
 

1 

 

Biosynthesis of SiO2 nanoparticles using extract of Nerium oleander 1 

leaves for the removal of tetracycline antibiotic  2 
 3 

Noureddine El Messaoudia,*, Mohammed El Khomria, El-Houssaine Ablouhb,  Amal 4 

Bouichc, Abdellah Lacheraia, Amane Jadad, Eder C. Limae, Farooq Sherf,* 5 
 6 

aLaboratory of Applied Chemistry and Environment, Ibn Zohr University, Agadir 80000, 7 

Morocco 8 

bMaterials Science, Energy and Nanoengineering Department (MSN), Mohammed VI 9 

Polytechnic University (UM6P), Benguerir 43150, Morocco 10 

cDepartment of Applied Physics, Institute of Design and Manufacturing (IDF), Polytechnic 11 

University of Valencia, Valencia 46000, Spain 12 

dInstitute of Materials Science of Mulhouse (IS2M), High Alsace University, Mulhouse 13 

68100, France   14 

e Institute of Chemistry, The Federal University of Rio Grande do Sul (UFRGS), Porto Alegre-15 

RS 91501-970, Brazil 16 

fDepartment of Engineering, School of Science and Technology, Nottingham Trent University, 17 

Nottingham NG11 8NS, United Kingdom  18 

 19 

*Corresponding author: 20 

Dr. F. Sher 21 

Assistant Professor 22 

Department of Engineering, School of Science and Technology 23 

Nottingham Trent University 24 

Nottingham  25 

NG11 8NS 26 

UK 27 

E-mail address: Farooq.Sher@ntu.ac.uk  28 

Tel.:  +44 (0) 115 84 86679 29 

 30 

  31 

mailto:Farooq.Sher@ntu.ac.uk


 

2 

 

Abstract 32 

Tetracycline (TC) is one of the antibiotics that is found in wastewaters. TC is toxic, 33 

carcinogenic, and teratogenic. In this study, the tetracycline was removed from water by 34 

adsorption using dioxide silicon nanoparticles (SiO2 NPs) biosynthesized from the extract of 35 

Nerium oleander leaves. These nanoparticles were characterized using SEM-EDX, BET-BJH, 36 

FTIR-ATR, TEM, and XRD. The influences of various factors such as pH solution, SiO2 NPs 37 

dose, adsorption process time, initial TC concentration, and ionic strength on adsorption 38 

behaviour of TC onto SiO2 NPs were investigated.TC adsorption on SiO2 NPs could be well 39 

described in the pseudo-second-order kinetic model and followed the Langmuir isotherm 40 

model with a maximum adsorption capacity was 552.48 mg/g. At optimal conditions, the 41 

experimental adsorption results indicated that the SiO2 NPs adsorbed 98.62% of TC. The 42 

removal of TC using SiO2 NPs was 99.56% at conditions (SiO2 NPs dose=0.25 g/L, C0=25 43 

mg/L, and t=40 min) based on Box–Behnken design (BBD) combined with response surface 44 

methodology (RSM) modelling. Electrostatic interaction governs the adsorption mechanism is 45 

attributed. The reusability of SiO2 NPs was tested, and the performance adsorption was 85.36% 46 

after the five cycles. The synthesized SiO2 NPs as promising adsorbent has a potential 47 

application for antibiotics removal from wastewaters. 48 

Keywords: Green synthesis; Tetracycline; SiO2 nanoparticles; Nerium oleander leaves extract; 49 

Chemical engineering; Adsorption and Optimization  50 

 51 

1 Introduction   52 

The excessive accumulation of toxic antibiotics in natural aquatic systems has received 53 

enormous attention due to their acute toxicity and possible carcinogenic effect (Grenni et al., 54 

2018). Various antibiotics such as quinolones, sulfonamides, macrolides, and tetracyclines 55 

are broadly used to prevent and treat infectious diseases (Ahamad et al., 2019). Antibiotic 56 
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residues, frequently found in soil, sediment, and aquatic environments, have adverse side 57 

effects as bacterial resistance changes in the microbial ecological functions (Sodhi et al., 2021). 58 

Antibiotic accumulation may also severely impair human physiological functions and have 59 

carcinogenic, teratogenic, or hormonal effects (Liu et al., 2017); their excess entrance into food 60 

chains may cause different disorders in the human body, such as the gastrointestinal system 61 

(Rashidi Nodeh et al., 2020). Therefore, controlling and handling antibiotic contaminants is 62 

necessary to have a safe environment (Yu et al., 2016). 63 

 64 

Tetracycline (TC) is considered one of the most dangerous antibiotics due to its toxic, 65 

carcinogenic, and mutagenic effects (Scaria et al., 2021). TC is commonly used for animal 66 

husbandry and poultry industries worldwide to promote animal growth and prevent infections 67 

