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Abstract 

Interspecific competition and resource partitioning are strong evolutionary forces, 

shaping communities. The mechanisms of coexistence and competition among 

species have been a central topic within community ecology, with a particular focus 

on mammalian carnivore community research. However, the influence of humans 

and their activities on those processes is still poorly understood. This thesis first 

reviews the existing literature on spatial, temporal, and trophic niche partitioning in 

carnivore communities. After extracting any reported effects of human disturbance, 

a theoretical framework is proposed, covering the three main outcomes of the 

impact of humans on resource partitioning, intraguild competition and community 

structure. Then, generalized linear mixed models are employed to evaluate the 

relative influence of a range of human, meteorological and ecological variables on 

the coefficients of temporal overlap within carnivore communities on a global scale, 

using data extracted from the existing literature. Findings show that the regulation 

of activity pattern is subject to strong site-specificity, and that temporal avoidance 

of both humans and competitors may be regulated by short, reactive responses, 

rather than long-term changes in behaviour. In addition, the methodology and 

reasoning employed by the currently available literature to calculate the coefficient 

of temporal overlap between pairs of species are evaluated. Key guidelines and 

recommendations are provided to future studies to develop an improved and 

standardised research practice on the study of animal activity pattern and temporal 

partitioning. Finally, multispecies occupancy models are used on secondary raw 

camera trap data to explore the fine-scale patterns of co-occurrence between red 
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foxes and domestic cats within a rural–urban gradient in England, in relation to 

anthropogenic features in the landscape. This thesis fills an important knowledge 

gap on the effects of human pressures on carnivore communities, by focusing on the 

impacts on niche partitioning and coexistence. The research questions are addressed 

through an innovative gradient of spatial scales, human disturbance types, 

ecosystems and carnivore communities, thus yielding findings of global value. This 

study presents evidence that the disturbance humans impose on carnivores is 

reflected on their behaviour, which can modify interspecific interactions within the 

carnivore communities, and have cascading effects on community structure and 

ecosystem functioning. 
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Chapter 1 

 

General introduction 
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1.1.   Welcome to the Anthropocene 

Human encroachment into natural ecosystems is increasing at an alarming rate 

(Geldmann et al. 2014, Venter et al. 2016, Watson et al. 2016), and an estimated 60 to 

80% of terrestrial land now faces some level of anthropogenic disturbance (Ellis & 

Ramankutty 2008, Watson et al. 2016, Ward et al. 2020). The Anthropocene refers to 

the current epoch, in which global human activities have become the dominant 

influence on climate and the environment (Crutzen & Stoermer 2000). The 

unrelenting increase in global human footprint severely impacts wildlife, and is 

responsible for what has been widely accepted as the start of the sixth mass 

extinction (Ceballos et al. 2015, 2017, Di Marco et al. 2018). Two dualistic 

conservation models have been proposed to reduce the deleterious effects of 

humans on wildlife, akin to the land-sparing versus land-sharing models used 

within a broader biodiversity conservation context (Green et al. 2005, Phalan et al. 

2011, Kremen & Merenlender 2018). The separation model seeks to isolate people 

and nature by confining endangered wildlife to highly managed protected areas or 

to remote, uninhabited areas (e.g. Wilson 2016). However, this paradigm requires 

large wilderness regions, which may be difficult to attain in regions heavily 

colonized by humans (Woodroffe & Ginsberg 1998, Chapron et al. 2014). 

Contrastingly, the coexistence model strives to enable people and wildlife to share 

the landscape at finer spatial scales, whilst minimising human–wildlife conflicts. 

For this strategy to work, anthropogenic habitats and public attitudes need to be 

reshaped to accommodate wildlife and ensure human–wildlife coexistence 

(Rosenzweig 2003, Dickman 2010, Carter & Linnell 2016). 
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In shared landscapes, the alteration of landscapes for human residence or resource 

exploitation, in combination with the direct presence of humans and human 

activities, can give rise to behavioural responses and adaptations of wildlife to 

human disturbance (Sih et al. 2011, Tuomainen & Candolin 2011, Candolin & Wong 

2012, Gaynor et al. 2018, Tucker et al. 2018). In addition, changes in the behaviour of 

one species can influence other species by reshaping population and community 

dynamics (Bolnick et al. 2011). Indeed, human-induced behavioural changes can 

have cascading effects on species interactions, with ecological implications for 

community structure and ecosystem function (Wilson et al. 2020). Thus, to fully 

understand the impact of humans on animal behaviour and communities, we need 

to improve our understanding of how species interact with each other, and how 

humans might influence such interactions. 

1.2.   Competition and coexistence in carnivore communities in a 

natural setting 

According to Hutchinson’s (1957) definition, the range of resources and 

environmental conditions allowing a species to persist in an ecosystem forms its 

ecological niche. The competitive exclusion principle (Gause 1934, Hardin 1960) 

states that two interacting species occupying similar ecological niches, and therefore 

competing for the same resources, cannot co-exist in the long term. Interspecific 

competition may result in the exclusion of the least competitive species from the 

habitat by its superior competitor, or in the local extinction of one or more species. 

Interspecific competition can also lead to niche differentiation, which facilitates 

coexistence among sympatric species. Indeed, the limiting similarity theory of 
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MacArthur & Levins (1967) highlights the existence of a threshold in niche 

similarity under which stable coexistence is possible. Thus, to achieve coexistence, 

competing species can segregate one or more dimensions of their ecological niche, a 

process commonly referred to as resource partitioning (or niche partitioning; 

Schoener 1974a). For instance, populations of coyotes —Canis latrans— and bobcats 

—Lynx rufus— in Florida can facilitate sympatry by segregating their diets (coyotes 

prey primarily upon large ungulates and complement their diets with large 

quantities of fruits, whereas bobcats primarily consume rodents and lagomorphs), 

and by having non-overlapping core areas in their home ranges (Thornton et al. 

2004). Interspecific competition and resource partitioning regulate the strength of 

interactions among species, and are significant evolutionary forces shaping 

community structures (Schoener 1983, Wisheu 1998). In fact, the differentiations in 

ecological niches observed in contemporary competing species may well be the 

result of a stronger interspecific competition in the past (i.e. the ghost of 

competition past; Connell 1980). 

Interspecific competition has been identified as a key mechanism structuring 

mammalian carnivore guilds (e.g. Linnell & Strand 2000, Caro & Stoner 2003, 

Hunter & Caro 2008). As is the case for all animals, two major forms of competitive 

interactions exist among carnivores: the first, exploitation competition, occurs when 

two species compete for the same resource indirectly (e.g. consumption of similar 

prey species; Hayward & Kerley 2008); the second, interference competition, 

happens when one species prevents another species from obtaining a resource 

directly (e.g. aggressive interactions near kill sites; Creel & Creel 1996).  
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In the carnivore guild, interference interactions can directly result in the injury or 

death of one of the competitors (i.e. intraguild predation; Palomares & Caro 1999), 

and has important implications for carnivore demography (Linnell & Strand 2000). 

In both forms of competition, dominant predators can reduce the fitness of 

subordinate species (Jiménez et al. 2019). Subordinate carnivores can diminish this 

deleterious impact by partitioning resources from their dominant counterparts, and 

typically do so through a combination of three niche dimensions (Schoener 1974a): 

spatially, where subordinate species adjust their habitat use to limit sympatry with 

dominant predators (e.g. Durant 1998, Viota et al. 2012); temporally, where 

competitors alter their activity pattern to reduce the amount of time species are 

active simultaneously (e.g. Hayward & Slotow 2009); and trophically, where 

competitors segregate their diets by using different food resources (e.g. Karanth & 

Sunquist 1995). 

Accumulating evidence, however, has reported high values of niche overlap within 

different competing carnivore guilds worldwide (e.g. Mitchell & Banks 2005, Glen & 

Dickman 2008, Cozzi et al. 2012, Davis et al. 2018), suggesting that niche segregation 

alone is not the fundamental mechanism driving coexistence, and may be the 

outcome of more complex processes (Vanak et al. 2013). For example, risk 

avoidance may often be a reactive, rather than predictive, process (Broekhuis et al. 

2013, López-Bao et al. 2016). In this case, carnivore species can maintain awareness 

of their nearest competitors at all times and adapt their use of space and time to 

prevent risky encounters. As such, competing species live in a landscape in which 

contrasting habitats result in different levels of risk of interference competition  
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(i.e. the landscape of fear; Laundré et al. 2001, Ritchie & Johnson 2009). Therefore, 

accurately characterising competitive interactions among carnivores may require 

investigating these processes at various spatiotemporal scales, to capture local 

variability. In addition, incorporating anthropogenic factors may be required to 

fully comprehend how these processes operate in landscapes shared with humans. 

Typically, members of the carnivore guild are connected to a wide array of species 

in the ecosystem via interspecific interactions (Beschta & Ripple 2009, Prugh et al. 

2009). Indeed, carnivores have been suggested to regulate ecosystem structures and 

functioning via density-mediated and behaviourally-mediated trophic cascades 

(Estes et al. 2011, Ripple et al. 2014). Similarly, intraguild interactions between a 

dominant large carnivore and a subordinate mesocarnivore may have indirect 

effects on the behaviour and demographic of a third smaller carnivore species (i.e. 

the carnivore cascade hypothesis; Levi & Wilmers 2012). However, as a result of a 

deeply rooted history of conflicts with humans (Treves & Karanth 2003), carnivores 

often change their behaviour in the face of anthropogenic disturbance, which can, in 

turn, interfere with their ecological role in the ecosystem (Ordiz et al. 2013a, Kuijper 

et al. 2016). Yet, the effects of human-induced behavioural changes in carnivores on 

interspecific interactions, and especially intraguild interactions among carnivores, 

are still largely unknown. 

1.3.   Human-induced behavioural changes in carnivores 

Humans are highly-skilled predators (Darimont et al. 2015), and the fear they 

inspire may be a significant driver of changes in carnivores behaviour (Oriol-
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Cotterill et al. 2015, Clinchy et al. 2016). Humans, through their activities, can also 

be strong exploitative competitors, for instance, through competition for prey (e.g. 

Henschel et al. 2011). As both direct and indirect competitors, carnivores may need 

to implement the aforementioned strategies of niche partitioning to reduce the 

competitive pressure from humans in order to facilitate coexistence (e.g. 

spatiotemporal changes in habitat selection; Suraci et al. 2019b). However, 

alterations of the landscape for human use may, in turn, interfere with the ability of 

carnivores to adjust their ecological niche. For instance, movements of carnivores 

are likely to be strongly disrupted in areas with a high human footprint (Tucker et 

al. 2018, Doherty et al. 2021), preventing the effective adaptation of habitat use to 

reduce encounters with humans. A contrario, carnivore species that are 

synanthropic (Johnston 2001) may purposely stay near human settlements to benefit 

from anthropogenic resources (Gehrt et al. 2010), whilst maintaining the avoidance 

of humans on a fine spatiotemporal scale (e.g. Gehrt et al. 2009). Therefore, humans 

can be both competitors and resource facilitators to carnivores, illustrating the 

complex relationship between the two groups. 

Humans, whether as predators, competitors or resource facilitators, are likely to 

reshape species interactions and disrupt the natural patterns of resource 

partitioning that have evolved over a long period of time. Consequently, there may 

be potential for human-induced behavioural adaptations in carnivores to create a 

new dynamic of interspecific competition and coexistence among terrestrial 

mammalian carnivores. However, our knowledge of the impact of human 

disturbance on competition and coexistence within carnivore guilds is limited. For 
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instance, we do not know if the impact of humans is uniform and disruptive in 

nature, or if nuances exist. Besides, it is unclear whether human disturbance affects 

all competing species in the same way, and how alterations of competitive 

interactions can affect the composition and structure of the carnivore guild. Finally, 

there is a need to evaluate the different spatiotemporal scales of these processes, to 

better understand if the impact of humans is the same globally, or if variations exist 

between and within landscapes. 

1.4.   Thesis aims, objectives and structure 

Carnivores often modify their behaviour in anthropogenic landscapes, in response 

to human disturbance. Yet, the mechanisms through which human-induced 

behavioural changes in carnivores may affect niche partitioning and intraguild 

competition and, in turn, the structure of carnivore communities, remain poorly 

understood. Filling this knowledge gap is imperative to fully understand how 

carnivore communities may be reshaped in a world under constant anthropogenic 

pressures. This knowledge is paramount in order to delineate actions to improve 

human–wildlife coexistence in shared landscapes, by informing the beneficial or 

deleterious effects of a range of human activities and land uses. 

Knowledge on each of the three main dimensions of niche partitioning (i.e. trophic, 

spatial and temporal; Schoener 1974a) is imbalanced, and the potential influence of 

humans has not always been recognised. Perhaps the most obvious and well-

studied strategy of niche partitioning is based around what species consume (i.e. 

trophic partitioning). Early on, anthropogenic food resources were included in the 
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description of the food habits of carnivores living close to human settlements (e.g. 

Reig et al. 1985). The rapid evolution of the tools used to compare diets, from visual 

examination (e.g. McDonald & Nel 1986) to molecular and genetic techniques 

(Gosselin et al. 2017), will enable to characterise the human influence on trophic 

partitioning among species with greater precision. Similarly, understanding how 

species use and share the landscape has long been of interest in the study of niche 

partitioning. Early studies investigated species home ranges and habitat preferences 

on relatively large spatial scales (e.g. White et al. 1995). However, recent studies 

highlight the importance of fine-scale spatial analysis to fully understand species 

response to human disturbance (e.g. Gosselink et al. 2003), and how such fine-scale 

spatial adaptations may affect species interactions in human-dominated landscapes. 

Finally, the temporal dimension is arguably the least-known niche dimension, and 

the influence of humans on animals’ activity pattern has seldom been addressed. 

However, recent evidence suggests that wildlife may globally alter their activity 

levels in response to human disturbance (Gaynor et al. 2018, Nix et al. 2018). Yet, the 

repercussion of such changes onto temporal partitioning among carnivores is still 

poorly understood, despite its global significance. 

This thesis has two main research aims. The first is to uncover the effects of human 

disturbance on niche partitioning and coexistence among carnivore guilds. This 

investigation strives to address the research questions through a gradient of spatial 

scales, human disturbance types, ecosystems and carnivore communities. The 

second aim of this project is to contribute towards an improvement in the rigour 
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and harmonisation of carnivore and behavioural sciences in anthropogenic 

landscapes, via a critical appraisal of published literature. 

 

To achieve the first aim, the project seeks to achieve the following objectives, at 

different levels: 

i. On a general and global scale, to identify the different effects of human 

disturbance on niche partitioning in mammalian carnivores, from the published 

literature. 

ii. Focused on the temporal dimension and on a global scale, to quantify the 

influence of human disturbance on temporal partitioning in mammalian carnivores, 

from the published literature. 

iii. On a regional scale, to quantify the fine-scale spatial interactions between two 

carnivores in England, using raw secondary data. 

 

The second aim of this thesis is addressed by critically evaluating the published 

literature used throughout the first and second objectives, and the method used to 

quantify temporal niche partitioning. Additionally, recommendations and key 

guidelines for future studies are provided. This thesis has broad relevance for the 

conservation of carnivore species and carnivore communities. Recommendations on 

management strategies and policies are provided throughout the text, in the hope 

that the elements raised prompt an improvement of evidence-based wildlife 

management decisions and land-use planning. 
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To address the objectives, this thesis is divided into four data chapters and a final 

chapter containing an overall discussion and conclusions, as described below: 

 

Chapter 2: Human disturbance has contrasting effects on niche partitioning within 

carnivore communities. This chapter reviews the existing research on niche 

partitioning among carnivore species globally, to extract any reported effect of 

human disturbance. Insights gained from this review are used to implement a 

theoretical framework covering the three main outcomes of the impact of humans 

on resource partitioning, intraguild competition and community structure. 

 

Chapter 3: The impact of human disturbance on temporal partitioning within 

carnivore communities. This chapter uses data extracted from the existing literature 

to quantitatively evaluate the relative influence of a range of human, meteorological 

and ecological variables on the coefficients of temporal overlap within carnivore 

communities on a global scale. This chapter then discusses the importance of 

investigating ecological and behavioural patterns at different spatial scales to 

compare large-scale patterns with local variability. 

 

Chapter 4: Coefficient of temporal overlap: evaluation of current practices and 

guidelines. This chapter builds on the literature extracted in chapter 3 to evaluate 

the methodology employed to calculate coefficients of temporal overlap and 

interpret results. Findings from this chapter provide key guidelines and 



 

Page | 12  
 

recommendations for future studies to develop an improved and standardised 

research practice. 

 

Chapter 5: Habitat use and co-occurrence patterns of a native (Vulpes vulpes) and 

an invasive (Felis catus) carnivore species, in rural and suburban England. This 

chapter uses secondary data from a small-scale camera trap survey to uncover the 

patterns of habitat use and co-occurrence between native red foxes and invasive 

domestic cats within a rural–urban gradient in England, in relation to 

anthropogenic features in the landscape. 

 

Chapter 6: Discussion and conclusion. This chapter evaluates the overall findings 

from the preceding data chapters. Further questions arising from the investigation 

are presented, and the ecological implications for terrestrial carnivore individuals, 

populations, communities and ecosystem functions are discussed. This chapter 

draws conclusions on the importance of the work in the field of carnivore ecology 

and improving knowledge on behavioural ecology overall during the 

Anthropocene. 
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Chapter 2 

 

Human disturbance has contrasting 

effects on niche partitioning within 

carnivore communities 
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2.1.   Abstract 

Among species, coexistence is driven partly by the partitioning of available 

resources. The mechanisms of coexistence and competition among species have 

been a central topic within community ecology, with particular focus on 

mammalian carnivore community research. However, despite growing concern 

regarding the impact of humans on the behaviour of species, very little is known 

about the effect of humans on species interactions. The aim of this chapter is to 

establish a comprehensive framework for the impacts of human disturbance on 

three dimensions (spatial, temporal and trophic) of niche partitioning within 

carnivore communities and subsequent effects on both intraguild competition and 

community structure. The published literature on carnivore niche partitioning was 

reviewed (246 studies), and 46 reported effects of human disturbance were 

extracted. Evidence suggests that human disturbance impacts resource partitioning, 

either positively or negatively, in all three niche dimensions. The repercussions of 

such variations are highly heterogeneous and differ according to both the type of 

human disturbance and how the landscape and / or availability of resources are 

affected. The three main outcomes for the impacts of human disturbance on 

intraguild competition and carnivore community structure are presented in a 

theoretical framework: (a) human disturbance impedes niche partitioning, 

increasing intraguild competition and reducing the richness and diversity of the 

community; (b) human disturbance unbalances niche partitioning and intraguild 

competition, affecting community stability; and (c) human disturbance facilitates 

niche partitioning, decreasing intraguild competition and enriching the community. 
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Better integration of the impact of humans on carnivore communities is warranted 

in future research on interspecific competition. 

2.2.   Introduction 

Traditionally, studies on interspecific competition have focused on pairs of 

carnivore species in their natural environment, without considering how humans 

could influence the different processes investigated (e.g. Creel & Creel 1996, Durant 

1998). However, recent evidence suggests that beyond affecting species’ behaviour 

(Gaynor et al. 2018, Tucker et al. 2018), human influence may be extended to how 

species interact (Dorresteijn et al. 2015). For example, carnivores facing negative 

interactions with humans can invest in antipredator behaviours in order to limit 

encounters with humans (Frid & Dill 2002). These behavioural adaptations may 

involve operating medium and fine-scale spatiotemporal avoidance of human 

activities (Llaneza et al. 2012, Oriol-Cotterill et al. 2015), and may interfere with 

competitor avoidance. 

However, sensitivity to humans is not homogenous, and behavioural responses of 

wildlife to anthropogenic disturbance vary among species (Lowry et al. 2013, Samia 

et al. 2015). The most sensitive species can modify their spatiotemporal habitat use 

to maximise avoidance of human features and activities (e.g. Stillfried et al. 2015, 

Llaneza et al. 2018). For example, bobcats and coyotes inhabiting an urban nature 

reserve in California exhibited spatial and temporal displacement in response to 

human recreation, with the two species avoiding areas with higher human activity 

(George & Crooks 2006). Species selecting habitats with reduced human 
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disturbance, a limited resource, could therefore face a higher risk of encountering 

competitors (Hayward et al. 2007, Dröge et al. 2017). Conversely, species more 

tolerant to humans can show a preference for human-modified environments over 

natural habitats (Deuel et al. 2017). Caracals —Caracal caracal— in South Africa have 

adapted their foraging behaviour to access highly available prey resources in 

agroecosystems, thus reducing their use of natural forest habitats (Ramesh et al. 

2017). Although this behaviour comes with a higher risk of human encounters, it 

could decrease the probability of facing intraguild competitors which avoid these 

habitats (Ordeñana et al. 2010). 

In addition, the attitude of humans towards carnivores is also unequal among 

species (Dressel et al. 2015). Lethal management is often biased towards large 

carnivores, mainly due to competition for food with humans (Treves & Karanth 

2003, Oriol-Cotterill et al. 2015). The long-term persecution of large carnivores by 

humans has benefited some mesocarnivore populations by reducing competition 

with larger carnivores, a process known as the ‘mesopredator release’ effect (Crooks 

& Soulé 1999, Prugh et al. 2009), influencing in some cases the abundance and 

distribution of these species (Lapoint et al. 2015, Krofel et al. 2017, Newsome et al. 

2017, Jiménez et al. 2019). 

This chapter reviews the literature on niche partitioning among the carnivore guild, 

with the aim to synthesise all reported effects of human disturbance on the spatial, 

temporal and trophic niche dimensions, and propose a comprehensive framework 

investigating how these effects may impact the strength of intraguild competition, 

and how they could end up reshaping the structure of carnivore communities.  
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The proposed framework will be valuable to future research by highlighting gaps in 

the investigation of human impacts on carnivore communities and coexistence. This 

chapter provides additional recommendations to develop an effective and 

standardised research practice. 

