
Match length realization and cooperation in indefinitely
repeated games*

FRIEDERIKE MENGEL †

University of Essex

and Lund University

LUDOVICA ORLANDI‡

Nottingham Trent University

SIMON WEIDENHOLZER§

University of Essex

December 3, 2021

Abstract
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1 Introduction

Infinitely repeated games are of enormous importance in many areas of Economics, but also in
Politics, Sociology, Biology and many other subjects. The theory of infinitely repeated games
has delivered important insights into how repeated interaction changes incentives and how it
can enable a wider array of outcomes including, for example, cooperation in social dilemmas.
However, it does not always offer sharp predictions. For instance, in the prisoner dilemma
both cooperation and defection are equilibrium actions provided that players are sufficiently
patient. The multiplicity of outcomes gives an important role to empirical research on infinitely
repeated games to narrow down what we can expect empirically in these games. This research
has provided key insights on e.g. the determinants of cooperation in social dilemmas, the role
of monitoring, or the differences between discrete and continuous time.1

Empirical studies of infinitely repeated interactions rely on the equivalent setting of “in-
definitely repeated games” using a random continuation probability, as originally proposed by
Roth and Murnighan (1978). After every round of play, there is a fixed known probability δ

that the game continues for an additional round and a probability 1− δ with which it ends.
The length T of the repeated game is hence a random variable with expected value E[T] = 1

1−δ

and standard deviation
√

δ
(1−δ)2 . Often researchers observe a subject in more than one indefi-

nitely repeated game. Each of these games is then referred to as a “match” and the researcher
consequently observes not just one realization of the random variable T, but a sequence of
such “match length realizations”. The researcher can make accurate inference from these ob-
servations on the underlying infinitely repeated game if either the realized sequences of match
length realizations “correctly” represent the infinitely repeated game or if match length real-
izations are irrelevant for behaviour.2 Achieving the former can be difficult as there are consid-
erable practical difficulties involved in getting a large enough sample of different sequences of
match length realizations.3 Given that the number of match length realizations is often going
to be small in practice, it is crucially important to understand whether match length realization
influences behaviour.

In this paper we first demonstrate that the sequence of match length realizations has a sub-
stantial, robust and highly statistically significant effect on behaviour. Using a large data set
from lab experiments studying the infinitely repeated prisoner dilemma compiled by Dal Bó
and Fréchette (2018) we show that when participants initially experience relatively long matches
subsequent cooperation rates are substantially higher. Specifically, when most matches in the
first part of an experiment are “long” (above theoretical median length), then cooperation rates
are 44% higher in subsequent matches. Intuitively, participants who experience longer matches
become more optimistic about the relative benefits of conditionally cooperative strategies and
cooperate more. Moreover, by comparing the impact of long matches in the first third to the

1See Dal Bó and Fréchette (2018) for a review of this extensive literature.
2In standard theory only expected match length should matter for behavior. Hence, according to standard theory

match length realizations should indeed be irrelevant for behaviour.
3We discuss some of these difficulties in detail in Section 4.
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impact of long matches in the middle third of an experiment on cooperation in the final third,
we demonstrate that the effect of early matches is as least as important as the effect of recent
ones. This observation is consistent with the “power law of practice” which describes the phe-
nomenon of initially steep- and then flattening out- learning curves. We develop and estimate
a simple reinforcement learning model with counterfactuals (Erev & Roth, 1998) that allows us
to distinguish learning from match length realizations from learning given the expected match
length. We find that indeed learning from match length realization is important.

Our results show that the environment in which early interactions take place matters for
subsequent interactions as people learn from match length realizations. While match length
realizations and similar stochastic factors are most likely also important factors in the field,
they are difficult to isolate from other confounds. The advantage of experimental data is that it
allows to separate the effects found in the current paper from alternative explanations. Settings
where match length realization is likely to matter include e.g. “cultural differences” between
people coming from different work environments (characterized by more or less turnover) or
from different social backgrounds. The effects identified in this paper likely apply in many
other settings where people learn from stochastic realizations of payoff relevant variables.4

They also have implications for evidence based policy making. If a policy (e.g. designed to
increase cooperative behavior) is evaluated over a certain fixed period, it is possible that the
results of the evaluation are affected by early match length realizations even if they are exoge-
nous to the policy evaluated.

Our findings provide valuable insights into how people learn in indefinitely repeated games.
As such they can inform the development of new theories of learning in games. They also have
important methodological implications for the design of empirical studies. The length of each
match is typically drawn at the session level in experiments, meaning that all subjects in a given
session experience the same sequences of match length draws. In fact, all papers in the Dal Bó
and Fréchette (2018) meta study use this or a very similar design. The number of different
sequences of match length realizations for a given treatment ranges between 1 and 10 across
the different papers contained in the meta-study. Given our results discussed above we would
expect that - with such small numbers of match length realizations - treatment comparisons can
be affected. We provide three case studies of papers from the existing literature, which were
not part of the Dal Bó and Fréchette (2018) meta study and go beyond the prisoner’s dilemma:
a continuous time prisoner’s dilemma (Bigoni, Casari, Skrzypacz, & Spagnolo, 2015), a public
good game (Lugovskyy, Puzzello, Sorensen, Walker, & Williams, 2017) and oligopoly games
(Embrey, Mengel, & Peeters, 2019). We show that - for each of them - treatment effects differ
depending on match length realization. We also run our own experiments and show that in
some cases the conclusions drawn from the research might have been different for different
match length realizations.

Our paper contributes to a substantial and active literature on indefinitely repeated games,
much of it summarized by Dal Bó and Fréchette (2018). Several researchers have documented

4For instance, in common value auctions (as e.g. experimentally studied in Kagel and Levin (1986)) early re-
alizations of common values and of public information could potentially influence subjects’ subsequent bidding
strategies through learning. Likewise, different realizations of states of the world in experimental financial markets
(as in settings similar to Plott and Sunder (1982)) may alter subjects’ beliefs on the probability with which states
occur and impact trading strategies.
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a positive effect of the length of the immediately preceding match on cooperation (see e.g.
Camera and Casari 2009, Dal Bó and Fréchette 2011; 2018, Fréchette and Yuksel 2017, Bernard,
Fanning, and Yuksel 2018).5 In the context of infinitely repeated trust games, Engle-Warnick
and Slonim (2006) find some evidence that there is more trust and trustworthiness in sessions
that initially featured long matches as compared to sessions starting out with short ones. As
they observe, this gap could have been due to individual subject or session effects since there
was already more trust and trustworthiness in the beginning of the initially long sessions. We
add to this literature by providing the first comprehensive analysis of the long lasting effects
of (the entire sequence of) match length realization on cooperation in infinitely repeated social
dilemmas. To the best of our knowledge our paper is also the first to demonstrate that peo-
ple learn from match length realization using structural estimation of learning models.6 We
also advance the existing literature by discussing in detail the potential implications of these
findings for measuring cooperation levels and for the design of empirical studies.

The paper is organized as follows. In Section 2 we demonstrate the main empirical finding
of an effect of match length realization on cooperation using the Dal Bó and Fréchette (2018)
meta study . Section 3 contains our discussion of the case-studies. We discuss implications of
our results in Section 4 and Section 5 concludes. Additional theory, tables, figures and infor-
mation on our own experiments can be found in an Appendix.

2 Match Length Realization and Cooperation

2.1 The prisoner’s dilemma

We consider agents who play a 2 × 2 indefinitely repeated prisoner’s dilemma like the one
illustrated in the left panel of Figure 1. Payoffs satisfy T > R > P > S and T+ S < 2R such
that mutual defection is the only Nash equilibrium of the stage game but mutual cooperation
maximizes joint payoffs. Following Dal Bó and Fréchette (2018) we can normalize payoffs so
that we only have two parameters, see middle panel of figure 1. The continuation probability
δ indicates the probability with which the game continues for one more round. The number
of stages in the indefinitely repeated game is hence a random variable T. It is common in
modern experiments to play several such indefinitely repeated games. Usually participants are
rematched at the end of one repeated game and play a new game with a new partner. Each
such repeated game is often referred to as a “match”. Typical experiments differ in the number
M of such matches implemented, the expected length of a match (given by E[T] = 1

1−δ ) as well
as the realized match length. We index the round of play within a match by t and the match by
m. Tm is the realized match length of match m, i.e. the number of stages in match m.

A substantial experimental literature has studied how payoff parameters affect coopera-
tion in the prisoner’s dilemma.7 One particularly successful approach, proposed by Blonski

5A similar positive effect is document for the behaviour of the previous opponent, in the sense that subjects are
more likely to cooperate when they have been previously matched with somebody starting out with cooperation.

6A number of papers estimate learning models in repeated games (see e.g. Erev and Roth (2001), Hanaki, Sethi,
Erev, and Peterhansl (2005), Dal Bó and Fréchette (2011), Ioannou and Romero (2014) or Embrey, Fréchette, and
Yuksel (2018)), but they do not estimate parameters capturing the extent to which people learn from match length
realization.

7See e.g. Embrey, Fréchette, and Yuksel (2017) and Mengel (2018) for contributions analyzing finitely repeated
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GT AD
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AD 1 + g 0
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Figure 1: Left: Prisoner’s dilemma (PD) game with payoff parameters T > R > P > S and
T+ S < 2R. Middle: Normalized game where joint defection payoff P is subtracted from each
cell and all payoffs are divided by R− P (difference between mutual cooperation and defection
payoffs). Right: Payoffs in the game induced by Grim-Trigger and Always Defect. GT played
against GT yields a payoff of 1 in all E[T] stages. AD (GT) played against GT (AD) yields once a
payoff of 1 + g (−l) and zero in the remaining E[T]− 1 stages.

and Spagnolo (2015), analyzes a setting where agents can only choose among the repeated
game strategies “Grim-Trigger” (GT) and “Always Defect” (AD) and payoffs are given by
the expected sum of payoffs of the induced indefinitely repeated game shown in the right
panel of Figure 1 (see also Blonski, Ockenfels, and Spagnolo (2011) and Dal Bó and Fréchette
(2011)). Provided “Grim-Trigger” can sustain cooperation in a subgame perfect Nash equilib-
rium (E[T] ≥ 1 + g), the resulting game constitutes a coordination game. The size of the basin
of attraction of AD, denoted by SizeBAD, is defined as the threshold probability of choosing GT
that has to be exceeded to make GT a best response.8 Formally,

SizeBAD =

{
1 if E[T] < 1 + g

`
E[T]+`−g−1 otherwise

(1)

Note that SizeBAD is decreasing in E[T] (respectively δ), conveying the intuitive idea that coop-
eration is easier to sustain under longer expected match durations. Dal Bó and Fréchette (2018)
show that SizeBAD indeed predicts cooperation rates very well in a meta-study of indefinitely
repeated prisoner’s dilemma experiments. They also show that the length of the immediately
preceding match has an effect on cooperation rates in the subsequent match. They suggest that
this is either due to a minority of participants who may not understand how match lengths are
determined or due to how participants update their overall evaluation of the value of coop-
eration through experience. They write “there is an interesting - as yet unexplored - question
regarding the way that humans learn in infinitely repeated games. Is the impact of the realized
length constant throughout or is the impact more important early on?”

As we will see below not only does the length of the immediately preceding match matter,
but the entire sequence of match length realizations is important. Further, addressing the ques-
tion posed by Dal Bó and Fréchette (2018), the impact of realized match length is not constant
throughout. Early matches matter at least as much as later matches and sometimes more. We
will now demonstrate these patterns empirically (Section 2.2) and then estimate simple learn-
ing models to understand how people learn in indefinitely repeated games (Section 2.3).

PD games and Dal Bó and Fréchette (2018) for a survey of the literature on the indefinitely repeated version.
8This corresponds to the probability of AD in the mixed strategy equilibrium of the game in the right panel of

Figure 1.
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2.2 The Effect of Match Length Realization

To study empirically whether there exists a persistent effect of match length in early matches
we use the data collected by Dal Bó and Fréchette (2018). They collected data from 141 different
sessions of indefinitely repeated prisoner’s dilemma experiments with 2415 participants (see
Table 3 in Dal Bó and Fréchette (2018)). Some of these sessions are one-shot games (δ = 0),
though. In our analysis we will rely on 103 sessions with δ > 0. In all papers contained
in their data set the sequences of match length realizations is drawn at session level, i.e. all
subjects in a given session faced the same sequence of match length realizations. Figure 2 shows
the distribution of the difference between theoretical median match length and realized match
length in the meta-study.9 The left panel aggregates games with different discount factors. It
can be seen that match lengths are, as expected, concentrated around the median with a good
amount of variation on both sides. The right panel shows separate graphs for the three most
common discount factors δ = 0.5, 0.75 and δ = 0.9. The figure shows that for the longer games
with δ = 0.75 and δ = 0.9 most matches are somewhat shorter than what we would expect.
However, in all cases, there is a good amount of variation.

Figure 2: Distribution of the difference between theoretical median match length and realized
match length overall (left panel) and separately for δ = 0.5, 0.75 and δ = 0.9.

