1	Title page	
---	------------	--

-
·)
_
_

3	Title of article: Density-dependent modulation of copepod body size and temperature-size
4	responses in a shelf sea Authors:
5	1) Name and last name: Stefano Corona
6	Institution: University of Liverpool, School of Environmental Sciences, Jane Herdman
7	Building, Liverpool, L69 3GP, UK.
8	ORCID ID: 0000-0002-6091-5080
9	Email: stefano.corona@liverpool.ac.uk
10	Contribution: project planning, data acquisition, data analysis and interpretation, paper
11	writing.
12	2) Name and last name: Andrew Hirst
13	Institution 1: School of Animal, Rural and Environmental Sciences, Brackenhurst
14	Campus,
15	Southwell, NG25 0QF, UK
16	Institution 2: Centre for Ocean Life, National Institute for Aquatic Resources, Technical
17	University of Denmark, Kavalergarden 6, 2920, Charlottenlund, Denmark.
18	ORCID ID: 0000-0001-9132-1886

19 Email: <u>andrew.hirst@ntu.ac.uk</u>

20	Contribution: project planning, assistance with statistical analysis, substantial
21	contribution to data interpretation and paper editing
22	3) Name and last name: David Atkinson
23	Institution: Department of Evolution, Ecology and Behaviour, University of Liverpool,
24	Biosciences Building, Liverpool L69 7ZB, U.K.
25	ORCID ID: 0000-0002-9956-2454
26	Email: <u>davida@liverpool.ac.uk</u>
27	Contribution: assistance with statistical analysis, substantial contribution to data
28	interpretation and paper editing
29	4) Name and last name: Angus Atkinson
30	Institution: Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH,
31	UK
32	ORCID ID: 0000-0002-5931-4325
33	Email: <u>aat@pml.ac.uk</u>
34	Contribution: project planning, data acquisition, assistance with both statistical and
35	practical analysis, substantial contribution to data interpretation and paper editing
36	

38	Running head (max 40 characters): Density-dependent controls of copepod body size
39	Keywords (between 5-12): zooplankton; temperature-size response; density dependence;
40	competition for food; climate change; Western Channel Observatory; Acartia clausi; Calanus
41	helgolandicus; Centropages typicus; Oithona similis; Paracalanus parvus; Pseudocalanus
42	elongatus; Temora longicornis.
43	
44	
45	
15	
46	
47	
48	
49	Statement of significance
50	Dear Editor,
E 1	We hereby submit our manuscript entitled "Density dependent modulation of several
21	we nereby submit our manuscript entitled Density-dependent modulation of copepod
52	body size and temperature-size responses in a shelf sea" for consideration in Limnology and
53	Oceanography.

54	Body size is a master trait, strongly influencing many biological rates (feeding, growth,
55	metabolism, reproduction, mortality), and ecological interactions. Body size reduction has also
56	been termed "the third universal response to climatic warming". The prevailing paradigm is that
57	body size responses of ectotherms to warming are governed largely by temperature and size
58	interactions with "bottom up" environmental factors (oxygen or food). Our field study - of 7098
59	adult female copepods across 13 different seasons spanning a 27-year period of warming at a
60	single shelf sea site - challenges this paradigm. We reveal the importance of density-dependent
61	factors
62	(most likely via competition) in modulating body size. Our study, based on the wellcharacterised
63	Plymouth L4 time series site, allows a far more robust and comprehensive interspecies
64	comparison than is possible, for example, by many meta-analyses which collate patchy
65	heterogeneous data on different species, sites and time periods.
66	For all these reasons, we believe that our study is of wide interest to aquatic ecologists
67	who study ectotherm life-history or population responses to environmental change, including
68	climate warming, as well as to those with special interest in impacts on marine zooplankton. This
69	is why we believe Limnology & Oceanography is the best journal for the publication of our
70	paper. We look forward to hearing your response in due course.
71	Abstract

Body size is a fundamental trait in ecology, and body size reduction with increasing temperature
has been termed the third universal response to climate warming. Whereas effects of temperature
and food on phenotypic plasticity of zooplankton adult body size have been investigated,

76 density-dependent effects have been neglected. We measured seasonal changes in the prosome 77 length of 7098 adult females of seven dominant copepod species in 13 years spanning a 27-year 78 period of warming at the L4 time series off Plymouth, UK. The seasonal Temperature-Size (T-S) response varied greatly among species, from reductions of 2.93% of carbon mass $^{\circ}C^{-1}$ for 79 Paracalanus parvus to 10.15% of carbon mass °C⁻¹ for Temora longicornis. Evidence for a 80 81 longterm T-S response was detected in at least two species, supporting the hypothesis that climatic warming leads to smaller adult sizes. April was a crucial month for determining the 82 83 strength of the T-S response. During this month, body size related negatively to total 84 zooplankton abundance. We suggest that the mechanism for this density-dependence is via 85 competition for food and/or intraguild predation, since spring was also the period when the ratio 86 of food biomass to zooplankton biomass was at its lowest. Our study is among the first *in situ* 87 demonstrations of density-dependent effects on the body size of marine zooplankton and shows 88 the need to consider the effect of top-down as well as bottom-up factors on body size in a 89 warming climate.

90

91 Introduction

Body size is a 'master trait', influencing a multitude of physiological and ecological processes
and rates (Kleiber, 1947; Hirst et al., 2014; Andersen et al., 2016). Understanding how body size
is influenced by environmental conditions, including warming, is particularly important, given
that trophic interactions and vital rates are highly size-dependent in many pelagic ecosystems
(Hansen et al., 1994; Cuthbert et al., 2020). The commonly observed plastic phenotypic
response, in which body size at maturity of an ectothermic species declines with increasing

98 developmental temperature, is called the Temperature-Size Rule (Atkinson, 1994). Indeed, 99 smaller adult body size following growth in warmer conditions (a negative TemperatureSize (T-100 S) response) is evident in many multivoltine aquatic invertebrates in laboratory experiments and 101 across thermally varying seasons and latitudes (Lock and McLaren, 1970; Forster et al., 2012; Horne et al., 2017). More broadly, a warming-induced reduction in body size within a 102 103 community is regarded as one of the three universal responses to climate change, along with 104 responses of phenology (seasonal timing of life cycles) and geographical redistribution (Gardner 105 et al., 2011).

