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ABSTRACT 

Acute myeloid leukaemia (AML) is a blood cancer which has an overall survival rate of around 

30%. As a patient is treated for AML, about 50% will achieve complete remission, of those 

50% will relapse within three years, often this leads to death due to a developed treatment 

resistance of the cancerous cells. To facilitate better clinical outcomes in AML a prognostic 

score was developed to predict which patients are at a higher risk of relapse and those that 

respond well to current treatment options. 

With the aim of developing a robust workflow of biomarker discovery, several bioinformatics 

approaches were implemented with the objective of identifying novel biomarkers in AML. 

Gene expression datasets of AML patients were used to trial a variety of workflows to 

discover a suitable relapse prognostic score. The workflows trialled involved both machine 

learning and statistical approaches of biomarker discovery. Overall a panel of 9 biomarkers 

were discovered and used to predict relapse in AML. 

The gene CD109 was identified in the process of biomarker discovery and was able to 

independently predict relapse in AML, where high expression of CD109 was associated with 

relapse in AML and had previously been reported in other cancers as associated with 

progression and treatment resistance. The CD109 protein is a co-receptor for TGFBR1, and 

facilitates its internalisation and degradation, thus disrupting the TGFβ1 signalling pathway. 

As the CD109 gene was highly associated with relapse, this study aimed to identify its 

functional relevance in AML cell lines using shRNA mediated gene silencing. The cells with a 

reduced expression of CD109 were treated with a combination of cytarabine and TGFβ1 to 

determine the response with altered gene expression. Some gene expression changes were 

observed depending on the treatment condition, indicating different pathways are activated 

in response to the treatment. 

The prognostic score created with this study has the potential to predict relapse before it 

happens, allowing patients to be monitored more closely and empowering clinicians to use 

alternative or targeted treatments. By using this prognostic score, the relapse rate in AML 

could be reduced, and patients who do relapse can be detected sooner. This score has the 

potential to improve survival rate in AML through identification of high-risk patients and 

increased monitoring. The workflows developed to discover biomarkers can be applied to a 

magnitude of settings allowing clinical tools to be developed and the identification of key 

genes that are indicative of a condition.
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Chapter 1 - Introduction 

1.1. Cancer 

1.1.1. Causes of cancer 

1.1.1.1. Carcinogens and mutagens 

Carcinogens are a substance capable of causing cancer, and mutagens are agents which can 

cause genetic mutations. Some mutagens cannot be avoided but risks can be mitigated 

through modified behaviour. An example of an unavoidable mutagen is UV exposure, the 

leading cause of skin cancer1, by reducing exposure to UV through use of sun-cream, covering 

up and staying in the shade a person’s risk of UV related cancers will be reduced. 

Environmental pollutants, often caused by combustion engines, contain known mutagens 

and carcinogens2,3 which can be difficult to avoid in urban areas apart from changing routes 

to areas with lower pollution levels, avoiding main roads when exercising, and encouraging 

more people to switch to less polluting modes of transport. Certain carcinogens and 

mutagens, like X-rays in a medical setting, are a necessary exposure where the need 

outweighs the risk. In these instances, the only option is to modify behaviour to reduce the 

impact of environmental factors which can cause cancer. 

1.1.1.2. Lifestyle and cancer 

Preventable cancers account for around 40% of all diagnosis, of which, the largest lifestyle 

cause is smoking, accounting for 15% of preventable cancers4. Smoking is directly related to 

lung cancer, but also increases the risk of other cancer including mouth and bladder cancer5 

as tobacco smoke contains a diverse range of known carcinogens6. The second leading 

preventable cause of cancer is weight, it is estimated 60% of people in the UK7 are 

overweight or obese, which increases the risk a person may develop cancers including 

oesophageal, stomach, bowel, liver, breast and kidney to name a few7. Obesity can lead to 

cancer through increased inflammation and the accumulation of growth and sex hormones8. 

By maintaining a healthy active lifestyle with a balanced diet can reduce the risk of cancers. 
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1.1.1.3. Molecular changes 

Transcription and translation are highly regulated processes and are essential for cells to 

function and proliferate appropriately. Mutations in the cell genome can cause changes in 

gene and protein expression which in turn can cause dysregulation of cellular processes. 

Mutations in the genome can be large and affect the chromosomes or small and just affect 

one or more base pairs. Mutations can be due to DNA replication error or exposure to 

mutagens.  

DNA is made up of 4 different nucleobases adenine (A), cytosine (C), guanine (G) and thymine 

(T), which form the genetic sequence. DNA is located in the nucleus of the cell and is 

organised into chromosomes, which contain introns and exons. Introns are highly variable 

and unique, they are often thought to be “junk” code, but likely serve a purpose we are not 

yet aware of. Exons are where genes are found, these are critical to growth and survival. DNA 

is transcribed into RNA which can exit the nucleus to be translated into protein. The RNA is 

read as three bases at a time, known as a codon, which corresponds to one of 20 amino acids 

that form proteins. There is a large redundancy in the triplicate base sequence, with several 

codons corresponding to the same amino acid. The triplicate code is degenerate, if a base is 

substituted it will likely still correspond to the correct amino acid. This is an evolutionary 

approach to combat small point mutations which occur in the genetic sequence. 

Large mutations that occur can trigger cell death, if the cell is not able to survive or rectify 

the mutation9. If the mutation is survivable the error is copied during DNA replication and 

therefore transferred to the daughter cells during cell division. Large changes in the genome 

that cause dysregulation in cellular processors will continue in daughter cells, if these 

changes accelerate the cell cycle or remove checkpoints this can cause cancer. 

1.1.1.3.1. Small mutations 

Small mutations in the DNA sequence can result in three different outcomes: missense 

mutation, nonsense mutation or a silent mutation. When one nucleotide within a protein 

coding region is changed, an alternative triplicate is presented at translation. In missense 

mutations, an alternative amino acid is added in the protein sequence, which can change the 

structure or function of the protein. When the alternative RNA triplicate translates to a stop 

codon the translation process is terminated, this is known as a non-sense mutation, resulting 

in a truncated protein. Due to the redundancy in codon triplicates coding for amino acids, 

the altered codon may not impact translation and the amino acid at this position remains 

unaltered, this is known as a silent mutation. 
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Small changes in the DNA sequence that are not in protein coding regions can still affect gene 

and protein expression. If a mutation in the DNA sequence sits within a gene control region, 

this may cause inappropriate quantities of RNA to be transcribed, through increased or 

decreased gene transcription, with further impact on protein quantity. 

There are several different types of small mutation that can occur with differing effects on 

the amino acid sequence, examples of which are given in Table 1.1. Depending where the 

change occurs in an amino acid sequence will determine the impact on the resulting protein. 

Changes that affect the outer surface of the protein will be less likely to affect the structure 

or function, however if a hydrophilic amino acid was changed to a hydrophobic amino acid 

this could affect the structure and function greatly10. Changes in the amino acid sequence in 

a binding site or active site, are more likely to affect the protein function, as with changes 

that affect the structure and protein folding. 

TABLE 1.1. SMALL MUTATION EXAMPLES. THERE ARE MANY TYPES OF SMALL MUTATIONS IN THE DNA 

SEQUENCE, HERE ARE EXAMPLES OF EACH TYPE OF MUTATION IN A HYPOTHETICAL SEQUENCE. THE 

TRANSCRIBED RNA SEQUENCE IS SHOWN ABOVE, WITH THE CORRESPONDING AMINO ACID BELOW, INDICATED 

BY ITS THREE-LETTER CODE. THE ALTERATIONS IN THE RNA SEQUENCE AND ANY CORRESPONDING CHANGES IN 

THE AMINO ACID SEQUENCE ARE INDICATED IN RED 

Mutation Type Sequence 

original AUG UAU CUU CUU ACC GCA CAU 
  

 
Met Tyr Leu Leu Thr Ala His 

  

Silent mutation 

 

AUG UAU CUU CUC ACC GCA CAU   

Met Tyr Leu Leu Thr Ala His   

Point mutation AUG UAU CUU CCU ACC GCA CAU 
  

 
Met Tyr Leu Pro Thr Ala His 

  
Frame shift AUG UAU CUU ACU UAC CGC ACA U 

 

 
Met Tyr Leu Thr Tyr Arg Thr 

  
Deletions AUG UAU CUU CUU ACC GCA CAU 

  

 
Met Tyr Leu Leu Thr Ala His 

  
Insertions AUG UAU CUA UAU CUU ACC GCA CAU 

 

 
Met Tyr Leu Tyr Leu Thr Ala His 

 
Duplication AUG UAU CUU CUU CUU CUU ACC GCA CAU 

 
Met Tyr Leu Leu Leu Leu Thr Ala His 
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Point mutations alter one base in the sequence, exchanging one for another. Point mutations 

have the potential to change the corresponding amino acid, however due to codon 

redundancy, the alteration may have no overall impact. In Table 1.1 the example given for 

point mutation shows a change to the corresponding amino acid from Leucine to Proline, 

however the example of a silent mutation, the base substitution was instead at the end of 

the codon, and as such the redundancy in the code ensured the corresponding amino acid 

was still Leucine. 

Insertions and deletions of base-pairs in a multiple of three will increase or decrease the 

number of amino acids in the protein sequence, as shown in table 1.1. These insertions also 

have the potential to change the amino acid sequence depending where the insertion or 

deletion occurs. If an insertion of three base pairs is between codons of an open reading 

frame, this will simply insert another amino acid into the sequence. If an insertion is within 

a codon this could insert an amino acid and have no effect on the subsequent sequence 

(table 1.1), however, it can shift the sequence resulting in the subsequent amino acids 

changing, causing a missense or non-sense mutation. If the number of base-pairs inserted or 

deleted is not a multiple of three a frame-shift mutation occurs. Frame-shift mutations often 

result in missense or nonsense mutations as the open reading frame of a gene is altered, this 

will give an entirely different amino acid sequence of a truncated protein. The example of a 

frame shift mutation in table 1.1 shows an insertion of one base which then changes every 

subsequent amino acid in the sequence. 

1.1.1.3.2. Chromosomal abnormalities 

Larger mutations in the genome can affect the number, composition, or arrangement of the 

chromosomes. A normal karyotype of a somatic cell is 23 pairs of chromosomes, 46 in total, 

in cancer we often see altered karyotypes, due to the genetic instability. Larger mutations 

can alter the number of chromosomes, the copy number of genes, delete genes entirely, 

alter the sequence, fuse genes together or even fuse chromosomes together. 

During cell division the chromosomes align down the centre of the cell, the spindle fibres 

from the centrioles attach to the kinetochore associated with the centromeres of sister 

chromatids. The sister chromatids then separate and are pulled into the two daughter cells. 

Disruptions in this process result in non-disjunction, where the sister chromatids do not 

separate, resulting aneuploidy of the daughter cells. Non-disjunction can occur when the 

cohesion complex holding centromeres of sister chromatids together is not cleaved, or when 

spindle fibres do not attach firmly to centromere11,12. 
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Chromosomal rearrangement is often the result for one or more breakages of a 

chromosome. When a break in a chromosome occurs the cell machinery will try to repair the 

damage by reattaching the broken ends. Sometimes the DNA repair mechanisms incorrectly 

reattach chromosomes, either upside down resulting in an Inversion of that segment or to 

another chromosome known as a translocation. 

Short segments of broken chromosomes can be lost during mitosis, known as a chromosomal 

deletion, but the large section which contains the centromere is retained. If two or more 

chromosomes break, non-reciprocal translocations can occur when the short section of 

chromosome is lost, but a large section is retained and re-joined on the wrong chromosome. 

Translocations can be reciprocal between non-homologous chromosomes, where two 

breakages occur, they can be erroneously re-joined to the incorrect chromosome.  

When chromosomes are re-joined incorrectly, the genes at either end can become fusion 

genes. The genes may retain their functionality when transcribed into protein however, low 

expressing proteins fused into a high expressing protein can cause problems for cell 

metabolism. A common chromosomal translocation is t(15;17) which is characteristic of 

acute promyelocytic leukaemia, this causes the fusion gene PML-RARA. The PML-RARA 

fusion gene is transcribed into a protein which retains the functionality of both elements, 

although the distribution of the fusion protein is wider and there is an acquisition of 

additional functionality from the RARA portion of the protein13,14. Both the constituting 

proteins control the proliferation and differentiation of hematopoietic cells, therefor the 

disruption to these two proteins cases increase proliferation and reduced differentiation14. 

Fragile sites in the chromosome are areas which consist of two or three nucleotides in 

tandem repetitions. When a chromosome is stained with Giemsa there are pale bands of 

euchromatin, which is “open” chromatin and is actively transcribed by the cell. The pale 

bands contain larger proportions of CG baes pairs, which is often where fragile site occur and 

present as constricted sections of the chromosomes. The repeating sequence in these fragile 

sites can lead to slippage during DNA replication causing spontaneous increases in the 

number repeats, further increasing the fragility of the site. The fragile sites break more 

readily than other points along the chromosome, some fragile sites are common to most 

people and the associated translocations are seen frequently in cancer15,16 and other 

diseases17. Together a combination of large mutations and small mutations are the driving 

force behind oncogenesis when cells are exposed to carcinogens and mutagens in the 

environment. 
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1.1.2. Hallmarks of cancer 

Cancer is a broad term used to describe many complex diseases with common characteristics 

of uncontrolled cell proliferation, and in the case of solid tumours, the ability to metastasise. 

There are at least 100 different types of cancer, many of which also have subtypes, and are 

often distinct in their presentation. As cancer develops and metastasises the cells invade 

organs and disrupt the normal functions of the body, eventually the organs shut down and 

cause death. For a cancer to develop there are six physiological alterations which are 

required18 to overcome the anti-cancer defences hardwired into every cell’s DNA, which 

explains why cancer is relatively rare over the course of a person’s life. The way cancer 

presents, responds and progresses, can be due to person-to-person variation as well as the 

different cancer type; there has been much research into cancer, yet further research is 

needed to fully understand the variation and overcome these obstacles. 

The six physiological alterations within a cell which are required for the development of 

cancer18 include autocrine growth signalling, insensitivity to antigrowth signalling, evasion of 

apoptosis, unlimited potential for replication, angiogenesis, as well as tissue invasion and 

metastasis. Each of these changes creates a crack in the anticancer defence mechanisms 

encoded in each cell, when all six changes occur the anticancer mechanisms are 

overwhelmed, and cancer can thrive. These hall marks are based on the changes in solid 

cancers which don’t accurately describe haematological malignancies due to its non-

epithelian origin. It is suggested additional mutations are required for solid tumours to 

become metastatic 18, which is not the case in blood cancers19. Although on occasion blood 

cancers can cause chloroma, which is a collect of precursor cells in the tissue most often the 

lymph nodes, this is not the same as metastasis. In addition, there is no evidence 

angiogenesis occurs in blood cancers as the tissue of origin is already vascularised and the 

motile cells are free to enter the blood stream due to their origin inherent properties. 

In addition to the six physiological changes, there are also two main enabling characteristics 

which make these changes more likely20. The first enabling characteristics is genomic 

Instability, which allows the acquisition of mutations through large and small genetic 

aberrations, as well as epigenetic changes. The acquired genetic changes can alter cell 

function, including the pathways leading to one of the six physiological changes. The second 

enabling characteristics tumour-Promoting Inflammation which encourages immune cells to 

present tumour antigens to the dendritic cells, which dampen any positive anti-tumour 

immune responses using various immune evasive and adaptive resistance mechanisms. 
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1.1.2.1. Physiological changes 

1.1.2.1.1. Self-sufficiency in signalling 

Typically, cells require several external growth signals to exit the G0 stage of the cell cycle 

and enter the G1 stage21. Throughout the cell cycle there are several checkpoints22, in cancer 

the genes associated23 with these checkpoints are altered allowing unchecked cell cycle 

progression and proliferation. Cancer cells are able to overcome external cell cycle 

checkpoint inhibitors, by producing or acquiring higher amounts of positive growth-signals 

compared to negative growth signals18,20. Cancer cells become self-sufficient by increasing 

the production of growth factors by the cancerous cells, over expressing or mutating the 

growth signalling receptors or constitutively activating internal signalling pathways18,20. 

1.1.2.1.2. Insensitivity to antigrowth signalling 

There are two mechanisms in which exogenous factors prevent proliferation, the first is 

promotion to the quiescent (G0) state of the cell cycle, which is a reversible process24, the 

second process is irreversible, by entering a post mitotic state associated with 

differentiation18,20. Typically, after cell division, cells become quiescent meaning a sufficient 

number of cells has been achieved to replenish old or dyeing cells, therefore the cell is not 

required to divide24. This quiescence is achieved through anti-proliferative cell signalling20, 

indicating no growth is required. Normal cells in quiescence continually monitor the external 

environment for pro and anti-proliferative signals which promote the maintenance of 

quiescence, differentiation or proliferation18. For a cancer to develop the cell must overcome 

both quiescence and differentiation pathways of anti-growth signalling25. Antigrowth 

signalling happens through both soluble and immobilised inhibitors in the extracellular 

matrix (ECM) and surface of nearby cells, both are important for anti-growth pathways to 

function as they work together to transduce external signals through the cell membrane to 

begin intracellular signalling cascades18. In cancer the cells do not respond to anti-growth 

signals and continue to proliferate in an uncontrolled manner which encourages the 

accumulation of mutations26 and in turn increases the dysregulation of cellular checkpoints. 

1.1.2.1.3. Evasion of apoptosis 

There are two main types of cell death, necrosis and apoptosis27; necrosis is uncontrolled cell 

death which typically causes inflammation and is the result of trauma through injury or 

hypoxia, apoptosis is known as programmed cell death, it is the active process of removing 

damaged cells, old cells, or to create key structures during development. Apoptosis can be 
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triggered through DNA damage, reduced growth cytokines, infection and hypoxia, all 

consequentially activate intrinsic and extrinsic apoptosis pathways. There is a balance 

between anti-apoptotic and pro-apoptotic signalling, the extracellular and intracellular 

environment are constantly under surveillance by the cell to identify pro-apoptotic signals, 

which will trigger the apoptotic pathway, by downregulating the expression of anti-apoptotic 

genes and increasing pro-apoptotic genes. 