2.3.   Methods 

2.3.1.   Literature search 

A literature search was performed in October 2018, using the electronic databases 

Scopus (www.scopus.com) and Web of Science (www.webofknowledge.com). The 

following key word combination was used to search for peer-reviewed literature 

written in English, with no time limitation: (niche OR spatial OR temporal OR 

resource OR diet OR trophic) AND (partitioning OR overlap OR segregation OR 

separation) AND (carnivor*). The review protocol was applied following the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines (Moher et al. 2009). This review was limited to articles published in peer-

reviewed journals, leading to the omission of books, book chapters, conference 

proceedings, working papers, dissertations and other unpublished works. Future 

studies could gain additional insight by adopting a more encompassing approach, 

and examining grey literature. 

The database search returned 1,095 records (Figure 2.1), which were subsequently 

screened by reading the title and abstract. To be included in the next stage, studies 

had to investigate the spatial, temporal and / or trophic niche of at least two 

sympatric mammalian terrestrial carnivore species. After this screening, 256 articles 
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were retained, and their full text assessed for eligibility. To be included in the final 

synthesis, studies had to calculate the proportion of niche overlap between two or 

more species or measure the relative influence of one species on another’s niche 

utilisation (e.g. multispecies occupancy models). At this stage, 166 studies fulfilled 

the inclusion criteria and were retained. 

 

Figure 2.1. Preferred reporting items for systematic reviews and meta-analysis flowchart 

(Moher et al. 2009). 

Id
en

tif
ic

at
io

n 
Sc

re
en

in
g 

El
ig

ib
ili

ty
 

In
cl

ud
ed

 

Additional records identified through 
forward reference searching 

(n = 12; Ridout & Linkie, 2009) 
(n = 19; Pianka, 1973) 

Additional records identified through 
backward reference searching 

(n = 49) 

Studies included in  
qualitative synthesis  

(n = 246) 

Records excluded  
(n = 839) 

Full-text articles excluded 
(n = 90) 

Records identified through 
database searching  

(n = 1,095) 

Records screened  
(n = 1,095) 

Full-text articles assessed for 
eligibility  
(n = 256) 

Studies included in  
qualitative synthesis  

(n = 166) 

Studies included in  
qualitative synthesis  

(n = 197) 



 

Page | 19  
 

Although niche overlap between pairs of species was measured using a variety of 

methods, two methods prevailed: Pianka’s overlap index (Pianka 1973), a tool used 

to measure the spatial, temporal and trophic niche overlap between species, which 

was used by 47% of the included studies (n = 78); and the coefficient of temporal 

overlap (Ridout & Linkie 2009), which was used by 72% of the studies investigating 

temporal niche partitioning (n = 38). Therefore, a second literature search was 

performed, using the same electronic databases, in order to identify all articles 

citing Pianka’s overlap index or the coefficient of temporal overlap. The review 

protocol for these articles was repeated with the same inclusion and exclusion 

criteria. Following this forward reference search, 31 additional records were 

included, increasing the number of retained articles to 197. Finally, the reference list 

of each of the 197 included studies was screened to identify relevant publications 

(i.e. backward reference searching or ‘snowballing’), adding a further 49 studies. A 

total of 246 articles were included in the final synthesis. As few ecosystems are 

undisturbed by humans, studies were included in the final synthesis whether they 

mentioned human disturbance at their study site or not. Using this approach 

allowed to identify the proportion of studies in the existing literature that 

incorporated human disturbance in their evaluation of niche partitioning within 

carnivore communities. 

2.3.2.   Data extraction 

For every selected study, the following information was extracted: (1) interacting 

carnivore species; (2) time frame of the study (part or totality of a solar year); (3) 

presence / absence of seasonality in the analysis; (4) niche dimension investigated 
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(spatial, temporal and / or trophic); (5) experimental design (see below); and (6) 

presence / absence of human disturbance at the study site. The presence or absence 

of human disturbance was based on any information provided by the authors in the 

publications, commonly in the study area or discussion sections (e.g. “The study 

area comprises […] several public and private protected areas […] and unprotected 

areas, with different histories of logging and poaching”; Cruz et al. 2018; p.3). 

The experimental design of each study was classified according to the definition 

provided in Hone (2007). Thus, studies were classified as either classical 

experiments (with simultaneous control, replication, and randomisation of the 

treatment, and statistical analyses), quasi-experiments (with simultaneous control 

but without replication, randomisation or analyses), pseudo-experiments (with 

replication, randomisation or analyses of the treatment, but lacking simultaneous 

control), or simple observations (none of the above). 

Human disturbance was classified into two groups: top-down (i.e. relating to the 

direct presence of humans or human-related entities) or bottom-up (i.e. referring to 

modifications of the landscape for human use) disturbance. Subsequently, human 

disturbance was divided into seven types: top-down disturbance had four 

categories — lethal management of herbivores, lethal management of carnivores, 

non-lethal recreational activities, and presence of exotic carnivore species — 

whereas bottom-up disturbance had three — built environment, landscape 

modified for arable purposes, and landscape modified for pastoral purposes —. 



 

Page | 21  
 

When a study mentioned and analysed human disturbance, the effects on niche 

overlap were extracted from information provided in the results and discussion 

sections of the publication, and classified according to: (1) type of human 

disturbance; (2) direction of the effect on niche overlap (increase, decrease, or no 

effect found); and (3) strength of inference (statistical analysis, descriptive statistics 

or speculative). Speculative inference was defined as claims that are not directly 

measured, usually relying on the conclusions of other empirical studies to find 

support. To improve the accuracy of the review, any effect that was solely based on 

speculation was not included. 

The relative strength of the effects of different types of human disturbance on 

values of overlap was assessed using two approaches. First, whenever possible, 

effect sizes from the studies demonstrating an impact of human disturbance on 

niche partitioning were computed by subtracting the overlap value with low 

disturbance from the overlap value with high disturbance (OverlapHD – OverlapLD). 

Comparing effect sizes between studies (i.e. a meta-analysis) is a powerful statistical 

procedure (Cohn & Becker 2003), offering support to the body of evidence found in 

the quantitative assessment of the literature. However, if the treatment effect is not 

consistent from one study to another, performing a meta-analysis may produce 

unreliable results (Lau et al. 1997). For this reason, the relative strength of each 

effect was also estimated by comparing how many times they were found in the 

literature. 
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2.4.   Results and discussion 

2.4.1.   Description of the literature 

Altogether, 246 studies published between 1986 and 2018 investigated the spatial, 

temporal or trophic niche partitioning between pairs of carnivore species. The most 

frequently studied niche dimension was the trophic (48.8%), followed by the spatial 

(30.4%) and temporal dimensions (20.8%). Most studies followed an observational 

design (n = 192, 78%), followed by pseudo-experiments (n = 39, 15.9%), and quasi-

experiments (n = 15, 6.1%). None of the studies followed a classical experimental 

design. Over half of all studies (n = 151, 61.4%) mentioned human disturbance at 

their study site, but only a third (n = 72, 29.3%) incorporated human disturbance in 

the study design and interpretation of findings. A small proportion of studies (n = 

68, 27.6%) included seasonality in their analysis (e.g. calendar seasons, breeding 

seasons), and most (n = 51, 75%) reported seasonal variations in the intensity of 

niche partitioning. 

In total, 94 effects of human disturbance on carnivore niche partitioning were 

extracted from 72 studies. Half of these effects (n = 48, 51.1%) were founded on 

speculations (i.e. the effects were not directly measured), so were excluded from the 

synthesis. The remaining 46 effects were extracted from 34 studies and were 

supported by statistical analysis (n = 33, 71.7%) or descriptive statistics (n = 13, 

28.3%). Most of the effects of human disturbance were extracted from pseudo-

experimental (n = 28, 60.9%) and quasi-experimental (n = 16, 34.8%) studies. Only 

two effects were extracted from an observational design found in a single study. 
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A relatively small proportion of studies reporting an effect of human disturbance 

used an experimental design that enabled the extraction of an effect size, but 

nonetheless 43 effect sizes were extracted from 13 studies (Figure 2.2). The 

remaining 21 studies employed methodologies that did not compare coefficients of 

overlap between low versus high disturbance areas directly, hence preventing the 

extraction of comparable effect sizes. For instance, more than half of the studies 

investigating spatial niche partitioning (n = 11 out of 21) used multispecies 

occupancy models, and derived the influence of human variables based on which 

model was performing best. Additionally, the investigation of the different types of 

human disturbance on niche overlap showed a high degree of specialisation across 

studies, with too few replicates of each type of human disturbance among studies to 

conduct a reliable meta-analysis in all three niche dimensions. For instance, the 

effect sizes extracted show an overall increase in temporal overlap between species 

resulting from human disturbance, seemingly dominated by the impact of 

recreational activities (Figure 2.2). However, 14 of the 15 effects of recreational 

activities on temporal overlap were extracted from a single study (Wang et al. 2015). 

Similarly, 10 out of the 13 effects of agroecosystems on trophic overlaps were 

extracted from a single study (Palacios et al. 2012). For these reasons, effect sizes 

were not included in the rest of this review, and the relative importance of the 

different effects of human disturbance was instead estimated by comparing how 

many times they were found in the literature review. 
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Figure 2.2. Forest plot of the extracted effect sizes of human disturbance on niche overlap 

between carnivore species, categorised by niche dimension and type of human disturbance. 

HD: high disturbance; LD: low disturbance. 

2.4.2.   Human influence on niche partitioning, intraguild 

competition, and carnivore community 

Overall, the observed impact of human disturbance on niche partitioning between 

carnivores was not unidirectional (Figure 2.3). In fact, there was a similar number of 

effects reporting an increase or a decrease in niche overlap associated with human 

disturbance (21 and 17 effects, respectively) and, in eight studies, there was no effect 

of human disturbance on niche overlap (Table 2.1). More changes in niche overlap 

between carnivores resulted from bottom-up than top-down human disturbance (24 

and 14 effects, respectively). Across niche dimensions, there were more references 
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to the spatial dimension (bottom-up effects: 16, top-down effects: 5), followed by 

trophic (bottom-up effects: 6, top-down effects: 5) and temporal dimensions 

(bottom-up effects: 2, top-down effects: 4). 

 

Figure 2.3. Descriptive pathways illustrating the reported evidence-based effects of human 

disturbance on three dimensions of niche overlap (spatial, temporal and trophic) in carnivore 

communities. Numbers at the start of each link correspond to the number of studies 

reporting that effect. Orange arrows and numbers with a + sign represent an increase in 

niche overlap. Green arrows and numbers with a – sign represent a decrease in niche 

overlap. The width of the coloured links is proportional to the number of effects on niche 

partitioning found in the literature search. 
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Table 2.1. Number and type of human disturbances extracted from the reviewed papers, and their effects on niche overlap among carnivore communities. ↗ = 

increase; ↘ = decrease; Ø = no impact. 

 
     

  

Human disturbance 

Spatial niche overlap  Temporal niche overlap  Trophic niche overlap   

↗ ↘ Ø  ↗ ↘ Ø  ↗ ↘ Ø  Total 

Top-down              

Hunting carnivores 2 - 2  1 1 -  1 - -  7 
Hunting herbivores - - -  - - -  1 3 1  5 
Recreational activities - 1 1  2 - -  - - -  4 
Exotic carnivore species 2 - -  - - 1  - - -  3 

Bottom-up              
Arable agriculture 3 4 -  1 1 1  2 - -  12 
Pastoral agriculture - - -  - - -  2 1 -  3 
Built environment 3 6 1  - - 1  1 - -  12 

Total top-down 4 1 3  3 1 1  2 3 1  19 

Total bottom-up 6 10 1  1 1 2  5 1 -  27 

Grand total 10 11 4  4 2 3  7 4 1  46 
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The evidence found here suggest that human disturbance can affect all three niche 

dimensions investigated in both directions: increasing and decreasing effects on 

niche overlap. Changes in niche partitioning following human disturbance are 

therefore not uniform and are conditional on both the type of human disturbance, 

and how the surrounding landscape and limiting resources are affected. 

Nevertheless, three predominant influences of humans on carnivore niche 

partitioning stand out: (a) human disturbance impedes niche partitioning, 

increasing intraguild competition and reducing the richness and diversity of the 

community; (b) human disturbance unbalances niche partitioning and intraguild 

competition, affecting community stability; and (c) human disturbance facilitates 

niche partitioning, decreasing intraguild competition and enriching the community 

(Figure 2.4). Despite having seemingly opposite direction, these three influences are 

not mutually exclusive. Many landscapes are most likely affected by more than one 

of these influences, and the repercussions onto the carnivore community vary 

depending on the relative intensity of each disturbance. 

2.4.2.1.   Human disturbance impedes niche partitioning 

The majority of carnivore species probably perceive humans as frightening, whether 

they present a direct threat or not (Frid & Dill 2002, Clinchy et al. 2016), so they 

adapt their behaviour accordingly, at different spatiotemporal levels, to limit 

encounters with humans (Carter et al. 2012, Ahmadi et al. 2014, Sazatornil et al. 

2016). Avoidance of humans can be achieved spatially, with carnivores seeking 

refuge in safer habitats to reduce risks of anthropogenic mortality (Loveridge et al. 

2017, Parsons et al. 2019). Theoretically, this could increase local densities of 
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competing species and constrain spatial niche partitioning. Indeed, increased spatial 

overlap following avoidance of humans was the second most-reported effect, with 

eight studies reporting an increase in spatial overlap between carnivores in refuge 

habitats due to the direct avoidance of humans (Farris et al. 2017a, Sogbohossou et 

al. 2018) or human-related features (De Angelo et al. 2011, Pereira et al. 2012, Lewis 

et al. 2015, Nagy-Reis et al. 2017, Cruz et al. 2018, Smith et al. 2018). Avoidance of 

humans can also be achieved temporally. Similar to other mammals, carnivores 

have exhibited a global shift to a more nocturnal activity pattern around humans 

(Gaynor et al. 2018). Three studies documented carnivores that, as a consequence of 

human activity, were squeezed into a narrower temporal niche and faced higher 

levels of temporal overlap with intraguild competitors (Carter et al. 2015, Lewis et 

al. 2015, Wang et al. 2015, but see Sogbohossou et al. 2018). 

Other causes of increases in niche overlap may be linked to the reduction in food 

availability following lethal wildlife management. Coexistence among large 

carnivores is partially enabled by their capacity to partition their prey by size 

(Karanth & Sunquist 1995). However, global prey depletion, and the loss of prey 

diversity, can render prey partitioning harder to achieve. For instance, three studies 

documented an increase in trophic overlap following depletion and homogenisation 

of the prey base (Palacios et al. 2012, Creel et al. 2018, Drouilly et al. 2018). 

Alternatively, two studies highlighted carnivore species diversifying their diets by 

including livestock (Amroun et al. 2006, Foster et al. 2010). Although this may 

alleviate interspecific competition for food in the short term, it can promote  
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human–carnivore conflicts and be detrimental to the long-term conservation of 

these species (e.g. Harihar et al. 2011). 

In addition, predator control, when applied uniformly across the landscape, can 

reduce local carnivore densities (Robinson et al. 2008). However, prey carcasses 

attributed to kills by large carnivores can form a large part of scavenging 

carnivores’ diets, and can potentially reduce interspecific competition among 

mesocarnivores (Van Dijk et al. 2008, Yarnell et al. 2013). Hence, reductions in large 

carnivore abundance can limit carrion provision for scavengers, weakening trophic 

niche partitioning between mesocarnivores. This effect, however, was only reported 

once, by a study comparing mesopredator diet overlap between two study areas 

with a large difference in grey wolf —Canis lupus— density due to a wolf-control 

program (Sivy et al. 2018). Additionally, this effect can be partially mitigated by 

provisioning carcasses resulting from hunting activities, as two studies documented 

(Barrull et al. 2014, Tsunoda et al. 2017), or livestock practices (Cortés-Avizanda et 

al. 2010). However, artificial disposal of carrion may inadvertently affect non-target 

species (e.g. Fležar et al. 2019), and does not replace the ecosystem services 

provided by large carnivores as carrion providers (e.g. facilitation of mesocarnivore 

suppression; Prugh & Sivy 2020). 

Disruption of spatiotemporal niche partitioning is likely to be a common outcome of 

human disturbance, and could increase the frequency at which negative interactions 

take place among carnivores, thus increasing the potential for interference 

competition. Such increase in competition can have a negative impact on 

subordinate carnivores, further reducing the probability of survival of threatened 



 

Page | 30  
 

carnivore species (Elbroch & Kusler 2018). Similarly, the narrowing of the available 

trophic niche, and associated weakening of trophic partitioning, can increase 

exploitation competition among carnivore species (Karanth & Sunquist 1995, Creel 

et al. 2018). Under these circumstances, subordinate species can reduce competition 

with dominant species by switching to more abundant, usually smaller, prey 

(Randa et al. 2009, Foster et al. 2010, Drouilly et al. 2018). This mechanism is, 

however, unlikely to be successful if the secondary prey base is also depleted, in 

which case the effects of dietary overlap could also be particularly detrimental to 

less-competitive species (Hayward & Kerley 2008). Ultimately, increasing intraguild 

competition artificially among carnivores could decrease the density of subordinate 

species, or even exclude these species from specific habitats (Linnell & Strand 2000, 

Berger & Gese 2007). 

2.4.2.2.   Human disturbance unbalances niche partitioning 

Responses of carnivores to human modification of landscapes fluctuate among 

species according to their degree of ecological flexibility (Lyra-Jorge et al. 2008, 

Caruso et al. 2016). Certain species can use modified landscapes as a shelter from 

competitors, which may not be as tolerant of human disturbance (Gosselink et al. 

2003). Spatial overlap between carnivores is therefore reduced, advantaging more-

tolerant species that can now occupy a niche with reduced competition. The 

reduction of spatial overlap arising out of a different tolerance to humans was 

found nine times in this review, in landscapes with varied intensity of human use, 

ranging from heavily modified urban areas (Lesmeister et al. 2015, Wang et al. 2015) 

and agricultural systems (De Angelo et al. 2011) to smaller villages (Prigioni et al. 
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2008, Farris et al. 2016). For instance, black bears —Ursus americanus— in North 

America are detected in close proximity to roads more frequently than grizzly bears 

—Ursus arctos—, their dominant competitors (Apps et al. 2006, Ladle et al. 2018). 

Similarly, red foxes —Vulpes vulpes— in North America can use areas with higher 

urban development as spatial refuges to limit co-occurrence with coyotes (Moll et 

al. 2018, Mueller et al. 2018). Although the reduction of spatial overlap following an 

asymmetrical avoidance of humans was the most reported effect in this review, it 

should be interpreted with caution as it indicates the spatial exclusion of species less 

tolerant to humans rather than an equal reduction in overall competition among 

species. Consequently, human disturbance could lead to the competitive exclusion 

or local extinction of species unable to adapt (Grimm et al. 2008) and a decrease in 

species diversity. Indeed, switches in community composition and loss of species 

diversity owing to human activity have been observed in other taxa (e.g. birds in 

urban environments; Blair 1996, small mammals in farming landscapes; Michel et al. 

2006). 

Species tolerant to humans can also use modified habitats to exploit highly 

abundant anthropogenic food resources (McKinney 2006, Bateman & Fleming 2012) 

or prey populations benefiting from habitat transformation (López-Bao et al. 2019). 

According to competition theory (Schoener 1982), the diets of competing carnivores 

should converge when resources are abundant (e.g. Fedriani et al. 1999). Three 

studies observed this pattern, wherein carnivores competing in human-dominated 

landscapes had high trophic overlaps owing to the homogenisation of resources and 
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abundance of anthropogenic food resources (Barrull et al. 2014, Kauhala & 

Ihalainen 2014, Smith et al. 2018). 

The ecological flexibility of generalist species allows them to increase their niche 

breadth by exploiting both natural and anthropogenic resources (Verdade et al. 

2011), thereby increasing their fitness and competitive ability (Rosalino & Santos-

Reis 2011, Concepción et al. 2015). This can present a double threat to specialist 

species, who not only are negatively impacted by anthropogenic land alterations 

(Fisher et al. 2003), but must now face new dominant competitors encroaching on 

their niche. As human land use keeps increasing (Seto et al. 2011), competitive 

interactions among carnivores could be destabilised, and the carnivore community 

reshaped into an homogenous community dominated by generalist and tolerant 

species (Reed & Merenlender 2008, Ordeñana et al. 2010). The paramount example 

of generalist predators whose competitive strength is enhanced by the use of 

anthropogenic resources is feral and free-ranging domestic carnivore species (e.g. 

dogs —Canis domesticus—; Vanak & Gompper 2009a). These species are commonly 

found at high densities in human-dominated and nearby natural habitats, and can 

have high niche overlaps with native carnivore species in the trophic (e.g. Glen & 

Dickman 2008), spatial (e.g. Vanak & Gompper 2010), and temporal (e.g. Farris et al. 

2015a) niche dimensions. In addition, these species can have deleterious effects on 

wildlife by acting as a reservoir for diseases (e.g. cross-species transmission of the 

canine distemper virus; Deem et al. 2000). However, the effect of their presence on 

coexistence of native species has largely been understudied, and this review found 
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only two studies documenting an increase in spatial overlap between native species 

following displacement by dogs (Farris et al. 2016, 2017a). 

2.4.2.3.   Human disturbance facilitates niche partitioning 

When kept under extensive management, agricultural landscapes can be shaped 

into highly heterogeneous ecosystems (Duelli 1997), facilitating fine-scale spatial 

segregation among species (Pereira et al. 2012, Cruz et al. 2015), a key mechanism 

allowing sympatry (Rosenzweig 1981). Additionally, carnivores in these 

communities can segregate the food resources they consume (Carvalho & Gomes 

2004), and display a wide range of activity patterns by matching those of their main 

prey, further promoting coexistence with competitors through temporal 

partitioning of activity (Monterroso et al. 2014). However, only three studies 

reported the facilitation of spatiotemporal niche partitioning by anthropogenic 

heterogeneous systems, and all were undertaken in Mediterranean landscapes 

(Pereira et al. 2012, Monterroso et al. 2014, Cruz et al. 2015). Habitat heterogeneity 

and complexity at various spatial scales can benefit the entire carnivore guild 

(Williams et al. 2002) by reducing intraguild competition, thus nurturing rich 

carnivore communities. Promoting diversity in the carnivore guild is beneficial as it 

increases resilience to environmental stress (Sobrino et al. 2009) and overall stability 

of the community (e.g. Worm et al. 2006). However, if current global agricultural 

intensification keeps expanding, the reduction in landscape heterogeneity towards 

more homogenous landscapes lacking different cover and refuges (Warner 1994) 

could impact on the beneficial effects of extensive agroecosystems on the carnivore 

community (Stoate et al. 2001, Cruz et al. 2018). 