(Song et al., 2020; Van et al., 2020). About 60-80 % of tetracyclines were subject to different 68 

natural surroundings original in or metabolized forms due to lower metabolic rates in animals 69 

and humans (Epps and Blaney, 2016; Scaria et al., 2021); due to the high solubility rate, TC is 70 

detected in different water bodies and some regions; its concentration exceeds standard 71 

environmental limits (Daghrir and Drogui, 2013). Several approaches such as photocatalysis 72 

(Zhu et al., 2013), flocculation (Fu et al., 2015), biological treatment (Belkheiri et al., 2011), 73 

electrochemical (Wang et al., 2021), adsorption (Sharma et al., 2020), and reverse osmosis 74 

(Rostam and Taghizadeh, 2020) have been used to remove tetracycline from wastewaters. The 75 

adsorption process is a competitive and practical method for removing TC from wastewater 76 

due to high efficiency, low energy demand, and the possibility of reusing adsorbent materials 77 

(El Khomri et al., 2020; El Messaoudi et al., 2016a). 78 

 79 

Consequently, a wide range of adsorbent materials (clays, chitosan, coated silica gel, zeolite 80 

ionic liquids, metal oxides, nanocomposites, nanomaterials, industrial and agricultural wastes) 81 
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have already been tested for the recovery of TC contained in wastewater (Chang et al., 2012; 82 

Gao et al., 2012; Hao et al., 2021; Maged et al., 2020; Zhou et al., 2017).  Recently, conducting 83 

nanoparticles such as ZrO2 (Debnath et al., 2020), NiFe (Ravikumar et al., 2019), CeO2 84 

(Nurhasanah et al., 2020), La2S3 (Rashidi Nodeh et al., 2020), and ZnO (Bembibre et al., 2022) 85 

have been categorized as efficient adsorbents for TC removal from wastewaters due to high 86 

stability, porous nature, good adsorption aptitude, simple doping/dedoping, and ion exchange 87 

properties. Many methods have been used to synthesize the SiO2 nanoparticles in the literature, 88 

such as solid-state, sonochemical (Masjedi-Arani et al., 2015), hydrothermal (Potapov et al., 89 

2020), sol-gel (Dubey et al., 2015), and ultrasonic-assisted approaches (Ullah et al., 2019). 90 

 91 

In this study, we used  SiO2 nanoparticles to remove TC from the aqueous solution because 92 

they are an excellent adsorbent to remove dyes and metals and a photocatalyst to treat 93 

wastewaters (Hosseini et al., 2018; Sharma et al., 2021). These nanoparticles are 94 

biosynthesized from the extract of Nerium oleander leaves. The biosynthesis of nanoparticles 95 

from the extract of agricultural solid wastes is regarded as a simple, rapid, cost-effective, and 96 

eco-friendly method for creating nanostructured materials such as metals, metal chalcogenides, 97 

and bimetal oxide (Das et al., 2018). In this work, we used the extract of Nerium oleander 98 

leaves for biosynthesized of SiO2 nanoparticles. We chose this agricultural solid waste 99 

because its extract contains a significant amount of minerals, lost cost materials, and 100 

is eco-friendly and abundant in Morocco (Martín et al., 2018; Sebeia et al., 2019). 101 

 102 

The performance of SiO2 NPs was evaluated in this study by removing tetracycline from the 103 

solution aqueous. Besides, characterization techniques were practiced for investigating its 104 

structure and properties, such as scanning electron microscope coupled with energy-dispersive 105 

X-ray (SEM-EDX), Brunauer-Emmett-Teller and Barrett-Joyner-Halenda (BET-BJH), Fourier 106 
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transform infrared spectroscopy coupled with attenuated total reflectance (FTIR-ATR), 107 

transition electron microscope (TEM), X-ray diffraction (XRD), and point of zero charge 108 

(PZC). The present work will substantially impact as it will add unique knowledge on the 109 

adsorption potential of SiO2 NPs synthesized from the extract of Nerium oleander leaves. In 110 

this current study, the SiO2 NPs were synthesized from the Nerium oleander leaves extract. 111 

Different influencing experimental parameters such as pH, SiO2 NPs dose, reaction time, TC 112 

concentration, and ionic strength were investigated. Kinetic and equilibrium models evaluated 113 

the adsorption of TC on SiO2 NPs. The removal of TC optimized using Box–Behnken design 114 

(BBD) combined with response surface methodology (RSM). The adsorption mechanism of 115 

