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Abstract—As power systems are gradually evolving into more
efficient and intelligent cyber-physical energy systems with the
large-scale penetration of renewable energies and information
technology, they become increasingly reliant upon more accurate
and complex forecasting. The accuracy and generalizability of the
forecasting rest to a great extent upon the data quality, which is
very susceptible to cyberattacks. False data injection (FDI) attacks
constitute a class of cyberattacks that could maliciously alter a
large portion of supposedly-protected data, which may not be easily
detected by existing operational practices, thereby deteriorating the
forecasting performance causing catastrophic consequences in the
power system. This paper proposes a novel data-driven FDI attack
detection mechanism to automatically detect the intrusions and thus
enrich the reliability and resiliency of energy forecasting systems. The
proposed mechanism is based on cross-validation, least-squares and
z-score metric providing accurate detections with low computational
cost and high scalability without utilizing neither system’s models nor
parameters. The effectiveness of the proposed detector is corroborated
through six representative tree-based wind power forecasting models.
Experiments indicate that corrupted data injected into input, output
and input-output data is properly located and removed, whereby the
accuracy and generalizability of the final forecasts are recovered.

Index Terms—Cyberattack, False data injection, Forecasting,
Machine learning, Cross-validation.

I. INTRODUCTION

Along with population and economic growth, the exploitation of
fossil fuel resources continues to increase worldwide, thereby accel-
erating the gradual fossil fuel depletion and increasing pollution den-
sity. These issues, besides the low energy efficiency of conventional
power systems, have paved the way for the remarkable proliferation
of renewable energy sources (RESs) into power grids [1], [2]. The
European Union, as an example, has expressed the ambitious goal of
making a 43% of RESs portfolio share by 2030– in the so-called ”Eu-
ropean Energy Union” [3]. As such, RESs have become a defining
feature of modern power systems due to increasing technical effi-
ciency, addressing environmental concerns and lowering costs [4].

Despite all benefits, RESs like wind and solar are tied with
volatility, both temporally and geographically [5]. Thus, they are
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contingent upon high variability and uncertainty, which makes RES
penetration challenging. The main issues here are those of extra
flexibility and reliability that should be provided once RESs are
added to the power systems. To compensate for these issues, several
solutions are introduced/adopted, e.g., sub-hourly scheduling and
dispatching, flexibility resources integration, and the large-scale
movement toward energy storage, demand response programs,
and natural gas units [6]. Another way to account for RESs’
intermittency is the accurate forecasting of renewable generation.
While the associated costs for these different options are very
system-dependent and time-evolving, renewable energy forecasting
is considered as the lowest-cost and easiest-to-implement thereof
[7]. Moreover, accurate forecasting guarantees higher reliability of
the system operation and, therefore, penetration of RESs into the
power grid [8]. The importance of providing accurate forecasts has
led to extensive research conducted in the existing literature.

Forecasting methods can be classified into probabilistic or
deterministic methods. Probabilistic forecasts, which are also called
interval forecasting, provide estimates of forecast uncertainty that
can be very helpful, provided that the system has a way of using
additional information. The deterministic forecasting, which is also
called point estimate, provides one output for each time interval
[9]. Both probabilistic and deterministic models can be further
categorized based on the forecast input and output, time-scale, and
the associated forecasting method [10]. A comprehensive review
of state-of-the-art forecasting methods is presented in [11]. While a
large variety of methods such as persistence, physical and statistical
methods have been employed previously, machine learning (ML) as
a subdivision of statistical methods is extensively utilized (around
38% of the literature according to [12]) due to their capability of
learning the uncertainty and high variability associated with RESs.

ML-based algorithms learn patterns from historical data and
forecast accordingly [13]. Therefore, the accuracy of forecasting
depends directly on the quality of input data. The data quality can
be deteriorated either unintentionally using less accurate sensors
and less effective measuring techniques or intentionally using data
integrity attacks. Unintentionally deteriorated data quality effects on
long-term wind power forecasting are explored in [14], using tree-
based ML algorithms. Speaking of intentional deterioration of data,
as pointed out in [15], the strong tight between data quality and en-
ergy forecasting makes ML-based very susceptible to cybersecurity
issues. One such cybersecurity issue relates to FDI attacks, through
which adversaries inject false data into the historical records and
undermine the prediction quality drastically. With the advent and
advance of information technologies, the data feeding forecasting
systems can be compromised by cyber intrusions through different
ways. For example, real-time forecasting data is heavily reliant on
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the communication, control, and computational infrastructures of
power grids, as well as their hardware, all of which are susceptible
to cyber-attacks. Aggregation of data often needs a variety of data
sources, which creates a large attack surface. Additionally, the
cryptographic methods used to protect the aggregated data may
be deciphered if the attackers had higher access to develop them.
Moreover, the extended period of data retention necessitates data
transfer, which presents additional security issues. Authors in [16]
showed that FDI attacks could alter a great proportion of supposedly-
protected input data with large magnitudes without even being de-
tected by existing operational practices such as anomaly detection. In
early spring 2018, a cyberattack brought down the server of a major
load forecasting service provider, affecting the operations of dozens
of large electric companies in the United States [17]. Therefore, it
is imperative to develop an effective detection method to detect FDI
attacks and lay a foundation for the defense mechanism.