Cancer cells acquire resistance to apoptosis through insensitivity to pro-apoptotic signals, by 

upregulation of anti-apoptotic genes and proteins20,28, and the downregulation of pro-

apoptotic genes and proteins29. Mutations within pro-apoptotic genes can downregulate 

their expression or prevent their ability to signal18. A common mutation in cancer occurs in 

the p53 tumour suppressor20,30 gene which inactivates the protein, this mutation is seen in 

over 50% of human tumours18,30. Mutations within anti-apoptotic genes can upregulate the 

expression or cause constitutively active proteins, a known example in cancer is the Ras 

family of proteins, particularly k-ras which is mutated in 22% of cancers31. Changes in crucial 

apoptotic regulators can drastically shift the balance in favour of the anti-apoptotic 

mechanisms within a cell18. The BCL2 protein is over expressed in many cases of AML, 

although sometimes associated with a translocation32 the increase expression can also occur 

randomly33. BCL2 blocks apoptosis by sequestering pro-apoptotic signalling molecules, 

therefore preventing mitochondrial permeabilization34. To combat this upregulation of BCL2, 

the drug Ventrolax was FDA approved34–36 and has been shown to improve overall outcome 

in patients36. Although mutations in TP53 are relatively infrequent in AML37–40 compared to 

other cancers, dysfunction of this tumour suppressor is relatively common38,41. Dysfunctional 

TP53 is associated with poor overall survival37,41 and poor response to treatment39,40in AML. 

1.1.2.1.4. Unlimited potential for replication 

Each cell has a pre-determined replication limit, which restricts the number of cell divisions 

a cell can undergo through intrinsic, autonomous sensors. Once the limit for the cell has been 

reached the cell enters a state of permanent senescence18,20,42 and eventually apoptosis37,43. 

Telomeres are repeating sequences of bases at the end of the chromosomes, the length of 

which are correlated to the replication limit of the cell18,20. During each replication some of 

the base pairs are lost from the end of the chromosome as DNA polymerase is unable to fully 

replicate the 3’ end18. Telomeres function as a protective cap on the chromosome which is 

degraded before the genetic sequence. Once the telomeres have reached a critical length 

this symbolises the replication limit of the cell.  
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For cancers to become immortal the cells must overcome the intrinsic replication limit. 

Cancerous cells maintain telomeres through the upregulation of telomerase18,20,42, an 

enzyme with DNA-synthesis capabilities, specifically the ability to synthesise the telomerase 

and increase their length. Cancerous cells can also activate cellular mechanisms which 

prevent the shortening of the telomeres through chromosomal exchange of sequences18,20. 

Both mechanisms maintain the length of the telomere to prevent end to end chromosomal 

fusion18,20 therefor avoiding senescence and cell death. 

1.1.2.1.5. Angiogenesis 

Angiogenesis is the formation of new blood vessels which is a highly regulated process in 

normal tissue development and growth18,20, which is required to supply the tissue with 

oxygen and nutrients, as well as deliver immune cells to the tissues. Angiogenesis allows a 

cancer to use the bodies resources, enabling it to grow, expand and metastasise18,20. In order 

for angiogenesis to occur the cancerous cells secrete pro-angiogenic factors44, such as 

VEGF45,46 and HIF1A47, and inhibit the production of anti-angiogenic factors18,20. This hallmark 

is only relevant to solid masses, where haematological malignancies19 already receive the 

privilege of a rich bone marrow niche which is highly vascularised and nutrient rich. 

1.1.2.1.6. Tissue invasion and metastasis 

A sign of a progressive tumour is its ability to invade neighbouring normal tissue, this makes 

excision difficult during surgery. Another critical point in tumorigenesis is the ability for 

cancerous cells to metastasis to different locations around the body18,20. There are several 

steps in the process of invasion and metastasis, involving cells from the main tumour detach 

from the mass and enter the blood or lymphatic systems, which carries the cells to distant 

tissues where they exit the circulatory system and begin to for a new mass20. although this 

process is rarely successful it is responsible for 90% of cancer related deaths18, which is why 

it is crucial to find cancer at an early stage which is easier to treat. This is only applicable to 

solid tumours as haematological malignancies are privileged19 by their tissue of origin and 

can enter the blood stream readily. 

1.1.2.2. Enabling characteristics 

1.1.2.2.1. Genomic Instability 

Molecular changes can occur in the genome of a cell, there are many cellular mechanisms48 

to repair incorrectly transcribed portions of DNA or broken strands of DNA20, which readies 

the cell for mitosis. On occasion the mechanisms incorrectly repair the genetic sequence 
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which can lead to permanently transcribed mutations, most of the time this leads to 

apoptosis however occasionally the cell cycle progresses, and the mutation is passed to the 

daughter cells. If a mutation occurs in the mechanisms involved in detecting and inactivating 

mutagenic compounds, detecting mutations and activating repair, or the DNA repair 

machinery20, the cellular components preventing tumorigenesis are effectively null. 

Mutations can increase the speed of the cell cycle and lessens the hold on the checkpoints, 

the DNA replication speed is increase and the proofreading mechanism is degraded and may 

increase the number of mistakes in the replication. 

1.1.2.2.2. Tumour-Promoting Inflammation 

The tumour microenvironment plays a large part in immune regulation and tumour 

promotion, through the secretion of growth factors, cytokines and reactive oxygen species 

the tumours49 can encourage immune cell infiltration18,20. Tumours are often infiltrated by 

immune cells of both the innate and adaptive immune system in varying capacities20. The 

infiltrating immune cells inadvertently support the cancer50 through the provision of small 

bioactive molecules, including those effective in growth, survival, pro-angiogenesis, and 

extracellular matrix modification20. 

1.1.2.3. Emerging hallmarks 

In 2011, Hanahan and Weinberg revisited their publication to review and update the critical 

theory20. In order to explain further crucial factors that promote cancer growth and 

metastasis they included two additional hallmarks. 

1.1.2.3.1. Evasion of immune destruction 

The immune system looks for danger in the body in the form of pathogens, foreign bodies, 

and inflammation. There are immune cells residing within the tissue which constantly survey 

their environment to identify danger, in addition, there are circulatory and regulatory 

immune cells, all play a crucial role in defending the body. Somatic cells present MHCI to cells 

of the immune system, if an immune cell recognises a cellular defect, they can communicate 

this to other immune cells. Often in cancer, the immune cell recognises an abnormality and 

presents these antigens to dendritic cells, which identifies the antigen as “self” and promotes 

quiescence, effectively terminating the immune response51. The promotion of quiescence 

for the “self-reactive”, tumour recognising, immune cells weakens the immune response and 

the tumour is able to continue growing. In addition to cellular quiescence on the 

presentation of tumour antigens, the tumours can actively recruit T-regulatory cells20,52 to 
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the site which dulls the immune response therefore allowing the cancer to grow with 

impunity.  

Cancerous cells downregulate the production of immune signalling molecules, including 

MHC53, which limits the ability of immune cells to react to them. Tumours have high levels of 

immune suppressing cytokines, including TGFβ1, which modulate the immune reaction to 

the tumour20. 

1.1.2.3.2. Reprogramming of energy metabolism 

As cancer cells divide at such a rate, they require larger amounts of energy compared to 

normal tissue. Aerobic respiration is the preferred method of respiration by normal cells, 

although anaerobic respiration is a secondary mechanism which allows continued respiration 

even when the cells are deprived of oxygen, for example during exercise. The first step in 

aerobic respiration involves the cleavage of glucose in the glycolysis reaction, this is the same 

as anaerobic respiration. The glycolysis reaction produces far less ATP compared to aerobic 

respiration, and yet it is the preferred method of respiration for cancerous cells20,54. Despite 

anaerobic respiration being less efficient it produces bioactive intermediates54, which are 

used by the cancer cells for the generation of nuclear bases and amino acids20,54, these are 

crucial for the construction of organelles and macromolecules in cell division. The increased 

requirement for glucose by cancerous cells is facilitated through increased expression55 of 

glucose transporters56,57 on the surface of their cells20. Continued glycolysis is associated with 

the upregulation of oncogenes and downregulation of tumour suppressor genes45,49,58. 

1.1.3. Cancer statistics 

Cancer affects around 367,000 people each year in the UK59, although this number is 

increasing year on year, around 50% of the population will be diagnosed with cancer in their 

lifetime. In general, the number of cancer diagnosis are increasing across all cancer types, 

however some cancers have a larger increase than others. For example, thyroid cancer 

diagnosis has increased 68% in males and 69% in females, but leukaemia has increased 7% 

in males and 8% in females60. There is large disparity between the increases of different 

cancers however the general trend is more cases are diagnosed each year. Overall, 50% of 

people diagnosed with cancer will die from it, which accounts for 28% of all deaths in the 

UK61. In general mortality in cancer is decreasing61 as screening improves, diagnosis happens 

earlier when cancer is more treatable, in addition, advancements in treatment have 

improved cancer outcomes. It is important to recognise 38% of cancer cases could have been 
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prevented62 through lifestyle changes, smoking is the largest cause of preventable cancers 

followed by obesity. 

1.2. Acute Myeloid Leukaemia 

1.2.1. Haematopoiesis 

Haematopoiesis is the production of all the cellular components of the blood, where 

haematopoietic stem cells (HSC) differentiate into one of two lineages (figure 1.1). 

Haematopoietic stem cells are multi-potent, owing to their ability to self-renew and 

differentiate into all blood cells63, whereas myeloid and lymphoid progenitor cells are Oligo-

potent due to the commitment to their respective lineages63. 

The differentiation from HSC to the lymphoid and myeloid lineage relies heavily on the 

cytokines in the bone marrow niche63. Typically, only the terminal cells are fully functional 

where progenitor cells lack crucial functionality, and act predominantly as precursors to 

maintain healthy cell populations. 

 

FIGURE 1.1. BLOOD CELL DIFFERENTIATION. THERE ARE TWO LINEAGES OF BLOOD CELL DIFFERENTIATION, 

LYMPHOID AND MYELOID, THE LATTER IS SHOWN HERE. 

1.2.2. Haematological Malignancies 

There are four main types of leukaemia as shown in table 1.2, the nomenclature used is 

dependent on the haematopoietic lineage and differentiation of the cells involved in the 

cancer. The myeloid and lymphoid lineages differentiate early in haematopoiesis as 

demonstrated in figure 1.1, meaning the cancers are distinct and separate. Chronic 
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leukaemia develops relatively slowly, and symptoms are slow to become apparent, 

compared to acute leukaemia where symptom onset and cancer development is rapid. Each 

type of leukaemia has a different prevalence, where CLL is the most prevalent but the 

mortality rate for AML is the much higher. 

 Myeloid Lymphoid 

Incidence Mortality Incidence Mortality 

Acute 3102 2601 794 253 

Chronic 763 219 3789 1008 

TABLE 1.2. INCIDENCE AND MORTALITY OF DIFFERENT LEUKAEMIA’S. THE INCIDENCE OF EACH TYPE OF 

LEUKAEMIA DIFFERS, IN THE UK CLL IS MOST COMMON AND CML IS THE LEAST COMMON64–67. OUT OF THE 

FOUR MAIN TYPES OF LEUKAEMIA, AML HAS THE HIGHEST MORTALITY RATE, OF 83.9%, WHEREAS ALL, CLL 

AND CML HAVE A MORTALITY RATE OF 31.8%, 26.6% AND 28.7% RESPECTIVELY. 

1.2.3. AML an overview 

AML is a cancer affecting the cells of the myeloid lineage of blood cell differentiation (figure 

1.1) and is characterised by the accumulation of immature blood cells within the bone 

marrow. within leukaemia, AML is the largest cause of patient death (table 1.2) owing to the 

fact the peak incidence rate is between the ages of 85 and 8964, at which time treatment 

options are limited due to co-morbidities and treatment intensity. As with most cancers the 

number of AML cases each year is increasing over time64,  despite this, treatment options 

remained unchanged for the last 40 years. However, over the last 10 years several therapies 

have been developed and there have been multiple FDA approvals for new AML treatments, 

including targeted therapies like Gemtuzumab Ozogamicin for CD33 positive68 AML and 

Enasidenib for IDH269 mutated AML.  

AML is a heterogeneous cancer with 5234 Known driver mutations70, some of the common 

mutations are used in the World Health Organisation (WHO) classification system, where 

there are 23 groups71. As the WHO classification system has many groups, it is difficult to 

assign risk, but looking directly at mutations can give an indication of which targeted 

treatments may be available. An alternative classification method is the European 

LeukaemiaNet72 (ELN) classification, which consolidates the common mutations into three 

risk groups (table 1.3), eliminating the issue of too many sub-groups in the WHO system. 
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TABLE 1.3. SUMMARY OF MUTATION ADJUSTMENT OF THE ELN CLASSIFICATION. THE EUROPEAN 

LEUKAEMIANET72 RISK CLASSIFICATION FOR AML IS BASED ON THE MUTATIONS PRESENT IN A PATIENT 

SAMPLE. THIS TABLE HAS BEEN MODIFIED FROM DIAGNOSIS AND MANAGEMENT OF AML IN ADULTS: 2017 

ELN RECOMMENDATIONS FROM AN INTERNATIONAL EXPERT PANEL73.  

 

ELN Risk category  Genetic abnormality 

Favourable RUNX1-RUNX1T1 t(8;21)(q22;q22.1) 

CBFB-MYH11 inv(16)(p13.1q22) or t(16;16)(p13.1;q22) 

Mutated NPM1 without FLT3-ITD or with FLT3-ITDlow  

Biallelic mutated CEBPA 

Intermediate Mutated NPM1 and FLT3-ITDhigh 

Wild-type NPM1 without FLT3-ITD or with FLT3-ITDlow 

MLLT3-KMT2A t(9;11)(p21.3;q23.3) 

Cytogenetic abnormalities not otherwise classified 

Adverse DEK-NUP214 t(6;9)(p23;q34.1) 

KMT2A rearranged t(v;11q23.3) 

BCR-ABL1 t(9;22)(q34.1;q11.2) 

GATA2,MECOM(EVI1) inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2) 

-5 or del(5q); -7; -17/abn(17p) 

Complex karyotype (Three or more chromosomal abnormalities) 

Monosomal karyotype 

Wild-type NPM1 with FLT3-ITDhigh 

Mutated RUNX1 

Mutated ASXL1 

Mutated TP53 
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The baseline for all patients is intermediate risk, certain mutations increase or decrease the 

risk assigned, as detailed in table 1.3. Another method of classifying AML is the French-

American-British (FAB) classification, which looks at cell morphology and differentiation, this 

was developed in the 1980’s, and mutation-based classifications have overtaken its use in 

clinical diagnostics. 

1.2.4. AML clinical presentation and diagnosis 

Symptoms associated with AML74 include fatigue, breathlessness, fever, weight loss, 

frequent infections, poor clotting or frequent bleeding, bruising easily, bone or joint pain. 

AML is diagnosed through a peripheral blood sample or bone marrow biopsy and aspirate; it 

is characterised by a blast percentage greater74 than 20%. Myeloblasts are myeloid 

progenitor cells which have not reached terminal differentiation, these immature myeloid 

cells do not function normally75. The clonal expansion of the immature blood cell population 

is rapid, which crowds the bone marrow causing the normal cell population to be reduced76, 

which explains some of the clinical symptoms of AML including poor clotting and 

susceptibility to infection. 

Wherever possible a peripheral blood sample is used for diagnosis, however if there is 

uncertainty in the result a bone marrow biopsy will be required74. The necessary 

confirmatory tests can be performed on a peripheral blood sample where a patient has a 

high blast percentage, reducing the need for a bone marrow biopsy as these are invasive74. 

The sample is tested using a variety of methods including flow cytometry looking at markers 

of differentiation, PCR to determine mutation status, metaphase cytogenetics or 

fluorescence in situ hybridization (FISH) to identify karyotype and large genetic abnormalities, 

as well as a whole blood smear to visualise the differentiation of the cells74. The variety of 

tests used help in the classification of the AML and will thus determine which treatment 

option is most appropriate. 

1.2.5. AML treatment 

There are many different subtypes of AML according to each of the classification methods, 

however the standard treatment is the same for all of them. The initial treatment for AML is 

cytarabine for 7 days, followed by an anthracycline for 3 days77, The type of anthracycline 

used in treatment depends on the overall health and comorbidities, so is selected on a case 

by case basis. For patients with the t(15;17) translocation, also known as Acute Promyelocytic 

Leukaemia (APL), there is an alternative treatment available. The treatment for APL is a 
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combination of arsenic trioxide and all-trans retinoic acid13,78–80, in some cases the standard 

chemotherapy is also required. APL has a positive overall survival with a cure rate of 80- 

90%81, compared to that of AML with a survival rate64 of around 20%. 

Remission in AML is achieved in 60-80% of adults72,82, of those 50% will relapse82, which is a 

concern for patients and clinicians as it leads to further complications and a high likelihood 

of adverse outcomes. One key problem with relapse AML is the increased incidence of 

treatment resistance. Over the last 10 years more treatments have been developed and 

approved for use, primarily in relapse patients but the approval is often extended to initial 

treatment.  

There is a portion of AML patients who are CD33-positive, in this instance Gemtuzumab 

Ozogamicin (GO) is applicable. GO is an antibody drug conjugate which targets the CD33 

molecule and delivers the drug directly to these cells. The drug was initially approved in 2010 

but later withdrawn from the market due to increased mortality among newly diagnosed 

patients, it was then reapproved in 2017 using an alternative dosing schedule68,83–85. The 

initial approval was based on relapse and refractory patients but the approval in 2017 

extended the application to newly diagnosed patients68. 

In 2017 Enasidenib69,86 was approved, for relapse and refractory AML patients with IDH2 

mutation, this gene is associated with metabolism and the mutated form is reported to block 

myeloid differentiation87,88. In addition, Ivosidenib was approved for IDH188 mutation in 

201989 although was later withdrawn90 despite evidence the drug was effective91 on the 

grounds the risk outweighed the benefit to patients.  

Over expression of BCL-2 causes inhibition of the apoptotic pathways, which is found in 

multiple cancers including AML92. Venetoclax, a BCL-2 inhibitor, was initially93 FDA approved 

in 2018 for older patients with co-morbidities94 meaning they were not suitable for intensive 

chemotherapy; this approval was extended95 in 2020. In the UK this drug is only approved 

for use in patients with CLL, although it may be used with discretion for other cancers.  