TC molecules on the SiO2 NPs surface was proposed. The reusability of SiO2 NPs was 116 

evaluated.  117 

2 Experimental  118 

2.1 Materials 119 

Nerium oleander leaves were collected in Tinghir (South-East Morocco). The silicate of 120 

sodium (Na2SiO3), tetracycline (antibiotic, C22H24N2O8, MW=444.435 g/mol), C2H5OH, HCl, 121 

and NaOH were parched from Sigma-Aldrich. The distilled and deionized waters were used 122 

through experiments. 123 

2.2 Biosynthesis of SiO2 NPs 124 

10 g of Nerium oleander leave powder were added in 100 mL of C2H5OH and stirred for 3 h. 125 

After that, the solution was filtered using filter paper then the above mixture was centrifuged 126 

for obtained a clear extract of Nerium oleander leaves. 2 g Na2SiO3 and 50 mL of extract and 127 

5 mL of NaOH (0.5 M) were mixed and stirred for 4 h (Dobrucka and Długaszewska, 2016).  128 

After precipitation, the mixture was filtered and centrifuged for separated the liquid and the 129 

precipitate (SiO2 NPs). The residue obtained was watched with deionized water. Finally, The 130 
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SiO2 nanoparticles were over-dried (80 °C) for 24 h and calcined in the furnace at 500 °C for 131 

3 h (Shaligram et al., 2009). 132 

2.3 Characterization  133 

The physicochemical properties of SiO2 NPs were examined using different characterization 134 

techniques. The morphology and microstructures of SiO2 NPs were examined by SEM-EDX 135 

analysis (JEOL, JSM-IT200) and TEM analysis (Philips CM-30). BET and BJH methods 136 

(Belsorp Mini II) were used to determine the surface area,  total pore volume, and diameter 137 

pore of SiO2 NPs. The chemical bond characteristics of SiO2 NPs before and after TC 138 

adsorption was acquired by FTIR-ATR analysis (Jasco 4100). The SiO2 NPs crystal structures 139 

were evaluated using XRD analysis recorded on a 6100-Shimadzu. The PZC of adsorbent was 140 

determined using the method reported by Fiol and Villaescusa, (2009). 141 

2.4 Batch adsorption experiments 142 

The TC adsorption onto SiO2 NPs nanoparticles was conducted in batch mode using 12.5 mg 143 

of SiO2 NPs in 50 mL of TC solutions with concentrations varied from 50 to 200 mg/L at 23±1 144 

°C. The influence of pH solution on adsorption was assessed and ranged from 3 to 11 and was 145 

adjusted by 0.01 M HCl acid or 0.01 M NaOH. The adsorbent dose, kinetic reaction, and ionic 146 

strength were changed from 0.05 to 0.4 g/L from 5 to 120 min and from 0 to 0.4 M, 147 

respectively. The separation of the solid-liquid phases was performed by centrifuging. The 148 

residual concentration was determined using a UV/Vis spectrophotometer (2300/Techcomp) 149 

at 376 nm as λmax of TC. The quantity adsorbed qe (mg/g) and the and TC removal efficiency 150 

(%) were obtained using following  Eqs. (1) and (2) respectively (El Messaoudi et al., 2016b): 151 

𝑞𝑒 =
(𝐶0 − 𝐶𝑒) × 𝑉

𝑤
                                                                     (1) 152 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑅𝑒𝑚𝑜𝑣𝑎𝑙 (%) =
(𝐶0 − 𝐶𝑒)

𝐶0
× 100                                                 (2) 153 
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In equations (1) and (2), C0 (mg/L) and Ce (mg/L) denote the concentrations of TC before and 154 

after adsorption, respectively. The w (g) and V (L) represents the weight of SiO2 NPs and the 155 

volume of the reaction solution, respectively (Bentahar et al., 2018; El Messaoudi et al., 2017). 156 

2.5 Experimental design  157 

BBD used a static method to design experimental parameters influencing the adsorption of TC 158 

on SiO2 NPs using design-expert software (version 12.0.3). TC concentration (A), reaction 159 

time (B), and SiO2 NPs dose (C) as factors have significant effects on the TC adsorption on 160 

SiO2 NPs at 23±1 °C and pH=5. Design of experiment runs and corresponding responses for 161 

TC removal efficiency by SiO2 NPs are summarized in Table 1. A three-factors and levels (–162 

1, 0, and 1) were applied to 21 experiments. The  TC removal efficiency R (%) was expressed 163 

using the quadratic polynomial model was formalized in  Eq. (3) (Jawad et al., 2020): 164 

𝑅(%) =  ∑ 𝛿𝑖 𝑋𝑖 +  ∑ 𝛿𝑖𝑖 𝑋𝑖 
2

 