The current researches on FDI detection approaches have
taken various directions based on several factors, including
defense strategies, attack principles, and attack scenarios and
goals. Although these directions vary immensely, two core themes
can be extracted: model-based and data-driven FDI detection
algorithms. The first category focuses on improving the system’s
state estimation by using the its physical model and parameters
and some measurements, which can be further classified into static
and dynamic state estimators. Static estimation approaches such
as weighted least squares [18] are built upon the supposition that
systems’ states can be computed with steady-state and deterministic
models. Dynamic state estimation approaches, with Kalman filtering
as the primary model [19], are developed to deal with the stochastic
nature of the system. Both steady-state and dynamic estimation
FDI detection algorithms contain numerous other algorithms and
applications, as discussed by a comprehensive review in [20]. The
problem with these model-based algorithms, however, is their need
for the system model, which in turn, dictates extensive computation,
low scalability, detection delay, and possible divergence [21].

Data-driven FDI attack detectors are introduced as the second
category to provide more accurate detections, less computational
cost, and higher scalability without utilizing neither system’s models
nor parameters. Cao et al. [22] explored the invasion pathway of
the FDI attacks against power systems and proposed a novel FDI
attack detection framework utilizing ensemble learning. Al-Abassi
et al. [23] presented an ensemble deep learning-based FDI attack
detection mechanism for the industrial control systems. Xue and Wu
[24] introduced a new active learning-based FDI attack detection
method for the cyber-physical systems. Besides, general regression
neural networks [25], deep belief networks [26], reinforcement
learning [27], long short term memory networks [28], and support
vector machines [29] have also been used on the task of FDI attack
detection. A detailed review of the relative performance of ML
algorithms for FDI applications is accessible in [30]. While anomaly
detection methods are extensively explored in previous studies, the
cyberattack resiliency issue associated with forecasting systems has
yet remained a persistent challenge for the forecasting community.

Luo et al. [31] studied data integrity attacks on forecasting
systems and asked how to develop robust ML-based forecasting
methods under data integrity attacks. Luo and Hong [32] presented
three robust load forecasting models under data integrity attacks
based on alleviating the effects of large residuals using iteratively re-

weighted least squares (l2-norm) and also replacing l2 norm with l1
norm. Numerical tests demonstrated the superiority of their proposed
L1 regression model with regard to multiple linear regression, artifi-
cial neural networks and support vector regression models. Yue [33]
proposed an optimized anomaly detection system for load forecast-
ing under cyber-attacks based on a combination of heuristically or-
ganized time series aggregation and current point anomaly detectors
such as second-order difference Chebyshev Inequality-based meth-
ods. The concept is expanded upon and evaluated in [34] for forecast
data that has been compromised by various cyberattack models. Luo
et al. [35] present a real-time anomaly detector for very short-term
load forecasting built on a Vanilla benchmark model expansion, a dy-
namic regression model and an adaptive anomaly threshold. In [36],
an ML-based anomaly detector is implemented for load forecasting
under cyberattacks. Using k-means clustering, the expected load data
is first used to recreate the benchmark and scaling data. Based on the
cumulative distribution function and statistical features of the scaling
results, the Naive Bayes classification is then used to approximate
the unique attack template. Finally, dynamic programming is used
to quantify the frequency as well as the parameter of a single
cyberattack on load forecasting results. Yue et al. [17] introduced a
descriptive analytics-based anomaly detection approach for a cyber-
secure load forecasting that detects long series anomalies effectively.
Zheng et al. [37] proposed a robust load forecasting method founded
on denoising variational autoencoder-based anomaly detection and
combining iteratively re-weighted least squares regression, Huber
regression and random forest. In [38], an adversarial ML approach
is suggested for cyberattack-resistant load forecasting that is capable
of detecting a broad spectrum of attacks without detecting outliers.
Kozitsin et al. [39] introduced a new computationally simple
technique based on the auto-regressive integrated moving average
model for both anomaly detection and forecasting systems.

However, numerical experiments reveal that none of the presented
robust approaches provide accurate forecasts under strong data
integrity attacks [40]. Hence, there is a strong need to study the effect
of false data attacks on the accuracy of ML-based forecasting models.
Previous works mostly explored cybersecurity issues associated with
load forecasting while there exist little works investigating generic
forecasting systems using ML algorithms. Besides, performance
comparison of decision tree ensembles subject to contaminated
datasets is neglected. These algorithms offer highly accurate, stable,
and interpretable prediction models especially for tabular datasets
with a small number of variables. Generalization, which highly
depends on the quality of representativeness of data, should also be
investigated when contaminated datasets emerge. Detecting malev-
olently manipulated not only input, but also output and input-output
data is also necessary to fully address the issue, which is also over-
looked. The main contributions of this paper can be summarized as:

• We propose a novel step-by-step framework that can detect
exogenous false data injected into forecasting systems. In
contrast to commonly-used anomaly detection techniques like
Naı̈ve methods that are unable to detect intelligently injected
false data, it is a model-free detection technique based on
well-established cross-validation, R2 values and z-score metric
that are effective and easy to employ. It can work with any
learning algorithms and can detect attacks injected on input,
output and input-output data (Section II).
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• We aim to identify the most robust tree-based forecasting
model subject to contaminated input datasets. Decision tree
ensembles including decision tree, bagging, random forest,
AdaBoost, gradient boosting and XGBoost, which are not
considered in the cyber-resilient forecasting literature, are
trained with the proposed mechanism and compared with
robust models such as iteratively re-weighted least squares
regression models and an L1 regression model (Section III).

