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SM1. Analysis of Turing patterns. Turing showed that a slowly diffusing5

activator and a quickly diffusing inhibitor can generate a range of periodic patterns6

[SM2]. A reaction-diffusion system exhibits diffusion-driven instability, or Turing7

instability, if a homogeneous steady state is stable in the absence of diffusion, but8

unstable when diffusion is present. Here, we examine whether the Gray–Scott model9

can exhibit diffusion-driven instability to generate Turing patterns and, if so, where10

in (F, k)–space this occurs.11

Derivation of the conditions that give rise to Turing instabilities is covered in full12

detail in [SM1]. We briefly summarise this procedure here. Let us firstly consider a13

general reaction–diffusion system of the form14

∂u

∂t
= Du∇2u+ f(u, v),(SM1.1a)15

∂v

∂t
= Dv∇2v + g(u, v).(SM1.1b)16

17

Firstly, we want to obtain conditions for stability of a homogeneous steady state in18

the absence of diffusion. In the absence of diffusion, (SM1.1) reduces to19

∂u

∂t
= f(u, v),

∂v

∂t
= g(u, v).(SM1.2)20

21

The Jacobian for this system is given by22

J =

[
fu fv
gu gv

]
.(SM1.3)23

24

For brevity, we assume that the derivatives fu, fv, gu, and gv are all to be evaluated25

at the steady state of interest, (u∗, v∗). To find the eigenvalues, we solve26

|J− λI| = λ2 − tr(J)λ+ |J| = 0,(SM1.4)2728

with the quadratic formula to obtain29

λ =
1

2

(
tr(J)±

√
tr(J)2 − 4|J|

)
.(SM1.5)30

31

Linear stability requires both roots of (SM1.5) to satisfy Re(λ) < 0. Therefore, we32

require tr(J) < 0, and also33

tr(J) +
√

tr(J)2 − 4|J| < 0.(SM1.6)3435
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Since tr(J) < 0, (SM1.6) reduces to |J| > 0. Therefore, the homogeneous steady state36

is stable in the absence of diffusion provided that both of the following conditions are37

satisfied:38

tr(J) = fu + gv < 0,(SM1.7a)39

|J| = fugv − fvgu > 0.(SM1.7b)4041

42

Next, we require conditions for a homogeneous steady state (u∗, v∗) to be unstable43

in the presence of diffusion. Linearising (SM1.1) by writing u = u∗+εû and v = v∗+εv̂44

(for some ε� 1), and neglecting terms of O
(
ε2
)

provides45

(SM1.8) wt = Jw + D∇2w46

where47

w =

[
û
v̂

]
, D =

[
Du 0
0 Dv

]
,(SM1.9)48

49

and J is the Jacobian matrix of (SM1.3). To allow analytical progress, we seek50

solutions that oscillate spatially and may grow or decay in amplitude over time, i.e.51

we let52

w(x, t) =
∑
k

cke
λtWk(x),(SM1.10)53

54

where Wk(x) is in Fourier series form, such that ∇2W = −k2W. Substituting55

(SM1.10) in to (SM1.8), we obtain56

λw(x, t) = (J− k2D)w(x, t).(SM1.11)5758

This has reduced to a manageable eigenvalue problem, with eigenvalue λ and matrix59

J − k2D. We can obtain the characteristic polynomial in the usual way, by solving60

|λI− J + k2D| = 0 to provide61

λ2 − p(k2)λ+ q(k2) = 0,(SM1.12)6263

where64

p(k2) = tr(J)− k2(Du +Dv),(SM1.13a)65

q(k2) = DuDvk
4 − (Dvfu +Dugv) k

2 + |J|.(SM1.13b)6667

Solving (SM1.12) using the quadratic formula, we determine the eigenvalues as68

λ(k2) =
1

2

(
p(k2)±

√
p(k2)2 − 4q(k2)

)
.(SM1.14)69

70

When k = 0, (SM1.14) is identical to (SM1.5). For the homogeneous steady state71

(u∗, v∗) to be unstable in the presence of diffusion, we require at least one eigenvalue72

to satisfy Re(λ) > 0 for some k 6= 0.73

From (SM1.7a), we have tr(J) < 0, and given that Du, Dv > 0, it follows from74

(SM1.13a) that p(k2) < 0 for all k 6= 0. Thus, requiring one eigenvalue to have75

positive real part equates to requiring76

p(k2) +
√
p(k2)2 − 4q(k2) > 0,(SM1.15)7778
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or equivalently79 √
p(k2)2 − 4q(k2) > |p(k2)|.(SM1.16)8081