3

𝐼=1

3

𝐼=1

+ ∑ 𝛿𝑖𝑗 𝑋𝑖 𝑋𝑗 

𝐼<𝑗

+  𝛿0                                 (3) 165 

where δ0 denotes constant-coefficient, δi is attributed to the direct effect, δii corresponds to 166 

higher-order effect, and δij denote reciprocate effect.   167 

3 Results and discussion 168 

3.1 Material characterization 169 

The microstructures of synthesized nanoparticles were analyzed using SEM coupled with 170 

EDX. The results obtained are shown in Fig. 1. According to Fig. 1(a), The SEM image of 171 

SiO2 NPs showed that the particles are agglomerated and have poor dispersion. Fig. 1(b) 172 

represents the EDX spectrum and elemental analysis of SiO2 NPs.  The synthesis of SiO2 NPs 173 

confirmed by the presence of O (53.82%) and Si (46.18%) (Dubey et al., 2015). Fig. 1(c) and 174 

(d) indicate the uniform distribution of O and Si was illustrated by EDX elemental mapping.  175 

Fig. 2 illustrates the N2 isotherms adsorption-desorption and average diameter distribution for 176 

SiO2 NPs nanospheres. By means, BET and BJH methods, the obtained middle surface area, 177 
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pore diameter, and total pore volume were 583.46 m2/g, 3.46 nm, and 0.27 cm3/g, respectively, 178 

confirmed the porosity of SiO2 NPs. The FTIR spectra of SiO2 NPs before and after the 179 

adsorption of TC (TC-SiO2) are depicted in Fig. 3. On the spectrum of SiO2 NPs, the broad 180 

bands at 3452 cm−1 and 1634 cm−1 correspond to OH stretching vibration and absorbed 181 

water molecule, respectively (El Messaoudi et al., 2016a; Niksefat et al., 2014).  182 

 183 

The peaks at  1083 cm−1, 953  cm−1 and 806 cm−1 and 457 cm−1 were ascribed to the Si-O 184 

stretching vibration, Si-OH stretching vibration and Si-O-Si symmetric stretching (Rafigh and 185 

Heydarinasab, 2017),  and Si-O-Si bending, respectively (Yue et al., 2019), which confirms 186 

successful synthesis of SiO2 nanospheres. The spectrum of TC-SiO2 NPs shows small changes 187 

that demonstrate the TC adsorption on the surface of SiO2 NPs. Fig. 4(a) shows the 188 

nanoparticles of SiO2 NPs using a TEM image.  According to this figure, the synthesized SiO2 189 

NPs particles were found to be spherical in structure (Dubey et al., 2015; Nita et al., 2019). The 190 

XRD characterization results of SiO2 NPs are provided in Fig. 4(b). A broad peak in the range 191 

of 20–30° is corresponded to the crystallite of SiO2 particles (Rafigh and Heydarinasab, 2017), 192 

indicating the successful synthesis of SiO2 NPs.  193 

3.2 Adsorption study 194 

3.2.1 Effect of solution pH 195 

Fig. 5(a) presents the influence of pH on the TC adsorption at pH values ranging from 3 to11. 196 

This experiment attempted 10 mg of SiO2 NPs in 50 mL of the solution TC (50 mg/L) at T=23 197 

±1 °C for 120 min.  As Fig. 5(a) shows, the highest removal of TC was 98.07% at pH=5. 198 

Similar results were obtained by Debnath et al. (2020) and Rashidi Nodeh et al. (2020). This 199 

increase of TC removal in the acidic medium can be explained by the charge positive of SiO2 200 

NPs and the charge negative of TC (TCH–, TC–) (Li et al., 2010; Mohammed and Kareem, 201 

2019). As Fig. 10(a) depicted, PZC of SiO2 NPs was 8.2. The quantity adsorbed was 196.17 202 
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mg/g at pH=5. The dominance of charge positive of SiO2 NPs at pH<PZC (adsorption of TC 203 

was favourable) and negatively charged when pH>PZC (adsorption of TC was unfavourable) 204 

(Song et al., 2020). 205 

3.2.2 Effect of SiO2 NPs dose 206 

A TC concentration of 50 mg/L with a pH=5 at T=23 ±1 °C for 120 min, the effect of SiO2 207 

NPs dose (0.05-0.4 g/L) on TC adsorption was studied. Fig. 5(b) shows the results obtained. 208 

The TC removal increased from 54.38 to 98.92% by increasing the SiO2 NPs dose from 0.05 209 

to 0.25 g/L, while the quantity adsorbed decreased from 543.88 to 197.95 mg/g. Results 210 

imply that the number of active adsorption sites for TC adsorption corresponds to the applied 211 

dose, prompting higher removal efficiency (Zhang et al., 2019). After equilibrium between 212 

the adsorbent and antibiotic solution, the removal percentage remains consistent at higher 213 

dosages (> 0.25 g/L) (Jin et al., 2019). The optimum adsorbent dosage was considered 0.25 214 

g/L to reach maximum TC removal efficiency, respectively. 215 

3.2.3 Effect of contact time 216 

The influence of the contact time on TC adsorption using SiO2 NPs displayed in Fig. 5(a). The 217 

contact time ranged from 5 to 120 min, whereas other parameters were kept constant (SiO2 218 