• We show that the proposed method can recover the generaliz-
ability of the forecasting models. This is done by testing those
models against data measured at locations different from what
the models had been trained with (Section III).

Lastly, Section IV concludes the paper and elaborate on some future
research directions.

II. ATTACK TEMPLATES
AND PROPOSED FDI ATTACK DETECTION TECHNIQUE

The sophistication and rate of cyberattacks are continually
growing, forcing researchers and practitioners to test different
systems and evaluate the risk associated with specific situations like
data integrity attacks. Simulation is a primary key in assessing data
integrity attacks due to its ability to model different scenarios and
interactions between attackers and cyber systems. In this section,
we start by describing cybersecurity scenarios that can influence
forecasting. Then, we introduce an algorithm that is capable of
detecting erroneous data generated under those scenarios.

A. Cyberattack Templates
The FDI attacks are a class of cyberattacks aiming to destabilize

the system by injecting exogenous false data into the system. Such
attacks are usually conducted by attacking servers that accommodate
the original data or by directly altering data sensors’ reading.
Various templates can be incorporated to model data manipulation
scenarios during data integrity attacks targeting forecasting systems
[32], [36], [38]. (I) Pulse attacks by which ground truth data are
manipulated to lower or higher values at a short time interval. (II)
Random attacks that add values, generated by random functions,
to the actual values. (III) Ramping attacks aim to destabilize the
system by gradual manipulation of the ground truth measurements
to lower/higher levels via a ramp function. (IV) Scaling attacks
through which a proportion of system data is increased or decreased
by a significant percentage of the original values, which can be
modeled as D̄t=(1+αs%)×Dt for ts<t<te, where ts and te are
the start and end times of the cyberattack, respectively, αs represents
the scale factor andD is the original dataset while D̄ is the corrupted
dataset. Based on the results reported in [36], scaling attacks are
more challenging than pulse, random, and ramping attacks to
detect. Hence, the effectiveness of the proposed mechanism is just
evaluated on detecting scaling attacks. Fig. 1 indicates an example of
the a scaling attack contaminating 20% of the temperature records.

B. Proposed Cyberattack Detection Method
ML algorithms usually have to overcome underfitting or

overfitting issues to provide reliability, validity, and generalizability.
To estimate the degree over which ML models are over-fitted
or under-fitted, one can use the whole dataset for both training
and testing. This technique, which is also called ”re-substitution
validation,” usually tends to create overfitting problems. To mitigate

the issue, another accepted practice is to split data into two parts. On
one part, training is performed while the generalization performance
is tested against the other part. This technique is known as ”hold-out
validation”. A major factor here is to choose the ratio over which
data is split into the chunks. The choice of data splitting ratio is
tricky as the sizes of the chunks can highly affect the generalization
ability of the model.

It is also possible to create several training/testing chunks instead
of only two. Here, data is segmented equally into k distinct chunks.
Out of these k data folds, one is used for testing purposes, and the
other k−1 parts concern the training process. This training and eval-
uation are repeated k times; one of the folds is picked each time as
the testing set. This method is called ”k-fold cross-validation,” and is
depicted schematically in Fig. 2. The performance metrics obtained
from all the k iterations are then averaged to report an ultimate per-
formance estimation. The k-fold cross-validation has established its
performance over re-substitution and hold-out validation techniques.

A typical system is usually made up of input variables xi =
(x1i ,x

2
i ,...,x

n
i )

T ∈ ℜn, where n is the number of input variables,
and the output variable yi∈ℜm, where m is the number of output
variables. In least-squares-based anomaly detection mechanisms,L2-
norm ∥y−ŷ∥2 is used to detect whether outliers exist or not, where
ŷ=h(x) is the estimated value using the state estimation technique
and h(·):ℜn−→ℜm is a vector-valued nonlinear function. Attacker
can malevolently manipulate input variables (x−→x+α=⇒ ŷ−→
ŷ+e), or output variables (y−→y+e) or both of them simultane-
ously. Based on these detectors, given a threshold τ , outliers exist if
the L2-norm of residuals is larger than τ (i.e., ∥y−ŷ∥2=∥e∥2>τ).

The same procedure can be adopted for forecasting system, where
ŷ= h(x) is the forecasted value and h(·) :ℜn −→ℜ denotes the
forecasting model, where the attacker can inject false data in input
variables or output variable. k-fold cross-validation can be adopted
as a new mechanism to detect cyberattacks in forecasting systems.
As can be seen in Fig. 2, the performance of the k-fold-based fore-
casting is heavily dependent on the quality and purity of the test set
at each iteration, such that a slight deviation in the test set leads to a
remarkable loss in the forecasting accuracy. Provided that the whole
dataset is clean, the performance metric of each distinct iteration
does not deviate heavily from the average accuracy. On the other
hand, if one iteration shows a significant performance deviation
compared to the average performance obtained by all the other
iterations, the corresponding test set associated with that iteration
might be corrupted in part or as a whole. As such, the performance
estimation associated with the k-fold cross-validation can be used
to recognize parts of data that are not behaving normally. Indeed,

Fig. 1. An example of scaling attack on records
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Fig. 3. Flowchart of the proposed cyberattack detection method.

k-fold cross-validation can be used to detect whether outliers exist
or not and if exist to locate where it is by utilizing the coefficient of
determination (R2) value, as follows, instead of L2-norm ∥y−ŷ∥2.