106

107 Body size reductions with warming are not only observed under controlled experimental 108 temperatures with food satiation (Lock and McLaren 1970; Lee et al., 2003; Forster et al., 2012), 109 but have been widely documented in thermally variable seasonal environments, often at 110 temperate latitudes (Horne et al., 2016, 2017) and with latitude (Horne et al., 2015). Such correlations between seasonally-varying temperature and the body size of adults is largely 111 112 dependent upon periods in which adult recruitment is significant, and therefore the measured 113 environmental conditions relate closely to those experienced during the juvenile growth phase of 114 the recruiting adults. In many copepod species, in temperate and high latitude environments, 115 recruitment of adults is especially marked between spring and late summer, which has been 116 termed the 'Temperature Dependent Phase' (TDP) (followed by a 'Resting Phase' (RP) in 117 autumn-winter, Hirche et al., 2019).

118

Shifts in copepod body size have the potential to impact upon both their prey and their predators.
Besides temperature, food concentration and predation pressure can also impact growth and
development rates, and the body size achieved by copepod adults (Hall et al., 1976; Abrams and
Rowe, 1996; Bonecker et al., 2011). Indeed, seasonal body size variation is influenced by food
availability not only in copepods (Durbin et al., 1983) but other invertebrates too (Berrigan and
Charnov, 1994). Other factors that relate to the strength of T-S response in copepods include the
feeding mode and taxonomic affiliation of the species (Horne et al., 2016).

126

127 Pelagic copepod species play a pivotal role as grazers of microplankton, and as conduits of 128 energy and material to higher trophic levels, including fish and predatory invertebrates (Banse, 129 1995; Beaugrand et al., 2003). It is still unclear how their seasonal body size distribution varies 130 from year to year, and among species, and how this may change with respect to climate 131 warming. Sea surface temperature has increased significantly worldwide in the last 100 years 132 (IPCC report, 2014). However, climate warming occurs with great inter-annual fluctuations, yet 133 few previous studies have investigated the effects of copepod body size over multiple years 134 (although see e.g. Evans, 1981) and no study has simultaneously considered the T-S response of 135 many species over several years at a single location. To achieve such multi-year, within-site 136 synthesis of species body size responses across a copepod community we investigated seven 137 contrasting copepod species (Acartia clausi, Oithona similis, Paracalanus parvus, 138 Pseudocalanus elongatus, Calanus helgolandicus, Centropages typicus, Temora longicornis) in 139 13 years sampled from a 27-year record at the Plymouth L4 site, an inshore site in the Western 140 English Channel. To have several species measured over so many years allows us to explore both

inter-annual changes in body size and whether such patterns could be related to drivers related toclimate change.

143

144	Previous interpretations of size responses of different species based on meta-analyses across
145	different geographical locations and different decades (e.g. Horne et al., 2016) are potentially
146	complicated by the confounding effects of location-specific environmental factors. These
147	confounding effects make it hard to tease out the various biotic and abiotic factors that shape the
148	T-S response. For example, in addition to bottom-up factors, zooplankton community density has
149	already been shown to be related to increased mortality of copepod early-stages and to decreased
150	population growth, egg production and hatching success rate (Ohman and Hirche, 2001; Franco
151	et al., 2017). However, very little is known about the influence of community abundance in situ
152	on individual copepod body size. We used, for the first time, an extensive dataset from a single
153	location across multiple years to address the following questions: 1) To what degree do the
154	seasonal temperature-size responses of the seven copepod species differ? 2) Do food
155	concentration, long-term temperature anomalies, or both, regulate copepod size changes across
156	years? 3) Are copeped body size and strength of T-S response also governed by factors that
157	depend on zooplankton community density?

158

159

160 Methods

161 All the samples used for this study were taken from the zooplankton time series at Plymouth

162 Station L4 (50°15'N 4°13'W), 13 km SSW of Plymouth, which has been sampled at weekly 163 resolution, weather permitting, since March 1988 by Plymouth Marine Laboratory (Harris, 2010; 164 http://www.westernchannelobservatory.org.uk/). The water is ~54 m deep, which stratifies 165 seasonally, with a thermocline forming typically from about May to September. Surface water 166 temperature typically ranges from about 9°C in winter to 17°C in summer. The study location is 167 affected periodically by freshwater outflow from the rivers Plym and Tamar at Plymouth (Rees 168 et al., 2009). Further details about the Plymouth L4 station and microplankton and zooplankton 169 sampling are reported respectively in Widdicombe et al., (2010) and Atkinson et al.

170 (2015).

171

172 Environmental data

An electronic probe for conductivity, temperature and depth analysis (CTD) is currently used at L4, but sea surface temperature (SST) has been measured consistently throughout the whole time series using a mercury-in-glass thermometer inside a stainless steel bucket of water collected at the surface. For consistency across all our sampling years, we used these latter measurements, which showed close agreements with surface values from the CTD (Atkinson et al. 2015).

178

179 Food data

180 Microplankton, which are used to represent the copepod food variable in our study, have been
181 routinely collected and identified on a near-weekly basis since October 1992. Paired water

182	samples collected from 10m depth were preserved at sea with acid Lugol's iodine and neutral
183	formaldehyde. Samples were analysed at Plymouth Marine Laboratory following the British and
184	European Standard EN 15204:2006 "Water quality - Guidance standard on the enumeration of
185	phytoplankton using inverted microscopy" (Utermöhl technique, more microplankton sampling
186	details in Widdicombe et al., 2010). For this study we used the carbon mass density values
187	(measured as mg C m ⁻³) of diatoms, dinoflagellates, coccolithophorids and <i>Phaeocystis</i> , as well
188	as ciliates and flagellates, from the following copepod data years that had microplankton data
189	availability: 1993, 1997, 2000, 2003, 2005, 2008, 2010, 2012, 2013 and 2014. The flagellate
190	group includes taxa that are nanoplanktonic in size, although only the larger nanoflagellates were
191	counted using the above method. However for simplicity we term our copepod food variable
192	"microplankton" since this group encompasses the size range which the copepods can eat.

194 Zooplankton data

195 Zooplankton have been sampled since 1988. Each sample consisted of two replicate tows made 196 with a WP-2 net (56 cm diameter, 200 µm mesh) towed vertically from a depth of 50 m to the 197 surface. Each plankton sample was fixed in 4% buffered formalin. Laboratory analysis involved 198 counting and identifying large and/or rare taxa in a fraction of the original sample (a half, a 199 quarter or an eighth, depending on the abundance of the original), sub-sampled using a Folsom 200 plankton splitter (Atkinson et al., 2015; Highfield et al., 2010). Each replicate was given an estimated abundance average, measured as individuals m⁻³ (John et al., 2001). The source of the 201 202 dataset used here can be found in Atkinson et al. (2019).