We use this variation to study how match length realization in early matches affects sub-
sequent cooperation. We define early matches as the 1st third of matches in a session and cre-
ate a dummy variable ∆1st

above indicating whether more than 2
3 out of these early matches were

(weakly) longer than the theoretical median length.10 The dummy takes the value 1 in 44% of
sessions. Analogously, we can also define dummies ∆2nd

above and ∆3rd
above which take the value 1 in

42% and 47% of sessions, respectively.
Table 1 shows the results of regressing cooperation in the final third of matches on ∆1st

above as

9Appendix Figure E.1 shows kernel density estimates.
10The reasoning behind these choices is the following. We split matches in three groups (early, middle and late)

rather than e.g. two is that it allows us to compare the effect of early (1st third) and middle (2nd third) matches
on cooperation in late (3rd third) matches. This allows to address the question whether early experience or recent
experience is more important for cooperation. Appendix Table D.1 shows results for alternative splits. The reason
we use a dummy is that (i) theoretical medians differ with δ, which means that we cannot just use match length
directly, and that (ii) it makes regression results more easily interpretable. Appendix Table D.5 shows results when
we use the share of matches above median instead. Last, the reason that we use 2

3 as a cutoff for the share of long
matches is that it produces relatively balanced groups, though some other cutoffs would have produced that too.
Appendix Tables D.6-D.7 show the results with alternative cutoffs.
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Effect of Match Length Realization on subsequent cooperation
(1) (2) (3) (4) (5) (6)

∆1st
above 0.142*** 0.101** 0.226*** 0.125** 0.101** 0.207***

(0.053) (0.039) (0.056) (0.058) (0.041) (0.062)
∆2nd

above 0.085 0.069* 0.032
(0.060) (0.039) (0.068)

SizeBAD -0.765*** -0.539*** -0.809*** -0.659***
(0.069) (0.094) (0.068) (0.149)

SizeBAD × ∆1st
above -0.296*** -0.241**

(0.094) (0.104)
SizeBAD × ∆2nd

above 0.048
(0.144)

Constant 0.321*** 0.974*** 0.747*** 0.294*** 0.994*** 0.844***
(0.028) (0.074) (0.098) (0.032) (0.074) (0.153)

δ f.e. NO YES YES NO YES YES
Test ∆1st

above = ∆2nd
above - - - 0.6903 0.6063 0.0989

Observations 34,319 34,319 34,319 18,536 18,536 18,536
R-squared 0.021 0.219 0.223 0.034 0.251 0.255

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1: Columns (1)-(3): Initial (first stage) cooperation rate in the 2nd and 3rd third of matches
explained by dummy ∆1st

above indicating whether more than 2
3 of matches in the 1st third of the

experiment were longer than the theoretical median match length. Columns (4)-(6): Initial (first
stage) cooperation rate in the 3rd third of matches explained by dummies ∆1st

above and ∆2nd
above.

Standard errors clustered at session level. Observations stem from 103 sessions spread across 11
papers.

well as SizeBAD and an interaction. Early match length has a substantial impact on cooperation
in later matches. If at least 2

3 of these early matches are “long”, then cooperation rates are higher
for the remainder of the experiment as shown by the positive coefficient on the dummy ∆1st

above in
column (1). The effect size is substantial, with cooperation rates being 44% higher when initial
matches were long as compared to when they were short. As expected, the table also shows a
negative impact of SizeBAD on cooperation rates (columns (2)-(3)). Interestingly, there is also an
interaction effect between SizeBAD and ∆1st

above. If early matches are long than the detrimental
effect of SizeBAD is more pronounced. This is intuitive as longer early matches could allow
participants to better learn the incentives coming from the game parameters. Conversely, the
interaction term also shows that the positive effect of early match length realization is stronger
the more favorable the climate is for cooperation. In fact according to Table 1, the effect is
positive if and only if sizeBAD is smaller than 0.77.

Robustness Appendix D.1 contains tables showing that these results are qualitatively robust
to the inclusion of paper fixed effects (Table D.4), to considering different thresholds (Tables
D.6-D.8) or to using the share of matches above median instead of a dummy variable (Ta-
ble D.5). A placebo test shown in Appendix Table D.3 where we regress cooperation in the
1st third of matches on ∆3rd

above shows that the results in Table 1 are fundamental and not e.g.
driven by correlations of match lengths within sessions or observed or unobserved heterogene-
ity across papers or treatments, e.g. caused by different ways researchers implement match
length draws.11

11We would not expect realized match length of final matches, which have not yet been played, to affect cooper-
ation in the beginning of the experiment. Hence we would expect zero coefficients on ∆3rd

above and the corresponding
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Early vs Recent Matches Next we ask what is more important for cooperation in the final
third of the experiment, early experience, i.e. match length in the 1st third, or recent experience,
i.e. match length in the 2nd third of matches? Columns (4)-(6) in Table 1 show the results of
regressing cooperation in the final third of matches on both dummies ∆1st

above and ∆2nd
above. The

table shows very clearly that early experience in the 1st third of matches is very important. In all
specifications the coefficient on ∆1st

above is at least as large as that for ∆2nd
above and exhibits a higher

level of statistical significance. The interaction effect with SizeBAD is also more important for
these matches. Early matches seem at least as important as recent matches and potentially,
more important.12

Experience Does the effect vanish with more experience, i.e. if enough matches are played
in the experiment? To answer this question we rerun specification (1) of Table 1 restricting the
sample to sessions with (i) at most 12 matches in total, (ii) 12-24 matches, (iii) 24-36 matches
etc.13 Appendix Figure E.2 shows that a positive effect size can be found even in sessions that
feature at least 72 matches in a session. The figure also shows a possible downward trend in
coefficient sizes as more matches are played, but if at all the trend is slow and suggests that at
the very least 80 matches would have to be played in a session for the coefficient to vanish. This
can quickly become infeasible especially if the discount factor δ is high. Note also that there is
a compositional effect in this analysis as sessions with more matches tend to have smaller δ in
the meta-study (t-test, p < 0.0001). As with the geometric distribution we would expect more
extreme outliers in match length realizations when δ is higher, the compositional effect should
artificially exacerbate the effect of experience, i.e. make it seem that with more matches there
is less of an effect of match length realization. That we see very little in terms of a downward
trend despite this suggests that adding more matches will not easily eliminate the impact of
early match length realizations.

To sum up, the results in this section have shown that there can be substantial and non-
trivial effects of realized early match length on cooperation rates in the rest of the experiment.
Hence, which match length realizations are drawn can potentially affect research results. This
is particularly likely if few draws are made (e.g. only one draw per session or treatment). In
Section 3 we will study three case studies highlighting this point.

We have also seen that early matches matter at least as much as recent matches. This is
in line with a substantial body of evidence on both human and animal learning which shows
that learning curves tend to be steeper initially and then flatter. This observation is known as
“power law of practice” and according to Erev and Roth (1998) dates back to at least Blackburn
(1936). In the next subsection we will structurally estimate learning models that do have this
property and show that match length realization matters for learning.

interaction term. We do indeed find that these coefficients are close to zero and statistically not significant.
12Appendix Table D.2 compares the importance of early and recent matches for more different splits. Specifically

the table compares the impact of match length realization in the first X-th, second X-th, third X-th...of matches on
cooperation in the last X-th of matches, where X ranges from 2,...,10. For all X=2,...,9 the coefficient on the first X-th
of matches is larger than that of the (X-1)th Xth of matches.

13We choose multiples of 12 to cut the sample as (i) they are close to the 25th, 50th and 75th percentile of match
numbers in the overall sample (25th percentile is 11, 50th is 23 and 75th is 34) and (ii) 12 divides by 2, 3 and 4
without remainder allowing us to split the total number of matches in halfs, thirds and quarters as in Appendix
Figure E.2.
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2.3 Learning

We study simple learning models which display the “power law of practice”. These are straight-
forward adaptations of previously studied models to an environment where payoffs depend
on stochastic realizations of match length. To this end, we consider a set of agents which are
recurrently matched to play a series of indefinitely repeated PD games. Following much of the
literature (Dal Bó & Fréchette, 2018; Embrey et al., 2017), we restrict attention to the GT and AD
strategies.14 The payoffs of the game induced by these strategies are given in the right panel
of figure 1, where the expected match length E[T] is now replaced by the actual match length
realization Tm.

Model and Identification

In our learning model the choices of agents are determined by propensities which are up-
dated after each match. Propensities can be interpreted as beliefs (as in fictitious play, see
e.g. Mookherjee and Sopher 1997) but can also incorporate a much wider set of feelings, such
as e.g. familiarity or habituation (as in reinforcement learning, see e.g. Erev and Roth 1998,
Boergers and Sarin 1997). Each agent i is endowed with an initial propensity for each strategy,
denoted by ψi,0

s for strategies s ∈ {GT, AD}, which may capture pre-game experience, initial
inclinations or beliefs. In this section we focus on reinforcement learning with counterfactuals (see
e.g. Vriend 1997 and Rustichini 1999 and the special cases in Erev and Roth 1998 and Camerer
and Ho 1999) where propensities ψi,m

s for all strategies evolve according to

ψi,m+1
s = ψi,m

s + π(s, s−i,m, Tm).

s−i,m denotes the strategy of i’s opponent in match m and π(s, s−i,m, Tm) gives the payoff earned
with strategy s in this case. It remains to specify a choice rule. We assume that i’s probability
to choose grim trigger in match m is given by the logit choice rule

pi,m =
eλψi,m

GT

eλψi,m
GT + eλψi,m

AD

, (2)

where λ is a measure of noise, sometimes also thought of as a measure of rationality of the
economic agent. If λ = 0, then pi,m = 0.5, i.e. the agent chooses randomly with uniform
probability between GT and AD. By contrast, if λ → ∞, then the agent chooses the strategy
with the higher propensity with probability 1.15

To estimate this model we first rewrite the updating rule recursively as

ψi,m+1
s = ψi,0

s + πi,1(s, s−i,1, T1) + . . . + πi,m(s, s−i,m, Tm). (3)

14A theoretical justification for why it is sensible to restrict to these strategies is provided in Blonski and Spagnolo
(2015) and Blonski et al. (2011).

15In environments were payoffs are stable, in the sense that they do not feature an exogenous stochastic element,
reinforcement learning with counterfactuals is closely related to (smooth) fictitious play (see e.g. Fudenberg and
Kreps 1993 and Fudenberg and Levine 1998) where agents play a (smooth) best response to the belief that future
play will follow the past empirical distribution (see e.g. Cheung and Friedman 1997 and Camerer and Ho 1999). The
equivalence holds because looking back to previous earnings of strategies is equivalent to forming beliefs based on
past behaviour and then computing expected payoffs based on these beliefs. In Appendix A we show the results
of simulations where we include also reinforcement learning without counterfactuals and fictitious play and where
we also use the linear choice rule instead of the logit choice rule. We find that all models perform very similarly in
the simulations.
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If we then denote by ∆Πm = ∑m
h=1 πi,h(GT, s−i,h, Th)−πi,h(AD, s−i,h, Th) the cumulative payoff

difference between grim trigger and always defect across all past matches, we can re-write (2)
as

pi,m =
eλ[(ψi,0

GT−ψi,0
AD)+∆Πm]

1 + eλ[(ψi,0
GT−ψi,0

AD)+∆Πm]
. (4)

Denote by yi,m
GT = 1 the outcome where player i chooses grim trigger in match m and by

yi,m
GT = 0 where they do not. Given the choice rule above, the likelihood function associated

with this binary outcome then takes the following form

L(ψi,0
GT, ψi,0

AD, λ) =
N

∏
i=1

M

∏
m=1

(
eλ[(ψi,0

GT−ψi,0
AD)+∆Πm]

1 + eλ[(ψi,0
GT−ψi,0

AD)+∆Πm]

)yi,m
GT ( 1

1 + eλ[(ψi,0
GT−ψi,0

AD)+∆Πm]

)1−yi,m
GT

(5)

Estimating this model using logistic regression we have that the coefficient for the constant
term of the regression is an estimate of λ(ψi,0

GT − ψi,0
AD) and the coefficient on ∆Πm is an estimate

of λ. Comparing these coefficients hence allows us to identify λ and the difference in initial
propensities (ψi,0

GT − ψi,0
AD).

Extended Model The standard model does not distinguish between learning about the be-
haviour of opponents - given expected match length - and learning about match length realiza-
tions. To allow us to do so, we extend the standard model and consider the following updating
rule.

ψi,m+1
s = ψi,m

s + απi,m(s, s−i,m, Tm) + (1− α)πi,m(s, s−i,m, E[T]). (6)

This nests the standard model when α = 1. If α = 0, then learning about match length
realization (Tm) does not matter and all learning relies on expected match length. The higher α

the relatively more important is learning about match length realizations. In analogy to above
we define ∆Πm

E[T] = ∑m
h=1 πi,h(GT, s−i,h, E[T])− πi,h(AD, s−i,h, E[T]) as the cumulated payoff

difference between grim trigger and always defect across all past matches conditional on the
opponent’s choice and assuming that match length is fixed at the expected match length E[T].
The likelihood function for the extended logit choice model can then be written as follows

L(ψi,0
GT, ψi,0

AD, λ, α) =
N

∏
i=1

M

∏
m=1

(
pi,m
)yi,m

GT
(

1− pi,m
)1−yi,m

GT

with

pi,m =
eλ[(ψi,0

GT−ψi,0
AD)+α∆Πm+(1−α)∆Πm

E[T]]

1 + eλ[(ψi,0
GT−ψi,0

AD)+α∆Πm+(1−α)∆Πm
E[T]]

(7)

The log-likelihood is given by

LL(ψi,0
GT, ψi,0

AD, λ, α) =
N

∑
i=1

M

∑
m=1

yi,m
GT ln

(
pi,m
)
+ (1− yi,m

GT) ln
(

1− pi,m
)
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Estimating this model using logistic regression we have that the coefficient for the constant
term of the regression is an estimate of λ(ψi,0

GT − ψi,0
AD). The coefficient on the difference ∆Πm is

an estimate of λα and the coefficient on ∆Πm
E[T] of λ(1− α). Comparing these coefficients allows

us to identify λ, α and the difference in initial propensities (ψi,0
GT − ψi,0

AD). The parameter we are
most interested in here is α, which will tell us to which extent participants learn about match
length realization as opposed to using expected match length to make their decisions. Note
that our updating rule imposed the constraint that α ∈ [0, 1]. As the unconstrained estimates
return values of α ∈ [0, 1] we report unconstrained estimates below.