 

Page | 34  
 

 

Figure 2.4. Theoretical framework of the three main impacts of human disturbance on niche 

partitioning and intraguild competition among carnivore species, and subsequent 

reorganisation of the carnivore community. Top, orange section: the omnipresence of the 

human apex predator forces sympatry between species seeking refuge in safer areas. 

Additionally, the overall reduction in diversity and abundance of wild food resources 

negatively affects trophic partitioning. As a result, the strength of interspecific competition 

is increased, which can lead to a carnivore community with poor species abundance and 

diversity. This can also unbalance the community, by enhancing the competitive advantage 

of species tolerant to human presence. Middle, blue section: human presence can trigger 

important modifications at the landscape level, interfering with habitat partitioning, and 

strongly increasing the abundance of trophic resources linked to human activities. As a 

result, the strength of interspecific competition is unbalanced to the advantage of species 

tolerant to humans and capable of using these anthropogenic resources, possibly resulting in 

a destabilised carnivore community. Bottom, green section: some landscape modification 

can, by contrast, facilitate niche partitioning in all niche dimensions, if they prioritise 

complex, heterogeneous landscapes (e.g. extensive agriculture). This reduces the strength of 

interspecific competition, and could promote a rich and diverse community. 

2.4.3.   Implications for conservation and future studies 

This review provides a comprehensive framework that outlines the variety of 

impacts that humans, and their activities, have on competition among carnivores.  
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In addition, the findings emphasise the omnipresence of human influences on niche 

partitioning within carnivore communities, albeit having effects with diverse 

directions and magnitude. The patterns highlighted could be of great benefit to the 

conservation of carnivores in most landscapes, and especially those impacted by 

anthropogenic activities. Indeed, 12 species involved in this review are currently 

listed as globally endangered under the IUCN Red List of Threatened Species, and 

eight of these species were sympatric with at least one dominant competitor species. 

For instance, the subordinate, endangered black-footed ferret —Mustela nigripes— is 

sympatric with the American badger —Taxidea taxus— a dominant competitor and 

intraguild predator. The competitive impact of dominant carnivores on subordinate 

species may be driven by the outcome of the impact of human disturbance (e.g. by 

aggregating these competing species in particular habitats), which would add an 

additional stress to the conservation of threatened species. Conversely, promoting 

the diversity of habitats and opportunities for segregation may help reduce the 

intensity of interspecific competition, and be beneficial to the conservation of 

threatened species. 

The findings presented in this chapter have important implications not only for the 

conservation of carnivores, but for the overall preservation of ecosystems. Indeed, 

carnivore species have been shown to perform important ecological roles that can 

affect entire ecosystems (Roemer et al. 2009, Estes et al. 2011, Ripple et al. 2014). For 

instance, intensive modifications of the landscape, following human activities, are 

typically associated with a reduction in species diversity in the carnivore 

community, to the benefit of highly competitive generalist species (Crooks 2002, 
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McKinney 2008). This decrease in species diversity may result in the loss of 

ecological functions when the fulfilment of this function cannot be replaced by an 

alternative species (i.e. functional redundancy; Flynn et al. 2009, Huijbers et al. 

2015), and can have detrimental effects on the resilience of ecosystems (Mori et al. 

2013). Therefore, maintaining a diversity of habitats and trophic resources in altered 

landscapes may help the competitive abilities of specialist species, thus restoring 

species diversity and ecological functions, and be beneficial to the functioning and 

resilience of the ecosystem. 

This review also highlights understudied areas of research that will guide and 

encourage more experimental research to be undertaken on the anthropogenic 

influence of species coexistence in an ever-changing world. Using an evidence-

based approach that can inform policy makers and land managers about the 

potential impacts of human activities on carnivore communities, and how to 

regulate them effectively, is a necessary step towards successful carnivore 

conservation (Pullin & Knight 2003). 

Most of the selected studies mentioned potential effects of human disturbance at 

their study site, but only a fraction (72 out of 151) included these effects in the 

interpretation of the results. Additionally, only 13 studies used a design that 

compared values of overlap between low- and high-disturbance treatments, 

allowing the strength of the impact of human disturbance on niche partitioning to 

be measured (Figure 2.2). The most plausible reason for this is the high proportion 

of observational studies, where the effects of human disturbance were not tested, 

and thus relied on the conclusions of other studies. There is a lack of experimental 
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studies on niche partitioning within carnivore guilds, due to the ethical and 

logistical constraints of manipulative experiments, and the rarity of true controls in 

nature. The relative importance of experimental and observational studies in large 

carnivore science is a topic of debate (Allen et al. 2017a, Bruskotter et al. 2017). As 

the human footprint on natural ecosystems keeps growing, performing more 

manipulative studies will be necessary to measure the effects of human disturbance 

on species interactions accurately. In addition, some studies pooled data from 

multiple locations, subject to different human pressures, to calculate niche overlap 

(e.g. one temporal overlap value between sympatric felids in a study area 

combining tropical forest and oil palm plantation; Hearn et al. 2018). Although 

combining data from different study areas can compensate for low sample sizes 

(e.g. for elusive species with large spatial requirements), merging the data in such a 

way can mask the effects of human disturbance and produce unreliable conclusions. 

Nevertheless, incorporating human disturbance in the study of species interactions 

and competition is a productive area of research, and will improve knowledge on 

carnivores and community composition in general. 

Likewise, a small proportion of all studies (68 out of 246) took seasonal variability 

into account, and most of these (51 out of 68) found seasonal variations occurring 

naturally in the intensity of niche partitioning (e.g. Carvalho & Gomes 2004, Vanak 

et al. 2013, Monterroso et al. 2014). Similarly, seasonal fluctuations in the intensity of 

human disturbance exist (e.g. high peaks in nature-based tourism in summer) and 

could potentially affect niche partitioning. For instance, Gosselink et al. (2003) 

observed considerable differences in the intensity of habitat partitioning between 
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coyotes and red foxes between summer and winter, attributed to the drastic loss of 

cover in an intensive row-crop agricultural system in winter. Our understanding of 

human influences on niche partitioning cannot be complete without incorporating 

natural or human-induced seasonal variations in niche partitioning, and future 

studies are encouraged to include such seasonal variations in their analyses. 

Another limitation is the prevalence of studies investigating only one single niche 

dimension (180 studies out of 246). Niche partitioning is a multidimensional 

dynamic process, in which changes in one niche dimension may be balanced by 

opposing changes in other dimensions (Schoener 1974a). For instance, by increasing 

their nocturnal activities, some predators may increase their consumption of 

nocturnal prey species (Smith et al. 2018), which could indirectly increase trophic 

overlap with other nocturnal predators. Unidimensional studies of the influence of 

humans on niche partitioning are useful, but favouring investigations of multiple 

niche dimensions simultaneously will greatly benefit our understanding of the 

processes at play. 

Finally, niche overlap was used as a proxy to estimate the intensity of interspecific 

competition, but it is not a direct measure of competition (Schoener 1982). As none 

of the studies included herein measured the intensity of competition directly, this 

review relied on the conclusions of supplementary studies to establish how changes 

in niche partitioning following human disturbance could impact intraguild 

competition and cause community structure change. Such support was found in 

literature that did not measure niche partitioning, focusing purely on interspecific 

competition or human–carnivore coexistence (e.g. Sale 1974, Bateman & Fleming 
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2012). Thus, future research juxtaposing niche overlap with intraguild competition 

intensity will improve our understanding of carnivore coexistence, and how it can 

be influenced by human disturbance. 

2.5.   Conclusions 

The findings in this study reveal that human disturbance influences all three 

dimensions of niche partitioning in carnivore communities, with a nearly identical 

number of effects reported to increase and decrease niche overlap. However, 

variations in niche partitioning following human disturbance are not always 

reflected linearly on the intensity of intraguild competition. Indeed, they can have 

contrasting effects depending on how the surrounding landscape and the 

availability of resources are affected by human disturbance. 

Although the trajectories of its effects can be diverse, there is no doubt that human 

disturbance impacts intraguild competition and community composition in 

carnivore guilds. By systematically including the human dimension in the analysis 

of interspecific competition, the scientific community will gain a better 

understanding of the way carnivore communities will be reshaped if human 

disturbance keeps increasing. Applying the systematic approach proposed herein to 

other animal taxa and other types of species interactions would be beneficial to 

research of the influence of humans on wildlife. 
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Chapter 3 

 

The impact of human disturbance on 

temporal partitioning within carnivore 

communities 
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3.1.   Abstract 

Interspecific competition is an important evolutionary force, influencing 

interactions among species and shaping the composition of communities. In 

mammalian carnivores, to reduce the risks of negative encounters between 

competitors, species can employ a strategy of temporal partitioning, adapting 

activity patterns to limit synchronous activity. This strategy of non-human 

competitor avoidance, however, may be influenced by the expansion of human 

activities, which has driven wildlife towards nocturnality. Therefore, it could be 

hypothesised that the disruption of temporal niche partitioning by humans and 

their activities could increase temporal overlap between carnivores, enhancing 

interspecific competition. After a review of the published literature, generalized 

linear models were employed to quantitatively evaluate the relative influence of a 

range of human, meteorological and ecological variables on the coefficients of 

temporal overlap within carnivore communities on a global scale. None of the 

models investigated showed evidence of human disturbance on temporal 

partitioning between carnivores on a global scale. This illustrates that temporal 

avoidance of humans and competitors does not always follow a consistent pattern, 

and that its strength may be context-dependent and relative to other dimensions of 

niche partitioning (spatial and trophic). Similarly, the regulation of activity patterns 

may be under strong site-specificity, and be influenced by a combination of biotic 

and abiotic characteristics. Additionally, temporal avoidance of both humans and 

competitors may be regulated by short, reactive responses that do not impact 

activity patterns in the longer term. Although the global disruption of temporal 
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partitioning attributed to human disturbance was not detected, carnivore 

communities may still experience an increase in interspecific competition in other 

niche dimensions in human-dominated landscapes. Further research would benefit 

from using controlled experimental designs and investigating multiple dimensions 

of niche partitioning simultaneously. Finally, studies would benefit from 

complementing the coefficient of temporal overlap with other metrics of fine-scale 

spatiotemporal interactions. 

3.2.   Introduction 

Interspecific competition is an important component regulating community 

structures (Schoener 1983, Wisheu 1998), and competing species must partition the 

resources they utilise to allow coexistence (MacArthur & Levins 1967). Resource 

partitioning is mostly achieved in three, often interacting, niche dimensions, being 

the spatial, temporal, and trophic dimensions (Schoener 1974a). Many species can, 

for instance, adjust their activity patterns to reduce the risk of encountering 

dominant non-human competitors (Carothers & Jaksić 1984, Kronfeld-Schor & 

Dayan 2003). In most animal communities, temporal partitioning of activity may 

not be the primary strategy used to limit interspecific competition (Schoener 1974a). 

However, carnivores could use it more than any other taxa due to the severe risks of 

injuries associated with interference competition (Schoener 1974a, Palomares & 

Caro 1999, Hunter & Caro 2008). Indeed, temporal segregation of activity between 

carnivores has been observed on multiple occasions (e.g. Hayward & Slotow 2009, 

Brook et al. 2012, Bischof et al. 2014), and could be a strategy frequently used by 
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subordinate carnivores to reduce negative encounters with dominant counterparts, 

fine-tuned by a reactive response to immediate risks (e.g. Broekhuis et al. 2013). 

The human apex predator (Darimont et al. 2015) produces predatory cues that are 

comparable to that of natural competitors or predators (e.g. human voice; Frid & 

Dill 2002, Clinchy et al. 2016). Human persecution has driven behavioural 

adaptations in most species, including both predators and prey, to limit encounters 

with humans and reduce human-related mortality risks (Frid & Dill 2002, Ordiz et 

al. 2011), being also modulated by the intensity of persecution (Sazatornil et al. 

2016). Such anti-predator behaviour in response to humans can be employed 

regardless of the underlying threat, and even non-lethal human disturbance can 

drive an avoidance response (Frid & Dill 2002). 

As humans are mostly diurnal, carnivores can switch their activity patterns towards 

more nocturnal hours to avoid potentially negative interactions (Gaynor et al. 2018). 

Indeed, local increases in wildlife nocturnality have been observed in direct 

response to variations in landscape-wide human-derived risks (e.g. during hunting 

season; Di Bitetti et al., 2008; Ordiz et al., 2012; Stillfried et al., 2015; but see 

Theuerkauf, 2009), reinforced by a lasting response to close human encounters (e.g. 

Ordiz et al. 2013b, Clinchy et al. 2016). The intensity with which animals adapt their 

circadian activity patterns to human disturbance may not be the same for all 

species, and depends on the behavioural plasticity and life-history characteristics 

(Lendrum et al. 2017). However, a recent meta-analysis by Gaynor et al. (2018) 

suggests that this pattern is observed globally and could be a common response 

from wildlife facing human disturbance. In undisturbed areas, carnivores need to 
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operate a trade-off between obtaining optimal resources and avoiding dominant 

competitors (Hayward & Slotow 2009). In human-altered habitats, carnivores may 

need to incorporate a third crucial element to this trade-off by avoiding humans. 

Therefore, since temporal partitioning is a common strategy used by carnivore 

species to coexist, and humans can impact on the activity patterns of species, human 

disturbance could interfere with the strategy of temporal partitioning between 

competing carnivores. 

Disruption of niche partitioning can increase interspecific competition, and carry 

multiple ecological and community consequences. However, niche partitioning is a 

multidimensional dynamic process, and an increase in overlap in one niche 

dimension may be compensated by a decrease in another (Schoener 1974a). 

Therefore, interspecific competition may not necessarily be a direct result of the 

niche overlap in a single dimension. Similarly, not all carnivore species may be 

impacted equally by human disturbance, and the intensity of the avoidance 

response to humans may vary among species (e.g. Caruso et al. 2016). Due to direct 

threat, competition with humans for food, and depredation on livestock, apex 

carnivores typically experience most persecution (Inskip & Zimmermann 2009) and 

live in a landscape of fear of human-related mortality (Oriol-Cotterill et al. 2015). As 

a consequence, large carnivores have indeed been observed to shift their activity 

towards nocturnal hours (Gaynor et al. 2018). However, mesocarnivore species that 

are more tolerant of human disturbance (e.g. Gosselink et al. 2003) may shift their 

activity pattern to a lesser degree when facing human disturbance, thus maintaining 

temporal partitioning with dominant apex predators (Frey et al. 2020).  
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Unequal sensitivity to humans can induce a behavioural mesopredator release, 

wherein disturbance-induced alterations of activity pattern in large carnivores 

benefit the fitness of mesocarnivores by increasing the amount of time allocated to 

other activities (e.g. foraging; Brown et al. 1999). In addition, apex predators are 

typically found in lower densities in areas of higher human influence (Wolf & 

Ripple 2017), which may then limit the need for medium-sized carnivores to alter 

their activity pattern in response to the risk of encountering dominant competitors 

in disturbed landscapes. 

Many carnivores now live in environments that are under human pressure, and are 

subject to a combination of bottom-up (e.g. modification of the landscape; Chapron 

et al. 2014, Venter et al. 2016) and top-down (e.g. hunting; Darimont et al. 2015, 

Ripple et al. 2016a) anthropogenic forces. The impact of human disturbance on a 

wide range of biological interactions has been widely studied (e.g. intraspecific 

competition; Nevin & Gilbert 2005, predator–prey interactions; Muhly et al. 2011, 

animal–plant interactions; Neuschulz et al. 2016). Moreover, we know that human 

disturbance has already reduced the niche available to animals in other dimensions 

(e.g. trophic, Creel et al. 2018, spatial, Tucker et al. 2018), which can result in large-

scale increases in niche overlap (Manlick & Pauli 2020). However, knowledge of the 

influence of humans on coexistence and temporal niche partitioning between 

carnivores is still limited. Thus, there is a need to address this question, since not 

only can temporal displacements and reductions of activity carry costs that reduce 

species fitness (e.g. Beale & Monaghan 2004, Ciuti et al. 2012), it can also alter the 

way species interact, which can have cascading implications (Suraci et al. 2019a). 
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This chapter addresses this knowledge gap by conducting a global quantitative 

review of the temporal niche partitioning between terrestrial carnivores. Based on a 

priori knowledge of the factors influencing wildlife activity patterns, the relative 

influence of diverse human, meteorological and ecological factors as potential 

determinants of temporal partitioning within carnivore communities are 

investigated. Drawing on a global dataset covering a variety of ecosystems, 

carnivore communities and types of human disturbance, this chapter investigates 

whether human disturbance affects temporal niche partitioning uniformly and on a 

global scale. The effects of additional meteorological and ecological factors 

hypothesised to influence niche partitioning are also tested, either on their own or 

through interactions with human disturbance. 

3.3.   Methods 

3.3.1.   Literature search 

To investigate temporal partitioning between carnivores, a literature search was 

performed in December 2019, wherein all peer-reviewed articles and grey literature 

citing the coefficient of temporal overlap proposed by Ridout and Linkie (2009) 

were examined. This method knows a growing popularity in the science of animal 

behaviour, illustrated by a rapidly increasing rate of citation. Hence, it has been 

widely accepted as one of the preferred methods to investigate temporal 

partitioning between animals, using camera trap data (i.e. time-stamped images of 

species in a known location). The coefficient of overlap uses a kernel density 

estimation method that ranges from 0 (no overlap) to 1 (complete overlap). 
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Articles citing Ridout and Linkie’s (2009) method in Scopus (cited 212 times; 

www.scopus.com), Web of Science (cited 195 times; www.webofknowledge.com) 

and Google Scholar (cited 338 times; https://scholar.google.com) were extracted. 

After removing duplicates, 356 articles were assessed for eligibility. Records were 

restricted to studies that calculated the coefficient of temporal overlap between at 

least one pair of sympatric carnivore species. In addition, studies were removed if 

one of the carnivores was an invasive species, because the recent sympatry of 

invasive species may not have allowed sufficient time for native species to develop 

a consistent strategy of temporal avoidance (e.g. Wang & Fisher 2012, Fancourt et al. 

2019). 

A second literature search was performed in June 2021, considering literature 

published up to December 2019 only, wherein all peer-reviewed articles and grey 

literature citing Rowcliffe et al. (2014) and the `activity´ package (Rowcliffe 2019) 

were examined. This method fits kernel density functions to animal activity data, 

and calculates a coefficient of temporal overlap between two activity curves using 

the algorithm provided by Ridout & Linkie (2009). Therefore, the coefficients of 

temporal overlap yielded by the `overlap´ package (Ridout & Linkie 2009) and 

`activity´ package (Rowcliffe 2019) are directly comparable. Articles citing Rowcliffe 

et al. (2014) and Rowcliffe (2009) in Scopus (cited 149 and 53 times respectively), 

Web of Science (cited 133 and 0 times) and Google Scholar (cited 218 and 72 times) 

were extracted. Studies were then assessed following the same eligibility strategy as 

in the first literature search, and added to the overall dataset. 
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Finally, species combinations which were present only once in the dataset were 

discarded. By doing so, the analysis focused on variations in temporal overlap 

within species combinations facing different anthropogenic and environmental 

conditions. Therefore, each species combination included in the analysis had at least 

two coefficients of temporal overlap, extracted from at least two different study 

areas. In the end, 43 studies were included in the quantitative analysis and final 

synthesis. 

3.3.2.   Data extraction 

The coefficients of temporal overlap between pairs of carnivore species were 

extracted from the results sections of the 43 studies. For every value of temporal 

overlap, the following information on the interacting carnivore species was 

recorded: (1) species name; (2) taxonomic family; (3) average adult body mass; and 

(4) baseline activity pattern (Table 3.1). 

To investigate the effect of anthropogenic and environmental conditions on 

coefficients of temporal overlap, the approximate geographic centre and size of 

every study area were extracted from the methodology section, when clearly stated, 

or through visual estimation of the maps provided in the articles. Based on a priori 

knowledge of factors affecting circadian activity pattern of carnivores, the following 

characteristics of the landscape within each study area was then averaged: (1) 

human density; (2) proportion of built-up environment; (3) proportion of pasture; 

(4) Simpson’s landscape diversity index; (5) annual precipitation; (6) annual mean 

temperature; and (7) carnivore community richness (see Table 3.1 for detailed 
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methodology, source, spatial resolution and description of each variable). To ensure 

maximum consistency in the landscape metrics among study areas, only global 

databases were used. A trade-off was therefore operated between spatial resolution 

(finer when using the appropriate local databases for each study area) and 

homogeneity in the methods of calculation for each variable. This chapter did not 

aim to measure fine-scale temporal responses of animals to each of the variables of 

interest, but rather to detect a global response to human disturbance. Therefore, the 

analysis did not include variability in landscape characteristics within each study 

area, but instead focused on variability between sites. When studies 

indiscriminately grouped their camera trap data from more than one location, the 

value of each study area was averaged to create a unique value that best represents 

the overall conditions of the surrounding landscape. Spatial analyses were 

performed using a Geographical Information System (ArcGIS v10.7.1; ESRI, 

Redlands, California). 
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Table 3.1. Description, spatial resolution, range of variability and source of the variables 

extracted from each study areas and included in the a priori models. 

Variables Description Scale Mean ± SD 
(range) 

Human density Average inhabitants / km2 in the study area 
during the year of data collection. For studies 
that span over more than one year, the first 
year was selected. 

1km 84.5 ± 181.1 
(0.1 – 886) 

Built-up 
environment 

Fractional cover (%) of built-up environment 
in the study area in 2015.  