203

For this study, one sample per month from April to October was considered from each of the years 1989, 1991, 1993, 1995, 1997, 2000, 2003, 2005, 2008, 2010, 2013, 2014, 2016. These years were chosen to cover a wide range of temperature conditions between years at L4, with 1991 being the coldest, and 2014 the warmest year. Other years, with intermediate temperature, were chosen in order to provide a wide range of coverage and conditions.

209

210 **Body size measurements**

211 One quarter of each plankton sample was removed and observed under the stereomicroscope in 212 order to identify the first 30 (when possible) adult females of each of the species: Acartia clausi, 213 Oithona similis, Paracalanus parvus, Pseudocalanus elongatus, Calanus helgolandicus, Centropages typicus and Temora longicornis. In the case of C. helgolandicus a small number of 214 215 the congener *Calanus finmarchicus* may have been inadvertently included, as these occur rarely 216 at the site (a median composition of 4% of *C. finmarchicus*, according to Maud et al., 2015). 217 Each individual was photographed with a stereomicroscope digital camera and then processed 218 using the software ImageJ to determine prosome lengths, by measuring from the tip of the 219 cephalothorax to the end of the last pedigerous somite. To avoid erroneous size estimations of C. 220 typicus resulting from broken spines, the end of the prosome was considered not as the tips of its 221 two most posterior lateral spines, but as the mid-point where the prosome articulates with the 222 urosome. In O. similis the end of the prosome is very hard to identify because of its complex 223 structure and reduced size, so, instead, we measured to the connection between the first and the 224 second segment of the urosome, as this is more visible (as done in Sabatini and Kiørboe 1994).

Prosome lengths were converted into estimated carbon mass (µg) using appropriate speciesspecific equations from the published literature (See Table S1). These equations were obtained
from copepods commonly sampled in the North Sea. However, for all analyses we tested both
estimated carbon mass and prosome length, in order to see if different patterns would emerge.

229

230 Determination of temperature-dependence of body size reduction

We defined the TDP for each species as between the month with the largest average size (1st 231 232 generation of copepods of the year) and the month with the smallest average size (last generation 233 of the year). To quantify the relationship within the TDP between mean adult body size in each 234 month and temperature in the previous 30 days, the mean carbon mass values for each species in 235 each month in each year was regressed against mean temperature recorded in the 30 days prior to 236 and including the sample day. We chose 30 days partly to correspond broadly with previous 237 studies on the generation times of the same seven species (Sabatini and Kiørboe, 1994; Irigoien 238 and Harris, 2003; Leandro et al., 2006; Carlotti et al., 2007; Stegert et al., 2007; Dzierzbicka-Głowacka et al., 2011). For fitting the body size-temperature regressions (µg C individual⁻¹ vs. 239 240 °C) we used exponential models as in Horne et al. (2016). The slopes from these exponential 241 regressions were transformed into percentage change in carbon mass per °C as: (exp^{slope} -1) ×100 242 (Forster et al., 2012). These values have a negative value when mass decreases with warming, 243 and a positive value when body mass increases with increasing temperature. 244

245 To assess interannual change in body mass, carbon mass values were transformed into anomaly 246 values i.e., the observed value for a specific month in a given year, minus the mean value for that 247 month across all 13 years. Anomalies of temperature and food biomass concentrations were also 248 determined, but to ascribe these values to the copepod juvenile developmental period they were 249 calculated as mean values over the 30 days prior to the date at which the copepod body sizes 250 were determined. To assess the seasonal effect of food (estimated as the sum of diatoms, dinoflagellates, coccolithophorids, *Phaeocystis*, flagellates and ciliates biomass (mg C m⁻³)) on 251 252 body size, the body mass values (µg C) were plotted against the average concentration of food in 253 the 30 days prior to the sample day. A multiple linear regression model was used to test the 254 effect of food and temperature together ($\log_{10}(\text{Carbon mass}) \sim \text{Temperature} + \text{Food}$). Food data 255 were derived from fewer years (nine years), so the relationships among food, temperature and 256 copepod body size were examined using the same nine sample years across all months.

257

258 To test the relationship between zooplankton density and adult female copepod body size, we 259 first tested for each month the effect of total zooplankton density on carbon mass values of all 260 the 7 copepod species (scaled, centred and pooled together with the z-score method: (value – 261 mean) / standard deviation). The only significant size-density correlation was in April, which had 262 the strongest beta coefficient ($\beta = -0.52$, p < 0.01, n = 81). We therefore regressed body mass 263 values of all copepod species in April against the density (ind m⁻³) of the different groups of 264 zooplankton: 1) gelatinous zooplankton (i.e. cnidarians and ctenophores), 2) holoplanktonic 265 crustaceans, 3) fish larvae, 4) non-gelatinous/non-crustacean holoplankton, and 5) meroplankton. 266 These were all estimated as the mean density in the 30 days prior to the date on which body size

267	was determined. The second variable (holoplanktonic crustacean density) was the strongest and
268	only significant one. We therefore performed species-specific linear regression between carbon
269	mass and holoplanktonic crustacean density, for each month. Another multiple regression was
270	performed to assess the effect of holoplanktonic crustacean density, temperature and food on
271	copepod body size in April. In all multiple regressions we checked the collinearity of each
272	independent variable (those with a Variance Inflation Factor greater than 5 were discarded, as
273	suggested in James et al., 2017).

275 **Results**

276 Seasonal variation in adult body size

277 A total of 7098 adult females were measured from the seven copepod species studied. The 278 duration of the Temperature Dependent Phase (TDP) differed slightly among the species: this 279 period was from April to October for Acartia clausi, Oithona similis, Paracalanus parvus, 280 Pseudocalanus elongatus, and from May to October for Calanus helgolandicus, Centropages 281 typicus, Temora longicornis (Figure 1). In each species, body mass showed a strong significant 282 negative correlation with temperature, being weakest in *Paracalanus parvus* ($R^2 = 0.25$, 283 compared to 0.48-0.82 for the other species; Figure 2). Copepod carbon mass variation was 284 always better explained by temperature than by food biomass (as judged by the outcomes of the 285 models in Table 1).

