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1. Introduction

Acoustic metamaterials are synthetic materials, made of repeating unit cells that are
designed to address an acoustic problem, through the rational design of their micro-features.
The characteristics of acoustic metamaterials are dominated by their rationally designed
microarchitecture, rather than the base material. Particularly, acoustic metamaterials can
manipulate sound and elastic waves, both spatially and spectrally, in unprecedented ways.
Such properties include super-focusing [1], super-lensing, cloaking [2,3], active membrane
structures, phononic plates [4], fluid cavities, separated by piezoelectric boundaries [5],
and tunable noise attenuation, based on Helmholtz resonators [6].

This class of materials did not exist until recently, as manufacturing their complex
features was either impossible or prohibitively expensive. Recent advances in additive
manufacturing (3D printing) have made it possible to manufacture such constructions,
with complex internal geometries, and at significantly lower cost [7]. Even though acoustic
metamaterials are becoming more and more prevalent in academic and industrial sectors,
acoustic foams have still kept their importance in addressing noise issues [8,9], due to their
relatively low cost and high noise mitigation performance.

2. Acoustic Metamaterials and Acoustic Foams

This Special Issue, considering three papers, explores the latest advances in the devel-
opment of acoustic metamaterials, as well as recent advances in acoustic foams, in the fields
of seismic isolation, outdoor noise control, and permeable noise reducing metamaterials.

The paper by Liu et al. [10] implements layered periodic foundations (LPFs), a well-
known seismic metamaterial, to construct combined layered periodic foundations (CLPFs).
The challenge in the development of these traditional metamaterials, is that it is very
difficult to design LPFs with attenuation zones, which are both broadband and are of low
starting frequencies. They simulate CLPFs with up to four-story frames to address this
problem. The results of their study demonstrate that the attenuation zone of CLPFs is the
union of the attenuation zones of individual LPFs. Their proposed design is able to have a
broadband attenuation zone with low starting frequency ( f > 2.5 Hz).

In the paper by Fusaro et al. [11], a metawindow—with the aim of high noise control
capability—accompanied with suitable natural ventilation is introduced. Their paper
studies the acoustic performance, numerically and experimentally, and the ventilation
performance numerically. For the numerical simulations, the finite element method is
implemented, and for the experimental tests, additive manufacturing is used to fabricate the
samples; the acoustic tests are performed in an anechoic chamber. The results demonstrate
an overall mean sound attenuation of 15 dB in the bandwidth of 380–5000 Hz. The noise
reduction capability is improved even further in the frequency range of 50–500 Hz.

Analytical approaches provide convenient and quick predictions for the performance
of different types of physical systems. That is why, despite huge recent advances in nu-
merical techniques and computational tools, the derivation of analytical relationships has
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maintained their importance in academia and industry. The challenge is that there are
small to huge differences between the results of numerical, experimental, and analytical
approaches [12]. Improved analytical approaches that are able to address these discrep-
ancies and provide a means to decrease them are, therefore, exceedingly beneficial. The
goal of the paper by Hedayati et al. [13] is to improve the accuracy of the already-existing
analytical solutions, by presenting a handy and easy-to-use methodology, which is capable
of converting analytical relationships, based on Euler–Bernoulli beam theory, to equivalent
analytical relationships, based on Timoshenko beam theory. They apply the proposed
technique to six unit cells, for which analytical relationships—based on Euler–Bernoulli
beam theory—are already available in the literature: body-centered cubic (BCC), diamond
cubic, truncated octahedron, hexagonal packing, rhombicuboctahedron, and truncated
cube. The results demonstrate that applying the proposed methodology can decrease the
analytical/numerical discrepancy by one order of magnitude.

3. Summary

We would like to express our appreciation to the authors, the reviewers, and the
Editorial office of Applied Sciences, who have all contributed greatly to this Special Issue.
We hope that the papers published in this Special Issue open new avenues in the field of
designer acoustic metamaterials and acoustic foams.
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