. 

starting, stopping, signal violations, right of way violations) and a non-hazardous driving route that 

may not have been sensitive to measure performance in specific driving tasks where these 

attentional function components are arguably more vital (e.g. hazard perception).  Roca, Crundall, 

Moreno-Rios, Castro, and Lupianez, (2013) therefore investigated how performance in a version of 

the ANT predicted attention to specific hazardous events (hazards predicted by a single precursor).  

They found that attention orienting specifically was the best predictor of safe driving behaviour 

during specific hazardous events.  Therefore, one might argue that tasks such as the ANT might do 

well in predicting behaviour during more specific and low occurrence road events (e.g. hazards) but 

may not capture the attentional complexity in more general driving.  Our aim is to therefore extend 

beyond identifying how a task might predict specific driving events and develop a task that might 
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better predict general driving performance. We believe, given the MOA’s targeting of active and 

divided attention to dynamic stimuli, it is a suitable candidate. 

 

Aims and Hypotheses: 

Mackenzie and Harris (2017) attempted to address the limitations of paradigms utilising static or 

brief presentation of stimuli as assessments of visual attention in relation to driving. Namely, 

limitations surrounding these tasks’ inability to capture general driving behaviour and surrounding 

the minimal contribution of more sustained and dynamic elements of visual attention in such tasks.  

They proposed the MOA task (Section 1.1.1) and found performance in this task did well in 

predicting driving performance in complex (e.g. urban) driving environments and also visual 

scanning, where better performance in MOA predicted better driving performance and wider 

horizontal scanning.  However, there were a number of limitations identified and these are 

addressed in this first study.  Importantly, we address these limitations using a new opensource 

version of the MOA task. 

The first aim (1a) was to replicate the previous work of Mackenzie and Harris (2017) investigating 

how well performance in the MOA predicts simulated driving performance and to extend this by 

making a comparison with the predictive power of the UFOV; a more frequently used measure of 

attention in the driving literature.  This was done by measuring performance on the MOA and UFOV 

and correlating scores, via regression, with driving performance in a driving simulator.  We 

hypothesised that better MOA performance would predict better simulated driving performance. 

The second aim (1b) was to identify how well performance in this task predicts hazard perception 

behaviour.  Mackenzie & Harris (2017) previously claimed that being able to predict horizontal 

spread of visual search was an advantage in the MOA as this eye movement behaviour may help to 

identify hazards.  However, there were no hazards present in that study to provide evidence for this.  

Therefore, we investigate if performance in the MOA (and UFOV) predict the time to first fixate 
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hazards during the simulated drive. We hypothesised that better MOA performance would predict 

earlier hazard first fixation times and this relationship would be stronger for the MOA than the UFOV 

because of the increased oculomotor activity required during the MOA. 

The third aim (1c) was to investigate some measures of reliability and validity in the MOA.  We did 

this by investigating the test-retest reliability (after 6 months) and investigated the concordant 

validity of this test with typically used self-report measures in driving using the Driving Behaviour 

Questionnaire (DBQ). We hypothesised there to be modest test-retest reliability.  We also 

hypothesised there to be moderate correlations between the MOA and scores on the DQB where 

higher MOA scores would correlate to fewer instances of self-reported driving errors for each 

subscale of the DBQ. 

 

2.2 Method 

2.2.1 Participants 

Forty-two participants (11 males; 31 females) with a mean age of 23.26 years (SD = 4.35) took part in 

this study. All participants held a valid driver’s licence (M = 4.44 years; SD = 4.05), drove on the left 

(e.g. United Kingdom) and had normal or corrected-to-normal vision (via contact lens). Participants 

were paid in £20 shopping vouchers for their participation. A sample calculation was conducted in R 

using the package pwr (v.1.3-0) which contains functions for basic power calculations using effect sizes 

and notations from Cohen (1988). A predicted effect size of Cohen f2= 0.4 was used using Mackenzie 

and Harris’ (2017) previous data where significant effect sizes ranged from f2 = 0.20 and f2 = 0.59. At a 

more conservative power level of 0.95, alpha error probability of 0.05 and three modelled predictors 

(theoretically; two predictors and one covariate), a sample of 45 participants would be recruited. For 

this, we note the limitation of being underpowered here in obtaining this effect size.  For a power level 

of 0.8, alpha error probability of 0.05 and three modelled predictors, a sample of 29 participants would 

be recruited.  For the MOA retesting, 28 of the participants were successfully recruited (9 males). 

There was no significant difference between the ages of participants between the original 42 
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participants (M = 23.26, SE = 0.67) and the 28 participants who returned for retesting MOA ((M = 

24.39, SE = 0.87), t(56.14) = -1.04, p = 0.30). Additionally, the difference in driving experience (years) 

between the original 42 participants (M = 4.44, SE = 0.63) and the 28 participants who returned 

retesting MOA (M = 5.41, SE = 0.86) was not significant (t(53.54) = -0.92, p = 0.36). Ethical approval 

was given by Nottingham Trent University College Research Ethics Committee. 

 

2.2.2 Stimuli and Apparatus 

2.2.2.1 Visual attention tasks 

Multiple Object Avoidance (MOA) task. This task was programmed using Python and the packages: 

pygame, numarray, numeric and numpy.  Initially, four circles are presented on screen, each 40 

pixels in diameter (~10.6mm) size.  One of these is blue and three are red.  The blue circle is 

controlled by the participant using a mouse and the objective is to avoid the red hazard circles 

touching the blue circle as they move around the screen. There is an initial delay of 1 second where 

the red circles begin to move but are unfilled and unable to collide with the user’s blue circle. This is 

to give the participants time to identify the stimuli and their trajectory. The hazard circles are then 

filled in and, at this point, can collide with the blue user-controlled circle. After 10 seconds another 

moving red circle is added to the display.  It initially appears as an unfilled circle for one second and 

is unable to collide with the user’s blue circle before being filled in red completely.  All red circle 

movements followed predictable straight-line vector movements after an initial random trajectory.  

That is, a red circle will move in a straight line until it connects with either the edge of the screen or 

another red ball and ‘bounce’ off this object at an angle consistent with 2D vector physics.  No red 

object moves in a random pattern after the initial trajectory and, as such, all movements are 

theoretically predictable. Speeds for each red circle are randomised and can range from any number 

from 0 to 680 pixels per second. A new red circle is added every 10 seconds thereby increasing the 

difficulty of the task with more objects to track and avoid (see Figure 1 for a sequential 

representation). The time (in seconds) that a participant can avoid colliding with a red circle is 
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recorded as the score for the trial, with higher numbers reflecting greater proficiency at the task. In 

this study, participants completed 10 trials; 2 practice trials and 8 recorded trials. A mean of these 

final 8 trials is taken as the measure of MOA performance. The task window is displayed at a size of 

800 by 800 pixels. The task was presented on a 17.5-inch CTX EX951F monitor (Chuntex Electronic 

Co., Ltd., Taipei, Taiwan) with a refresh rate of 85 Hz.  

 

 
Figure 1. The MOA task.  Participants are presented with a start screen and must press the mouse 
button to continue (a).  Initially, the red hazard circles will appear unfilled for one second to allow 
participants the time to identify their speed and trajectory (b).  The trial will not end if the blue 
circle collides with the red circles in this state.  After 10 seconds, a new red hazard circle is added 
(c).  It remains unfilled for one second.  This sequence is repeated (d) until the participant’s blue 
circle collides with one of the solid red circles. A feedback screen is presented, and the experiment 
notes the time of the trial (e).  