286

287 Inter-annual variation in copepod adult body size

288 Simple linear regressions between monthly adult carbon mass and year were never significant 289 (no evident increase or decrease overall over years) for any species. However, any potential body 290 size reduction driven by climate change is likely to be obscured by great inter-annual fluctuations 291 in warming at the L4 site over time (Atkinson et al., 2015), including a lack of correlation 292 between warming anomalies in one season versus another season. For instance, temperature 293 during summer at L4 is not significantly correlated with the temperature in the preceding spring 294 $(R^2 = 0.09; p = 0.08, n = 31)$. Therefore, relatively colder summers may sometimes follow 295 relatively warmer springs and vice versa. For this reason, monthly anomaly values of carbon 296 mass, temperature and food biomass across years were used to assess long-term changes in these 297 variables and their co-dependence in each of the copepod species. Monthly carbon mass 298 anomalies were negatively related to monthly temperature anomalies for: Acartia clausi and 299 *Centropages typicus* as shown in Figure S1 (Suppl. Information), revealing the existence of an 300 inter-annual T-S response along with the seasonal one. No species showed significant 301 regressions between their body mass anomaly and food biomass anomaly.

302

In April, the only month that showed a significant relationship between body size of all species pooled and total zooplankton density, effects of densities of different groups of zooplankton on the overall copepod carbon mass (z-scores) showed that holoplanktonic crustacean density was the strongest and only significant explanatory variable ($\beta = -0.69$, p < 0.05). Across the seven copepod species and seven months (49 combinations) examined, significant correlations were found between log₁₀ of adult body carbon mass of a given copepod species and log₁₀ crustacean

309	holoplankton density in eight cases: six were confined to April (all species except A. clausi) and
310	one in October (Calanus helgolandicus). All these seven body mass-holoplankton density
311	relationships were negative (Figure 3), accounting for between 47 and 80% of the variance in log
312	adult copepod body carbon mass in April, and 38% in October (Figure 3).
313	
314	
315	Discussion
316	Seasonal T-S response and taxonomic differences
317	
318	This study represents one of the most comprehensive comparisons of seasonal and inter-annual
319	shifts in body size of multiple copepod species at a single site, based on 7098 individuals

320 measured. Indeed, this work allows the assessment of pelagic copepod body sizes from a single 321 location and hence with similar environmental conditions and annual temperature range (~ 10 322 °C), which makes the comparison across species much easier than in previous meta-analyses, in 323 which different species had experienced different environments (Horne et al., 2016). Firstly, we 324 assessed that the TDP of our species started around April or May (depending on the species) and 325 generally terminated around October, similar to what was shown in previous in situ analyses (Hirst et al., 1999; Horne et al., 2016; Cornwell et al., 2018). During the rest of the year (the so-326 327 called 'Resting Phase', set roughly between November and March) there appears to be little or 328 no recruitment to the adult stage (Djeghri et al., 2018), hence, adult size in the resting phase is a 329 legacy of conditions at the end of the previous TDP, possibly coupled with any size-dependent 330 adult mortality during the resting phase. The 'Transition Phase' then follows, usually in the first

331	months of Spring (March, April, May), when a mix of older but smaller individuals (from the
332	resting phase), and newly recruited, larger, individuals are found (Hirche et al., 2019).
333	

334	Among our seven species, the range in T-S strength (based on monthly size and temperature
335	values, across the TDP over 13 years) was wide: strongest values were ~-8% to ~-10% change in
336	C mass °C ⁻¹ for Acartia clausi, Centropages typicus, Pseudocalanus elongatus and Temora
337	longicornis. This last species had the most intense T-S response (-10.15% change in C mass °C ¹),
338	with body size in October roughly half that at the start of the TDP. This reduction of body mass
339	may be associated with a change in copepod fitness, feeding rates and food web connectivity
340	(Hansen et al., 1994; Rice et al., 2014). The weakest T-S response (-2.93% change in C mass °C-
341	¹), demonstrated in <i>Paracalanus parvus</i> (Order Calanoida), was considerably weaker than that of
342	the other Calanoida, while Oithona similis, the only non-calanoid, had the second weakest T-S
343	response (-3.33% change in C mass °C ⁻¹). These marked differences concur with the weak T-S
344	response in both O. similis and P. parvus observed by Horne et al., (2016). This latter species
345	also showed the most inconsistent T-S relationship, with the lowest R^2 (0.25, see Table 1).
346	However, the seasonal body length distribution of <i>P. parvus</i> observed by Riccardi and Mariotto
347	(2000) and Hirche et al. (2019) was similar to the one we have found. A difference in the T-S
348	response strengths between Cyclopoida and Calanoida species, although not statistically
349	supported here (possibly because of limited number of taxa), has previously been observed by
350	Horne et al. (2016), who suggested this may relate to their different feeding strategies (active
351	filtering in calanoids vs. ambush-feeding in cyclopoids) and the difference in body mass scaling
352	of physiological rates between these different feeding types.

354 Effects of food concentration on copepod body size

355 The models showed that, seasonally, temperature was always a stronger predictor of copepod 356 body size than was food biomass (Table 2). It is possible, however, that our use of measured 357 body lengths rather than actual masses or biovolumes may have led to our overlooking effects of 358 food concentration on changes in body condition, hence actual carbon mass values. As Klein 359 Breteler and Gonzalez (1988) found in laboratory experiments, food is likely to affect more the 360 "fatness" of a copepod than its prosome length. However, the direct C mass determinations made 361 from L4 (Fig. 6 in Pond et al. 1996) show that even for the larger lipid-storing species Calanus *helgolandicus* females have a -8.9% change in µg C °C⁻¹ (95% C.I.: -11, -6.8) during the TDP. 362 363 This does not differ significantly from the estimates in our study based on prosome length-mass 364 conversion (-6.2%; 95% C.I.: -7.5, -4.9).

365

366 Inter-annual body mass variation

367 We tested species-specific size anomaly against temperature anomaly from each individual 368 month and year, to see how the copepod body size would react in the same month of another 369 year with anomalous temperature (Figure S1). Only two species (Acartia clausi and Centropages 370 *typicus*) showed a significant negative correlation between carbon mass anomaly and 371 temperature anomaly. This shows the existence of a long-term T-S response in at least these two 372 species. Although R^2 values were < 0.2, in evolutionary terms, even low effect size values may 373 still be relevant and significant. High scatter may also have been caused by the low number of 374 years (13), lag effects, food seasonality, and the high scatter of the SST - time relationship at L4

