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Schizotypy is a latent cluster of personality traits that denote a vulnerability for schizophrenia or a type of spectrum 

disorder. The aim of the study is to investigate parametric effective brain connectivity features for classifying high 

versus low schizotypy status. Electroencephalography (EEG) signals are recorded from 13 high schizotypy and 11 

low schizotypy participants during an emotional auditory odd-ball task. The brain connectivity signals for machine 

learning are taken after the settlement of event-related potentials. A multivariate autoregressive (MVAR)-based 

connectivity measure is estimated from the EEG signals using the directed transfer functions (DTFs) method. The 

values of DTF power in five standard frequency bands are used as features. The support vector machines (SVM) 

revealed significant differences between high and low schizotypy. The accuracy, specificity, and sensitivity of the 

results using SVM are as high as 89.21%, 90.3%, and 88.2%, respectively. Our results demonstrate that the effective 

brain connectivity in prefrontal/parietal and prefrontal/frontal brain regions considerably changes according to 

schizotypal status. These findings prove that the brain connectivity indices offer valuable biomarkers for detecting 

the schizotypal personality. Further monitoring of the changes in DTF following the diagnosis of schizotypy may 

lead to early identification of schizophrenia and other spectrum disorders. 

Keywords: Classification, EEG, Effective Brain Connectivity, Electroencephalography, Schizotypal Personality, 

Schizotypy. 

 

1. Introduction

Schizotypy is a dominating model of the putative risk for, 

and prediction of, subsequent schizophrenia and some 

spectrum disorders.1,2 Schizotypy is based on the 
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continuum between non-clinical psychosis-like 

experiences and clinical psychotic symptoms, but also 

multidimensional neurodevelopmental models of the 
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brain.1,3 This multidimensional personality construct 

comprises many clinical symptoms and non-clinical 

manifestations.4-6 Converging pieces of evidence 

demonstrate that the schizotypal construct has three main 

dimensions, namely positive, negative and 

disorganized.4,7 The composition of these traits varies 

between psychometric measures of schizotypal 

personality, specifically with regards to the 

conceptualization of disorganisation. The Schizotypal 

Personality Questionnaire (SPQ) is based on the 

diagnostic criteria of schizotypal personality disorder and 

formed the selection criteria for the present study.7,8 

Here, positive schizotypy (cognitive-perceptual) includes 

magical thinking, unusual perceptual experiences, and 

paranoid ideation. Negative schizotypy (interpersonal) 

involves social anhedonia or impairment in emotional 

and social functioning. The disorganized scale 

describes eccentric behavior or odd speech.9,10 Empirical 

and neuroimaging evidences show that alteration in brain 

functions characterises these schizotypal traits, and these 

alterations are linked to sensory modalities (perception), 

attention, working memory, mental imagery, language 

production, and control of movements.9 Therefore, 

understanding how schizotypal traits manifest through 

the brain function can improve early identification of 

schizophrenia.11,12 

The development of non-invasive, low-cost 

electroencephalography (EEG) tools has paved the way 

for better study of brain functions.13 Furthermore, EEG 

has been used to design machine learning tools for 

diagnosing psychiatric disorders in recent years.14 Recent 

research has examined the EEG signals of individuals 

with high schizotypy (HS) in resting state15-19 and during 

emotion and attention tasks.20-24 Fuggetta et al.15 focused 

on power spectra of different EEG frequency bands and 

showed that HS participants elicited increased regional 

alpha oscillations. This abnormality suggested high-level 

attention in the HS group. 

In addition, reduced asymmetry in some frequency 

bands16 and frontal alpha asymmetry17 have been 

observed in HS individuals during rest. In particular, Yu 

et al.16 reported that the extreme level of positive 

schizotypy has a significant decrease in the frontal and 

occipital connectivities, especially in alpha frequency 

that plays a major part in selective information 

processing25. According to the disconnection hypothesis 

of schizophrenia, Hu et al.18 showed abnormalities in 

functional connectivity of alpha activity for two 

contrasting schizotypal traits, namely positive and 

negative, by means of the phase lag index (PLI). 