Our parameters of interest α, λ and (ψi,0
GT − ψi,0

AD) are all estimated at the population level.
Wilcox (2006) has shown, though, that in pooled estimations of learning models that contain
lagged variables (such as the ones above), the presence of heterogeneity e.g. in the parameter
λ can cause biases in the estimated parameters (see also Cabrales and Garcia-Fontes (2000)).
Specifically, Wilcox (2006) is concerned with the estimation of a parameter that measures the
extent to which learners take into account counterfactuals when updating their propensities.
A downward bias in this parameter leads to overestimation of the role reinforcement learning
without counterfactuals plays as opposed to models (like belief learning) which take counter-
factuals into account. All the learning models we estimate do take counterfactuals fully into
account. Hence our estimates are not affected by this particular issue.16 To study whether sim-
ilar issue could plague our parameters of interest, most importantly α, we conduct extensive
Monte Carlo studies which we report in detail in Appendix B, where we also derive the max-
imum likelihood estimator of α. Those studies show that heterogeneity in λ can indeed cause
downward biases of λ of up to 5% for the most relevant case when λ is assumed to be in the
range found in Table 3. Most importantly, they also show that estimates of α are unbiased both
when heterogeneity in λ is introduced as well as when heterogeneity in α is assumed in the
data generating process. For details see Appendix B.

Estimation Results

Table 2 shows the parameter estimates for the basic model. Two patterns emerge. First, in
terms of the difference between initial propensities we see that participants favour AD over
GT ((ψi,0

GT − ψi,0
AD) < 0) especially when the horizon is short (δ = 0.5). This is in line with

the intuition that a longer horizon makes more cooperative strategies more attractive. Second,
there is a relatively large degree of noise with λ ≈ 0.027 on average. Noise decreases somewhat
as δ increases. To provide some context to these numbers we note that given the average values
of ∆Πm these estimates together with choice rule (2) imply an ≈ 59% chance of picking the
“correct” strategy, i.e. the strategy with the higher value of ∆Πm, on average across all matches
m. If we focus on the second half of matches in a session, then this value increases to about
64%, but it is well below 100% in all cases.

Note that the accumulated payoff differences ∆Πm will tend to be strongly correlated with
SizeBAD (across all supergames ρ = −0.7213∗∗∗). Hence one might wonder whether controlling
for SizeBAD might reduce bias in the estimation and/or improve the precision of estimates. Of
course doing so makes the interpretation of our parameters of interest in terms of the learning

16We are not interested in comparing learning models with and without counterfactuals. Still, simulations re-
ported in Appendix A show that these types of models perform very similarly with our data.
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Parameter Estimates Basic Model
All Data δ = 0.5 δ = 0.75 δ > 0.5

λ 0.027 0.020 0.034 0.033
[0.026, 0.028] [0.020,0.021] [0.033,0.035] [0.033, 0.034]

(ψi,0
GT − ψi,0

AD) -1.460 -8.700 -0.676 -1.242
[ -1.576, -1.341] [-9.459, -7.941] [ -0.700, -0.652] [-1.366, -1.118]

N 37394 16088 18136 21306

Table 2: Parameter estimates basic model for all data and separately for δ = 0.5, δ = 0.75 and
δ > 0.5 . 95% confidence interval in brackets.

model less straightforward. If we nevertheless control for sizebad we get an estimated value
of λ = 0.019 (confidence interval [0.019, 0.020]) when using all data as in column (1) of Table
2.17 This corresponds to an about 55% chance of picking the correct strategy across all matches
which increases to 60% in the second half of matches.

Parameter Estimates Extended Model
All Data δ = 0.5 δ = 0.75 δ > 0.5

α 0.432 0.486 0.589 0.631
[0.423, 0.440] [0.484,0.488] [0.573, 0.605] [0.605, 0.657]

λ 0.186 0.603 0.172 0.117
[0.165, 0.207] [0.533, 0.673] [0.145,0.200] [0.096, 0.138]

(ψi,0
GT − ψi,0

AD) -0.768 -0.486 -0.191 -0.708
[-0.913, -0.623] [-0.578, -0.394] [-0.384, 0.001] [-0.989, -0.426]

N 37394 16088 18136 21306

Table 3: Parameter estimates extended model for all data and separately for δ = 0.5, δ = 0.75
and δ > 0.5 . 95% confidence interval in brackets.

Table 3 shows the estimates for the extended model. We see again that participants some-
what favor AD over GT in terms of the initial propensities. The model has much less noise
than the basic model. We can ask again what our estimates imply in terms of the probability to
choose the “correct” strategy - i.e. the strategy with the higher weighted average of ∆Πm and
∆Πm

E[T] where the weight is determined by the estimated α. The estimated values of λ imply a
probability of choosing this strategy between ≈ 92% when δ = 0.5 and ≈ 76% when δ > 0.5.

Our main parameter of interest is α. In all cases α substantially exceeds zero, showing that
participants do learn from match length realizations. This explains why match length realiza-
tion affects cooperation in subsequent matches. However, it is not the case that only realized
match length matters. The estimates clearly suggest that both expected match length and re-
alized match length play a role for participants’ learning. Learning from match length realiza-
tions is somewhat more important when the horizon is longer (δ > 0.5), which is intuitive as in
these cases we can expect more variation in match lengths.18

How well do these models predict actual cooperation? Appendix Figure E.3 shows ob-
served cooperation in stage 1 of a match depending on the predicted probability (pi,m) of using

17When restricting to δ = 0.5 we obtain λ = 0.010, for δ = 0.75 we get λ = 0.028 and for δ > 0.5 we obtain
λ = 0.028 in this case.

18We can again control for sizebad. Doing so yields values of α = 0.437 and λ = 0.151 when all data are used.
For δ = 0.5 we get (α, λ) = (0.486, 0.434), for δ = 0.75 we get (α, λ) = (0.415, 0.151) and for δ > 0.5 we get
(α, λ) = (0.631, 0.106).
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Grim Trigger according to the basic model (left panel) and the extended model (right panel).19

The figure shows that there is some prediction error in both models with observed cooperation
differing from predicted cooperation by up to twenty percentage points. Prediction errors are
generally lower with the extended model.

In sum this section has shown that simple learning models can explain the data reasonably
well. Estimates of our extended model clearly show that participants do learn from match
length realization. Because participants learn from match length realization, treatment com-
parisons can be affected by “unusually” long or short match length realizations. And, because
learning displays the “power law of practice” early match length realizations will be particu-
larly important.

3 Case Studies

We will discuss three applications to illustrate how match length realizations can affect treat-
ment comparisons when indefinitely repeated games are compared with finitely repeated games
(subsections 3.1 and 3.2) or when indefinitely repeated games are compared with other indef-
initely repeated games (subsection 3.3). The three cases highlighted are not part of the Dal Bó
and Fréchette (2018) meta-study data used in Section 2.2 and feature a continuous time pris-
oner’s dilemma (subsection 3.1), a public good game (3.2) and oligopoly games (3.3).20

3.1 Cooperation in Continuous Time

Our first case study is the paper “Time Horizon and Cooperation in Continuous Time” by
Bigoni et al. (2015) published in Econometrica. Bigoni et al. (2015) compare cooperation rates in
a prisoner’s dilemma played in deterministic and stochastic continuous time.21 They consider
games of short (20 seconds) and long (60 seconds) expected length, where here we focus on the
short games (which is where they find a treatment effect). The deterministic short game lasts
20 seconds. The stochastic short game has a continuation probability of δ = 992

1000 and every
0.16 seconds it ends with probability 1− δ. This means that the expected match length in the
continuous game is 20 seconds just as in the deterministic game. The expected median length is
13.86 seconds. Bigoni et al. (2015) focus on average cooperation rates in a match. They find that
in short games cooperation is higher under deterministic than under the stochastic horizon.

We now study how this result might be affected by match length realizations. Bigoni et al.
(2015) conduct two sessions for each treatment condition. In each session there are 24 partici-
pants who play 23 matches. Match length is drawn at the session level, i.e. all participants face
the same sequence of match lengths. Figure 3 shows kernel density estimates of the difference
between theoretical median match length and realized match length for the two sessions. The

19In the setting with only two strategies GT and AD cooperation in stage 1 uniquely identifies strategy GT. Fu-
denberg and Karreskog (2020) show that initial play is indeed highly predictive about average cooperation in a
match using the same data.

20Our selection of case studies followed four criteria: (i) the paper should not be already included in the meta-
study used in Section 2; (ii) it should be on an indefinitely repeated social dilemma; (iii) it has to feature different
match length realizations across sessions and (iv) data are publicly available or were made available to us.

21This important research programm combines elements from Dal Bó (2005) studying the role of deterministic vs.
stochastic horizon in discrete time and Friedman and Oprea’s (2012) study of discrete vs. continuous time under a
deterministic horizon.
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Figure 3: Kernel density estimates of the difference between theoretical median match length
and realized match length overall (left panel) and for the 1st third of matches. 58% of all matches
and 81% of matches in the 1st third were shorter than theoretical median match length.

left panel shows the entire session and the right panel only the 1st third of the experiment,
specifically the first 8 matches (out of 23). It can be seen that in both sessions the vast majority
of matches (81%) at the beginning of the experiment (right panel) were shorter than theoretical
median length.

S N Avg ML Avg ML Median ML Median ML Avg Coop Avg Coop
1st third 1st third Initial

Deterministic 4 2208 20 20 20 20 54.04 73.95

Replication 2 1104 22.94 17.6 11.04 8.48 39.58∗∗∗ 51.90∗∗∗

Inverse 2 1104 17.86 24.0 17.56 21.66 50.90 73.36

Match Stoch 4 2208 19.97 19.57 13.44 13.52 47.40 61.18∗∗

Table 4: Summary Statistics of the different treatments conducted to replicate Bigoni et al. (2015) .
Number of Sessions (S) and observations (N) in the different conditions. Average Match Length
(Avg ML), average match length in the 1st third of the experiment (Avg ML 1st third), median
match length and median match length in the 1st third, average cooperation rate (avg coop) and
average initial cooperation rate (avg coop initial). Stars indicate statistical significance (∗∗∗ 1%,
∗∗ 5%, ∗ 10 %) of the difference to the deterministic case in random effects OLS regression with
standard errors clustered at session level (see Appendix Tables D.9 and D.10).

To study whether this realization of match lengths could have affected the treatment effect
we first replicated Bigoni et al. (2015)’s experiment. We conducted four sessions of the deter-
ministic condition and then two sessions with the same match-length realizations as Bigoni et
al. (2015) (“Replication”). Those sessions were conducted as exact replications of their study.
See Appendix C for further details. We further conducted two sessions with inverse match
length realizations (“Inverse”). For the inverse sessions we determined a sequence of match
lengths (Tm)23

m=1 as follows. For each realized match length Tm in the Replication we com-
pute Pr(x ≤ Tm) and then replace the m-th entry in the sequence by the value T′ that satisfies
Pr(x ≤ T′) = 1− Pr(x ≤ Tm). Appendix Figure E.4 illustrates how the “inverse” match length
sequences are constructed. Last, we conducted 4 sessions where we randomize the sequence of
match lengths at the match level (“Match Stoch”). Hence in this treatment we have 96 different
realized match length sequences as opposed to just two.
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Table 4 gives an overview of the different treatments we conducted as well as the average
and median match lengths. The table shows that - compared to the deterministic case - both
average and median match length are short in the replication treatments, particularly in the 1st
third of the experiment. There the median match length is only 8.48 seconds, much shorter than
the 20 seconds in the deterministic case or than the theoretical median of 13.86 seconds. In the
inverse condition these match length realizations are naturally longer with the median match
length in the 1st third being 21.66, just above the deterministic condition. Last, as expected,
when match lengths are drawn at the match level, then, by the law of large numbers, both
average and median lengths are close to the theoretical averages and medians.

How does match length realization affect average cooperation rates and the treatment com-
parison? First, it should be noted that we manage to replicate Bigoni et al. (2015)’s result quite
closely. Between the deterministic and replication treatment there is a 14.46 percentage point
difference in average cooperation (Table 4) compared to Bigoni et al. (2015)’s 10.9 percentage
point difference (Table II in Bigoni et al. (2015)). We fail to replicate the result, though, when we
use inverse match lengths. Here the difference in average cooperation rates to the deterministic
case is only 3.14 percentage points and not statistically different from zero. With match level
draws (Match Stoch) we find a difference to the deterministic case of 6.64 percentage points
which is less than half of the effect size than in the replication, but more than twice the effect
size of the inverse condition. The difference between the match stochastic condition and the
deterministic case is not statistically significant at the 10% level.22 Having a closer look at the
data, we do find, however, that average initial cooperation rates (in the first stage of each match)
do differ significantly between the Match Stoch and deterministic environments with an effect
size of about half of that found in the replication.