375 itself ($R^2 = 0.17$, Atkinson et al., 2015). Temperature increases are apparent in the English 376 Channel, although with a shallow slope $(0.02^{\circ} \text{ C} \text{ increase per year, Atkinson et al., 2015})$ and 377 great inter-annual variability, making climate-change impacts on the plankton community more 378 challenging to detect. Moreover, body size in April was not modulated by temperature or food, 379 and as described in the next section, density-dependent effects became more important then. 380 When April samples were removed, two further species showed significant and negative long-381 term T-S responses: *Pseudocalanus elongatus* and *Oithona similis*. Therefore, it is reasonable to 382 hypothesize a generalized long-term T-S response in most of the copepod species, consistent 383 with similar findings in Acartia tonsa and A. hudsonica by Rice et al., (2014) and in fish by Daufresne et al. (2009). A long-term decrease in body size, driven by global warming, would 384 385 have major implications for food web structure and function, given the strong size-structuring 386 (Webb, 2012) and importance of copepods in these food webs (Ware and Thomson, 2005). 387

388 Copepod T-S response strength relates to zooplankton density

To date, very few studies (e.g. Cyr and Pace 1993) have explored how body size of copepods may be impacted by the abundance of their own species or of the whole community, and this topic has been historically underexamined in the marine environment. Our analysis of large numbers of individuals, sampled through multiple seasons at a single site, showed a strong relationship between copepod size and holoplankton density (in April), providing new evidence that density-dependent controls on copepod body size can operate *in situ*.

395

396 Are the changes in copepod body size reflecting density-dependent changes in competition or 397 predation? The timing of the strong relationship with zooplankton density, being found only in 398 April, may provide some clues to the cause. In the spring months of March and April, food levels 399 were still low and increasing, whereas their grazers had already reached fairly high biomasses (Fig. 4; Atkinson et al. 2015). The period preceding and including April thus experienced a low 400 401 food concentration to grazer biomass ratio (Fig. 4), pointing to the potential for increased 402 competition for food at this time. The ensuing competition for food may provide one explanation 403 for the reduced copepod size with increased community density in April.

404

405 An alternative or additional explanation for the density-dependent effects observed in April may 406 relate to direct predation. Work at L4 has increasingly emphasized the role of predation in 407 regulating copepod abundance and phenology (e.g.: Bonnet et al., 2005; Atkinson et al. 2015; 408 Cornwell et al 2018). Some of the food consumed by adult copepods is in fact often early stages 409 of copepods (Irigoien and Harris, 2006; Boersma et al., 2014; Djeghri et al., 2018), as well as 410 eggs (Hirst et al., 2007; Maud, 2017; Cornwell et al., 2018). Ohman and Hirche (2001) suggested that cannibalism could even be a form of population self-limitation from their study on Calanus 411 412 finmarchicus, and likewise Maud (2018) concluded the same for C. helgolandicus at L4. This 413 intraguild/cannibalistic predation on young stages would explain a reduced size at adulthood 414 according to Abrams and Rowe (1996), who affirm that high mortality rates on early stages 415 favour earlier maturity (hence smaller size at adult). The same phenomenon occurs for fish when 416 exposed to intense fishery activity (Olsen et al., 2004). However, this would imply that juvenile 417 copepods must produce an adaptive plastic response (developmental acceleration) to predation 418 cues during the Transition Phase (April), when exposed to high predation risk. Hence, the

419	intraguild predation hypothesis seems to need several assumptions in order to be sustained,
420	whereas the competition for food appears a simpler explanation. As is apparent in Figure 4,
421	increases in zooplankton abundance at L4 tend to occur well before the spring bloom, a
422	phenological effect seen across a suite of the component taxa including copepods (Atkinson et al.
423	2015). It is possible that the first cohorts of copepods of the TDP (around April) that are highly
424	abundant, when food is relatively scarce, will suffer from a poor diet and reach adulthood at a
425	more reduced size than usual (Durbin and Durbin, 1978; Klein Breteler and Gonzalez, 1988).
426	
427	In this study we observed that the T-S response strength varies substantially among different
428	copepod species. This variation may relate to different thermal sensitivities of mechanisms
429	generating thermal reaction norms for growth and development rates (Verberk et al. 2020).
430	Intriguingly, large differences between species also exist in the two other "universal" responses
431	of copepods to climate change: the phenological response (Atkinson et al., 2015; Mackas et al.,
432	2012) and the distributional change (Chivers et al., 2017). These contrasting responses are also
433	manifested in their long-term population trajectories of the major copepod species. Most have
434	undergone substantial declines in summertime abundance across the NE Atlantic, whereas a few
435	species have increased (Schmidt et al. 2020). It is therefore an urgent priority to explore whether
436	these responses to climate change are inter-related, paying particular attention not just to bottom-
437	up controls, but also to top-down factors.

441

442	References
443	
444	Abrams, P. A., Rowe, L. 1996. The effects of predation on the age and size of maturity of
445	prey. Evolution. 50: 1052. doi: 10.2307/2410646
446	
447	Andersen, K. H. and others 2016. Characteristic sizes of life in the oceans, from bacteria to
448	whales. Annual Review of Marine Science. 8: 217–241. doi: 10.1146/annurev-marine-
449	122414-034144
450	
451	Atkinson, D. 1994. Temperature and organism size - a biological law for ectotherms.
452	Advances in Ecological Research. 25: 1–58. doi: 10.1016/S0065-2504(08)60212-3
453	
454	Atkinson, A. and others 2015. Questioning the role of phenology shifts and trophic
455	mismatching in a planktonic food web. Progress in Oceanography. 137: 498–512. doi:
456	10.1016/j.pocean.2015.04.023
457	
458	Atkinson, A., McEvoy, A.J., and Lilley, M.K.S. 2019. Plymouth L4 time series 1988-2017 of
459	zooplankton abundance, biomass and traits. British Oceanographic Data Centre.

460	https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/827b5179-90a1-
461	<u>69d8-e053-6c86abc06f55/</u>
462	
463	Banse, K. 1995. Zooplankton: Pivotal role in the control of ocean production. ICES Journal
464	of Marine Science. 52: 265–277. doi: 10.1016/1054-3139(95)80043-3
465	
466	Beaugrand, G., Brander, K. M., Lindley, J. A., Souissi, S., Reid, P. C. 2003. Fish stocks
467	connected to calanoid copepods. Nature. 426: 661–664. doi: 10.1098/rspb.2013.3350
468	
469	Berrigan, D. and Charnov, E. L. 1994. Reaction norms for age and size at maturity in
470	response to temperature: a puzzle for life historians. Oikos. 70: 474-478. doi:
471	10.2307/3545787
472	
473	Boersma, M., Wesche, A., Hirche, H. J. 2014. Predation of calanoid copepods on their own
474	and other copepods' offspring. Marine Biology. 161: 733-743. doi: 10.1007/s002270132373-
475	7
476	
477	Bonecker, C. C., de Azevedo, F., Simões, N. R. 2011. Zooplankton body-size structure and
478	biomass in tropical floodplain lakes: relationship with planktivorous fishes. Limnologica
479	Brasiliensia. 23: 217–228. doi: 10.1590/s2179-975x2012005000005
480	
481	Bonnet, D. et al., 2005. An overview of Calanus helgolandicus ecology in European waters.
482	Progress in Oceanography. 65: 1-53. https://doi.org/10.1016/j.pocean.2005.02.002