 

 

Useful Field of View (UFOV). Version 7 of the Useful Field of View task was used (Brain HQ, Posit 

Science).   There are 3 subtasks.  Subtask 1 one measures speed of processing to a single object.  An 

image of either a car or truck appears in the centre of the display screen and it is the participant’s 

task to identify which object is presented.  The duration for which the stimuli is presented at varies, 
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in a stepped fashion, depending on the accuracy of identification (where better performance per 

trial results in shorter presentation durations).  Subtask 2 measures divided attention where the 

central task remains the same as in Subtask 1, but the participant must identify where another 

target is on screen. Subtask 3, which measures divided attention amongst distractors, is the same as 

Subtask 2 but a number of distractors (triangle shaped stimuli) appear in the field of view (Figure 2).  

Processing speed, as measured by the software depending on stimuli presentation duration, is used 

as a measure of performance in each subtask.  Of interest for this study are the scores from subtask 

3.  Arguably Subtasks 1 and 2 are more relevant for Older Adult drivers and a ceiling performance 

was observed here in our sample for these subtasks.  Subtask 3 - divided attention amongst 

distractors - is more relevant to attention in driving in a younger adult population and will show 

variance across younger participants. Note: presentation durations and processing speed 

calculations were all controlled by the UFOV software.  Experimenters did not have access to the raw 

data for these and scores are not given for each trial individually.  Performance is a measure of 

processing speed and is measured as the minimum amount of time required to correctly process the 

visual information where better performance results in lower minimum speed (in ms). The task was 

presented on a 17.5-inch CTX EX951F monitor (Chuntex Electronic Co., Ltd., Taipei, Taiwan) with a 

refresh rate of 85 Hz and at a screen resolution of 1280 x 1024. 
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Figure 2. Sequential view of UFOV subtask 3.  Participants fixate centrally (a) before being 
presented with the image in (b) at varying durations.  After this image, participants must select, 
using a mouse, which object appeared centrally, either a car or truck (d), and then where the 
peripheral object appeared (e). 

 

2.2.2.2 Driving Simulation.  

A RijSchoolSimulator driving simulator, developed by Carnetsoft, was used for the driving simulation 

aspect of the study, as used in previous studies on driving behaviour (Roca et al., 2018; Tejero et al., 

2019). The hardware includes a Logitech G27 control set featuring an 11-inch leather wrapped 

driving wheel; 6-speed gear shifter (including reverse); steel accelerator, brake, and clutch pedals 

(Figure. 3a).  Three display monitors provide a 210 degree horizontal field of view from the cabin in 

frontal and side view positions.  Mirrors, dashboard, road environment were all displayed across a 

three-screen panel display (Figure 3b). The software allows for the preparation and testing of 

behavioural experiments. The graphic capabilities of the simulator are able to portray a 3D world, 

rear-view and side-view mirrors, as well as visual and sound effects to simulate changing weather 

conditions (see Figure 3 for a representation of the visual field). 

The software allows for interactive traffic in the form of moving vehicles as well as animated 

pedestrians and animals. Participants completed three driving routes of varying complexity.  The 
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urban route consisted of typical inner-city driving involving crossroads, single lane traffic, traffic 

lights, pedestrians etc. This was the most complex route.  The next complex route was a suburban 

carriageway.  This consisted of both single and dual lane roads, junctions and a number of speed 

limit changes.  The final, and least complex route was the inter-city motorway.  This consisted of a 

multi-lane carriageway in a straight line.  There was a moderate level of traffic throughout. Driving 

performance was tracked by the driving simulator throughout.  This was a point-deduction system 

(as opposed to a demerit-based point system that has been previously used e.g. Mackenzie & Harris, 

2017; Weaver et al., 2009) where points were deducted, starting from a score of 10, for driving 

error. Driving assessment included elements such as speed control, lane changing, rules of priority, 

gear changing, overtaking, steering, indicator usage, and negotiating roundabouts. All scores were 

controlled by the software.  Each of the individual assessment tasks are rated as on a decimal scale 

from 0 to 10. Scores were recorded for each route and for all three combined (as an average of the 

three routes).  Three hazards were programmed in the urban route.  These were pedestrian based 

hazards where a pedestrian would step into the road (Figure 3).  

 

 
Figure 3. Examples of driving environment and the three hazardous situations. For each, the 
pedestrian steps onto the road without looking or hesitating and would require the driver to 
either slow down or stop to avoid a collision. 

 

2.2.3 Eye movement recording 

Eye movements were recorded using SMI eye tracking glasses (ETG2), sampling binocularly at 60Hz. 

The environment is captured using a forward-facing camera sampling at 60fps. A standard one-point 

calibration was used using a circular target presented on-screen before each drive. Participants were 
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free to move their head naturally as they drove. Eye movements were automatically overlaid onto 

forward-facing video by the eye tracking hardware. 

The times to first fixate the hazards and hazard precursor were taken as our measures of hazard 

perception.  The precursor for the three hazards are behavioural in nature (Crundall et al., 2012) 

whereby the precursor is the same stimulus as the hazard and behaves in a manner that allows for 

future projection of the hazard nature. In this instance, the pedestrians walk towards the road 

without slowing down, stopping or looking at approaching traffic. The time taken to fixate on 

precursors has been shown to discriminate between experienced and inexperienced drivers 

(Crundall et al ., 2012). The precursor period is defined as the time between when the pedestrians 

enters the image and the frame before they step onto the road. Hazard onset times began on the 

frame pedestrians stepped into the road. 

Eye movements were manually coded using “semantic gaze mapping”.  This is a method used in real-

time eye movement capture to attribute eye movements to a semantically meaningful area of 

interest.  In this instance, the semantic categories of ‘hazard’ and ‘precursor’ were identified.  The 

experimenter manually identified which fixations landed on each of the hazards and precursors and 

would, using the SMI BeGaze software, assign these to the area of interest.  First fixation times for 

hazards were calculated as the time to first fixate on the hazard minus the hazard onset time.  First 

fixation times for precursors were calculated as the time to first fixate on the precursor minus the 

time in which the precursor is first available in the field of view. 

 

2.2.4 Questionnaire Measures 

The Driving Behaviour Questionnaire (DBQ) was used to measure self-report driving behaviour 

(Reason et al., 1990).  We used the 28-item questionnaire with four subscales: Aggressive Violations, 

Ordinary violations, Attentional lapses and Errors. Each item describes a particular driving behaviour 

and participants rate on a Likert scale from 0-5 how often they exhibit the behaviour. The scales 
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have been found to have reasonable internal consistency with alphas ranging from 0.65 to 0.86 

(Oreyzi & Haghayegh, 2010) and has demonstrated evidence of construct validity in on-road 

behaviour (Zhao et al., 2012). 

 

2.2.5 Procedure 

Participants completed the driving simulation, the MOA and the UFOV tasks. Participants either 

performed the driving simulation first or the MOA and UFOV tasks first and this was 

counterbalanced.  The order in which the tasks were completed was counterbalanced for each 

participant. Breaks were given between each component of the study.  

For the driving task, participants were instructed in how to use the driving simulator.  This included 

how to use the steering wheel and pedals, the gears, the vehicle indicators etc.  Participants were 

asked to follow UK road rules as they would when driving on real roads (stopping at red lights, giving 

way, maintaining lane positioning etc).  They were instructed they would be completing 3 designated 

routes and were to follow the auditory satellite navigation to navigate the route.  This navigation 

comprised simple directional instructions such as “turn left at the next intersection”.  These 

directions were given well in advance of having to make any manoeuvres.  Eye movement calibration 

was conducted before each route. The order in which the routes were completed were randomised 

for each participant. 

For the UFOV, participants were instructed to identify, using a mouse, the object appearing in the 

middle of the screen (either a car or a truck) and, in the case of Subtasks 2 and 3, were asked to 

identify where the secondary target appears in the periphery. For the MOA task, participants were 

instructed to control the blue circle, with the mouse, and avoid the red circles that appear and move 

around the screen.  They were told that the task would get increasingly harder as more circles were 

added on the screen and the trial would end if they collided with any red circle.  10 trials (2 practice 

trials) were completed.  
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For the test-retest measure, participants were recalled 6 months after the initial testing phase to 

complete another MOA testing phase. The same MOA testing procedure as described above was 

used. 

