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Abstract

Network-based gene prioritization algorithms are designed to prioritize disease-associated genes based on known ones
using biological networks of protein interactions, gene–disease associations (GDAs) and other relationships between
biological entities. Various algorithms have been developed based on different mechanisms, but it is not obvious which
algorithm is optimal for a specific disease. To address this issue, we benchmarked multiple algorithms for their application
in cerebral small vessel disease (cSVD). We curated protein–gene interactions (PGIs) and GDAs from databases and
assembled PGI networks and disease–gene heterogeneous networks. A screening of algorithms resulted in seven
representative algorithms to be benchmarked. Performance of algorithms was assessed using both leave-one-out
cross-validation (LOOCV) and external validation with MEGASTROKE genome-wide association study (GWAS). We found
that random walk with restart on the heterogeneous network (RWRH) showed best LOOCV performance, with median
LOOCV rediscovery rank of 185.5 (out of 19 463 genes). The GenePanda algorithm had most GWAS-confirmable genes in top
200 predictions, while RWRH had best ranks for small vessel stroke-associated genes confirmed in GWAS. In conclusion,
RWRH has overall better performance for application in cSVD despite its susceptibility to bias caused by degree centrality.
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Choice of algorithms should be determined before applying to specific disease. Current pure network-based gene
prioritization algorithms are unlikely to find novel disease-associated genes that are not associated with known ones. The
tools for implementing and benchmarking algorithms have been made available and can be generalized for other diseases.

Key words: network-based gene prioritization; cerebral small vessel disease; protein–protein interaction; disease gene
association; benchmarking

Introduction
‘Guilt by association’ is the most adopted concept in network-
based gene prioritization methods. The underlying principle
is that genes that are closely associated in the protein–gene
interaction (PGI) network tend to be in the same functional
module, thereby giving rise to similar phenotypes [1]. Different
algorithms have been developed and applied to biological inter-
action networks under this principle. These algorithms take a set
of known genes associated with a disease (seed genes) as input
and try to predict or prioritize other potential genes associated
with the disease. Network propagation algorithms were among
the 1st algorithms to be applied on the PGI network in the form
of a random walk with restart (RWR) algorithm [2]. Despite its
early application and simplicity in a theoretical and compu-
tational sense, it showed superior or as good performance to
many algorithms and was often taken as a reference algorithm
[3–5]. The RWR algorithm was later extended to work on the
disease–gene heterogeneous network by either directly expand-
ing the adjacency matrix (RWRH) [6] or allowing propagation on
both the protein/gene network and disease similarity network
(IDLP) [4]. Some other algorithms, like DIAMoND and GenePanda,
find special associations between candidate genes and seed
genes using defined heuristic rules[7, 8]. Recently, the network
embedding method Node2Vec (N2V) has also been used in gene
prioritization [9, 10].

However, the reports describing the algorithms typically
showcased their performance in an example disease or
condition, so that it is not clear for end users who wish to apply
the algorithms to the disease of their interest which algorithm
is the optimal one. To address this issue, we benchmarked
seven representative algorithms for their application in non-
amyloid cerebral small vessel disease (hereafter referred to as
cSVD). CSVD is a term used to describe a variety of pathological
processes that affect the deep small penetrating arteries,
arterioles, venules and capillaries of the brain. The main clinical
phenotypes of cSVD include small vessel ischemic stroke, deep
intracerebral haemorrhage and vascular cognitive impairment
[11, 12]. The overall burden of cSVD is growing as the world’s
population continues to age [13]. Other than management
of hypertension, we currently lack effective treatments to
reduce the risk of cSVD. Hence, pathways involved in cSVD
pathogenesis must be better understood to develop new
effective prevention and treatment strategies. Genetic studies
may offer an opportunity for further insights.

In this article, we performed domain knowledge-lead
curation of PGIs and disease–gene associations to assemble
the input network. Known cSVD-associated genes sum-
marized from a systematic review of familial cSVD were
taken as seed genes [14]. We accessed the performance of
representative network-based gene prioritization algorithms
with cross-validation. The candidate genes prioritized by
best performing algorithms were externally evaluated with
results of genome-wide association study (GWAS) MEGASTROKE
[15, 16].

Methods
The benchmarking pipeline is in three main parts: cura-
tion of PGI and disease–gene networks, implementation
of algorithms and evaluation of algorithm performances
(Figure 1).

Sources of data used as input to the network

For curation of human PGIs, three overall preferences on the
nature of databases were pursued with descending priority: (i)
coverage of seed genes (reviewed by Rannikmäe et al. [14]), (ii)
the objectivity of database and (iii) presence of experimental
evidence to support the interaction. In addition, we made sure
that seed genes were covered in at least one of the databases,
so that algorithms could use this prior information to prioritize
other candidate genes.

