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Abstract 

Background & Aims 

Anti-tumour necrosis factor-alpha (anti-TNFα) agents have been used for inflammatory bowel 

disease (IBD), however, it has up to 30% non-response rate. Identifying molecular pathways 

and finding reliable diagnostic biomarkers for patient response to anti-TNFα treatment are 

needed. 

Methods 

Publicly available transcriptomic data from IBD patients receiving anti-TNFα therapy was 

systemically collected and integrated. In silico flow cytometry approaches and MetaScape 

were applied to evaluate immune cell populations and to perform gene enrichment analysis, 

respectively. Genes identified within enrichment pathways validated in neutrophils were 

tracked in an anti-TNFα-treated animal model (with lipopolysaccharide (LPS)-induced 

inflammation). The receiver operating characteristic (ROC) curve was applied to all genes to 

identify the best prediction biomarkers. 

Results 

A total of 449 samples were retrieved from control, baseline and after primary anti-TNFα 

therapy or placebo. No statistically significant differences were observed between anti-TNFα 

treatment responders and non-responders at baseline in immune microenvironment scores. 

Neutrophils, endothelial and B cell populations were higher in baseline non-responders and 

chemotaxis pathways may contribute to the treatment resistance. Genes related to 

chemotaxis pathways were significantly up-regulated in LPS-induced neutrophils, but no 

statistically significant changes were observed in neutrophils treated with anti-TNFα. 

Interleukin 13 receptor subunit alpha 2 (IL13RA2) is the best predictor (ROC: 80.7%, 95% CI: 

73.8% - 87.5%) with a sensitivity of 68.13% and specificity of 84.93%, and significantly higher 

in non-responders compared to responders (p < 0.0001). 

Conclusions 

Hyperactive neutrophil chemotaxis influences responses to anti-TNFα treatment, and 

IL13RA2 is a potential biomarker to predict anti-TNFα treatment response.  

Introduction 

Inflammatory bowel disease (IBD) is an idiopathic and relapsing-remitting chronic 

inflammatory disorder characterised by a susceptible genetic background, causing 

immunological dysfunction and intestinal microbiome dysbiosis.1 The long-standing mucosa 

inflammation destruct tight junctions, induces intestinal barrier injury and permeability and 

increases the incidence of colonic neoplasia.1 It is estimated that the prevalence of IBD 
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exceeds 0.3% in North America, Oceania, and many countries in Europe.2 With the incidence 

rising in the newly industrialised countries, including Brazil and Taiwan,3 thus, IBD places a 

large burden on public health services and healthcare economies.  

 

Tumour necrosis factor-alpha (TNFα) is a pleiotropic cytokine that participates in 

several pathological processes in IBD and is recognised as a pro-inflammatory cytokine. The 

production of biologically active homotrimer TNFα originally from the precursor TNFα through 

TNF-converting enzyme (TACE) proteolysis from the soluble TNFα.4 TNFα activity is mediated 

through binding to the TNF receptors I and II (TNFRI and TNFRII).5 This binding activates 

immune cells response and pro-inflammatory cytokine and chemokine productions, such as 

IL-1, IL-6, IL-8 and RANTES. It also increases the expression of adhesion molecules, 

production of matrix metalloproteinase and induction of apoptosis.6 The use of anti-TNFα 

compounds such as full monoclonal IgG1 antibodies (infliximab and adalimumab), pegylated 

anti-TNFα F[ab’]2 fragment (certolizumab) and IgG1қ monoclonal antibody derived from 

immunising genetically engineered mice with human TNFα (golimumab) have been approved 

for IBD patients,7 including Crohn’s disease (CD) and ulcerative colitis (UC) and IBD 

unclassified (IBD-U).8  

 

Although CD and UC are the distinct subtypes of IBD, these diseases present a certain 

level of similarities, including symptoms, pathological features, immune response, risk factors 

and the biological pathways producing TNFα.9 In addition, studies found that up to 3% of CD 

patients will be reclassified as UC and vice versa after their primary diagnosis, 5 – 15% of IBD 

patients classified as IBD-U and a small portion of UC patients is later changed to CD or IBD-

U.10 More importantly, up to 30% of patients do not respond to anti‐TNFα blockers1,11 and the 

use of vedolizumab (Anti-IL-12/23) and ustekinumab (anti-integrin), may be efficacious in 

many patients that failed anti-TNFα therapy.12 Thus, there is a clear need to identify potential 

anti-TNFα treatment pathways in overall IBD patients with a view to better targeting anti-TNFα 

treatment to more responsive cohorts and to minimise the adverse anti-TNFα treatment effects. 