 

2.2.6 Statistical Design 

Hierarchical linear regressions were conducted to investigate how MOA and UFOV performance 

predicted simulated driving performance and first fixation times (note, first time MOA scores were 

used and not test-retest scores). UFOV performance was initially entered into the models followed 

by MOA performance. Driving experience (years) was added into each model as a covariate.  A 

paired samples t-test and correlation were conducted to determine test-retest reliability after a 6-

month period.  Correlations were conducted to determine any relationships between the DQB 

subscales and MOA or UFOV. 

2.3 Results 

All data and R scripts are available on the OSF. Link: 

https://osf.io/3gdcv/?view_only=d400ccc4769149fd9125300d8cb165ce 

 

2.3.1 Driving performance 

An overall measure of driving performance was used here and was a point deduction system where 

a higher score suggests better driving performance. Driving performance was measured for each of 

the three courses separately and combined (as an average of the three routes).  Driving experience 

was used as a covariate in these models. The relationship between driving experience and overall 

driving performance was not a linear relationship but rather a logarithmic relationship and therefore 

driving experience will be modelled as log transformed. A linear regression revealed that an increase 

in (log) driving experience predicted better overall driving performance (F(1,36) = 4.95, R2 = 0.1, p = 

0.03). For the MOA task, individual trial performance was measured as the time (in seconds) until 

the participant-controlled blue circle collided with one of the hazard red circles.  Ten trials were 

completed by participants with 2 initial practice trials. Performance was averaged across the 

https://osf.io/3gdcv/?view_only=d400ccc4769149fd9125300d8cb165ce
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remaining 8 trials. To provide evidence that the number of trials used here is suitable to reliably 

measure actual performance, a one-way ANOVA was used to examine the variability in performance 

across the order of the trials. Performance across the trials was not significantly different overall 

(F(7,287) = 1.32, p = 0.24) or between Trial 1 and Trial 8 (t(41) = -1.56, p = 0.13). 

Participants’ scores for Subtask 3 in the UFOV were used (calculated by the software) where a lower 

value suggests better performance (faster speed of processing). Descriptive statistics for driving and 

task performance can be viewed in Table 1.  Four participants did not complete the driving tasks in 

full, so their data was not used for the analyses involving driving scores. Two participants did not 

successfully finish the MOA task and one participant did not successfully complete the UFOV task, so 

their data were not used for any analyses. 

Table 1. Descriptive statistics and correlations (r values) of driving, task performance and driving experience. 

Descriptive Statistics  Correlations 

Task N Min Max M SD  MOA UFOV Driving Experience 

Urban drive 38 5.52 9.55 8.12 0.94  0.5** -0.29 0.46** 
Suburban drive 38 2.79 9.71 7.42 1.59  0.32* -0.15 0.18 
Motorway drive 38 5.78 10 9.12 0.81  0.36* -0.19 0.35* 
Overall 38 4.7 9.52 8.22 0.95  0.45** -0.23 0.35* 
          
MOA (s) 42 11.7 42.79 27.76 7.35  - -0.14 0.57*** 
UFOV (ms) 41 15.1 153.1 48.71 30.44  -0.14 - -0.28 
          
Driving Experience 
(years driving) 

42 0.17 14 4.44 4.05  0.57*** -0.28 - 

*Significance at p < 0.05. **Significance at p < 0.01. ***Significance at p < 0.001. Correlations involving Driving Experience use 
log transformed driving experience. 

 

 

Table 1 highlights that MOA performance correlates with all driving tasks.  Hierarchical linear 

regressions were conducted with performance on the different driving routes as outcome variables 

and UFOV and MOA performance as predictors. For each of the hierarchical linear regressions, the 

first model featured UFOV performance as a standalone predictor variable and (log) driving 

experience used a covariate (although this is merely a theoretical distinction; both act as predictors). 
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The second model featured both UFOV and MOA performance as predictor variables, and (log) 

driving experience as a covariate.  

Overall driving performance was not significantly predicted by UFOV performance and driving 

experience (F(2,34) = 2.64, p = 0.09, Adjusted R2 = 0.08). When MOA performance was added to the 

model, the model significantly predicted overall driving performance (F(3,33) = 3.48, p = 0.027, 

Adjusted R2 = 0.17). The difference between the first and second model was significant (F(1,33) = 

4.61, p = 0.039. An increase in MOA performance predicted an increase in driving performance. 

For the urban route, UFOV performance and driving experience significantly predicted driving 

performance (F(2,34) = 4.99, p = 0.013, Adjusted R2 = 0.18). However, this was largely driven by 

driving experience rather than UFOV performance (Table 2). Adding MOA performance to the model 

improved the model fit (F(3,33) = 5.41, p = 0.004, Adjusted R2 = 0.27). There was a significant 

difference between the two models (F(1,33) = 5.05, p = 0.031). An increase in MOA performance 

predicted an increase in driving performance. 

The models predicting driving performance for the suburban route were non-significant. This was 

the case when UFOV performance and driving experience were the predictors (F(2,34) = 0.68, p = 

0.512, Adjusted R2 = -0.02), and when MOA performance was added as a predictor (F(3,33) = 1.69, p 

= 0.188, Adjusted R2 = 0.05). The difference between the two models was non-significant (F(1,33) = 

3.60, p = 0.067). The models predicting driving performance for the motorway route were also non-

significant. This was found when UFOV performance and driving experience were predictors (F(2,34) 

= 2.73 p = 0.08, Adjusted R2 = 0.09), and when MOA performance was added as a secondary 

predictor (F(3,33) = 2.26, p = 0.1, Adjusted R2 = 0.1). There was no significant difference between the 

first and second model (F(1,33) = 1.28, p = 0.27). 
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Table 2. Summary of regression models 

Outcome 
Variable 

Model Predictor b 
Standard 

Error 
β t p 

Overall 
driving 

1 (Driving 
Experience (log) 

+ UFOV) 

Driving 
Experience 

(log) 
0.260 0.146 0.302 1.773 0.085 

UFOV -0.004 0.005 -0.128 -0.748 0.460 
       

2 (Driving 
Experience (log) 
+ UFOV + MOA) 

Driving 
Experience 

(log) 
0.077 0.163 0.089 0.47 0.642 

UFOV -0.004 0.005 -0.137 -0.846 0.404 

MOA 0.051 0.024 0.387 2.147 0.039* 

        

Urban 
Drive 

1 (Driving 
Experience (log) 

+ UFOV) 

Driving 
Experience 

(log) 
0.343 0.137 0.402 2.498 0.018* 

UFOV -0.005 0.005 -0.151 -0.937 0.356 
       

2 (Driving 
Experience (log) 
+ UFOV + MOA) 

Driving 
Experience 

(log) 
0.165 0.152 0.193 1.081 0.287 

UFOV -0.005 0.005 -0.16 -1.052 0.3 

MOA 0.049 0.022 0.381 2.248 0.031* 

        

Suburban 
Drive 

1 (Driving 
Experience (log) 

+ UFOV) 

Driving 
Experience 

(log) 
0.192 0.256 0.135 0.75 0.458 

UFOV -0.005 0.009 -0.104 -0.577 0.568 
       

2 (Driving 
Experience (log) 
+ UFOV + MOA) 

Driving 
Experience 

(log) 
-0.094 0.289 -0.066 -0.326 0.747 

UFOV -0.006 0.009 -0.113 -0.651 0.52 

MOA 0.079 0.042 0.366 1.896 0.067 

        