Objectivity signified to what extent relationships found for
each protein or gene were not affected by the researchers’ inter-
ests. Databases curating binary protein interactions determined
by yeast-2-hybrid screening are good examples of data sources
with high objectivity, since neither proteins of interest nor rela-
tionships to be observed are preselected. Databases curating
transcription regulation defined by chromatin immunoprecipi-
tation sequencing (ChIP-Seq) are examples of moderate objec-
tivity, since specific transcription factors are chosen to be stud-
ied, but the regulated genes were accessed universally with
RNA sequencing. Both the objectivity and experimental evidence
requirements implied the exclusion of relationships extracted
by literature text-mining methods. An overview of all databases
curated is provided in Table 1.

Binary interactions (protein interaction determined by yeast
two-hybrid screening) were curated from the Human Reference
Interactome (HuRI) database [17]. Transcription regulations
were curated from the Gene Transcription Regulation Database
(GTRD) [18]. Regulations with more than eight (including
eight) binding sites determined by peak calling of ChIP-Seq
signal in the genomic range of 1000 bp up- or down-stream
of transcription start site were selected. Relationships in
biological pathways were curated from Reactome databases
[19]. To cover all the seed genes, additional experimental
confirmed relationships were curated from the String database
with a filter of confidence score ≥350 (Table 1) [20]. Since
curation of GTRD database required both gene and protein
entities on the graph, we created a hybrid protein–gene
network. All entities in PGI were converted to Ensembl gene
ID to allow best compatibility with gene–disease associations
(GDAs).

GDAs were curated from DisGeNet v6.0 using the ‘ALL
gene-disease association’ file [21]. Selected associations were
confined to human evidence with associations GDA scores ≥0.3,
which corresponded to associations curated from evidence-
based databases. The disease similarity (Dsim) score was
extracted from Mimminer [22]. Diseases with similarity score
greater than 0.6 were given an edge in the network. All disease
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Network-based gene prioritization for cSVD 3

Figure 1. Benchmarking workflow of network-based gene prioritization in cSVD. There are three main components of the benchmarking workflow: assembling input

networks, selection of algorithms and validation of algorithms. (i) PGI was assembled with domain knowledge-lead curation of protein/gene interactions from four

databases. DGAs were added to PGI to generate disease–gene heterogeneous networks. (ii) Representative gene prioritization algorithms were selected based on the

originality with the non-network-based algorithms or hybrid algorithms excluded. (iii) Performance of algorithms was assessed with LOOCV and externally validated

with MEGASTROKE GWAS results. Abbreviations: PGI, protein–gene interaction; DGA, disease–gene association; cSVD, cerebral small vessel disease; LOOCV, leave-one-

out cross-validation; GWAS, genome-wide association study. Please see Table 1 for full names of databases and Table 2 for full names of algorithms.

Table 1. Summary information on PGIs and disease–gene associations curated from different data sources

Database Gene/protein Disease Node Interaction Selection/filter

HuRIa 8327 – 8327 19 082 HuRI
GTRDb 8275 – 8275 52 569 Promotor (−1000, +1000); more than 8 binding sites per gene
Reactome 5219 – 5219 29 328 –
String 13 444 – 13 444 91 019 Experimentally confirmed with score ≥350
DisGeNET 7635 8431 16 066 67 993 DGA score ≥0.3
Mimminer – 2646 2646 9840 Similarity score >0.6
Gene network 18 718 – 18 718 183 457 –
Disease–gene network 19 463 10 103 29 566 261 298 –

aHuRI—Human Reference Interatome
bGTRD—Gene Transcription Regulation Database

entities were mapped to ids of the Online Mendelian Inheritance
in Man database.

Unions of all PGIs with or without GDAs were computed
and non-directed simple networks were generated (Table 1). The
network edge lists and code to extract the relationships were
published at https://github.com/huayu-zhang/gp-bench.

Modularity of GO pathways

Clustering of genes in the same pathways is a known property of
PGI networks. To test whether our curated PGI network had this
property, we extracted groups of genes defined by gene ontology
(GO) terms of biological process and calculated modularity of
GO pathways on the PGI network. Modularity quantifies if the
number of edges among a group of nodes (modules) is lower
or higher than expected. The modularity of GO pathways was
calculated as a two-community modularity with one community
defined by a GO pathway and the other community being the rest
of nodes:

Q = 1
4m

sTBs (1.1)

Bij =
{

Aij − kikj

2m if i �= j
0 if i = j

(1.2)

si =
{

−1 if i ∈ GO pathway
1 if i /∈ GO pathway

(1.3)

where Q is the modularity score, m is the number of edges and
ki and kj are the degrees of i-th and j-th nodes.