100m 2.9 ± 5.8 
(0 – 27.3) 

Pasture Fractional cover (%) of pastures in the study 
area in 2000.  

10km 20.8 ± 22 
(0 – 91.1) 

Simpson’s 
landscape 
diversity index 

Simpson’s landscape diversity index (SIDI) in 
the study area calculated from a discrete land 
cover classification in 2015. Land cover classes 
comprised shrubs, herbaceous vegetation, 
crops, built-up, bare, wetland, closed forest 
and open forest.  

100m 0.3 ± 0.3 
(0 – 0.7) 

Precipitation Annual precipitation (mm) in the study area, 
averaged for the 1970-2000 period. 

1km 1148.1 ± 800.8 
(215 – 3149.9) 

Temperature  Annual mean temperature (°C) in the study 
area, averaged for the 1970-2000 period. 

1km 18.2 ± 6.4 
(0.6 – 28.4) 

Carnivore 
community 
richness 

Number of mesocarnivores and large 
carnivores inhabiting part or all of the study 
area using the 2019 IUCN Red List update.  

n/a LC: 1.3 ± 2.0 (0 
– 8)  
MC: 12.9 ± 5.5 
(5 – 27) 

Body mass ratio Average body mass of larger species / 
Average body mass of smaller species. 

n/a 7.4 ± 11.1 
(1 – 73.8) 

Baseline activity 
pattern 

Species activity pattern: (1) nocturnal, (2) 
cathemeral or crepuscular, (3) diurnal. 

n/a (1): 18 (2): 24 
(3): 1 

 

Sources for variable: Human density: WorldPop (Lloyd et al. 2017); Built-up environment 

and Simpson’s landscape diversity index: Copernicus 2015 global land cover database 

(Buchhorn et al. 2019), Fragstats v4 for calculating SIDI (McGarigal et al. 2012); Pasture: 

Global Agricultural Lands: Pastures, 2000 (Ramankutty et al. 2008); Precipitation and 

Temperature: WorldClim (Fick & Hijmans 2017); Carnivore community richness: IUCN 

Red List of threatened species (IUCN 2020); Body mass ratio and Baseline activity pattern: 

PanTHERIA database (Jones et al. 2009). 



 

Page | 51  
 

3.3.3.   Data analysis 

3.3.3.1.   Paired studies 

First, the findings of any studies that investigated the causal effect of human 

disturbance on temporal partitioning between carnivores (i.e. increase, decrease, or 

no effect), using an experimental or quasi-experimental design (i.e. studies with a 

simultaneous experimental control, Hone 2007) were qualitatively evaluated. 

Typically, such studies calculated and compared the coefficients of temporal 

overlap of similar species combinations between areas classified as under low or 

high human disturbance. Information of interest comprised the type of human 

disturbance that was investigated, and whether the authors were able to 

demonstrate a clear change in the coefficients of temporal overlap between the areas 

under low or human disturbance (i.e. when the 95% confidence intervals of the two 

coefficients did not overlap). 

3.3.3.2.   Global models 

Using knowledge from previous studies investigating factors affecting circadian 

activity pattern of carnivores, ten models were explored, covering human, 

meteorological and ecological factors that could affect the coefficient of temporal 

overlap between carnivore species (Table 3.2; see justifications below). Thus, the 

coefficient of temporal overlap was the dependent variable, and models were fitted 

using Generalized Linear Mixed Models (Zuur et al. 2009), with a logit link function 

and beta distribution, appropriate for continuous variables restricted to an interval 

between 0 and 1 (Ferrari & Cribari-Neto 2004). Species combination was added as a 
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random effect in each model, with levels representing different locations where the 

species combinations were studied, and conducted model selection using AIC 

(Akaike 1981). Having a minimum of two replicates per species combination, and 

adding it as a random factor, allowed to artificially create a paired comparison 

design (Montgomery 2017). By doing so, the analysis could focus on the variance in 

coefficients of overlap explained by the different explanatory variables within 

species combinations, rather than testing the variance between species 

combinations. Two analyses were conducted in parallel: 

1) The first “full” analysis used the entire dataset, and assumed that every study 

and coefficient of temporal overlap had similar precision. This allowed to use the 

entire dataset, favouring large sample size over more sophisticated models. 

2) The second “weighted” analysis assigned a precision index to each value of the 

dependent variable. The coefficient of temporal overlap is a derived measure based 

on modelled activity patterns, and is associated with uncertainty (commonly 

provided as 95% confidence intervals). This analysis accounted for the variance 

associated with the dependent variable, by assigning non-null weights to the 

observations (with the values in weights being inversely proportional to the 

dispersions). Therefore, each coefficient of temporal overlap was assigned a weight 

equal to the inverse of the width of the 95% confidence interval. Because numerous 

studies included in this review did not provide the uncertainty associated with their 

coefficients of temporal overlap, the second “weighted” dataset was smaller than 

the first “full” dataset. 
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When no single model is clearly superior to the others in the set (e.g. typically AICw 

≥ 0.90), extracting information from single models can lead to weak inferences, and 

multimodel inference should be favoured (Burnham & Anderson 2002). As this was 

the case in this chapter (see Results), a model-averaging technique was applied to 

the top-ranked models with similar AIC (ΔAIC < 2), to build a full average model 

with 95% confidence. Spearman’s rank correlation coefficients (ρ) were calculated to 

investigate multicollinearity between the continuous predictors, and in case of 

highly correlated variables (ρ > 0.70, Zar 2010), one of the variable was excluded 

from the average model. All modelling analyses were performed using the R 

packages `glmmADMB´ (Skaug et al. 2016), `glmmTMB´ (Brooks et al. 2017) and 

`MuMln´ (Kamil 2019) in R version 3.6.1 (Team R Core 2018). 
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Table 3.2. A priori models testing human, meteorological and ecological continuous 

variables as predictors of coefficients of temporal overlap between sympatric carnivores. 

Hypothesis justification and support can be found in the text. SIDI = Simpson's landscape 

diversity index. 

Variables Hypothesis 
Impact on 
overlap 

Human density Human presence and their diurnal activity are 
associated with increased nocturnality in carnivores. 

Increase 

Built-up environment Human presence is higher in urban areas which 
leads to carnivores in urban areas being more 
nocturnal than in rural areas. 

Increase 

Pasture Livestock depredation is a source of human–
carnivore conflict. Frequent lethal management of 
carnivores in pastoral landscapes is associated with 
increased carnivore nocturnality. 

Increase 

Simpson’s landscape 
diversity index  

Complex habitat mosaics nurture rich communities, 
and temporal partitioning is selected to facilitate 
stable coexistence. 

Decrease 

SIDI * pastures The effects of landscape diversity are diminished in 
landscapes with a higher proportion of pastures. 

Non-linear 

Precipitation Scarcity of spatially fixed waterpoints in dry areas 
forces temporal partitioning. 

Increase 

Temperature Extremely high temperatures drive crepuscular or 
nocturnal behaviour. 

Increase 

Precipitation * 
temperature 

The effects of precipitation are magnified in 
extremely hot areas. 

Non-linear  

Carnivore community 
richness 

In richer communities, temporal partitioning is 
selected to facilitate stable coexistence.  

Decrease 

Body mass ratio  Species combinations with higher body mass ratios 
may invest less in temporal partitioning, and more 
in spatial partitioning, to improve coexistence. 

Increase 

 

3.3.4.   Model justification 

Carnivores have been found to increase their nocturnal activity in habitats with 

higher human presence (e.g. urban areas; Carter et al. 2015, Lewis et al. 2015, Wang 

et al. 2015), which can lead to higher temporal overlap among carnivore species 
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(Table 3.2; Hypotheses 1 and 2). Such temporal avoidance of humans may be 

especially predominant in pastoral landscapes, where human-related mortality risks 

are higher due to human–carnivore conflicts emerging from livestock depredations 

(Frank & Woodroffe 2001, Loveridge et al. 2010), therefore potentially increasing 

temporal overlap between carnivores even further in pastoral landscapes (Table 3.2; 

Hypothesis 3). Conversely, landscapes that are kept under traditional mosaic 

management, with a mix of natural and anthropogenic land use, can facilitate 

habitat selection and temporal partitioning (Monterroso et al. 2014, Curveira-Santos 

et al. 2017), and could reduce temporal overlap between species (Table 3.2; 

Hypothesis 4). Nevertheless, the reduction of temporal overlap attributed to higher 

landscape diversity may be diminished in landscapes with a higher proportion of 

areas associated with extensive grazing systems (Table 3.2; Hypothesis 5). 

The daily activity patterns of animals can also be regulated by meteorological and 

ecological factors, which could influence the way carnivores interact with each 

other. For instance, in arid landscapes, where water features are a scarce and 

spatially-fixed resource, there is little opportunity to achieve spatial avoidance of 

dominant competitors (Atwood et al. 2011). Thus, subordinate species can 

concentrate their activity patterns at times where their dominant counterparts are 

less active (Atwood et al. 2011, Edwards et al. 2017), potentially reducing temporal 

overlap (Table 3.2; Hypothesis 6). In habitats with high daytime temperatures, 

shifting activity to night-time may help species reduce thermal stress (Fuller et al. 

2016, Rabaiotti & Woodroffe 2019). However, this could reduce the temporal niche 

available to segregate with competitors (Astete et al. 2017), increasing temporal 
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overlap (Table 3.2; Hypothesis 7). In addition, cases of extreme thermal stress may 

cause most or all species to shift to nocturnal activities, rendering temporal 

partitioning at waterpoints unachievable. Therefore, any increase in temporal 

overlap through increased precipitation would be negated by higher daytime 

temperatures (Table 3.2; Hypothesis 8). 

The strength and outcomes of species interactions is also dependent on the 

community composition and the interacting species (Sentis et al. 2017). In rich, and 

thus more complex, carnivore communities, temporal partitioning may facilitate 

stable coexistence between co-occurring species (Monterroso et al. 2014). Therefore, 

higher carnivore species richness could decrease the average temporal overlap 

within the community (Table 3.2; Hypothesis 9). Alternatively, the temporal overlap 

among some pairs of species could increase in areas with higher species richness, 

given that there are more species to avoid, leading to trade-offs and thus higher 

overlap with some species in the community (Curveira-Santos et al. 2017). 

Additionally, carnivore species with similar body mass have higher potential for 

competition, especially if they have similar diets (Wilson 1975, Dayan & Simberloff 

2005). Smaller carnivores may also be at more risk of intraguild predation from 

larger carnivores (Woodward & Hildrew 2002). Edwards et al. (2015) observed that 

species combinations with higher differences in body mass used spatial partitioning 

to a greater extent than temporal partitioning. Conversely, species combinations 

with lower body mass ratios may invest in temporal partitioning to facilitate stable 

coexistence (Di Bitetti et al. 2010, Edwards et al. 2015). Therefore, temporal overlap 

may increase with high values of body mass ratios (Table 3.2; Hypothesis 10). 
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3.4.   Results 

3.4.1.   Description of the literature 

Altogether, 244 coefficients of temporal overlap were extracted from 43 studies 

(Figure 3.1). The reduced “weighted” dataset comprised 180 coefficients of temporal 

overlap extracted from 30 studies. The coefficients of overlap ranged from 0.12 to 

0.95 (mean = 0.67 ± 0.17 SD), with a seemingly similar distribution between 

continents (Figure 3.2). There was a high disparity between continents, with most 

coefficients extracted from studies in North America (102 values from 9 studies), 

followed by Europe (55 values from 7 studies), Asia (42 values from 16 studies), 

South America (38 values from 7 studies) and, finally, Africa (5 values from 4 

studies). Except for human density and built-up environment (ρ = 0.78), none of the 

predictors extracted were highly correlated. 

A total of 76 species combinations were investigated, and each species combination 

had on average 2.93 ± 1.93 SD (range 2 – 12) coefficients of temporal overlap. 

Almost half of the studies (n = 20) investigated a single species pair, whilst the other 

studies (n = 23) investigated 2 to 20 species pairs simultaneously (mean = 5.41 ± 4.75 

SD). This review included a total of 44 species, 18 of which were strictly nocturnal, 

25 were crepuscular or cathemeral, and only one species, the yellow-throated 

marten —Martes flavigula— was strictly diurnal. Felidae was the most investigated 

family (n = 165), followed by Mustelidae (n = 114), Mephitidae (n = 60), Canidae (n = 

50), Procyonidae ( n = 34), Viverridae (n = 14), Didelphidae (n = 10), Herpestidae (n = 

6) and Hyaenidae (n = 6). 
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Figure 3.1. Geographical locations of the study areas included in this review, colour-coded by continent. In several cases, studies conducted research in more 

than one study areas. Photos show the carnivore pair that was the most studied in each continent. Red, North America: coyote and bobcat. Orange, South 

America: jaguar —Panthera onca— and mountain lion —Puma concolor—. Green, Africa: African lion —Panthera leo— and spotted hyena —Crocuta 

crocuta—. Purple, Asia: tiger —Panthera tigris— and leopard —Panthera pardus—. Blue, Europe: European badger —Meles meles— and red fox. Map 

design adapted from Prugh and Sivy (2020). 
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Figure 3.2. Distribution of the coefficients of temporal overlap extracted in this review, 

grouped by continent. 

3.4.2.   Paired studies 

Eight studies investigated the effects of human disturbance by comparing the 

coefficients of temporal overlap of species pairs between areas classified as under 

low or high human disturbance. Of these, two studies were able to clearly 

demonstrate that some coefficients of temporal overlap between carnivores 

increased in areas under high human disturbance (e.g. the confidence intervals 

between low and high disturbance did not overlap; Lewis et al. 2015, Wang et al. 

2015), one study reported significant reductions of temporal overlap (Baker 2016), 
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and five found no apparent (i.e. comparison of coefficients without confidence 

intervals; Cruz et al. 2015) or significant change attributed to human disturbance 

(e.g. the confidence intervals between low and high disturbance overlapped; Carter 

et al. 2015, Rayan & Linkie 2016, Moll et al. 2018, Sogbohossou et al. 2018). The three 

studies that reported either increases or decreases in temporal overlap attributed to 

human disturbance in some species pairs also reported no change in other species 

pairs. 

3.4.3.   Global models 

3.4.3.1.   Full analysis 

None of the models explored had strong support (Table 3.3). The evidence ratios 

(i.e. AICw1 / AICw2) for the best model (Built-up environment) versus the second 

(interaction between Simpson’s landscape diversity index and Pasture) and third 

(Simpson’s landscape diversity index) best models were low (1.31 and 2.71, 

respectively), making the model selection uncertainty high. Therefore, a model-

averaging technique was applied to the three top-ranked models with similar AIC 

(ΔAIC < 2), “Built-up environment”, “Simpson’s landscape diversity index * 

Pasture” and “Simpson’s landscape diversity index”, to build the full average 

model with 95% confidence. 
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Table 3.3. Results of the a priori model selection (full dataset) for predictors of coefficients of 

temporal overlap between sympatric carnivores, with models ranked based on their AIC. 

Species combination was added as a random factor in each model. The “*” sign indicates an 

interaction. Models in bold were selected to build the full model average. 

Models AIC ΔAIC AICw 

Built-up environment -282.66 0.00 0.38 

Simpson’s landscape diversity index * Pasture -282.15 0.52 0.29 

Simpson’s landscape diversity index -280.69 1.97 0.14 

Temperature -278.81 3.86 0.05 

Null (Intercept only) -278.22 4.44 0.04 

Pasture -276.72 5.94 0.02 

Precipitation -276.68 5.98 0.02 

Human density -276.34 6.32 0.02 

Body mass ratio  -276.27 6.39 0.02 

Precipitation * Temperature -276.25 6.41 0.02 

Carnivore community richness -274.96 7.71 0.01 

 

None of the variables included in the full average model were significant predictors 

of coefficients of temporal overlap between carnivores (Table 3.4). Additionally, the 

standard errors of the estimate for pasture, Simpson’s landscape diversity index and 

the interaction between Simpson’s landscape diversity index and proportion of 

pasture overlapped with zero, further indicating weak relationships. The Simpson’s 

landscape diversity index and proportion of built-up environment were positively 

associated with temporal overlap, whilst the proportion of pasture showed a 

negative relationship with temporal overlap (Table 3.4; Figure 3.3). The lack of 

statistical significance and weak relationships found suggest that no human, 

environmental or meteorological variables are global predictors of carnivore 

temporal overlap. 
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Table 3.4. Full model average (full dataset) of the three best a priori models (ΔAIC < 2), with 

95% confidence. Species combination was added as a random factor. All explanatory 

variables were standardised for comparison purposes. SE = Standard Error. 

Variable Estimate SE z value p-value 

(Intercept) 0.633 0.079 7.941 < 0.005 

Pasture -0.006 0.034 0.170 0.865 

Simpson’s landscape diversity index 0.048 0.048 0.985 0.325 

Built-up environment 0.073 0.054 1.336 0.181 

Simpson’s landscape diversity index * Pasture 0.038 0.052 0.740 0.459 

 

 

Figure 3.3. Predicted effects of the explanatory variables included in the full model average 

on coefficients of temporal overlap (full dataset). The grey ribbon represents the 95% 

confidence intervals. 

3.4.3.2.   Weighted analysis 

None of the models explored had strong support (Table 3.5). The evidence ratios 

(i.e. AICw1 / AICw2) for the best model (interaction between Simpson’s landscape 

diversity index and Pasture) versus the second model (Built-up environment) was 

low (1.70), making the model selection uncertainty high. The other models had 

really poor weight (AICw < 0.001). Therefore, a model-averaging technique was 
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applied to the two top-ranked models with similar AIC (ΔAIC < 2), “Simpson’s 

landscape diversity index * Pasture” and “Built-up environment”, to build the full 

average model with 95% confidence. 

Table 3.5. Results of the a priori model selection (weighted dataset) for predictors of 

coefficients of temporal overlap between sympatric carnivores, with models ranked based on 

their AIC. Species combination was added as a random factor in each model. The “*” sign 

indicates an interaction. Models in bold were selected to build the full model average. 

Models AIC ΔAIC AICw 

Simpson’s landscape diversity index * Pasture -2741.71 0.00 0.63 

Built-up environment -2740.63 1.08 0.37 

Pasture -2717.92 23.79 0.00 

Precipitation * Temperature -2699.30 42.42 0.00 

Simpson’s landscape diversity index -2692.40 49.31 0.00 

Temperature -2687.40 54.31 0.00 

Carnivore community richness -2686.29 55.42 0.00 

Human density -2670.16 71.55 0.00 

Null (Intercept only) -2642.40 99.31 0.00 

Precipitation -2641.86 99.85 0.00 

Body mass ratio  -2640.58 101.13 0.00 

 

As was the case in the “full” analysis, the Simpson’s landscape diversity index and 

proportion of built-up environment were positively associated with temporal 

overlap, whilst the proportion of pasture showed a negative relationship with 

temporal overlap (Table 3.6, Figure 3.4). The observed pattern was stronger than in 

the “full” analysis, with lower standard errors and higher z values for each 

predictor. However, the “weighted” model suffered strong underdispersion, with a 

dispersion parameter of 0.005 (where values < 1 indicate underdispersion, and 

values > 1 indicate overdispersion), weakening the reliability of the findings. A 
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comparative visual examination of Figure 3.3 and Figure 3.4 shows no apparent 

difference in the predicted effects of the three explanatory variables between the 

two models (i.e. full and weighted), further indicating that no human, 

environmental or meteorological variables were global predictors of carnivore 

temporal overlap. 

Table 3.6. Full model average (weighted dataset) of the two best a priori models (ΔAIC < 2), 

with 95% confidence. Species combination was added as a random factor. All explanatory 

variables were standardised for comparison purposes. SE = Standard Error. 

Variable Estimate SE z value p-value 

(Intercept) 0.652 0.089 7.297 < 0.005 

Pasture -0.077 0.020 3.719 < 0.005 

Simpson’s landscape diversity index 0.054 0.020 2.734 0.006 

Built-up environment 0.097 0.025 3.933 < 0.005 

Simpson’s landscape diversity index * Pasture 0.005 0.012 0.365 0.715 

 

 

Figure 3.4. Predicted effects of the explanatory variables included in the full model average 

on coefficients of temporal overlap (weighted dataset). The grey ribbon represents the 

standard error. 
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3.5.   Discussion 

Although accumulating evidence suggests that human disturbance increases 

nocturnal activity in wildlife (Gaynor et al. 2018, Nix et al. 2018), there was no 

evidence at a global scale for an impact of the selected human, environmental or 

meteorological variables on temporal partitioning between carnivores. However, it 

cannot be said that human disturbance has no impact on temporal partitioning. 

Rather, the effects of human disturbance are diverse and probably context-

dependent, as illustrated by the findings from the eight studies that compared 

temporal overlap between low and high human disturbance treatments. As 

hypothesised, in two of these studies, some species, but not all, increased nocturnal 

activity in response to higher urbanisation, which increased temporal overlap 

between competitors (Lewis et al. 2015, Wang et al. 2015). Conversely, Baker (2016) 

documented that, although human disturbance — a combination of paved roads 

and hiking trails — induced an increase in wildlife nocturnality, most temporal 

overlaps between species were lower in more disturbed areas. This is because 

species within disturbed landscapes might co-occur in safe areas to a greater extent, 

and subordinate species can fine-scale their temporal partitioning with dominant 

competitors by narrowing or displacing their peaks of activity. Indeed, maintaining 

temporal partitioning with competitors in a reduced, nocturnal, temporal window 

can be a strategy adopted to ensure avoidance of both humans and competitors 

simultaneously (e.g. Sogbohossou et al. 2018). Such fine-scale adaptations may not 

be detected by diel measurements of temporal overlap, and could be one of the 

reasons behind the lack of a significant trend in these results. Similarly, it is possible 
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that, despite an increased nocturnality caused by human disturbance, carnivores 

could adjust their activity patterns on a fine temporal scale to simultaneously avoid 

both humans and competitors, therefore not increasing the temporal overlap among 

carnivores. This could explain why the remaining five studies reported relatively 

similar coefficients of temporal overlap in areas under low and high human 

disturbance (e.g. human presence; Carter et al., 2015; Sogbohossou et al., 2018; 

plantations and reduction in landscape diversity; Cruz et al., 2015; Rayan & Linkie, 

2016; built-up environment; Moll et al., 2018). In addition, the lower density of large 

carnivore populations in high human density areas (Woodroffe 2000), coupled with 

a high anthropogenic resource availability, could relax competition among 

carnivores able to adapt to human disturbance (Ruscoe et al. 2011, Wolf & Ripple 

2017), thus reducing the importance of temporal partitioning in promoting stable 

species coexistence. Another possible explanation could be that the baseline activity 

pattern of species included in the analysis (i.e. diurnal, nocturnal, or crepuscular / 

cathemeral) may influence the findings. An effect of human disturbance on overlap 

may be less likely between nocturnal–nocturnal pairs, but could be expected in 

diurnal–crepuscular pairs. However, due to a strong dearth of diurnal species in the 

studies included in the analysis, which created a severe unbalance between groups 

and low sample size for species pairs with a diurnal carnivore, the baseline activity 

patterns of species could not be included in the analysis. 