Motorway 
Drive 

1 (Driving 
Experience (log) 

+ UFOV) 

Driving 
Experience 

(log) 
0.244 0.122 0.34 1.999 0.054 

UFOV -0.002 0.004 -0.078 -0.429 0.67 
       

2 (Driving 
Experience (log) 
+ UFOV + MOA) 

Driving 
Experience 

(log) 
0.16 0.142 0.222 1.122 0.27 

UFOV -0.002 0.004 -0.08 -0.462 0.647 

MOA 0.023 0.021 0.214 1.133 0.265 

*Significance at p < 0.05 
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2.3.2 Hazard perception (Time to first fixate) 

Recorded eye movement data were analysed to examine the relationship between effective eye 

movements during hazard perception, and the two attention tasks. The time to fixate on hazards 

were calculated (TTF) for both the precursor and hazard stimuli. A Pearson’s correlation of TTF for 

precursor eye movements found no significant relationship when paired with either UFOV (p = 0.81) 

or MOA performance (p = 0.59). In comparison, when examining TTF for hazard onsets, a Pearson’s 

correlation was significant for MOA scores R(32) = -0.41, p = .02 (figure 4a) and UFOV (R(32) = 0.44, p 

= 0.01 (Figure 4b). Better performance in these tasks correlated with faster detection of hazards. 

There was also a significant relationship between (log) Driving Experience and hazard fixation times 

with increased driving experience correlating with faster detection times (R(32) = -0.54, p = 0.001) 

 

 
Figure 4. Relationship between post hazard onset time to fixate and scores in the MOA (a) and 
UFOV (b) task. 

 

To further investigate the relationships between effective eye behaviour (TTF performance) and 

UFOV and MOA performance, hierarchical regressions were conducted with TTF for the hazard onset 

period as the outcome variable. As in the hierarchical regressions of driving performance, the UFOV 

scores were entered as a single predictor in the first model with (log) driving expertise a covariate 
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and then with MOA performance added as a secondary predictor in the second model. In the first 

model, UFOV performance and driving experience predicted TTF (F(2,29) = 8.31, p = 0.001, Adjusted 

R2 = 0.32); (UFOV: β = 0.29, t = 1.88, p = 0.07); (Driving Experience: β = -0.44, t = -2.80, p = 0.01). 

TTF performance was also significantly predicted when MOA performance was added as a second 

predictor along with UFOV performance and driving experience (F(3,28) = 6.30, p = 0.002, Adjusted 

R2 = 0.34). There was no significant difference between the two models (F(1,28) = 0.82, p = 0.19).  In 

the second model, UFOV (β = 0.30, t = 1.96, p = 0.06), MOA (β = -0.23, t = -1.35, p = 0.19), and driving 

experience (β = -0.32, t = -1.84, p = 0.08) was not a significant predictor. 

 

2.3.3 Test-Retest Reliability 

For both test stages of the MOA task, performance was measured by the time (seconds) in which the 

target object collided with another object across 8 trials. Descriptive statistics of the performance 

across the two tasks are shown in Table 3. Performance across trials during did not significantly 

differ overall F(7,216) = 0.88, p = 0.52), or between Trial 1 and Trial 8 (t(27) = -0.43, p = 0.67 

suggesting no evidence for general improvement across trials within the testing session. 

 

Table 3. Descriptive Statistics for the Multiple-Object Avoidance (MOA) at both time points 

N 
Mean Age 

(SD) 

Mean Years 
of Driving 

Experience 
(SD) 

Minimum Maximum Median Mean SD 

28 
24.39 (4.56) 5.41 (4.52) 

13.77 42.79 29.51 28.73 6.88 

28 18.15 47 29.92 30.47 7.93 

 

 

Two methods of analysis were employed to assess the consistency and reliability of the MOA task 

over time. Paired t-tests were used to examine the difference in mean response time over time. 

There was no significant difference between MOA0 and MOA1 performance, t (27) = 1.15, p = 0.26. 
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Pearson’s correlation coefficients were calculated to examine the reliability of individual subjects 

across both samples. Performance between the two tasks were positively correlated, r(27) = 0.42, p 

= 0.027. Figure 5 shows the relationship of MOA performance between MOA0 and MOA1. 

 

 

 
Figure 5. Relationship between performance in the MOA task at MOA0 and MOA1. 

 

 

2.3.4 Relationship with Driving Behaviour Questionnaire 

MOA performance correlated with the Lapses subscale (r = -0.35, p = 0.03). As performance in MOA 

increased the number of instances of attentional lapses decreased.  There was no relationship 

between MOA performance and the number of Errors (r = -0.21, p = 0.2), the number of Aggressive 

Violations (r = 0.06, p = 0.73) and the number of Ordinary Violations (r = -0.12, p = 0.47).  UFOV 

performance correlated with the Ordinary Violations (r = -0.45, p = 0.006) and weakly with the Errors 

subscale (r = -0.33, p = 0.05). Interestingly, as performance in the UFOV task decreased (slower 
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processing speed) the number of instances of Ordinary Violations and Errors also decreased.  There 

was no relationship for the Lapses subscale (r = -0.31, p = 0.06), and the Aggressive Violations 

subscale (r = -0.3, p = 0.07).   

 

2.4 Discussion 
  

The overall aim of this study was to replicate and expand on Mackenzie and Harris' (2017) 

exploration of the relationship between MOA performance and driving behaviour.  The first aim was 

to replicate previous findings and investigate how well MOA performance predicted simulated 

driving performance and compare this to the predictive power of the UFOV task.  We showed that 

the MOA does well in predicting driving performance, particularly in complex environments 

and does better than the UFOV at predicting driving performance.  The second aim was to 

investigate how well the MOA predicts hazard perception; as measured by first fixation eye 

movements (TTF).  We hypothesised MOA performance would more strongly correlate to first 

fixation times than the UFOV task given the active nature of the MOA.  We found a relationship 

between MOA performance and TTF, but this was more robust for UFOV.  The third aim was to 

investigate MOA task test-re-test reliability and explore its convergent validity with a self-report 

driving measure of visual attention when driving.  We observed the hypothesised correlation in 

performance between testing and re-testing stages; suggesting reliability of this test to measure 

attentional function.  We also found evidence of convergent validity with the subscale of the Driving 

Behaviour Questionnaire that specifically measures attentional lapses. 

 
2.4.1 The MOA, Attention, Driving Performance & Hazard perception 
 
We find here that attentional function, as measured by the MOA task, significantly predicted 

simulated driving performance, replicating the previous result of Mackenzie and Harris (2017).  This 

is line with other studies that demonstrate the relationship between superior attentional function as 

measured by reduced attention tasks and improved driving performance (Karimi et al., 2015; Owsley 
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& McGwin  Jr., 2010; Roca et al., 2013; Weaver et al., 2009; Wood et al., 2016).  If one demonstrates 

superior attentional function in a reduced task, then it seems unsurprising this would extend to a 

more complex task that may also involve these attentional components to a degree given what we 

know about cognitive transfer (Peng & Miller, 2016; Posner et al., 2015).  If one is better able to, for 

example, divide attention across task operations such as vehicle control and identifying potential 

hazards, sustain their attention to the important aspects of the driving environment and effectively 

ignore irrelevant stimuli, they likely would be a better driver.   

Previous research has discussed how some experimentally-reduced tasks such as the UFOV and ANT 

measure only properties of attention to brief stimulus presentation (Bowers et al., 2011; Mackenzie 

& Harris, 2017) where stimuli are presented for up to several hundred milliseconds.  Tasks such as 

Multiple Object Tracking, that provide a measure of sustained divided attention to dynamic stimuli, 

are arguably more representative of driving due to their more temporally extended nature.  We go 

further with the MOA where we argue that it also represents the more active visual attentional 

function involved in driving.  In the MOA, one must actively be in  visuomotor control of an object; a 

task we suggest targets the more active visual elements of everyday tasks (see Hommel, 2010; 

Humphreys et al., 2010; Land, 2006; Land & Lee, 1994; Mackenzie & Harris, 2015; Tatler et al., 2011).  