Figure 4: Different effect sizes obtained for the treatment differences between deterministic and
stochastic treatments in average cooperation rates (left panel) and initial cooperation rates (right
panel) depending on match length realizations. Bigoni et al: original effect size in Bigoni et al.
(2015); Replication: replication treatment; Inverse: inverse treatment; MatchStoch: treatment
with match length realization drawn at match level; MinMatch: only individuals from Match-
Stoch who had the smallest number of matches 1-7 above median (specifically 1) in this treat-
ment; MaxMatch: only individuals from MatchStoch who had the largest number of matches
1-7 above median (specifically 6) in this treatment;

22In this treatment we use twice the number of observations as in Bigoni et al. (2015). It is still possible that this
effect becomes statistically significant with a larger sample size.
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Figure 4 illustrates the different effect sizes that can be obtained for the comparison between
the deterministic and stochastic game depending on match length realizations. The largest ef-
fect size is obtained in our replication of Bigoni et al. (2015)’s original study where we use the
same match length realizations as them. This is true for both average cooperation rates (left
panel) and initial cooperation rates (right panel). It can also be seen, though, that the treatment
difference for average cooperation rates is not statistically significant for any other match length
realization. For initial cooperation rates the treatment difference is smaller in the treatment
with match-level randomization and statistically not different from zero for the inverse treat-
ment. We also analyzed two sub-groups from the match-stochastic treatments: those with the
smallest and those with the largest share of early matches with above median length. For the
latter (MaxMatch) we even find a statistically significant negative treatment effect, specifically
higher initial cooperation rates in the stochastic game. This exercise illustrates how treatment
comparisons can yield entirely different conclusions depending on match length realization.
We should also note that - despite the fact that treatment effects can be strongly impacted by
match length realizations - we do not consider this an overall unsuccessful replication. Our ex-
act replication was very successful and in the treatment with “many match length realizations”
(MatchStoch) the direction of the effect goes in the same direction as in the original study, even
though not always being statistically significant.23

We will get back to the question of how to measure the “correct” treatment effect in Section
5. Before we do so, we study two more applications showing how treatment comparisons can
be affected by match length realizations.

3.2 Finite and Indefinitely Repeated Linear Public Good Games

Our second case study is the paper “An experimental study of finitely and infinitely repeated
linear public goods games” by Lugovskyy et al. (2017) published in Games and Economic Behav-
ior. The finitely repeated games they study all have a match length of 5 rounds, while for the
indefinitely repeated public good games they draw three sequences of match lengths (using
discount factor δ = 0.8). Average match length in the 1st third of sequence 1 is below the mean
of 5 used in the finite sessions, specifically 4.4 rounds. By contrast, in sequences 2 and 3 it is
above, specifically 6 and 6.6, respectively. Hence initial matches are substantially shorter in
sequence 1 compared to the other sequences. Overall, however, the three sequences are very
similar with average match length across all 15 matches equalling 5.3, 5.4 and 5.7, respectively.
In both the finite and indefinitely repeated sessions participants play 15 matches.

The first hypothesis Lugovskyy et al. (2017) test is that “contributions in repeated games
with sequences that have probabilistic end rounds will be greater than or equal to those in
repeated games with sequences that have known end rounds”. They evaluate this hypotheses
by comparing behavior in finite and probabilistic settings for four different pairs of treatments
which differ in group size, MPCR and whether participants make a binary contribution choice
or not.

Table 5 shows the results of this analysis. The first two columns (“Finite” and “Prob All”)

23Appendix Figure E.5 shows different treatment effects when median cooperation frequencies are compared.
Here again, the replication shows the biggest effect and the treatment difference is not statistically significant for
the Inverse and MaxMatch condition.

15



All Rounds Cooperation Rate
Decision Setting Finite Prob All Prob S1 Prob S23 S1 vs S23

N = 4, MPCR= 0.3 15.0 22.4 10.36 28.41
<∗∗ > <∗∗∗ p = 0.000

N = 4, MPCR= 0.6 39.4 44.3 33.52 48.39
< > < p = 0.088

N = 2, MPCR= 0.6 41.1 38.3 31.71 42.64
> > < p = 0.084

N = 2, MPCR= 0.6, Binary 54.5 41.2 36.84 42.65
>∗∗∗ >∗∗ >∗∗ p = 0.398

Table 5: Average cooperation rates across all rounds in the finite sessions (column (1)) and across
all sessions with a probabilistic ending (column (2)) as in Table 3 in Lugovskyy et al. (2017). We
further split the sessions with probabilistic ending in those with initially short matches (S1) and
those with initially long matches (S23). Below each cooperation rate we show how the finite
setting compares to the rate in question (as in Lugovskyy et al. (2017)). The last column shows
the p-value when comparing initially short and long sequences. Following Lugovskyy et al.
(2017) standard errors are clustered at the participant level in all regressions.

reproduce the analysis in Table 3 in Lugovskyy et al. (2017). The analysis shows that in two
of the four treatments cooperation is higher in the finitely repeated game and in the other two
it is higher in the indefinitely repeated (probabilistic) game. One each of these comparisons is
statistically significant. These and other analysis lead Lugovskyy et al. (2017) to conclude “We
do not, however, find consistent evidence that overall cooperation rates are affected by whether
the number of decision rounds is finite or determined probabilistically.”

When we split out the sessions in those with initially short and those with initially long
matches, though, we might have reached a different conclusion. The column “Prob S1” shows
cooperation rates as well as comparisons in the session with initially shorter matches. In this
case all four comparisons point into the same direction: more cooperation in the finitely re-
peated game. Only one of the comparisons is statistically significant. It should be noted, how-
ever, that the first (N = 4, MPCR= 0.3) and third comparisons (N = 2, MPCR= 0.6) are both
just outside 10 percent statistical significance (p = 0.150, p = 0.102) in a comparison that is
somewhat underpowered.

In the sessions with initially long matches the picture is very different. In this case three
out of four comparisons point towards less cooperation in the finitely repeated game. Out of
the statistically significant comparisons one each is pointing towards more and one towards
less cooperation in the finitely repeated game. Hence while the sessions with initially long
matches show more of a similar picture than the overall sample, the sessions with initially
short matches behave quite differently and would lead to a different conclusion. It should also
be noted that, except for the last comparison (N = 2, MPCR= 0.6, Binary), the differences in
average cooperation rates across the initially short and long sessions are always statistically
significant.24 Appendix Table D.11 shows that similar conclusions hold when we consider first
round cooperation rates only.

24This difference is not driven by the shorter matches themselves. If we restrict attention to cooperation rates in
the last third of matches only we find a difference (S1-S23) of −18.03, p = 0.000 for treatment N = 4, MPCR= 0.3,
of −17.55, p = 0.082 for treatment N = 4, MPCR= 0.6, of −7.66, p = 0.260 for treatment N = 2, MPCR= 0.6 and of
−16, 42, p = 0.133 in treatment N = 2, MPCR= 0.6, Binary.
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While on balance it seems to us that Lugovskyy et al. (2017)’s overall conclusion is likely to
be robust once “many” match length realizations are considered, the case study shows again
how easily different conclusions could have been reached with different match length realiza-
tions.

3.3 Strategy Revision Opportunities

Our third case study is the paper “Strategy Revision Opportunities and Collusion” by Embrey
et al. (2019) published in Experimental Economics. Embrey et al. (2019) explore how the possi-
bility of being able to change a repeated game strategy during the course of play (i.e. to use
“behaviour” strategies) affects cooperative behaviour in stylized oligopoly experiments. Their
main treatment variations compare games of strategic substitutes and strategic complements
with and without revision opportunities (RO). They find that without RO (when strategies
have to be encoded upfront) there is more cooperation in games of substitutes than in games of
complements. With RO there is more cooperation in games of strategic complements than with
substitutes, but the latter difference is not statistically significant. The column “All groups” in
Table 6 shows their main treatment effects in terms of efficiency, i.e. in terms of the percentage
of the difference between joint profit maximizing payoff and Nash equilibrium payoff realized
in the stage game.

with RO All groups Short First Matches Other Groups Short vs Others

Substitutes 21.0 7.7 28.2
Complements 26.4 44.2 16.9

Treatment Effect - 5.4 -36.4∗∗∗ 11.3∗∗ p = 0.0030

without RO All groups Short First Matches Other Groups Short vs Others

Substitutes 22.7 30.9 18.2
Complements 9.4 13.8 7.0

Treatment Effect 13.3∗∗ 17.1 11.2 p = 0.6888

Table 6: Efficiency measure from Embrey et al. (2019). Treatment Effect is the difference between
substitutes and complements. The two rightmost columns split out the groups with short initial
matches from the rest. As in Embrey et al. (2019)’s main analysis matches 7-10 are considered.
Stars are from t-tests with standard errors clustered at group level.∗∗∗p < 0.01, ∗∗, p < 0.05,
∗p < 0.1.

Embrey et al. (2019) use a discount factor of 0.875 implying a median match length of 7
stages. There are six different matching groups with different match length realizations. We
will group those into two categories: (i) those where first matches are short, specifically where
the first three (out of ten) matches all have a below median match length and (ii) all other
matches. Table 1 in Embrey et al. (2019) shows that two matching groups (groups 2 and 6)
fall into category (i). It should be noted that these matching groups do not have fewer stages
overall than others. In fact group 6 has the most stages overall of all groups.25

Table 6 shows the average efficiency, defined as the percentage of the difference between

25Alternatively we could split the sample into two equal sized categories by focusing on the length of the first
two matches only, as there are three groups were both the first and second match are below median length. In this
case qualitatively the same conclusions do hold.
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joint profit maximizing payoff and Nash equilibrium payoff realized in the stage game. In
all cases we follow Embrey et al. (2019) and focus on the average efficiency across matches 7-
10.26 We then compare average efficiency in games of strategic substitutes and complements
separately for games with and without revision opportunities (RO).

The table shows that treatment effects depend on match length realizations. The over-
all negative, but statistically insignificant treatment effect (difference between substitutes and
complements) with revision opportunities seems driven by the groups with short initial matches,
where the effect is almost seven times larger and statistically highly significant. In the other
groups the treatment effect reverses sign and is also statistically significant. The difference be-
tween groups with short initial matches and other groups is statistically significant at the 1%
level. In this case, hence, diametrically opposite conclusions could be reached when matches
with short or long initial realizations are studied. This is also illustrated in the left panel Ap-
pendix Figure E.6 which shows the treatment effect for all possible selections of two match
length realizations.

Without revision opportunities we see a slightly different pattern. There is an overall posi-
tive and statistically significant treatment effect. The effect is somewhat larger with short first
matches and somewhat smaller in the other groups, but both are positive. The effect is not
significant in either of the subgroups, presumably due to lower sample size. Hence in this case
the treatment comparison seems robust to match length realizations as is also illustrated in the
right panel of Appendix Figure E.6.

Note that when revision opportunities are ruled out then all updating has to take place
across (as opposed to within) matches. The analysis in this Section and the fact that match
length realization seems to have a stronger impact with revision opportunities could suggest
that within match learning might also play an important role for the effect of match length
realizations. This could be an additional reason why the effect sizes observed with human
players in the Dal Bó and Fréchette (2018) meta study are larger than with computer simulated
learners who learn only across matches (see Section 2.3). In the next section we will discuss
implications for experimental design in more detail.

4 Discussion

In this section we discuss some implications of our findings as well as potential ways to diag-
nose and solve potential problems stemming from match length realizations in experimental
studies of indefinitely repeated games. Before we go deeper into the different possibilities, it is
useful to define the problem. Assume a researcher is interested in measuring how the probabil-
ity of cooperation depends on the decision environment ω ∈ Ω. Here ω can capture things like
subject characteristics (age, gender,...), game parameters (sizeBAD, δ,...), decision settings (lab,
field,...) or experimental treatments that affect the probability of cooperation Pr(C) = f (ω).

Say the experimenter can conduct two treatments ω0 and ω1 which cleanly manipulate a
dimension of interest in the decision environment and is interested in the effect of these treat-

26Appendix Table D.12 shows all matches

18



ments on the probability of cooperation. The experimenter is interested in the treatment effect

f (ω0)− f (ω1).

The problem arises because the effect of ω can only be measured together with a match
length realization. The probability of cooperation is hence given by Pr(C) = f (ω, T), where T is
the match length realization drawn from a geometric distribution with mean 1

1−δ and standard

deviation
√

δ
(1−δ)2 .