The drug midostaurin96 was approved in 2018 for treatment of adult patients with newly 

diagnosed acute myeloid leukaemia who are FLT3 mutation positive97,98. The gene encodes 

a tyrosine kinase (TK) protein which is important for cell division and differentiation in early 

haematopoiesis92. FLT3 is mutated in 30% of AML cases99 and is associated with a worse 

overall prognosis. Gilteritinib100,101 is another TK inhibitor, also FDA102 approved in 2018 and 
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approved by NICE103 in 2020 for patients with relapse or refractory AML with the FLT3 

mutation. 

All the newly approved targeted treatments available are a step in the right direction after 

40 years of the same chemotherapeutic schedule. Most of the initial approvals are in relapse 

and refractory AML is because this is often harder to treat and may not respond to standard 

chemotherapy, so patients are referred to clinical trials. Once the initial testing has 

established safety and efficacy in relapse and refractory patients, the drug is then trailed in 

diagnostic patient, where the approval is often extended. The treatments offer hope for a 

better survival rate for AML, especially in patients who are not suited to intensive 

chemotherapy or experience relapse or refractory AML. 

1.3. Relapse 

As part of a patients care plan, patients are monitored and tested regularly throughout 

treatment and into remission73,104. After a patient has completed a course of treatment a 

sample is taken73: a cancer is said to be in remission when no abnormal cells are detected in 

a post treatment sample. As tests for residual cancer cells focused on cell morphology in a 

post treatment bone marrow sample, minimal residual disease (MRD) is defined as the 

presence of abnormal cells after treatment at numbers below the sensitivity of routine 

morphology examinations104,105. The residual cancer cells that are undetected have the 

potential to begin clonal expansion, and cause a reoccurrence of the cancer, known as 

relapse81,104,106. Relapse is associated with the presence of a small sub population of cells at 

diagnosis or the clonal evolution of the main population, where further mutations are 

acquired106, in both these cases the populations harbour mutations which give them an 

advantage to resist treatments. 

Although molecular testing for MRD is not explicitly recommend, it is recognised by the 

National Comprehensive Cancer Network AML 2019 Clinical Practice Guidelines as an 

important area of expansion107, but the molecular tests available have limitations that need 

to be adressed104, In contrast the ELN does recommend testing be implemented in a clinical 

setting to improve patient care73, despite the current limitations. The molecular tests 

available are quickly becoming standard practice and can detect molecular abnormalities 

within a sample that is not evident by morphology screening108. These molecular tests can 

show if additional treatment is required and often detect relapse sooner, leading to faster 

treatment and better patient outcomes. 
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Relapsed cancer can be difficult to treat, as a reoccurrence from clonal expansion of cells 

which have already survived treatment and may have treatment resistance 

mutations106,109,110. By predicting relapse in AML patients at diagnosis, the high-risk patients 

could be referred to an alternative treatment strategy sooner, this could include, longer 

initial treatments, additional rounds of treatment, more intense treatment, referral to 

clinical trials or a bone marrow transplant earlier in the treatment. As an added benefit to 

predicting relapse at diagnosis, high-risk patients could be monitored more frequently and 

molecular testing could be utilised to detect relapse early giving a patient the best chance of 

second remission. As mentioned previously, the relapse rate in AML is exceptionally high 

with 50% of patients who achieve remission eventually relapsing82. 

1.4. Biomarkers 

1.4.1. Biomarker overview 

Biomarkers are a measurable biological component that are indicative of a disease or 

condition111. Biomarkers can be measured directly from a patient like temperature and blood 

pressure111; however, some biomarkers require a patient sample to be taken. Within patient 

samples we focus on molecular biomarkers, including DNA78, RNA112, proteins113,114 and 

cytokines115,116, among others. 

As already discussed the genetic changes in a cell are transcribed into RNA112 which in turn 

are translated into protein. The molecular changes represent system dysregulation and the 

impact on function, growth, communication, and structure in the body. By looking into the 

molecular changes that are typical of a disease, molecular biomarkers can be discovered and 

utilised for treatment, monitoring and management of different diseases. Within many 

different diseases, biomarkers are being used as part of standard care procedures, 

throughout diagnosis117, treatment118 and monitoring119. 

1.4.2. Different types of biomarker 

There are seven different types of biomarker120, as shown in table 1.4, although different 

sources divide biomarkers into different categories121,122. Each type of biomarker is defined 

to give the overall aim and how they should be implemented, to ensure a patient receive 

appropriate care for their specific condition. Biomarkers are being introduced as clinical tools 

more often, for many different diseases, some examples in relation to cancer are shown in 

table 1.4.  
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In AML the t(15;17) translocation is often used in diagnosis of Acute Promyelocytic 

Leukaemia13,78,79,123, this translocation is associated with the PML-RARA fusion gene and the 

patients have a much better prognosis. Patients with the t(15;17) translocation receive a 

different treatment strategy78,79,123 involving arsenic-trioxide and all-trans retinoic acid. 

Another key mutation in AML is the FLT3 internal tandem repetition, which is a receptor 

tyrosine kinase that regulates haematopoiesis though the activation our pathways leading 

to apoptosis, proliferation or differentiation of hematopoietic cells in bone marrow124. 

Mutations in the FLT3 gene are associated with a worse overall outcome123 and indicates 

tyrosine kinases inhibitors may be beneficial as a complementary therapy96,100. 

Good biomarkers can predict their determined goal with 99% sensitivity and specificity, 

however with many biomarkers we often see an 80-90% sensitivity or specificity, as such 

these are often used in addition to conventional tests; For example, a high PSA test result 

indicates a likelihood of prostate cancer, however due to the uncertainty125 the patient will 

be referred to receive a biopsy test to confirm abnormal cells. Another example is HPV126,127 

which causes 99% of cervical cancers128, which is the initial step for the cervical screening 

process which then looks for the presence of abnormal cells. 

Type Application Example 

Diagnostic Detection of early disease and subtype Prostate cancer: Prostate specific 

antigen 

Prognostic likelihood of an outcome or clinical event Prostate cancer: Gleason score 

Predictive Prediction of effective treatment response Brest cancer: HER2, ER, PR  

Response Identification of a response to therapy Solid cancers: Tumour volume 

Risk Identifying those who may develop the 

disease 

Cervical cancer: HPV 

Monitoring Assessing disease status Solid cancers: Tumour volume and 

metastasis 

Safety Indicate adverse effects from therapy All cancers:  Neutropenia 

TABLE 1.4. SEVEN MAIN TYPES OF BIOMARKERS. ALTHOUGH BIOMARKERS ARE AVAILABLE FOR MANY 

DIFFERENT DISEASES, THE EXAMPLES GIVEN ARE CANCER SPECIFIC120. 
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1.4.3. Methods of biomarker discovery 

There are numerous ways biomarkers can be discovered through bioinformatics approaches, 

involving statistics and machine learning129,130: used in combination these are exceptionally 

powerful tools. To discover biomarkers through any method, patient data is required, which 

can be limited in sample size, clinical annotations, and the type of molecular data available. 

The most attainable source of patient data is publicly available datasets, which have been 

collected from trials or for publication, and can be found in data repositories131,132. As part of 

the biomarker discovery process, several datasets are needed discover and validate the 

results obtained. Although it is important to use several datasets, different sources will have 

different annotations, methodologies, patient sampling methods, platforms, treatments, 

patient follow up, all of which will have to be considered and controlled for during biomarker 

discover and validation. 

1.5. TGFβ and CD109 in cancer 

TGFβ1 is a regulatory cytokine with a multitude of capabilities including proliferation, 

differentiation, survival, adhesion, as well as controlling the cellular microenvironment18,20. 

The many different rolls of TGFβ1 coincide with its tumour-suppressive effects133, although 

cancer cells manipulate134 the pathways to create a pro-tumorigenic environment. The tight 

regulation of cellular processes through TGFβ1 signalling can be avoided or repurposed by 

cancer cells134,135, inactivation of pathway components, or alterations in downstream 

elements to disable the tumour-suppressive functions of this pathway are both associated 

with genetic mutations in cancer136. 

By disabling the tumour suppression pathway of TGFβ1 the remaining functions can be 

utilised to promote tumour progression and metastisis133. Mutations in the TGFβ receptor 

family are prevalent in cancer133,136, these receptors mutations can inactivate the TGFβ1 

pathway or specific components of the pathway136. In addition to mutations in the receptors 

themselves, downregulation of the TGFβ1 receptors and ligand trapping reduces the capacity 

of the TGFβ1 signalling pathway133, both of these regulatory elements are performed by co-

receptors. There are many co-receptors of TGFBR1, one of which is CD109137, although not 

well characterised, it has been shown to be highly expressed in many different cancers138–143. 

CD109 downregulates TGFβ1 signalling through binding of TGFΒR1144,145 and promoting its 

internalisation and degradation146, in addition, the soluble form of CD109 is able to bind and 
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sequester TGFβ1145,147. High CD109 has been shown to impact heavily on cancer 

progression140 and clinical outcome141,144. 

TGFβ1 enables immune tolerance, tumours that produce high levels TGFβ1 may be protected 

from immune surveillance. A defective TGFβ1 response in immune cells can lead to chronic 

inflammation and the production of a pro-tumorigenic environment133. Tumour-derived 

TGFβ1 may recruit other stromal cell types such as myofibroblasts and osteoclasts enabling 

tumour metastisis133 through angiogenesis and epithelial to mesenchymal transition. 

1.6. Aims and objectives 

There are two main aims for this investigation, the first is to develop a robust method of 

biomarker discovery, which will speed up the discovery pipeline in the future. Different 

methods of biomarker discovery will be trialled to find one that is quick and easy to 

understand. By finding a reliable method of biomarker discovery, the number of biomarkers 

available will increase and influencing the way patients are treated and monitored. To 

achieve this aim a relapse prognostic index for AML will serve as the trial for measuring the 

success of the biomarker discovery methods used. Relapse is a starting point of this 

investigation as it is a common complication in cancer, the rate varies according to the cancer 

type, but is of serious concern to AML patients who have a high rate of relapse, which in turn 

is difficult to treat and has a poor overall prognosis. The second aim of this investigation is 

to identify clinically relevant genes as they are discovered in the workflows and determine 

their impact in AML, with the objective of identifying their function in treatment resistance 

and relapse. These three aims allow for the method to be developed, create a useful 

predictive tool, and apply the identified genes to a range of different cancers.
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Chapter 2 - Methods and materials 

2.1. Datasets 

2.1.1. Downloading and processing datasets 

Datasets compiling RNA expression from AML patients were identified by searching online 

dataset repositories, including Array Express and Gene Expression Omnibus. From the AML 

datasets identified, those without relapse data were removed. It is essential to have multiple 

datasets available, one for discovery and another one or more for validation purposes 

2.1.1.1. HOVON 

The CEL files for the HOVON148 dataset were downloaded from array express149 and were 

merged using the “ReadAffy” function from the R package affy150. The dataset was quality 

checked using the ArrayQualityMetrics package to identify outliers, looking at the Relative 

Log Expression (RLE) and the Normalized Unscaled Standard Error (NUSE). Once the outliers 

were removed from the dataset, it was RMA normalised using the affy150 package. The 

“collapse rows” function from the R package WGCNA151 was used to select one 

representative probe-ID for each gene, the settings used select the probe-ID with the fewest 

missing values, and secondarily the probe-ID with the largest mean value to resolve any tied 

probes. Biomarker discovery was performed in this dataset as it is the largest, which reduced 

false biomarkers being identified. 

2.1.1.2. TCGA-LAML  

The TCGA152 dataset was downloaded using the R package TCGAWorkflowData153, all cases 

were downloaded from the repository as FPKM data. The dataset was quality checked using 

the arrayQualityMetrics151 package, looking at the distance between arrays, any outliers 

were removed. This was used as a validation dataset. 

2.1.1.3. TARGET -AML  

TARGET-AML154 was downloaded from the TARGET site in the RPKM data format. The dataset 

was quality checked using the ArrayQualityMetrics151 package, looking at the distance 

between arrays. This was used as a validation dataset. 
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2.1.2. Patient selection 

 
TCGA TARGET HOVON 

Platform Illumina RNA-Seq Illumina RNA-Seq Affymetrix Array 

Accession number TCGA-LAML TARGET-AML E-MTAB-3444 

Total patients 91 119 382 

EFS 27 35 151 

relapse 64 84 231 

Age 0-18 0 118 13 

Age 19-65 73 1 346 

Age 65+ 18 0 23 

Male 49 63 191 

Female 42 56 191 

FAB M0 10 2 11 

FAB M1 24 14 90 

FAB M2 26 32 110 

FAB M4 19 34 73 

FAB M5 9 28 90 

FAB M6 2 2 8 

FAB M7 1 7 0 

ELN risk 
   

Low 16 60 151 

Intermediate 61 54 199 

high 14 5 32 

Clinical Mutations 
   

t(8;21) 1 20 36 

inv(16) 5 24 33 

NPM1 46 5 138 

FLT3 58 13 103 

CEBPA mutation NA 6 22 

MLL 62 22 28 

TABLE 2.1. SUMMARY OF PATIENT DATASETS. RELEVANT CLINICAL INFORMATION AND PATIENT NUMBERS 

FOR EACH DATASET USED IN THE ANALYSIS. EFS INDICATES EVENT FREE SURVIVAL PATIENTS, ELN INDICATES 

EUROPEAN LEUKEMIC NET CLASSIFICATION, AND FAB INDICATES THE FRENCH-AMERICAN-BRITISH 

CLASSIFICATION. 
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To ensure the biomarkers discovered were specific to relapse, certain filters were applied to 

all the cohorts. Only diagnostic samples were used, all other time points were removed from 

the dataset. Only event free survival (EFS) and relapse patients were used, patients who 

experienced different events were removed, an additional check was applied to the EFS 

patients, to remove patients who had died from other causes which may have been 

described as event free. 

Other filters were also applied to improve the quality of the score developed. If the FAB or 

ELN classification were missing the sample was removed, due to the difference in treatment 

all patients with FAB-M3 and t(15;17) translocation were removed. Table 2.1 shows a 

summary of the patient numbers in the analyses. 

2.2. Bioinformatics techniques 

To identify biomarkers in large datasets a variety of bioinformatics techniques are 

implemented. Using bioinformatics provides a consistent and replicable way of analysing 

data, and doing this through machine learning or statistics programmed in R speeds up this 

process. Through statistics and machine learning, biomarkers with high accuracy can be 

identified in one dataset and validated in another. 

2.2.1. Artificial neural networks 

Artificial neural networks (ANN) find association between an input and the possible variables 

in a given dataset, it creates networks of association like those of neurones in the brain. 

There are two main types of ANN, binary and continuous: Binary ANN must have an input of 

integer values, for example 1 or 0, continuous ANN uses a continuous variable as the input. 

Binary ANN was used, by classifying cases based on their relapse status, event free survival 

(0) or relapse (1), the output was sorted by average test error. The gene expression values 

identified either from the binary ANN or another statistical test, were used as continuous 

inputs for the continuous ANN, the output was sorted by average test error. The parameters 

of the ANN were set to 300 epoches, 100 windows, 50 bootstraps and 10 loops. 

The data-mining algorithm comprised a three-layer multilayer perception architecture 

modified with a feed forward back-propagation algorithm and a sigmoidal transfer function, 

as previously described by Lancashire et.al155.  
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2.2.2. Welch’s T-test 

T-tests were used to determine if the means of two groups were significantly different from 

each other156. The assumptions in this test are; the two samples have unequal variance or 

sample size; the sample is normally distributed, and the samples are unpaired. A P<0.05 is 

considered statistically significant, indicating the means of the population are significantly 

different. The “t.test” function in R was used to calculated P-values, this test was used to 

determine if the mean gene expression of relapse patients significantly differed from event 

free survival patients. 

2.2.3. Mann–Whitney U test 

Much like the t-test explained above, Mann–Whitney U tests were used to determine if the 

means of two groups were significantly different from each other157, however the mean is 

calculated based on the sum of the rank order of the samples, which gives less weight to 

anomalies within the data. A P<0.05 is considered statistically significant, indicating the 

means of the population are significantly different. This test was used to determine if gene 

expression of relapse patients significantly differed from event free survival patients. The 

“wilcox.test” function in R was used to calculate the P-values, where this statistic was used 

independently. It was also computed in GraphPad in association with Kaplan-Meier survival 

curves. 

2.2.4. Kaplan–Meier survival curve 

Kaplan–Meier survival analysis curves, illustrate the survival of a population based on an 

event and time to the event158, in this instance the event was relapse (1), the censoring event 

was event free survival (0), and the time used was event free survival time. It was used to 

compare the difference of event free survival time in populations of high or low relapse 

prognostic index. A Mann-Whitney u test was calculated alongside the Kaplan-Meier survival 

curve, which is detailed previously. 

2.2.5. Receiver operator characteristic curves 

Receiver operator characteristic159 (ROC) curves illustrate the diagnostic ability of a variable, 

by look at the true positive rate versus the false positive rate. When analysing a ROC curve 

the sensitivity, true positive, and specificity, true negative, can be used to determine how 

well a marker predicts an outcome and decide upon an appropriate threshold. A P-value is 

given, which indicated if a variable can correctly discriminate between the two populations, 
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a P<0.05 was considered significant. The area under the curve (AUC) is equal to the 

probability of patients being correctly identified, the aim is to achieve an AUC as close to 1 

as possible, which indicates a perfect predictor. The R package pROC160 was used to perform 

the calculation, this was implemented to determine if a specific gene or genes can 

discriminate between Event free survival and relapse patients. 

2.2.6. Binary logistic regression 

Determines the probability of a binary event occurring, based on the independent variable 

or variables given161. The P value indicates if the variable is a good predictor, P<0.05 was 

considered significant. The Beta correlation coefficient describes the trend of the 

relationship: the further from 0 the stronger the association, a positive coefficient indicates 

an increase in the variable, increases the hazard and decreases time to event, a negative 

coefficient indicates a decrease in the variable, decreases the hazard and increases time to 

event. The calculations were computed using SPSS, the binary event used was the relapse 

status, where 1 represents relapse and 0 indicates event free survival, the independent 

variable was the gene expression value or values.  

2.2.7. Cox regression 

Cox regression proportional hazards model162 is used to associate the time passed before an 

event to the independent variable or variables in the model. A variable which predicted 

outcome with a P-value of P<0.05 was considered statistically significant. The Beta 

correlation coefficient describes the trend of the relationship: the further from 0 the stronger 

the association, a positive coefficient indicates an increase in the variable, increases the 

hazard and decreases time to event, a negative coefficient indicates a decrease in the 

variable, decreases the hazard and increases time to event. The calculations were computed 

using SPSS, the binary event used was relapse status, where 1 represents relapse and 0 

indicates event free survival, the independent variable was the gene expression value or 

values and the time variable was the event free survival time. 