NPs=0.25 g/L, TC concentration=50 mg/L, pH=5, and T=23±1 °C). The TC adsorption was 219 

fast at first 30 min, which may be attributed to many sites accessible on the surface of the 220 

SiO2 NPs in the initial phase (Ahamad et al., 2019). The equilibrium time was found to be 221 

40 min. After equilibrium adsorption, the active sites were occupied by the TC 222 

molecule/ions. Therefore the adsorption rate became consistent (Zhou et al., 2020). 223 

Experimental data showed that stability was achieved in 40 min with an adsorption capacity 224 

of TC was 195.97 mg/g. 225 
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3.2.4 Effect of Initial TC concentration  226 

The influence of TC concentration (25–200 mg/L) on its retention using SiO2 NPs was studied 227 

with a fixed pH=5 and 0.25 g/L of SiO2 NPs dose for 40 min. As illustrated in Fig. 5(d), by 228 

increasing TC concentration from 25 to 150 mg/L, the TC adsorption capacity progressively 229 

increased from 99.40 to 512.06 mg/g, while the removal of TC decreased from 99.40 to 230 

85.34%. This increases TC adsorption capacity due to the occupation of all available sites on 231 

the surface of  SiO2 nanoparticles by TC molecules (Debnath et al., 2020).  After 150 mg/L, a 232 

plateau was not achieved in the adsorption capacity, suggesting active sites are still available 233 

and no saturation occurred. The phenomena were similar to the adsorption research of 234 

tetracycline reported previously (Ahamad et al., 2019; Ravikumar et al., 2019). 235 

3.2.5 Effect of ionic strength 236 

The electrolyte (NaCl) concentration in the aqueous solution significantly affects TC 237 

adsorption onto SiO2 NPs. As reported in Fig. 6, at SiO2 NPs=0.25 g/L, TC 238 

concentration=50 mg/L, pH=7, and T=23±1 °C, the removal efficiency of SiO2 NPs for TC 239 

decreased from 73.15% (0 M NaCl) to 55.48% (0.4 M NaCl) by increasing the electrolyte 240 

concentrations from 0 to 0.4 M NaCl. By increasing the ionic strength, Cl– competes 241 

with negatively charged TC (TCH–, TC–) species for adsorption onto SiO2 NPs surface site 242 

with positively charged at pH=7 (Zhang et al., 2019). This result is in line with another study 243 

that reported a decline in TC adsorption onto clay surface sites, negatively charged by 244 

increasing electrolyte concentration in the solution (Parolo et al., 2008). In their study, by 245 

increasing Na+ ion concentration at pH=4 of the solution, the competence for occupying surface 246 

sites between Na+ ion and positively charged TC (TCH+) increased (Yang et al., 2011). The 247 

reduction in TC adsorption onto the surface of clay increased in a higher concentration of Na+ 248 

(Parolo et al., 2008). 249 
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3.3 Adsorption kinetics 250 

The obtained experimental data were evaluated by using the pseudo-first-order (PFO) (Simonin, 251 

2016), pseudo-second-order (PSO) (Ho and McKay, 1998), and intraparticle diffusion (IPD) 252 

(Graaf et al., 1990) kinetic models and their linear forms are given using the following Eqs. (4), 253 

(5), and (6) as represented in Table 2, respectively. Table 2 also shows the parameters for linear 254 

fitting. Furthermore, the PSO model was fitted to data experimental based on R2 (correlation 255 

coefficient).  It can be found that R2 values are very near to 1, and qe,exp values are also closer to 256 

qe,cal values for the PSO. This model speculates that adsorption pursues a second-order mechanism 257 

(El Messaoudi et al., 2021b).  258 

3.4 Adsorption isotherm 259 

The TC adsorption on SiO2 NPs was the Langmuir (Langmuir, 1918), Freundlich (Freundlich, 260 

1907), and Temkin (Johnson and Arnold, 1995) isotherm models. The linear forms of these 261 

isotherms are expressed on Eqs. (7), (8), and (9), as represented in Table 3. The parameters of 262 

linear fitting are listed in Table 3. Based on regression coefficients R2 (0.9931, 0.9650, and 263 