In addition, in MOA as in driving, one must divide attention to relevant stimuli, but the relevant 

importance of the objects changes in real-time during the MOA task.  Only those objects that are 

either near or judged to potentially collide with the user’s object are directly relevant.  This divided 

attention involved in controlling an object and predicting the behaviour (e.g. motion) of other 

objects could possibly be analogous to controlling a vehicle while predicting potentially hazardous 

events.  The similarities in attentional processing between MOA and driving may explain the 

predictive power of the MOA task here.  Supporting this claim may be the finding that this attention 

task correlates with the attentional lapses subscale on the DQB, suggesting convergent validity in the 

MOA’s ability to measure attentional function in relation to driving performance. 
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It is important to note that, whilst performance on the MOA predicted overall general driving 

performance, this was largely driven by driving performance during the most complex environment.  

As the complexity of the driving environment decreased, so did the predictive power of MOA 

performance.  This is perhaps unsurprising however given the routes used in this study. This finding 

indeed mimics the eye movement finding in Mackenzie and Harris (2017) where MOA performance 

predicted increased visual scanning during more complex drives.  The complex urban environment 

would demand more attentional resources in order to, for example, detect and respond to 

pedestrians walking across the road, searching intersections before committing to cross, turning 

across traffic (right turn in the UK) etc.  In comparison to a simple and straight two-lane motorway 

where traffic is more regular and (arguably) more predictable; where maintaining lane positing may 

be more of the priority in order to drive successfully. As such, it would make sense for a relatively 

demanding visual attention task such as the MOA to predict performance during a drive that would 

place more of a demand on visual attention function.   

Concerning the relationship between MOA performance and hazard perception we find some 

evidence that better performance was related to earlier hazard fixation times (TTF).  The MOA 

requires one to make many eye movements; but mainly eye movements to open space to which the 

users’ target will imminently be moved, and to the hazard circles.  This type of top-down intentional 

eye movement behaviour may mimic one looking ahead to where they are manoeuvring the vehicle 

and searching for hazards on the road, and thus, may explain the link we find here. However, the 

evidence for a strong predictive relationship was not observed when UFOV performance is included.  

UFOV performance had a stronger relationship to TTF than MOA (albeit not significant in the full 

regression model).   The responsive nature rather than the predictive nature of the hazards and the 

speed of visual processing nature of the UFOV may explain this effect.  There was no evidence that 

task performance (either MOA or UFOV) predicted fixations towards hazard precursors. In other 

words, participants were able to make similarly timed eye movements to the pre-onset hazards 

irrespective of visual attentional function.  It was only after the pedestrians began to step into the 
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road (and thus became fully developed hazards) that UFOV performance better related to fixation 

times.  If an individual has faster visual processing speed (as measured by UFOV) then this may 

better allow them to make a re-fixation to the hazard when they acknowledge that the pedestrian is 

now a fully developed hazard. Whilst there could be an element of visual processing speed in the 

MOA, arguably this is better measured by the UFOV. 

However, the predictive effect was not strong for either task. It would be of interest to investigate 

the relationship between MOA ability and the ability to make fixations to less subtle hazards e.g. 

environmental hazards (Crundall et al., 2012; Shahar et al., 2010). We also highlight the limitation in 

our measure of TTF. Future work could investigate the relationship between MOA performance and 

the visual processing of a range of hazard types, where, for example fixation durations might offer 

more sensitive insights into hazard processing. For example, they may offer insights into processing 

times and indeed offer insights where longer processing might result in subsequent inattention to 

other relevant environmental cues (Velichkovsky et al., 2002). One might argue, however, that 

hazard fixations are not a good measure of hazard perception at all.  It would be interesting to 

correlate MOA performance on more sensitive measures of hazard perception, or specifically, 

hazard prediction, such as the What Happens Next test (Crundall, 2016; Jackson et al., 2009) – a task 

that arguably better capture the ability to understand hazardous situations. 

In summary, Study 1 has measured the ability of MOA task performance to predict simulated driving 

performance relative to the UFOV. It does this well for complex driving environments and the results 

highlight the potential for future work to be carried out in a number of further areas such as hazard 

prediction. Study 2 now investigates the MOA’s ability to measure individual differences in visual 

attention function in relation to sporting expertise whilst also investigating elements of construct 

validity raised in Study 1 by investigating MOAs relationship to cognitive processing speed and object 

tracking. 
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3.1 Study 2: The MOA in Sport and its potential attentional composition 

The MOA was initially developed to measure visual attention function in relation to driving 

behaviour.  As with Multiple Object Tracking (MOT) tasks, the use of the MOA to investigate visual 

attention function in other ‘everyday’ tasks might be attractive to researchers given the attentional 

similarities between these tracking tasks.  In this study, we therefore aim to investigate how the 

MOA might discriminate visual attentional function between individuals who play sports and 

individuals who do not whilst also investigating its possible attentional relatedness to other tasks 

often reported as being important in sporting performance: object tracking and cognitive processing 

speed.  

3.1.2 Individual differences in visual attention in sport 

The ability to control attention is important during complex activity such as sport (Engle, 2002).  In 

many “strategic” sports (Voss et al., 2010), such as football or basketball, environments are typically 

visually noisy and require individuals to attend to multiple objects, inhibit task-irrelevant 

information, store object location information and make fast decisions.  One might argue that an 

individual who engages in these types of sport might therefore exhibit superior attentional function 

in these domains or, indeed, vice versa where individuals who have superior attentional function 

exhibit superior sporting performance.  There is mounting evidence for individual differences in lab-

based measures of visual attentional control – both within sporting experience (i.e. high and low 

skilled players) and across sporting experience (sports players and non-sports players). For example, 

working memory capacity in basketball players (Furley & Memmert, 2012), temporal processing in 

tennis players (Overney et al., 2008), attentional window in soccer players (Scharfen & Memmert, 

2019) and inattentional blindness in basketball players (Furley et al., 2010). 

In their meta-analysis, Voss et al., (2010) report a medium effect for differences in processing speed 

(measured in a number of ways) across the literature.  Arguably, fast processing times are needed 
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for most sports players in order to react and make decisions in real-time. Importantly however, 

sporting type seemed to drive the differences between sporting and non-sporting individuals.  The 

effect was stronger for what was termed “interceptive sports” (a sport that requires coordination 

between the body or a held implement and an object in the environment e.g. badminton) compared 

to strategic sports (a sport that usually involves varied situations and requires the simultaneous 

processing of information regarding teammate, opponents, ball position etc., e.g. football). 