Furthermore, studies have tried to evaluate task-related 

EEGs. Based on Oestreich et al.20, non-clinical HS 

individuals fail to suppress the N1 auditory evoked 

potential while listening to self-generated speech, a 

response style that is similar to those of schizophrenia 

patients. One study21 suggested that diminished frontal 

theta and occipital alpha powers while listening to 

criticism and praise covary with perceived lack of 

emotional support in HS individuals. These diminished 

EEG signals correspond to less emotional arousal and 

more consciousness of emotional information, 

respectively. A more recent study22 found abnormalities 

in both go and stop trials during a stop-signal task at 

behavioral and neural levels (increased N1 in all stop 

trials and increased P3 amplitude in 17% of stop trials in 

HS individuals). 

Recently, some studies used machine learning 

approaches for predicting HS individuals. Jeong et al.23 

used an audiovisual emotion perception task with spatio-

temporal event related potential (ERP) features to 

distinguish between HS and healthy groups by using 

shrinkage linear discriminant algorithm (SKLDA). They 

achieved zero false-positive rates in their classification 

method. Machine learning can also adopt functional 

connectivity measures. Trajkovic et al.19 suggested that 

HS individuals have reduced connectivity in the right 

frontoparietal brain region in the alpha frequency band. 

Using a simple classifier, they reached a classification 

accuracy of 74.3% in two-class problems. Another 

study24 examined the abnormalities of auditory sensory 

gating in three groups (first-episode schizophrenia 

patients, ultra-high-risk individuals, and healthy people) 

using functional connectivity and a decision tree 

classifier. First-episode schizophrenia patients had 

stronger brain connectivity between the right superior 

frontal gyrus and right insula than healthy individuals. 

Moreover, the ultra-high-risk group had higher brain 

connectivity between the paracentral lobule and the 

middle temporal gyrus than the healthy individuals. A 

combination of demographic characteristics, 

connectivity, cognitive task performance and P50 

auditory evoked potential classified the three groups with 

79% accuracy. 

Although there is evidence of abnormal connectivity 

in schizophrenia patients26, the presence of these 

abnormalities in the subclinical population of HS 
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individuals is still unclear. Furthermore, little is known 

about the behavior of effective brain connectivity in the 

schizotypy groups, and hardly any EEG connectivity-

based approach with sufficient accuracy can be found for 

this psychotic experience in the literature. 

In the present study, we aim to determine the directed 

transfer functions (DTF) derived from multivariate 

autoregressive (MVAR) coefficients, as the model-based 

estimation of brain connectivity. DTF can determine the 

directionality between different electrodes or brain 

regions. Therefore, the primary purpose of this study is 

to distinguish between HS and low schizotypy (LS) states 

by evaluating the parametric connectivity features. It is 

hypothesized that reduced DTF between 

prefrontal/frontal regions and parieto-occipital regions 

can be used to classify HS and LS groups based on 

previous research.19-21 

2. Material and methods 

2.1. Participants 

Twenty-five HS participants and twenty-five LS 

individuals were recruited from the general community, 

by handing out flyers to Nottingham Trent University 

(NTU) students and placing posters in communal areas 

across the university campuses. People in specific 

communities who were thought to meet schizotypy 

criteria (e.g., those with paranormal beliefs, through 

paranormal networks) were approached to identify the 

HS participants. Participants completed an online 

screening survey on the schizotypy - Schizotypal 

Personality Questionnaire (SPQ).7 HS participants scored 

at least 31 out of 74 on the SPQ and denoted the 90th 

percentile of schizotypy in the Nottingham population.27 

LS participants scored ≤13 out of 74 on the SPQ and 

denoted the 10th percentile of schizotypy in the 

Nottingham population. Finally, 15 HS participants and 

11 LS participants were chosen for the analysis step. 

Based on the screening survey completed by the 

participants, they had the following characteristics and 

personality features: (a) high or low level of schizotypal 

personality traits, (b) right-handedness, (c) aged between 

18 and 45 years, (d) having a close relative (parent, 

sibling, or partner) with whom they spend more than 10 

hours a week in face-to-face or phone contact, and (e) not 

having a current diagnosis of severe mental disorder, 

brain injury, neurological disorder, learning disabilities, 

loss of consciousness for more than five minutes, or a 

history of alcohol or drug abuse within the last 12 

months. Data were collected as part of an emotional 

auditory odd-ball task, but we used the post-ERP 

recording (after the ERP settlement). 

Ethical approval for the study was obtained from the 

School of Social Sciences Research Ethics Committee at 

Nottingham Trent University (No. 2017/232). 

Participants provided informed consent before taking 

part in the study. 