Say the experimenter conducts K sessions for each treatment, indexed k = 1, ..., K, where
each session has N participants, indexed i = 1, ..., N who play each M matches, indexed
m = 1, ..., M. Hence, for each treatment ω0 and ω1 the experimenter observes K · N · M in-
dividual decisions to cooperate f (ω0, Tm

0,k) and f (ω1, Tm
1,k), which in the usual design depend

on K realizations of sequences of match lengths (Tm
0,k)

M
m=1 and (Tm

1,k)
M
m=1. It is common to focus

on average cooperation across the K · N ·M observations.27 This gives the following observed
(sample average) treatment effect

1
K · N ·M

K

∑
k=1

N

∑
i=1

M

∑
m=1

(
f (ω0, Tm

0,k)− f (ω1, Tm
1,k)
)

, (8)

where we have abstracted from individual heterogeneity in the treatment effect as our focus
is on match length realization. In general the observed treatment effect will be biased, i.e.
will not equal f (ω0) − f (ω1). A common practice in experimental research is to draw the
same sequence of match length realizations for all treatments, i.e. to ensure that (Tm

0,k)
M
m=1 =

(Tm
1,k)

M
m=1, ∀k. Both Lugovskyy et al. (2017) and Embrey et al. (2019) do exactly that, i.e. draw

one set of sequences and use it for all treatments. If the influence of match length realization is
orthogonal to the treatment, then the resulting treatment effect will not be biased. To see this
note that in this case the observed treatment effect (8) can be written as follows

1
K · N ·M

K

∑
k=1

N

∑
i=1

M

∑
m=1

(
f (ω0) + f (Tm

0,k)− f (ω1)− f (Tm
1,k)
)

=
1

K · N ·M
K

∑
k=1

N

∑
i=1

M

∑
m=1

( f (ω0)− f (ω1))

= f (ω0)− f (ω1).

However, in practice, this is often not the case and there will be interactions between the
treatment and the effect of match length realization. Both case studies (Lugovskyy et al. (2017)
and Embrey et al. (2019)) have illustrated that point. What can researchers do if this orthog-
onality condition is not given and if - as a consequence - fixing the sequence of match length
realizations is not enough?

27Sometimes the focus is only on a subset of matches. This could easily be incorporated in the arguments below.
It is more common to focus on initial cooperation in each match, but often people also consider average cooperation
across the Tm stages of match m. The arguments below apply irrespective of which of these cases is considered.
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Diagnosing the Problem A first step towards dealing with potential bias in treatment effects
induced by match length realizations is to diagnose it. As we have seen in Section 2 there are
some regularities in the effect of match length realizations on cooperation that allow identify-
ing and bounding the effect. The most important regularity is that cooperation rates seem to be
monotonically increasing in match length, i.e. f (ω, T− x) ≤ f (ω, T) ≤ f (ω, T + x), ∀x ∈N. If
monotonicity is indeed given, then it is possible for the researcher to get an idea of how strong
the relationship between match length realization and cooperation is in the environment(s)
they consider. This can be done by using “very different” match length realizations (across ses-
sions or matching silos) and compare the effect sizes observed for these. Note that in order to
do this, it is best if the same sequence of match length realizations is drawn across treatments.
More precisely, under monotonicity and equal match length realizations across treatments it
is possible to bound the treatment effect by comparing the average treatment effect under the
(initially) shortest realizations (ATE−) and the treatment effect under the (initially) longest re-
alizations (ATE+). As we know the distribution from which match lengths are drawn, we can
further compute the probability that match length realizations are even shorter (longer) than
the shortest (longest) observed match lengths. Denote this probability by q− (q+) and define
q = q− + q+. The researcher can then make statements of the form “With probability (1− q)
the average treatment effect is between ATE− and ATE+”. See Imbens and Angrist (2004) or
De Quidt, Haushofer, and Roth (2018) for a more detailed discussion.28

Fixing the Problem We now outline some potential ways to “fix” the problem. It is important
to note that while none of the proposed solutions is a perfect fix for any possible environment,
many of them work in specific environments. Maybe even more importantly many of the
solutions discussed can help with diagnosing the problem even if the treatment effect cannot
be fully de-biased.

The most immediate solution to the problem is probably to simply use as many match
length realizations as possible. There are three basic ways to do so: (i) increase K, (ii) increase M
or (iii) change the level at which randomization takes place. (i) is a great solution whenever it is
feasible. If it is possible to obtain information on the expected size of the effect of match length
realization (e.g. from prior literature) then power analysis can be conducted to determine how
many sessions K are needed to obtain unbiased treatment effects. (ii) seems less promising.
Increasing M works only to the extent that the effect of early match length realization washes
out over time. As our analysis in Section 2.3 has shown this does not seem to be the case
for match numbers that can reasonably fit in a two-hour experimental session. A possibility
that we explored in this paper is (iii) when we randomized match length at the match level in
our “MatchStoch treatment”. A downside of this approach is that it can induce waiting times
as all participants in a matching silo have to wait for the longest match to end before being
rematched. This concern is especially important if δ is high and restricts the total number of
matches that can be played.

There are some alternatives to the standard random termination method. In a method used
28This can be done even if match length realizations differ across treatments as long as the intervals defined by

the two sets of match length realizations do have some overlap, but the computation is not as straightforward in
this case.

20



e.g. by Sabater-Grande and Georgantzis (2002), Cabral, Ozbay, and Schotter (2014) or Vespa
(2019), a fixed (known) number of rounds are played with certainty, and payoffs in these
rounds are discounted at a known rate δ. Afterwards, there is a fixed known probability δ

that the match continues for an additional round, and payoffs in these rounds are no longer
discounted. Andersson and Wengstroem (2012) and Cooper and Kuehn (2014) use a similar
method that also starts with a fixed number of rounds with payoff discounting, but is then
followed by the coordination game induced by considering only two strategies, “Grim Trig-
ger” and “Always Defect”. The first method avoids very short matches, but, as overall match
length is still random, does not eliminate the problem. The second method does not have an
uncertain match length, but it has the downside that the number of repeated game strategies
allowed needs to be restricted ex ante. Further, Fréchette and Yuksel (2017) found that neither
of these methods induces behaviour that is consistent with the presence of dynamic incentives.

Fréchette and Yuksel (2017) propose a promising method called block random termination.
Participants play as in the standard method, but in blocks of a pre-announced fixed number of
rounds. Within a block they receive no feedback about whether or not the match has continued
until that round, but they make choices that will be payoff-relevant if it has. Once the end of a
block is reached, subjects are told whether the match ended within that block and, if so, in what
round; otherwise, they are told that the match has not ended yet, and they start a new block.
Subjects are paid for rounds only up to the end of a match, and all decisions for subsequent
rounds within that block are void. With block random termination the length of blocks is a
crucial parameter which has to be set carefully.29 An open question is whether participants
learn mainly from the number of stages played or from the number of stages that are payoff
relevant.

Other possibilities could include re-sampling approaches by selecting subsets of sessions or
matching silos with different match length realizations. Another possibility is to use “inverse”
designs (see Section 3.1) more systematically to pair each session with its inverse. Or one could
start the experiment with a “training phase”, where participants are given the chance to learn
about the distribution of match lengths by observing several realizations.30 Last, one could
use constraints on the realized empirical distribution by e.g. imposing that the mean match
length of early matches cannot be more than one standard deviation away from the expected
length.31 In sum, there are many possibilities to deal with the problem of match length realiza-
tions. Which one is the most suitable will depend on the specific environment researchers are
interested in studying.

29If blocks are of length one the method is the same as the standard random termination method. With very long
blocks a downside is that the experiment lasts long and fewer matches can be played.

30One advantage of such a training phase is that - since there is no strategic interaction - match lengths can be
randomized at the individual level for the training phase. This means that many match length realizations can be
observed a least for this phase.

31Which constraints are effective will depend on the specific treatment comparisons the researcher is interested
in. In Section 3.1 we have, for example, seen that cooperation rates are similar for all sequences where mean match
length realizations in early matches are within one standard deviation of what we should expect theoretically.
However, results in Section 3.2 differ even across sessions where this is the case.
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5 Conclusions

We have seen that the realized length of early matches in indefinitely repeated games has a
substantial impact on cooperation rates in subsequent matches. Using three cases from the
literature we also demonstrated a strong impact on treatment comparisons, both in terms of
the size and the direction of the treatment effect. Our results have important implications for
our understanding of how people learn in infinitely repeated games, for the interpretation of
treatment effects when there are stochastic elements, as well as for experimental design.

Theories of learning should take into account how agents learn from sequences of realiza-
tions of random variables. One interesting question in this context is which moment of the
distribution of match length realizations is most important for learning. In empirical research
indefinitely repeated games are implemented using a mean expected match length that de-
rives from the discount factor in the infinitely repeated game considered. Appendix Table D.13
shows, however, that the median match length realization seems a more important determi-
nant for participants’ behaviour than the mean.32 This raises the question of which sequence of
indefinitely repeated games “correctly” represents the infinitely repeated game one ultimately
has in mind. This question has been answered theoretically under standard game theoretic
assumptions. But, given how people seem to learn in these games, it might be necessary to
rethink this question. For example, in our first case study (subsection 3.1), it is the match
stochastic treatment, which, as expected, closely matches the mean match length of the de-
terministic case. The median match length of the deterministic case is better matched by the
inverse treatment, though. Which of those is the more relevant comparison depends on which
of these moments is more important for how people learn. If it indeed turns out that median
match length is the key statistic determining learning, then future research in both theory and
experiments is needed to build and test new models of learning which can accommodate this
fact.

For applied work it is important to know that different learning experiences may lead to
different behaviours and may be confounded with treatment effects. Not accounting for poten-
tial differences in learning experience may lead to falsely claiming effects when there are none
or to not finding effects when there are. In Section 4 we have discussed at length which design
features empirical studies might use to ensure their conclusions are less vulnerable to match
length realization effects. Future research could select the most promising among these and
systematically assess how well they work in practice.
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A Simulation Studies of Alternative Learning Models

We simulate three different learning models. Under reinforcement learning without counterfactuals
(see e.g. Erev and Roth (1998) and Roth and Erev (1995)) agents increase the propensity of the
strategy chosen by the payoff received, i.e.

ψi,m+1
s = ψi,m

s + 1(si,m = s)π(s, s−i,m, Tm),

where 1(si,m = s) indicates whether agent i uses strategy s in match m or not. Note that the
propensity for strategies not chosen does not change. This can be seen as a fairly simplistic
way of learning which is solely driven by ones’ own experience. Match length realizations
influence learning through their role in determining payoffs in the game. Note that this form
of reinforcement learning features what Erev and Roth (1998) call “force of habit” where fre-
quently chosen actions are reinforced more frequently. This is not the case under reinforcement
learning with counterfactuals (as discussed in the main part of the paper) where also strategies
that have not been played are reinforced and propensities for all strategies evolve according to

ψi,m+1
s = ψi,m

s + π(s, s−i,m, Tm).

In order to specify (smooth) fictitious play in the present environment we need to specify beliefs
about play of the others as well as beliefs about match length realizations. Here we show a
version where agent i simply uses the average previous match length realization, given by
T̄m = 1

m ∑m
k=1 Tk, and the share of her opponents previously choosing grim trigger, given by

σ−i,m = 1
m ∑m

k=1 1(s−i,k = GT), where 1(s−i,k = GT) equals one if agent i’s opponent had chosen
GT in period k and is zero otherwise. We adopt a propensity based formulation of fictitious
play as in Camerer and Ho (1999) and Hopkins (2002) where propensities are simply given by
the expected payoffs π̂ given these beliefs, i.e.

ψi,m+1
s = π̂(s, σ−i,m, T̄m).

For our simulation exercise we use Luce’s linear probability choice rule where choice prob-
abilities are linearly proportional to propensities.

To quantify the effect of match length realizations on cooperation rates in these models, we
have run several simulations for each of these three learning models, using key game param-
eters from the meta dataset of Dal Bó and Fréchette (2018)’s data. The payoff parameters of
the underlying PD games were chosen to correspond to the 25th, 50th and 75th percentile of
the distribution of SizeBAD. We follow Erev and Roth (1998) and have normalized payoffs of
the underlying PD games to ensure payoffs and propensities are positive. Table A.1 reports the
corresponding parameter values of Dal Bó and Fréchette (2018) alongside the values for R and P

when S and T were normalized to 0 and 1, respectively. In each simulation run, 16 agents were
matched against each other in a round robin tournament and match length realizations were
drawn at the session level using the discount factor δ = 0.75, thus targeting the median group
size and the most frequent discount factor in Dal Bó and Fréchette (2018). Our exercise contains
4000 simulated experiments played over 15 matches for each of the three payoff configuration
leading to 960,000 indefinitely repeated PD games for each of the three learning models.
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percentile SizeBAD ` g R P

25 0.1625 0.5 0.4 0.789 0.263
50 0.2 0.56 1 0.609 0.219
75 0.667 1.85 2 0.588 0.381

Table A.1: Payoff parameters used for simulations.

In the reinforcement learning models, initial propensities for both strategies were set to the
expected payoff when the match length corresponds to its mean and the opponent random-
izes with equal probability among the two strategies, averaged across the two strategies, i.e.
ψ̂i,0

s = (π̂(GT, 1
2 , T) + π̂(AD, 1

2 , T))/2. Note that for the reinforcement models this implies ini-
tial choice probabilities of pi,m

GT = pi,m
AD = 1

2 . Correspondingly, in the fictitious play model we
started with initial belief on the strategy of the opponent of σ−i,0 = 1/2 and with initial belief
on the match length of T̄0 = E[T].

Figure A.1: Effect Size for ∆1st
above in simulated data for the three models (bars) compared to effect

size in Dal Bó and Fréchette (2018) data (dashed line) in two samples: below median values of
SizeBAD (left three bars and thick dashed line) and above median values of SizeBAD (right three
bars and thick dashed line).