484	Breteler, W. C. M. K., Fransz, H. G., Gonzalez, S. R. 1982. Growth and development of four
485	calanoid copepod species under experimental and natural conditions. Netherlands Journal of
486	Sea Research. 16: 195-207. doi: 10.1016/0077-7579(82)90030-8
487	
488	Carlotti, F., Bonnet, D., and Halsband-Lenk, C. 2007. Development and growth rates of
489	Centropages typicus. Progress in Oceanography. 72: 164–194. doi:
490	10.1016/j.pocean.2007.01.011
491	
492	Chivers, W. J., Walne, A. W., Hays, G. C. 2017. Mismatch between marine plankton range
493	movements and the velocity of climate change. Nature Communications. 8: 1–8. doi:
494	10.1038/ncomms14434
495	
496	Cornwell, L. E. and others 2018. Seasonality of Oithona similis and Calanus helgolandicus
497	reproduction and abundance: contrasting responses to environmental variation at a shelf site.
498	Journal of Plankton Research. 40: 295-310. doi: 10.1093/plankt/fby007
499	
500	Cuthbert, R. N. and others 2020. Influence of intra- and interspecific variation in predator-
501	prey body size ratios on trophic interaction strengths. Ecology and Evolution. 10: 5946–
502	5962. doi: 10.1002/ece3.6332
503	
504	Cyr, H. and Pace, M., L. 1993. Allometric theory: extrapolations from individuals to
505	communities. Ecology. 74: 1234–1245. doi: 10.2307/1940493

506	
507	Daufresne, M., Lengfellner, K., Sommer, U. (2009). Global warming benefits the small in
508	aquatic ecosystems. PNAS. 4.
509	
510	Djeghri, N., Atkinson, A., Fileman, E. S., Harmer, R. A., Widdicombe, C. E., McEvoy, A. J.,
511	Cornwell, L., Mayor, D. J. 2018. High prey-predator size ratios and unselective feeding in
512	copepods: A seasonal comparison of five species with contrasting feeding modes. Progress in
513	Oceanography. 165: 63–74. doi: 10.1016/j.pocean.2018.04.013
514	
515	Durbin, G. E. and Durbin, G. A. 1978. Length and weight relationships of Acartia clausi
516	from Narragansett Bay. Limnology and Oceanography. 23: 958-969
517	
518	Durbin, E. G., Durbin, A. G., Smayda, T. J., Verity, P. G., 1983. Food limitation of
519	production by adult Acartia tonsa in Narragansett Bay, Rhode Island. Limnology and
520	Oceanography. 28: 1199–1213
521	
522	Dzierzbicka-Głowacka, L., Lemieszek, A., Zmijewska, I. M. 2011. Development and growth
523	of temora <i>Temora longicornis</i> : Numerical simulations using laboratory culture data*.
524	Oceanologia. 53: 137–161. doi: 10.5697/oc.53-1.137
525	
526	Evans, F. 1981. An investigation into the relationship of sea temperature and food supply to
527	the size of the planktonic copepod Temora longicornis Müller in the North Sea.
528	Estuarine, Coastal and Shelf. Science. 13: 145–158. doi: 10.1016/S0302-3524(81)80072-2

530	Forster, J., Hirst A. G., Atkinson, D. 2012. Warming-induced reductions in body size are
531	greater in aquatic than terrestrial species. Functional Ecology. 109: 19310–19314. doi:
532	10.1073/pnas.1210460109
533	
534	Franco, S. C., Augustin, C. B., Geffen, A. J., Dinis, M. T. 2017. Growth, egg production and
535	hatching success of Acartia tonsa cultured at high densities. Aquaculture. 468: 569–578. doi:
536	10.1016/j.aquaculture.2016.10.044
537	
538	Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L., and Heinsohn, R. 2011. Declining body
539	size: A third universal response to warming? Trends in Ecology and Evolution. 26:
540	285–291. doi: 10.1016/j.tree.2011.03.005.
541	
542	Hall, D. J., Threlkeld, S. T., Burns, C. W., Crowley, P. H. 1976. The size-efficiency
543	hypothesis and the size structure of zooplankton communities. Annual Review of Ecology
544	and Systematics. 71: 177–208. doi: 10.1146/annurev.es.07.110176.001141
545	
546	Hansen, B., Bjornsen, P.K., Hansen, P.J. 1994 The size ratio between planktonic predators
547	and their prey. Limnology and Oceanography. 39 : 395–403. doi: 10.4319/lo.1994.39.2.0395
548	
549	Harris, R. 2010. The L4 time-series: The first 20 years. Journal of Plankton Research. doi:
550	10.1093/plankt/fbq021 32: 577-583. doi: 10.1093/plankt/fbq021
551	

552	Highfield, J. M., Eloire, D., Conway, D. V. P., Lindeque, P. K., Attrill, M. J., Somerfield, P.
553	J. 2010. Seasonal dynamics of meroplankton assemblages at station L4. Journal of Plankton
554	Research. 32: 681–691. doi: https://doi.org/10.1093/plankt/fbp139
555	
556	Hirche, H. J., Boersma, M., Wiltshire, K.H. 2019. Partial decoupling from the temperature
557	size rule by North Sea copepods. Marine Biology. 166: 58. doi: 10.1007/s00227-019-3503-7
558	
559	Hirst, A., Sheader, M., Williams, J. 1999. Annual pattern of calanoid copepod abundance,
560	prosome length and minor role in pelagic carbon flux in the Solent, UK. Marine Ecology
561	Progress Series. 177: 133–146. doi: 10.3354/meps177133
562	
563	Hirst, A. G., D. Bonnet, R. P. Harris. 2007. Seasonal dynamics and mortality rates of
564	Calanus helgolandicus over two years at a station in the English Channel. Marine Ecology
565	Progress Series. 340: 189-205. doi: doi:10.3354/meps340189
566	
567	Hirst, A.G., Glazier, D.S. Atkinson, D. 2014. Body shape shifting during growth permits tests
568	that distinguish between competing geometric theories of metabolic scaling. Ecology Letters.
569	17 : 1274–1281. doi: https://doi.org/10.1111/ele.12334
570	
571	Horne, C. R., Hirst, A. G., Atkinson, D. 2015. Temperature-size responses match
572	latitudinalsize clines in arthropods, revealing critical differences between aquatic and
573	terrestrial species. Ecology letters. 18: 327-335. doi: https://doi.org/10.1111/ele.12413
574	