2.2. EEG recording and preprocessing 

Continuous EEG signal was recorded by a 64-channel 

Biosemi Active-Two Amplifier (Biosemi Inc, 

Amsterdam, Netherlands) at a sampling rate of 2048 Hz 

and the international 10/20 electrode setting system was 

used.  

EEG data were preprocessed for removing eye-blink 

and motion artifacts using EEGLAB toolbox.28 After 

down-sampling the data to 256 Hz and re-referencing all 

channels to the Cz electrode, the data were high-pass 

filtered with a 1Hz finite impulse response (FIR) filter 

with zero phase shift. In the next step, the CleanLine 

EEGLAB plugin was used to remove the 50Hz grid 

signal to prevent the damaging effect of notch filtering 

(or even lowpass filtering) on granger causality.29 EEG 

data were checked visually to identify and remove 

artifactual time points, such as muscle and movement-

related artifacts. Additionally, an independent 

component analysis (ICA) was applied to each 

participant’s data to remove the eye movement 

artifacts.30 In this step, two HS participants with extreme 

noisy channels were excluded from further analysis. 

After artifact rejection, four-second segments were 

selected in each trial for the remaining analysis steps. 

Following that, 16 electrodes (FP1, FP2, F1, F2, F5, F6, 

C1, C2, C5, C6, P1, P2, P5, P6, O1, O2) were selected in 

four regions of interest, namely prefrontal/frontal, 

central, parietal and occipital regions. The topographical 

placement of these electrodes is shown in Figure 1.  

 

Figure 1. Topographical placement of 16 electrodes 

subdivided into: prefrontal and frontal electrodes (FP1, FP2, 

F1, F2, F5, F6), central electrodes (C1, C2, C5, C6), parietal 

electrodes (P1, P2, P5, P6) and occipital electrodes (O1, O2).



4    

 

 

Figure 2. Pipeline of the proposed method. The overall system includes pre-processing, estimation of effective brain connectivity, 

feature extraction from five conventional brain waves, feature selection, dimension reduction, and classification. 

 
 

 

The features have been extracted from each of the 

five conventional brain waves including delta (1–4 Hz), 

theta (4–8 Hz), alpha (8–14 Hz), beta (14–30 Hz), and 

gamma (30–40 Hz), after estimation of effective brain 

connectivity. Then, a filtering technique has been applied 

to select a subset of features. After the dimension 

reduction using principal component analysis (PCA), 

some popular classifiers have been used to evaluate the 

schizotypy diagnosis system. Figure 2 illustrates the 

analysis pipeline of the proposed method. 

2.3. Estimation of brain connectivity 

Some model-based techniques have been developed to 

obtain the direction of information flow between 

electrodes. Granger causality (G-Causality) based on the 

AR model was first introduced by British 

Econometrician Granger for econometric models31, but 

was afterwards used in the neuroscience and 

neuroimaging fields32-34. G-Causality suggests a brain 

connectivity measure for calculating the causal 

interaction of one channel to another (only between two-

time series). 

For this purpose, MVAR models are employed for 

estimating the interactions between the paired electrodes 

in the multichannel EEG data. Univariate AR and its 

extension MVAR are well-established methods in 

prediction and evaluation of system dynamical 

responses. MVAR model is defined as35: 

( 
𝑥1(𝑛)
⋮
𝑥𝐿(𝑛)

) = ∑  𝑃
𝑗=1 (

𝐴11(𝑗) ⋯ 𝐴1𝐿(𝑗)
⋮ ⋱ ⋮

𝐴𝐿1(𝑗) ⋯ 𝐴𝐿𝐿(𝑗)
) ( 

𝑥1(𝑛 − 𝑖)
⋮
𝑥𝐿(𝑛 − 𝑖)

) + ( 
𝑒1(𝑛)
⋮
𝑒𝐿(𝑛)

)   

(1) 

where [𝑥1(𝑛) , 𝑥2(𝑛) , … , 𝑥𝐿(𝑛)] is the L-dimensional 

time series at time n , 𝑥(𝑛 − 𝑖) is the ith previous value 

of 𝑥(𝑛). 

The MVAR coefficients 𝐴(𝑗) = (
𝐴11(𝑗) ⋯ 𝐴1𝐿(𝑗)

⋮ ⋱ ⋮
𝐴𝐿1(𝑗) ⋯ 𝐴𝐿𝐿(𝑗)

)   

form a tensor of size L × L × P and [𝑒1(𝑛) , 𝑒2(𝑛) , … , 

𝑒𝐿(𝑛)] is the vector of zero mean noise. 