Concerning object tracking and divided attention, similar results are observed. Howard et al., (2018) 

showed that those who engaged in team ball sport showed superior performance in a modified MOT 

task as well as a rapid visual presentation task, with both tasks requiring sustained attention to 

rapidly changing stimuli. Similarly, Qiu et al., (2018) report that elite basketball players 

outperformed intermediate and non-athletes during a MOT type task. Furthermore, Harris et al., 

(2020) found a similar result in football and rugby players.  They argue this expertise is linked with an 

increased processing capacity rather than a more effective perceptual-cognitive strategy.  In 

explaining the differences in attentional processing between sporting and non-sporting individuals in 

general, one might favour the “deliberate practice” view (e.g. Ericsson et al., 1993) where one 

obtains expertise through effortful and continuous engagement in a task.  In other words, if one 

continually engages in tasks that target divided attention mechanisms or require fast processing 

speed, one improves in this attentional domain.  However, see Hambrick et al., (2016) for a detailed 

discussion on the possible direction of causality.  Irrespective of current debates in the field, with 

these individual differences described above, one could hypothesise the MOA might allow us to 

discern differences in visual attention function between those with different levels of sporting 

expertise. We test this here and aim to investigate any differences in MOA performance between 

individuals who play interoceptive/strategic sports and those that do not.  Given the individual 

differences in attentional performance described above, we hypothesised that individuals who 

played sport would outperform those who do not.   
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In addition, we have suggested, in Study 1, that the two measures of visual attention function 

discussed above that are important in sport (object tracking and processing speed), might be 

attentional components involved in MOA performance, and we have offered these as explanations 

that might explain the efficacy of MOA in predicting driving behaviour and hazard perception 

performance. To provide some support to these claims, we used Study 2 as an opportunity to also 

investigate the relationship between these individual measures of attention and MOA performance. 

This would help to provide evidence of the proposed attentional composition of the MOA – 

providing some evidence of construct validity - but also aids in establishing the task beyond driving 

as these proposed attentional components are likely to be involved sport. This study aimed 

therefore to also investigate the contribution of sustained divided attention and inhibitory control 

(as assessed by the MOT task) and cognitive processing speed (assessed by a digit symbol 

substitution task) on MOA performance.  This was investigated statistically in a hierarchical 

regression by examining the variability of MOA performance that can be explained by cognitive 

processing speed and object tracking ability. We hypothesised that MOA performance should 

positively correlate with MOT performance, given previous findings and the similar nature of 

spatiotemporal tracking involved, and also positively correlate with DSST performance, given the 

visually demanding nature of the MOA.  

 

3.2 Methods 

3.2.1 Participants 

Forty-seven participants took part in this study (17 males; mean = 28.4; SD = 10.6).  A sample 

calculation was conducted in R using the package pwr (v.1.3-0). Effect size was predicted using 

recent sport and MOT research showing performance differences in sporting group with an effect 

size of ηp
2 = 0.163 (Harris et al., 2020). With a conservative estimate of power at 0.95, alpha error 

probability of 0.05 in a two-independent samples comparison test, 34 participants would be 

required in each group. Again, we report we are underpowered in obtaining this effect size for this 
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study.  A lower estimate of power at 0.80, alpha error probability of 0.05 would suggest 21 

participants be recruited in each group for this effect size. This group of participants was split into 

two groups. The sports group comprised of 21 participants (12 males) with a mean age of 24 (SD = 

4.41). They had all played sports competitively (for a club) for a minimum of 1 year and within a 

sport that was either “strategic” or “interoceptive” in nature (as loosely defined in section 3.1.2.).  

They were currently still competing/playing at the point of testing. The list of sports included: 

football, rugby, basketball, netball, martial arts, badminton and slalom canoe. The non-sport group 

had 26 participants (5 males) with a mean age of 31.9 (SD = 12.8).  All participants declared they do 

not take part in competitive sport. Participants received an Amazon Voucher worth £10 for 

participating. 

 

3.2.2 Materials 

Multiple Object Avoidance (MOA) task. See Study 1 for details on MOA procedure (2.2.2.1). 

 

Multiple Object Tracking (MOT) task. This task was programmed using VisionEgg.  Initially, 10 

squares are presented to participants, each 30 by 30 pixels in size (~7.9 by 7.9mm) in a random 

position on the screen within a window of 1014 by 758 pixels. Five randomly selected squares begin 

to flash, and it is the participant’s task to attend to these five squares while ignoring the other five.  

They will stop flashing and all squares begin to move around the screen in a vector-like fashion. Each 

square will move in one of twelve randomly assigned angular directions (18, 45, 72, 108, 135, 162, 

198, 225, 252, 288, 315, 342 degrees). They move at a randomly assigned speed of either 60, 134 or 

180 pixels per second.  Squares can overlap with each other during this movement sequence.  All 

squares will stop, and participants must click on the five squares they identified as being the original 

five squares that flashed (See Figure 6 for a sequential representation). Participants completed a 

total of 30 trials.  A mean accuracy across these 30 trials was calculated as MOT performance.  The 

number of trials used was broadly comparable to previous MOT research (Howard et al., 2017; 
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Howard & Holcombe, 2008; Mackenzie & Harris, 2017).  Given the more ordinal measure of 

performance per trial in this type of MOT task, where a participant could only receive a score of 0, 

20%, 40%, 60%, 80% or 100%, a larger number of trials are required to obtain suitable variability 

across participants. 

The task was presented on a 17.5-inch CTX EX951F monitor (Chuntex Electronic Co., Ltd., Taipei, 

Taiwan) with a refresh rate of 85 Hz and at a screen resolution of 1280 x 1024. 

 
Figure 6. The MOT task.  Participants are presented with 10 squares (a).  Five target squares begin 
to flash (b) before stopping and all squares begin moving around (c).  Participants then click on the 
five squares they believe to be the original ones that flashed.  In this example (d), the participant 
has got 4 out of 5 correct. 

 

Digit Symbol Substitution Task (DSST). Using a similar method to the original DSST task (Wechsler, 

1981), participants are presented with a sheet of paper with a symbol key of 9 symbols that are 

attached to a number. Below this, there is an array of blank boxes with a number above (Figure 7). 

They have 60 seconds to write the corresponding symbol using the symbol key in the appropriate 

blank box. Participants must fill as many boxes within 60 seconds using a pen.  The total number of 

correctly written symbols is recorded as DSST performance. There is a maximum of 93 boxes that 

can be filled. 
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Figure 7. Example representation, using three symbols, of the DSST. Participants are presented 
with a list of 9 symbols with a corresponding number.  They then have 60 seconds to fill in the 
blank field with the corresponding symbol.  

 

3.2.3 Statistical design 

Correlations were initially conducted to determine any relationship between the three tasks.  A 

hierarchical regression was conducted to determine the variability of MOA performance that is 

explained by first MOT performance and then DSST performance.  Age was used as a covariate in the 

regression analyses to account for any age-related effects of attentional function in these tasks. 

Linear models were used to determine the variability of task performance that can be explained by 

sporting group (sport and non-sports). A multivariate linear model was conducted to determine if 

overall visual attentional function (as measured by the three tasks) could be predicted by sporting 

Group (sports and non-sports). Individual linear models for each task are reported too. Age 

significantly differed between the two sporting groups (t(45) = 2.68, p = 0.01), with the non-sports 

being older (M = 31.88) than the sports group (M= 24.05). Thus, the variability explained by age was 

accounted for in all analyses as a covariate. 

3.2.4 Procedure 

Participants were asked to conduct the three different cognitive tasks as described above. All tasks 

were completed in a randomised order across participants.  Ethical approval was given by 

Nottingham Trent University College Research Ethics Committee.  
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3.3 Results 

3.3.1. Sporting Expertise and Task Performance 

For the MOA task, individual trial performance was measured as the time (in seconds) until the 

participant-controlled blue circle collided with one of the hazard red circles.  Ten trials were 

completed by participants with 2 initial practice trials. Performance was averaged across the 

remaining 8 trials. For the MOT task, trial performance was calculated as a percentage of correctly 

identified objects out of a total of 5.  This was averaged across 30 trials. A larger number of trials are 

required for MOT to provide variability in scores across participants.  Given the data are 

percentages, this data were appropriately transformed using a logit function for the analyses. DSST 

score was recorded as the total number of symbols corrected substituted within one minute.   