2.3. Type one error correction 

A type one error is the false rejection of the null hypothesis, using a standard P-value of 

P<0.05 will give a false positive 5% of the time. Within large datasets, such as those being 

used in this investigation, 5% of the “significant” genes equates to a large number. To combat 

the false discoveries, type one error correction is required. 
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The method implemented in this investigation to reduce type one error, was the Benjamini 

& Hochberg163 method otherwise known as false discovery rate (FDR) which is neither too 

stringent nor too lenient. FDR reduces the Type one error without introducing too many type 

two errors, the false acceptance of the null hypothesis. To obtain corrected p-values the r 

function “p.adjust” was used. 

2.4. Biomarker discovery 

To develop a robust method of biomarker discovery, several workflows were trialled (figure 

2.1), which combine statistical and machine learning approaches. After the initial variable 

workflows, shown in colour in figure 2.1, the gene lists obtained were used in independent 

multivariate binary logistic regression, to identify genes that work synergistically to predict 

patient outcome.  

 

FIGURE 2.1. BIOMARKER DISCOVERY WORKFLOWS. A COMBINATION OF STATISTICS AND MACHINE LEARNING 

USED IN THE INITIAL BIOMARKER DISCOVERY WORKFLOW LEADS INTO A UNIFORM SCORE CALCULATION AND 

VALIDATION PROCEDURE, ENSURING DIRECTLY COMPARABLE SCORES. INITIAL BIOMARKER DISCOVERY IS 

PERFORMED IN THE HOVON DATASET WHICH IS FOLLOWED BY VALIDATION IN THE TCGA AND TARGET 

DATASETS. 
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The gene expression values used to calculate the overall score were obtained from the 

finalised gene list of each workflow, the β values were obtained from the multivariate binary 

logistic regression of the finalised gene list for each workflow. The number of elements 

within the score calculation can be increased or decreased according to the number of genes 

obtained for each method. To calculate the score the following equation was used164, where 

Σ indicates the sum of, and β values were obtained though binary logistic regression: 

∑(𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 × 𝛽 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒) 

2.4.1. ANN 

The ANN workflow is indicated in pink in figure 2.1. Using the ANN algorithm explained 

previously, relapse status was used as the initial binary input where 1 indicates relapse and 

0 indicates event free survival. The top 10 genes by lowest average test error, from the initial 

binary ANN, were each used as continuous inputs for the next ANN analysis. The top 10 genes 

by lowest average test error from each of the continuous ANN were taken resulting in 110 

genes in total, not accounting for duplicates in the results. 

2.4.2. ANN-first 

The ANN-first workflow is indicated in orange in figure 2.1. Using the ANN algorithm 

explained previously, relapse status was used as the initial binary input where 1 indicates 

relapse and 0 indicates event free survival. The top 1000 genes by lowest average test error 

were taken, and a T-test was performed, where patients were grouped by their relapse 

status. After a false discovery P-value correction was used, up to 20 genes with the lowest P-

value were selected. 

2.4.3. T-test 

The T-test workflow is indicated in yellow in figure 2.1. A T-test was performed where 

patients were grouped by their relapse status, event free survival versus relapse. After a false 

discovery P-value correction was used, the top 20 genes by lowest P-value were selected. 

2.4.4. ANN-Second 

The ANN-second workflow is indicated in green in figure 2.1. A T-test was performed where 

patients were grouped by their relapse status, event free survival versus relapse. The top 

1000 genes by lowest P-value were taken as a truncated dataset. Using the ANN algorithm 
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explained previously, relapse status was used as a binary input where 1 indicates relapse and 

0 indicates event free survival. The top 20 genes by lowest average test error were selected. 

2.4.5. ROC 

The ROC workflow is indicated in blue in figure 2.1. The R package pROC160 was used to 

determine the P-value and the AUC for each gene in the dataset, to identify genes which can 

discriminate between Event free survival and relapse patients. The genes were sorted by 

AUC and the top 20 highest AUC were selected. 

2.4.6. BLR 

The binary logistic regression workflow is indicated in purple in figure 2.1. The R package 

pROC160 was used to determine the P-value and the AUC for each gene in the dataset, to 

identify genes which can discriminate between Event free survival and relapse patients. The 

genes were sorted by AUC, all the genes with an AUC >0.6 were selected. A binary logistic 

regression was performed on these genes, which were then sorted by beta-value. The genes 

with the 10 highest and 10 lowest beta-values were selected. 

2.5. Tissue culture 

2.5.1. Adherent cell lines 

Cells were grown at 37°C in a humidified atmosphere with 95% air and 5 % CO2. Cells were 

passaged when 80-90% confluent, before the loss of the cell monolayer, the time between 

passages was dependent on the specific cell line. Medium was discarded, and the flask was 

washed with PBS to remove any residual medium. A solution of 0.05 % trypsin mixed with 

0.02 % EDTA was added to the cells, the smallest volume required to cover surface of the 

flask was used. Flasks were incubated at 37°C until cells had completely detached from the 

surface and were suspended individually. The cell suspension was removed to a falcon tube 

and complete growth medium was added, this was then centrifuged at 300xg for 5 minutes 

at room temperature. The supernatant was discarded, and cell pellets were resuspended in 

an appropriate volume of complete growth medium before cells were counted and seeded 

at the required density in a plate or flask. 
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Cell line Growth requirements 

HEK293 EMDM + 10% FCS + 1% L-Glutamine 

MDA-MB-468 EMDM + 10% FCS + 1% L-Glutamine 

TABLE 2.2. GROWTH MEDIA REQUIREMENTS OF ADHERENT CELL LINES.  

2.5.2. Suspension cell lines 

Cells were grown at 37°C in a humidified atmosphere with 95% air and 5 % CO2. The cell 

suspension was removed to a falcon tube when the growth medium was spent or when the 

flask was confluent. The cell suspension was counted, as described below, before the falcon 

tube centrifuged at 300xg for 5 minutes at room temperature. The supernatant was 

discarded, and cell pellet was resuspended in an appropriate volume of complete growth 

medium for seeding at the required density in a plate or flask. 

Cell line Growth requirements 

KG-1 IMDM + 20% FCS + 1%  L-Glutamine 

THP-1 RPMI-1640 +10% FCS + 1%  L-Glutamine 

MolM-13 RPMI-1640 +10% FCS + 1%  L-Glutamine 

MV4-11 IMDM + 10% FCS + 1%  L-Glutamine 

Kasumi-1 RPMI-1640 + 20% FCS + 1%  L-Glutamine 

SigM5 IMDM + 20% FCS + 1%  L-Glutamine 

TABLE 2.3. GROWTH MEDIA REQUIREMENTS OF SUSPENSION CELL LINES. 

2.5.3. Cryopreservation and recovery 

Cells were collected using the method outlined for passaging cells. Cell pellets were 

resuspended in freezing medium (FCS containing 10% DMSO) and aliquoted into 1mL 

cryovials, which were stored in a -80°C freezer. 

To recover cells from storage, they were defrosted rapidly before medium was added 

dropwise. Cells were centrifuged at 300xg for 5 minutes, the supernatant was discarded, and 

pellet was resuspended medium. The cells were seeded in an appropriate plate or flask, 

which was then incubated according to the growth requirements of the cell line. 
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2.5.4. Cell counting 

2.5.4.1. Trypan blue 

Cell suspension was harvested using the method outlined for passaging cells. 50µL of cell 

suspension was mixed with 50µL of trypan blue. To count the cells, 10µL of trypan cell 

suspension was place onto a haemocytometer, each of the four corner squares was counted. 

Using the following calculation, the cell density was calculated.  

𝐶𝑒𝑙𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑒𝑙𝑙𝑠 ×  10000

𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟
 

2.5.4.2. Solution-18 

Cell suspension was harvested using the method outlined for passaging cells. 50µL of cell 

suspension was mixed with 2.5µL of solution-18. To count the cells, 10µL was place into one 

chamber of the A8- slide, which was then read using the NucleoView™ software on the 

NucleoCounter® NC-250™ machine 

2.5.5. Drug titration 

Cell lines were seeded at a density between 0.4x10
6 and 1.0x10

6 depending on the assay use, 

in a 6-well plate for cell counting, or a 96-well plate for an XTT assay. The drug was diluted 

to a working stock concentration, which was then used to treat the cells at a range of 

concentrations. The cells were counted daily using solution-18 as previously mentioned, or 

daily using the XTT assay. This was done for Puromycin, Daunorubicin and TGFβ1. 

2.6. Reverse Transcription- Quantitative PCR 

2.6.1. RNA extraction 

RNA was extracted from cells using the Quiagen RNAeasy Kit, following the manufactures 

instruction. Buffer RLT was prepared by adding 10 µl of β-mercaptoethanol to 1 ml Buffer 

RLT, improving the quality of the extracted RNA. After cells had been harvested and buffer 

RLT had been added, following the appropriate methods detailed below, the lysate 

suspension was passed through a 21-gage needle to complete the lysis step.  

To the cell lysate 350 µl of 70% ethanol was added and mixed by pipetting. The sample was 

transferred onto the spin column and centrifuged for 15 seconds at 8000xg, the flow-through 

was discarded. 700 µl of Buffer RW1 was added and the column was centrifuged as before, 
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after each centrifugation the flow-through was discarded. 500 µl of buffer RPE was added 

and the column centrifuged as before, this step was repeated however the centrifugation 

was extended to 2 minutes. The column was placed in a new collection tube and centrifuged 

at 14000xg for 1 minute, to completely remove the buffers. The column was placed in 1.5 ml 

microfuge tube, 30 µl of NFW was added to the centre of the spin-column filter, incubated 

at room temperature for 10 minutes and then centrifuged for 1 minute at 8000xg. The 

samples were read using the nanodrop and stored at -80°C until needed. 

2.6.1.1. Adherent cells 

Medium was removed from adherent cells and the flask was washed with PBS, all liquid was 

removed before 350 µl of pre-prepared buffer RLT was added directly to the plate. A plate 

scraper was used to collect the cells and buffer together for harvesting.   

2.6.1.2. Non-adherent cells 

For non-adherent cells, the cell suspension was centrifuged at 300xg for 5 minutes, the 

supernatant was removed, the cells were resuspended in PBS and centrifugation was 

repeated. After the supernatant was removed, 350 µl pre-prepared buffer RLT was added to 

the pellet.  

2.6.2. Nanodrop 

To measure the concentration and assess the quality of the extracted RNA or DNA, the 

NanoDropTM 8000 spectrophotometer was used. Prior to use the pedestals were cleaned and 

calibrated using NFW. To measure the sample, 1 µL was placed on the pedestal, the 

appropriate nucleic acid setting was selected for RNA or DNA. The 280 and 260 ratios were 

expected to be 2.0, deviation from 2.0 indicated contamination with impurities such as 

protein and phenols. The upper limit of detection was 4000 ng/µL, if the concentration 

exceeded this, an aliquot was diluted in NFW and re-analysed. 

2.6.3. cDNA synthesis 

Depending on the quantity and quality of the RNA available determines which method of 

reverse transcription is used. SuperScript™ IV requires a lower concentration of RNA 

compared to MMLV, so is ideal for patient samples, whereas MMLV is sufficient for RNA 

extracted from cell pellets. 
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2.6.3.1. SuperScript™ IV Reverse Transcriptase 

250ng of RNA is required, the volume is determined by the following calculation: 

250𝑛𝑔

𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑛𝑔/𝜇𝑙)
 

The appropriate volume of RNA is mixed with 1 µL of 50 µM Oligo d(T)15 and 10mM dNTP, 

NFW was used to make the volume up to 13 µL. This mixture was incubated at 65°C for 5 

minutes, then immediately transferred to ice for 1 minute. To the RNA mixture 4 µL of SSIV 

buffer, 1 µL SSIV reverse transcriptase, 1 µL RNase inhibitor and 1 µL 100mM DTT was added. 

The reaction mixture was incubated at 53°C for 10 minutes then 80°C for 10 minutes. The 

cDNA samples were stored at -20°C until use. 

2.6.3.2. MMLV reverse transcriptase 

2000ng of RNA is required, the volume is determined by the following calculation: 

2000𝑛𝑔

𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑛𝑔/𝜇𝑙)
 

The appropriate volume of RNA is mixed with 1 µL of 50 µM Oligo d(T)15, NFW was used to 

make the volume up to 10 µL. This mixture was incubated at 70°C for 5 minutes, then 

immediately transferred to ice for 1 minute.  

To the RNA mixture 5 µL of RT buffer, 1 µL MMLV reverse transcriptase, 0.7 µL RNase 

inhibitor 1 µL of 10mM dNTP, and 7.3 µL of NFW was added. The reaction mixture was 

incubated at 40°C for 1 hour then 95°C for 5 minutes. The cDNA samples were stored at -

20°C until use. 

2.6.4. Primer design 

Primers for genes of interest available from Sigma were used where possible, the pairs with 

the fewest off-target interactions were used. For genes with no available pre-made primers, 

the following requirements were met; the sequence should end with 1-2 G/C pairs, 18-25 

base pairs long, a GC content of 60-80%, melting temperature of 61.5°C and a concentration 

of 0.05µM. Primer specificity was determined using NCBI primer blast search, returning 

corresponding amplicons between 100 and 150 base pairs, ensuring high efficiency. 

Reference sequence for each of the primers used can be found in the relevant reagents and 

equipment table 
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The purchased primers were centrifuged to collect all particles at the bottom of the tube, 

this was resuspended in the specified volume of nuclease free water (NFW) and incubated 

on ice to fully dissolve for 10 minutes. The stock was vortexed and diluted 1:10 with NFW to 

make the working dilution. 

2.6.5. Primer efficiency 

Extracted cDNA from a cell line was diluted in a 1:2 and 1:5 dilution series. SYBR green PCR 

master-mix was used, the total volume of this was half of the reaction volume, the other half 

of the reaction volume was made up of 0.5µL of both forwards and reverse primers, NFW to 

the volume required and 1 µL of sample. Each sample in the dilution series was performed 

in triplicate, all reagents were vortexed prior to use and kept on ice. Primers for the gene of 

interest and the stable “house-keeping” gene are tested in the same way, preferably both 

primer pairs will achieve efficiency at the same temperature. The standard temperature 

profile used began with a 95°C hold for 1 minute, followed by a cycle of 95°C for 20 seconds, 

a variable temperature depending on the primer for 15 seconds and 72°C for 20 seconds. To 

obtain a melt curve the temperature ramped from the lowest annealing temperature 

through to 95°C. 

2.6.6. Quantitative PCR 

After the correct temperature for the primer has been established using primer efficiency 

testing, a similar method is employed to identify the relative gene expression of a sample. 

The volumes of reagents were consistent with those in the primer efficiency testing; however, 

samples were not diluted. Both the gene of interest and the stable “house-keeping” gene 

were run for each sample. The temperature profile used began with a 95°C hold for 1 minute, 

followed by a cycle of 95°C for 20 seconds, 58°C for 15 seconds and 72°C for 20 seconds. To 

obtain a melt curve the temperature ramped from 58°C through to 95°C. 

2.7. Plasmid transfection in bacteria 

2.7.1. Bacterial culture 

2.7.1.1. Ampicillin 

The bacterial strain used is sensitive to ampicillin, to select the bacteria which were 

successfully transfected ampicillin selection was used. Ampicillin salt was dissolved in double 
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distilled (DD) H2O, to obtain a concentration of 100mg/mL, this was filter sterilised using 0.2-

micron filter. Aliquots were frozen at -20°C. 

2.7.1.2. Lauria Broth Agar  

Lauria Broth (LB) Agar plates were made according to the manufacturer’s instructions. LB 

agar was dissolved in DD H2O, this was autoclaved to sterilise. When the molten agar had 

cooled to below 40°C 100mg/mL of ampicillin was added. 15ml of agar was used per plate 

2.7.1.3. Lauria Broth  

Lauria Broth (LB) was made according to the manufacturer’s instructions. LB was dissolved 

in DD H2O, this was autoclaved to sterilise. When the broth had cooled 100mg/mL of 

ampicillin was added. 

2.7.1.4. Bacterial stocks 

A single colony from the plasmid transfected E.coli LB agar plates was taken and grown 

overnight in LB containing 100mg/mL of ampicillin. A glycerol solution of 30% was made 

using DD H2O which was filter sterilised using 0.2-micron filter.  From the overnight cultures, 

250μL was mixed with 250μL of 30% glycerol, the final concentration of glycerol was 15%, 

these were snap frozen on dry ice and stored at -80°C.  

2.7.2. Bacterial transformation 

Stbl3 strain E.coli competent cells were used, which can stabilise supercoiled DNA, making 

them ideal for transfection with the shRNA plasmid. This strain of E.coli is sensitive to 

ampicillin, therefore the shRNA plasmid used gives the transfected cells resistance. 

Chemically competent cells were thawed on ice and 2μl of plasmid DNA was added to the 

vial, sterile water was used as a control to ensure the bacteria were not resistant to ampicillin, 

and there was no contamination. Reference sequence for each of the plasmids used can be 

found in the relevant reagents and equipment table. After a 30-minute incubation on ice, the 

aliquots were heated to 42°C for 45 seconds before returning to ice for 2 minutes. S.O.C. 

medium was added to the cells and incubated at 37°C for 1 hour. 100μL was plated on LB 

agar with ampicillin, and incubated overnight at 37°C. From the experimental plates a single 

colony is selected and cultured in 25mL of LB broth with ampicillin and incubated overnight 

at 37°C. 
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2.7.3. Plasmid extraction 

The Plasmid Midi Kit from Qiagen was used, following the manufactures instructions. 

Bacteria containing the transfected plasmid were cultured overnight in LB with ampicillin as 

describes above. The bacterial culture was centrifuged at 5000 rpm for 15 minutes at 4°C, 

the supernatant was discarded, and the pellet was resuspended in 4 mL of chilled Buffer P1. 