L denotes the number of channels and P is the order of 

the model that can be obtained using various criteria. The 

Akaike information criterion (AIC) has been used widely 

for selecting the best model order. Eq. (1) can be 

rewritten as follows where 𝐴(0) is an identity matrix: 

( 
𝑒1(𝑛)
⋮
𝑒𝐿(𝑛)

) = − ∑  𝑃
𝑗=0 (

𝐴11(𝑗) ⋯ 𝐴1𝐿(𝑗)
⋮ ⋱ ⋮

𝐴𝐿1(𝑗) ⋯ 𝐴𝐿𝐿(𝑗)
) ( 

𝑥1(𝑛 − 𝑖)
⋮
𝑥𝐿(𝑛 − 𝑖)

)           (2) 

After converting Eq. (1) to spectral domain by Z-

transform, Eq. (2) is converted to: 
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                          𝐸(𝜔) = A(ω) X(ω)                             (3) 

where  

                    𝐴(𝜔) = ∑  𝑃
𝑗=0 𝐴(𝑗)𝑍−𝑗|

𝑧=𝑒−𝑖𝜔                  (4) 

and a similar operation is used for calculation of 𝑋(𝜔). 

The transfer matrix of the MVAR model for 

obtaining the causal relationship between channel pairs 

can be expressed as: 

                     𝐻(𝜔) = 𝐴−1(𝜔)                               (5) 

The non-normalized DTF between channel m and 

channel n is calculated as follows13: 

                    𝜃𝑚𝑛
2 (𝜔) = |𝐻𝑚𝑛(𝜔)|2                       (6) 

In this study, the normalized DTF of information 

flow from m to n is computed as (to keep diagonal 

elements 1):  

                𝐷𝑇𝐹𝑚→𝑛 =
|𝐻𝑛𝑚(𝜔)|

√|𝐻𝑛𝑛(𝜔)|∗|𝐻𝑚𝑚(𝜔)|
                (7) 

2.4. Schizotypy classification 

2.4.1. Feature extraction  

To overcome the nonstationarity problem of EEG 

signals, short-time DTF (SDTF) method has been 

suggested36. In this study, each signal segment is divided 

into smaller overlapping segments by sliding a Hamming 

window over the signal, and MVAR model coefficients 

A(j) are estimated by applying a stepwise least squares 

algorithm to each segment of our multichannel EEG. 

ARfit Matlab package has been used for this purpose.37 

Following this method, the SDTF or causality relation of 

channel pairs is obtained using the calculated A(j) in each 

window. We define a window size of 1s with a step size 

of 40ms. Figure 3 provides a graphical representation of 

this algorithm. The outcome of this algorithm is a 3-D 

matrix that contains the information flow between pairs 

of EEG channels in each plane. 
To test the consistency of this method, the area under 

SDTF of the channel pairs for each five frequency bands 

is calculated as a measure of causality relation strength 

between the channels and plotted as a function of time. 

More explicitly, to derive each row in Figure 4, as shown 

in Figure 3, we first calculate the power, as the area under 

the DTF curve in each window. The calculated power for 

the first window is the first value in each row in Figure 4. 

To derive the subsequent points that construct the whole 

line, we slide the window over the signals with the 

aforementioned overlap and repeat the whole procedure. 

Figure 4 illustrates how acceptably consistent the 

variation of DTF-based brain connectivity over a short 

period for some bilateral channels is. The presence of 

some fluctuations is due to the nonstationary nature of 

EEG brain signals. To evaluate the DTF as a measure of 

effective brain connectivity in different frequency bands, 

the power was extracted from each five EEG 

conventional frequency bands i.e., delta (1–4 Hz), theta 

(4–8 Hz), alpha (8–14 Hz), beta (14–30 Hz) and gamma 

(30–40 Hz). 

2.4.2. Feature selection   

Selection of independent and influential features is 

crucial in any classification method. Feature selection is 

generally used for two purposes: (1) to increase the 

accuracy of the classification (performance) by reducing 

the dimensions of the feature space and reducing its 

complexity, and (2) to select significant and informative 

features for further steps in the machine learning 

algorithm.38 Generally, this technique obtains the optimal 

number of features and generalized classification results. 

Various methods have been introduced for this purpose 

in the literature, such as filtering and wrapper 

techniques.39 In this study, the filter technique (t-test) was 

applied to select the subset of features. The benefits of 

the filtering technique are the independence of the 

classifier type and its fast computing. Therefore, 

extracted features from the five standard frequency bands 

in the previous step are ranked using a t-test to find which 

of them has a significant difference between schizotypy 

groups. 