Task performance was compared across sporting groups. Age was included as a covariate 

throughout. The multivariate model revealed that Sporting Group predicted attentional function 

where those in the sporting group had superior visual attentional function as measured by the three 

tasks combined (V = 0.24, F(3,42) = 4.5, p = 0.008).  Individually, those in the sport group performed 

better in the MOA task (b = 7.82, SE = 2.38, t = 3.28, p = 0.002) and the MOT task (b = 0.38, SE = 0.16, 

t = 2.32, p = 0.025) and in the DSST (b = 5.84, SE = 2.74, t = 2.13, p = 0.039) (Figure 8). 
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Figure 8. Descriptive statistics of performance for each of the three tasks per sporting group.  Data 
show all data points, maximum, minimum, median and interquartile data points. 

 

 

3.3.2. Relationship between MOA, MOT and Processing Speed 

Descriptive statistics for task performance can be viewed in Table 4. Pearson correlations were 

conducted to determine any simple relationships in performance between these tasks.  All tasks 

were significantly positively correlated with each other (Table 4). 

Table 4. Descriptive statistics and correlations (r values) of task performance. Note: MOA is 
measured in seconds, MOT is measured as a percentage and DSST is measured as a total number. 

Descriptive Statistics  Correlations 

Attention Task N Min Max M SD  MOA MOT 

MOA 47 10.7 52.1 22.6 8.49  -  
MOT 47 61.3 94 77.7 8.65  0.32* - 
DSST 47 31 77 46.5 8.90  0.48** 0.48** 

*Significance at p < 0.05. **Significance at p < 0.01 
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To investigate the relationship between these tasks and the shared variability further, a hierarchical 

regression was conducted with MOA performance as the outcome variable.  Age was used as a 

covariate in these models.  MOT scores were entered into the model first given previous research 

(note: Logit MOT scores are used for regression analyses).  The model significantly predicted MOA 

performance (F(2,44) = 3.45, p = 0.04, Adjusted R2 = 0.1).  MOT performance weakly and non-

significantly predicted MOA performance (b = 4.29, t = 1.92, p = 0.06). When DSST scores were 

added into the model, the model significantly predicted MOA performance (F(3,43) = 6.11, p = 0.001, 

Adjusted R2 = 0.25). The difference between the first and second model was significant (F (1,43) = 

10.03, p = 0.003). See Table 5 for individual predictor coefficients for each model.  From this table, it 

is evident that whilst MOT is weakly related to MOA in the first model, the variability of MOA 

performance that is accounted by MOT performance can likely be explained by cognitive processing 

speed in the second model (Table 5). 

 

Table 5. Overview of regression models 

Model  Predictor b Standard Error β t p 

1 
MOT 4.29 2.23 - 1.92 0.06 
      

2 
MOT 0.67 2.33 0.04 0.29 0.77 
DSST 0.44 0.14 0.46 3.17 <0.01 

 

 

3.4 Discussion 

The aims in this study were two-fold.  The first was to identify if the MOA task was able to 

discriminate the visual attentional function of between individuals who play interoceptive/strategic 

sports and those that do not. We predicted that those who played sports would show superior visual 

attentional function as measured by the MOA task.  We found evidence to support this and also 

observed superior performance by the sports players in the multiple object tracking MOT task and 

Cognitive Processing speed task (DSST), replicating previous research (Howard et al., 2018; Qiu et al., 

2018). The second aim was to investigate the relationship between MOA performance and the two 
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measures of speed of cognitive processing and attentional tracking.  We hypothesised that higher 

scores in both the DSST and MOT would predict higher scores in the MOA task. There was some 

evidence of this where both tasks correlated with the MOA but the DSST was the stronger and only 

predictor of MOA performance with much of the variability of MOA performance initially explained 

by MOT accounted for by DSST. The results are discussed in turn. 

 

3.4.1. Sporting Expertise and Task Performance 

Previous research has indicated that there are individual differences in attentional performance 

between those with different levels of sporting expertise within specific attentional domains such as 

working memory (Furley & Wood, 2016), processing speed (Voss et al., 2010) or divided attention 

(Harris et al., 2020), with superior sports players often exhibiting superior attentional function. With 

regards MOA, whilst we are not able to identify a single attentional mechanism, we find a similar 

result with sports players performing better than the non-sporting individuals. This may be due to 

similar attentional mechanisms involved in both sport and MOA e.g. divided attention, level of 

processing speed, visuomotor control. In this study our sporting participants played strategic sports 

(i.e. where environments are typically visually noisy, requires continually tracking of multiple 

objects, inhibit task-irrelevant information, make quick real-time decisions) or interoceptive (i.e. 

when one requires coordination of an object in the environment) which arguably incorporates the 

hypothesised attentional properties of MOA.  In line with the deliberate-practice literature (e.g. 

Ericsson et al., 1993) , athletes with experience in a specific sport may only exhibit attentional 

expertise in domains specific to that sport (Furley & Wood, 2016), which is why we might see 

superior performance in MOA given its arguable similarity to the attention required in these sports. 

One further and more specific possible attentional mechanism that might explain the link between 

attention-in-sport-expertise and MOA performance might come from the biased competition theory 

(BCT) (Desimone & Duncan, 1995). This model of visual attention proposes that attentional selection 
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is competition based. Bottom-up mechanisms isolate the individual competing objects based on 

features and top-down attentional mechanisms select specific objects that are deemed 

behaviourally relevant at that time.  Importantly, the representation of what is deemed 

behaviourally relevant is stored in working memory (Downing, 2000; Huang & Pashler, 2007). The 

same neural mechanisms that are explained by the BCT might be involved during MOA.  All objects 

on screen will attract attention but only those that are behaviourally relevant – those that may 

result in a collision - will be attended to and subsequently acted on i.e. moved away from. This type 

of top-down competitive attentional selection was investigated in the context of (simulated) sport 

where Furley and Memmert (2013) report that basketball players showed an advantage in making 

decisions regarding whom they should pass to when they had previous access to the visual 

information of the relevant player that they consequently stored in their working memory.  These 

attentional mechanisms involved in sport and MOA are arguably similar and thus may explain the 

relationship we observe here with sporting individuals exhibiting superior MOA performance.  The 

relationship between working memory function is key here but its role in MOA, whilst hypothesised, 

has not yet been established.  Future research might investigate the relationship between working 

memory further and MOA further. 

Although, importantly there are often differences in attention control across sports.  Overney et al., 

(2008) found that, not only did tennis players outperform non-athletes, but they outperformed 

triathletes too in measures of temporal processing. Similarly, Meng et al., (2019) found that 

volleyball players performed better than badminton players on some tasks such as attentional 

alerting, whereas the badminton players performed better than volleyball players on measures such 

as processing speed. Future research might aim to investigate individual differences in visual 

attention function as measured by the MOA in further defined sporting categories in order to further 

our understanding of the attentional nature of the MOA. 
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3.4.2. Attentional similarity between MOA, MOT and Cognitive Processing Speed 

The initial correlational relationship found between MOT and MOA is perhaps unsurprising and we 

replicate this finding from before (Mackenzie & Harris, 2017).  Both tasks are object tracking-based 

that require one to divide attention to multiple and dynamic stimuli.  However, with adding the 

interactive visuomotor control element, the attentional nature of the MOA task deviates to some 

extent from that of MOT.  Unlike the MOT which requires no manual interaction and may not always 

be expected to engage even oculomotor interaction (Fehd & Seiffert, 2008; Oksama & Hyönä, 2016; 

Zelinsky & Neider, 2008), the MOA might require more eye movements in order to visually guide the 

blue circle given what we know about the link between vision and guided action (Hayhoe & Ballard, 

2005; Land, 2006; Land & Hayhoe, 2001; Pelz et al., 2001).  In addition, unlike in the MOT where the 

status of each object as a target or non-target is constant within a trial, the relative importance of 

each object to track in the MOA changes substantially based on its perceived likelihood of collision. 