To the bacterial suspension, 4 mL of buffer P2 was added and vigorously mixed. After a 5-

minute incubation at room temperature, 4 mL of chilled Buffer P3 was added, mixed 

vigorously. The bacterial lysate was poured into the QIAfilter Cartridge and incubated at 

room temperature for 10 minutes. The QIAGEN-tip 100 was prepared by adding 4 ml of 

Buffer QBT which was allowed to flow through the tip. The plunger was inserted into the 

QIAfilter Cartridge to expel the lysate into the QIAGEN-tip 100. Using gravity flow the solution 

entered the resin and the flow-through was discarded. The resin and sample were washed 

twice by adding 10 mL buffer QC to the QIAGEN-tip 100. Buffer QF was heated to 65°C, 5 mL 

was added to the QIAGEN-tip 100 and the flow-through was collected in a sterile falcon tube. 

To the flow-through, 3.5 mL isopropanol was added, this was mixed and centrifuged at 5000 

rpm for 30 minutes at 4°C. The supernatant was discarded, and the pellet was resuspended 

in 1mL of 70% ethanol, which was centrifuged at 13,000rpm for 10 minutes at 4˚C. The 

supernatant was discarded, any remaining liquid was allowed to evaporate from the pellet 

at room temperature. The dry pellet was resuspended in 50µL of TE buffer, before 

quantification on the nanodrop. 

2.8. Viroid construction 

2.8.1. Lipofectamine transfection 

HEK293 cells are ideal for viroid construction as they contain the gene for adenovirus. 

HEK239 cells were seeded in t25 flasks and allowed to adhere and grow to 70% confluence. 

To the flask 8μg of plasmid of interest, 6μg of packaging plasmid and 2μg of envelop plasmid 

were added to the flasks with 17μl lipofectamine and 32μl p3000 reagent, in FCS free 

optiMEM medium. The flasks were incubated at 37°C with 5% CO2 for 24 hours. 

2.8.2. Virus harvest 

Twenty-four hours after HEK239 cells were treated with lipofectamine p3000, the medium 

was changed to remove the reagents used in transformation. Forty-eight and seventy-two 

hours after cells were treated the medium was harvested, these fractions should contain the 
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constructed virus. The harvested medium was centrifuged at 300xg for 5 minutes, and 

filtered using a 0.2-micron filter, removing any remaining cells preventing contamination of 

cell lines. The fractions were frozen at -80°C until required. 

2.9. Viral Transduction 

2.9.1. Transduction of adherent cell lines 

Cells were seeded and allowed to adhere and grow to be 70-80% confluent. Medium was 

removed and cells were treated with Polybrene diluted in medium, at a concentration of 

10μg/μL. After a short incubation, the viral stock was added to the test wells and medium 

was added to the control wells. 

After 24 hours, spent medium was removed and replaced with fresh medium containing 

Puromycin at a concentration determined by a drug titration. Puromycin will kill cells not 

containing the transfected plasmid within a few days whereas transfected cells will continue 

to grow in culture. When control cells are dead due to the Puromycin treatment, the 

transfected cells are grown until confluent. 

2.9.2. Transduction of suspension cell lines 

Due to suspension cells experiencing poor transfection efficiency or sensitive to polybrene 

toxicity, an alternative method of transfection was used. Cells in suspension were 

centrifuged at 300xg for 5 minutes, spent medium was discarded and cells were resuspended 

in 1mL of fresh medium containing polybrene at a concentration of 10μg/μL. After a short 

incubation with the polybrene medium, the viral stock was added to the test cells and 

medium was added to the control cells. The falcon tubes containing the cell suspensions 

were centrifuged at 800xg for 30 minutes at 32°C. After the centrifugation the supernatant 

was removed, and cells resuspended in 3mL of fresh medium, to be seeded in a 6-well plate. 

After 24 hours Puromycin was added to the wells at a concentration specific to the cell line 

as determined by a drug titration. The Puromycin will kill cells not containing the transfected 

plasmid within a few days, whereas those that were successfully transfected will continue to 

grow in culture. When control cells are dead due to the Puromycin treatment, the 

transfected cells are grown until confluent. These cell lines are stably transfected and can 

continue to be cultured in the appropriate medium as described previously with the addition 

of Puromycin at a concentration determined by the drug titration. Stocks can be frozen and 

thawed according to the methods previously mentioned.  
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2.9.3. Testing viral transfection 

It is important to test for the presence of the virus in the harvested fractions from the HEK239 

cells. MDA-MB-468 cells were used in the method outlined for adherent cells above. The 

concentration of Puromycin used was 1μg/mL. After 2 days when control cells were dead 

due to the Puromycin treatment, the transfected cells were grown until confluent and there 

was a sufficient quantity for RNA extraction and cDNA is synthesis, which were performed 

according to the previously described methods. 

2.9.4. Knock-down efficiency 

Once the cells have been transfected and are numerous enough to harvest, the RNA is 

extracted, and cDNA is synthesised according to the previously described methods. For both 

the gene of interest (GOI) and a stable housekeeper gene qPCR was performed on all samples: 

cells treated with the control plasmid or the experimental plasmids. The average cycle 

threshold (CT) value for replicates was calculated for the housekeeper and GOI. The change 

in the CT values (ΔCT) from GOI and housekeeper was calculated, and the change of the 

change in CT values (ΔΔCT) were calculated using the following equations: 

∆𝐶𝑇 = 𝐻𝑜𝑢𝑠𝑒𝑘𝑒𝑒𝑝𝑒𝑟 𝐶𝑇 − 𝐺𝑂𝐼 𝐶𝑇 

∆∆𝐶𝑇 =  ∆𝐶𝑇 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑃𝑙𝑎𝑠𝑚𝑖𝑑 − ∆𝐶𝑇 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑃𝑙𝑎𝑠𝑚𝑖𝑑 

Using information provided by ThermoFisher165 on percentage Knockdown of gene 

expression, the approximate knockdown efficiency can be determined using the calculated 

ΔΔCT value where Δ represents the change. 

2.10. XTT cell proliferation and viability assay 

Following gene Knock-down, cell lines were seeded at 1x106/mL and treated with the 

predetermined concentration of Daunorubicin and TGFβ, wells containing no cells were also 

plated with the corresponding drug titrations. The plates were incubated for 24 hours. 

After the incubation, the plates were mixed using a 1mL pipette. 100µL of each cell 

suspension and cell-free medium control was transferred to a 96-well plate. A stock of XTT 

working reagent was made to a concentration of 20µL/mL of electron coupling reagent in 

the XTT Labelling reagent, which was then vortexed. 50 µL of the XTT working reagent was 

added to the wells of the 96-well plate, which were mixed by pipetting and then incubated 
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for 4 hours. After the incubation the plates were mixed by tapping before they were read at 

470 nm with a reference wavelength of 650 nm. 

2.11. NanoString 

Cell line samples were harvested and prepared according to the RNA extraction protocol 

above. The RNA was measured with the nanodrop in triplicate to obtain an accurate 

concentration. 150ng of RNA was pipetted into the strip tubes and water was added to 

equalise the volume to 5µL. The reporter probe and capture probes were added to the strip 

tubes according to the manufacturer’s instructions. After mixing by tapping the tubes, they 

were centrifuged to collect the mixture in the bottom of the tubes which were then 

incubated at 65°C for 24 hours. After the incubation the strip tube was centrifuged briefly to 

collect the mixture in the bottom of the tube and loaded into the prep-station, the reagent 

plates were centrifuged at 2000xg for 2 minutes and loaded into the prep-station with the 

required consumables, as per the manufacturer’s instructions. Once the prep station had 

finished the chip containing the samples was sealed and loaded onto the nCounter. The data 

from the nCounter was analysed using the nSolver software. 

2.12. Reagents and equipment 

2.12.1. Cell Culture Media and supplements 

 

 

 

Reagent Supplier 

EMDM SLS (Lonza) 

Foetal Calf Serum (FCS) GE Healthcare Hyclone 

IMDM SLS (Lonza) 

L-Glutamine SLS (Lonza) 

OptiMEM media Gibco 

RPMI-1640 SLS (Lonza) 
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2.12.2. Cell Culture Reagents 

Reagent Supplier 

Cytarabine Sigma Aldrich 

Dimethyl sulfoxide (DMSO) Santa Cruz Biotechnology 

Dulbecco’s phosphate buffered saline (DPBS) SLS (Lonza) 

Puromycin GIBCO 

Solution-18 Chemometric 

Transforming Growth Factor β1 (TGFβ) Peprotech 

Trypan Blue solution 0.4% Sigma-Aldrich 

Trypsin and EDTA SLS (Lonza) 

 

2.12.3. Bacterial Culture Reagents 

Reagent Supplier 

Ampicillin sodium salt Sigma-Aldrich 

Glycerol Sigma-Aldrich 

Luria broth (millers) Sigma-Aldrich 

Luria broth (millers) Agar Sigma-Aldrich 

2.12.4. Kits 

Reagent Supplier 

Cell Proliferation Kit II (XTT) Roche 

Competent cell sampler Invitrogen 

HiSpeed Plasmid Midi Kit Qiagen 

RNeasy Mini Kit Qiagen 
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2.12.5. Chemical Reagents 

Reagent Supplier 

Deoxyribonucleotide triphosphate (dNTP)  Promega 

Double distilled water (ddH2O)  Barnstead 

Ethanol absolute Electran® molecular biology  VWR Chemicals 

Isopropanol fisher Chemical  

lipofectamine P3000 Thermo Scientific  

Liquid nitrogen  BOC  

MMLV Reverse Transcriptase  Promega  

MMLV RT 5x Buffer  Promega 

Nuclease-free water Ambion  

Oligo(dT)15 Primer  Promega  

Polybrene Sigma-Aldrich 

Presept tablets  Johnson and Johnson  

RNaseZAP  Ambion  

RNasin  Promega  

SSIV buffer Invitrogen 

SuperScript™ IV Reverse Transcriptase Invitrogen 

SYBR® Green  BioRad  

β-mercaptoethanol  Sigma-Aldrich 

Protein assay dye reagent concentrate BioRad 
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2.12.6. Plastics, Glassware and Sharps 

Reagent Supplier 

A8-slides Chemometric 

Bijou tubes (7 mL)  Starlab 

Cell culture flasks (T25, T75, T175)  Sarstedt 

Cell scraper Sarstedt 

Clear flat bottom 6-well plate, sterile  Sarstedt 

Clear flat bottom 96-well plate Starlab 

Cryogenic vials (1.0 mL)   Starlab 

Falcon tubes (15 mL, 50 mL)  Sarstedt 

Filter tips (10ul, 20ul, 100ul, 200ul, 1000ul)  Starlab 

Glass bottles  Duran 

Micro tubes (0.5 mL, 1.5 mL, 2.0 mL)  Sarstedt 

Plate spreaders Sarstedt 

Rotor-Gene Strip Tubes & Caps  Starlab 

Serological pipettes (5 mL, 10 mL, 25 mL)  Sarstedt 

Syringe filter 0.2µm  Sartorius 

Syringe filter 0.4µm  Sartorius 

Syringes (20 mL)  Medicina 

2.12.7. Equipment 

Reagent Supplier 

Autoclave  Rodwel 

Automated Cell Analyser NucleoCounter® NC-

250™ 

Chemometric 
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Axio Observer.Z1 microscope  ZEISS 

Benchtop vortex mixer  Scientific Industries 

Centrifuge 5804R Eppendorf  

Centrifuge 5810R Eppendorf  

Class II Safety Cabinet  Walker 

Digital Sight DS-Fi1 camera Nikon 

Freezer -20°C LEC Medical 

Freezer -80°C Panasonic 2100 

Fridge 4°C LEC Medical 

Haemocytometer  Weber 

Incubator 37°C GenLab 

Incubator 37°C 5% CO2 Scientific Laboratory Supplies 

Centrifuge, Heraeus Megafuge 16R Thermo Scientific 

Micropipettes (2 µl, 10 µl, 100 µl, 200 µl, 1000 

µl)  

Gilson/Starlab  

Minispin benchtop centrifuge  Eppendorf  

Multichannel pipette (300 µl)   Eppendorf 

Nanodrop ND-8000 spectrophotometer  Thermo Scientific  

Nanopure Diamond water reservoir  Barnstead  

Nikon Eclipse Ts100 Light Microscope  Olypmus  

Orbital Incubator 37°C Stuart 

PCR workstation cabinet  Grant-Bio 

Real-time qPCR thermal cycler  Qiagen  

Thermoblock  Biometra 
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Waterbath  Clifton 

Weighing Scale  Fisher Scientific   

Microscope, EVOS M5000 invitrogen 

iMark microplate Reader Bio-rad 

2.12.8. Software 

Programme Supplier 

GraphPad Prism v7  GraphPad Software Inc. 

Rotor-GeneQ Series Software v2.3.1  Qiagen 

SPSS statistics 26 IBM Corp 

R x64 3.6.0  The R Foundation for Statistical 

Computing 

NucleoView™ software Chemometric 

 

2.12.9. shRNA Plasmid DNA 

TRC number Sequence 

TRCN0000073652 

MISSION shRNA 

CCGGGCAGCCCTAATGAATACAGAACTCGAGTTCTGTATTCATTAGGGC

TGCTTTTTG 

TRCN0000073650 

MISSION shRNA 

CCGGCCCGGAGGAAATGTGACTATTCTCGAGAATAGTCACATTTCCTCC

GGGTTTTTG 

control Plasmid addGene pLKO.1, Puromycin, empty vector 

packaging plasmid addGene psPAX2, PL-12260 

envelop plasmid addGene pMD2.G, PL-12259 
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2.12.10. Primers for qPCR 

Gene Sequence Supplier 

CD109 F AGTATACATAGGGAAGCCAG sigma-Aldrich 

CD109 R ATCCAGTATTCAGAAAGTCC sigma-Aldrich 

YWHAZ F ACCGTTACTTGGCTGAGGTTGC sigma-Aldrich 

YWHAZ R CCCAGTCTGATAGGATGTGTTGG sigma-Aldrich 
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Chapter 3 - Biomarker discovery 

3.1. Introduction 

3.1.1. The need for clinically relevant biomarkers 

There are a number of biomarkers already available in a clinical setting, these are broken 

down into seven different categories120 shown in table 3.1. Clinical biomarkers are a 

biological molecule found in body fluids or tissues that are indicative of a disease state or 

condition166. Biomarkers can be proteins, peptides or nucleic acid based167, although for a 

clinical setting, molecules should be easily obtained and analysed. Key molecules that are a 

focused for biomarker discovery are abnormal RNA expression, DNA mutations and 

abnormal protein expression, which are easily obtained molecules that can be processed 

from patient samples.  

TABLE 3.1. TYPES OF BIOMARKERS. SEVEN MAIN TYPES OF BIOMARKERS ARE AVAILABLE120. ALTHOUGH 

BIOMARKERS ARE AVAILABLE FOR MANY DIFFERENT DISEASES, THE EXAMPLES GIVEN ARE CANCER SPECIFIC. 

Biomarkers are a vital tool for patient care, which are used to inform treatment options and 

achieve the best possible outcome, the more informed a clinician is the better care a patient 

will receive. An example of a current biomarker is t(15;17)73 which is characteristic of APL, a 

very treatable form of AML81, this is a large chromosomal translocation and a DNA base 

Type Application Example 

Diagnostic Detection of early disease and subtype Prostate cancer: Prostate specific 

antigen 

Prognostic likelihood of an outcome or clinical event Prostate cancer: Gleason score 

Predictive Prediction of effective treatment response Brest cancer: HER2, ER, PR  

Response Identification of a response to therapy Solid cancers: Tumour volume 

Risk Identifying those who may develop the 

disease 

Cervical cancer: HPV 

Monitoring Assessing disease status Solid cancers: Tumour volume and 

metastasis 

Safety Indicate adverse effects from therapy All cancers:  Neutropenia 
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marker. A patient with APL receives all-trans-retinoic acid in combination with Arsenic 

trioxide or chemotherapy if required81, as opposed to chemotherapy as standard for AML. 

The different treatment of this subcategory of patients provides better care and overall 

better outcomes. As part of diagnosis, patient biopsies are taken from the affected tissues 

to determine if a patient has cancer and which type and stage it is168. If a patient is suspected 

of having breast cancer the biopsies are stained using an antibody cocktail for HER2, 

oestrogen receptor and progesterone receptor, all of which have targeted therapeutics 

available169–174. In a pathology report the presence or absence of these markers will be 

confirmed, if a patient doesn’t have these markers it is described as triple negative breast 

cancer which has fewer treatment options and poorer prognosis including reduced overall 

survival and reduced relapse free survival175–177. 

The issue currently facing the biomarker sector is that, although many are proposed each 

year, very few are approved for use, in part to the fact they are not transparent in their 

discovery so are not necessarily trusted by the wider scientific community178. The need to 

communicate the methods use to a lay audience can be challenging when heavily 

computational methods are used, which can be a barrier to their approval178,179. Another 

barrier to approval is the lack of high-performance and high accuracy panels, which is 

especially important for markers that may impact patient care and the medication available. 

In AML there are biomarkers available which indicate which subcategory of AML a patient 

has and how aggressive the cancer can be. Using the ELN73 guidelines, these categories of 

AML are based on the large genetic mutations and translocations causing the cancer, an 

example of this t(15;17)13 is an indicator for APL which has a separate treatment strategy to 

AML involving all-trans-retinoic acid79 in conjunction with arsenic trioxide or chemotherapy. 

Another example is flt3-ITD99, where tyrosine-kinase-inhibitors are included in the therapy 

to increase the chance of successful treatment99,180,181. Within AML a large proportion of 

patient’s relapse, almost 50% which leads to further adverse outcomes including death. With 

such a large proportion of patients facing relapse it is important to identify these patients 

early so treatment can begin and a more positive outcomes can be achieved. As such the aim 

of this chapter is to develop a biomarker discovery workflow, based on the prediction of 

relapse in acute myeloid leukaemia. A panel of genes with high performance in the prediction 

of relapse will be developed, which will also be easily understood by a wider scientific 

audience. 
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3.1.2. Current methods of biomarker discovery 

There are many different methods of biomarker discovery, many of these require specialist 

skills or knowledge to utilise properly. Here we discuss the different methods of biomarker 

discovery that already exist, and strategies for improvement. There are many machine 

learning approaches some are transparent in the logic used and easily understood, referred 

to as “white-box” methods179, where some are heavily programmed and the results are not 

easily explained, referred to as “black-box” methods179.  There has been a push from the 

scientific community to move away from black-box methods to increase the transparency 

when using the results in a clinical setting. Although both methods are valid approaches to 

biomarker discover white-box methods have the added benefit of transparency and 

reproducibility whereas black box methods can give slightly different results each time. 