2.4.3. Dimensionality reduction 

Principal component analysis (PCA) is a common 

method in feature dimensionality reduction and is widely 

used in the literature.40-42 Using an orthogonal 

conversion, PCA projects the set of possibly correlated 

variables into the set of linearly uncorrelated variables 

which are called principal components. To overcome the 

problem of variable scale and outlier issue in the feature 

space, the obtained features from the previous level are 

standardized (z-score normalization) before using PCA.43 

The standard deviation and mean of each feature are 

determined. Thus, the z-score is calculated as: 

                                      𝑧 =
𝑥−𝜇

𝜎
                                   (8) 

where 𝜇 and 𝜎 are the mean and standard deviation of 

each feature, respectively. Hence, obtained feature space 

provides more accurate and straightforward classifiers in 

the machine learning algorithm stage.  
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Figure 3. Graphical representation of the proposed method. 

 

Figure 4. Variation of power causality relation between channels measured by SDTF as a function of time. (A) Fluctuations of the 

power as a function of time and (B) The oscillation using the box plot. 

2.4.4. Classification  

After providing the most significant features, some 

classifiers have been used to distinguish between two (or 

more) groups (such as HS and LS) using training data 

sets. In this study, three types of popular classifiers have 

been used, namely, linear discriminant analysis (LDA), 

support vector machines (SVM), and k-nearest neighbor 

(KNN). LDA is often used in places where the data 

distribution is approximated as Gaussian. This method 

distinguishes two linearly separable classes by 
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constructing a plane or hyperplane in the feature space. 

Likewise, SVM defines a hyperplane in feature space and 

finds the best solution to separate two classes by 

maximizing the margin distance between the nearest 

feature in each class and the hyperplane. In addition, by 

definition, the kernel function SVM can be used in two-

class problems where the features are not linearly 

separable.44,45 In this study, in addition to the linear 

decision boundary, the radial basis function (RBF) kernel 

is used to construct the non-linear boundary and reach 

better accuracy. The kernel function is defined as13: 

               𝐾(𝑥𝑖 . 𝑥𝑗) = 𝑒𝑥𝑝 (
−||𝑥𝑖−𝑥𝑗||

2

2𝜎2 )                  (9) 

where 𝜎 is a free parameter that is understood as a cut 

off parameter for the Gaussian sphere In this study the 

Kernel parameters of SVM-RBF have been tuned using 

a grid search approach (C=100, γ=0.001). This approach 

is a simple way to tune the hyperparameter used to 

optimize C (which controls the model overfitting) and γ 

(degree of model nonlinearity) parameters in SVM-RBF. 

A subset of hyperparameter space has been determined 

using exhaustive grid search manually.46 
KNN is another popular classifier used in places 

where the features that are related to each class are 

relatively close to each other in the feature space. In this 

algorithm, the metric distances are compared between the 

test data and the training datasets in the feature space, and 

then the decision is made by a majority vote based on its 

k nearest neighbors.47 

2.4.5. Validation 

To validate the classifier and overcome the leakage  

between the training and testing procedures, leave-one- 

subject-out cross-validation (LOSO-CV) is used for  

performance evaluation.48 In this procedure, one subject  

is used for the test set, and the remaining subjects are 

used for the training set. Then, the classification accuracy 

is obtained using the test dataset. Figure 5 illustrates the 

steps of this method. 

 

 

 

 

 

 

 

Figure 5. Representation of the LOSO-CV method. In each 

iteration, a classifier is trained using a training set (blue) and 

then tested using the test set (red) to obtain the necessary 

accuracy. The number of iterations is equal to the number of 

subjects. 

In addition, feature extraction and other steps are 

applied separately to the training and testing sets. In the 

training process, the label of optimal features and 

eigenvector of the PCA algorithm are stored for the 

feature selection and dimensionality reduction in the 

testing process. The flowchart of the training and testing 

processes in the proposed method is shown in Figure 6. 

Accuracy, specificity, sensitivity, positive predictive 

value (PPV or precision), and negative predictive value 

(NPV) are used here to assess the performance. All of 

these measures are evaluated based on a confusion matrix 

that contains true positive (TP), false positive (FP), true 

negative (TN), and false negative (FN). The derivation of 

the above measures from a confusion matrix is 

summarized in Table 1. 