None of the ecological or meteorological factors were significant predictors of 

coefficients of temporal overlap. Although temporal overlap increased with the 

Simpson’s landscape diversity index, contrary to the hypothesis, the relationship 
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was weak. Temporal overlap was hypothesised to decrease with higher landscape 

diversity, as complex habitats enable fine-scale habitat segregation and promotes 

species richness (Rosenzweig 1981, Pereira et al. 2012). However, this hypothesis 

was not supported by the models. Although previous studies observed that 

temporal segregation was indeed likely to play a role in complex communities 

(Monterroso et al. 2014), it is possible that, in the dataset used in this study, higher 

landscape diversity did not increase species richness systematically, due to other 

external factors (e.g. habitat fragmentation; Rybicki et al. 2020). Another possibility 

is that species richness did indeed increase with landscape complexity, but that 

temporal partitioning was not selected as a primary mechanism allowing 

coexistence with competitors. In the latter case, species-specific temporal 

preferences may reflect strategies unrelated to competitive interactions (e.g. 

foraging strategies; Curveira-Santos et al. 2017). 

Indeed, internally, the circadian rhythm is governed by each species’ biological 

clock, an endogenous program that dictates the timing of many behaviours 

(Pittendrigh 1981). Externally, this is regulated by biotic (e.g. predators matching 

their preys’ activity; Gantchoff & Belant 2016) and abiotic factors (e.g. daytime 

temperature; Rabaiotti & Woodroffe 2019). As competitor avoidance is just one the 

many factors regulating activity pattern, it may not be selected in systems where 

other factors are more limiting to the species’ fitness (Schoener 1974b). For instance, 

this is seen in systems with harsh environmental conditions or low prey availability 

(Cozzi et al. 2012, Broekhuis et al. 2014, Astete et al. 2017). In other systems, where 

none of the governing factors exert an extreme pressure on the individuals’ fitness, 
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activity pattern can be governed by a combination of several interacting factors  

(e.g. moonlight and prey activity; Mukherjee et al. 2009, Penteriani et al. 2013, 

Penido et al. 2017). Thus, the relative strength of each external factor regulating 

circadian activity pattern may be strongly related to the biotic and abiotic 

conditions of the surrounding landscape. This site-specificity renders the 

investigation of temporal partitioning on a global scale ineffective, by yielding 

incomplete results that cannot be applied locally. 

3.6.   Limitations 

There are two main limitations to this chapter that could explain the weak 

relationships found between the predictors investigated and coefficients of 

temporal overlap. First, the data collected may be too coarse to analyse processes 

happening at much smaller spatial and temporal scales. Concerns over spatial 

scaling and perception bias in ecology have been raised before (Wiens 1989, Levin 

1992). As characteristics of the landscape change with spatial scale (Turner et al. 

1989), it is possible that some environmental variables have an influence on activity 

pattern and temporal partitioning among carnivores, albeit on a different spatial 

grain than what was used in this analysis. This chapter favoured the use of 

standardised variables by using the same large-scale indices for all studies. 

Although doing so meant using a coarser spatial grain, with reduced precision, it 

ensured a complete comparability between study sites. For instance, several studies 

measured the levels of human activity as the average number of photographs of 

people at camera trap sites (e.g. Wang et al. 2015, Moll et al. 2018). Such fine-scale 

spatiotemporal metric cannot be determined a posteriori, and was therefore not 
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applicable to all studies included in this review. To address this issue, future 

surveys should favour well-designed data collection that record the characteristics 

of the surrounding landscape systematically whilst deploying cameras in the field, 

enabling the investigation of ecological processes on different spatial scales 

simultaneously (e.g. Wilmers et al. 2013). In this study, human density was used as 

a proxy for the probability of encountering humans, but this relationship may not 

always be true (e.g. some natural parks may experience peaks of human visitations 

on a regular basis, but have a low recorded human density due to the lack of 

habitations). Although measuring human activity on camera can prove ethically 

challenging (Brittain et al. 2020, Sharma et al. 2020), it may be needed to fully 

comprehend the fine-scale temporal responses of animals to human presence. 

Secondly, the coefficient of temporal overlap, which is based on the daily activity 

patterns of species, may not be the best-fitting tool to investigate temporal 

partitioning. Daily activity patterns are typically calculated by indiscriminately 

grouping data spanning several days, months or years into a 24h window. 

Evaluating temporal partitioning in such a way assumes that competitor avoidance 

is a predictive process, with long-lasting and consistent effects. Instead, competitor 

avoidance may often be a reactive response, in which subordinate species adapt 

their use of landscape to the nearby presence of competitors in temporal scales that 

are too small to have lasting effects on the circadian activity pattern (Broekhuis et al. 

2013, López-Bao et al. 2016). Likewise, although human’s influence on wildlife 

behaviour may exceed that of natural predators (Ciuti et al. 2012, Clinchy et al. 

2016), it is likely that the broad-scale nocturnal adaptations of carnivores to humans 
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and human features works in combination with finer-scale immediate responses to 

human stimuli (e.g. Ordiz et al. 2013b, Moll et al. 2018). Alone, the coefficient of 

temporal overlap portrays a broad picture of temporal segregation, and is best 

paired with an ecological interpretation of the activity curves (where the peaks are, 

how narrow etc), or other metrics of fine-scale temporal interactions, such as time-

to-event analysis (e.g. Prat-Guitart et al. 2020). Similarly, combining metrics of 

temporal association with spatial displacement metrics (e.g. multispecies occupancy 

models; Mackenzie et al. 2004, Rota et al. 2016), or spatiotemporal models (e.g. co-

detection modelling; Cusack et al. 2017, time‐dependent observation modelling; Ait 

Kaci Azzou et al. 2021), can yield a more complete picture of fine-scale avoidance of 

competitors, and how human disturbance might be mediating these interactions. In 

this regard, the coefficient of temporal overlap is a useful tool in measuring the 

average temporal overlap between species and large-scale responses to human 

disturbance but can overlook fine-scale interactions that are essential to allow 

coexistence. In addition, studies that indiscriminately group data over long periods 

of time may overlook seasonal variations in behaviour (e.g. Monterroso et al. 2014, 

Caravaggi et al. 2018), especially if they do not account for the variation in 

daylength throughout the year in their analysis (i.e. by using solar time instead of 

clock time; Nouvellet et al. 2012, Vazquez et al. 2019). These studies are thus at risk 

of recording faulty behavioural timings, which can lead to erroneous conclusions on 

the way species share time. Similarly, camera trap surveys focusing on calculating 

activity pattern and temporal partitioning do so by grouping the data from the 

different stations within their study area. However, there may be consequential 
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variations in human disturbance or habitat features across individual camera 

stations which could impact on species behaviour on a fine-scale. Finally, the 

coefficient of temporal overlap is a pairwise approach to evaluating temporal 

partitioning. Interspecific competition and niche partitioning are complex systems, 

with many species involved. Restricting the investigation of temporal partitioning 

to two species, without considering the impact of the presence and activity of other 

species forming the community, essentially distils complex patterns of multispecies 

partitioning into dyads. For all these reasons, it is in the best interest of studies that 

employ camera traps to avoid overinterpreting the coefficients of temporal overlap 

to investigate the potential for competition among sympatric species. 

3.7.   Conclusions 

Undoubtedly, humans impact on the activity patterns of wildlife, but this chapter 

found no evidence that this process could impact temporal overlap between 

carnivores consistently on a global scale. Instead, the influence of humans on 

temporal partitioning could be diverse and context-specific, and thus requires 

further investigation due to the theoretical implications for community structure. 

Similarly, this chapter found no strong evidence that the ecological and 

meteorological factors investigated were significant predictors of temporal 

partitioning globally. Therefore, temporal avoidance of competitors may be 

regulated by multiple factors simultaneously, with the relative strength of each 

factor varying with the biotic and abiotic conditions of the landscape. 
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Large-scale analysis, such as this one, can yield valuable and statistically powerful 

results. Conducting such investigations on a global scale allows the inclusion of a 

large range of human activities and landscape transformation, providing valuable 

insights into the role of humans on species coexistence in animal communities. 

However, they can also mask the local variability in the response of the processes 

investigated. Similarly, the investigation of human disturbance on temporal 

partitioning among carnivores suffered a lack of controlled studies, a common issue 

in carnivore science (Allen et al. 2017a, Bruskotter et al. 2017). Complete 

experiments with carnivores can rarely, if ever, be executed excellently in the field. 

Future studies would benefit from adopting controlled experimental designs 

whenever possible, for instance by contrasting temporal overlap in a given species 

pair between ecologically-similar sites with low and high disturbance (e.g. Frey et 

al. 2020), or across a gradient of human disturbance (e.g. Lewis et al. 2015). 

Choosing the right factors to control, with the right species, would eliminate some 

of the biases that are introduced by pooling temporal data across days and sites, 

and could be pivotal in detecting the effects of human disturbance on activity 

overlap between co-occurring species. 

Carnivore communities, where temporal partitioning is not negatively affected by 

humans, may still experience an increase in interspecific competition following 

human disturbance. Indeed, increases in nocturnality can affect other dimensions of 

niche partitioning (e.g. increased trophic competition for nocturnal preys; Smith et 

al. 2018). For this reason, future studies would benefit from investigating multiple 

dimensions of niche partitioning simultaneously (i.e. spatial, temporal, and trophic), 
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in order to fully understand how human-induced changes in carnivore activity 

affect interspecific competition. 

This chapter reinforces the importance of elucidating context-dependent 

spatiotemporal responses of carnivores to the combined influences of human 

activities and dominant competitors, to better inform wildlife management 

strategies and land-use planning. Evidence-based decision making should benefit 

both animal and human communities, and aim to promote human–wildlife 

coexistence. However, the temporal adaptation of wildlife to humans is still a 

neglected aspect of management regulations. In areas where restricting human 

access can be difficult to achieve spatially (e.g. national parks with high tourist 

frequentation), limiting human activity to a reduced window in time could help 

widen the “safe” temporal niche available to carnivores, and promote coexistence 

with competitors. This could be achieved, for instance, by restricting public access 

to hours outside of high animal activity (e.g. temporal closure during night and 

crepuscular hours; Wittington et al. 2019). Time is an important component of 

species interaction and coexistence, that ought to be included with careful 

examination into conservation programs and management implementations. 
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Chapter 4 

 

The coefficient of temporal overlap: 

evaluation of current practices and 

guidelines 
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4.1.   Abstract 

The number of studies investigating animal activity patterns and temporal 

partitioning among species is growing rapidly, thanks to the increasing popularity 

and accessibility of remote-sensing camera traps. Recently developed methods can 

estimate activity levels by fitting diel activity pattern as a continuous distribution, 

and can be employed to compute coefficients of temporal overlap between two 

species. However, the implementation of this coefficient in the scientific literature is 

not homogenous, and currently faces uncertainties and irregularities. Given the 

importance of temporal partitioning as one of the three main niche dimensions 

regulating species interactions and community structure, there is an urgent need to 

highlight the limitations and consideration of the tools used by researchers. In this 

chapter, three common methodological issues are discussed: (a) accuracy and 

precision of the estimates; (b) inclusion of seasonality in the analysis; and (c) 

interpretation of the findings. Overall, studies showcased a good level of 

transparency when presenting their findings, but a high proportion may suffer from 

lower accuracy and precision after modelling the activity curve estimates of species 

with too few detections. Similarly, most surveys did not account for variations in 

daylight length throughout the year, or seasonal adjustments of diel activity 

pattern, and may have missed important patterns of temporal partitioning. Finally, 

the majority of authors subjectively classified the degree of temporal overlap as 

being either “low” or “high”, which can lead to irregularities between studies. 

Authors are encouraged to maintain good levels of transparency by systematically 

providing the confidence intervals, and should be explicitly cautious when 
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interpreting coefficients modelled from fewer than 100 species detections. The use 

of solar time should be favoured over clock time, as it is more ecologically 

meaningful. The decision to incorporate seasonality in the analysis should be 

contingent on the total number of detections and the goal of the study. 

Additionally, authors should present their findings in a purely descriptively 

manner, or classify each coefficient with respect to the overall distribution of 

coefficients in the study. Finally, complementing the coefficients of overlap with 

befitting statistical tests may be the most effective way to uncover the patterns at 

play. 

4.2.   Introduction 

Understanding how animals use time as a resource is essential to know the 

ecological niche that species occupy (Hutchinson 1957). The diel activity pattern, a 

measure of how species distribute activity over the day, is primarily regulated by 

each species’ endogenous biological clock (Pittendrigh 1981), and can be partially 

adjusted in response to exogenous factors such as weather (Brivio et al. 2016), food 

availability (Masi et al. 2009) or human disturbance (Ordiz et al. 2012). In addition, 

most species can adapt their activity pattern in response to the presence of other 

species, whether to reduce predation risk (Lima & Dill 1990), improve predation 

success (Lima 2002), or ease competitive interactions (Di Bitetti et al. 2010). 

Temporal partitioning, the process where different species segregate time as a 

limited resource, is, therefore, a prevalent mechanism facilitating stable coexistence 

between sympatric species (Schoener 1974a, Kronfeld-Schor & Dayan 2003). Indeed, 

time is one of the three main niche dimensions, along with the trophic and spatial 
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dimensions, that competitors can partition to facilitate stable coexistence (Schoener 

1974a). 

A range of methods has been used to quantify animal activity levels, each 

presenting their own advantages and disadvantages (Zimmermann et al. 2016). 

Direct observations in the animal’s natural environment or in artificial conditions 

are time-demanding and can be difficult to achieve for cryptic species (Duckworth 

1998). Indirect observations can ease these issues by monitoring animal behaviour 

remotely. For instance, fitting animals with tracking devices, such as Very High 

Frequency (VHF) or Global Positioning System (GPS) collars, enables animal 

activity to be recorded with great precision. However, VHF and GPS telemetry 

investigations are limited by the number of species and individuals that can be 

fitted and monitored throughout the study period. On the other hand, using time-

stamped cameras to monitor animal behaviour does not require the direct presence 

of the observer, and facilitates multi-taxa surveys by allowing the monitoring of 

several species from the same community simultaneously (Caravaggi et al. 2017). 

Camera traps are increasingly being used in the fields of conservation and ecology 

because they offer a relatively affordable and time-effective monitoring tool, whilst 

inflicting minimal disturbance (Rowcliffe & Carbone 2008, Burton et al. 2015, 

Caravaggi et al. 2017). Consequently, the use of time-stamped camera trap data has 

enabled to further the investigation of animal activity patterns and temporal 

partitioning (Bridges & Noss 2011, Caravaggi et al. 2017, Frey et al. 2017). At first, 

studies using diel activity patterns from camera traps commonly assigned 

behaviours to discrete categories (e.g. night, day and crepuscular periods; Van 
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Schaik & Griffiths 1996). Data were then analysed using traditional tools to measure 

niche similarity, such as Pianka’s overlap index (Pianka 1973) and Renkonen 

similarity index (Krebs 1989). Although these tools are still currently used for other 

niche dimensions (e.g. trophic; Yarnell et al. 2013), they may not represent the most 

precise option to measure temporal overlap, as they require classifications of 

activity data into discrete blocks of time. 

Recent methods have improved the insight gained from camera trap data by fitting 

diel activity pattern as a continuous distribution over a 24h period, using 

nonparametric circular kernel density functions (e.g. Ridout & Linkie 2009, Oliveira-

Santos et al. 2013, Rowcliffe et al. 2014). To apply these methods, species capture 

times are treated as a random sample from an underlying distribution (i.e. 24h 

period), with kernel density functions generating a continuous measure of the 

density of data points along this distribution. This method can be further employed 

to evaluate temporal partitioning between two species by measuring the proportion 

of the day that the two species are active simultaneously. The coefficient of 

temporal overlap (Δ), proposed by Ridout and Linkie (2009), is an innovative 

method capable of measuring the degree of similarity between two kernel density 

curves (i.e. two activity curves). This coefficient is defined as the area lying under 

both density curves, and ranges from 0 (no overlap) to 1 (complete overlap). In their 

simulation study, Ridout and Linkie (2009) proposed two different 

parameterisations of the coefficient of overlap, and recommended to use the Δ4 

estimator if the smaller sample of the two species has more than 75 observations, 

and the Δ1 estimator for smaller sample sizes (Meredith & Ridout 2014a, b).  
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The coefficient of temporal overlap is usually provided alongside an indication of 

its precision, in the form of the lower and upper bounds of the confidence intervals 

(commonly 95% CI), that can be estimated via bootstrapping techniques. This 

approach has achieved rapidly-growing popularity in the evaluation of camera trap 

data (Figure 4.1) and is one of the preferred methods for estimating temporal 

partitioning among species. As such, it has been utilised in a variety of animal taxa 

across a range of ecological processes (e.g. sexual segregation in ungulates; Pratas-

Santiago et al. 2016, predator–prey interactions; Biggerstaff et al. 2017, influence of 

human activity on wildlife; Oberosler et al. 2017). In addition, the conditional 

circular kernel density functions proposed by Oliveira-Santos et al. (2013) allow to 

differentiate between the activity range overlap (95% overlap of active periods) and 

core overlap (50% overlap) of active periods of the studied species. 

 

Figure 4.1. Number of citations per year from 2009 to 2020 for the article by Ridout and 

Linkie (2009), based on the Springer citation tool (https://citations.springernature.com). 

Like most fast-growing methods, the implementation of the coefficient of temporal 

overlap in the scientific literature may face uncertainty and irregularity in its early 
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stage. This chapter critically evaluates the three following aspects relating to the use 

of the coefficient of temporal overlap in the literature: 

(1) Accuracy and precision of the results: the number of animal detections may 

impact on the reliability of the activity curves, and thus on the coefficient of 

temporal overlap (Rowcliffe et al. 2014). Recently, Lashley et al. (2018) compared the 

activity curves of four species with different sample sizes, ranging from 10 to 500 

detections per species, and were able to detect two thresholds. Using Watson’s U2 

statistic (Zar 2010) and correlation tests, Lashley et al. (2018) found that the activity 

curves simulated using sub-samples with as few as 10 detections were not 

significantly different from the overall dataset for each species. However, they also 

demonstrated that mean overlap increased and associated estimates of error (i.e. 

95% confidence intervals) decreased rapidly as sample sizes increased until an 

asymptote near 100 detections was reached, which they recommended as the 

minimum sample size.  

 (2) Inclusion of seasonality parameters: numerous species adjust their activity to 

light intensity (Kavanau & Ramos 1975) or ambient temperature (e.g. Hetem et al. 

2012, Rabaiotti & Woodroffe 2019), both of which are directly related to the sun’s 

actual position in the sky. Solar time is a metric referring to the position of the sun 

in the sky, relative to known reference points (e.g. sunrise, zenith or sunset). This 

measure incorporates the variation in daylight length throughout the year 

originating from Earth’s titled axis and elliptical orbit around the sun, as opposed to 

the classical 24-hours clock time. Thus, using clock time can result in erroneous 

assumptions about behaviour, and solar time may often be better suited to 
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investigate animal diel behaviours (Nouvellet et al. 2012). Earth’s titled axis and 

elliptical orbit around the sun are also responsible for seasons. Seasonal changes in 

environmental conditions and natural annual cycle of species can affect activity 

patterns (e.g. Ordiz et al. 2017, Caravaggi et al. 2018) and, consequently, impact 

temporal partitioning between species (e.g. Monterroso et al. 2014). 

(3) Interpretation of the findings: defining what constitutes a “low” or “high” 

coefficient of temporal overlap between two activity patterns is largely subjective. 

The lack of objective thresholds can create disparities in the literature, as has been 

observed in other areas of ecology (e.g. Thomas & Taylor 2006), which may, in turn, 

prevent the comparability of findings between studies. Moreover, since the 

coefficient of overlap is purely descriptive in nature, the complementary use of 

statistical tests is necessary to determine if two activity curves significantly differ 

(e.g. Gerber et al. 2012). 

This chapter critically reviews existing literature that uses coefficients of temporal 

overlap to measure temporal partitioning between species, with the goal to identify 

any common issues and limitations. Furthermore, this chapter discusses the 

implications of each of the limitations raised for the reliability of the reviewed 

studies’ findings, and provides key guidelines for future studies to improve the 

investigation of temporal partitioning in animal behaviour studies. 

4.3.   Methods 

A literature search was performed in December 2020, wherein all peer-reviewed 

articles citing Ridout and Linkie’s (2009) method from Scopus (321 citations; 
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www.scopus.com) and Web of Science (282 citations; www.webofknowledge.com) 

were extracted. As the literature search was operated in conjunction with chapter 3, 

only studies that calculated the coefficient of temporal overlap between at least two 

terrestrial carnivore species were retained. Nonetheless, this search returned a total 

of 89 studies, and this subset is considered large enough to be a reasonable 

representation of the literature available currently using the coefficient of temporal 

overlap to investigate species activity pattern and temporal partitioning. A second 

literature search was performed in June 2021, wherein all peer-reviewed articles 

using the ‘activity’ package from Rowcliffe et al. (2014) / Rowcliffe (2019) and papers 

using the ‘circular’ package from Oliveira-Santos (2013) / Agostinelli & Lund (2017) 

to calculate temporal overlap between pairs of carnivores were added to the 

dataset. Both methods use kernel density functions on circular time data, and allow 

to calculate a coefficient of overlap between two curves. This second search yielded 

five relevant articles, resulting in a total of 94 included studies. 