For each of these three datasets we run regressions identical to the one shown in column
(1) of Table 1, thus measuring the impact of long match length realizations in the first third of
matches on initial cooperation rates in the remainder of matches (see Tables A.2-A.4). Stan-
dard errors are clustered at the run level. We then compare the effect size obtained in these
regressions to the empirically observed one. As we have seen that there is an interaction effect
between SizeBAD and the effect of early match length realization (Table 1) we also split the
sample in below and above median SizeBAD.

Figure A.1 shows the results. Reinforcement learning (without counterfactuals) shows a
slightly larger effect compared to the other models.1 For all models the effect size does not differ
across the two subsamples of low and high SizeBAD (p > 0.1). This differs from the human
data, where for small values of SizeBAD early match length realization has a much larger effect
size, though the difference is just outside of conventional levels of statistical significance (p =

0.1753). In this sample the effect size obtained purely through the learning models is about

1Given the substantial sample size in the simulations all the effects obtained are highly statistically significant
(p < 0.0001).
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Simulated Reinforcement Learning
(1) (2) (3) (4) (5) (6)

∆1st
above 0.040*** 0.040*** 0.042*** 0.039*** 0.039*** 0.039***

(0.002) (0.003) (0.004) (0.002) (0.002) (0.005)
∆2nd

above 0.027*** 0.026*** 0.035***
(0.003) (0.002) (0.004)

SizeBAD -0.139*** -0.138*** -0.161*** -0.159***
(0.003) (0.003) (0.003) (0.004)

∆1st
above× SizeBAD -0.004 -0.000

(0.011) (0.012)
∆2nd

above× SizeBAD -0.025**
(0.010)

Constant 0.415*** 0.463*** 0.463*** 0.419*** 0.475*** 0.474***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Test ∆1st
above = ∆2nd

above - - - 0.0063 0.0003 0.0989

Observations 1,920,000 1,920,000 1,920,000 960,000 960,000 960,000
R-squared 0.002 0.013 0.013 0.002 0.017 0.017

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table A.2: Simulated Reinforcement Learning Model. Columns (1)-(3): Initial (first stage) coop-
eration rate in the 2nd and 3rd third of matches explained by dummy ∆1st

above indicating whether
more than 2

3 of matches in the 1st third of the experiment were longer than the theoretical median
match length. Columns (4)-(6): Initial (first stage) cooperation rate in the 3rd third of matches
explained by dummies ∆1st

above and ∆2nd
above. Standard errors clustered at session level.

Simulated Reinforcement Learning with Counterfactuals
(1) (2) (3) (4) (5) (6)

∆1st
above 0.030*** 0.029*** 0.037*** 0.025*** 0.024*** 0.029***

(0.001) (0.000) (0.001) (0.001) (0.000) (0.001)
∆2nd

above 0.016*** 0.018*** 0.024***
(0.001) (0.001) (0.002)

SizeBAD -0.181*** -0.178*** -0.184*** -0.180***
(0.001) (0.001) (0.002) (0.001)

∆1st
above× SizeBAD -0.023*** -0.017***

(0.003) (0.003)
∆2nd

above× SizeBAD -0.017***
(0.005)

Constant 0.399*** 0.461*** 0.460*** 0.400*** 0.463*** 0.462***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Test ∆1st
above = ∆2nd

above - - - 0.0001 0.0000 0.0000

Observations 1,920,000 1,920,000 1,920,000 960,000 960,000 960,000
R-squared 0.010 0.200 0.201 0.010 0.207 0.207

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table A.3: Simulated Reinforcement Learning Model with Counterfactuals. Columns (1)-(3):
Initial (first stage) cooperation rate in the 2nd and 3rd third of matches explained by dummy
∆1st

above indicating whether more than 2
3 of matches in the 1st third of the experiment were longer

than the theoretical median match length. Columns (4)-(6): Initial (first stage) cooperation rate
in the 3rd third of matches explained by dummies ∆1st

above and ∆2nd
above. Standard errors clustered

at session level.

a third of the overall effect size. In the sample where defection is relatively attractive (high
SizeBAD), the simulated effect size is about 80% of the empirical effect size with human players.

We have seen that all three learning models can explain the direction of the empirically
observed effect of match length realization and that effect sizes are similar across the three
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Simulated Fictitious Play Learning
(1) (2) (3) (4) (5) (6)

∆1st
above 0.027*** 0.029*** 0.038*** 0.021*** 0.023*** 0.030***

(0.001) (0.000) (0.001) (0.001) (0.001) (0.002)
∆2nd

above 0.023*** 0.022*** 0.029***
(0.001) (0.001) (0.002)

SizeBAD -0.178*** -0.175*** -0.189*** -0.185***
(0.001) (0.001) (0.001) (0.002)

∆1st
above× SizeBAD -0.025*** -0.019***

(0.003) (0.005)
∆2nd

above× SizeBAD -0.022***
(0.005)

Constant 0.392*** 0.449*** 0.448*** 0.395*** 0.456*** 0.454***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Test ∆1st
above = ∆2nd

above - - - 0.2481 0.4042 0.9592

Observations 1,920,000 1,920,000 1,920,000 960,000 960,000 960,000
R-squared 0.007 0.128 0.128 0.009 0.149 0.149

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table A.4: Simulated Fictitious Play Learning Model. Columns (1)-(3): Initial (first stage) coop-
eration rate in the 2nd and 3rd third of matches explained by dummy ∆1st

above indicating whether
more than 2

3 of matches in the 1st third of the experiment were longer than the theoretical median
match length. Columns (4)-(6): Initial (first stage) cooperation rate in the 3rd third of matches
explained by dummies ∆1st

above and ∆2nd
above. Standard errors clustered at session level.

models. However, we have also seen that effect sizes are larger empirically than what we
would expect from the models. This is particularly the case when sizeBAD is small, i.e. when
cooperation is relatively attractive. One possible explanation why effect sizes are larger with
human players is that they may stop learning after some rounds, while the simulated learning
models keep learning. Hence for the simulated learners the effect of initially long matches is
(partially) corrected when later matches are shorter.
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B Population Estimates of Learning Models

This section reports the results of Monte Carlo studies designed to investigate the presence and
direction of bias in the estimation of α, λ and (ψi,0

GT − ψi,0
AD). As explained in Section 2.3 we

estimate the following likelihood function.

L(ψi,0
GT, ψi,0

AD, λ, α) =
N

∏
i=1

M

∏
m=1

(
pi,m
)yi,m

GT
(

1− pi,m
)1−yi,m

GT

with

pi,m =
eλ[(ψi,0

GT−ψi,0
AD)+α∆Πm+(1−α)∆Πm

E[T]]

1 + eλ[(ψi,0
GT−ψi,0

AD)+α∆Πm+(1−α)∆Πm
E[T]]

The log-likelihood is given by

LL(ψi,0
GT, ψi,0

AD, λ, α) =
N

∑
i=1

M

∑
m=1

yi,m
GT ln

(
pi,m
)
+ (1− yi,m

GT) ln
(

1− pi,m
)

.

Wilcox (2006) has made the point that in pooled estimations of models that contain lagged
variables (such as the learning model we are interested in), the presence of heterogeneity in the
parameter λ can cause biases in the estimated parameters (see also Cabrales and Garcia-Fontes
(2000)). To study whether our estimations could potentially be affected by a similar issue we
assume that α, our parameter of interest, is constant across players and has an unknown true
mean α0. We assume, however, that there is heterogeneity in λ which has known true mean λ0.
For simplicity we assume that ψi,0

GT − ψi,0
AD = 0. Without heterogeneity (i.e. if λi = λ0, ∀i), the

maximum likelihood estimator α̂ of α0 solves

m(α̂) = (N(M− 1))−1
N

∑
i=1

M

∑
m=1

(
yi,m

GT − pi,m
)
[∆Πm − ∆Πm

E(T)]λ.

With heterogeneity in λ the MLE converges to

m(α0) =
(

Eλ[Ei(yi,m
GT)]−Eλ[Ei(pi,m)]

)
Eλ[Ei(∆Πm − ∆Πm

E(T))λ] + W,

where Eλ is the expectation with respect to the distribution of λi and W consists of two
potentially non-zero terms (i) Eλ[Covi[(yi,m

GT − pi,m), ∆Πm − ∆Πm
E(T)]] and (ii) Covλ[Ei(yi,m

GT)−
Ei(pi,m), Ei(∆Πm − ∆Πm

E(T))] , where Covi denotes the covariance given λi and Covλ the co-
variance with respect to the distribution of λi. See Wilcox (2006) for the derivation of this
expression. Intuitively the first term measures the expected covariance between the reinforce-
ment values (∆Πm − ∆Πm

E(T)) and the model prediction errors (yi,m
GT − pi,m). The second term

measures the between players steady-state covariance of the expected pooled model predic-
tion errors given λi and the expected counterfactual reinforcement given λi. Wilcox (2006) has
shown (“Second Argument” in the Appendix) that the first term approaches zero as the vari-
ance of (∆Πm − ∆Πm

E(T)) approaches zero.2 The potential source of the bias is the second term

(Covλ[Ei(yi,m
GT)−Ei(pi,m), Ei(∆Πm − ∆Πm

E(T))]).

2This is true because our model takes counterfactuals fully into account and hence corresponds to the case δ0 = 1
in Wilcox (2006).
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We conduct Monte Carlo studies to answer the following questions: (i) Do we obtain biases
and if so in which of our parameters of interest? and (ii) how big are these biases and can we
systematically sign them? In the simulations the data generating process is given by equations
(6) and (7). We assume δ = 0.75, M = 15 matches and N = 16 players who are randomly
matched in pairs to play an indefinitely repeated game. We conduct two sets of simulations:
(i) without heterogeneity in the underlying parameters and (ii) with heterogeneity. For each
case we consider values of α0 ∈ {0, 0.25, 0.5, 0.75, 1}. Without heterogeneity we consider two
values of λ0 ∈ {0.2, 1}. The value 0.2 is close to the estimate we obtain with the Dal Bó and
Fréchette (2018) data and 1 is used as an alternative case of substantially higher λ to get a sense
of how significant potential downward biases could be. With heterogeneity we assume that λ

is uniformly distributed either in [0.1, 0.2] or [0.5, 1.5]. We also consider two cases with hetero-
geneity in α in which case we assume α is uniformly distributed in [0, 1]. The term (ψi,0

GT −ψi,0
AD)

is of secondary interest and we always assume (ψi,0
GT − ψi,0

AD) = 0. For each of these parame-
ter combinations we conduct 1000 such exercises leading to a total of 240 000 observations of
individual choices between GT and AD for each case.

We first discuss the results when there is no heterogeneity. Without heterogeneity Cabrales
and Garcia-Fontes (2000) (and Wilcox (2006)) have shown that the maximum likelihood es-
timator is consistent in the limit as the number of observations approaches infinity.3 For a
reasonably large sample as in our simulations and as in Section 2.3 we would hence not expect
substantial biases in this case. Indeed Table B.1 shows that in this case all three parameters are
estimated very precisely and without bias.

As an aside, it should also be noted that for individual level estimates the sample size in the
our data is rather small and, as expected, we do see substantial biases emerge. For example,
in the case where α0 = 0.5 and λ0 = 1 shown in Table B.1, individual level estimates fail
to converge in almost half of the cases. When they do the average estimated α = 0.453, a
substantial downward bias, and the range of estimated α reaches from 0.1 to 1. It is clearly
advisable, hence, to estimate α at the population level given the structure of the data available.

Table B.2 shows the results of our Monte Carlo simulations with heterogeneity. The table
shows that when there is heterogeneity in λ we obtain systematic downward biases in our
estimates of λ. The maximal size of the bias we detect is a 15% underestimation of the true
mean in the case where λ ∼ [0.5, 1.5] and a 5% underestimation in the case where λ ∼ [0.1, 0.3].
When λ ∼ [0.5, 1.5] we detect biases in α in two out of the five cases. For α0 = 0.5, closest to the
estimated values in Section 2.3, we detect no statistically significant bias. If at all, there is slight
overestimation by about 5%. Crucially, whenever λ ∼ [0.1, 0.3] we do not detect any biases in
our estimates neither of α nor of (ψi,0

GT −ψi,0
AD). Last, we explore also a case where heterogeneity

is not in λ as in Wilcox (2006), but instead in α (bottom panel in Table B.2) . Specifically we
assume α ∼ [0, 1]. In this case we do not find systematic biases.