Although there’s a notion that heavily computational and complex methods are somehow 

better178,179 this is not strictly true, and depends heavily on the data available, there is also 

overlap between the results of both. 

In addition, these methods can be supervised, unsupervised or semi-supervised. Supervised 

machine learning relies on data which has both input data and an output classifying data, for 

example, RNA expression as input data and relapse status of patients as classifying output 

data. Unsupervised methods rely only on input data for the algorithm to cluster or associate 

the different samples. Semi-supervised methods rely on large amounts of input data, some 

with labelling data, it can be used to classify and label the samples without this information. 

For this body of work the focus will be on supervised methods which will be used to classify 

patients based on clinical data. 

Artificial neural networks (ANN) are an example of a black-box method, as it is not 

transparent how the outcome is achieved as it is determined by the algorithm. In these 

instances, the algorithm “learns” from the input information and provides the output based 

on the algorithm detail. For biomarker discovery the input required is a dataset of the desired 

molecule for example, an RNA sequence dataset, and information used to label the samples 

or segregate the samples, such as relapse status or a specific gene of interest. 

The use of “decision trees” are an example of a “white-box” method. They are based on 

sequential questions to target and define the differences between groups, which are 

transparent and logical. Once the algorithm is set up, it can be used repeatedly on different 

datasets and it is a very transparent process, however categorical data is required as an input 

which doesn’t describe much of the data obtained in patient. This is another example of a 
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supervised method as the algorithm requires input from the user, in the form of the 

questions asked and the cut off when continuous data is used, the results obtained have the 

potential to be biased based on the human input. Another white-box method of biomarker 

discovery is using statistics to determine the association of a marker to the outcome, the 

calculations are published, and the method is fully reproducible. One way in which statistics 

can be used for biomarker discovery is looking how the gene expression is associated to the 

outcome of a patient through the means of t-test or binary logistic regression, although many 

other methods are available.  

Although each method has advantages and disadvantages, each one can be used in different 

settings and may be more applicable in certain circumstances. The overall aim of this chapter 

is to develop a robust workflow of biomarker discovery that can be applied to patient 

outcome, which is understandable and logical, to be applied in a clinical setting. As such the 

workflows designed will be assessed through the development of a biomarker panel to 

predict relapse in AML patients. The best overall panel will be determined by the usefulness 

of the score created and could be used for future clinical biomarker discovery. 

3.1.3. Dataset for biomarker discovery 

To discover biomarkers, we require a large body of relevant biological data from a particular 

disease but are restricted by what pre-published bodies of work are available. To create a 

patient dataset large numbers of patients, money, and time are required, as well as informed 

consent, ethical approval, and a team of experts to extract, process and analyse patient 

samples. The creation of a patient dataset is not feasible during a PhD so we must look to 

already published, publicly available datasets, which allow us to utilise larger quantities of 

patient data making biomarkers discovery faster, easier, cheaper, and more reproducible. 

Data set repositories such as Array express132, and gene expression omnibus131 provide a 

platform to search datasets that have been published. Other sources, such as cBio-

portal182,183 provide an interface to quickly manipulate the data and determine some 

preliminary answers based on the datasets available, which is an excellent starting point to 

see the information held in the dataset and the possible applications before downloading 

the dataset for more thorough analysis. 

There are several biological components that can be used for biomarker discovery including 

DNA, RNA, and protein. Although all these molecules can be excellent biomarkers, we are 

limited by the data which is available to us. When using publicly available datasets, DNA 

sequences are often restricted access and requires advanced permissions and ethical 
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approval from the human tissue authority (HTA), due to the fact a patient may be identifiable 

by their DNA sequence. Although DNA sequence datasets can be difficult to access, DNA 

microarray data can be easier to obtain as this technology does not identify the specific 

sequence, but the mutations in the context of specific genes. The advantage of using DNA 

sequencing is that it provides large amounts of data, but it can be expensive and requires 

experts to analyse fully. Array technology provides a lower quality data as it is predetermined 

which genetic markers are detected, therefor it is less informative, but it is cheaper and 

easier to analyse. Key information obtained from DNA analysis is predominantly mutation 

information present in a sample, whether that is translocations, duplications, fusion genes, 

internal tandem repeats, insertions, deletions or point mutations, all can directly impact cell 

functions. 

There are very few protein datasets as these require mass spectrometry for large scale 

analysis, or a panel of antibodies to obtain expression for specific proteins, which reduces 

the quantity of data available. Typically, the tests carried out in a clinic would be antibody 

base, looking as specific targets known to determine patient care options, such as HER2 for 

targeted breast cancer treatment. Mass-spectrometry allows for large amounts of data to be 

obtained but relies on the researcher to prepare the sample appropriately and can be 

dependent on the machine used, although if mass-spectrometry data is available this 

provides a wealth of knowledge about the disease state and what functions and processes 

are happening within a sample. 

Publicly available RNA datasets are readily obtainable, historic datasets often use microarray 

data, where newer datasets use RNA sequencing, or more recently NanoString. Patients can’t 

be identified through RNA expression, which is ideal for ethical approval although it is still a 

requirement for the initial study and to obtain and process patient samples. RNA transcripts 

are associated with a cells function, cell cycle stage and disease state, this is ideal for showing 

dysregulation in a disease. Although microarray data is readily available it can be difficult to 

process as there are multiple probes for the same gene, whereas RNA sequencing aligns the 

fragments of RNA to determine a frequency of RNA expression for a particular gene.  

The availability of patient information associated with a dataset can make finding a relevant 

biomarker difficult, due to the lack of annotations or poorly annotated datasets. If a specific 

disease state or outcome is being examined, the analysis requires some annotation, such as 

survival, relapse, or Gleason score to allow for grouping of patients and identification of more 

relevant markers. It may also be relevant to have disease free samples, this allow for disease 
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specific biomarkers to quickly determine if a person has a disease or if they are at risk from 

a disease, just as how HPV is used to separate patients at high and low risk of cervical cancer, 

where those who are negative are excluded from further testing.  

Although DNA mutations are important and can severely impact certain diseases, small 

mutations can be irrelevant due to the redundancy in the genetic code, for example, silent 

point mutations can substitute a base changing the codon sequence but does not change the 

corresponding amino acid. In addition, mutations can occur in introns and untranslated 

regions which are thought to have no impact on transcription and translation, although 

recent research has suggested these small mutations can have an impact on oncogenes184. 

As small DNA mutations are not always translated into RNA and protein, they may not impact 

the disease state; large mutations can show where a disease has begun, for example t(15;17) 

is a common mutation which is present in PML (pre myelocytic leukaemia) and is a key 

biomarker for its diagnosis. Other large mutations in the DNA may inform treatment options 

such as flt-3 ITR which confers poor prognosis and require a tyrosine-kinase inhibitor as part 

of treatment, or the t(15;17) mutation which is treated with retinoic acid. There is large 

person to person variation in DNA sequencing which may confound the results obtained 

through NGS and can interrupt the sequence binding to the probes in Array technology, but 

again, large mutations are a valid source for determining disease state and treatment options. 

looking at the datasets available quickly determines which molecule can be used to develop 

a biomarker panel; The overwhelming majority of the datasets are RNA based which shows 

the disease state within a sample, and allows for validation within a separate datasets, 

compared to protein datasets, which are infrequent, show the disease state of a sample but 

due to the infrequency cannot be validated easily, or DNA which is difficult to obtain but 

would be informative of key mutations driving the disease.  

3.2. Methods 

3.2.1. Obtaining Datasets 

Dataset repositories, Array express and gene expression omnibus, were searched to Identify 

useful datasets, within certain criteria. The molecule chosen for the basis of the biomarker 

panel was RNA due to the readily available data in comparison to DNA and protein. The 

datasets chosen should have over 40 patients to allow for separation of groups within the 

dataset, overall survival and relapse free survival should be available, and of course the 

dataset should comprise of human samples. In addition to these criteria, the initial search 
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phrase was chosen carefully to encompass all the different titles that could be used when 

identifying AML, although most search functions were excellent in identifying alternative 

names itself. Several phrases were used to get the breath of datasets, including “AML”, 

“Acute Myeloid leukaemia”, “Acute Myelogenous Leukaemia” and the alternative American 

spelling of “Leukemia” were used in turn. 

Overall, three datasets were identified with sufficient data to use for discovery and validation 

of a relapse signature score. The fist dataset, which was used for biomarker discovery, was 

the HOVON148 dataset which is an Affymetrix array dataset. The CEL files for the HOVON148 

datasets were downloaded from array express149 and were merged using the “ReadAffy” 

function from the R package affy150. The dataset was quality checked using the 

ArrayQualityMetrics package to identify outliers, looking at the Relative Log Expression (RLE) 

and the Normalized Unscaled Standard Error (NUSE). Once the outliers were removed from 

the dataset, it was RMA normalised using the affy150 package. The “collapse rows” function 

from the R package WGCNA151 was used to select one representative Probe-ID for each gene, 

the settings used select the probe-ID with the fewest missing values, and secondarily the 

Probe-ID with the largest mean value to resolve any tied probes.  

The TCGA83 dataset was downloaded using the R package TCGAWorkflowData153, all cases 

were downloaded from the repository as FPKM data. TARGET-AML154 was downloaded from 

the TARGET site in the RPKM data format. The datasets were quality checked using the 

arrayQualityMetrics151 package, looking at the distance between arrays, any outliers were 

removed. 

To ensure the biomarkers discovered were specific to relapse, certain filters were applied to 

all the cohorts. Only diagnostic samples were used, all other time points were removed from 

the dataset. only event free survival and relapse patients were used, patients who 

experienced all other events were removed, an additional check was applied to the EFS 

patients, to remove patients who had been annotated as event free but subsequently also 

described as dead, presumably from other causes but could not be a certainty with the 

information provided. Other filters were also applied to improve the quality of the score 

developed. All patients with FAB-M3 and t(15;17) translocation were removed, due to the 

difference in treatment, subsequently If the FAB or ELN classification were missing the 

sample was removed. 
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3.2.2. Bioinformatics techniques 

3.2.2.1. Artificial neural networks 

Binary ANN was used by classifying cases based on their relapse status, event free survival 

(0) or relapse (1), the output was sorted by average test error. The genes identified either 

from the binary ANN or another statistical test were identified and the expression values 

were used as the input for the continuous ANN, the output was sorted by average test error. 

3.2.2.2. Welch’s T-test 

The “t.test” function in R was used to calculated P-values, this test was used to determine if 

the mean gene expression of relapse patients significantly differed from event free survival 

patients. A P<0.05 is considered statistically significant, indicating the means of the 

population are significantly different 

3.2.2.3. Receiver operator characteristic curves 

The R package pROC160 was used to perform the calculations for the ROC curves, this was 

implemented to determine if a specific gene or genes can discriminate between Event free 

survival and relapse patients. A P<0.05 was considered significant. The area under the curve 

(AUC) is equal to the probability of patients being correctly identified. 

3.2.2.4. Binary logistic regression 

The calculations were computed using SPSS, the binary event used was the relapse status, 

where 1 represents relapse and 0 indicates event free survival, the independent variable was 

the gene expression value or values. A P<0.05 was considered significant. The Beta 

correlation coefficient describes the trend of the relationship, these values were used to 

calculate the overall predictive score. 

3.2.2.5. Cox regression 

The calculations were computed using SPSS, the binary event used was relapse status, where 

1 represents relapse and 0 indicates event free survival, the independent variable was the 

gene expression value or values and the time variable was the event free survival time. A P-

value of P<0.05 was considered statistically significant. 
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3.2.2.6. Kaplan–Meier survival curve 

Kaplan–Meier survival analysis curves, illustrate the survival of a population based on an 

event and time to the event, in this instance the event was relapse (1), the censoring event 

was event free survival (0), and the time used was event free survival time. It was used to 

compare the difference of event free survival time in populations of high or low relapse 

prognostic index. A Mann-Whitney u test was calculated alongside the Kaplan-Meier survival 

curve, which is detailed previously. 

3.2.3. Type one error correction 

The method implemented in this investigation to reduce type one error, was the Benjamini 

& Hochberg163 method otherwise known as false discovery rate (FDR). To obtain corrected 

p-values the r function “p.adjust” was used. A P<0.05 after FDR was considered significant. 

3.2.4. Discovery workflows 

To develop a robust method of biomarker discovery, several workflows were trialled, which 

combine statistical and machine learning approaches (figure 3.1). These workflows. After the 

initial variable workflows, shown in colour in figure 3.1, the gene lists obtained were used in 

independent multivariate binary logistic regression, to identify genes that work 

synergistically to predict patient outcome.  

 

FIGURE 3.1. BIOMARKER DISCOVERY WORKFLOWS. A COMBINATION OF STATISTICS AND MACHINE LEARNING 

USED IN THE INITIAL BIOMARKER DISCOVERY WORKFLOW LEADS INTO A UNIFORM SCORE CALCULATION AND 

VALIDATION PROCEDURE, ENSURING DIRECTLY COMPARABLE SCORES.  
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The gene values used to calculate the overall score were obtained from the finalised gene 

list of each workflow, the β values were obtained from the multivariate binary logistic 

regression of the finalised gene list for each workflow. The number of elements within the 

score calculation can be increased or decreased according to the number of genes obtained 

for each method. To calculate the score the following equation was used164, where Σ 

indicates the sum of, and β values were obtained though binary logistic regression: 

∑(𝑔𝑒𝑛𝑒 × 𝛽 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒) 

3.2.4.1. ANN 

The ANN workflow is indicated in pink in figure 3.1. Using the ANN algorithm explained 

previously, relapse status was used as the initial binary input where 1 indicates relapse and 

0 indicates event free survival. The top 10 genes by lowest average test error, from the initial 

binary ANN, were each used as continuous inputs for the next ANN analysis. The top 10 genes 

by lowest average test error from each of the continuous ANN were taken resulting in 110 

genes in total, not accounting for duplicates in the results. 

3.2.4.2. ANN-first 

The ANN-first workflow is indicated in orange in figure 3.1. Using the ANN algorithm 

explained previously, relapse status was used as the initial binary input where 1 indicates 

relapse and 0 indicates event free survival. The top 1000 genes by lowest average test error 

were taken, and a T-test was performed, where patients were grouped by their relapse 

status. After a false discovery P-value correction was used, up to 20 genes with the lowest P-

value were selected. 

3.2.4.3. T-test 

The T-test workflow is indicated in yellow in figure 3.1. A T-test was performed where 

patients were grouped by their relapse status, event free survival versus relapse. After a false 

discovery P-value correction was used, the top 20 genes by lowest P-value were selected. 

3.2.4.4. ANN-Second 

The ANN-second workflow is indicated in green in figure 3.1. A T-test was performed where 

patients were grouped by their relapse status, event free survival versus relapse. The top 

1000 genes by lowest P-value were taken as a truncated dataset. Using the ANN algorithm 
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explained previously, relapse status was used as a binary input where 1 indicates relapse and 

0 indicates event free survival. The top 20 genes by lowest average test error were selected. 

3.2.4.5. ROC 

The ROC workflow is indicated in blue in figure 3.1. The R package pROC160 was used to 

determine the P-value and the AUC for each gene in the dataset, to identify genes which can 

discriminate between Event free survival and relapse patients. The genes were sorted by 

AUC and the top 20 highest AUC were selected. 

3.2.4.6. BLR 

The binary logistic regression workflow is indicated in purple in figure 3.1. The R package 

pROC160 was used to determine the P-value and the AUC for each gene in the dataset, to 

identify genes which can discriminate between Event free survival and relapse patients. The 

genes were sorted by AUC, all the genes with an AUC >0.6 were selected. A binary logistic 

regression was performed on these genes, which were then sorted by beta-value. The genes 

with the 10 highest and 10 lowest beta-values were selected. 

3.2.5. Assigning weight to individual markers 

Biomarkers can function individually or synergistically to achieve an appropriate level of 

confidence in its predictive ability. Individual biomarkers can predict the outcome 

independently, with an appropriate level of confidence and statistical significance. 

Synergistic biomarkers are typically a panel of individual biomarkers markers, working 

together to improve the level of confidence in the prediction and therefore the overall 

predictive value.  

Individual biomarkers can have a positive or negative correlation to an outcome, it is 

important to recognise these differences to ensure the individual markers aren’t being miss-

represented and detract from the overall predictive value of the panel, and as such the 

individual biomarkers can be assigned weights when creating a score. When assigning a 

weight to a biomarker, the direction of the correlation is the first consideration. A positive 

weight indicates a positive correlation between the expression and outcome, therefore an 

increase in the marker would increase the likelihood of the outcome. The opposite is true of 

a negative weight, it indicates a negative correlation between the expression and outcome, 

therefore a decrease in the marker would increase the likelihood of the outcome. Although 

each marker in a panel work independently to predict the outcome, it is important to note 
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not all these markers do so with the same level of confidence. By assigning a weight to the 

constituting markers of a panel the relative contribution of the individual markers to the 

score is accounted for, making the score more reliable and accurate. For this project the 

weights were determined by using the beta values obtained from the binary logistic 

regression or cox regression, as outlined in the Nottingham prognostic index164,185,186. 

3.3. Results 

3.3.1. Comparing Binary logistic regression and cox regression 

Although the principals of Cox Regression (CR) and Binary Logistic Regression (BLR) are the 

same, it is important to establish a standard procedure for use in the workflow. The workflow 

should be applicable to different scenarios therefor it is important to determine which type 

of regression to use. Following the t-test workflow, the top 20 most significant genes were 

used in a univariate CR and BLR. Figure 3.2 shows the differences in the β value obtained 

from both CR and BLR: It is evident that the β values for BLR are consistently higher in the 

positive range, and consistently lower in the negative range, than those of CR, however the 

standard error was also consistently higher in BLR. The β values of BLR being more extreme 

than those of CR can influence and impact the score, as they are used directly in the 

calculation. The genes that were still significant in the univariate analysis were then used in 

a multivariate CR and BLR, removing the least significant each time, until all genes were 

significant. Overall, the CR score consists of four genes: HAL, SOCS2-AS1, TES and NYNRIN. 

The BLR score consists of five genes: HAL, TES, SOCS2-AS1, NYNRIN and CD109. The β values 

obtained in the multivariate analysis and the gene expression values were used to calculate 

the score.  