We, thus, find that Re(λ) can only be positive if q(k2) < 0 for some k 6= 0.82

From (SM1.7b), we have |J| > 0, and given that Du, Dv > 0, we have q(k2) < 083

only if Dvfu + Dugv > 0. However, in order to not contradict the requirement that84

tr(J) < 0 from (SM1.7a), this is only possible for Du 6= Dv. Therefore, our third85

condition for diffusion-driven instability is given by86

Dvfu +Dugv > 0,
Du

Dv
6= 1.(SM1.17)87

88

This condition is necessary but not sufficient for Re(λ) > 0. If q(k2) < 0 for some89

k 6= 0, the minimum of q(k2) must be negative. We take q(k2) and differentiate with90

respect to k2 to obtain91

q′(k2) = 2DuDvk
2 − (Dvfu +Dugv).(SM1.18)9293

Solving q′(k2) = 0 yields94

k2 =
(Dvfu +Dugv)

2DuDv
.(SM1.19)95

96

Substituting (SM1.19) into (SM1.13b) and performing some simplification yields97

qmin = |J| − (Dvfu +Dugv)
2

4DuDv
.(SM1.20)98

99

Requiring that qmin < 0 then provides the fourth and final condition for diffusion-100

driven instability, namely:101

(Dvfu +Dugv)
2 − 4DuDv|J| > 0.(SM1.21)102103

In summary, we have derived the following four conditions for diffusion-driven insta-104

bility, or “Turing conditions”:105

I. tr(J) = fu + gv < 0,(SM1.22a)106

II. |J| = fugv − fvgu > 0,(SM1.22b)107

III. Dvfu +Dugv > 0,
Du

Dv
6= 1,(SM1.22c)108

IV. (Dvfu +Dugv)
2 − 4DuDv|J| > 0.(SM1.22d)109110

Now, let us return to the Gray–Scott model in particular, for which111

f(u, v) = −uv2 + F (1− u),(SM1.23a)112

g(u, v) = uv2 − (F + k)v.(SM1.23b)113114

To investigate the scope for Turing patterns, we are interested in homogeneous steady115

states that are stable in the absence of diffusion. We have shown in Section 2 that116

there are two such steady states in this model: the red state (1, 0) and the blue state117

(u−, v+). (We have already seen in Section 2 that the steady state at (u+, v−) is118

always unstable in the absence of diffusion, and so disregard this state here.)119
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Let us consider the red state initially. In Section 2, we showed that the fixed120

point at (1, 0) is stable in the absence of diffusion for any choice of parameters F121

and k. However, (SM1.22c) requires that DvF +Du(F + k) < 0 for this steady state122

to be destabilised by diffusion. Since F , k, Du and Dv are all positive parameters,123

this condition is never satisfied and we conclude that the red state does not exhibit124

diffusion-driven instability.125

Now, consider the blue state at (u−, v+). In Section 2, we determined that this126

steady state is stable in the absence of diffusion anywhere in region II of Figure 1; this127

is equivalent to addressing the constraints of (SM1.22a) and (SM1.22b). To satisfy128

(SM1.22c), we require129

(−v+
2

− F ) +D(2u−v+ − (F + k)) > 0,(SM1.24)130131

where D = Du/Dv 6= 1. Recalling that132

(u−, v+) =

(
1

2

(
1−
√
X
)
,

1

2

F

F + k

(
1 +
√
X
))

,(SM1.25)133
134

where135

X = 1− 4(F + k)2

F
,(SM1.26)136

137

substitution of the the expressions for u− and v+ in to (SM1.24), and performing138

some rearrangement yields the following condition (which is equivalent to condition139

III of (SM1.22c)):140

1 +

√
1− 4(F + k)2

F
− 2D

(F + k)3

F 2
< 0.(SM1.27)141

142

Similarly, we substitute our expressions for f , g and (u−, v+) into (SM1.22d) and143

perform significant algebraic manipulation to construct condition IV for this steady144

state. Since the resulting expressions are lengthy and fairly complicated, we omit the145

details in full here, and instead calculate this condition numerically in Matlab.146

In Figure SM1, we supplement the curves of Figure 1 with new curves representing147

our conditions for Turing instabilities, with condition III of (SM1.27) in blue and148

condition IV of (SM1.22d) in red. We illustrate this for both D = 2 and D = 6,149

here. Conditions I and II are satisfied in region II of Figure 1, while (in each panel150

of Figure SM1, condition III is satisfied to the right of the blue curve and condition151