3Cabrales and Garcia-Fontes (2000) and Wilcox (2006) discuss estimating parameters from EWA (experience
weighted attraction learning), in particular a parameter that measures how much weight participants give to coun-
terfactual information in the reinforcement values.
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Without heterogeneity
α λ (ψi,0

GT − ψi,0
AD) α λ (ψi,0

GT − ψi,0
AD)

True 0 1 0 0 0.2 0

Estimate 0.005 0.998 -0.006 -0.012 0.202 0.011
(0.010) (0.006) (0.010) (0.039) (0.002) (0.036)

Bias NO NO NO NO NO NO

True 0.25 1 0 0.25 0.2 0

Estimate 0.248 0.999 -0.006 0.233 0.198 0.056
(0.011) (0.007) (0.009) (0.030) (0.002) (0.056)

Bias NO NO NO NO NO NO

True 0.5 1 0 0.5 0.2 0

Estimate 0.505 0.996 0.004 0.484 0.197 0.058
(0.015) (0.013) (0.004) (0.039) (0.002) (0.032)

Bias NO NO NO NO NO NO

True 0.75 1 0 0.75 0.2 0

Estimate 0.768 1.003 0.007 0.750 0.200 0.048
(0.007) (0.005) (0.007) (0.001) (0.001) (0.048)

Bias 0.018 NO NO NO NO NO

True 1 1 0 1 0.2 0

Estimate 1.000 1.009 0.000 0.979 0.200 -0.020
(0.007) (0.005) (0.007) (0.010) (0.002) (0.026)

Bias NO NO NO NO NO NO

N 240 000

Table B.1: Simulations of the extended learning model without heterogeneity in the underlying
true parameters. “True” is the parameter value used to generate the data. “Estimate” is our
estimate with standard deviation in brackets. “Bias” indicates whether there is bias, i.e. whether
the estimates are statistically different from the true value at the 5% level and if so the sign and
size of the bias.
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With heterogeneity
α λ (ψi,0

GT − ψi,0
AD) α λ (ψi,0

GT − ψi,0
AD)

True 0 ∼ [0.5, 1.5] 0 0 ∼ [0.1, 0.3] 0

Estimate 0.027 0.854 0.076 0.062 0.192 0.043
(0.012) (0.006) (0.012) (0.041) (0.002) (0.038)

Bias 0.027 -0.146 0.076 NO -0.008 NO

True 0.25 ∼ [0.5, 1.5] 0 0.25 ∼ [0.1, 0.3] 0

Estimate 0.296 0.852 0.076 0.273 0.193 -0.020
(0.012) (0.005) (0.011) (0.034) (0.002) (0.034)

Bias 0.046 -0.148 0.076 NO -0.006 NO

True 0.5 ∼ [0.5, 1.5] 0 0.5 ∼ [0.1, 0.3] 0

Estimate 0.524 0.875 0.022 0.502 0.192 0.043
(0.016) (0.005) (0.009) (0.039) (0.001) (0.032)

Bias NO -0.125 0.022 NO -0.007 NO

True 0.75 ∼ [0.5, 1.5] 0 0.75 ∼ [0.1, 0.3] 0

Estimate 0.752 0.876 0.038 0.750 0.191 0.036
(0.006) (0.005) (0.008) (0.001) (0.002) (0.030)

Bias NO -0.124 0.038 NO -0.008 NO

True 1 ∼ [0.5, 1.5] 0 1 ∼ [0.1, 0.3] 0

Estimate 1.002 0.907 -0.020 1.006 0.195 0.002
(0.001) (0.005) (0.006) (0.002) (0.027)

Bias NO -0.093 -0.020 NO -0.005 NO

True ∼ [0, 1] 1 0 ∼ [0, 1] 0.2 0

Estimate 0.539 0.986 -0.002 0.505 0.199 0.004
(0.018) (0.006) (0.008) (0.009) (0.006) (0.006)

Bias NO -0.014 NO NO NO NO

N 240 000

Table B.2: Simulations of the extended learning model with heterogeneity in the underlying true
parameters. “True” is the parameter value used to generate the data. When there is hetero-
geneity the individual parameter values are always drawn from a uniform distribution on the
interval indicated. The true mean is hence the midpoint of the interval. “Estimate” is our esti-
mate with standard deviation in brackets. “Bias” indicates whether there is bias, i.e. whether
the estimates are statistically different from the true value at the 5% level and if so the sign and
size of the bias.
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C Additional Information Experiments

We conducted our own experiment to complete Case Study I (Section 3.1). In this Appendix we
provide additional information on these experiments. Our experiments were conducted at Es-
sex Lab at the University of Essex. The deterministic, replication and inverse treatments were
conducted in February/March 2017 and the MatchStoch treatment in May 2019. Participants
were students (and some non-students) who signed up for lab experiment at EssexLab at the
University of Essex. They were recruited using recruitment software hroot. Table C.1 shows
some demographics of our participants as well their answers to a post experimental question-
naire. We used exactly the same questionnaire as Bigoni et al. (2015), but replaced the question
about whether people were born in Italy with whether they were born in the UK.

Sample Characteristics
Rep Inverse MatchStoch Det

Age 26.54 24.25 22.76 25.27
From UK (1=yes) 0.38 0.23 0.37 0.44

Gender (1=female) 0.47 0.44 0.42 0.50
Risk Attitude (0-10) 6.54 5.89 6.16 6.23

Trust (0-1) 0.38 0.39 0.33 0.42
Logic1 (0-1) 0.64 0.58 0.70 0.67
Logic2 (0-1) 0.33 0.31 0.52 0.40

Table C.1: Basic Sample Characteristics of Lab Experimental Sample used in Section 3.1. Mean
Age, fraction of participants born in UK, fraction female, mean risk attitude (0, most risk averse,
10 least risk averse), fraction displaying high trust, fraction answering Logic 1 question correctly
and fraction answering Logic 2 question correctly.

In all the experiments we followed exactly the same procedures used by Bigoni et al. (2015)
including using the exact same Instructions and software (translated from Italian to English).
The only change made to the software was to change the match length realizations (i) to be
drawn at the match level in session MatchStoch and (ii) inversed in treatment “Inverse” (see
Figure E.4). We use the draws generated by Bigoni et al. (2015) in the “Replication” and “In-
verse” treatments. As the interest of the study is match length realization, there was no other
way to conduct an exact replication. The procedure are in line with what was communicated
to participants which is the following: “How is a period duration established? The period may stop
at every tick of 0.16 seconds. This event depends on the results of a random draw...”. No further
information was given about when this draw took/will take place.
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D Additional Tables

This Appendix contains additional tables.

D.1 Additional Tables for Section 2.2

In Table D.1 we consider separately the effect of match length realization of the 1st tenth, ninth,
eight,..., half of matches on first-stage cooperation rates in the remaining matches. The table
shows that there is a positive effect of match length realization in all these cases. However, the
effect is smaller for the first tenth, ninth,...,sixth of matches compared to our baseline specifi-
cation using the first third of matches. This shows that, while the very first matches are very
important there is still learning and match length realizations become more important as more
early matches are aggregated. Using the 1st half of matches, however, does not lead to a larger
effect than using the 1st third.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
1st... tenth ninth eight seventh sixth fifth fourth third half

∆1st
above 0.125** 0.081 0.020 0.055 0.023 0.078 0.181*** 0.226*** 0.165***

(0.057) (0.059) (0.058) (0.061) (0.060) (0.063) (0.061) (0.056) (0.073)
SizeBAD -0.592*** -0.692*** -0.781*** -0.815*** -0.829*** -0.744*** -0.628*** -0.539*** -0.688***

(0.0726) (0.0769) (0.0967) (0.0964) (0.0867) (0.116) (0.120) (0.0945) (0.152)
SizeBAD × ∆1st

above -0.189** -0.056 0.053 -0.066 -0.105 -0.028 -0.212*** -0.296*** -0.103
(0.081) (0.082) (0.093) (0.077) (0.084) (0.116) (0.073) (0.094) (0.163)

Constant 0.852*** 0.916*** 1.003*** 1.038*** 1.051*** 0.965*** 0.843*** 0.747*** 0.886***
(0.0574) (0.0750) (0.0977) (0.0992) (0.0901) (0.118) (0.123) (0.0987) (0.155)

Observations 45,869 45,469 44,773 43,955 43,481 41,873 38,778 34,319 25,795
R-squared 0.188 0.188 0.189 0.195 0.196 0.199 0.212 0.223 0.237

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table D.1: Initial (first stage) cooperation rate in remaining matches depending on whether at
least 2

3 of first X-th of matches where above theoretical median length.

Table D.2 compares the impact of match length realization in the first X-th, second X-th,
third X-th,... of matches on cooperation in the last X-th of matches, where X ranges from 2,...,10.
The coefficient ∆1st

above is statistically significant in seven out of these nine different splits while
all other dummies are statistically significant in fewer than 50 percent of the cases where they
are included. ∆1st

above also has the biggest coefficient size in all cases X = 2, ..., 6 and the second-
biggest coefficient size when X = 7, .., 10, though it should be noted that these differences are
not always statistically significant. Furthermore for all X = 2, ..., 9 the coefficient corresponding
to the first X-th of matches is bigger than the one corresponding to the most recent (the X− 1th)
X-th of matches. As the finer splits often involve only very few matches in each group we
consider the cases X = 2, ..., 6 to be more meaningful. The table hence emphasizes the point
that early match length realization is at least as important or more important than match length
realization in more recent matches.

Table D.3 shows the results of a placebo test, where we regress cooperation in the 1st third of
matches on ∆3rd

above (as well as SizeBAD and an interaction). We would not expect realized match
length of final matches, which have not yet been played, to affect cooperation in the beginning
of the experiment. Hence we would expect zero coefficients on ∆3rd

above and the corresponding
interaction term. We do indeed find that these coefficients are close to zero and statistically
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(1) (2) (3) (4) (5) (6) (7) (8) (9)
1st... tenth ninth eight seventh sixth fifth fourth third half

∆1st
above 0.010 0.057* 0.048 0.082** 0.065* 0.077** 0.105*** 0.101** 0.123***

(0.037) (0.031) (0.033) (0.035) (0.034) (0.039) (0.036) (0.041) (0.044)
∆2nd

above 0.051 0.026 0.022 0.037 0.017 0.075** 0.097** 0.069*
(0.03) (0.041) (0.037) (0.034) (0.045) (0.036) (0.038) (0.039)

∆3rd
above -0.014 -0.015 0.019 0.087** 0.048 0.076* 0.074**

(0.039) (0.039) (0.038) (0.037) (0.036) (0.040) (0.035)
∆4th

above 0.070* 0.103*** 0.017 0.003 0.050 0.075**
(0.038) (0.035) (0.037) (0.034) (0.037) (0.036)

∆5th
above -0.000 0.001 0.091** 0.006 0.014

(0.035) (0.032) (0.040) (0.045) (0.044)
∆6th

above 0.033 0.044 0.047 0.001
(0.033) (0.043) (0.039) (0.039)

∆7th
above -0.004 0.012 0.022

(0.041) (0.040) (0.034)
∆8th

above -0.025 0.030
(0.033) (0.037)

∆9th
above 0.050

(0.037)
SizeBAD -0.824*** -0.814*** -0.806*** -0.806*** -0.809*** -0.805*** -0.805*** -0.809*** -0.769***

(0.0808) (0.0729) (0.0772) (0.0875) (0.0796) (0.0777) (0.0734) (0.0681) (0.0670)
Constant 0.989*** 0.966*** 0.965*** 0.969*** 0.977*** 0.973*** 0.983*** 0.994*** 0.967***

(0.0940) (0.0789) (0.0836) (0.0926) (0.0852) (0.0823) (0.0798) (0.0747) (0.0736)

Observations 5,905 7,338 7,506 8,296 9,148 11,721 13,573 18,536 25,795
R-squared 0.257 0.273 0.266 0.269 0.262 0.268 0.265 0.251 0.236

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table D.2: Initial (first stage) cooperation rate in remaining matches depending on whether at
least 2

3 of first X-th, second X-th, third X-th,... of matches where above theoretical median length.

not significant. This shows that the results in Table 1 are fundamental and not e.g. driven by
correlations of match lengths within sessions or observed or unobserved heterogeneity across
papers or treatments, e.g. caused by different ways researchers implement match length draws.

Placebo test
(1) (2) (3)

∆3rd
above 0.038 -0.054 -0.053

(0.055) (0.061) (0.060)
SizeBAD -0.643*** -0.650***

(0.061) (0.078)
SizeBAD × ∆3rd

above 0.009
(0.055)

Constant 0.365*** 0.908*** 0.915***
(0.045) (0.070) (0.085)

δ f.e. NO YES YES

Observations 29,467 29,467 29,467
R-squared 0.002 0.141 0.141

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table D.3: Placebo test. Initial (first stage) cooperation rate in the 1st third of matches explained
by dummy ∆3rd

above indicating whether more than 2
3 of matches in the 3rd third of the experiment

were longer than the theoretical median match length.

Appendix Table D.4 reproduces our main results reported in Table 1 using paper fixed ef-
fects.

In Appendix Table D.5 we use the share of matches above theoretical median length instead
of a dummy variable.
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Main Result with paper fixed effects
(1) (2) (3) (4) (5) (6)

∆1st
above 0.115** 0.120*** 0.267*** 0.120* 0.119*** 0.247***

(0.055) (0.040) (0.053) (0.060) (0.040) (0.058)
∆2nd

above 0.025 0.068 0.058
(0.067) (0.042) (0.061)

SizeBAD -0.746*** -0.497*** -0.808*** -0.573***
(0.075) (0.084) (0.075) (0.148)

SizeBAD × ∆1st
above -0.328*** -0.291***

(0.084) (0.094)
SizeBAD × ∆2nd

above -0.015
(0.132)

Constant 0.826*** 1.006*** 0.757*** 0.227*** 1.101*** 0.946***
(0.0147) (0.0782) (0.0869) (0.0215) (0.120) (0.161)

δ f.e. NO YES YES NO YES YES
paper f.e. YES YES YES YES YES YES
Test ∆1st

above=∆2nd
above - - - 0.3477 0.4220 0.0508

Observations 34,319 34,319 34,319 18,536 18,536 18,536
R-squared 0.104 0.239 0.245 0.122 0.274 0.278

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table D.4: Columns (1)-(3): Initial (first stage) cooperation rate in the 2nd and 3rd third of
matches explained by dummy ∆1st

above indicating whether more than 2
3 of matches in the 1st third

of the experiment were longer than the theoretical median match length. Columns (4)-(6): Initial
(first stage) cooperation rate in the 3rd third of matches explained by dummies ∆1st

above and ∆2nd
above.