Furthermore, the MOA requires participants to predict movement and also to constantly react to 

movement.  If, for example, a red circle collides with another red circle, this will change its initial 

trajectory and the participant may need to react in order to move their blue circle.  These 

differences may begin to explain the weak relationship between MOT and MOA performance. 

With these attentional demands of the MOA, it is arguably unsurprising that we see a much stronger 

relationship between MOA and cognitive processing speed (at least as measured by DSST).  The DSST 

is also quite active in nature, requires planning and executive control and, albeit to a lesser extent, 

to divide attention across elements.  As the term suggests, cognitive processing speed can loosely be 

defined as the duration required by an individual to process specific information in order to act or 

make a decision (Owsley, 2013). Processing speed has been found to correlate with cognitive 

functions such as working memory (Salthouse, 1992), executive function (Salthouse, 2005) and 

intelligence (Fry & Hale, 2000).  Visual processing speed specifically is likely relevant in the MOA 

given the demanding visual nature of the dynamic task.  As the “hazard” circles move around, and 
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not at a particularly slow speed, one must be able to monitor the ever-changing movement of the 

circles, predict their movement and, importantly, be ready to respond if a collision with a hazard 

circle is imminent by moving the controlled circle out of the way. This all requires the ability to 

process a constantly increasing amount of visual information as the number of hazard circles 

increases.  

4.1 General Discussion 

Our overall aim was to highlight the Multiple Object Avoidance task and investigate its predictive 

value in assessing attention for action by using the cases of driving and sport. Two studies have 

provided evidence for these.  Study 1 showed that MOA performance predicts driving performance 

and is associated with hazard perception performance in a simulated driving environment. It also 

found the possible utility in predicting driving behaviour compared to other commonly cited tasks in 

the UFOV literature.  Study 2 showed that MOA performance is discriminative between those who 

plays sports and those who do not; providing evidence for its sensitivity to individual differences in 

visual attentional function, and showed that MOA performance appears to be related to cognitive 

processing speed and, to a lesser extent, Multiple Object Tracking skill.  

Overall, the MOA task appears to measure individual differences in general visual attentional 

function within everyday settings with an interactive visuomotor component. Importantly, in driving, 

these findings appear in a young adult population and cannot therefore be due to the age-related 

effects in cognitive decline that can account for findings in much of the literature (see Bédard et al., 

2016; Liebherr et al., 2019).  Both driving and sport rely on complex interaction with the 

environment and attentional components such as divided attention, tracking, high speed processing 

and executive control. We suggest these processes are captured within the MOA task and may drive 

the relationships we find here. 

However, the correlational nature of the research presented here does not allow us to identify a 

causal relationship and only a true experimental manipulation will be able to do this. In sports, for 
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example, it is certainly far from clear in this research if one has developed visual attention expertise 

through playing sport and thus performs better at the MOA, or if one exhibits visual attention 

expertise (that could be measured by the MOA) and therefore be able to demonstrate expertise in 

sport.  Indeed, In the case of driving here, when taking the reverse of the regression model reported, 

we would see that driving experience predicted MOA performance. This suggests that one could 

train the attentional components in the real-world task that is then represented or measured in the 

MOA. There are views that cognitive skills are acquired through practice that increases efficiency of 

processing (e.g. Eccles, 2006) or that expertise in tasks are explained by individual performance in 

certain domains (e.g. Hambrick et al., 2016) but investigating this within MOA and the relation to 

everyday tasks is beyond the scope of this research.  This would certainly merit further investigation 

using the MOA. Indeed, using MOA as a measure of visual attention function may inform this 

debate. 

We also suggest that the MOA captures individual differences in visual attention within these 

everyday tasks because it shares some attentional processing requirements involved in these tasks.  

We have provided some evidence for this in the form of object tracking and cognitive processing 

speed. However, it is unclear what specifically the MOA is measuring and, relatedly, it is unclear 

which other attentional mechanisms may correlate to MOA performance (e.g. working memory 

function, sustained attention, visuomotor control).  It would also be important to explore these 

elements in relation to broader theories of visual attention selection.  We discuss the Biased 

competition theory to offer possible links to visual attention theory – but much more rigorous 

testing would be needed to provide more concrete links between, for example, the BCT, but others 

too (such as the Attention Network as described by Fan et al., (2002). 

Whilst we demonstrate some evidence of test-retest reliability, it is important to highlight that this 

was a moderate correlation. There could be several reasons for this. From the more extreme data 

points in Figure 5, some of this variability could be explained by a learning effect between testing 
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points where we see some individuals perform a good deal better at the retest. However, there 

appears to also be a somewhat equal number who did quite a bit worse on the second testing stage. 

Reasons for either the increase or decrease could be, for example, differing levels of motivation 

(Deci et al., 1999; Van Lange et al., 2011) or effects on cognition due to aspects such as testing on a 

different time of day (Wesensten et al., 1990), varying levels of fatigue (Kronholm et al., 2009) or 

even potentially prior levels of food/liquid intake (Adan, 2012).  We also propose that possible 

different speeds of stimuli at test and re-test due to chance could have contributed. The open-

source nature of this task will allow researchers to test and validate the ball speeds for their own 

purposes (e.g., if using with older adults). 

Beyond this, one potential line of future research to take would be that of attentional assessment.  

In the case of driving, there is a safety element here that should not be ignored.  We found evidence 

that better performance in the MOA related to simulated driving performance, and, potentially, an 

element of road safety – hazard perception.  It would be important to validate the MOA in relation 

to driving safety in order to begin research into developing the MOA as an assessment tool.  It is 

important to highlight that the results here are in relation to simulated driving performance. Whilst 

driving simulations can often be used a good measure of relative validity (e.g. Underwood et al., 

2011) we should be cautious in extending our results to on-road performance.   

We end our discussion by imploring future research to take advantage of this open-source task and 

use the MOA as an attention measure in other, wider, domains and other ‘everyday’ tasks as some 

have already begun to do (e.g. in lifeguarding: Laxton, Mackenzie & Crundall, submitted). 

 

5.1.1 Conclusion 

The MOA task measures attention for action and relates to real world tasks such as driving and 

sport. This study investigated 1) how performance in MOA predicted individual differences in 
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simulated driving performance, 2) the relationship to attentional tracking and cognitive processing 

speed and 3) how MOA performance might identify individual differences in sporting expertise.  

MOA performance correlated with driving performance where better performance in MOA 

predicted better driving scores (Study 1). This study also found a moderate test-retest reliability for 

the MOA task.  Study 2 found that those that play sports also performed better at MOA suggesting 

the utility of the MOA beyond driving in measuring visual attention in real world skills. We also 

showed that the MOA was related to cognitive processing speed and MOT performance which may 

demonstrate elements of the MOA’s compositional nature and offer some construct validity. We 

recommend that researchers consider using the MOA task to investigate attention for action in 

other applied domains and visual attention research. 

 

Open Practice Statement:  Materials for the MOA task are available on the OSF (Open Science 

Framework) and held under the open source MIT copyright license. All data and R scripts are 

available on the OSF. Link: https://osf.io/3gdcv/?view_only=d400ccc4769149fd9125300d8cb165ce 

No study was preregistered. 

The MIT License (MIT) 

 

Copyright (c) 2020 Andrew Kerr Mackenzie, Paul Richard Cox 

 

Permission is hereby granted, free of charge, to any person obtaining a copy 

of this software and associated documentation files (the "Software"), to deal 

in the Software without restriction, including without limitation the rights 

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 

copies of the Software, and to permit persons to whom the Software is 

furnished to do so, subject to the following conditions: 

 

The above copyright notice and this permission notice shall be included in 

all copies or substantial portions of the Software. 

 

https://osf.io/3gdcv/?view_only=d400ccc4769149fd9125300d8cb165ce
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THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 

THE SOFTWARE. 
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