IV is satisfied outside of the region bounded by the two red curves. We therefore152

obtain a region (labelled T the figure) in which Turing instabilites are permissible,153

giving rise to patterns. As Figure SM1 illustrates, the size of this region scales with154

the parameter D. For D = 2, the Turing space is very small, so the system exhibits155

diffusion-driven instability for a small range of parameters. As D is increased, the156

Turing space increases in size.157

We provide Matlab code that can be used to solve the Gray–Scott model numer-158

ically on a two-dimensional domain (with periodic boundary conditions) online. This159

code utilises a five-point Laplacian to approximate the diffusion terms in (SM1.1) on160

a regular square mesh, and uses Euler’s method to step solutions forward in time.161

Depending on our choices of the parameters F , k, Du and Dv, and also on our choices162

of initial conditions, this code can be used to illustrate various patterns, including163

Turing patterns, the patterns of Figure 10, and others. (See the code online for164
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Fig. SM1. Curves bounding the region of Turing patterns arising from the blue state for (a)
D = 2 and (b) D = 6. The solid/dashed black lines are the saddle-node/Hopf bifurcations of
Figure 1. The blue state is stable in the absence of diffusion within the solid black line and above
the dashed black line (in region II of Figure 1). (SM1.22c) is satisfied everywhere to the right of
the blue curve. (SM1.22d) is satisfied everywhere apart from between the two red lines. The region
of parameter-space in which Turing patterns are permissible is labelled T in each figure; the size of
this region scales with the parameter D = Du/Dv.

Fig. SM2. A pattern comprising of a hexagonal array of spots that arises inside the Turing
region for Du = 6× 10−5, Dv = 1× 10−5 (i.e. for D = 6), F = 0.195 and k = 0.02.

various pre-set configurations that can allow us to switch easily between these out-165

comes.) In particular, Figure SM2 illustrates the pattern that results from choosing a166

combination of parameters that lies within the region of Turing patterns illustrated in167

Figure SM1. In Figure SM2, we show the long-term pattern that arises for F = 0.195,168

k = 0.02, Du = 6× 10−5 and Dv = 1× 10−5 (so that D = 6). Starting from an initial169

condition that perturbs the blue state, we see that the solution eventually converges170

to a hexagonal array of spots.171
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SM2. Exporting data from XPPAUT. Throughout this article, we have172

used Matlab to plot bifurcation diagrams generated by XPPAUT. This allows better173

control of presentation and formatting of the diagrams than is afforded by XPPAUT174

itself. In order to do this, we need to write the figure information to a data file in175

XPPAUT. There are two options for this, each with their own benefits.176

In AUTO, Upon clicking File, the option Write pts will simply write the x and y177

values of the current diagram to a data file. In this file, the first two columns describe178

the x and y coordinates of the steady states plotted on the diagram. Additionally, the179

file includes a third column to account for additional y values that are obtained when180

plotting periodic orbits. (If the bifurcation diagram has no periodic orbits included,181

this will just be a duplicate of the previous column and can be discarded). Finally,182

the file will include three additional columns that contain arbitrary integer values183

that can be used to separate curves with different qualities (e.g. stable fixed points,184

unstable fixed points, stable periodic orbit, unstable periodic orbit etc.) that are185

plotted using different colours in XPPAUT. This data file can be imported directly186

into Matlab (as a Matlab table), and the data can be plotted accordingly. The task187

of associating the numerous rows of this data set with individual branches of the188

diagram is relatively manual and somewhat time-consuming, although there are some189

pre-existing codes available that can help to automate this process. See, for example,190

the function SBplotxppaut in Matlab’s Systems Biology toolbox.191

We note that the Write pts option only saves the information needed to recreate192

the current bifurcation diagram. For systems with many variables, only the plotted193

variable is stored. The other option is to write all of the information to a data file194

by clicking File (in the AUTO window), and then All info. This will save much195

more information about the bifurcation diagram, which isn’t necessarily visible on the196

current plot. Since the saved data is more comprehensive, it is also more complicated197

to interpret manually and, for larger systems, can be too large for Matlab to handle.198

However, there are some great functions available online that can handle and plot this199

data; see, for example, https://uk.mathworks.com/matlabcentral/fileexchange/56819-200

mdepitta-plotbd.201
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