 

Figure 6. Flowchart of training and testing processes applied to schizotypy classification. 
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By considering HS and LS classes, each term in the 

confusion matrix is defined as follow: 

TP: the number of correctly identified as HS. 

TN: the number of correctly identified as LS. 

FP: the number of incorrectly recognized as HS. 

(belonging to the LS group) 

FN: the number of incorrectly recognized as LS. 

(belonging to the HS group) 

Table 1. The derivation of above measures from a 
confusion matrix. 

Measures Formula 

Accuracy 
𝐴𝑐𝑐 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100 

 

Specificity 
𝑆𝑝𝑒𝑐 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100 

 

Sensitivity 
𝑆𝑒𝑛𝑠 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 

 

Positive PV 
𝑃𝑃𝑉 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100 

 

Negative PV 
𝑁𝑃𝑉 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑁
× 100 

3. Results 

This study is performed by using MATLAB 2019a 

software on a Windows PC with a 2.27 GHz Intel Core 

i5-M430 processor and 8-GB RAM. The average runtime 

of the classification test step is 0.714s for each subject. 

To evaluate the proposed method, twenty-four 

participants (13 HS and 11 LS) were used. As mentioned 

earlier, all epochs of one participant were used as a test 

set, and twenty-three remaining participants (with all 

epochs) were included in the training set. The whole 

number of epochs for HS and LS were 928 and 880, 

respectively. The total number of features was 1200 ([16 

electrodes] × [16 - 1] × 5 frequency bands). After ranking 

the features using t-test, the optimal number of features 

was determined to be 82. PCA has then been used for 

dimensionality reduction. 

Tables 2 and 3 demonstrate the accuracy of different 

classifiers for each HS and LS participant, respectively. 

In addition, the number of epochs for each participant is 

shown in these tables separately. Table 4 shows the total 

accuracy (weighted mean) of HS and LS participants for 

different classifiers. 

These results indicate that the classification accuracy 

for most participants is significantly higher than the 

chance level. Accordingly, the proposed method can be 

used as an accurate system to identify HS individuals in 

the general population. In addition, these results show 

that the performances of all the classifiers are fairly close 

to each other and prove the high effectiveness of DTF for 

this disorder.

Table 2. The accuracy for high schizotypy participants using different classifiers. 

Test Data - 

participant’s number 

HS-1 HS-2 HS-3 HS-4 HS-5 HS-6 HS-7 HS-8  HS-9 HS-10 HS-11 HS-12 HS-13 

Number of Epochs 70 70 70 70 70 70 70 70  62 70 70 96 70 

KNN (K=7) 64.3 62.85 95.7 100 81.4 61.4 82.85 94.3  62.9 85.7 85.7 92.7 97.14 

LDA 100 65.7 100 100 92.85 87.14 88.6 98.6  75.8 88.6 84.3 100 98.6 

Linear SVM  94.3 75.7 100 100 91.4 92.85 82.85 97.14  56.45 98.6 88.6 100 98.6 

RBF-SVM 94.3 75.7 100 100 91.4 92.85 82.85 98.6  56.45 98.6 88.6 100 98.6 

 

Table 3. The accuracy for low schizotypy participants using different classifiers. 

Test Data - 

participant’s number 

LS-1 LS-2 LS-3 LS-4 LS-5 LS-6 LS-7 LS-8 LS-9 LS-10 LS-11 

Number of Epochs 80 80 80 80 80 80 80 80 80 80 80 

KNN (K=7) 96.25 100.00 78.75 82.50 97.50 83.75 93.75 93.75 52.50 81.25 72.50 

LDA 95.00 100.00 76.25 71.25 90.00 86.25 93.75 73.75 41.25 67.50 68.75 

Linear SVM  96.25 100.00 87.50 83.75 97.50 91.25 92.50 91.25 41.25 91.25 85.00 

RBF-SVM 96.25 100.00 87.50 85.00 97.50 91.25 92.50 91.25 42.50 90.00 85.00 
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Table 4. The total accuracy [with standard error (SE)] for all 

participants using different classifiers. 

Test Data 

(Number of 

Epochs) 

HS 

(928) 

LS 

(880) 

ALL 

(1808) 

 Mean SE Mean SE Mean SE 

K-NN (K=7) 82.54 0.45 84.77 0.44 83.63 0.31 

LDA 91.16 0.33 78.52 0.54 85.01 0.34 

Linear SVM 91.05 0.38 87.05 0.51 89.10 0.32 

RBF-SVM 91.16 0.38 87.16 0.50 89.21 0.31 

 

A summary of classification performance of the 

proposed methods is shown in Figure 7. It should be 

mentioned that this figure is related to the average 

performance for all of the participants in the LOSO-CV. 