 

Methods 

Search strategy, data collection and integration 

A searching strategy for publicly available datasets related to IBD patients received 

anti-TNFα therapy was designed for the NCBI Gene Expression Omnibus (GEO) database 

dated December 31, 2020, using the keywords, “TNF”, “Tumor Necrosis Factor”, “anti-TNF”, 

“anti-Tumor Necrosis Factor”, “Infliximab”, “Adalimumab”, “Golimumab”, “inflammatory bowel 

disease”, “IBD”, “ulcerative colitis”, “UC”, “Crohn Disease” and “CD”. The included datasets 

have to meet the following inclusion criteria: (1) colonic sample from IBD patients, (2) 
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transcriptomic data, (3) raw data are available, (4) anti-TNFα treatment response status, (5) 

publicly accessible (6) each of the original studies obtained approval from their local ethics 

committee and had written, informed patient consent. Sample exclusion criteria were as 

follows: (1) subjects receive therapy other than anti-TNFα, (2) overlapped subjects, (3) colonic 

samples other than large intestine, (4) transcriptomic data other than Affymetrix, (5) the post-

treatment time point being over three months. 

 

The eligible raw microarray datasets were collected and subjected to background 

correction, normalisation, and summarisation using the Robust Multichip Average (RMA) 

algorithm using Affy package version 1.66.0 individually.13 Mean value of multiple probe sets 

representing the same gene was calculated. Next, the ComBat function from sva package 

version 3.36.0 was implemented on the datasets to eliminate the study-specific batch 

effects.14,15  

 

Composition of immune cells and immune-related scores evaluation  

The evaluation of immune microenvironment scores and immune-stroma cells 

population are calculated using xCELL16 and ESTIMATE (Estimation of Stromal and Immune 

cells in MAlignant Tumor tissues using Expression data)17 algorithms. The immune cell types 

were evaluated from gene expression profile using 5 different algorithms, including 

CIBERSORT,18 EPIC,19 MCP-Counter,20 xCELL and Deconvolution-To-Estimate-Immune-

Cells (DTEIC)21. Each of the algorithms was developed using their in-house or publicly 

immune cells expression data and different statistical learning approaches. For instance, 

DTEIC utilised ε-support vector regression (ε-SVR) and CIBERSORT applied linear support 

vector regression (SVR)18,21; MCP-Counter is a single sample scoring system, while xCELL 

requires heterogenous dataset16,20; ESTIMATE utilises single-sample Gene Set Enrichment 

Analysis (ssGSEA) to rank samples on the expression of two different 141-gene sets, and 

xCELL is based on the sets of cells values calculated from its algorithm.16,17 

 

The scores/cells population from EPIC version 1.1, MCP-Counter version 1.2.0 and 

ESTIMATE version 1.0.13 were performed under R version 4.0.0 programming environment 

and DTEIC was operated under Python 3.7 programming environment. Both CIBERSORT 

and xCELL were calculated using their corresponding online tools. The source code can be 

found on the corresponding authors' GitHub page. 

 

Functional Enrichment Analysis 

Identification of differentially expressed genes (DEGs) between responders and non-

responders were calculated using limma package version 3.22.3,22 the threshold for the DEGs 
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has a Benjamini-Hochberg adjusted p-value < 0.05 with absolute log 2-fold change ≥ 0.75. 

EnhancedVolcano package version 1.6.0 was applied for Volcano plot.23 Heatmap was 

generated by using pheatmap package version 1.0.12.24 All the packages are applied within 

the R programming environment. The differentially over-expressed genes were utilised for the 

pathway enrichment analysis using Metascape (http://metascape.org),25 a gene enrichment 

tool for understanding from previously pre-defined gene sets in different enriched biological 

themes, including GO terms, Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, 

BioCarta and MSigDB. For each gene inputted into the server, the enrichment score was 

calculated and clustered to match biological signalling pathways. Visualisation of the selected 

pathways utilised Cytoscape version 3.8.0. 