The primary goal of this chapter was to critically evaluate studies that have been 

published following a process of peer-review. The scope of the review was 

restricted to these studies as peer review is currently the gold standard for the 

dissemination of scientific research (Goodman et al. 1994; Ware 2008). Even though 

some reports (grey literature) are produced to the same high standards and 

requirements expected of publications in the primary literature, these were not 

included in the scope of the review as much of the grey literature does not meet 

these high standards. Furthermore, there is no quality metric that can be used to 

assess grey literature, meaning that reports would have to be assessed based on 
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parameters that would be set subjectively, introducing an inevitable bias. Clearly, 

the peer review process is imperfect (Smith 2006), so biases are unavoidable, but 

evaluating unpublished work with the same criteria and severity as peer-reviewed 

articles would yield further biases and inequitable results, and would be unfair to 

both published and non-published work. Furthermore, it is not uncommon for 

highly-cited published literature reviews to solely incorporate peer-reviewed 

studies (e.g. Burton et al. 2015; Hunter et al. 2018; Prugh & Sivy 2020). For these 

reasons, this chapter did not incorporate grey literature, and focused solely on peer-

reviewed articles. To evaluate the use of the coefficient of temporal overlap by each 

study, methodological information was extracted on the accuracy and precision of 

the results, whether seasonality parameters were considered, and how the authors 

interpreted their findings (Table 4.1). 

Firstly, to assess the accuracy and precision of the studies, the number of detections 

of each species used to calculate the coefficients of temporal overlap was extracted. 

Additionally, studies were classified based on whether indicators of precision had 

been calculated and reported. Secondly, studies were classified as using either clock 

or solar time to estimate activity patterns. Recently, Vazquez et al. (2019) 

demonstrated that a transformation from clock to solar time might not be necessary 

at latitudes below 20°, or in studies with a duration of less than a month below 40° 

latitude, where the difference between clock and solar time could be too small to be 

impactful. Therefore, studies were grouped by approximate latitude and survey 

duration. Survey duration relates to the number of calendar months of the year that 

were monitored, with a maximum value of 12 (e.g. studies that monitored from 
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January to March for five years consecutively were assigned a study duration of 

three months). Furthermore, studies that calculated coefficients of temporal overlap 

for each season separately were identified, be it dry versus wet seasons, 

reproductive season, or the four seasons based on the Gregorian calendar. Finally, 

each study was evaluated on the interpretation of their findings. Each study’s 

threshold values for “low” and “high” activity overlap was recorded, and the 

justification behind this choice explored. Studies were also examined to assess 

whether complementary statistical tests were run to identify significant differences 

between the activity curves of the two species. 

Table 4.1. Description of the criteria extracted and evaluated during the literature review 

process. 

Criteria evaluated Information extracted 

Accuracy and precision  

+ Number of detections of each species used to calculate the 
coefficient of temporal overlap 

< 10; 10 – 100; > 100 

+ Calculated and reported indicators of precision Yes / No 

Seasonality  
 

+ Transformation from clock to solar time Yes / No 

+ Survey duration < 4; 4 – 9; > 9 months 

+ Latitude of the study area < 20°; 20 – 40°; > 40° 

+ Provided different coefficients of temporal overlap per 
season  

Yes / No 

Interpretation 
 

+ Threshold values for “ low” and “high” activity overlap, and 
justification 

In-text description 

+ Use of a statistical test to identify significant differences 
between the two activity patterns 

Yes (and which) / No 
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4.4.   Results and discussion 

4.4.1.   Accuracy and precision 

The majority of studies (n = 78, 83%) reported the number of detections of each 

species used to calculate the coefficients of temporal overlap (Table 4.2). Sample 

sizes ranged from as few as 4 detections for domestic cats —Felis catus— (Fancourt 

et al. 2015, Horn et al. 2020), to a maximum of 9939 detections for the American 

marten —Martes americana— (Frey et al. 2020). Five studies, three of which were 

published after the recommendations by Lashley et al. (2018), calculated at least one 

activity curve using fewer than 10 detections (yielding 13 activity curves in total), 

whilst more than half of the studies used 10 – 100 detections (259 activity curves) or 

over 100 detections (153 activity curves). Eight studies reported the number of 

detections recorded during the entire survey, but calculated separate species 

activity curves and coefficients of overlap (e.g. for different sites or seasons), thus 

making it impossible to know the exact number of detections used in the analyses. 

Finally, eight studies did not report the number of detections, for any species. 

Similarly, most studies (n = 72, 77%) calculated and reported indicators of precision 

(Table 4.2). Of them, 68 studies reported the confidence intervals alongside the 

coefficient of temporal overlap (e.g. Δ = 0.52 [95% CI 0.31 – 0.65]), using 500 to 

10,000 bootstrap samples, whilst 4 studies reported the standard deviation or 

standard error instead (e.g. Δ = 0.52 ± 0.08 SD). Finally, 8 studies mentioned 

calculation of 95% CI but did not report them, and 14 studies did not calculate 
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indicators of precision, with all 22 studies producing the coefficient of temporal 

overlap as a stand-alone value. 

Table 4.2. Summary of the accuracy and precision criteria, assessed from 94 studies. The 

number of detections used to calculate the species activity curves, and subsequent 

coefficients of temporal overlap, was classified according to the three thresholds mentioned 

by Lashley et al. (2018). Studies with sample sizes falling in more than one threshold were 

counted several times. “Curves” refer to the number of activity curves that were estimated 

with the corresponding number of detections threshold.  

Number of studies reporting the 
number of detections used to calculate 
curves 

  Number of 
detections 
reported 

Number of 
studies (curves 
produced) 

Reported number of detections used 78  < 10 5 (13) 
Did not report number of detections 16  10 – 100 63 (259) 
   > 100 63 (153) 
Number of studies calculating and 
reporting indicators of precision 

    

Calculated and reported 72    
Calculated but not reported 8    
Not calculated or reported 14    

 

Overall, the studies reviewed showcased a good level of transparency, both with 

regard to reporting sample size and confidence intervals. However, more than half 

of the studies used fewer detections than the minimum recommended by Rowcliffe 

et al. (2014) and Lashley et al. (2018) to produce the activity curves (n > 100 

detections). The importance of an adequate sample size is a recurrent topic of 

discussion in ecology (e.g. Bissonette 1999, Pearson et al. 2007). Indeed, limited 

sample sizes may negatively affect the accuracy and precision of the activity curve 

estimates, and the subsequent coefficients of overlap. Thus, studies with low sample 

size are at risk of obtaining confidence intervals too large to guarantee a reliable 
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coefficient overlap. For instance, Horn et al. (2020) found Δ = 0.48 (95% CI 0.04 – 

0.75) between domestic cats (n=4 detections) and margay —Leopardus wiedii—(n=6). 

Although the yielded coefficient Δ = 0.48 indicates medium temporal overlap 

between the two species, the confidence intervals suggest that the actual coefficient 

may be anywhere from Δ = 0.04 (almost no overlap) to Δ = 0.75 (relatively high 

overlap). Similarly, Comley et al. (2020) found Δ = 0.31 (95% CI 0.06 – 0.57) between 

serval —Leptailurus serval— (n = 8) and caracal (n = 9). Hence, interpreting 

coefficients of temporal overlap with low sample sizes needs extreme caution, 

especially if the number of detections for one species, or both species, is close to 10 

(Lashley et al. 2018). In circumstances when obtaining 100 detections is difficult (e.g. 

for elusive species), particular care should be taken when interpreting the resulting 

activity curves and coefficients of overlap. This may be especially relevant if the two 

species included in the pairwise comparison have a small sample size, as this may 

lead to cumulative errors in the coefficient. The fact that smaller sample sizes yield 

larger estimates of error, coupled with the concern that numerous studies used 

fewer detections than recommended, highlights the importance of calculating and 

reporting the coefficient’s confidence intervals. These error estimates can also be 

used to evaluate how external factors influence temporal partitioning, by 

contrasting the mean overlap coefficient of species pairs between treatment groups, 

and overlaying their confidence intervals (Frey et al. 2017). If the confidence 

intervals between the two treatments do not overlap (e.g. natural forest Δ = 0.85 

[95% CI 0.79 – 0.87] versus urban habitat Δ = 0.93 [95% CI 0.89 – 0.96]), one could 

reasonably postulate that there is an effect of the treatment on temporal overlap. 
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Studies reporting standard errors or standard deviations in lieu of the 95% 

confidence intervals are, although not incorrect, unable to operate such treatment 

comparison. For instance, Shankar et al. (2020) reported both the standard deviation 

and 95% confidence intervals of the coefficients of temporal overlap they calculated, 

which presented differences between the lower and upper bounds of the 

distribution (e.g. Δ = 0.61 ± 0.08 SD and Δ = 0.61 [95% CI 0.43 – 0.76] between the 

jungle cat —Felis chaus— and golden jackal —Canis aureus—). 

4.4.2.   Seasonality 

Long-term studies were predominant, with 49 studies having a duration > 9 

months, 32 studies lasting 4 to 9 months, and 13 studies undertaken for < 4 months 

(Figure 4.2). None of the studies extracted lasted less than one month. Latitude was 

more evenly distributed, with 37 studies located at latitudes < 20°, 36 studies 

between 20° and 40°, and 22 studies between 40° and 60°. Very few studies (n = 15, 

16%) transformed their activity recordings to solar time, irrespective of latitude or 

duration. Of the 57 studies that would benefit from such transformation (i.e. studies 

longer than a month and above 20°; Vazquez et al. 2019), only 10 (18%) converted 

their data to solar time. 

The review found 16 studies that compared coefficients of temporal overlap 

between seasons, whilst the other 78 studies calculated a unique coefficient for 

either a portion of a year (43 studies) or more than a year (35 studies). 
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Figure 4.2. Percentage and number of studies using either clock time or solar time, 

according to their latitude and duration. 

Similar to the review of field studies by Nouvellet et al. (2012), a high proportion of 

the studies extracted here did not take into account the variations of daylight length 

throughout the year. Therefore, as animals often adjust their activity to the variation 

in daylength (Daan & Aschoff 1975), these studies may be at risk of having recorded 

faulty behavioural timings, especially around sunset and sunrise, and may have 

reached imprecise conclusions on animal activity patterns and species interactions. 

This flaw may particularly influence pairwise comparisons in which one or both 

species are crepuscular, typically displaying two activity peaks at dusk and dawn. 

For instance, the solar time analysis of African wild dog —Lycaon pictus— hunting 

behaviour undertaken by Nouvellet et al. (2012), revealed species-specific predation 

time windows for three prey species. However, analysing the same dataset with 

clock time instead suggested that all three prey species were killed within the same 

time window, thus revealing a false pattern. The transformation from clock to solar 

time increases the workload needed to complete data analysis, but the recent 

average anchoring method proposed by Vazquez et al. (2019) in the R package 

‘activity’ (Rowcliffe 2019) greatly simplifies its implementation. Vazquez et al. (2019) 
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also specified that studies with variation in day length too small to produce 

important biases might not need time transformation (e.g. tropical studies < 20° 

latitude). Nonetheless, solar time is more ecologically meaningful than clock time 

and should therefore be seen as a preferred metric to investigate animal behaviour 

in relation to time. 

Seasonal adjustments of diel activity pattern and temporal partitioning between 

species can also be influenced by other factors such as changes in the natural annual 

cycle of species (e.g. Caravaggi et al. 2018), food availability (e.g. Bu et al. 2016), or 

human disturbance (e.g. Nix et al. 2018). Yet, this review revealed that the majority 

of studies (n = 78, 93%) did not contrast coefficients of temporal overlap between 

different seasons. Some studies grouped all the year’s detections indiscriminately 

and, as such, are at risk of missing important information on animal activity 

patterns and species interactions. Other studies focused their survey around a 

fraction of the year only (e.g. Gantchoff & Belant 2016), thus minimising seasonal 

variation. However, if findings are derived from a partial temporal window, they 

may not be applicable to the entirety of a year’s pattern of species interactions. The 

importance of seasonality has been raised in other fields of ecology (e.g. predator–

prey spatiotemporal dynamics; Furey et al. 2018, Broekhuis et al. 2021), yet it is still 

often overlooked in empirical studies (White & Hastings 2020). Incorporating 

season in the pairwise comparisons of activity curves can be challenging, since it 

requires the division of species detections among the different categories forming 

the seasons, and can greatly reduce the sample size used to calculate each 
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coefficient. This can also lead to unbalanced sample sizes between seasons if species 

are more active during certain periods of the year (e.g. Torretta et al. 2016). 

4.4.3.   Interpretation 

Half of the studies classified the degree of temporal overlap subjectively, with no 

justification for their choice (Table 4.3). The range of low overlap classifications 

from these studies ranged from Δ = 0.07 to Δ = 0.63, and high overlap ranged from Δ 

= 0.46 to Δ = 0.96. Six studies chose their threshold values with respect to the overall 

distribution of coefficients of temporal overlap from their study: originally, 

Monterroso et al. (2014) defined Δ values ≤ 50th percentile of their sample as low 

overlap (Δ < 0.66), and Δ values > 75th percentile as high overlap (Δ > 0.76); four 

subsequent studies applied these same percentile thresholds to their own data, and 

one study used the 5th and 95th percentiles to identify low and high overlap, 

respectively. Nine studies referenced another study to justify their threshold values. 

Of these, five studies referenced Monterroso et al. (2014): two studies used the same 

threshold values (i.e. Δ < 0.66 and Δ > 0.76) but disregarded the overall coefficients 

from their own study; two studies confused percentiles with coefficients of overlap, 

and thus defined low overlap as Δ < 0.50 and high overlap as Δ > 0.75; and one 

study chose threshold values intermediate to those of Massara et al. (2018) and 

Monterroso et al. (2014). The four other studies employed the threshold values 

proposed by Lynam et al. (2013), in which Δ < 0.35 was considered low overlap and 

Δ > 0.80 high overlap, themselves not providing any justification for this choice. 

Finally, 34 studies were descriptive only, providing the coefficients of overlap as 
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they were, or alongside within-study comparisons (e.g. coefficient A was higher or 

lower than coefficient B). 

Most of the studies (n = 62, 66%) did not run a statistical test to identify significant 

differences between activity patterns (Table 4.3). Studies that did run statistical tests 

favoured the Mardia–Watson–Wheeler test (Batschelet 1981) and Watson’s two-

sample test of homogeneity (Zar 2010), being used in 13 and 11 studies, 

respectively. Eight other tests were used in ten studies: ANOVA for circular data 

(used in two studies), Fisher’s exact test, Kolmogorov–Smirnov test, Log-likelihood 

ratio test (although test outputs do not appear in the results section), one-tailed t-

test with Rosario algorithm, randomisation test using bootstrap samples from the R 

package ‘activity’ (Rowcliffe 2019; used in two studies), Spearman’s rank correlation 

test (used in two studies), and Wr (a uniform score statistic using circular ranks; 

Fisher 1993). 

Table 4.3. Summary of the interpretation of the findings, assessed from 94 studies. Studies 

that ran more than one type of statistical test to identify significant differences between the 

two activity patterns were counted several times. “Other” tests included: ANOVA for 

circular data; Fisher’s exact test; Kolmogorov–Smirnov test; Log-likelihood ratio test; one-

tailed t-test; randomisation test using bootstrap samples; Spearman’s rank correlation test; 

and the uniform score statistic Wr. 

Number of studies using threshold 
values for “low” and “high” overlap 

 Number of studies running 
complementary statistical test 

No justification 45  Mardia–Watson–Wheeler 13 

Percentiles of the distribution 6  Watson’s two-sample test for 
homogeneity 

11 

Based on another study’s findings 9  

Descriptive only 34  Other  10 

   None 62 
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Studies subjectively classifying low versus high temporal overlap may use 

inconsistent thresholds, which can lead to misleading interpretation and subsequent 

conclusions. For instance, Singh et al. (2017) classified the coefficient of overlap Δ = 

0.63 between clouded leopard —Neofelis nebulosa— and marbled cat —Pardofelis 

marmorata— as “low”, whilst Zhao et al. (2020) included Δ = 0.46 between red fox 

and leopard in a list of “high” coefficients of overlap. Subjectivity and inconsistency 

in science can lead to discrepancies between studies. For instance, the notion of 

trophic cascades is prevalent in the study of predator–prey interactions, yet the term 

long suffered from a lack of explicit definition, leading to inconsistencies in its use 

and loss of meaning (Polis et al. 2000, Schmitz et al. 2000, Ripple et al. 2016c). 

Classifying low and high overlap with respect to the overall distribution of 

coefficients of temporal overlap performed in the study can help standardise the 

choice of threshold, but this method also has limitations. First, it requires 

monitoring of numerous species in order to obtain a reliable estimate of the 

coefficient’s distribution in the community, and accurately estimate the percentiles 

(Schoonjans et al. 2011). Even then, the thresholds obtained, although statistically 

accurate, may lack ecological relevance. For instance, the thresholds calculated by 

Torretta et al. (2017) yielded a very small contrast between low overlap (50th 

percentile, Δ < 0.79) and high overlap (75th percentile, Δ > 0.83). One solution could 

be to use the tails of distribution as percentiles (e.g. 5th and 95th percentiles; Hearn et 

al. 2018), but this requires an even larger sample size. Alternatively, studies using 

thresholds based on another study’s distribution and percentiles can be a valid 

approach, but only when monitoring the same animal community, in similar 
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conditions. For instance, Curveira-Santos et al. (2017) re-used the threshold values 

proposed by Monterroso et al. (2014) because both studies were investigating the 

same Iberian mesocarnivore community. 

Statistical tests can complement the coefficient of overlap and help interpret the 

differences between two activity curves. However, most studies did not run 

complementary statistical tests, and solely used the coefficient of temporal overlap 

to evaluate niche partitioning and differences in activity patterns between species. 

Statistical tests can be especially useful for evaluating the effects of specific variables 

on a species’ diel activity pattern, such as contrasting activity patterns between 

areas under low and high human landscape disturbance (Frey et al. 2020). However, 

studies should not rely solely on p-values to determine whether the activity curves 

of two species are “statistically different” or not, considering that the use and mis-

use of statistical significance and p-values is at the heart of a scientific debate 

(Halsey 2019, Kuffner & Walker 2019). Behavioural scientists should not aim to 

answer whether two activity curves are “statistically different” or not, but rather 

“how” and “how much” these curves differ. For instance, Marinho et al. (2020) 

defined the coefficient of temporal overlap between the ocelot —Leopardus pardalis— 

and the northern tiger cat —Leopardus tigrinus— as “high” (Δ = 0.77 [95% CI 0.70 – 

0.84]), and complemented their analysis by highlighting that the two species 

nonetheless showed a separation of their peaks of higher activity, thus potentially 

displaying fine-scale temporal avoidance. 
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4.5.   Summary of recommendations 

For species having been detected less than 10 times during a survey, activity curves 

should not be calculated, and therefore not included in any pairwise comparison 

with another species, as their accuracy and precision cannot be guaranteed. In the 

eventuality of species having been detected 10 to 100 times, authors should 

acknowledge this limitation explicitly, and be cautious when interpreting results. 

Thus, for full transparency, authors should systematically provide the sample size 

used to calculate the activity curves and the 95% confidence intervals alongside the 

coefficients of temporal overlap. 

Researchers should use solar time as the standard method, independently of study 

duration and latitude. Whenever possible, activity curves and pairwise comparisons 

should be calculated separately and compared between seasons. However, this 

splits each species’ detections into separate groups, and causes a trade-off between 

incorporating seasonality into the analysis and maintaining a sufficient sample size. 

Thus, researchers should make their decision contingent on the number of 

detections and the goal of the study. 

Finally, researchers should remain as objective as possible when presenting 

findings, and remove any personal perception of what may constitute a low or high 

temporal overlap. To do so, the results can be kept purely descriptive, by supplying 

the coefficients of temporal overlap as they are. Alternatively, the coefficients of 

overlap can be compared to the overall pairwise comparisons of the study (e.g. by 

defining thresholds for low and high overlap using percentiles calculated with the 
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overall distribution of the coefficients of temporal overlap in the study), or of 

previous studies conducted in similar sites and conditions. The best way to 

investigate partitioning of time among species may be through the complementary 

use of the coefficient of overlap, befitting statistical tests, and an ecological 

interpretation of the activity curves. 

4.6.   Conclusions 

The number of studies investigating species activity patterns and temporal 

partitioning is rapidly increasing, largely due to the growing popularity and 

accessibility of remote-sensing camera traps (Burton et al. 2015, Caravaggi et al. 

2017). The coefficient of temporal overlap allows quantification of the proportion of 

time that two species spend active simultaneously, and is a powerful metric to 

investigate predator–prey interactions and niche partitioning among competitors. 

However, the current application in the scientific literature is undermined by 

recurrent flaws and limitations. It is hoped that the issues raised in this chapter, and 

the recommendations provided, prompt an improvement in the rigour of animal 

behaviour studies, and promote coherence and comparability among studies 

investigating animal activity patterns and temporal niche partitioning. 
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Chapter 5 

 

Habitat use and co-occurrence patterns of 

a native (Vulpes Vulpes) and an invasive 

(Felis catus) carnivore species, in rural 

and suburban England 



 

Page | 98  
 

5.1.   Abstract 

Competitive interactions between domestic and native carnivores are poorly known 

in human-modified landscapes, where human activities may affect competing 

species disparately. In England, red foxes and free-ranging domestic cats are the 

most abundant and widely distributed mesocarnivore species. Both generalist 

predators, their patterns of landscape use may reflect a segregation of spatial niche, 

with the intent to reduce intraguild competition between them. To address this, the 

influence of landscape variables on habitat use and patterns of co-occurrence of red 

foxes and free-ranging cats were examined in an urban–rural gradient in Southern 

England. Cat occupancy increased with proximity to densely built human 

settlements, thus displaying dependence on human housing and anthropogenic 

food sources. In contrast, foxes displayed no preference in their habitat use. These 

findings suggest that co-occurrence and interactions between the two species may 

be relatively rare in suburban and areas of England, although this could not be 

statistically verified. Spatial distribution of cats and rural foxes may be dependent 

on human land use and resource provisioning to a greater extent than interspecific 

interactions. 