The comparison of the prognostic scores for both BLR and CR are shown in figure 3.3. The 

Kaplan-Meier survival graph (figure 3.3A) shows a median split based on the score calculated 

in each method. There is a significant difference between the high and low group for the 

scores calculated using both BLR and CR, there is a slight difference between the splits with 

BLR separating the groups to a slightly greater extent. When comparing the predictive value 

of the scores over a 5-year period, there is minimal difference between BLR and CR however 

BLR preformed marginally better as demonstrated by the greater split between groups. 

When looking at figure 3.3B, the AUC for the ROC curve was extremely similar therefor the 

predictive value of the scores are similar. Although the AUC are similar the predictive value 

of the BLR method is better than CR. When looking at figure 3.3C, the distribution of the 
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score for relapse and EFS patients, the inter quartile range is larger for BLR when compared 

to CR, although both scores significantly differentiate between relapse and event free 

survival patients. there is a significant difference between the two low scoring groups owing 

to the lower median of the BLR group in comparison to the CR group, similarly there is a 

significant difference between the high score groups but not to the same extent as the low 

groups, in part due to the larger interquartile range of the BLR group. Overall BLR performed 

better that CR in each instance, and although CR takes time into account, this was not a 

necessary variable for prediction of relapse, as the aim of the investigation is to predict 

relapse at any time in the patient’s future. In addition, the use of BLR allows for the method 

to be consistently used even with variables that do not have an associated time, such as 

mutation status, as such will be the method used to carry forward onto further workflows. 
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FIGURE 3.2. COMPARISON OF Β VALUES FROM BINARY LOGISTIC REGRESSION AND COX REGRESSION. THE Β 

VALUES OBTAINED FROM BINARY LOGISTIC REGRESSION (BLR) AND COX REGRESSION (CR) ALONG WITH THE 

STANDARD ERROR OF THE MEAN, AS CALCULATED IN SPSS. EACH OF TOP 20 GENES MOST SIGNIFICANTLY 

ASSOCIATED WITH RELAPSE AS DETERMINED BY T-TEST IN THE HOVON DATASET ARE PRESENTED HERE. 
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FIGURE 3.3. COMPARING SCORES CREATED USING CR AND BLR. SCORES PREDICTING RELAPSE WERE 

CALCULATED USING GENE EXPRESSION AND Β VALUES FROM EITHER COX REGRESSION (CR) OR BINARY 

LOGISTIC REGRESSION (BLR), THE OVERALL PREDICTIVE VALUE IS SHOWN HERE IN THE HOVON DATASET. A) 

KAPAN-MEIER SURVIVAL CURVE SHOWING THE MEDIAN SPLIT OF THE SCORE IN EACH METHOD, THE MEDIAN 

EVENT FREE SURVIVAL (EFS) IS SHOWN. DIFFERENCES BETWEEN THE HIGH AND LOW GROUP OF EACH METHOD 

WERE SIGNIFICANT WITH A P-VALUE OF <0.0001, HOWEVER THE DIFFERENCES BETWEEN THE LOW GROUPS 

WAS NOT SIGNIFICANT AS WERE THE HIGH GROUP. B) ROC CURVE SHOWING THE PREDICTIVE POWER OF THE 

SCORE, THE AREA UNDER THE CURVE (AUC), P-VALUE AND STANDARD ERROR (SE) ARE SHOWN. C) SCATTER 

PLOT COMPARING THE DISTRIBUTION OF THE SCORES.  
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3.3.2. Biomarker discovery Work-flow comparison 

The RMA normalised HOVON AML dataset was used as the discovery cohort for the 

workflows outline in figure 3.1. By comparing the different black box and white box methods 

and using them in combination a predictive score was developed. To determine the best 

method of biomarker discovery from those outlined in figure 3.1, the results were validated 

in both TCGA and TARGET AML datasets. 

3.3.2.1. ANN Alone 

ANN looks at the associations of the input variable to all other variable in the dataset. By 

using the EFS versus Relapse as the initial input and then expanding this with the top ten 

genes by average test error a network of up to 110 genes are identified. In figure 3.4 the 

network of genes is shown, there are 84 unique genes in the network, which create two main 

hubs of association. One hub contains four genes which are directly linked in the analysis: 

ADGRG1, CD109, ZC3H12C, KIAA0125 and there are links between their associated genes, 

additionally NYNRIN is linked to this hub by two common associated genes. The second hub 

of association contains three genes: HAL, SIRPB2 and ACVR1B, which are linked directly and 

indirectly by their associated genes. There are two genes which are not linked to another 

hub in the network, FUT4 and SOCS2-AS1, which are not linked directly or indirectly via there 

associated genes. The hubs of association have a likelihood of working synergistically in a 

predictive panel of genes, however this network alone is not detailed enough to form a 

predictive score.  

As a follow up to the ANN, and to refine the gene list to those that will work synergistically 

in a biomarker panel, a BLR is used. The univariate BLR validates the genes which work as 

predictive biomarkers while identifying those which do not, therefor only genes which are 

significantly associated with relapse were used in the multivariate BLR. There were 52 genes 

which were identified as significantly associated with relapse through the univariate BLR 

(supplementary table 1), these genes were carried forward into further analysis. To refine 

the 52 genes and identify those which work synergistically to predict relapse in AML, a 

multivariate BLR was implemented. The least significant gene was removed from the analysis 

each time, until all genes were significant together, the results of which are shown in table 

3.2. From here clinical annotations were added to the seven remaining significant genes, of 

which none significantly contributed to the panel (supplementary tables 2-5) therefore the 

seven genes in table 3.2 were the basis of this score. 
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FIGURE 3.4. NETWORK OF GENES ASSOCIATED WITH RELAPSE. USING CYTOSCAPE, THE NETWORK OF 

ASSOCIATIONS DISCOVERED USING THE ANN WORKFLOW IN THE HOVON DATASET IS VISUALISED. THERE ARE 

TWO MAIN HUBS OF ASSOCIATIONS, WHICH THE GENES ARE LINKED DIRECTLY AND INDIRECTLY THROUGH THE 

ANN ANALYSIS. 

The score was calculated using the beta values from the multivariate BLR in table 3.2. The 

score was calculated for each patient in the HOVON dataset, which was then split by the 

median score value. The dataset was split into the EFS and relapse patients to compare the 

average score values, indicated in figure 3.5A. There was a significant difference between 
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the average score of the EFS and relapse patients, with the median score of the relapse 

patients being significantly higher than that of the EFS patients. To assess the scores 

predictive ability a ROC curve was used shown in figure 3.5B, indicating an AUC of 0.7376 

which is equal to a 73.76% accuracy. Figure 3.5C shows a Kaplan-Meier survival plot based 

on the median split of the dataset by the calculated score; in which the high score group had 

an EFS of less than one year, meaning 50% of the group had relapsed before one year after 

they achieved remission. The low score group had an undefined median EFS, indicating the 

group never reached 50% relapse, although some people in the low score group did relapse, 

far fewer than the high score group. 

Gene name B S.E. Wald Sig. Exp(B) 

95% C.I.for 

EXP(B) 

Lower 

95% C.I.for 

EXP(B) 

Upper 

ACVR1B -0.773 0.237 10.647 0.001 0.462 0.290 0.734 

DNMT3B 0.545 0.171 10.178 0.001 1.725 1.234 2.411 

SOCS2-AS1 0.557 0.175 10.082 0.001 1.746 1.238 2.462 

CD109 0.308 0.098 9.831 0.002 1.360 1.122 1.649 

ADPGK -0.948 0.338 7.860 0.005 0.388 0.200 0.752 

SLC31A2 0.399 0.182 4.798 0.028 1.491 1.043 2.131 

MSI2 -0.265 0.127 4.363 0.037 0.767 0.598 0.984 

TABLE 3.2. MULTIVARIATE BINARY LOGISTIC REGRESSION FROM THE ANN WORKFLOW. THE GENES 

SIGNIFICANTLY ASSOCIATED WITH RELAPSE FROM THE UNIVARIATE BLR WERE REFINED USING THE 

MULTIVARIATE BLR TO ONLY THOSE WORKING SYNERGISTICALLY IN THE HOVON DATASET. 

To validate this score, the same genes were selected from the TCGA and TARGET AML 

datasets, the score was calculated for the EFS and relapse patients, using the beta values as 

before. Figure 3.6A shows the dot plot diagrams comparing the distribution of the score in 

the datasets, neither dataset showed a significant difference between the relapse or EFS 

patients, in contrast to the HOVON discovery dataset. Figure 3.6B shows the ROC curve of 

the score in both datasets, which have a similar AUC of around 0.58, indicating 58% accuracy 

of this score, which is low in comparison to the HOVON dataset. Figure 3.6C shows the 

Kaplan-Meier survival plot, the datasets were split by the median value of the score, there is 

no significant difference between the high and low groups in each dataset. Due to the 

inconsistent results between datasets, this is not an ideal panel of markers to use to predict 

relapse in AML. The large variation in the AUC when comparing the discovery cohort to the 

validation cohorts means the score is only accurate in the discovery cohort. 
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FIGURE 3.5. PREDICTIVE ABILITY OF THE ANN ALONE WORKFLOW IN THE HOVON DATASET. FIGURE A 

SHOWS THE SCORE CALCULATED FOR EACH PATIENT WHICH WAS SPLIT BY THEIR RELAPSE STATUS, THE MEDIAN 

VALUE FOR RELAPSE PATIENTS IS SIGNIFICANTLY HIGHER THAN EFS PATIENTS. FIGURE B SHOWS THE ROC 

CURVE WITH AN AREA OF 0.7376, INDICATING A 73.76% ACCURACY. FIGURE C SHOWS THE PATIENTS SPLIT 

BY THE MEDIAN VALUE OF THE SCORE, THE GROUPS ARE SIGNIFICANTLY DIFFERENT, AND THE MEDIAN EFS FOR 

THE LOW SCORE GROUP WAS UNDEFINED WHEREAS THOSE WITH A HIGH SCORE HAD A MEDIAN EFS OF UNDER 

A YEAR. 
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FIGURE 3.6. VALIDATION OF THE ANN ALONE WORKFLOW IN TCGA AND TARGET AML. THE SCORE WAS 

CALCULATED FOR THE RELAPSE AND EFS PATIENTS IN EACH DATASET. FIGURE A SHOWS THE DISTRIBUTION OF 

THE SCORE IN THE DATASETS COMPARING THE EFS AND RELAPSE PATIENTS, NEITHER DATASET SHOWED A 

SIGNIFICANT DIFFERENCE BETWEEN THE GROUPS. FIGURE B SHOWS THE ROC CURVE FOR THE SCORE IN THE 

DATASETS, BOTH DATASETS HAS A SIMILAR AUC OF 0.57, INDICATING A 57% ACCURACY. FIGURE C SHOWS 

THE KAPLAN-MEIER SURVIVAL PLOT, SPLIT BY THE MEDIAN VALUE OF THE SCORE FOR EACH DATASET, THERE IS 

NO SIGNIFICANT DIFFERENCE BETWEEN THE HIGH AND LOW GROUPS IN EITHER DATASET. 
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3.3.2.2. ANN First 

The ANN algorithm was used to identify the top 1000 genes with the lowest average test 

error. The genes identified were narrowed down using a t-test comparing EFS and relapse 

patients and the P-values were corrected with the p.adjust R script, to correct for the false 

discovery rate (supplementary table 6). The top 20 most significant genes were validated 

using a univariate BLR (supplementary table 7), of these only the significant genes were used 

in the multivariate BLR, which was repeated until all the genes were significantly contributing 

to the panel shown in table 3.3. Once the genes of the panel had been selected, clinical 

annotations were added to the multivariate BLR (Table 3.4) to determine which, if any, 

contributed to the panel of genes. From table 3.3 to 3.4 the gene CD109 was removed but 

the clinical annotation of cytogenetic risk group was included in the overall score calculation. 

 
B S.E. Wald Sig. Exp(B) 

95% C.I.for 

EXP(B) 

Lower 

95% C.I.for 

EXP(B) 

Upper 

HAL -0.535 0.146 13.450 0.000 0.585 0.440 0.779 

TES -0.386 0.139 7.681 0.006 0.680 0.518 0.893 

SOCS2-AS1 0.385 0.178 4.672 0.031 1.469 1.037 2.083 

NYNRIN 0.407 0.196 4.291 0.038 1.502 1.022 2.208 

CD109 0.202 0.099 4.163 0.041 1.224 1.008 1.487 

TABLE 3.3. MULTIVARIATE BLR OF THE ANN FIRST METHOD IN THE HOVON DATASET. THE GENES WHICH 

WERE SIGNIFICANTLY ASSOCIATED WITH RELAPSE AFTER THE UNIVARIATE BLR WERE TAKEN FORWARD TO THIS 

MULTIVARIATE BLR, THESE ARE THE REMAINING GENES THAT SIGNIFICANTLY CONTRIBUTE TO THE PREDICTIVE 

PANEL.  

 
B S.E. Wald Sig. Exp(B) 

95% C.I.for 

EXP(B) 

Lower 

95% C.I.for 

EXP(B) 

Upper 

HAL -0.519 0.147 12.411 0.000 0.595 0.446 0.794 

NYNRIN 0.480 0.188 6.484 0.011 1.616 1.117 2.338 

SOCS2-AS1 0.439 0.173 6.428 0.011 1.551 1.105 2.179 

TES -0.327 0.136 5.793 0.016 0.721 0.553 0.941 

Cytogenetic 

risk group 

0.452 0.200 5.125 0.024 1.571 1.063 2.324 

TABLE 3.4. MULTIVARIATE BLR INCLUDING CLINICAL ANNOTATIONS OF THE ANN FIRST METHOD. CLINICAL 

ANNOTATIONS WERE INCLUDED IN THE MULTIVARIATE BLR TO DETERMINE IF ANY SIGNIFICANTLY 

CONTRIBUTED TO THE PANEL IN THE HOVON DATASET. THIS IS THE COMBINATION OF GENES AND CLINICAL 

ANNOTATIONS WHICH WORK SYNERGISTICALLY AS A BIOMARKER PANEL. 
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FIGURE 3.7. PREDICTIVE ABILITY OF THE ANN FIRST WORKFLOW IN THE HOVON DATASET. FIGURE A SHOWS 

THE SCORE CALCULATED FOR EACH PATIENT IN THE HOVON DATASET, WHICH WERE SPLIT BY THEIR RELAPSE 

STATUS, THE MEDIAN VALUE FOR RELAPSE PATIENTS IS SIGNIFICANTLY HIGHER THAN EFS PATIENTS. FIGURE B 

SHOWS THE ROC CURVE WITH AN AREA OF 0.7259, INDICATING A 72.59% ACCURACY FOR THIS SCORE. 

FIGURE C SHOWS THE PATIENTS SPLIT BY THE MEDIAN VALUE OF THE SCORE, THE TWO GROUPS ARE 

SIGNIFICANTLY DIFFERENT, AND THE MEDIAN EFS FOR THE LOW SCORE GROUP WAS UNDEFINED WHEREAS 

THOSE WITH A HIGH SCORE HAD A MEDIAN EFS OF UNDER A YEAR. 
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FIGURE 3.8. VALIDATION OF THE ANN FIRST WORKFLOW IN TCGA AND TARGET AML. THE SCORE WAS 

CALCULATED FOR THE RELAPSE AND EFS PATIENTS IN EACH DATASET. FIGURE A SHOWS THE DISTRIBUTION OF 

THE SCORE IN THE DATASETS, COMPARING EFS AND RELAPSE PATIENTS, NEITHER DATASET SHOWED A 

SIGNIFICANT DIFFERENCE BETWEEN GROUPS. FIGURE B SHOWS THE ROC CURVE FOR THE SCORE IN THE 

DATASETS, TCGA HAD AN AUC OF 0.6019 AND TARGET OF 0.5490, INDICATING AN ACCURACY OF 60.19% 

AND 54.90% RESPECTIVELY. FIGURE C SHOWS THE KAPLAN-MEIER SURVIVAL PLOT SPLIT BY THE MEDIAN 

SCORE IN EACH DATASET, THERE IS NO SIGNIFICANT DIFFERENCE BETWEEN THE HIGH AND LOW GROUPS IN 

EITHER DATASET. 
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For each patient in the HOVON dataset the score was calculated, in figure 3.7A the 

distribution of the score in relapse and EFS patients is compared. There is a significant 

difference between the two groups, where the average score of a relapse patient is much 

higher than an EFS patient, however there is a large overlap in the distribution of the score 

between the groups. Comparing the results in figure 3.7A to figure 3.8A the range of the 

score is very different owing to the different technologies used in the datasets. Although the 

score was significantly different between relapse and EFS patients in figure 3.7A the same is 

not said for figure 3.8A where there was no significant difference in either dataset. Although 

the discovery cohort showed significance the score is not valid when applied to other 

validation datasets. 

In figure 3.7B the AUC is 0.7259 indicating a 72.6% accuracy of the score, therefor the score 

is valid for the prediction of relapse within the dataset. The AUC for the validation datasets, 

shown in figure 3.8B, were 0.6019 for TCGA and 0.5490 for TARGET indicating a 60% and 55% 

accuracy of the score in the validation datasets. As the AUC for the validation datasets were 

lower than that of the discovery dataset the panel of genes used in this score are not ideal 

for the prediction of relapse. The results from figure 3.8B coupled with figure 3.8A show the 

score is not preforming well in the validation datasets. 

In figure 3.7C there is an excellent separation of the high and low score groups, with the low 

group never reaching 50% relapse and the high group reaching this milestone in just under a 

year. The highly separated and distinct groups indicate the score can separate the patients 

well in this dataset. In contrast, figure 3.8C shows highly overlapping groups with no 

significant difference. Although the median EFS differs by 0.18 of a year for TARGET and 0.56 

of a year for TCGA, this is of little value given the overlapping of the groups. Although the 

score was valid in the HOVON discovery dataset, the score does not translate to the TARGET 

and TCGA validation datasets as there is no significant difference between the high and low 

scoring groups in figure 3.8C or the EFS and relapse patients in figure 3.8A. 

3.3.2.3. T-test 

A t-test was used to identify the genes most significantly associated with relapse, the P-

values were corrected using the p.adjust script in R. The intention was to take the top 20 

most significant genes, however as displayed in table 3.5, after the P-value was adjusted for 

the FDR only 5 genes remained significant. The remaining significant genes were validated 

using a univariate BLR, shown in table 3.6, all were significantly associated to relapse in AML. 