Graph-based gene-prioritization methods

Algorithm selection

To select algorithms for comparison, a PubMed search for
‘network-based gene prioritization’ was done and 49 articles
were yielded. Additional 77 articles were obtained through
the review of Zolotareva and Kleine [23], 51 of which were
excluded since it was reviewed to be not available. The 75
articles were screened. Non-network-based algorithms or hybrid
algorithms combining network-based approaches and machine
learning approaches were excluded to focus on the network-
based algorithms and improve comparability among algorithms.
We also excluded articles if only implementations but not the
original algorithms were described or if the source code was not
provided for redevelopment. The selection resulted in 35 articles
describing different algorithms, among which algorithms
with similar core mechanisms exist. To avoid redundantly
testing similar algorithms, seven representative algorithms with
different mechanisms were selected for benchmarking. Details
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Table 2. Summary of network-based gene prioritization methods applied in this study

Abbreviation Name Mechanism Network

RWR Random walk with restart Network propagation Gene–protein network
N2V Node2Vec Graph embedding Gene–protein network
DIAMOnD Disease module detection Seed association Gene–protein network
GenePanda GenePanda Seed association Gene–protein network
RWRH RWR on heterogeneous network Network propagation Disease–gene network
N2VH N2V on heterogeneous network Graph embedding Disease–gene network
IDLP Improved dual label propagation Network propagation Disease–gene network

of algorithm selection process are given in Supplementary Table
S1. A summary of the selected algorithms is given in Table 2.

Notations

For describing the methods, common notations were used. The
PGI network G = (V, E) consists of a node set, V, of n nodes, rep-
resenting individual proteins/genes, and an edge set, E, of node
pairs, representing PGIs. The set of seed nodes was represented
by S, which contained monogenic risk factors of cSVD. The num-

ber of elements in a set is notated with single vertical bars (e.g.
∣∣∣S∣∣∣

for number of seed nodes). The network of G is represented by an
n×n adjacency matrix A, and the column-normalized adjacency
matrix was represented by W.

W = AD−1
k (2.1)

where Dk is a diagonal matrix Dk = diag(k) and k is a vector in
which the i-th elements is the degree of i-th node. Adjacency
matrix for GDA network and disease similarity network were
notated with APD and ADD. Bold font was used for notations of
vectors and matrices.

Since the output of different algorithms are not directly
comparable, we also described in the following section how node
ranks were generated for each algorithm. To streamline the com-
parisons of algorithms, we implement all algorithms in Python
3.7 (https://github.com/huayu-zhang/gp-bench). A summary of
the algorithms is given in Table 2.

Random walk with restart

RWR algorithm was first applied to the human PGI networks
by Kohler et al. [2]. It has since been extended to work on
the disease–gene heterogeneous network [6]. Intuitively, random
walk measures the probability of ending on a particular node if
one starts from the seed nodes. The probability can in turn be
interpreted as a measure of distance from seed nodes with the
network structure taken in consideration. We briefly describe
the principles here. The RWR algorithm is defined as follows:

pt = (1 − r) Wpt−1 + rp0 (2.2)

The initial probability is p0i = 1/

∣∣∣S∣∣∣, if i-th node is one of

the seed nodes; otherwise, p0i = 0. The restart probability r
was tuned in range of (0.1–0.9) with steps of 0.2. The process
was repeated until convergence with a practical tolerance of

difference
∥∥∥pt − pt−1

∥∥∥
1

< 10−8. Elements in the converged pt were

used as the score for ranking all genes:

RWR score = p∞ (2.3)

For random walk on heterogeneous network (RWRH), the
adjacency matrix A and probability vector p0 and pt were
expanded to accommodate disease–gene association and
disease similarities:

Aexpand =
[

A APD

APD
T ADD

]
(2.4)

pexpand
t =

[
pt

pdisease
t

]
(2.5)

where pdisease
t is the probability vector for all disease nodes. The

expansion allows random walk on both gene/protein nodes and
disease nodes.

Node2Vec
N2V is a network embedding algorithm invented by Grover

and Leskovec [10], which computes a low-dimensional vector
representation for all nodes in a network. Full theoretical back-
ground is not repeated here. Briefly, the vector representation
for each node is optimized in the way that the conditional log-
probability of observing a network neighbourhood (sampled by
random walks described below) is maximized. In other word,
nodes with similar vector representations are likely from similar
neighbourhood in the network, allowing us to find genes closely
related to seed genes. Practically, for each node in V, neighbour-
hood sampling was done by generating nwalks random walks with
length lwalks. The number of walks nwalks was tuned in values of
(20, 40, 80), while length of walks lwalks was tuned in values of
(40, 80, 160). The balance between breadth-first search (BFS) and
depth-first search (DFS) was controlled by p (smaller p favours
BFS) and q (smaller q favours DFS). Both p and q were tuned
in values of (0.5, 1, 2). The walks were then used as the input
for Word2Vec, where each walk was treated as a sentence and
each node was treated as a word. Using Skip-gram architecture,
vectorized representation vi was computed for each node i. The
dimension of the vectors d was tuned in values of (64, 128, 256).
Max cosine similarity of a node to seed nodes was used as
the gene-prioritization score of N2V and was used for ranking
candidate genes:

N2V scorei = max
{

vi • vs

‖vi‖2‖vs‖2
, s ∈ S

}
(2.6)

The N2V algorithm could also be applied to heterogeneous
network without modification (N2VH).