 

Lipopolysaccharide-induced inflammation in neutrophils 

To further confirm the outcomes from the functional enrichment analysis, experimental 

neutrophils data from Macaca mulatta was applied. Briefly, neutrophils were collected from 

the target site (at approximately 130 days of gestation). Inflammation was subsequently 

induced at this site via lipopolysaccharide (LPS) treatment. Subjects were either treated or not 

treated with adalimumab at 3 hours and 1 hour before LPS, with samples taken at 16 hours 

post LPS.26 The original study obtained approval from their local ethics committees. The raw 

count data retrieved from GSE145918 and normalised the values were calculated using per 

million reads mapped (CPM) from the count matrix used edgeR version 3.32.0 and were log2 

+ 1 transformed under R programming environment.  

 

Statistics 

Statistical analysis was performed using R version 4.0.0. The pROC package version 

1.16.2 in R programming environment was applied to conduct receiver operating characteristic 

(ROC) curve analysis to evaluate diagnostic accuracy. The statistical significance was 

evaluated using a Mann-Whitney test, Benjamini and Hochberg adjustment was applied for 

the IBD treatment data. Differences were considered statistically significant at a p-value of < 

0.05, and < 0.05, < 0.01, < 0.001 and < 0.0001 are indicated with one, two, three and four 

asterisks respectively. 

 

Results 

Characteristics of studies included in the analysis 

After the keyword searching, removal of ineligible and overlapped datasets from the 

total of 182 records, 5 transcriptomic data, including GSE16879: from the University Hospital 

of Gasthuisberg, Belgium with ClinicalTrials.gov number NCT00639821;27 GSE23597: the 

multicentre, randomised, double-blind, placebo-controlled ACT-1 study between March 2002 

http://metascape.org/


 
This article is protected by copyright. All rights reserved. 

and March 2005 with ClinicalTrials.gov number NCT00036439;28 GSE52746: the colonic 

samples collected between November 2010 and November 2013 from the Department of 

Gastroenterology, Hospital Clinic of Barcelona, Spain;29 GSE73661, UC samples collected 

from two phase III clinical trials of Vedolizumab (VDZ) - GEMINI I and GEMINI LTS  at Leuven 

University Hospitals, Belgium, the dataset included patients received anti-TNFα blockers;30 

GSE92415: the PURSUIT golimumab study conducted in multi-centres, with ClinicalTrials.gov 

number NCT01988961.31 The five eligible microarray datasets were normalised, combined 

and batch effects corrected (Supplementary Figure 1). Eventually, a total of 374 samples, 

with 17,771 common gene symbols were included in this study (Table 1). 

 

Immune microenvironment cells population are significantly higher in non-responders 

The immune microenvironment scores from both ESTIMATE and xCELL identified the 

baseline anti-TNFα treatment non-responders are significantly higher in compared to the 

responders (ESTIMATE: p < 0.0001, xCELL: p = 0.0003) (Figure 1A-B). The TNFα treatment 

responders showed a significant drop after their treatments (ESTIMATE: p < 0.0001, xCELL:  

p = 0.0004) while no significant changes in the non-responders (ESTIMATE: p = 0.0650, 

xCELL: p = 0.11) (Figure 1A-B). The immune and stoma scores (the two calculation factors 

for the immune microenvironment) are also significantly higher in baseline anti-TNFα 

treatment non-responders compared to the responders (Supplementary Figure 2A-D). 

 

Neutrophils, endothelial and B cells are significantly higher in non-responders  

To further our understanding of the immune cell-type composition between the 

treatment responders and non-responders, five different in silico flow cytometry approaches, 

including CIBERSORT, xCELL, EPIC, MCP-Counter and DTEIC were applied 

(Supplementary Data 1). Across the algorithms, neutrophils (MCP-Counter: p < 0.0001; 

xCELL: p = 0.0084; CIBERSORT: p = 0.0021) (Figure 2A-C), endothelial cells (MCP-Counter: 

p = 0.0009; xCELL: p =  0.0183; EPIC: p = 0.0337) (Figure 2D-F) and B cells/B linage (MCP-

Counter: p = 0.0042; xCELL: p = 0.0251; EPIC: p = 0.0042) (Figure 2G-I) are significantly 

higher in baseline treatment non-responders compared to the responders. The three-

dimensional plots illustrated neutrophils, endothelial cells and B cell from both MCP-Counter 

and xCELL have positive Pearson correlations with each other using all the eligible data 

(Figure 2J-K, Supplementary Figure 3A-B). 