5.2.   Introduction 

The proliferation of free-ranging domestic and feral carnivore species in the wild is 

a problematic issue for conservation, as these species can exert an important 

predation pressure on native wildlife (Loss et al. 2013), have a high potential for 

hybridisation (Daniels et al. 2001, Godinho et al. 2011), and act as a reservoir for 
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transmissible diseases (Deem et al. 2000, Gerhold & Jessup 2013). In addition, 

invasive carnivores can enhance intraguild competition with their native 

counterparts, either via interference competition (e.g. Vanak & Gompper 2010) or 

exploitation competition (e.g. due to high trophic overlap, although the effects on 

interspecific competition still need experimental validation; Castañeda et al. 2020). 

Free-ranging domestic and, to a lower extent, feral carnivores, can benefit from the 

use of abundant human-derived resources, thus increasing their fitness and gaining 

a competitive edge over native carnivores who are not as tolerant to humans and 

not able to use anthropogenic resources (Vanak et al. 2015). This could be especially 

threatening to native carnivores in regions where these species are already 

threatened by human activities (e.g. Farris et al. 2017a). 

In the United Kingdom (UK), there are 10.9 million estimated domestic cats, of 

which 73% (i.e. approximately 8 million cats) live either indoors and outdoors, or 

outdoors only (PDSA 2019). Free-ranging cats exert an important predation 

pressure on birds, rodents, reptiles and amphibians (Woods et al. 2003, Thomas et 

al. 2012). No accurate estimates exist for the number of unowned cats (i.e. feral) in 

the UK, but their negative effect on native wildlife in other continents is of great 

concern (Jessup 2004, Loss et al. 2013). The UK also hosts a high abundance of red 

foxes (Harris & Yalden 2008), largely attributable to the past eradication of apex 

predators (i.e. mesopredator release, Prugh et al. 2009, Pasanen-Mortensen et al. 

2013) and the increase in landscape surface devoted to urban areas and intensive 

agriculture (Webbon et al. 2004). Foxes share multiple prey species with domestic 

cats (Meckstroth et al. 2007, Castañeda et al. 2020), and it is possible that the 
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cumulative predation pressure from the two species strongly limit the prey 

populations (Roos et al. 2018). However, very few studies have investigated niche 

partitioning between the two species in human-influenced landscapes (e.g. 

spatiotemporal partitioning; Krauze-Gryz et al. 2012, trophic overlap; Castañeda et 

al. 2020), and little is known about how they interact. 

Foxes, as native predators, could theoretically be negatively affected by competition 

with cats, a recently introduced carnivore. However, foxes thrive in urbanised 

landscapes, where they strongly benefit from anthropogenic food supply (Contesse 

et al. 2004, Soulsbury et al. 2010). This perennial source of food may, in turn, 

alleviate competition with other species (Wiens 1993). It seems therefore unlikely 

that foxes can be negatively affected by the presence of cats as intraguild 

competitors. However, the same cannot be said for the inverse situation. Foxes (~6 

kg, Jones et al. 2009) present a physical threat to cats (~3 kg) and kittens (e.g. 

Molsher 1999). Foxes could therefore affect the movements and habitat use of cats, 

as has been observed in other countries (e.g. in Australia, Molsher et al. 2017). 

The first aim of this chapter is to identify what natural and anthropologically-

modified environmental features influence the use of the landscape by cats and 

foxes. Based on existing knowledge found in the literature, the probability of 

occurrence of both cats and foxes is predicted to increase in proximity to human 

habitats. The second aim is to investigate if co-occurrence between the two species 

and conditional occupancy (i.e. the probability of one species occupying a site given 

the presence or absence of a second species) is moderated by human attributes of 

the landscape. Interactions between cats and foxes are predicted to have no 
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influence on the distribution of each species in the landscape, due to the abundance 

of anthropogenic resource near human-dominated habitats. 

5.3.   Methods 

5.3.1.   Study areas and camera trapping 

The data used in this study was originally collected for a different project, 

investigating the density of West European hedgehogs —Erinaceus europaeus— in 

rural and suburban landscapes across England (Schaus et al. 2020). Eight study 

areas were surveyed in England between 2016 and 2018 (Figure 5.1). Study areas 

were selected to represent a gradient of urbanisation in England, ranging from the 

countryside at Brackenhurst campus (dominated by a mixture of arable and 

pastural lands, with some woodlands, grasslands and wetlands), to the residential 

areas of Ipswich (consisting mostly of houses, developed surface and private 

gardens). 
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Figure 5.1. Maps of study areas with camera locations, marked with black dots, and 

environmental variables. Inset map shows the location of the eight study areas in England, 

UK. 
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In the original study by Schaus et al. (2020), 30 cameras (Bushnell 119537 Trophy 

Cam 8MP Night Vision; Bushnell Outdoor Products, Overland Park, KS, USA) were 

deployed simultaneously within each study site for a minimum of five consecutive 

nights. Cameras were then transferred to 30 different random locations within the 

same study site for another minimum of five consecutive nights (i.e. a one-week 

cycle). Each site was monitored during four weekly cycles, totalling 120 camera 

stations per study site. Cameras were only active during night-time (i.e. from dusk 

to dawn), as the focus of the original study was on hedgehogs, which are nocturnal. 

All data were collected under licence from Natural England (2018-36011-SCI-SCI); 

ethical approval was granted by Nottingham Trent University’s Animal, Rural and 

Environmental Science Ethical Review Group (code: ARES520). 

To investigate hedgehogs’ densities, camera stations were considered temporally 

independent from one week cycle to another and could therefore be located very 

close to each other spatially. However, this assumption cannot be made for this 

study, since occupancy models are more effective when the assumption of spatial 

independence between camera stations is met (Kendall & White 2009, Hines et al. 

2010), or at least when a minimum distance between stations is respected to avoid 

counting the same environmental variables twice. Therefore, all camera stations 

within each study site were pooled, regardless of temporality (i.e. cameras from the 

four week cycles were joined), and subsequently sub-sampled to retain the 

maximum number of camera stations possible whilst ensuring a minimum distance 

of 100m between cameras (Table 5.1). Thus, a trade-off was performed between the 

spatial dependency of stations and the total number of stations included in the 



 

Page | 104  
 

analysis. Spatial autocorrelation in occupancy probability between camera stations 

was assessed using Moran’s I index (Moran 1950; see methodology below). 

Table 5.1. Camera trapping surveys in the eight study areas of England, UK. 

Study area Survey period Centroid Area (km²) Stations Trap nights 

Brackenhurst 
 

Apr.– May 2016 
 

53°03′45″N 
00°57′21″W 

0.65 
 

32 
 

193 
 

Brighton 
 

May – June 2018 
  

50°51′03″N 
00°12′00″W 

0.86 
 

36 
 

226 
 

Hartpury 
 

July 2017 
 

51°54′26″N 
02°18′33″W 

0.65 
 

39 
 

213 
 

Ipswich West 
 

Apr.– May 2017 
 

52°03′58″N 
01°07′59″E 

0.41 
 

27 
 

163 
 

Ipswich East 
 

Apr.– May 2018 
 

52°04′08″N 
01°11′26″E 

0.80 
 

42 
 

280 
 

Reading 
 

Sept.– Oct. 2016 
 

51°25′41″N 
00°54′41″W 

0.74 
 

42 
 

220 
 

Southwell 
 

May – June 2016 
 

53°04′32″N 
00°57′52″W 

0.68 
 

38 
 

265 
 

Sutton Bonington 
 

July – Aug. 2018 
 

52°49′54″N 
01°14′54″W 

0.77 
 

36 
 

275 
 

 

5.3.2.   Environmental variables 

Based on a priori knowledge found in the literature, environmental variables that 

were found to affect fox and cat habitat use were extracted. Domestic cats living in 

urban and suburban areas rely on humans for food and shelter (Széles et al. 2018, 

Crowley et al. 2020), and are typically found close to houses and farms (Germain et 

al. 2008, Webster et al. 2019, Vanek et al. 2020). Greenspaces and gardens that are 

available nearby can also be used, sometimes more extensively than urban habitats 

(Thomas et al. 2014). Similarly, red foxes are generalist mesocarnivores that can 
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exploit and benefit strongly from anthropogenic resources, and readily associate 

with human-modified and urban habitats (Gosselink et al. 2003, Lesmeister et al. 

2015). Foxes can also select row-crop fields in summer, where small mammals can 

be found in high densities (Gosselink et al. 2003), and woodlands, which offer 

suitable habitat for denning (Uraguchi & Takahashi 1998). 

Based on this knowledge, the following environmental variables were calculated 

within a 50m circular buffer zone around each camera station to quantify the 

conditions of the surrounding habitat: 1) building density (number of buildings); 2) 

proportion of greenspace (natural and urban); 3) proportion of gardens; 4) 

proportion of agricultural lands (row-crop fields); 5) linear distance from each 

camera station to the nearest building; and 6) linear distance to the nearest patch of 

woodland. All environmental variables were extracted from the Ordnance Survey 

MasterMap Topography layer (© Crown copyright and database rights, 2020, 

Ordnance Survey, 100025252), using a Geographical Information System (ArcGIS 

v10.7.1; ESRI, Redlands, California). 

5.3.3.   Occupancy modelling 

To investigate interactions between cats and foxes, a two-stage modelling approach 

was used. First, single-season, single-species occupancy models (MacKenzie et al. 

2002) were used to investigate which of the environmental variables best predicted 

the occupancy of domestic cats (ΨA) and red foxes (ΨB) separately. The relative 

abundance of cats and foxes on a landscape scale was calculated as the number of 

photos taken at each station divided by the number of trapping days, averaged 
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within each study area. Cat and fox relative abundances were added as variables 

influencing detection probability and occupancy, to account for variations in 

abundance between study areas (e.g. the probability to detect a fox was assumed to 

be higher in areas with higher fox abundance). Since cameras were systematically 

placed facing an open field to increase the chances of detecting hedgehogs (Schaus 

et al. 2020), detection probability should be comparable between stations. Models 

were ranked separately for each species using the ‘AICcmodavg’ package (Mazerolle 

2020) in R 4.0.2 (Team R Core 2018), which features functions to calculate a second-

order variant of the quasi Akaike Information Criterion (QAICc) that include an 

additional bias-correction term for small sample sizes. Models with QAICc < 2 were 

considered to have “substantial empirical support” (Burnham & Anderson 2002). 

Models with uninformative parameters were discarded (Arnold 2010). Habitat 

variables were normalized using a log + 1 transformation, to improve model 

convergence. Finally, the effects of spatial autocorrelation in occupancy probability 

of the top single-species occupancy models (QAICc < 2) were assessed using 

Moran’s I index (Moran 1950). The pseudo occupancy residuals were computed at 

each station by subtracting the generated posterior predictive distribution of the 

best models (ΨA and ΨB) to a theoretical independent and constant posterior 

predictive distribution (i.e. with constant occupancy and detection at all stations). 

The pseudo occupancy residual values were then assigned at each station, and 

Moran’s I statistic was used to measure the overall spatial autocorrelation of the 

models’ pseudo residuals at a regional (i.e. between study areas) and local (i.e. 

within each study area) scale. Due to their close proximities, the study areas of 
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Brackenhurst and Southwell, and Ipswich East and Ipswich West, were grouped to 

evaluate spatial autocorrelation. Threshold distances at the local scale were 

calculated as the minimum distance to ensure every station had at least one 

neighbouring station, whilst the threshold distance for the regional scale was 

chosen to ensure that stations from different study areas were separated. 

Using the best predictors for the occupancy of domestic cats (ΨA) and occupancy of 

red foxes (ΨB), multispecies models were built to test how building density and 

distance to the nearest building influence cat and fox interactions (ΨA:B and ΨB:A). 

To investigate interactions between the two species, single-season, multispecies 

occupancy models developed by Rota et al. (2016) were employed. The Rota et al. 

(2016) parameterization allows to model detection and occurrence probabilities of 

interacting species as a function of covariates via a multinomial logit link function. 

In addition, the latent occupancy state is a multivariate Bernoulli random variable 

that does not require the a priori assumption that one species is dominant over the 

other. Models that did not incorporate interactions (i.e. ΨA:B = ΨB:A = 0) or that 

assumed species interactions as independent from environmental covariates  

(i.e. ΨA:B = ΨB:A = 1) were also included in model selection. Single-species and 

multispecies models were fitted using the ‘unmarked’ package (Fiske & Chandler 

2011) in R 4.0.2 (Team R Core 2018), and candidate models were compared with 

QAICc, where models with QAICc < 2 were considered to have “substantial 

empirical support” (Burnham & Anderson 2002). 
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5.4.   Results 

5.4.1.   Camera trapping 

Cats and foxes were detected in all study areas, with important variations in the 

number of detections for each species among study areas (Table 5.2). At the station 

level, cats were detected at 76 stations, foxes at 57 stations, and the two species co-

occurred at 9 stations only. Distance to the nearest building ranged from 0 to 388 

meters (mean: 36.8 ± 62 SD), and there was on average 15.2 ± 15.5 individual 

buildings in the 50m circular buffer zone around each camera. The most common 

habitat type was greenspace, covering on average 24.6 ± 29.6% of the buffer zone, 

followed by agricultural land (14.3 ± 30.3%). Proportion of garden was excluded 

from the analysis, due to high correlation with building density (Spearman’s rank 

correlation coefficients ρ = 0.75; Zar 2010).  

Table 5.2. Number of records for red foxes and domestic cats in the eight study 

areas. Naïve occupancy was calculated as the number of locations where a species 

was detected divided by the total number of stations within each study area. 

Study area Number of detections Naïve Occupancy 

 Cat Fox Cat Fox 

Brackenhurst 1 9 0.03 0.28 

Brighton 16 85 0.22 0.53 

Hartpury 3 20 0.05 0.26 

Ipswich West 163 1 0.81 0.04 

Ipswich East 31 17 0.38 0.10 

Reading 35 4 0.31 0.10 

Southwell 20 49 0.29 0.18 

Sutton Bonington 6 4 0.08 0.08 
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5.4.2.   Occupancy modelling 

5.4.2.1.   Single-species occupancy modelling 

For cats, substantial support was found for two occupancy sub-models: Ψ(Cat 

relative abundance + Building density + Distance to nearest building) and Ψ(Cat 

relative abundance + Building density + Distance to nearest building + Proportion of 

greenspace). The top two models had a cumulative weight of 0.76 (Table 5.3). Since 

the two models had similar AIC (ΔAIC < 2), “proportion of greenspace” was 

considered an uninformative parameter (i.e. it did not explain enough variation, 

Arnold 2010), and was therefore discarded. Cat occupancy increased with building 

density (βBDE = 0.57 ± 0.23 SE; Figure 5.2a) and decreased with distance to the nearest 

building (βDNB = -0.40 ± 0.18 SE; Figure 5.2b). Cat relative abundance positively 

affected the probability of detection (βCRA = 2.82 ± 0.39 SE) and occupancy (βCRA = 

2.15 ± 1.05 SE) of cats. 

For red foxes, substantial support was found for six occupancy sub-models (Table 

5.3). However, no parameter was consistently present in each of the top sub-models, 

and all parameters could be considered uninformative. Therefore, none of the 

variables investigated seemed to affect fox occupancy. Fox relative abundance 

positively affected the probability of detection (βFRA = 5.60 ± 1.10 SE) and occupancy 

(βFRA = 5.05 ± 1.59 SE) of foxes substantially. 
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Table 5.3. Full model set used to evaluate occupancy (Ψ) for domestic cats and red foxes. 
Detection probability (p) of cats and foxes were predicted to vary with cat and fox relative 
abundance, respectively, in each of the model evaluated. The top-ranked models are bolded. a 
CRA = cat relative abundance; FRA = fox relative abundance; BDE = building density; 
DNB = distance to nearest building; DNW = distance to nearest woodland; PGR = 
proportion of greenspace; PAG = proportion of agricultural land. b number of model 
parameters. c difference in Quasi Akaike’s Information Criterion between current model and 
the best model. d Quasi Log Likelihood. e model weight. f cumulative model weight. * model 
with uninformative parameter. 

Species Model a K b QAICc ΔQAICc c QLL d wi e Cum. wi f 

Domestic 
cat 

p (CRA), Ψ (CRA + BDE + 
DNB) 

6 889.19 0.00 -438.45 0.48 0.48 

 
p (CRA), Ψ (CRA + BDE + 
DNB + PGR) * 

7 890.24 1.05 -437.92 0.28 0.76 

 p (CRA), Ψ (CRA + BDE) 5 892.13 2.94 -440.96 0.11 0.87 

 p (CRA), Ψ (CRA + BDE + 
PGR) 

6 893.01 3.82 -440.36 0.07 0.94 

 p (CRA), Ψ (CRA + DNB) 5 894.12 4.93 -441.96 0.04 0.98 

 p (CRA), Ψ (CRA + DNB + 
PGR) 

6 896.12 6.93 -441.91 0.02 1.00 

 p (CRA), Ψ (CRA) 4 914.17 24.98 -453.02 0.00 1.00 

 p (CRA), Ψ (CRA + PGR) 5 914.97 25.78 -452.38 0.00 1.00 

        
Red fox p (FRA), Ψ (FRA + BDE + 

DNW) * 
6 687.52 0.00 -337.61 0.19 0.19 

 p (FRA), Ψ (FRA + DNW) * 5 688.31 0.79 -339.05 0.13 0.32 

 p (FRA), Ψ (FRA + PAG + 
DNW) * 

6 688.75 1.22 -338.23 0.10 0.42 

 p (FRA), Ψ (FRA + BDE) * 5 688.77 1.24 -339.28 0.10 0.53 

 p (FRA), Ψ (FRA + DNB + 
DNW) * 

6 688.78 1.25 -338.24 0.10 0.63 

 
p (FRA), Ψ (FRA + BDE + 
PAG + DNW) * 

7 689.52 1.99 -337.56 0.07 0.70 

 p (FRA), Ψ (FRA + BDE + 
DNB + DNW) 

7 689.62 2.10 -337.61 0.07 0.77 

 p (FRA), Ψ (FRA + DNB + 
PAG + DNW) 

7 690.28 2.75 -337.94 0.05 0.82 

 p (FRA), Ψ (FRA + DNB) 5 690.81 3.28 -340.30 0.04 0.85 

 
p (FRA), Ψ (FRA + BDE + 
DNB) 

6 690.85 3.32 -339.28 0.04 0.89 

 p (FRA), Ψ (FRA + BDE + 
PAG) 

6 690.85 3.33 -339.28 0.04 0.93 

 p (FRA), Ψ (FRA) 4 691.62 4.09 -341.74 0.02 0.95 

 p (FRA), Ψ (FRA + PAG) 5 691.94 4.41 -340.86 0.02 0.97 

 p (FRA), Ψ (FRA + DNB + 
PAG) 

6 692.53 5.01 -340.12 0.02 0.99 

 p (FRA), Ψ (FRA + BDE + 
DNB + PAG) 

7 692.95 5.42 -339.28 0.01 1.00 
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Figure 5.2. Domestic cat occupancy increased with the number of buildings within a 50m 

buffer of each station (a), and decreased with the distance to the nearest building (b). The 

grey ribbon represents the 95% confidence intervals.  

The best cat occupancy model showed strong spatial autocorrelation on a regional 

scale (i.e. between study areas; Table 5.4), and the spatial distribution of higher 

and/or lower observed occupancy compared to model predictions was more 

spatially clustered than would be expected if underlying spatial processes were 

random. This pattern was also observed at the local scale in certain study areas 

(Table 5.4), suggesting that nearby camera stations were not always independent. 

Due to the lack of a top model for fox occupancy, spatial autocorrelation could not 

be measured for the fox dataset. However, given the larger daily movement rate of 

foxes (Macdonald 1987), spatial autocorrelation could be reasonably expected as 

well. 
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Table 5.4. Moran’s I index (spatial autocorrelation) and z-score values for the pseudo 

occupancy residuals of the top model for cat occupancy: Ψ(Cat relative abundance + 

Building density + Distance to nearest building). 

 
Threshold distance (m) Moran's I index z-score p-value 

Global 5,000 0.480 32.753 <0.001 

Brackenhurst and Southwell 170 0.685 6.647 <0.001 

Brighton 180 0.302 2.446 0.014 

Hartpury 171 0.415 0.767 <0.001 

Ipswich East and West 216 0.524 6.981 <0.001 

Reading 161 0.029 0.383 0.701 

Sutton Bonington 226 0.307 3.118 0.002 

 

5.4.2.2.   Multispecies occupancy modelling 

Substantial support was found for three models (Table 5.5). However, some of the 

top-ranked models are contradictory, and thus none of them can be considered as 

better. The output of model selection, in this case, does not provide a suite of 

models that could be averaged to extract relevant information, but shows instead 

that none of these models can explain interactions between cats and foxes. It should 

be noted that this was a small dataset, and the frequency of co-detections was low. 
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Table 5.5. Full multispecies model set evaluating symmetrical interactions (ΨAB) between 

cats and foxes. Multispecies occupancy models included: ΨA (cat relative abundance + 

building density + distance to the nearest building); ΨB (fox relative abundance); pA (cat 

relative abundance); pB(fox relative abundance). Top-ranked models are bolded. BDE = 

building density; DNB = distance to nearest building. b number of model parameters. c 

difference in Quasi Akaike’s Information Criterion between current model and the best 

model. d Quasi Log Likelihood. e model weight. f cumulative model weight. 