Disease module detection algorithm
Disease module detection algorithm (DIAMOnD) was pro-

posed by Ghiassian et al. [7]. The core mechanism of the DIA-
MOnD algorithm is stepwise inclusion of neighbour nodes of
seed nodes based on hypergeometric distribution probability.
The probability quantifies likelihood of observing certain num-
ber of connections to seed nodes based on the degree of the node.
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A lower probability suggests overrepresentation of connections
to seed nodes. At the end of each step, the set of seed nodes
is updated by the newly prioritized candidate node. For each
candidate node at t-th step, probability of any candidate node
connecting exactly to certain number of seed nodes is calculated
based on the hypergeometric distribution:

p =

(
|St|
kst

) (
n − |St|
k − kst

)
(

n
k

) (2.7)

where k is the degree of the candidate node, Stis the set of
seed nodes at t-th step andkst is the number of connections of
the candidate node to St. The candidate node with lowest p is
prioritized and is incorporated in the list of seed node. The rank
of nodes was given by the order of being selected in this stepwise
gene prioritization process.

An extension which add additional weight to the original
seed genes was given:

p =

(
|St| + (α − 1) |S|
kst + (α − 1) ks

) (
n − |St|
k − kst

)
(

n + (α − 1) |S|
k + (α − 1) ks

) (2.8)

where ks is the number of connections of the candidate node to
S and α (α > 1) is the hyperparameter controlling the weight. The
hyperparameter α was tuned in values of (1, 10, 100).

GenePanda

GenePanda was proposed by Yin et al. [8]. Briefly, in the
GenePanda algorithm, the degree-adjusted distance dadj

ij between
i-th node to j-th node is calculated:

dadj
ij = dij/

√
kikj (2.9)

where dij is the shortest path length between i-th node to j-th
node and ki and kj are degrees of i-th node to j-th node. The
GenePanda score is defined as the difference of average adjusted
distance of a node to the whole network to the average adjusted
distance to the seed genes. The GenePanda score for i-th node is
calculated as follows:

GenePanda scorei =
∑

j∈V dadj
ij

|V| −
∑

j∈S dadj
ij

|S| (2.10)

The GenePanda score was used to rank all nodes.

Improved dual label propagation

Improved dual label propagation (IDLP) was formulated by Zhang
et al. [4] specially for gene prioritization on gene–disease hetero-
geneous networks. IDLP involves back-and-forth network prop-
agation on the PGI network and the disease similarity network.
Before each propagation, PGI network or disease similarity net-
work is updated with knowledge of GDAs, in the way that genes
causing the same diseases get larger edge weight in the PGI
network and disease caused by the same genes get larger edge
weight in the disease similarity network.

For realization of the IDLP algorithm, the PGI network and
disease similarity network were first normalized:

Anorm = K− 1
2 AK− 1

2 (2.11)

Anorm
DD = K

− 1
2

DD ADDK
− 1

2
DD (2.12)

where KA and KDD are diagonal matrices with node degrees of
PGI network and disease similarity network, respectively.

The IDLP algorithm was realized by repeating the following:

A∗ = Anorm + γ YYT (2.13)

Y = β (I − α) A∗−1APD (2.14)

A∗
DD = Anorm

DD + γ ′YTY (2.15)

Y = β ′APD
(
I − α′A∗

DD

)
(2.16)

where A∗ and A∗
DD are the updated PGI and disease similarity

networks and Y is the gene–disease relationship matrices to be
learnt, which has same dimensions with AGDA. Y is initialized
with random values. The algorithm should be repeated until Y
converges. In practice, we performed 20 iterations due to the long
runtime of each iteration, caused by the complexity of matrix
inverse calculation. Before the iterations, an extra column was
added to APD representing cSVD, in which rows for seed genes
had value 1; other rows had value 0. The dimension of Y was
adjusted accordingly. The final value of the column representing
cSVD in Y was used to rank all genes.

Evaluation of algorithm performance
Leave-one-out cross-validation

Model performance was internally evaluated using leave-one-
out cross-validation (LOOCV). For each repeat of cross-validation,
one seed node was left-out from the set of seed genes and the
rank of the left-out seed node was used as the performance met-
ric (referred as LOOCV rank). Median and mean values of LOOCV
ranks of seed nodes were calculated as overall performance
metrics. For methods applied to the gene–disease heterogeneous
network, edges between cSVD and the left-out seed gene were
also removed to prevent data leaking. Gene ranks given by degree
centrality were used as a naive baseline performance.

Random-seed experiments

Random-seed experiments served to evaluate seed-independent
patterns captured by the algorithms. In one trial, a randomly
selected 10 seed genes were taken as the input of algorithms
and the rank of all nodes were obtained. The experiment was
repeated 1000 times, and the median value of the rank of each
node across the 1000 experiments was calculated and associated
with degree centrality of the nodes. For cSVD-related genes,
distributions of the ranks from 1000 experiments were also visu-
alized. The PGI network was used in a random-seed experiment
because on the PGI network degree of a node can be directly
interpreted in biological sense as the number of interactions a
certain gene has.
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External evaluation using MEGASTROKE GWAS results

The MEGASTROKE GWAS [15, 16] of ‘small vessel stroke (SVS) in
Europeans’ was used to evaluate the gene prioritization results.
SVS is a synonym for cSVD used in the MEGASTROKE study.