R2=1−
∑N

i=1(yi−ŷi)
2∑N

i=1(yi−ȳ)
2
=1−∥y−ŷ∥22

∥ȳ−ŷ∥22
(1)

On the other hand, the z-score is a well-established anomaly
detection metric that measures how many standard deviations (σ)
a data point (x) is from the data mean (µ), which can be formulated
as z=(x−µ)/σ. When computing the z-score for each sample on
the data set a threshold must be specified, which as a rule of thumb,
can be 2.5, 3, 3.5 or more standard deviations. On these bases, we
propose an algorithm that can assess data integrity of forecasting
systems and enhance their overall performance by detecting inputs
that are deteriorated.

The proposed algorithm is demonstrated with the flowchart
shown in Fig. 3. The main idea behind the projected k-fold-based

cyberattack detection method is first to evaluate the performance
of all k-fold models generated at each iteration and then compare
their performance one by one with the average performance of all
the other iterations. If the z-score of R2

min, i.e. (µ−R2
min)/σ, is

larger than a given threshold (h), the corresponding test set will be
detected as cyberattack. The procedure will continue up until all test
sets violating the threshold be removed from the dataset. Here, the
tuning of k plays a pivotal role in reaching a compromise between
accuracy and cost. Higher values of k give more detecting resolution,
yet, at the expense of more computational cost, and vice versa.

III. REPRESENTATIVE
FORECASTING MODELS AND SIMULATION RESULTS

Generally, ML models can be grouped into supervised,
unsupervised, semi-supervised, and reinforcement learning in line
with the type and volume of supervision they receive during the
training process. Supervised learning, in which the desired labels
are fed to the algorithm, is the most common category, which can be
classified into classification and regression. Several techniques have
been developed to deal with supervised learning tasks, each of which
has its implications and applications. While the proposed approach
can work with the other machine learning models like neural
networks, tree-based ensembles are selected here as one of the
most popular and successful supervised learning approaches. One
major advantage of tree-based models is their capability of learning
complex and nonlinear relationships, which makes them adaptable
to various kinds of problems in the ML area. Also, they incorporate
predictive algorithms with high accuracy, swift performance, and
straightforward interpretation. Here, decision tree, random forest,
boosting, gradient boosting, extreme gradient boosting, and bagging
are adopted as representative tree-based models.

A. Decision tree
Decision tree learning is a simple but powerful method for

classifying targets or forecasting values. One advantage of decision
tree models is their ability to learn abstract decision rules extracted
from data features, without being relied on intense data preparation.
Learned-trees embody a single root node that branches into several
new nodes. That procedure is then repeated for descending nodes,
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which generates a subtree rooted at every new node. A tree-shaped
model is finally created that is robust to noisy data and also
capable of mapping expressive functions. Having a tree-shaped
configuration improves human interpretation of learned-trees as
they can be re-represented by groups of if-then-else rules.

B. Random forest
Random forest is another versatile ML method made by a

large number of decision trees. Random forest tends to reduce
the associated error with decision trees by aggregating the
forecasts from a cluster of predictors. Three major steps are then
conducted: training instances are randomly selected when making
trees, some subsets of features are nominated to split nodes, and
carefully-chosen subsets of all features are employed for splitting
nodes of decision trees. Each tree learns from a randomly selected
sample of the input instances during the training process.

C. Boosting
Boosting is another ensemble method that combines a series

of predictors to make an ultimate powerful learner. Each model is
trained according to its predecessor and with the aim of improving
the overall performance of an ensemble. To boost the overall
performance, a new tree added to the ensemble should account
for its predecessor’s error. This is done by tweaking the weight
of instances that are strongly underfitted by the former predictor.
Once all models are sequentially added to the ensemble, a model
is made that usually outperforms each of the single weak predictors
in terms of generalization ability. AdaBoost is a widely-utilized
method among boosting algorithms.

D. Gradient boosting
Gradient boosting (GBoosting) method is another boosting

method that creates a strong predictor, normally a decision tree, out
of conceivably several weak prediction models. Contrary to other
boosting algorithms like AdaBoost, Gradient Boosting aims at
fitting the new estimator to the residual errors rather than increasing
the relative weights made by the previous learners.

E. XGBoost
XGBoost is developed and designed as an optimized version of

the gradient boosting method. While XGBoost applies the same prin-
ciple of combining weak learners, parallel and distributed computing
and efficient memory allocation improve the performance, accuracy,
and scalability of the method. Efficient imputation of missing
values, built-in cross-validation, advanced pruning capability, and
catch awareness are other strengths of the XGBoost method.

F. Bagging
Bagging is also an ensemble learning method; yet, with a different

approach to combine a diverse set of estimators. Instead of using dif-
ferent predictors, as in random forest and boosting methods, bagging
uses a communal algorithm for each predictor but train them on a ran-
dom sampling of a small subset of the main dataset. The subsets are
replaceable, training instances can be re-sampled multiple times for
each estimator, and predictions are performed after a majority voting
mechanism. The core strength of a bagging estimator is its ability to
obtain the best trade-off between the bias and variance of the dataset.

G. Performance metrics
To assess the effectiveness of the proposed models, we use

various performance indices with respect to accuracy. Following
paragraphs introduce those performance indices.