 
Hyperactive chemotaxis contributes to anti-TNFα treatment resistance in inflammatory 

bowel disease 

The pre-treatment anti-TNFα subjects (responder: n = 91 and non-responder: n= 73) 

were utilised for differentially expressed genes (DEGs) analysis and identified a total of 77 
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DEGs (upregulated genes = 64, and downregulated genes = 13) (Figure 3A-B and 

Supplementary Data 2). Principal component analysis (PCA) does not have a clear 

separation between responders and non-responders subjects in the DEGs (Figure 3C). The 

differently up-regulated genes compose of several gene families, including cytokines (CCL2, 

CCL3, CCL4, CXCL13, CXCL5, CXCL6 and CXCL8), chemokines (IL1B, IL6, IL11 and IL24), 

S100 protein family (S100A8, S100A9 and S100A12), selectin (SELE and SELL), matrix 

metalloproteinases (MMP1, MMP3 and MMP10) and formyl peptide receptors (FPR1, FPR2). 

Metascape pathways enrichment analysis on the 64 highly expressed genes revealed that GO 

terms with chemotaxis are commonly found from the outcomes and may have a critical role 

affecting anti-TNFα treatment (GO:0030595: leukocyte chemotaxis, GO:0002688: regulation 

of leukocyte chemotaxis, GO:1901623: regulation of lymphocyte chemotaxis and GO:0050918: 

positive chemotaxis) (Figure 3D-E, Supplementary Data 3). 

 
TNFα blocker does not reduce chemotaxis in LPS-induced inflammation in neutrophils 

To demonstrate our finding in chemotaxis, we used the RNA-sequencing data from an 

animal study.26 Briefly, neutrophils isolated from chorio-decidua cells with LPS-induced 

inflammation were treated with or without adalimumab.26 The list of genes from the four 

chemotaxis enrichment terms matched with the neutrophils data to get the mean expression 

values of each sample (GO:0030595: leukocyte chemotaxis [31 out of 44 genes], GO:0002688: 

regulation of leukocyte chemotaxis [18 out of 22 genes], GO:1901623: regulation of 

lymphocyte chemotaxis [13 out of 16 genes] and GO:0050918: positive chemotaxis [18 out of 

21 genes]) (Supplementary Data 4). The data process workflow is in Supplementary Figure 

4. All the enrichment terms related to chemotaxis were significantly higher in the LPS-exposed 

neutrophils, three out of the four enrichment terms do not have significant reduction in the anti-

TNFα treated group (Figure 4). 

 

Interleukin 13 receptor subunit alpha 2 is a diagnostic biomarker to predict TNFα 

treatment response 

In order to find the best potential biomarker to predict anti-TNFα respond IBD patients, 

ROC curve analysis was applied to all the genes using a for-loop with pROC package under 

the R programming environment. Among them, IL13RA2 has the AUC of 80.7% (95% 

confidence interval (CI): 73.8% - 87.5%) with the best sensitivity of 68.13% and specificity of 

84.93% (Table 2, Figure 5B, Supplementary Data 5). IL13RA2 was stand-alone from the 

volcano plot (log2FC:1.678, adjusted p < 0.0001) (Figure 2B) and the expression of IL13RA2 

is significantly higher in pre-treatment non-responders compared to the pre-treatment 
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responders (p < 0.0001). The responders showed a bigger drop after the treatment compared 

to the non-responders (Responder: p < 0.0001, Non-responder: p = 0.0037), and the 

responders restored the expression level to normal control after the treatment (mean ± 

standard deviation: control: 4.721±1.039, post-treatment, responder: 4.868 ±1.364; p = 0.4969) 

(Figure 5A).  

 

Discussion 

Treatment resistance of anti-TNFα is a critical issue in IBD patients. By integrating the 

existing raw data and increasing the statistical power, we revealed that immune 

microenvironment scores are higher in treatment resistance patients on baseline level (Figure 

1A-B), indicating a higher inflammatory burden in anti-TNFα treatment non-responders. 