Single nucleotide polymorphisms (SNPs) were mapped to
genes based on their genomic locations (±1000 bp of the gene
region). The genes were indexed with Ensembl gene IDs to
remain consistent with the gene prioritization output. P-values
for all SNPs within the top 200 genes found in the MEGASTROKE
summary statistics were extracted. To determine a significance
threshold for the genes shortlisted by the algorithms, false dis-
covery rate (FDR)-adjusted P-values were calculated for all SNPs.
Those genes with a significant proportion of SNPs (determined
using a one-sample t-test) which passed the FDR-adjusted P-
value threshold of P < 0.05 were considered to be validated
within MEGASTROKE.

The MEGASTROKE study identified seven genes associated
with the SVS phenotype. We used this list of seven genes as the
other way of performance validation. The median rank, number
of hits in top 10% of predictions and the list of hits were obtained
as performance metrics.

The same validation procedure was applied to degree cen-
trality ranks to obtain a naive baseline performance.

Results
Domain knowledge led curation of PGIs

The knowledge-lead curation of human PGIs resulted in a PGI
network with 18 718 distinct proteins and 183 457 interactions
with the largest connected components covering 18 664 proteins
(Table 1, Figure 2A). A heavy tail distribution of degrees was
observed (Figure 2B). Different PGI databases each have a distinct
contribution to the total number of proteins, with a different
extent of overlapping between the databases (Figure 2C). The
overlap of interactions, however, was to a lesser extent, since
biological meaning of interactions from different databases were
different (Figure 2D). In particular, only two interactions were
found in both HuRI and GTRD databases, which is consistent
with the fact that transcriptional regulation mostly does not
involve binary interaction between two proteins. To test if the
curated network displays known functional properties of PGI
networks, modularity scores of GO pathway proteins were cal-
culated and compared to randomly chosen groups of protein.
Indeed, higher modularity scores compared to randomly chosen
protein groups were observed (Figure 2E).

Characteristics of cSVD genetic risk factors on human
PGI network

To assess the (PGI) network-based properties of known mono-
genic risk factors (seed genes) of cSVD, we calculated centrality
measurements of nodes representing the seed genes. Most (8/10)
seed nodes had degree centralities above network median. Six of
the seed nodes had eigenvector centralities above the network
median. All seed nodes had betweenness centrality above the
network median (Figure 3A, Table 3). In addition, six of the seed
nodes had a clustering coefficient above the network median.

To know the relative positions of seed nodes in the human
PGI network, pairwise distances of seed nodes defined by short-
est path length or RWR were calculated (Figure 3B–C). COL4A1
and COL4A2 genes were two of the six subunits of the type IV
collagen and were, therefore, neighbours. PITX2, NOTCH3 and

FOXC1 genes, all of which are involved in NOTCH signaling path-
way, formed another cluster. The lysosome biogenesis regulator
gene, TREX1, clustered with CTSA gene, which is a lysosome
peptidase. COLGALT1 was clustered with either CTSA or loosely
with the COL4A1/COL4A2 cluster, depending on the distance
metric used. ADA2 and HTRA1 were not in proximity with any
other seed nodes in the human PGI network.

Evaluation of network-based gene prioritization
methods on cSVD with LOOCV

Performance of gene prioritization algorithms was firstly eval-
uated with LOOCV. On the PGI network, RWR had the best
performance with a median LOOCV rank of 1356.5 in seed nodes,
followed by N2V with a median rank of 2165 (Table 4). DIAMoND
and GenePanda failed to achieve comparable performance. Next,
we evaluated algorithms that were applicable on the protein/dis-
ease heterogeneous network. RWRH achieved the best perfor-
mance with a median LOOCV rank of 185.5 in seed nodes,
followed by N2VH with a median rank of 820.5. Performance of
the IDLP algorithm was not comparable to RWRH and N2VH.
Performance of RWR and N2V algorithms was both dramatically
improved by using the heterogeneous network.

Patterns could be observed on the variance of LOOCV ranks
of seed genes. Seed genes, which belonged to clusters defined by
network-based distance measures, tended to have better LOOCV
rank. COL4A1 and COL4A2 were ranked in the top 40 genes in
most algorithms. NOTCH3, FOXC1 and PITX2 had better ranks
in two RWR-based algorithms. Seed genes with higher degree
centrality, like CTSA, NOTCH3 and PITX2, also tended to have
better LOOCV rank in the RWR algorithm.