575	Horne, C. R., Hirst, A. G., Atkinson, D., Neves, A., Kiørboe, T. 2016. A global synthesis of
576	seasonal temperature-size responses in copepods. Global Ecology and Biogeography. 25:
577	988–999. doi: 10.1111/geb.12460
578	
579	Horne, C. R., Hirst, A. G., Atkinson, D. 2017. Seasonal body size reductions with warming
580	covary with major body size gradients in arthropod species. Proceedings of the Royal Society
581	B: Biological Sciences. 284. doi: 10.1098/rspb.2017.0238
582	
583	Irigoien, X., Harris, R. P. 2003. Interannual variability of Calanus helgolandicus in the
584	English Channel. Fisheries Oceanography. 12: 317–326. doi: 10.1046/j.1365-
585	2419.2003.00247.x
586	
587	Irigoien, X., Harris., R. P. 2006. Comparative population structure, abundance and vertical
588	distribution of six copepod species in the North Atlantic: Evidence for intraguild predation?
589	Marine Biology Research. 2: 276-290. doi: 10.1080/17451000600865321
590	
591	James, G., Witten, D., Hastie, T., Tibshirani, R., 2017. An introduction to statistical learning:
592	with applications in R, 1 st ed. Springer.
593	
594	John, E. H., Batten, S. D., Harris, R. P., Graeme, C. H. 2001. Comparison between
595	zooplankton data collected by the Continuous Plankton Recorder survey in the English
596	Channel and by WP-2 nets at station L4, Plymouth UK. Journal of Sea Research. 46: 223232.
597	doi: 10.1016/S1385-1101(01)00085-5

599	Kleiber, M. 1947. Body size and metabolic rate. Physiological Reviews. 27: 511–541.
600	
601	Klein Breteler, W. C. M. K., Gonzalez, S. R., 1988. Influence of temperature and food
602	concentration on body size, weight and lipid content of two Calanoid copepod species.
603	Hydrobiologia, 167/168, 201–210. https://doi.org/10.1007/BF00026306
604	
605	Leandro, S., Queiroga, H., Rodríguez-Graña, L., Tiselius, P. 2006. Temperature-dependent
606	development and somatic growth in two allopatric populations of Acartia clausi Copepoda:
607	Calanoida. Marine Ecology Progress Series. 322: 189–197. doi: 10.3354/meps322189
608	
609	Lee, H. W., Ban, S., Ikeda, T., Matsuishi, T. 2003. Effect of temperature on development,
610	growth and reproduction in the marine copepod Pseudocalanus newmani at satiating food
611	condition. Journal of Plankton Research. 25: 261–271. doi: 10.1093/plankt/25.3.261
612	
613	Lock, A. R., McLaren, I. A. 1970. The effect of varying and constant temperatures on the size
614	of a marine copepod. Limnology and Oceanography. 15: 638–640.
615	
616	Mackas, D. L. and others 2012. Changing zooplankton seasonality in a changing ocean:
617	Comparing time series of zooplankton phenology. Progress in Oceanography. 97/100: 31–62.
618	doi: 10.1016/j.pocean.2011.11.005
619	

620	Maud, J. L., Atkinson, A., Hirst, A. G., Lindeque, P. K., Widdicombe, C. E., Harmer, R. A.,
621	McEvoy, A. J., Cummings, D. G. (2015). How does Calanus helgolandicus maintain its
622	population in a variable environment? Analysis of a 25-year time series from the English
623	Channel. Progress in Oceanography. 137: 513–523. doi:
624	http://dx.doi.org/10.1016/j.pocean.2015.04.028
625	
626	Maud, J. L. 2017. Calanus helgolandicus in the western English Channel: population
627	dynamics and the role of mortality. Ph.D. thesis. Queen Mary, University of London.
628	
629	Maud, J. L., Hirst, A. G., Atkinson, A., Lindeque, P. K., McEvoy, A. J. 2018. Mortality of
630	Calanus helgolandicus: Sources, differences between the sexes and consumptive and
631	nonconsumptive processes. Limnology and Oceanography. 63: 1741–1761. doi:
632	10.1002/lno.10805
633	
634	Ohman, M. D., Hirche, H. J. 2001. Density-dependent mortality in an oceanic copepod
635	population. Nature. 412: 638-641. doi: 10.1038/35088068
636	
637	Olsen, E. M., Heino, M., Lilly, G. R., Morgan, M. J., Brattey, J., Ernande, B., Dieckmann, U.
638	2004. Maturation trends indicative of rapid evolution preceded the collapse of northern cod.
639	Nature. 428: 932–935. doi: 10.1038/nature02430
640	
641	Pond, D., Harris, R., Head, R., Harbour, D., 1996. Environmental and nutritional factors
642	determining seasonal variability in the fecundity and egg viability of Calanus helgolandicus

643	in coastal waters off Plymouth, UK. Marine Ecology Progress Series. 143: 45-63.
644	https://doi.org/10.3354/meps143045
645	
646	Rees, A. P., Hope, S. B., Widdicombe, C. E., Dixon, L. J., Woodward, M. E. S., 2009.
647	Alkaline phosphatase activity in the western English Channel: elevations induced by high
648	summertime rainfall. Estuarine, Coastal and Shelf Science. 81: 569–574. doi:
649	10.1016/j.ecss.2008.12.005
650	
651	Riccardi, N., Mariotto, L. 2000. Seasonal variations in copepod body length: A comparison
652	between different species in the lagoon of Venice. Aquatic Ecology. 34: 243-
653	252. doi: 10.1023/A:1009971507797
654	
655	Rice, E., Dam, H. G., Stewart, G., 2014. Impact of Climate Change on Estuarine
656	Zooplankton: Surface Water Warming in Long Island Sound Is Associated with Changes in
657	Copepod Size and Community Structure. Estuaries and Coasts. 38: 13–23.
658	https://doi.org/10.1007/s12237-014-9770-0.
659	
660	Sabatini, M. and Kiørboe, T., 1994. Egg production, growth and development of the
661	cyclopoid copepod Oithona similis. Journal of Plankton Research. 16: 1329-1351. doi:
662	10.1093/plankt/16.10.1329
663	