1) Mean absolute error (MAE)
MAE, which evaluates the mean absolute difference between

predictions and observations, is expressed in (2) as

MAE=
1

N

N∑
i=1

|ŷi−yi|. (2)

It is worthy of mentioning that because MAE has not a differentiable
function, most ML algorithms that use gradient descents have a hard
time incorporating MAE as the evaluation metric. To compensate
for this problem, other performance metrics should be considered.

2) Root mean square error (RMSE)
RMSE, as expressed in (3), can consider the error’s direction by

measuring the root of the mean of the distance between predictions
and observations.

RMSE=

√√√√ 1

N

N∑
i=1

(ŷi−yi)
2 (3)

To make the RMSE metric more sensible when it is used in RESs
models, normalized RMSE (nRMSE) is often proposed, whose
formula is depicted in (4).

nRMSE=
1

Pinst

√√√√ 1

N

N∑
i=1

(ŷi−yi)
2 (4)

wherePinst is the installed capacity of the wind or solar power plant.

H. Experimental results
Tree-based algorithms are tested against contaminated data used

for forecasting wind power generation of 1 MW wind turbines
installed in the northeast region of Iran. Model hyper-parameters
are the maximum depth of each tree, estimator, learning rate and the
number of trees to grow, which are set to 10, decision tree, 0.1 and
500, respectively. The aim here is to find the most resilient model and
also reveal the effect of the proposed mechanism on the associated
prediction accuracies. Table I shows the results of a comparative
study between decision tree ensembles [14] and iteratively re-
weighted least squares with l1 and l2 norms [32] applied on the
dataset described in Table II. Datasets including 18 months of wind
speeds as inputs and wind powers as the output were collected with
a 10-min sampling time measured at the height of 40 m. As can be
seen, all models showed acceptable performance with small errors
and high coefficients of determination. Nevertheless, XGBoost and
L1 regressor are the most and the least accurate models, respectively.

Thereafter, the effect of the scaling attack with a normal
distribution, a mean of 20, and a standard deviation of 100 is
explored on the forecasting accuracy of models. Table I summarizes
the performance metrics of the representative forecasting models
when 20% of the whole data is contaminated. Results indicate a
remarkable degradation in the performance metrics, especially for
L1 and L2 regressors proposed in [32], which means all models
own weak robustness against FDI attacks. It is worth mentioning
that in the normal condition, both of hold-out and cross-validation
approaches produce similar forecasting performance. However, as
the salient point of the results, there is a marked difference between
results obtained using the hold-out method and those obtained
through the cross-validation method in the presence of cyberattacks,
where the latter led to an aggravated situation. This is because of
the fact that k-fold cross-validation ensures that every fold has the
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chance of appearing in training and test set, where contaminated
folds produce inaccurate performance in the test position, thereby
distinctly reducing the average performance of the model.

Herein, three different case studies are designed to analyze the
effectiveness of the proposed detector, including scaling attack
on input data, output data and both of them. Starting with first
case study, three scenarios are considered to explore the impact of
attack time of occurrence on the detection process as schematically
depicted in Fig. 4. The first and ideal scenario represents when all
the corrupted data fall entirely into n<k consecutive folds (here
two folds). The second case denotes when the attacker manipulates
half of a fold, full of the next fold and half of the other consecutive
fold, and the third one exemplifies when 10% of a fold, full of the
next fold and 90% of the other consecutive fold is corrupted under
the cyberattack. Fig. 5 compares the wind power forecasting under
normal condition and scaling attack. As can clearly seen, scaling
attack on data caused remarkable deviations from the normal opera-
tion for XGBoost forecasts, in which contaminating the input data is
more effective than corrupting the output data. This makes sense for
wind power forecasting due to the exponential correlation between
wind speed and wind power. Therefore, it is imperative to develop
an effective FDI attack detection mechanism to automatically detect
the intrusions and thus enrich the reliability of forecasting.

Table III lists the results for XGBoost algorithm equipped with
the proposed detector for all considered scenarios. As can be seen,
when a contaminated fold is chosen as test set, the R2 value is quite
distinct from the others, which increases the standard deviation
of the values. Taking it into account and by using the threshold
condition, the proposed approach readily detects and gets rid of all
contaminated folds. As can be seen from Table III, the algorithm

TABLE I
FORECASTING ACCURACY OF REPRESENTATIVE TREE-BASED MODELS

Algorithm Attack Method MAE RMSE R2

Decision tree × - 7.81 27.41 0.9995
✓ Hold-out 245.39 810.25 0.7771
✓ CV 302.98 916.87 0.5465

Bagging × - 7.08 23.57 0.9996
✓ Hold-out 238.93 695.37 0.8358
✓ CV 280.29 781.55 0.6649

Random forest × - 7.09 23.57 0.9996
✓ Hold-out 233.58 665.66 0.8495
✓ CV 277.55 764.99 0.6830

AdaBoost × - 7.67 24.96 0.9996
✓ Hold-out 347.78 711.68 0.8280
✓ CV 444.08 856.15 0.6118

Gboosting × - 6.02 23.82 0.9996
✓ Hold-out 234.78 635.87 0.8627
✓ CV 275.78 723.73 0.7151

XGBoost × - 5.52 20.44 0.9997
✓ Hold-out 231.45 633.23 0.8712
✓ CV 270.18 719.95 0.7310