Random-seed experiments

Contributions to results of gene prioritization come from seed-
dependent (choice of seeds) and seed-independent sources
(intrinsic properties of the network). Here, we sought to study
the influence of degree centrality on gene prioritization results.
The implications were explained in detail in the Discussion
section. To measure the dependency on degree centrality, we
simulated 1000 experiments with 10 randomly selected seed
genes. Association of the median rank of each gene in 1000
simulations with degree centrality of the node representing the
gene was examined. For RWR, lower median rank of a gene in
random-seed experiment was associated with higher degree
centralities, meaning that nodes with higher degree centrality
got better rank regardless of chosen seed genes (Figure 4A). The
same trend was not observed for N2V (Figure 4B). We then took a
deeper look at the distribution of rank for seed genes of cSVD in
random-seed simulations. In RWR, ranks of seed genes from the
random 10-seed experiment were narrowly distributed, where
in N2V, the distribution was wider (Figure 4C and D).

External validation of gene prioritization results in
MEGASTROKE GWAS

We next validated the top 200 predictions of the algorithms with
MEGASTROKE GWAS results. The top predictions of GenePanda
had the most genes that could be validated in GWAS (90/200),
followed by N2VH and N2V (70/200 and 53/200; Table 5). RWRH
achieved the best rankings for the seven confirmed SVS-
associated genes from the MEGASTROKE study (median rank
1840 with 4/7 among top 10% predictions) (Table 5). Like the
observation in LOOCV, more GWAS-validated genes in the top
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Network-based gene prioritization for cSVD 7

Figure 2. Domain knowledge-guided curation of human protein–gene–disease interaction and assembly of interaction networks. (A) The human PGI network. (B) A

heavy tail distribution of degree centrality in PGI network. (C) Venn diagram showing overlaps of genes among databases. (D) Venn diagram showing overlaps of

interactions among databases. (E) Modularity of network by GO term ontologies.

200 predictions were observed for RWR and N2V algorithms
when the heterogeneous network was used. Including disease–
gene association in the network improved the performance in
ranking GWAS-confirmed genes for RWR but not for N2V. The full
list of prioritized genes and their significance in MEGASTROKE
GWAS can be found in the Supplementary Table S2 and S3.

Discussion
In the current study, we applied network-based gene prioriti-
zation algorithms to shortlist new candidate genes for cSVD. A
domain knowledge-lead curation of PGIs was done as the input

network. To select the most suitable algorithm, we benchmarked
seven algorithms and observed good performance for RWRH and
N2VH in LOOCV. Given the total number of genes and proteins in
the heterogeneous network (19 463), the median ranks of redis-
covery in LOOCV for RWRH (185.5) translate to 50% of disease-
causing genes enriched in the top 0.95% (185.5/19 463) of candi-
date genes. In the following tests of the two algorithms, we found
that N2V algorithm was less prone to pick up seed-independent
patterns. External validation of the algorithms using MEGAS-
TROKE GWAS identified several genes within the top 200 can-
didate genes that were associated with small vessel stroke,
indicating that there is a certain degree of agreement between
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Figure 3. Properties of monogenic risk factors of cSVD in PGI network. (A) Centralities: degree, eigenvector, betweenness, closeness, clustering coefficient. (B) Pairwise

distances of seed nodes: shortest path length. (C) Pairwise distances of seed nodes: RWR distance.

Table 3. Metrics of seed genes in PGI network

Vertex Degree centrality Eigenvector centrality Betweenness centrality Closeness centrality Clustering coefficient

TREX1 2.03E-03 1.67E-03 1.91E-04 3.17E-01 3.84E-02
COL4A1 5.88E-04 5.08E-04 2.82E-05 2.79E-01 9.09E-02
COL4A2 5.88E-04 7.54E-05 1.22E-05 2.64E-01 1.64E-01
PITX2 2.24E-03 5.46E-03 1.27E-04 3.41E-01 1.16E-01
FOXC1 6.95E-04 3.59E-03 1.26E-05 3.25E-01 2.18E-01
NOTCH3 1.98E-03 2.43E-03 8.82E-05 3.17E-01 1.07E-01
HTRA1 2.67E-04 2.18E-04 1.14E-05 2.70E-01 0.00E+00
ADA2 5.34E-05 1.03E-03 0.00E+00 2.91E-01 0.00E+00
CTSA 3.42E-03 2.57E-03 1.04E-03 3.27E-01 2.28E-02
COLGALT1 5.34E-04 3.07E-03 4.29E-05 3.25E-01 1.78E-01
Seed median 6.41E-04 2.05E-03 3.56E-05 3.17E-01 9.88E-02
Seed mean 1.24E-03 2.06E-03 1.55E-04 3.06E-01 9.34E-02
Graph median 3.74E-04 1.17E-03 7.99E-06 3.06E-01 8.67E-02
Graph mean 1.05E-03 2.84E-03 1.27E-04 2.99E-01 1.83E-01

network-based algorithms and GWAS. The PGI network and the
pipeline for algorithm benchmarking were made available online
(https://github.com/huayu-zhang/gp-bench).