Model a K b QAICc ΔQAICc c QLL d wi e Cum. wi f 

ΨAB (BDE + DNB) 13 1577.48 0.00 -775.09 0.39 0.39 

ΨAB (BDE) 12 1577.70 0.22 -776.29 0.35 0.73 

ΨAB (Constant) 11 1579.32 1.83 -778.19 0.15 0.89 

ΨAB (No interaction) 10 1581.16 3.67 -780.19 0.06 0.95 

ΨAB (DNB) 12 1581.48 3.99 -778.18 0.05 1.00 

 

5.5.   Discussion 

Camera trap data were analysed to explore the spatial ecology of red foxes and 

domestic cats in rural and suburban England. Cat occupancy was found to increase 

with proximity to nearest building and with higher building densities, which was 

partly in accordance with the first hypothesis that probability of occurrence of cats 

and foxes was predicted to increase in proximity to human habitats. A multispecies 

investigation of conditional occupancy and co-occurrence of the two species could 

not be properly tested due to a small dataset and the rarity of co-detections. 

The single-species occupancy models yielded in this chapter suffered from spatial 

autocorrelation, likely because the original camera trap survey was designed for an 

animal with smaller daily movements than cats or foxes. Studies often aim to 

maintain independence of station-level information by basing the spacing between 
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cameras on the size of an animal’s home range (e.g. Karanth 1995, O’Connell & 

Bailey 2011; but see MacKenzie et al. 2017). When the area covered by the cameras is 

too small compared to the species home range, as was the case in this chapter, 

spatial autocorrelation may affect species detection and introduce bias in the 

identification of key ecological factors influencing occupancy (Maffei & Noss 2007, 

Kolowski et al. 2021). Whilst recent statistical analysis have been developed to 

account for such spatial autocorrelation (e.g. Johnson et al. 2013, Bardos et al. 2015), 

they still present challenges and difficulties (Guillera-Arroita 2016). Adopting a mix 

of survey-design strategies, and including these design features into the modelling 

framework, will facilitate multi-species camera-trap studies (Iannarilli et al. 2021). 

5.5.1.   Occupancy and habitat use of cats and foxes 

Previous research shows that urban and suburban areas can foster large cat 

populations (e.g. Flockhart et al. 2016, Vanek et al. 2020). Within these areas, cat 

abundance is typically higher in residential areas with high building density, owing 

to the reliance of cats on humans for food and shelter (Flockhart et al. 2016, Vanek et 

al. 2020). Similarly, free-ranging cat occupancy in rural landscapes has been 

observed to increase with density and proximity to anthropogenic features (Krauze-

Gryz et al. 2012, Morin et al. 2018). Dependence on human features was found in 

this chapter too, suggesting that most free-ranging cats within the urban and sub-

urban areas monitored were not feral cats (i.e. living independently of humans), but 

were more likely to be domestic cats with a regular access to human housing. 
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Red foxes are highly adaptable medium-sized carnivores, and are increasingly 

colonising urban areas worldwide (e.g. Harris & Rayner 1986, Gloor et al. 2001, 

Janko et al. 2012). Previous studies in the UK suggested that fox distribution was 

correlated with housing density in a suburban area (Macdonald 1981), whilst other 

studies found that foxes preferred areas with lower housing density (Harris & 

Rayner 1986, Odell & Knight 2001), or did not find an effect of housing density on 

urban fox distribution (Harris 1981a). This heterogeneity of results may reflect 

different strategies used by populations of urban versus rural foxes. Urban and 

rural foxes develop distinct spatial behaviours, illustrated by dissimilar home range 

sizes (Janko et al. 2012), habitat selection (e.g. Gosselink et al. 2003), and even 

genetic differentiation (Atterby et al. 2015). Therefore, it is likely that the majority of 

foxes caught on camera for this study were rural foxes showing a preference for 

natural habitats (e.g. Cavallini & Lovari 1994), as opposed to urban foxes that select 

gardens in dense residential areas (Harris 1981b). 

5.5.2.   Patterns of spatial co-occurrence between cats and foxes 

Little is known about the spatial interaction between cats and foxes in human-

dominated landscapes, but comparisons can be drawn from other species or types 

of landscapes. For instance, in cities of North America, domestic cats can select 

areas with higher building densities, to avoid another urban-thriving canid, the 

coyote, who prefers to occupy urban parks and forests (Gehrt et al. 2013, Kays et al. 

2015). Therefore, the habitat use of cats within the urban landscape can be partly 

regulated by the presence of a larger competitor, and a similar pattern could 

hypothetically be observed between cats and urban foxes in the UK. In relatively 
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less disturbed landscapes, feral cats have been observed to avoid areas with high 

fox density (Ferreira et al. 2011) and adapt their habitat use to the presence of fox 

(Molsher et al. 2017; but see Šálek et al. 2014), suggesting a potential for interspecific 

competition between the two species. 

Despite being subordinate, and spatially restricted by foxes, cats may have an 

indirect negative impact on foxes, for instance through competition for prey. In 

natural and semi-natural habitats, high levels of trophic overlap have been found 

between the two species (e.g. Glen et al. 2011, Woinarski et al. 2018), and the 

presence of fox influences the feeding behaviour of cats (Molsher et al. 2017). In 

human-dominated landscapes, high trophic overlaps between these two species 

have also been observed, indicating a potential for trophic competition (Castañeda 

et al. 2020). This competition could, however, be eased by the generalist feeding 

behaviour of the two species, and the abundance of anthropogenic food resources. 

In addition, Kays et al. (2020) found that domestic cats have remarkably small home 

ranges (average of 0.036 km²), centred around their homes. Thus, the ecological 

impact of cats on native wildlife (either through predation or intraguild 

competition) may be severe, but spatially limited to landscapes that are already 

highly disturbed by humans. 

5.6.   Conclusions 

Feral and free-ranging domestic carnivores can intensify intraguild competition and 

be a threat to native carnivores. This study found that free-ranging cats occurred 

mostly in the vicinity of densely built human housing, whilst foxes preferred 
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natural habitats further away from human settlements. These findings suggest that 

co-occurrence and interactions between the two species may be relatively rare in 

suburban and rural areas of the UK, although this could not be statistically verified. 

Future studies should differentiate between the spatial behaviour of feral versus 

free-ranging cats, and urban versus rural foxes, as they display strong differences in 

habitat selection. Whilst the negative impact of domestic cats is likely to be 

constrained within areas adjacent to human settlements, the same cannot be said for 

feral cats, whose larger home ranges and preference for natural habitats may cause 

substantial harm to native wildlife. 



 

Page | 118  
 

Chapter 6 

 

General discussion and conclusions 
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6.1.   Overview of thesis 

This thesis aimed to characterise and quantify the effects of human disturbance on 

spatial, temporal and trophic niche partitioning among carnivores. The novelty of 

this work resides in its shift of focus from the direct impact of humans on species 

and species behaviour towards less-studied effects of humans on species 

interactions and natural patterns of interspecific competition, which can constitute 

an additional pressure on these species. This research gap was addressed 

innovatively by investigating global patterns whilst simultaneously considering 

local variability, all through the use of diverse methods ranging from the review of 

existing literature to the analysis of raw data. 

Human disturbance was found to impact resource partitioning in all three niche 

dimensions proposed by Schoener (1974a). However, the findings highlighted 

contrasting outcomes across dimensions and carnivore species, and human 

disturbance has to potential to either increase, decrease, or destabilise niche 

partitioning and interspecific competition among carnivore communities (Chapter 

2). Indeed, carnivore adaptations to both humans and competitors were found to be 

strongly dependent on the biotic and abiotic characteristics of the landscape, and 

the type of human disturbance considered (Chapter 3). Similarly, human 

disturbance may not affect all species equally. For instance, anthropogenic resource 

provisioning can affect the spatial distribution of species tolerant to humans to a 

greater extent than interspecific interactions, illustrating the disruptive effect of 

human disturbance on intraguild competition (Chapter 5). This study also 
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evaluated the published literature used throughout the chapters, by providing a 

critical appraisal of the strengths and weaknesses of the procedures used and 

reported findings. Specifically, this thesis focused on an in-depth evaluation of the 

method used to quantify the coefficient of temporal overlap between species, and 

key guidelines were provided to benefit further research (Chapter 4). 

6.2.   The future of carnivore communities 

Carnivore communities in anthropogenic biomes face multiple threats. Top-down 

threats can directly affect carnivore populations through the legal or illegal killing 

of carnivores, either for commercial use (e.g. Gratwicke et al. 2008) or as an attempt 

to reduce conflicts with human interests (Treves & Karanth 2003), and through 

human-induced depletion of trophic resources (Wolf & Ripple 2016). Top-down 

anthropogenic pressures can also have indirect deleterious effects on carnivores via 

behavioural responses, such as the increase of physiological stress resulting from 

non-lethal human activities (e.g. Piñeiro et al. 2012). Similarly, bottom-up 

disturbances, referring to changes in land use for human purposes, can negatively 

affect carnivores by removing species’ natural habitats (Gálvez et al. 2013), 

increasing habitat fragmentations (Crooks 2002), and changing the availability, 

spatial distribution and nature of trophic resources (Murray et al. 2015). These 

threats are likely to impact and modify the rules of intraguild competition and 

species coexistence within carnivore communities. In this regard, findings from 

chapter 2 show that, as a result, carnivore guilds may be reshaped in three different 

ways. 
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First, intraguild competition may be exacerbated, thus increasing the frequency and 

intensity of species interactions and having an overall negative effect on species 

richness and abundance in the community. This situation could occur if all species 

saw the fundamental niche they occupy reduced by human activities, and were 

forced to shift towards resources already used by other species. However, this 

scenario remains mostly theoretical, and is unlikely to happen in nature. In reality, 

the decrease in the abundance of native species is typically concurrent with the 

proliferation of species unaffected, or benefiting from, human activities (e.g. Farris 

et al. 2015b, Wearn et al. 2017). 

Indeed, the second way in which human disturbance can affect intraguild 

competition is by providing a competitive advantage to species tolerant of humans 

and capable of using anthropogenic resources. Biotic homogenisation has been 

observed in plants and animals inhabiting anthropogenic biomes (McKinney 2008, 

van Rensburg et al. 2009). In such cases, species richness and diversity carry on 

being negatively impacted at regional and global scales (i.e. gamma diversity; 

Whittaker 1960, McKinney & Lockwood 1999, Smart et al. 2006), while the overall 

species abundance, conversely, increases. In addition, the replacement of endemic 

species with already widespread species benefiting from human activities can 

reduce spatial diversity among carnivore communities (i.e. reduced Beta diversity; 

Whittaker 1960, Harrison 1993). In this scenario, the new homogenous carnivores 

communities can be dominated by two types of species: (a) native medium-size 

carnivores may be released from top-down control by large carnivores, leading to 

mesopredator outbreaks and spatial expansion (Prugh et al. 2009).  
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Such mesopredators commonly have a flexible diet and habitat selection, and can 

thrive in human-dominated landscapes (e.g. Krofel et al. 2017). (b) exotic carnivores 

(i.e. introduced species, free-ranging and feral domestic species) are increasing 

worldwide in number and range (e.g. Hughes & Macdonald 2013), and represent a 

major threat to global biodiversity through predation, competition and disease 

transmission (Doherty et al. 2016). Although the outcome of interactions between 

exotic and native carnivores depends on the relative position of the two species in 

the interference hierarchy, exotic species may often act as a new, dangerous 

competitor (Heim et al. 2019). As such, exotic carnivores can exclude native species 

from their natural habitats (Vanak et al. 2015), or even contribute to local species 

extinctions (Glen & Dickman 2005, Fillios et al. 2012). 

Finally, besides promoting human–wildlife coexistence (Rosenzweig 2003), 

redesigning human habitats can prove beneficial to carnivore communities. 

Promoting mosaic landscapes in human-dominated areas that include patches of 

habitats suitable for all native species can diminish the likelihood of interference 

interactions, and facilitate stable coexistence. In addition, ensuring a high 

availability and accessibility of trophic resources in these habitats can alleviate 

competition for food, and allow the sympatry of species within the same trophic 

level (Levin 1974). Therefore, it is possible to promote rich and diverse carnivore 

communities in human-dominated landscapes, comprised of small / medium 

(Pereira et al. 2012) and large carnivores (May et al. 2008) alike. 
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6.3.   Conservation implications and importance of study 

The IUCN Red List of Threatened Species (global assessment data and range data; 

IUCN 2020) reports 256 terrestrial species belonging to the order Carnivora. Of 

these, 40 (15.6%) are listed as Vulnerable; 24 (9.4%) as Endangered; and 4 (1.6%) as 

Critically Endangered. As human pressures on the environment are likely to 

continue increasing globally, the number of threatened carnivores could grow 

rapidly. Many carnivore populations are now in decline, but this phenomenon is 

primarily attributed to the direct impact of human persecution and land use 

changes (Ripple et al. 2014, 2016b, Marneweck et al. 2021). This thesis illustrates 

new ways in which humans can constitute an additional pressure on these species, 

by interfering with the natural patterns of interspecific competition. Thus, 

understanding how human disturbance may affect the way species interact with 

each other is of high conservation value, especially considering how the outcomes 

of interspecific interactions shape animal communities. 

Altering carnivore communities can have cascading effects on lower trophic levels, 

and on the structure of the ecosystem, although the exact effects can be difficult to 

predict due to the complexity of food webs. Furthermore, the loss of native species, 

and the invasion by exotic species, can alter ecosystem processes (Loreau et al. 2001, 

Hooper et al. 2005). For instance, this is observed in vertebrate scavenger 

communities, where the reduction in species richness resulting from human 

activities (Sebastián-González et al. 2019) can lead to the redistribution of resources 

to lower trophic levels (Cunningham et al. 2018), or to a complete loss of carrion-
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removal ecosystem services (Huijbers et al. 2015, DeVault et al. 2016, Mateo-Tomás 

et al. 2017). 

Findings from this thesis highlight the urgent need to adapt land-use planning, 

wildlife management, and human activities to limit the negative impact on 

carnivore communities. First and foremost, any practice reducing the diversity of 

resources available to carnivores (i.e. their niche breadth) for human gains should 

be swiftly reassessed. Current estimates predict that species may lose up to 58% of 

their natural habitat by 2100 (Jantz et al. 2015, Beyer & Manica 2020), which would 

contribute to large-scale faunal extinctions (Pereira et al. 2010, Pimm et al. 2014). 

Active restoration targeting habitat diversity across spatial scales (e.g. by restoring 

areas to varying stages of ecological succession; Lengyel et al. 2020) provides a 

larger variety of microhabitats and trophic resources, which facilitates resource 

partitioning between species (Vander Zanden et al. 2016). Secondly, there is an 

urgent need to address management of invasive carnivore species, not only because 

of the impact they have on native prey populations, but also with regard to the 

additional competitive pressure they enforce onto native carnivore species. The 

importance of controlling introduced predators has recently gained recognition, and 

large-scale programs of predator control and/or eradication are emerging (e.g. 

Aotearoa’s Predator Free 2050 project). The first step towards successful removal of 

invasive carnivores must involve a change in the regulation of domestic animals 

ownership laws, coupled with thorough programs of public education to raise 

awareness. Such legislation may include the mandatory identification and neutering 

of owned pets (e.g. Belgium became the first country to require almost all of the 
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domestic cats to be spayed or neutered before the age of 6 months); severe fines for 

illegal ownership and abandonments of animals; and restricted access to the 

outdoors (spatially and/or temporally). In addition, Trap-Neuter-Release or “catch 

and kill” programs can be implemented to decrease the stray and feral populations, 

although their effectiveness is strongly reduced if immigration is not controlled 

simultaneously (e.g. by reducing the rate of abandonment of domestic animals; 

Natoli et al. 2006, Lohr et al. 2013). Finally, limiting access to human-provided food 

resources (e.g. by improving waste management in public spaces, or raising 

awareness of the impact of feeding animals directly) would help manage 

populations of free-ranging domestic carnivores (Bhalla et al. 2021). Unfortunately, 

enforcing legislation on domestic animal ownership and performing lethal control 

of stray and feral animals still face strong public reproval and controversy, which 

present another set of challenges that should be addressed through social sciences. 

6.4.   Limitations of work and avenues for further research 

There are several limitations identified in this thesis, and to the overall science of 

species coexistence, that should be considered when drawing conclusions. 

Firstly, exploring the different processes involved in the behavioural adaptation to 

humans, and subsequent consequences on species interactions and niche 

partitioning, may suffer from a lack of precision if undertaken solely on a global 

scale. Large-scale studies can yield good information on the global effect of humans 

on species behaviour (e.g. Gaynor et al. 2018, Manlick & Pauli 2020, Doherty et al. 

2021). However, as chapter 3 illustrates, these global patterns may often be 
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overridden by fine-scale specificities of the landscape and animal communities. The 

large-scale indices used to quantify human, meteorological or ecological factors are 

probably too coarse to detect the processes at play. Understanding the spatial and 

temporal scales at which species adapt to humans and intraguild competitors is 

critical to evaluate how interspecific interactions may be reshaped by human 

interference. Future investigations will benefit from combining large-scale indices 

(e.g. remote sensing imagery to estimate land use) and in situ measurements of 

characteristics of the landscape (e.g. daily variations in human presence). 

Incorporating multi-scale perspectives into conservation and management plans 

can help address the global challenge of human–wildlife coexistence (Carter et al. 

2012, Wilmers et al. 2013). 

A further limitation in the current literature is the lack of experimental studies, 

either natural or manipulative, on behavioural adaptations to humans. Studies that 

evaluate the influence of external variables on niche partitioning by monitoring two 

or more treatment groups (e.g. Lewis et al. 2015, Wang et al. 2015) are still scarce, 

despite yielding highly inferential results. One solution lies in the coordinated 

distributed experiments collaborative approach promoted by Fraser et al. (2013), in 

which standardised experiments are used to control spatial and temporal scales 

across a wide geographic range. Coordinated distributed experiments may help 

uncover global patterns, whilst retaining fine-scale experimental control and 

precision. Similarly, chapter 4 highlights the importance of robust research 

methodology, careful presentation and meaningful interpretation of the data in 

promoting coherence and comparability among studies. Ultimately, adopting a 
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rigorous, evidence-based approach will help obtain a better understanding of the 

effects of human disturbance on animal communities (Pullin & Knight 2003). 

The conclusions presented in this thesis are mostly built upon the findings from 

studies published in peer-reviewed journals. Through a critical appraisal of the 

currently available literature, this thesis provides guidelines and recommendations 

that will lead to an improvement in the scientific rigour, and promote 

harmonisation among studies. The main recommendations are as follow: 

i. Multidimensional investigations of niche partitioning should be favoured. 

Approaches measuring the combined spatial and temporal niche dimensions yield 

more robust inferences on the processes underlying species interactions and niche 

partitioning (Cusack et al. 2017). A variety of tools are now available to operate such 

spatiotemporal analysis (e.g. Cusack et al. 2017, Ait Kaci Azzou et al. 2021). Dietary 

niche breadth and overlap among competing carnivores are also important 

components of resource partitioning, and can be successfully integrated within 

spatiotemporal studies (e.g. Gantchoff & Belant 2016, Monterroso et al. 2016, Osorio 

et al. 2020). Simultaneously investigating the three main dimensions of niche 

partitioning will yield the most detailed picture of the processes at play, and be 

beneficial to our understanding of the impact of human disturbance on interspecific 

interactions (e.g. Smith et al. 2018). 

ii. Increased attention should be given towards small and medium carnivores, since 

the current research is largely biased towards large carnivores (Brooke et al. 2014, 

Marneweck et al. 2021). As smaller carnivores adapt their behaviour in response to 



 

Page | 128  
 

human activities in a similar extent to large carnivores (Bateman & Fleming 2012, 

Clinchy et al. 2016), they can also affect interactions with other species (e.g. Nagy-

Reis et al. 2017). In addition, small carnivores can play important ecological roles in 

the ecosystem (Roemer et al. 2009), and more research on their behaviour and 

demographics is warranted to ensure their successful conservation. 

iii. Similarly, there is an urgent need to improve our understand of the impact of 

exotic species on native carnivores. Invasive species may put additional pressure on 

threatened carnivore populations through competition for resources (Vanak et al. 

2015) or predation (Ritchie et al. 2014). Findings from chapter 5 suggest that 

domestic carnivores with regular access to human resources could be excluding 

native species from human-modified habitats, as was found in other studies (Vanak 

& Gompper 2009b). As anthropogenic biomes expand, the extirpation of native 

carnivores and recolonisation by exotic carnivores could pose a grave threat to 

native carnivore populations (Farris et al. 2017b). 

6.5.   Conclusion 

The findings of this thesis provide a novel insight into the effects of human 

disturbance on resource partitioning and coexistence among carnivores. The 

findings have demonstrated that the human influence is diverse, and can affect 

niche partitioning in three contrasting ways. As such, human disturbance can either 

disrupt niche partitioning (thus increasing intraguild competition), unbalance niche 

partitioning and intraguild competition, or facilitate niche partitioning (hence 

decreasing intraguild competition). In addition, the global analysis of temporal 
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overlap among carnivores and local investigation of spatial co-occurrence between 

red foxes and domestic cats highlights the importance of considering fine-scale 

patterns interspecific interactions and behavioural adaptations to humans. To do so, 

further research would benefit from conducting more experimental studies, 

although the difficulty of running experimental studies at the spatial scale where 

carnivores operate is at the heart of heated debates (Allen et al. 2017a, b, Bruskotter 

et al. 2017), and should aim to harmonise the methods used to ensure the best 

methodological rigour and inference on their results. 

This study highlights that the impacts of human pressures on niche partitioning can 

deregulate intraguild competitive interactions and threaten stable coexistence 

among species, which will eventually end up reshaping the structure of carnivore 

communities. Anthropogenic biomes and human pressures are expanding globally, 

yet the full impact of changes in carnivore community structure on other ecological 

guilds and trophic levels has rarely been addressed. There is an urgent need to 

better understand the cascading effects that human-induced changes in niche 

partitioning and intraguild competition within carnivore communities can have on 

terrestrial ecosystem structure and function. Ultimately, research and conservation 

attention is required to slow or reverse the current deleterious effects of humans, 

and promote the beneficial ones. 
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