0.9392), the Langmuir model best described the TC adsorption on SiO2 NPs. Langmuir model 264 

suggests the dye adsorption occurs as a monolayer from the homogeneous surface of the 265 

adsorbent (Bentahar et al., 2017; El Messaoudi et al., 2021a).  A similar observation was found 266 

in other studies, showing successful adsorption isotherm data using Langmuir isotherm 267 

compared to Freundlich and Temkin isotherm models (Li et al., 2021; Mohammed et al., 2020). 268 

The maximum adsorption capacity Qm of SiO2 NPs for TC adsorption was 552.48 mg/g. The 269 

comparison of the adsorption of SiO2 NPs to remove TC from aqueous solution with other 270 

adsorbents reported in the literature is summarized in Table 4. Based on the results presented in 271 

this table, that the SiO2 NPs exhibit high adsorption of TC compared with adsorbents. Therefore, 272 

SiO2 NPs are a suitable adsorbent for the removal of antibiotic molecules from wastewater 273 

treatment. 274 
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3.5 Design optimization 275 

Table 5 presents the results of ANOVA analysis of the statistical significance. The F-value 276 

(162.55) and p-value (<0.0001) indicate the polynomial equation was significant for the 277 

removal of TC on SiO2 NPs within 95% (Hu et al., 2021).  The high values of R2 (0.9925), 278 

adjusted R2 (0.9864), and predicted R2 (0.9449) indicated the excellent fit of this model to the 279 

factors selected (Aziz et al., 2021). The value of adequate precision of 37.9356 (>4) shows a 280 

high level of statistical significance (Dalia Allouss et al., 2019). The predicated TC removal 281 

using SiO2 NPs was obtained by the developed model represented below in Eq. (10) 282 

(Dalia Allouss et al., 2019). 283 

R (%) = 98.57–6.84 A + 3.78 B + 0.8861 C + 3.72 AB + 0.6362 AC– 0.0713 BC –3.57A2 –2.36 284 

B2 – 0.6527 C2             (10) 285 

The residual vs. predicted and 3D response surface plots of TC percentage are illustrated in 286 

Fig. 7 and Fig. 8, respectively. The TC removal was experimentally 99.56% under optimal 287 

conditions (SiO2 NPs dose=0.25 g/L, C0=25 mg/L, and pH=5 at 23±1 °C for 40 min) RSM-288 

BBD modeling. 289 

3.6 Reusability of SiO2 NPs 290 

To assess the applicability of the adsorbent in the full-scale operation, the reusable capacity of 291 

SiO2 NPs was studied for the removal of TC in optimal conditions (SiO2 NPs dose=0.25 g/L, 292 

t=40 min, C0=50 mg/L, pH (TC)=5, and T=23±1 °C). Therefore, the regeneration studies for 293 

evaluating the adsorption efficiency of the nanocomposite were conducted within five 294 

successive cycles using 0.1 M NaOH. According to Fig. 9, less than a 13% drop in the removal 295 

efficiency of TC occurred at the end of the fifth run, signifying the desirable reusability 296 

potential of the synthesized nanoparticles within successive runs of operation (Yang et al., 297 

2020). This decrease was attributed to the occupation of available sites on the SiO2 NPs surface 298 

(El Messaoudi et al., 2021b). In conclusion, the present adsorbent can be regarded as a 299 
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promising material for practical application in environmental protection due to its excellent 300 

adsorption activities and high stability. 301 

3.7 Proposed adsorption mechanism  302 

Various mechanisms are involved in the adsorption of the organic compound to nanoparticle 303 

adsorbents. It was reported that both electrostatic and dispersive interaction between adsorbent 304 

and adsorbate is important in the adsorption process (Gao et al., 2019). Regarding the properties 305 

of organic adsorbate and adsorbent, the importance of each interaction is determined. As Fig. 306 

10(a) shows, PZC of SiO2 NPs was 8.2. The dominance of charge positive of SiO2 NPs at 307 

pH<PZC and negatively charged when pH>PZC.The high value of PZC indicates the 308 

favourable and maximum adsorption in an acidic medium. This result confirmed the effect of 309 

pH on adsorption. The adsorption mechanism of TC on SiO2 NPs is schematized in Fig. 10(b) 310 

based on PZC. The charge positive of SiO2 NPs and the negative charge of TC indicates the 311 

governance of electrostatic interactions  between TC and SiO2 NPs (Gao et al., 2012). 312 

4 Conclusions 313 

The SiO2 nanoparticles biosynthesized from the extract Nerium oleander leaves successfully 314 

with an effective method to remove tetracycline (TC) from an aqueous solution. The result of 315 

SEM-EDX, FTIR, TEM, and XRD characterization confirmed the biosynthesis of SiO2 316 

nanoparticles with spherical and crystallite in their structure. The parameters of the adsorption 317 

process were optimized with the variation in values of pH solution, SiO2 NPs dose, adsorption 318 

process time, initial TC concentration, and ionic strength. Under conditions (SiO2 NPs 319 

dose=0.25 g/L, t=40 min, C0=50 mg/L, pH=5, and T=23±1 °C), the TC removal was 98.62%. 320 