Network-based prioritization algorithms are based on dif-
ferent assumptions and mechanisms. If the assumptions or
the mechanisms do not fit with the underlying biology and
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Table 4. Performance of algorithms in LOOCV

LOOCV rank Rank
RWR N2V DIAMOnD GenePanda RWRH N2VH IDLP Degree

centrality

TREX1 3006 3907 naa 5408 1429 4539 18 103 2643.5
COL4A1 29 20 2344 22 21 19 18 201 7505.5
COL4A2 30 20 177 5 31 21 16 574 7505.5
PITX2 523 2035 na 4698 78 131 236 2326
FOXC1 1515 2157 na 3652 54 126 15 323 6792.5
NOTCH3 1198 4710 na 10 439 76 816 18 925 2727
HTRA1 8731 1871 269 14 636 293 825 949 11 076.5
ADA2 15 307.5 10 750 na 9380.5 18 206 15 555 10 011 17 226
CTSA 1037 3951 na 4418 993 3427 17 603 1255
COLGALT1 3302 2173 1960 4393 6197 4632 10 016 7923
Median 1356.5 2165 na 4558 185.5 820.5 15 948.5 7149
Mean 3467.85 3159.4 na 5705.15 2737.8 3009.1 12 594.1 6698.0

aThe DIAMOnD algorithm is a stepwise prioritization algorithm. The maximum steps were set to 5000, so that LOOCV rank of some seed genes is not available (na).

Table 5. Validation of gene prioritization results by MEGASTROKE GWAS

SNP Gene Sig. genes in GWAS
Algorithm (Sig./total) (Sig./total) Median rank Hits@10% Hits list

RWR 411/3110 25/200 5251 2/7 ICA1L, SEMA4A
N2V 1139/3027 53/200 4526 1/7 SEMA4A
DIAMOnD 47/2649 3/200 na 0/7
GenePanda 1859/2918 90/200 8544 1/7 ZCCHC14
RWRH 784/2767 45/200 1840 4/7 SH3PXD2A, SEMA4A,

ICA1L, ZCCHC14
N2VH 1597/2590 70/200 5979 1/7 SH3PXD2A
IDLP 603/3700 41/200 9318.5 1/7 ZCCHC14
Degree centrality 385/2144 31/200 7697 0/7

genetic basis of diseases, we will observe suboptimal perfor-
mance of the algorithms. The overall assumption of the algo-
rithms that are benchmarked in this article is the ‘guilt-by-
association’ principle [23]. In a biomedical sense, the princi-
ple can be approximately translated to ‘a gene which interacts
with known disease-causing genes has a better chance to be a
potential disease-causing gene’. This assumption is partly true,
if we consider that genes work as components of biological
pathways and functional modules [1]. Therefore, variations in
one of the components could lead to similar disease pheno-
types. However, the assumption does not cover situations in
which none of the genes belonging to a responsible pathway
or functional module is known or if the genetic structure of
the disease is more sporadic than clustered. Indeed, clustered
(according to network-based distance metrics) genes tend to
have better LOOCV rank in our study. The IDLP algorithm addi-
tionally assumes the smoothness of the adjacency matrix (edge
weights smoothed by network propagation) of the PGI network
and disease similarity network, which is not necessarily true.
During the derivation of the algorithms, certain diseases were
normally taken as example cases, demonstrating the (superior)
performance of the algorithm. It is possible that the mecha-
nism of certain algorithms fits better with the genetic structure
of the example disease. For example, the DIAMOnD algorithm
finds next candidate genes among the neighbours of the seed
gene set updated to the current step, which naturally favours
diseases with disease-causing genes forming large clusters on
the PGI network in rediscovery analysis. Indeed, the DIAMOnD
algorithm had superior performance over RWR in lysosomal

storage disease, of which the disease-causing genes have one of
the highest z-score for forming connected components [7]. As for
cSVD, the seed genes are in different clusters or isolated, explain-
ing poor performance for the DIAMOnD algorithm in LOOCV. In
summary, we would recommend comparison of multiple algo-
rithms before network-based gene prioritization methods are
applied to a certain disease. In addition, combination of multiple
methods (or ‘ensemble’ from the machine learning term) may
help to cancel out intrinsic bias of a single algorithm. Relevant
research has been done for breast cancer [24], but the subsequent
issue on how ensemble methods should be chosen would require
a systemic study.

The PGI network can be supplemented with disease–gene
interactions and disease–disease similarity relationships to cre-
ate a heterogeneous disease–gene network. It was previously
found that using the heterogeneous network improved per-
formance of some network-based gene prioritization methods
[24, 25]. However, such findings have not been confirmed for
network embedding algorithms such as N2V. In our experiment,
we observed substantial improvement of performance in LOOCV
for N2V using the heterogeneous network, indicating that N2VH
could also utilize information of existing disease–gene associa-
tions to infer new ones.

The choice of data sources for the input network plays an
important role in network-based gene prioritization methods.
Previous studies relied on either single curated PGI databases
or curation of multiple sources [7, 26]. We believe that the
source of PGI should be carefully selected for several reasons: (i)
reliability of estimation of algorithm performance in LOOCV can
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10 Zhang et al.