Further in-depth analysis uncovered neutrophils, endothelial and B cells contribute to the 

changes of the inflammatory burden (Figures 3). Next, a total of 64 up-regulated genes were 

identified (Figure 4A-B) and neutrophil chemotaxis (4 out of the top 12 enrichment terms) may 

contribute to anti-TNFα treatment resistance in IBD patients (Figure 4D-E). Utilising an animal 

study model, mean expression level (across samples) of genes matching the four chemotaxis 

GO terms are upregulated in LPS-induced neutrophils but no statistical changes in the 

adalimumab-treated group (Figure 4). 

 

In a typical inflammatory response, immune cells such as macrophages, dendritic cells, 

natural killer cells, and T lymphocytes release TNFα proinflammatory cytokines, leading to the 

activation of endothelial cells and neutrophils.32 The activation of endothelial cells in colonic 

mucosa enhances vascular permeability and induces the recruitment of immune cells, leading 

to the activation of chemotaxis. The activation of neutrophils follows the tethering, rolling, 

crawling and transmigration process from the blood vessel into the inflamed colonic tissues.33 

When neutrophils engulf invasive gut microbiome, they release granule proteins and 

chromatin to form neutrophil extracellular traps (NETs) and secrete anti-microbial peptides to 

mediate extracellular killing of microbial pathogens.34 However, hyperactive neutrophils trigger 

an unrestrained activity of the positive feedback amplification loops, leading to endothelial 

cells and the surrounding tissues damage, inducing resolution delay (IL6, TNFα, and IFNγ) 

and chemokines (IL8, CCL3, and CCL4), which further the recruitment of neutrophils, 

monocytes and macrophages to the inflamed sites.35 The use of anti-TNFα blockers 

significantly suppress the infiltration of neutrophils and B cells population in the inflamed 

mucosa, and suppresses proinflammatory mediators, such as calprotectin (S100A8/A9), IL8, 
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IL6, and TNFα production,36,37 and matched with our finding only in responders (Figure 2A-C 

and Figure 2G-I). The unwanted immunogenicity, however, has a high level of B cells due to 

the presence of anti-drug antibodies (ADAs).38 The presence of ADAs neutralise, interfere 

and/or alter the binding efficacy, as well as pharmaco-dynamic/-kinetic properties of anti-TNFα 

monotonical antibodies.39  

 

Several S100 calcium-binding protein family genes are highly expressed and 

previously studied in anti-TNFα treatment (Figure 3A-B). Calprotectin is a calcium-binding 

protein from the S100A8 and S100A9 monomers, representing up to 40% of neutrophil 

cytosolic proteins and constantly released from the inflamed region(s).40 S100A12, also known 

as calgranulin C, is released from neutrophils40 and participates in proinflammatory process 

via the activation of the NF-κB.41 A Small-scale study reported that the faecal calprotectin test 

(commonly used to distinguish between irritable bowel syndrome (IBS) and IBD) and S100A12 

may predict relapse after one year of infliximab treatment42 while another faecal calprotectin 

study did not find the difference.43  

 

IL13RA2 is stand alone in the volcano plot with the highest fold change and the lowest 

p-value (Figure 3B, Supplementary Data 4), and has the best AUC (80.7%, 95% CI: 73.8% 

- 87.5%) outcome (Table 2, Figure 5B, Supplementary Data 5). Early studies uncovered 

IL13RA2 is active in mucosal biopsies on the UC or CD anti-TNFα treatment non-responders 

compared to the responders.44,45 A small scale study demonstrated soluble IL13RA2 protein 

cannot be detected in serum, and tissue expression of IL13RA2 could predict anti-TNFα 

treatment in CD patients.46 IL13RA2 is a decoy receptor enable to bind IL13 cytokine, 

diminishes its JAK1/STAT6-mediated effector functions and activates activator protein 1 (AP-

1) to induce the secretion of TGF-β.47,48 The IL13 pathway is also dependent on the production 

of TNFα. Several IL13 targeting drugs have been tested to inhibit hyperactive immune 

response on Th2-driven inflammatory diseases.48 However, insufficient protection was 

demonstrated by the phase IIa Anrukinzumab (an IL13 monoclonal antibody) clinical trial on 

UC patients.49 Thus, blocking the IL-13 pathway via IL13RA2 could be a new approach for 

treating IBD patients. IL13RA2 knock-out mice in DSS induced acute colitis model showed a 

better recovery rate compared to the wide-type mice, and negatively regulate 

epithelial/mucosal healing.50 By neutralising IL13RA2 in DSS induced IBD murine model using 

a monoclonal antibody, it presented a speedy recovery compared to the control group.47 