The kinetics and isotherm of TC adsorption on SiO2 NPs were described as the PSO and 321 

Langmuir models, respectively. The Qm was 552.48 mg/g. Optimization is an effective 322 

approach for modelling the sorption process of the TC on SiO2 NPs using BBD–RSM. The 323 

recyclability study demonstrated that the SiO2 NPs exhibited excellent reusability for TC 324 
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removal. These results confirm that the SiO2 NPs nanoparticles are suitable for removing 325 

antibiotics from wastewaters. 326 
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List of Figures 583 
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 585 

Fig. 1. SEM image; (a) SiO2 NPs, (b) Elemental analysis, (c) Mapping image of SiO2 NPs: oxygen and (d) 586 

Mapping image of silicon. 587 
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 590 

Fig. 2. N2 adsorption/desorption isotherm curve and pore size distribution of TC-SiO2 NPs. 591 
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 593 

Fig. 3. FTIR spectra of SiO2 NPs and TC-SiO2 NPs (after adsorption). 594 
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 597 

Fig. 4. SiO2 NPs (a) TEM image and (b) XRD spectrum. 598 
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 602 

Fig. 5. Removal percentage using SiO2 NPs; (a) Effects of pH, (b) Effect of SiO2 NPs dose, (c) Effect of 603 

reaction time and (d) Effect of initial concentration on TC adsorption. 604 
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 609 

Fig. 6. Effect of ionic strength on TC adsorption using SiO2 NPs. 610 
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 612 

  613 

Fig. 7. Actual versus predicted for TC adsorption on SiO2 NPs. 614 
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 617 

Fig. 8. Surface response plots of TC removal percentage; (a) Initial TC concentration with contact time, (b) 618 

SiO2 NPs dose with initial TC concentration and (c) SiO2 NPs dose with contact time. 619 
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 621 

Fig.9. Reusability of SiO2 NPs for the removal of TC. 622 
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 624 

 625 

Fig. 10. (a) PZC of SiO2 NPs and (b) Proposed adsorption mechanism of TC on SiO2 NPs.  626 
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List of Tables 627 

Table 1. Design of experiment runs and corresponding responses for TC removal efficiency by 628 

SiO2 NPs. 629 

Variables Codes 

 -1 0 1 

A=TC concentration (mg/L) 25 50 75 

B=Contact time (min) 30 40 50 

C=SiO2 NPs dose (g/L) 0.1 0.25 0.4 

Run A 

(mg/L) 

B 

(min) 

C 

(g/L) 

R 

(%) 

1 25 30 0.1 98.05 

2 75 30 0.1 77.11 

3 25 50 0.1 98.87 

4 75 50 0.1 90.11 

5 25 30 0.4 99.23 

6 75 30 0.4 78.13 

7 25 50 0.4 99.06 

8 75 50 0.4 93.55 

9 25 40 0.25 99.56 

10 75 40 0.25 90.57 

11 50 30 0.25 89.45 

12 50 50 0.25 98.66 

13 50 40 0.1 90.11 

14 50 40 0.4 98.65 

15 50 40 0.25 98.44 

16 50 40 0.25 98.71 

17 50 40 0.25 98.24 

18 50 40 0.25 98.53 

19 50 40 0.25 98.61 

20 50 40 0.25 98.72 

21 50 40 0.25 98.23 

 630 



 

32 

 

Table 2.  Kinetic model parameters for the TC adsorption ontoSiO2 NPs.  631 

Model and its equation Parameter Value 

 qe,exp ( mg/g) 197.98 

PFO 

𝐿𝑜𝑔(𝑞𝑒 − 𝑞𝑡) = 𝐿𝑜𝑔(𝑞𝑒) −
𝐾𝑃𝐹𝑂

2.303
𝑡          (4)        

qe,cal  (mg/g) 51.03 

KPFO (1/min) 0.0052 

R2 0.8285 

PSO 

𝑡

𝑞𝑡
=

1

𝐾𝑃𝑆𝑂𝑞𝑒
2

+
1

𝑞𝑒
𝑡                                    (5)  

qe,cal (mg/g)  204.08 

KPSO  (g/mg.min) 0.0019 

R2 0.9996 

 

 

 

 

IPD 

𝑞𝑡 = 𝐾𝐼𝑃𝐷𝑡1/2  + 𝐶   (6) 

 

1st linear portion  

KIPD1 (mg/g.min1/2) 16.0461 

C1 (mg/g) 35.28 

R2 0.9811 

 

2nd linear portion 

 