664	Schmidt, K. and others, 2020. Increasing picocyanobacterial success in shelf waters
665	contributes to long-term food web degradation. Global Change Biology. 26: 5574-5587. doi:
666	10.1111/gcb.15161
667	
668	Stegert, C., Kreus, M., Carlotti, F., Moll, A. 2007. Parameterisation of a zooplankton
669	population model for Pseudocalanus elongatus using stage durations from laboratory
670	experiments. Ecological Modelling. 206: 213-230. doi: 10.1093/plankt/fbr084
671	
672	Verberk, W. C. E. P., Atkinson, D., Hoefnagel, K. N., Hirst, A. G., Horne, C. R., Siepel, H.
673	2020. Shrinking body sizes in response to warming: explanations for the temperature-size
674	rule with special emphasis on the role of oxygen. Biological Reviews. doi:
675	10.1111/brv.12653
676	
677	Ware, D. M. and Thomson, R. E. 2005. Ecology: Bottom-up ecosystem trophic dynamics
678	determine fish production in the northeast pacific. Science. 308: 1280–1284. doi:
679	10.1126/science.1109049
680	
681	Webb, T. J. 2012. Marine and terrestrial ecology: Unifying concepts, revealing differences.
682	Trends in Ecology and Evolution. 27: 535–541. doi:
683	
684	Widdicombe, C. E., Eloire, D., Harbour, D., Harris, R. P., Somerfield, P. J. 2010. Long-term
685	phytoplankton community dynamics in the Western English Channel. Journal of Plankton
686	Research. 32: 577-583. doi: 10.1093/plankt/fbp127

688 Acknowledgments

690	First, we thank the whole Plymouth Marine Laboratory community for welcoming and hosting S.
691	Corona during his copepod body size analysis. We thank everyone who contributed to the
692	sampling and analysis of plankton and environmental data at Station L4, from 1988 to today,
693	along with everyone who will keep doing so in future. In particular, we want to thank Andrea
694	McEvoy for training and helping S. Corona with the challenging task of copepod identification,
695	with proper methods of preparation and conservation of delicate zooplankton samples. Last but
696	not least we deeply thank the reviewers and editors for their helpful contribution in the
697	improvement of our paper. A. Atkinson's contribution was funded by the UK Natural
698	Environment Research Council (NERC) through its National Capability Long-term Single
699	Centre Science Programme, Climate Linked Atlantic Sector Science, grant number
700	NE/R015953/1, contributing to Theme 3.1—Biological dynamics in a changing Atlantic and 4—
701	Fixed Point Observations (Western Channel Observatory). The University of Liverpool funded
702	the Postgraduate Research Studentship of S. Corona.
703	

Conflict of interest

705 None declared

708	Table 1: Multiple linear regressions coefficients: Standardized beta coefficients (β_T refers to
709	temperature coefficient and β_F refers to food biomass coefficient, in bold when significant) R^2
710	and p values of each model. The regression equations with actual units for each species are here
711	reported: A. clausi: $\log_{10}M = 2.75 - 0.08T + 3 \times 10^{-4}F$; P. parvus: $\log_{10}M = 1.74 - 0.02T - 0.07F$;
712	<i>P. elongatus:</i> $\log_{10}M = 2.83 - 0.07T - 0.05F$; <i>O. similis:</i> $\log_{10}M = -0.30 - 0.04T + 0.05F$; <i>C.</i>
713	<i>helgolandicus:</i> $\log_{10}M = 4.61 - 0.05T + 0.06F$; <i>C. typicus:</i> $\log_{10}M = 3.26 - 0.07T + 0.07F$; <i>T.</i>
714	<i>longicornis:</i> $log_{10}M = 3.70 - 0.09T + 0.02F$ (note that <i>M</i> refers to body mass measured as µg C,
715	T refers to temperature measured as the average $^{\circ}$ C of sea surface in the 30 days before sampling
716	day, and F refers to food biomass measured as the average mg C m ⁻³ in the 30 days before
717	sampling day).

RESPONSE	Log10(Body mass)			
PREDICTOR	Temperature +	Food biomass		
	$\beta_{\rm T}$	$\beta_{\rm F}$	R^2	р
Acartia clausi	-0.90	0.00	0.81	< 0.01
Paracalanus parvus	-0.41	-0.26	0.30	< 0.01
Pseudocalanus elongatus	-0.79	-0.14	0.73	< 0.01
Oithona similis	-0.82	0.27	0.54	< 0.01
Calanus helgolandicus	-0.77	0.18	0.48	< 0.01
Centropages typicus	-0.90	0.18	0.74	< 0.01
Temora longicornis	-0.76	0.04	0.54	< 0.01
Average	-0.76	0.04		

Month

Figure 1: Seasonal body mass distribution (µg C ind⁻¹) of adult females for each of the seven
pelagic copepod species at the L4 site. The TDP of each species is reported in the box on the
bottom-right, along with species-specific mean prosome length and mean body mass values (both
with corresponding ± standard deviations) across all samples.

Figure 2: Exponential regressions (solid lines) between monthly average body mass (μ g C ind⁻¹) values and temperature (°C), across all 13 years studies. On each plot the TSR is also reported (expressed as % change in μ g C °C⁻¹). Values for each month are indicated by the different symbols, see key in the lowest part of the figure. In the box on the bottom-right, each exponential TSR regression is reported along with its corresponding R^2 value (note: M = body mass, T = temperature.

733

Figure 3: Monthly mean body mass of the adult females of the 7 copepod species (μ g C ind⁻¹) plotted against holoplanktonic crustacean abundance (ind m⁻³). Associated R² values are reported, solid black lines represent significant regressions. Note that both the x and y scales are on a log₁₀ scale.

737

Figure 4: a) Zooplankton biomass (mg C m⁻³) distribution across months for five major functional 738 739 groups (see key; note that "holoplanktonic crustaceans" is the group whose density in April is inversely correlated with copepod body mass in April (Figure 3); "other holoplankton" refers to non-740 crustacean and non-gelatinous holoplankton); b) food (microplankton) biomass (mg C m⁻³) across 741 742 months for six major functional groups (see key); c) food/zooplankton biomass ratio (black solid 743 lines) and sea surface temperature (red dashed lines) across months, vertical dashed lines indicate the 744 boundaries of the TDP April- October (yellow vertical line) and the TDP May-October (blue vertical 745 line). Plots are based on the whole L4 time-series (1988-2019).