Standard errors clustered at session level. Observations stem from 103 sessions spread across 11
papers. With paper fixed effects.

Share of matches above median
(1) (2) (3) (4) (5) (6)

Share1st
above 0.218*** 0.206** 0.309*** 0.072 0.210** 0.310**

(0.068) (0.079) (0.113) (0.112) (0.080) (0.120)
Share2nd

above 0.235** 0.151 0.111
(0.112) (0.094) (0.130)

SizeBAD -0.764*** -0.446 -0.813*** -0.573
(0.0759) (0.383) (0.0754) (0.424)

SizeBAD × Share1st
above -0.441 -0.434

(0.490) (0.498)
SizeBAD × Share2nd

above 0.104
(0.281)

Constant 0.290*** 1.023*** 0.706* 0.250*** 1.041*** 0.801*
(0.031) (0.079) (0.384) (0.030) (0.078) (0.425)

δ f.e. NO YES YES NO YES YES
Test Share1st

above=Share2nd
above - - - 0.4465 0.6338 0.2631

Observations 34,319 34,319 34,319 18,536 18,536 18,536
R-squared 0.023 0.236 0.237 0.044 0.271 0.271

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table D.5: Columns (1)-(3): Initial (first stage) cooperation rate in the 2nd and 3rd third of
matches explained by share of matches in the 1st third of the experiment were longer than the
theoretical median match length. Columns (4)-(6): Initial (first stage) cooperation rate in the 3rd
third of matches explained by share of matches longer than theoretical median length in 1st and
2nd third of matches. Standard errors clustered at session level. Observations stem from 103
sessions spread across 11 papers.

In Appendix Table D.6 we conduct the same analysis as Table 1 with the only difference that
∆1st

above takes the value 1 if more than half (rather than 2
3 ) of early matches are above median. It
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is hence a much weaker test as match length realizations with more or less than half of matches
above median need not differ by much. In the most extreme case they might differ by one
round only, which is not much if matches are long, i.e. δ is high. On the other hand it should
allow us to better identify the effect of shorter match length when δ = 0.5, as there will be more
variation in the dummy in this case. Indeed we do find that the dummy defined in this way
is more effective in capturing differences when δ = 0.5. Overall the effect of shorter matches
reported in column (1) is now a 38% increase in cooperation rates compared to the 43% increase
identified in Table 1. Table D.7 goes the opposite direction and shows results when a dummy
is used indicating whether more than 3

4 of early matches were above median. Again results are
similar, even though this dummy takes the value 1 much less often.

Reduced Threshold
(1) (2) (3) (4) (5) (6)

∆1st
above 0.120** 0.142*** -0.095 0.051 0.143** -0.102

(0.050) (0.051) (0.085) (0.058) (0.057) (0.091)
∆2nd

above 0.157** 0.064 0.076
(0.062) (0.054) (0.094)

SizeBAD -0.792*** -1.967*** -0.826*** -2.039***
(0.066) (0.286) (0.067) (0.322)

SizeBAD × ∆1st
above 1.184*** 1.239***

(0.279) (0.321)
SizeBAD × ∆2nd

above -0.018
(0.163)

Constant 0.320*** 1.000*** 2.175*** 0.277*** 1.011*** 2.225***
(0.032) (0.072) (0.287) (0.032) (0.073) (0.324)

δ f.e. NO YES YES NO YES YES
Test ∆1st

above=∆2nd
above - - - 0.3178 0.2876 0.1933

Observations 34,319 34,319 34,319 18,536 18,536 18,536
R-squared 0.014 0.219 0.223 0.036 0.249 0.254

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table D.6: Reduced Threshold. Initial (first stage) cooperation rate in the 2nd and 3rd third of
matches explained by dummy ∆1st

above indicating whether more than 1
2 of matches in the 1st third

of the experiment were longer than the theoretical median match length.

In Appendix Table D.8 we ask whether unusually short early matches or unusually long
early matches have a larger effect. To this end we reproduce Table 1 using now a dummy ∆1st

below

which takes the value 1 if more 2
3 of early matches are below the theoretical median length.

For the sessions identified by this dummy cooperation rates are 32% lower in specification (1),
indicating that the overall effect of match length realizations is broadly symmetric.
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Increased Threshold
(1) (2) (3) (4) (5) (6)

∆1st
above 0.192*** 0.054 0.147** 0.149** 0.044 0.139**

(0.067) (0.038) (0.059) (0.070) (0.038) (0.059)
∆2nd

above 0.181*** 0.079** 0.112*
(0.062) (0.038) (0.063)

SizeBAD -0.743*** -0.671*** -0.766*** -0.661***
(0.067) (0.077) (0.068) (0.090)

SizeBAD × ∆1st
above -0.215*** -0.221**

(0.081) (0.085)
SizeBAD × ∆2nd

above -0.060
(0.092)

Constant 0.346*** 0.951*** 0.879*** 0.297*** 0.951*** 0.846***
(0.030) (0.073) (0.082) (0.029) (0.074) (0.095)

δ f.e. NO YES YES NO YES YES
Test ∆1st

above=∆2nd
above - - - 0.3477 0.4220 0.050

Observations 34,319 34,319 34,319 18,536 18,536 18,536
R-squared 0.031 0.215 0.218 0.064 0.249 0.252

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table D.7: Reduced Threshold. Initial (first stage) cooperation rate in the 2nd and 3rd third of
matches explained by dummy ∆1st

above indicating whether more than 3
4 of matches in the 1st third

of the experiment were longer than the theoretical median match length.

Short matches
(1) (2) (3) (4) (5) (6)

∆1st
below -0.144*** -0.042 -0.145** -0.063 -0.045 0.092

(0.049) (0.051) (0.061) (0.080) (0.057) (0.074)
∆2nd

below -0.138 -0.041 0.040
(0.083) (0.060) (0.102)

SizeBAD -0.759*** -0.750*** -0.799*** -0.775***
(0.066) (0.067) (0.068) (0.071)

SizeBAD × ∆1st
below -1.093*** -0.768***

(0.188) (0.239)
SizeBAD × ∆2nd

below -0.228
(0.152)

Constant 0.442*** 1.010*** 1.907*** 0.468*** 1.071*** 1.824***
(0.036) (0.097) (0.150) (0.039) (0.127) (0.185)

δ f.e. NO NO YES NO NO YES
Test ∆1st

below=∆2nd
below - - - 0.6325 0.9650 0.6977

Observations 34,319 34,319 34,319 18,536 18,536 18,536
R-squared 0.018 0.213 0.215 0.033 0.242 0.244

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table D.8: Focus on Short Matches. Initial (first stage) cooperation rate in the 2nd and 3rd third
of matches explained by dummy ∆1st

below indicating whether more than 2
3 of matches in the 1st

third of the experiment were shorter than the theoretical median match length.
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D.2 Additional Tables for Section 3.1

Average Cooperation Rates
(1) (2) (3) (4)

Replication -14.46*** -14.72***
(4.722) (4.955)

Inverse -3.142 -3.582
(3.555) (3.548)

Match Stochastic -6.641 -6.956 -6.923 -7.210
(5.154) (5.059) (5.093) (4.993)

L.Duration -0.022 0.013
(0.045) (0.054)

Constant 54.04*** 55.31*** 42.03*** 42.43***
(3.454) (3.497) (8.895) (8.445)

Demographics NO NO YES YES

Observations 6,624 6,336 4,416 4,224
Number of id 288 288 192 192

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table D.9: Random Effects OLS regression of average cooperation rate on treatment dummies
and covariates (age, gender, birthplace, nationality). Standard errors clustered at session level.
Columns (3) and (4) only use data from match stochastic and deterministic sessions.

Initial Cooperation Rates
(1) (2) (3) (4)

Replication -22.06*** -22.44***
(3.921) (3.756)

Inverse -0.589 -0.538
(3.367) (3.451)

Match Stochastic -12.77** -13.11** -12.94** -13.23**
(6.306) (6.391) (6.429) (6.533)

L.Duration 0.061 0.119*
(0.041) (0.065)

Constant 73.96*** 73.68*** 57.61*** 56.58***
(3.144) (3.369) (12.20) (11.97)

Demographics NO NO YES YES

Observations 6,624 6,336 4,416 4,224
Number of id 288 288 192 192

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table D.10: Random Effects OLS regression of initial cooperation rate on treatment dummies
and covariates (age, gender, birthplace, nationality). Standard errors clustered at session level.
Columns (3) and (4) only use data from match stochastic and deterministic sessions.
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D.3 Additional Tables for Section 3.2

First Round Cooperation Rate
Decision Setting Finite Prob All Prob S1 Prob S23 S1 vs S23

N = 4, MPCR= 0.3 24.9 28.8 16.56 34.95
< >∗ <∗∗ p = 0.002

N = 4, MPCR= 0.6 44.0 47.7 38.88 51.00
< > < p = 0.224

N = 2, MPCR= 0.6 52.4 44.3 42.56 45.46
> > > p = 0.678

N = 2, MPCR= 0.6, Binary 76.1 57.8 54.28 59.23
>∗∗∗ >∗ >∗∗∗ p = 0.613

Table D.11: Initial cooperation rates across all rounds in the finite sessions (column (1)) and
across all sessions with a probabilistic ending (column (2)) as in Table 3 in Lugovskyy et al.
(2017). We further split the sessions with probabilistic ending in those with initially short
matches (S1) and those with initially long matches (S23). Below each cooperation rate we show
how the finite setting compares to the rate in question (as in Lugovskyy et al. (2017)). The last
column shows the p-value when comparing initially short and long sequences. Following Lu-
govskyy et al. (2017) standard errors are clustered at the participant level in all regressions.

D.4 Additional Tables for Section 3.3

with RO All groups Short first matches Other Groups Short vs Other

Substitutes 16.5 9.0 20.1
Complements 23.2 34.9 17.3

Treatment Effect - 6.7 -25.2∗∗ 2.8 p = 0.1280

without RO All groups Short first matches Other Groups Short vs Other

Substitutes 17.6 20.9 15.9
Complements 10.9 16.2 8.1

Treatment Effect 6.7∗ 4.7 7.8 p = 0.8949

Table D.12: Efficiency measure from Table 2 (all matches) in Embrey et al. (2019). Treatment
Effect is the difference between substitutes and complements. The two rightmost columns split
out the groups with short initial matches from the rest.
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D.5 Additional Tables for Section 4

δ = 0.5 δ = 0.75
(1) (2) (3) (4) (5) (6) (7) (8)

mean duration 0.021 -0.001 0.022 0.015* -0.004 -0.002
(0.070) (0.077) (0.075) (0.008) (0.016) (0.012)

median duration 0.104* 0.105 0.087 0.020** 0.024* 0.035**
(0.063) (0.082) (0.105) (0.008) (0.016) (0.016)

SizeBAD -0.662*** -0.704*** -0.705*** -0.642*** -0.825*** -0.847*** -0.848*** -0.965***
(0.113) (0.113) (0.103) (0.089) (0.071) (0.065) (0.064) (0.077)

Constant 0.665*** 0.519*** 0.521*** 0.527** 0.776*** 0.753*** 0.759*** 0.575***
(0.150) (0.174) (0.151) (0.201) (0.061) (0.062) (0.061) (0.098)

paper fixed effects NO NO NO YES NO NO NO YES

Observations 10,786 10,786 10,786 10,786 12,380 12,380 12,380 12,380
R-squared 0.151 0.160 0.160 0.173 0.185 0.189 0.189 0.225

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table D.13: First round cooperation in the 2nd and 3rd third of matches regressed on mean and
median match length in the 1st third. We selected the two discounted factors with most papers
in the meta-study (8 papers for δ = 0.75 and 4 papers for δ = 0.5).
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E Additional Figures

Figure E.1: Meta Data used in Section 2.2: Kernel density estimates of the difference between
theoretical median match length and realized match length overall (left panel) and separately
for δ = 0.5, 0.75 and δ = 0.9 (right panel).

Figure E.2: Section 2.2 The Effect of Experience (Number of Matches Played in a Session) on Es-
timated Coefficient ∆1st

above. Black diamonds show the estimated coefficient ∆1st
above on cooperation

in the last third of matches depending on the total number of matches played in the session.
The black line shows fitted values using a square polynomial. Squares and light gray dashed
line show the effect of the first half of matches on the second half and triangles and dark gray
dashed line the effect of the first quarter on the last quarter of matches.
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Figure E.3: Kernel density estimates of observed cooperation in stage 1 of a match depending on
the predicted probability of cooperation in stage 1, i.e. the predicted probability of Grim Trigger
(pi,m). Left panel shows the basic model and right panel the extended model. The dashed line
is the 45 degree line showing zero prediction error. (Note that the x-axis range differs from the
y-axis range).

Figure E.4: Section 3.1: Illustration of how sequence of “inverse” match lengths is generated for
the two sessions.

Figure E.5: Different Effect sizes Median Cooperation Frequency Det-Stoch.
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Figure E.6: Section 3.3: Illustration of treatment effect for different permutations of two matching
groups. Histogram and estimated kernel density. Left Panel: treatments with revision opportu-
nities. Right panel: treatments without revision opportunities.

21