Figure 4. Dependency of rank on node degree. (A) Degree dependency of median random-seed node rank (all nodes) in RWR. (B) Degree dependency of median random-

seed node rank (all nodes) in N2V. (C) Distribution of ranks of seed genes in random-seed experiments on RWR. (D) Distribution of ranks of seed genes in random-seed

experiments on N2V.

be influenced by the degree centrality (number of interactions of
a node) of seed nodes. We demonstrated that, for algorithms like
RWR and its variations, LOOCV ranks of nodes were positively
correlated with their degree centralities, regardless of choice of
seed nodes. In other words, performance of RWR-like algorithms

would appear to be better in LOOCV just by having higher degree
centralities for the seed nodes, which does not necessarily
reflect true ability for the algorithm to predict new candidate
genes. Since known disease-associated genes tend to attract
more research interests, including literature-based PGIs would
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disproportionately increase degree centrality of seed genes,
resulting in over-estimation of RWR-like algorithms. In this
article, we attempted to avoid such over-estimation by preferably
curating PGIs obtained from high-throughput methods, where
the chance of a gene to be researched was not based on
researchers’ own interests. However, we could not completely
exclude other experimental evidence curated in the STRING
database, due to the need to include all seed genes in the PGI
network. (ii) Careful choice of data sources enables discoveries
of poorly researched genes. Like the argument in the previous
point, the systematically higher ranks of high degree genes mean
prioritization would be biased towards well-researched genes,
if data sources subjected to researchers’ interest are included.
On the other hand, omics data from high-throughput methods
are not subjected to the bias towards well-researched genes,
giving poorly researched genes a fair chance to be prioritized.
(iii) Different types of interactions have different biological
meanings. Controlling the source of PGI makes it possible to
utilize different types of interactions in gene prioritization,
although few currently available network-based algorithms
allow this.

Given the possible over-estimation of performance assess-
ment by LOOCV, we also validated the algorithm using GWAS
results. Since all approaches are limited in their own ways in
identification of disease-associated genes, it is not possible to
evaluate the performance of algorithms against the hypothetical
‘ground truth’. Nonetheless, we could see either if top predic-
tions of the algorithms overlap with genes with significantly
correlated SNPs from GWAS or if better ranks are observed for
GWAS-confirmed genes. All algorithms but DIAMOnD and RWR
had more validated genes in top 200 predictions than the naive
predictions by degree centrality. RWRH, N2V, N2VH and RWR
algorithms had better median rank of seven GWAS-confirmed
genes than the expected median. RWRH and N2VH algorithms
both contained the SH3PXD2A gene in their top 200 predictions.
This gene has been found to be associated with any stroke and
SVS in MEGASTROKE (at genome-wide significance and sugges-
tive significance, respectively) and with periventricular hyperin-
tensity in brain MRI imaging [25, 26]. In addition, the RWRH algo-
rithm included four of the seven GWAS-confirmed genes in top
10% of prediction. These observations suggest that these models
are able to capture the biological mechanisms involved in SVS
and shortlist candidate genes that could be used to develop a
greater understanding of the pathophysiology of SVS, despite the
room for improvement in both reliability and precision.

There are several limitations of this study. Firstly, this study
only compared selected network-based gene prioritization
methods for cSVD, so that, for example, machine learning-
based algorithms were not included. Secondly, the methods
applied in this study did not utilize or (in the off-the-shelf
form) did not allow the use of other information, such as other
types of omics data like tissue-specific gene expression. Thirdly,
network-based gene prioritization tools take the concept of a
gene or a protein as the base entity, while, in reality, a gene or a
protein involves a cascade of complex biological activities, such
as splicing, transcriptional regulation, translational regulation,
etc. The current methods need improvement to both incorporate
the complexity of the information and to increase the resolution
of entities (e.g. to a base pair in the genome). Thirdly, GBA-based
algorithms rely on the prior information given by seed genes,
which means these algorithms will not perform well for diseases
with no or limited known associating genes or when the known
disease-associating genes do not form a homogenous cluster.
In such case, using genes in relevant functional pathways as

seed genes provides another chance to use network-based
algorithm for gene prioritization. To integrate the extension
of including genes in a relevant functional pathway as seed
information, future studies need to determine how pathway
genes can be integrated (as seed genes or as new relationships
in the graph) and the implications of different strategy. Finally,
a reliable validation method for benchmarking the algorithms
is still lacking, as we reasoned that the LOOCV was prone to
over-estimation of the performance and results of GWAS will not
cover all disease-associated genes by nature. Future work should
aim at tackling these limitations to improve the performance
and reliability of network-based gene prioritization algorithms.

Key Points
• Random walk with restart with disease–gene hetero-

geneous network has overall better performance for
application in cerebral small vessel disease despite its
susceptibility to bias caused by degree centrality.

• Choice of network-based gene prioritization meth-
ods should be made for the target disease since the
performance of these methods is disease dependent.

• We provide the integrated pipeline to benchmark com-
monly used algorithms for quick start of algorithm
comparison and evaluation.

• Network gene prioritization methods based on ‘guilt-
by-association’ principle are unlikely to find disease-
associated genes outside the functional clusters of
currently known ones.

Supplementary Materials
Supplementary files are available online at Briefings in Bioinfor-
matics.
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