L1 regressor × - 443.28 509.63 0.9156
✓ Hold-out 572.17 854.33 0.6863
✓ CV 662.13 938.20 0.4694

L2 regressor × - 408.72 479.72 0.9256
✓ Hold-out 613.23 902.21 0.6223
✓ CV 721.02 1018.91 0.4194

(a)

(b)

(c) Fold 1

Fold 1

Fold 1

Fold 2 Fold 1

Fold 3

Fold k

Fold kFold 2

Fold 3

Fold 2 Fold 3 Fold k

Fig. 4. Schematic of different attack scenarios:(a) 100-100% (b) 50-100-50% (c)
10-100-90%.

first splits the dataset into ten folds and consecutively took one
of them as the test set in order to compute its R2 value. Then, all
values are compared to find the minimum, mean, and standard
deviation. Finally, if the test set with the minimum R2 value meet
the predefined conditions, the detection process will be finished;
if not, the process will be continued by removing the corresponding
fold. To preserve more untouched data and increase the resolution
of the proposed method, one can split data into more folds at the
expense of more computational cost. Fig. 6 illustrates wind power
forecasting accuracy obtained by XGBoost algorithm under scaling
attacks on input data, in which the model is equipped with the
proposed detection mechanism. As can be realized, corrupted data
is successfully detected and removed from the dataset, therefore,
the forecasting accuracy of the model is successfully recovered.

Second case considers when attackers get access to the output data
of the forecasting system tamper with this data. Fig. 5c illustrates
scaling attack on the output data leading to notable deviations from
the normal operation for XGBoost forecasts. Table IV lists the results
obtained from XGBoost model utilizing the proposed framework for
all considered scenarios. Again, when a contaminated fold is chosen
as the test set, the R2 value is quite distinct from the counterparts,
and the proposed framework effectively detected and removed
compromised folds. The third case takes into account simultaneous
FDI attacks on both input and output data, as shown in Fig. 5d.
Table V presents details of results obtained by applying the proposed
framework for detecting and removing compromised input-output
data through defined scenarios. Clearly, the proposed framework
extracted the false data from dataset and, thus, improved the accuracy
of the forecasts. In short, injecting false data into input data makes
more uncertainty and, thus, more impacts on the accuracy of wind
power forecasting in comparison with attacking output data. More-
over, results indicate that the more corrupted data spread over dataset,
the more pure data removed from dataset, thereby requiring a higher
resolution for the detection. To further corroborate the advantage of
the presented method, Table VI provides the forecasting accuracy
of XGBoost model equipped with the proposed method and a com-
bined robust forecasting model equipped with denoising variational
autoencoder (DVAE-CRF) [37] for scaling attacks on output data. It
can be clearly seen that the proposed method outperformed its coun-
terpart in terms of less MAE and RMSE besides more R2 values.

A generalizable model is a neither underfit nor overfit model aim-
ing to make sensible predictions based on unseen validation datasets.
The generalizability can be highly degraded in the case of data
quality deterioration. In the previous study [28], the generalizability
of long-term wind power forecasting models was confirmed by test-
ing the trained model against data measured at a different location.
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TABLE II
DESCRIPTIVE STATISTICS OF EMPLOYED DATASETS.

Site Location Time interval (10-min) Samples Min (A) Mean (A) Max (A) Std
Ghadamgah 36.104° north 59.066° east 01/09/2015 11:40 - 05/03/2017 10:20 79334 0 4.85 20.80 3.85
Davarzan 36.210° north 56.524° east 17/07/2015 14:00 - 08/04/2017 10:10 83068 0 3.17 22.30 2.58
Jangaal 34.421° north 59.132° east 02/09/2015 10:20 - 13/04/2016 10:50 83692 0 3.68 18.50 1.99
Khaf 34.567° north 60.148° east 08/07/2015 13:50 - 26/01/2017 10:50 78852 0 10.45 31.20 6.066

TABLE III
THE EVOLUTION OF XGBOOST ALGORITHM EQUIPPED WITH THE PROPOSED DETECTOR USING CORRUPTED INPUT DATA

Scenario Round R2 values R2
min<µ−2σ σ>0.1 Action

1 1 [0.2163, -1.0483, 0.9473, 0.9222, 0.9400, 0.9395, 0.9774, 0.9692, 0.9208, 0.8856] ✓ ✓ Remove
2 [0.0843, 0.9365, 0.9295, 0.9671, 0.9670, 0.9855, 0.9839, 0.9682, 0.9019] ✓ ✓ Remove
3 [0.9996, 0.9993, 0.9997, 0.9998, 0.9999, 0.9999, 0.9994, 0.9998] × × Keep

2 1 [0.6721, -0.5332, 0.0157, 0.9197, 0.9505, 0.9359, 0.9762, 0.9830, 0.9255, 0.9260] ✓ ✓ Remove
2 [0.5637, -0.1751, 0.9369, 0.9658, 0.9589, 0.9897, 0.9843, 0.9411, 0.9289] ✓ ✓ Remove
3 [0.5359, 0.9655, 0.9770, 0.9754, 0.9949, 0.9951, 0.9274, 0.9661] ✓ ✓ Remove
4 [0.9994, 0.9997, 0.9999, 0.9999, 0.9999, 0.9994, 0.9998] × × Keep