To show and evaluate the effect of feature selection and 

dimension reduction on classification accuracy, Figure 8 

compares the accuracy of four classifiers in three modes. 

However, as can be observed in Figure 8, an evident 

difference exists between the classification results without 

feature selection and after the feature selection process. 

Figure 9 illustrates the average power of DTF matrices 

and effective brain connectivity networks in the EEG 

sensor space for HS and LS groups in each frequency band 

separately. As can be observed, the connectivity strength 

has been changed in most frequency bands between the HS 

and LS groups. 

 

Figure 7. The classification performance. SVM with RBF kernel has the best performance among the four different classifiers. 

 
 

Figure 8. The effect of feature selection and dimension reduction on classification accuracy. 
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Figure 9. The average power of DTF matrices and effective brain connectivity networks in the EEG sensor space for HS and LS 

groups in five conventional frequency bands. 
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Another purpose of this study is to examine the high-

rank features in the feature selection step. This process 

can provide a comparison between the two groups and 

highlight the significant difference in their effective brain 

connectivity.  

To achieve this goal, the selected features are ranked 

in each validation step. Then, the filtering technique (t-

test) is applied to each training set. Top-ranked features 

are extracted after sorting them by their p-values in each 

step. Finally, the seven top-ranked features are selected 

by considering the union between them in all the steps. It 

should be mentioned that these seven top-ranked features 

are present in all the validation processes. The flowchart 

of the algorithm is shown in Figure 10.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Flowchart of the feature ranking algorithm. 

The P-value shown in the flowchart results from a t-test 

between the HS and LS groups. 

The comparison of the mean power value of SDTF 

brain connectivity features between HS and LS 

participants is represented in Figure 11. Based on Figure 

11, a meaningful difference (p-value < 0.001) has been 

observed between HS and LS groups. 

Table 5 shows which frequency bands and channels 

are related to these seven top-ranked features. As can be 

observed, most of the top-ranked features belong to the 

prefrontal/frontal brain regions in α and β frequency 

bands. In addition, Figure 12 illustrates the three-

dimensional feature space of the principal components 

for all the participants' epochs after dimensionality 

reduction using PCA. Evidently, the features of the two 

classes are clearly separated. Hence, a limited and 

reliable set of DTFs can form an appropriate classifier for 

schizotypy diagnosis. 

 
Table 5. The relation between frequency bands and electrode 

channels in seven top-ranked features. 

 

Rank Number Channel-pairs 

(directional) 

Frequency band 

1 FP2⟶ FP1 β 

2 FP2⟶ FP1 ɣ 

3 F6⟶ FP1 β 

4 F5⟶ FP1 β 

5 FP2⟶ FP1 α 

6 P6⟶ FP1 β 

7 F6⟶ FP1 α 

 

 

Figure 11. The comparison between seven top-ranked effective brain connectivity features for the two groups. 
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Figure 12. The three-dimensional feature space of the 

principal components for all the participants' epochs after 

using PCA. 

4. Discussion 

The prevalence of severe mental disorders, including 

schizophrenia, continues to be one of the main problems 

confronting health care systems.49 Signal processing and 

machine learning offer a conducive and efficient system 

for early diagnosis and monitoring of these disorders.50 

To the best of our knowledge, this study develops the first 

MVAR-based connectivity measures as reliable features 

to classify individuals into HS and LS levels. 

Specifically, we determined the power of DTF derived 

from MVAR coefficients as features in the separate 

standard frequency bands between sixteen EEG 

channels. Our results indicate that the HS and LS 

participants have significant differences in the α and β 

frequency band connectivities. As hypothesised, there 

was reduced connectivity between prefrontal and parietal 

regions in the β frequency band. On the other hand, the 

reduced frontal connectivity in the alpha band in the HS 

group suggests a diffuse connectivity pattern and low 

synchrony between brain regions, and possibly poor 

information flow.18 

The positive relationship between the schizotypy and 

schizophrenia patterns has been proved in the first meta- 

analysis of neuroanatomical mapping of schizotypy.51 

Furthermore, some of the previous studies have found 

this relation, and argued that schizotypy may lead to 

schizophrenia and other spectrum disorders.10,52-55 As per 

the disconnection hypothesis, the observations of 

schizophrenia can be generalized to schizotypy.56 This 

hypothesis asserts that schizophrenia can be conceived as 

the faulty interaction of functional systems, such as 

cortical areas and sub-areas, that are used for adaptive 

sensory-motor integration, perceptual synthesis, and 

cognition.57 Our findings support this hypothesis because 

the changes in DTF as a measure of effective brain 

connectivity  are variously associated with HS. The 

findings indicate that the connectivity pattern in 

schizotypal individuals can be changed in their 

connection strengths similar to those of schizophrenics. 