 

The study here identified many strengths but should be considered in the context of 

shortcomings. Firstly, we only focused on data from large intestine and eliminated ileum data 

from the Arijs et al. study due to the low number of ileum samples that can be integrated,27 
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and also reduce the gene expression variation between two different organ sites for down-

stream analysis. Secondly, our comparison does not include studies from vedolizumab and 

ustekinumab as it has limited datasets available online. Thirdly, the anti-TNFα response 

criteria and the determination time points are slightly different between studies. As we can 

only rely on the information provided by the authors, and thus our study has to accept the 

potential bias. Fourthly, anti-TNFα is broadly used in colitis-based diseases with a high 

percentage of treatment failure, and the diagnosis criteria of UC/CD/IBDU on each of the 

included studies may be slightly different with a certain percentage of misclassification.10 

Therefore, our priority is to find the common patterns to minimise the treatment resistance rate 

in this study. Last but not least, the animal study in neutrophils is not from the colonic tissue 

sites and some of the chemotactic factor markers such as IL8/CXCL8 and CSF3 have a 

significant reduction after the adalimumab treatment.26 We believed that some single markers 

may not represent a whole picture of chemotaxis. Thus, in the early future, IBD subtypes 

analysis and more in-depth study in the relation to hyperactive chemotaxis are needed.  

 

In conclusion, pre-anti-TNFα treatment non-responder patients presented a higher 

population of neutrophils, endothelial and B cells compared with the responders and the 

responders suppressed the activity of the immune cells. IL13RA2 is a potential biomarker to 

predict anti-TNFα treatment response. 
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Figure 1. Microenvironment scores are significantly higher on baseline non-responders 

compared to the responders. Immune microenvironment scores evaluated via (A) 

ESTIMATE and (B) xCELL algorithms. NR: non-responder; R: responder. The y-axes are 

the relative immune microenvironment scores from the corresponding algorithms. P-value 

determines by Mann-Whitney test with Benjamini and Hochberg 
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Figure 2. Neutrophils, endothelial cells and B cells are significantly higher on the baseline 

anti-TNFα treatment non-responders compared to responders. Immune cells population 

evaluated in five in silico flow cytometry, and (A-C) B cells, (D-F) endothelial cells and (G-

I) neutrophils can be recognised in three out of five algorithms. B cells, endothelial cells and 

neutrophils cells’ populations are higher on baseline anti-TNFα non-responders compared to 

responders. The three-dimensional plots illustrated (J-K) neutrophils, endothelial cells and B 

cell populations from MCP-Counter and xCELL algorithms have positive correlations with 
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each other. The y-axes are the relative immune cells population abundance from the 

corresponding algorithms. NR: non-responder; R: responder. P-value determines by Mann-

Whitney test. Asterisks denote statistically significant differences (*p < 0.05, **p < 0.01, 

***p < 0.001, ****p < 0.0001). 
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Figure 3. Hyperactive chemotaxis may be involved in anti-TNFα treatment resistance in 

inflammatory bowel disease. To identify the molecular mechanisms between anti-TNFα 

blocker responders (n = 91) and nonresponders (n= 73), global gene expression analysis was 

applied from 5 combined and normalised microarray datasets. The differentially expressed 

genes were identified and presented using (A) heatmap (the relative expression values were 

z-score transformed), (B) volcano plot and (C) principal component analysis from a total of 

64 up-regulated and 13 down-regulated genes based on the adjusted p-value < 0.05 with 

absolute log 2-fold change ≥ 0.75. (D) The significantly up-regulated genes were utilised for 

Metascape pathway enrichment analysis from the previously pre-defined gene set. Enriched 

terms related to the chemotaxis-related pathways are underlined. The y-axis represents the 
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top 20 gene sets category, the xaxis represents -log10 p-value, the colour intensity of the bar 

represents the number of genes identified in each hallmark category. (E) The four subsets of 

enriched terms under the chemotaxis-related pathways were selected and visualised using 