3 1 [0.9358, -0.8314, -0.5022, 0.9650, 0.9595, 0.9215, 0.9770, 0.9820, 0.9753, 0.9583] ✓ ✓ Remove
2 [0.9507, -0.9285, 0.97752, 0.9803, 0.9576, 0.9902 0.9946, 0.9920, 0.9734] ✓ ✓ Remove
3 [0.9418, 0.9966, 0.9971, 0.9886, 0.9996, 0.9985, 0.9990, 0.9970] ✓ × Keep

TABLE IV
THE EVOLUTION OF XGBOOST ALGORITHM EQUIPPED WITH THE PROPOSED DETECTOR USING CORRUPTED OUTPUT DATA

Scenario Round R2 values R2
min<µ−2σ σ>0.1 Action

1 1 [0.4600, 0.5455, 0.9104, 0.8698, 0.7912, 0.7242, 0.8402, 0.8280, 0.8215, 0.9158] ✓ ✓ Remove
2 [0.5519, 0.9752, 0.9530, 0.9756, 0.9735, 0.9814, 0.9632, 0.9739, 0.9867] ✓ ✓ Remove
3 [0.9996, 0.9993, 0.9997, 0.9998, 0.9999, 0.9999, 0.9994, 0.9998] × × Keep

2 1 [0.6351, 0.5520, 0.7336, 0.9610, 0.8450, 0.8540, 0.9588, 0.9267, 0.9398, 0.9670] ✓ ✓ Remove
2 [0.6380, 0.7641, 0.9617, 0.8988, 0.8758, 0.9624, 0.9412, 0.9640, 0.9820] ✓ ✓ Remove
3 [0.8215, 0.9953, 0.9950, 0.9971, 0.9951, 0.9918, 0.9899, 0.9957] ✓ ✓ Remove
4 [0.9994, 0.9997, 0.9999, 0.9999, 0.9999, 0.9994, 0.9998] × × Keep

3 1 [0.9442, 0.5214, 0.6356, 0.9546, 0.9698, 0.9599, 0.9813, 0.9788, 0.9636, 0.9825] ✓ ✓ Remove
2 [0.9706, 0.6506, 0.9732, 0.9882, 0.9909, 0.9856, 0.9823, 0.9856, 0.9928] ✓ ✓ Remove
3 [0.9748, 0.9946, 0.9991, 0.9968, 0.9966, 0.9939, 0.9953, 0.9995] ✓ × Keep

TABLE V
THE EVOLUTION OF XGBOOST ALGORITHM EQUIPPED WITH THE PROPOSED DETECTOR USING CORRUPTED INPUT-OUTPUT DATA

Scenario Round R2 values R2
min<µ−2σ σ>0.1 Action

1 1 [0.0760, -0.3932, 0.8900, 0.8087, 0.9052, 0.8509, 0.9490, 0.9558, 0.9403, 0.9124] ✓ ✓ Remove
2 [0.1724, 0.8347, 0.9005, 0.9305, 0.8900, 0.9670, 0.9608, 0.9244, 0.8854] ✓ ✓ Remove
3 [0.9996, 0.9993, 0.9997, 0.9998, 0.9999, 0.9999, 0.9994, 0.9998] × × Keep

2 1 [0.3755, -0.2299, 0.1211, 0.9322, 0.9295, 0.9125, 0.9800, 0.9715, 0.9669, 0.8892] ✓ ✓ Remove
2 [0.3696, -0.6066, 0.9414, 0.9468, 0.9555, 0.9835, 0.9782, 0.9857, 0.9040] ✓ ✓ Remove
3 [0.3723, 0.9580, 0.9597, 0.9611, 0.9883, 0.9749, 0.9944, 0.9506] ✓ ✓ Remove
4 [0.9994, 0.9997, 0.9999, 0.9999, 0.9999, 0.9994, 0.9998] × × Keep

3 1 [0.8877, -0.3489, -0.5599, 0.9398, 0.9404, 0.9308, 0.9788, 0.9801, 0.9373, 0.9232] ✓ ✓ Remove
2 [0.9131, -0.4986, 0.9704, 0.9540, 0.9542, 0.9891, 0.9891, 0.9673, 0.9620] ✓ ✓ Remove
3 [0.9122, 0.9876, 0.9986, 0.9939, 0.9979, 0.9986, 0.9880, 0.9992] ✓ × Keep

However, as Table VII shows, data integrity attacks can considerably
deteriorate the generalizability by injecting false data into the dataset.
Hence, the effectiveness of the proposed method in preserving the
generalizability of the models under data integrity attacks is investi-
gated here. Simulation results for various algorithms are summarized
in Table VII, where the generalizability of models are demonstrated

through predicting wind power at locations different from the
model-trained location, i.e. Ghadamgah. Fig. 7 demonstrated that
XGBoost model equipped with the proposed method could predict
the generated power at the other locations with the accuracy of 5%-
6% error in the case of MAE, except for Khaf wind farm that has
a very diverse wind profile. This case validates the capability of the
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Fig. 5. Wind power forecasts under (a) normal condition, (b) scaling attacks on
the input data (c), scaling attacks on the output data and (d) scaling attacks on the
input-output data.
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Fig. 6. Forecasting accuracy of equipped XGBoost model under the scaling attack.