It is essential to mention that this disconnection 

syndrome is considered as a function of epigenetic 

activity and experience-dependent plasticity57 and 

indicates effective brain connectivity (not anatomical 

brain connectivity). Diffuse connectivity patterns have 

been shown in schizotypy16-19,58 and schizophrenia 

patients.59,60 These phenomena might indicate the 

deficiency of synchronization between brain regions or 

the reduction of local computational processing.59 

Furthermore, the resting-state functional connectivity is 

reduced between frontal and parietal brain regions in 

HS19 and first-episode schizophrenia61 within alpha 

frequency. Our results have shown that alpha and beta-

based effective brain connectivities derived from MVAR 

are significantly different for the prefrontal/parietal and 

prefrontal/frontal brain regions. Besides, there is 

decreased long-distance and short-distance 

connectivities in alpha and beta bands. Our results are 

consistent with those of previous studies.16,19,21 However, 

in contrast to Ref.18, we found a minor difference in 

occipital connectivity patterns and we observed 

significant differences in interhemispheric connectivities 

between HS and LS groups. This divergence of results in 

between studies may be due not only to differences in 

data recording and processing methods but also to 

heterogeneity or inconsistency in detecting psychiatric 

disorders.19  

Finally, our results show that effective brain 

connectivity estimation based on MVAR coefficients 

may be a reliable criterion for diagnosing the level of 

schizotypy. Figures 9, 11, and 12 are proof of this 

assertion. As can be understood from those figures, the 

features extracted from the DTF are pretty distinct. So, a 

suitable diagnostic system can be designed based on 

these features to ensure desirable reliability. Some well-

known classifiers were then applied to these features to 

achieve the best classification rate.  

The major limitation of this study is the small sample 

size. Furthermore, the difference between the two classes 

is not as high as expected since both groups are from the 

general (non-clinical) community and not from either 

perfectly healthy or clinical groups. Generally, 

schizotypy is a non-clinical form of psychosis-like 

experiences. So, the level of brain alteration is milder 

than that in frank psychosis.9 On the other hand, the cut-



13 
 

 

off point for high schizotypy is based on the 90th 

percentile of a sample of participants in Nottingham City, 

UK.27 So, some participants falling on the borderline of 

high schizotypy might have had a moderate level of 

schizotypy. 

 Future studies should consider a larger number of 

individuals, including clinical and subclinical groups, to 

obtain a generalization of this study. Future studies 

should also use more robust and newer classification 

algorithms (e.g., enhanced probabilistic neural 

network62, neural dynamic classification algorithm63, 

dynamic ensemble learning algorithm64, and finite 

element machine65). Our analysis included the sensor-

level MVAR based on connectivity measures. In our 

future studies we will consider more robust methods 

(e.g., partial directed coherence (PDC) or time reversed 

Granger causality (TRGC)) to avoid the volume 

conduction problem66, and develop assessment methods 

based on graph theory to quantify the connectivity 

networks. We will also involve other measures of brain 

activity such as variation in frequency bands and most 

importantly ERPs67,68 to enhance the robustness of the 

measurements. 

5. Conclusions 

In this paper we present the first attempt to investigate 

the identification of schizotypy by estimation of multi-

frequency band effective brain connectivity based on 

MVAR coefficients and use a joint signal processing and 

machine-learning approach to classify the schizotypy 

level. This finding indicates significant differences 

between the prefrontal/parietal and prefrontal/frontal 

brain regions in alpha and beta frequency bands between 

HS and LS groups. So, we can reach high classification 

accuracy using these features. We provide evidence that 

the effective brain connectivity features could be suitable 

biomarkers for detection and monitoring of schizotypy 

and use them for early intervention to prevent some 

forms of psychosis, including early schizophrenia and 

spectrum disorders. 
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