KIPD2 (mg/g.min1/2) 10.1487 

C2 (mg/g) 49.76 

R2 0.9045 

 

3rd linear portion 

 

KIPD3 (mg/g.min1/2) 3.1460 

C3 (mg/g) 62.75 

R2 0.9733 

 632 

Notation: KPFO (1/min)=PFO rate constant, KPSO (g/mg/min)=PSO rate constant, KIPD 633 

(mg/g.min1/2)=IPD rate constant, C(mg/g)=Constant for any experiment, qt (mg/g)=Amount 634 

adsorbed of TC at time t, and qe (mg/g)=Amount adsorbed of TC at equilibrium (Graaf et al., 635 

1990; Ho and McKay, 1998; Simonin, 2016) 636 

 637 

 638 
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Table 3. Isotherm model parameters for the TC adsorption onto SiO2 NPs. 639 

Model and its equation Parameter Value 

Langmuir  

𝐶𝑒

𝑞𝑒
=

1

𝑄𝑚𝐾𝐿
+

𝐶𝑒

𝑄𝑚
                        (7) 

Qm  (mg/g)  552.48 

KL  (L/mg) 0.3175 

R 2 0.9931 

 Freundlich 

𝐿𝑛𝑞𝑒 = 𝐿𝑛𝐾𝐹 +
𝐿𝑛𝐶𝑒

𝑛
                (8) 

KF  (mg/g) 188.7644 

N 03.5997 

R 2 0.9650 

 Temkin 

𝑞𝑒 = 𝐵𝐿𝑛𝐾𝑇 + 𝐵𝐿𝑛𝐶𝑒             (9) 

KT  (L/g) 18.3610 

B 75.6710 

R2 0.9392 

 640 

Notation: Ce (mg/L)=Equilibrium concentration of TC, Qm (mg/g)=Monolayer (maximum) 641 

adsorption capacity, KL (L/mg)=Langmuir rate constant, KF (mg/g)=Freundlich rate constant, 642 

n=Heterogeneity factor, KT (L/g)=Temkin rate constant, and B=constant related to the heat 643 

adsorption (Freundlich, 1907; Johnson and Arnold, 1995; Langmuir, 1918) 644 

  645 
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Table 4. Comparison of the adsorption of SiO2 NPs  for TC with  other adsorbents 646 

reported in the literature. 647 

Adsorbent Ad 

(mg/L) 

T 

(°C) 

t  

(min) 

C0  

(mg/L) 

pH Qm  

(mg/g) 

Reference 

ZrO2 NPs 0.2 – 15 25–150 6 526.32 (Debnath et al., 2020) 

AgO/MgO/FeO@Si3N4 – 30 90 30–100 8 172.41 (Sharma et al., 2020) 

ACCS 02.5 – 20 100–700 5 38.30 (Song et al., 2020) 

ZVI@ACCS  02.5 – 20 100–700 5 78.30 (Song et al., 2020) 

NiFe2O4@CDs  10 50 1440 25–100 8 591.72 (Liu et al., 2017) 

Pristine MoS2 0.4 35 2400 50–500 6 409.84 (Li et al., 2021) 

NiFe NPs 0.3 – 90 20–80 7 61.00 (Ravikumar et al., 

2019) 

La2S3 NPs 1 25 90 10–300 5 56.81 (Rashidi Nodeh et al., 

2020) 

SiO2 NPs 0.25 23 40 25–200 5 552.48 Current study  

 648 

Notation : Ad=Adsobent dose, T=Temperature, t=Time, C0=  Initial TC concenration.  649 

  650 
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Table 5. ANOVA analysis and regression coefficients for the designed statistical model. 651 

Source Sun 

Squares 

Df Mean Square F-value p-value 

Model 1221.20 9 135.69 162.55 < 0.0001 

A-TC concentration 639.35 1 639.35 765.93 < 0.0001 

B -Contact time 195.12 1 195.12 233.75 < 0.0001 

C- SiO2 NPs dose  10.72 1 10.72 12.85 0.0043 

AB  110.78 1 110.78 132.71 < 0.0001 

AC 03.24 1 03.24 03.88 0.0746 

BC 0.0406 1 0.0406 0.0487 0.8295 

A2 191.81 1 191.81 229.78 < 0.0001 

B2 83.37 1 83.37 99.88 < 0.0001 

C2 06.39 1 06.39 07.66 0.0183 

Residual 09.18 11 0.8347   

Lack of Fit 08.85 5 01.77 31.76 0.0003 

Pure Error 0.3343 6 0.0557   

Core total 1230.38 20    

Model statistics R2 

0.9925 

Adjusted R2 

0.9864 

Predicted R2 

0.9449 

Adequate precision 

37.9356 

 652 