[K
W

]

Fig. 7. Forecasting accuracy of recovered XGBoost model applied on Khaf.

proposed methodology in keeping the generalizability under cyber-
attacks and making accurate predictions based on unseen datasets.

I. Bad vs false data detection

A critical feature of any model for detecting false data injection
attacks is its ability to distinguish between bad data (measurement
errors, communication interruptions, and so on) and false data
injections. Bad data can come from many sources in different models
and make data explicitly deviated from other observations, which
can be detected by existing fault detectors [41]. We conduct two
experiments to determine if the suggested methodology is capable of
distinguishing between faulty and false data injections. In the first ex-
periment, we first identify outliers (poor data) during the preprocess-
ing step, resulting in a total of 1,848 outliers out of 79,334 samples
(2.3 percent). To this end, without loss of generality, we used z-score
metric to identify the outliers in the inputs. Then, we incorporate
the erroneous data samples into the training phase to observe how
the proposed detection system performs. The first row of Table VIII
contains the acquired findings, where the suggested method identi-
fies 3.9 percent of the occurrences of bad data as false data injection,
while the rest samples are processed properly. This is due to the fact
that bad data can be scattered over the dataset affecting the overall
performance of the cross-validation not a specific iteration with
specific fold. Due to the low amount of incorrect data discovered,
the algorithm’s overall accuracy suffers, which can be tackled by
coupling widely used anomaly detectors like z-score metric. On the
other side, this removes the possibility that system operators would
confuse bad data with data injection assaults. In the second exper-
iment, we replicate data scaling attacks before to the preprocessing
step to see if preprocessing can detect data injected samples. Two
of the 10 folds that cover all the data have been corrupted by data
assaults (15,866 samples out of 79,334). The preprocessing phase
detects just 6.3 percent of the intentionally inserted data; the remain-
der is ignored. The preprocessing technique, we think, can detect
only the tail of the distribution associated with the injected data.
This necessitates the use of sophisticated algorithms that have been
specifically trained to identify purposeful data injection assaults.

TABLE VI
FORECASTING ACCURACY OF DIFFERENT MODELS

Algorithm MAE RMSE R2

Proposed XGBoost 5.52 20.44 0.9996

DVAE-CRF 212.27 704.43 0.7422
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TABLE VII
FORECASTING ACCURACY OF XGBOOST APPLIED ON OTHER LOCATIONS

Proposed method Location Attack MAE RMSE R2

Not applied Khaf × 26.34 122.41 0.9945
✓ 811.91 983.76 0.5455

Davarzan × 6.32 25.43 0.9966
✓ 678.12 794.31 0.7549

Jangaal × 4.79 13.72 0.9984
✓ 703.40 816.14 0.7064

Applied Khaf × 24.27 90.09 0.9958
✓ 50.96 180.16 0.9944

Davarzan × 5.10 22.04 0.9997
✓ 5.44 27.43 0.9996

Jangaal × 3.67 11.57 0.9998
✓ 3.89 12.55 0.9998

TABLE VIII
DETECTION ACCURACY OF PROPOSED MECHANISM VS PREPROCESSING

Bad data False data Normal data

Bad data – 3.9% 96.1%

False data 6.3% – 93.7%

IV. CONCLUSIONS

This paper addressed the reliability and resiliency of energy
forecasting systems against FDI attacks. A new FDI attack detection
framework was presented based on cross-validation, R2 values and
z-score metric to provide cyberattack resilient energy forecasts. The
proposed method splits the dataset into k folds, iteratively takes one
fold as test set and the remaining as train test, evaluates coefficient
of determination, as a new least square criteria, for each iteration
and finally, detects intrusions based on pre-specified thresholds and
remove them from the dataset. Decision tree ensembles including
decision tree, bagging, random forest, AdaBoost, gradient boosting
and XGBoost, which are not considered in the cyber-resilient
forecasting literature, are compared with robust models such as
iteratively re-weighted least squares regression models and an L1

regression model. Simulation results verified the better robustness of
the decision tree ensembles regarding its counterparts. After training
with the proposed mechanism, they also compared with a recently
proposed combined robust forecasting model equipped with
denoising variational autoencoder. Experiments substantiate the
effectiveness and superiority of the presented method in providing
accurate detections under attacks on input, output and input-output
data with low computational cost and high accuracy and scalability
without utilizing neither system’s models nor parameters. Results
revealed that the generalizability of the final forecasts is also
recovered by detecting and removing the corrupted data.

The proposed framework requires proper tuning of three
parameters, i.e k, h and σ0. The adjusting of k has a key role in
reaching a compromise between accuracy and cost, in which the
more folds are defined, the more detecting resolution has resulted
at the expense of the more computational cost, and vice versa. h
is another decisive factor in accurately detecting anomalies, which
shall be appropriately selected. The higher values of k results in
a higher accuracy and computational cost, and vice versa. σ0 is the
early stopping threshold that prevents the proposed algorithm from

overrunning. Based on conducted experiments, adopting ten folds
with h=2 and σ=0.1 yields an acceptable trade-off between the
wind power forecasting accuracy and computational cost.

The future work will focus on more and diverse types of attacks
to verify the reliability and resiliency of the presented defense
mechanism. It also can be employed for different applications
ranging from dynamic line rating forecasting to demand response
forecasting. Furthermore, the recovery of the contaminated data
instead of removing it besides using an adaptive number of folds
is also taken into account as one of future works.
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