Cytoscape. 
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Figure 4. anti-TNFα blocker does not reduce chemotaxis in lipopolysaccharide-induced 

inflammation in neutrophils. Mean expression level (across samples) of genes matching 

indicated GO term. LPS, lipopolysaccharide. TNFα, anti-Tumour necrosis factor-alpha. P-

value determines by Mann-Whitney t-test. Asterisks denote statistically significant 

differences (*p < 0.05). 
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Figure 5. Interleukin 13 receptor subunit alpha 2 (IL13RA2) can be a diagnostic biomarker to 

predict TNFα treatment Response. (A) The expression of IL13RA2 is significantly higher in 

the pre-TNFα non-responders compared to the pre-TNFα responders. (B) The expression of 

IL13RA2 has an AUC of 80.7% (73.8% -87.5%) with a sensitivity of 68.13% and specificity 

of 84.93%. NR: non-responder; R: responder; AUC: area under the curve, Sp: Specificity, Se: 

Sensitivity. Asterisks denote statistically significant differences (**p < 0.01, ***p < 0.001, 

***p < 0.0001). Statistical significance was determined by 2-tailed Student’s ttest. 
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Table 1. Summary of the included transcriptomic studies from large intestinal tissues in IBD 

patients 

GSE 

No. 

Affymetrix 

Platform 

Anti- 

TNFα 

drug 

Study 

Location 

IBD Pre-

Treatment 

Post-

Treatment 

Control Time 

Point 
(week) R NR R NR 

16879 
32 

Human Genome 

U133 Plus 2.0 

infliximab Belgium UC 8 16 8 16 6 

- 

4–6  

CD 12 7 11 7 

23597 
33 

Human Genome 

U133 Plus 2.0 

infliximab USA UC 25 7 20 7 - 8 

52746 
34 

Human Genome 

U133 Plus 2.0 

Infliximab or 

adalimumab 

 

Spain CD 6 1 7 5 17 12 

73661 
35 

Human Gene 1.0 

ST 

infliximab Belgium UC 8 15 8 15 12 6/12 

92415 
36 

HT HG-U133+ 

PM 

Golimumab USA UC 32 27 29 21 21 8 

Over-all = 374 UC 73 65 65 59 56  

CD 18 8 18 12 

Total 91 73 83 71 

CD: Crohn’s Disease; UC: Ulcerative Colitis; R: responder; NR, non-responder. TNFα, tumour necrosis 

factor alpha.  

  



 
This article is protected by copyright. All rights reserved. 

Table 2. The top 15 genes to predict TNFα treatment response 
Rank Gene 

Name 
AUC (95%CI) Threshold Best 

Specificity 
Best 

Sensitivity 
LR+ LR- 

1 IL13RA2 0.807 (0.738-0.875) 6.263 0.849 0.681 4.510 0.222 
2 ADGRE2 0.786 (0.716-0.857) 6.079 0.795 0.703 3.429 0.292 
3 ADGRL2 0.771 (0.698-0.843) 6.013 0.753 0.736 2.980 0.336 
4 HGF 0.768 (0.695-0.841) 5.598 0.753 0.725 2.935 0.341 
5 TLR1 0.764 (0.69-0.838) 5.95 0.836 0.637 3.884 0.257 
6 NCF2 0.757 (0.683-0.831) 7.696 0.671 0.769 2.337 0.428 
7 RGS5 0.757 (0.682-0.832) 7.105 0.767 0.681 2.923 0.342 
8 FPR1 0.756 (0.682-0.83) 6.947 0.836 0.626 3.817 0.262 
9 TMTC1 0.754 (0.68-0.828) 6.085 0.849 0.593 3.927 0.255 
10 CCL4 0.754 (0.679-0.829) 7.955 0.781 0.659 2.304 0.434 
11 PDE4B 0.754 (0.679-0.829) 7.681 0.671 0.758 3.009 0.332 
12 IGFBP5 0.754 (0.678-0.829) 7.185 0.712 0.725 2.517 0.397 
13 SRGN 0.753 (0.678-0.828) 9.849 0.808 0.615 3.203 0.312 
14 PAPPA 0.751 (0.675-0.827) 5.946 0.603 0.835 2.103 0.475 
15 TMEM71 0.749 (0.674-0.824) 5.672 0.849 0.615 4.073 0.246 

* AUC: area under the curve; CI, confidence interval; LR+, positive likelihood ratio; LR-, 
negative likelihood ratio. 

 

 