The genes were then refined using a multivariate BLR, removing the least significant gene 
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each time until all genes were significantly contributing to the score, the remaining genes 

were CD109, NYNRIN and FUT4, as displayed in table 3.7. Once the combination of genes had 

been determined, the clinical annotations were included in the multivariate BLR, only 

cytogenetic risk group significantly contributed to the score as shown in table 3.8. 

Once the basis of the panel had been determined through the multivariate BLR the, the score 

was calculated using the beta values displayed in table 3.8. When comparing the score of the 

EFS to relapse patients in the HOVON dataset, the groups were significantly different. 

Although there is still a large overlap between the two outcomes the score is much higher in 

patients who relapse compared to EFS patients, as shown in figure 3.9A. The difference is 

not evident when looking at figure 3.10A where there is no significant difference between 

the EFS and release patients in either of the validation datasets. 

In the HOVON dataset the AUC was 0.7044 indicating a 70.44% accuracy of the score, as 

displayed in figure 3.9B, which is in contrast with figure 3.10B, where the AUC was 0.5712 

for TCGA and 0.5418 for TARGET. Although in the discovery dataset the predictive ability of 

the score was high this is not translated to the discovery datasets. This lack of validity to 

the score is also apparent in figure 3.10C, where there is no significant difference between 

the high and low groups for either dataset. The discovery dataset did show a significant 

difference between the high and low groups in figure 3.9C, as this is not translated across 

to the validation datasets this score would be unreliable as a predictor of relapse beyond 

the discovery dataset. 
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Gene T-test BH 

CD109 3.06E-07 0.006517 

ADGRG1 1.22E-06 0.012992 

NYNRIN 3.4E-06 0.024138 

SIRPB2 4.97E-06 0.026463 

FUT4 8.33E-06 0.035482 

ACVR1B 1.56E-05 0.055375 

SOCS2-AS1 1.85E-05 0.056288 

ZC3H12C 3.53E-05 0.093977 

RAB27A 6.94E-05 0.143084 

HDAC4 7.2E-05 0.143084 

DNMT3B 7.39E-05 0.143084 

HAL 9.14E-05 0.16222 

PIWIL4 0.000118 0.18649 

NGFRAP1 0.000124 0.18649 

TPM2 0.000131 0.18649 

TES 0.000163 0.204777 

KIAA0125 0.000174 0.204777 

ADGRG5 0.000182 0.204777 

EVI2B 0.000183 0.204777 

SOCS2 0.000211 0.224258 

TABLE 3.5. TOP 20 MOST SIGNIFICANT GENES FROM THE T-TEST WORFLOW. A T-TEST WAS PERFORMED ON 

ALL THE GENES IN THE HOVON DATASET, THE TOP 20 ARE DISPLAYED WITH THE BENJAMINI HOCHBERG FLASE 

DISCOVERY RATE CORRECTION. 
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B S.E. Wald Sig. Exp(B) 

95% C.I.for 

EXP(B) 

Lower 

 95% C.I.for 

EXP(B) 

Upper 

CD109 0.379 0.080 22.349 0.000 1.461 1.248 1.709 

ADGRG1 0.384 0.084 20.833 0.000 1.468 1.245 1.731 

NYNRIN 0.611 0.142 18.489 0.000 1.842 1.394 2.433 

SIRPB2 -0.359 0.084 18.351 0.000 0.698 0.593 0.823 

FUT4 -0.438 0.108 16.518 0.000 0.645 0.522 0.797 

TABLE 3.6. UNIVARIATE BLR OF THE T-TEST WORKFLOW. ONCE THE GENES HAD BEEN DISCOVERED USING A 

T-TEST AND THE FALSE DISCOVERY RATE WAS CORRECTED, THE REMAINING GENES WERE ANALYSED TO ENSURE 

THEY WERE SIGNIFICANTLY ASSOCIATED WITH RELAPSE IN THE HOVON DATASET. 

 
B S.E. Wald Sig. Exp(B) 

95% C.I.for 

EXP(B) 

Lower 

 95% C.I.for 

EXP(B) 

Upper 

CD109 0.228 0.093 6.039 0.014 1.256 1.047 1.506 

NYNRIN 0.541 0.177 9.407 0.002 1.718 1.216 2.429 

FUT4 -0.488 0.116 17.666 0.000 0.614 0.489 0.771 

TABLE 3.7. MULTIVARIATE BLR OF THE T-TEST WORKFLOW. THE GENES WHICH WERE SIGNIFICANTLY 

ASSOCIATED WITH RELAPSE AFTER THE UNIVARIATE BLR WERE TAKEN FORWARD TO THIS MULTIVARIATE BLR, 

THESE ARE THE REMAINING GENES THAT SIGNIFICANTLY CONTRIBUTE TO THE PREDICTIVE PANEL IN THE 

HOVON DATASET. 

 
B S.E. Wald Sig. Exp(B) 

95% C.I.for 

EXP(B) 

Lower 

 95% C.I.for 

EXP(B) 

Upper 

CD109 0.190 0.094 4.022 0.045 1.209 1.004 1.455 

NYNRIN 0.510 0.178 8.248 0.004 1.666 1.176 2.359 

FUT4 -0.416 0.120 11.973 0.001 0.659 0.521 0.835 

Cytogenetic 

Risk Group 

0.446 0.198 5.057 0.025 1.562 1.059 2.303 

TABLE 3.8. MULTIVARIATE BLR OF THE T-TEST WORKFLOW INCLUDING CLINICAL ANNOTATIONS. CLINICAL 

ANNOTATIONS WERE INCLUDED IN THE MULTIVARIATE BLR TO DETERMINE IF ANY SIGNIFICANTLY 

CONTRIBUTED TO THE PANEL. THIS IS THE COMBINATION OF GENES AND CLINICAL ANNOTATIONS WHICH 

SIGNIFICANTLY CONTRIBUTE TO THE PANEL IN THE HOVON DATASET. 
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FIGURE 3.9. PREDICTIVE ABILITY OF THE T-TEST WORKFLOW IN THE HOVON DATASET. FIGURE A SHOWS 

THE DISTRIBUTION OF THE SCORE CALCULATED FOR EACH PATIENT IN THE HOVON DATASET, WHO WERE SPLIT 

BY THEIR RELAPSE STATUS, THE MEDIAN VALUE FOR RELAPSE PATIENTS IS SIGNIFICANTLY HIGHER THAN EFS 

PATIENTS. FIGURE B SHOWS THE ROC CURVE WITH AN AUC OF 0.7044, INDICATING A 70.44% ACCURACY. 

FIGURE C SHOWS THE MEDIAN SPLIT OF THE CALCULATED SCORE, THE GROUPS ARE SIGNIFICANTLY DIFFERENT, 

THE MEDIAN EFS FOR THE LOW SCORE GROUP WAS UNDEFINED WHEREAS THOSE WITH A HIGH SCORE HAD A 

MEDIAN EFS OF JUST OVER A YEAR. 
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FIGURE 3.10. VALIDATION OF THE T-TEST WORKFLOW IN TCGA AND TARGET AML. THE SCORE WAS 

CALCULATED FOR EACH PATIENT IN BOTH DATASET. FIGURE A SHOWS THE DISTRIBUTION OF THE SCORE IN 

RELAPSE AND EFS PATIENTS, NEITHER DATASET SHOWED A SIGNIFICANT DIFFERENCE BETWEEN THE GROUPS. 

FIGURE B SHOWS THE ROC CURVE FOR THE SCORE IN THE DATASETS, THE AUC FOR TCGA WAS 0.572 AND 

FOR TARGET 0.5418, INDICATING AN ACCURACY OF 57.72% AND 54.18% RESPECTIVELY. FIGURE C SHOWS 

THE KAPLAN-MEIER SURVIVAL PLOT SPLIT BY THE MEDIAN VALUE OF THE CALCULATED SCORE, THERE IS NO 

SIGNIFICANT DIFFERENCE BETWEEN THE HIGH AND LOW GROUPS IN EITHER DATASET. 
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3.3.2.4. ANN Second 

For this workflow a t-test comparing EFS and relapse patients was performed, and the top 

1000 most significant genes were identified, these were narrowed down using the binary 

ANN algorithm to select the top 20 genes with the lowest average test error. To validate 

these genes a univariate BLR was used (supplementary table 8), all of which were significant 

so were used in the multivariate BLR. The least significant gene was removed each time until 

all genes significantly contributed to the score (table 3.9). Once all genes were significantly 

contributing to the panel the clinical annotations were included, of which only the 

cytogenetic risk group contributed to the panel but removed HAL as a contributor, (table 

3.10). The final panel of genes and clinical attributes in table 3.10 were used to calculate the 

score. 

 
B S.E. Wald Sig. Exp(B) 

95% C.I.for 

EXP(B) 

Lower 

 95% C.I.for 

EXP(B) 

Upper 

SOCS2-AS1 0.551 0.163 11.372 0.001 1.734 1.259 2.389 

CD109 0.273 0.093 8.612 0.003 1.314 1.095 1.576 

ACVR1B -0.498 0.191 6.782 0.009 0.608 0.418 0.884 

HAL -0.357 0.174 4.226 0.040 0.699 0.497 0.983 

TABLE 3.9. MULTIVARIATE BLR FOR THE ANN SECOND WORKFLOW IN THE HOVON DATASET. THE GENES 

WHICH WERE SIGNIFICANTLY ASSOCIATED WITH RELAPSE AFTER THE UNIVARIATE BLR WERE TAKEN FORWARD 

TO THIS MULTIVARIATE BLR, THESE ARE THE REMAINING GENES THAT SIGNIFICANTLY CONTRIBUTE TO THE 

PREDICTIVE PANEL. 

 
B S.E. Wald Sig. Exp(B) 

95% C.I.for 

EXP(B) 

Lower 

 95% C.I.for 

EXP(B) 

Upper 

ACVR1B -0.660 0.156 17.941 0.000 0.517 0.381 0.701 

SOCS2-AS1 0.447 0.156 8.265 0.004 1.564 1.153 2.121 

CD109 0.252 0.094 7.221 0.007 1.287 1.071 1.547 

Cytogenetic 

Risk Group 

0.484 0.199 5.940 0.015 1.623 1.099 2.396 

TABLE 3.10. MULTIVARIATE BLR FOR THE ANN SECOND WORKFLOW INCLUDING CLINICAL ANNOTATIONS. 

CLINICAL ANNOTATIONS WERE INCLUDED IN THE MULTIVARIATE BLR TO DETERMINE IF ANY SIGNIFICANTLY 

CONTRIBUTED TO THE PANEL. THIS IS THE COMBINATION OF GENES AND CLINICAL ANNOTATIONS WHICH 

SIGNIFICANTLY CONTRIBUTE TO THE PANEL IN THE HOVON DATASET. 
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FIGURE 3.11. PREDICTIVE ABILITY OF THE ANN SECOND WORKFLOW IN THE HOVON DATASET. FIGURE A 

SHOWS THE DISTRIBUTION OF THE SCORE CALCULATED FOR EACH PATIENT, WHICH WAS SPLIT BY THEIR RELAPSE 

STATUS, THE MEDIAN VALUE FOR RELAPSE PATIENTS IS SIGNIFICANTLY HIGHER THAN EFS PATIENTS. FIGURE B 

SHOWS THE ROC CURVE WITH AN AUC OF 0.7174, INDICATING A 71.74% ACCURACY. FIGURE C SHOWS THE 

KAPLAN-MEIER SURVIVAL PLOT SPLIT BY THE MEDIAN VALUE OF THE CALCULATED SCORE, THE GROUPS ARE 

SIGNIFICANTLY DIFFERENT, THE MEDIAN EFS FOR THE LOW SCORE GROUP WAS UNDEFINED WHEREAS THOSE 

WITH A HIGH SCORE HAD A MEDIAN EFS OF UNDER A YEAR. 
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FIGURE 3.12. VALIDATION OF THE ANN SECOND WORKFLOW IN TCGA AND TARGET AML. THE SCORE 

WAS CALCULATED FOR THE RELAPSE AND EFS PATIENTS IN EACH DATASET. FIGURE A SHOWS THE DISTRIBUTION 

OF THE SCORE IN THE DATASETS SPLIT BY THE PATIENTS RELAPSE STATUS, TARGET AML SHOWED A 

SIGNIFICANT DIFFERENCE BETWEEN THE RELAPSE AND EFS GROUP WHEREAS TCGA WAS NOT SIGNIFICANTLY 

DIFFERENT. FIGURE B SHOWS THE ROC CURVE FOR THE SCORE IN THE DATASETS, THE AUC FOR TCGA WAS 

0.5538 INDICATING AN ACCURACY OF 55.38%, WHEREAS TARGET HAD AN AUC OF 0.6252 INDICATING AN 

ACCURACY OF 62.52%. FIGURE C SHOWS THE KAPLAN-MEIER SURVIVAL PLOT SPLIT BY THE MEDIAN VALUE OF 

THE SCORE IN EACH DATASET, THERE IS NO SIGNIFICANT DIFFERENCE BETWEEN THE HIGH AND LOW GROUP IN 

TCGA, BUT THERE IS A SIGNIFICANT DIFFERENCE BETWEEN THE HIGH AND LOW GROUP IN TARGET AML. 
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In the HOVON dataset there is a significant difference between the EFS and Relapse patients, 

although the distribution of the scores does overlap largely in the centre of the range of 

scores (figure 3.11A). In contrast the score was only significantly different between relapse 

and EFS patients in the TARGET dataset, but not in the TCGA dataset (figure 3.12A), again 

with a large overlap of the scores between the groups. Looking at figure 3.11B, the HOVON 

dataset had an AUC of 0.7174, indicating a predictive value of 71.74%, in comparison the 

AUC for TCGA was 0.5538 and for TARGET 0.6252 (figure 3.12B). The AUC for the validation 

datasets is expected to be lower than that of the discovery dataset, due to the inherent 

differences between them. As the score is not significantly different between the EFS and 

relapse patients in the TCGA dataset the AUC is reflective of this. 

In figure 3.11C there is a large separation between the high and low scoring groups for the 

Kaplan-Meier survival plot, which is significantly different. The low scoring group has an 

undefined median EFS, indicating the group did not reach 50% relapse; in contrast the 

median EFS for the high scoring group was 0.96, therefore the group reached 50% relapse in 

under one year. In figure 3.12C there is a significant difference between the high and low 

groups of the TARGET dataset, while both groups reached 50% relapse, the high scoring 

group reached this milestone sooner than the low scoring group by 0.45 of a year. The TCGA 

dataset showed no significant difference between the high and low scoring groups in figure 

3.12C, where the median EFS was almost identical; the low scoring group had an EFS of 1.14 

of a year and the high scoring group 1.18 of a year. 

3.3.2.5. ROC 

Statistics associated with ROC curves, including AUC, sensitivity and specificity were 

calculated for every gene in the HOVON dataset used the pROC package in r. The top 20 

genes with the highest AUC were selected (supplementary table 9) and validated using a 

univariate BLR (supplementary table 10). All the top 20 genes were significant according to 

the univariate BLR therefor were used in the multivariate BLR, where the least significant 

gene was removed each time until all the genes were significantly contributing to the panel 

(table 3.10). Once the genes that contribute to the panel had been determined, clinical 

annotations were included in the multivariate BLR, only cytogenetic risk group significantly 

contributed to the panel (table 3.11). 

Once the genes and clinical annotations significantly contributing to the panel had been 

determined, the score was calculated in the HOVON dataset. Although there was an overlap 

between the relapse and EFS patients, there was a significant difference between the score 
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in EFS compare to relapse patients (figure 3.13A), with the relapse patients having a much 

higher score on average compared to EFS patients. When looking at the score distribution in 

the validation datasets (figure 3.14A), there is more overlap between the relapse and EFS 

patients compared to the discovery dataset. The score is significantly different between the 

relapse and EFS patients in the TARGET dataset but not in the TCGA dataset. 

 
B S.E. Wald Sig. Exp(B) 

95% 

C.I.for 

EXP(B) 

Lower 

 95% 

C.I.for 

EXP(B) 

Upper 

HAL -0.542 0.144 14.181 0.000 0.582 0.439 0.771 

TMEM243 -0.455 0.134 11.542 0.001 0.634 0.488 0.825 

CD109 0.231 0.098 5.543 0.019 1.260 1.039 1.527 

NYNRIN 0.426 0.193 4.859 0.028 1.531 1.048 2.236 

SOCS2-

AS1 

0.379 0.178 4.543 0.033 1.461 1.031 2.071 

TABLE 3.11. MULTIVARIATE BLR FOR THE ROC WORKFLOW IN THE HOVON DATASET. THE GENES WHICH 

WERE SIGNIFICANTLY ASSOCIATED WITH RELAPSE AFTER THE UNIVARIATE BLR WERE TAKEN FORWARD TO THIS 

MULTIVARIATE BLR, THESE ARE THE REMAINING GENES THAT SIGNIFICANTLY CONTRIBUTE TO THE PREDICTIVE 

PANEL. 

 
B S.E. Wald Sig. Exp(B) 

95% C.I.for 

EXP(B) 

Lower 

 95% C.I.for 

EXP(B) 

Upper 

CD109 0.197 0.100 3.902 0.048 1.218 1.002 1.482 

HAL -0.484 0.147 10.899 0.001 0.616 0.462 0.821 

NYNRIN 0.400 0.195 4.206 0.040 1.492 1.018 2.186 

SOCS2-AS1 0.366 0.179 4.171 0.041 1.442 1.015 2.050 

TMEM243 -0.429 0.135 10.048 0.002 0.651 0.500 0.849 

Cytogenetic 

risk group 

0.399 0.202 3.912 0.048 1.491 1.004 2.214 

TABLE 3.12. MULTIVARIATE BLR INCLUDING THE CLINICAL ANNOTATIONS FOR THE ROC WORKFLOW. 

CLINICAL ANNOTATIONS WERE INCLUDED IN THE MULTIVARIATE BLR TO DETERMINE IF ANY SIGNIFICANTLY 

CONTRIBUTED TO THE PANEL. THIS IS THE COMBINATION OF GENES AND CLINICAL ANNOTATIONS WHICH 

SIGNIFICANTLY CONTRIBUTE TO THE PANEL IN THE HOVON DATASET. 

When looking at figure 3.13B there is an AUC of 0.7347, indicating a predictive accuracy of 

73.47%, a high performing panel in the discovery dataset. When comparing the predictive 

ability in the validation datasets, the AUC is similar for both datasets TCGA at 0.63 and 

TARGET at 0.65, however this is only significant in the TARGET dataset, which reflects the 

results shown in figure 3.14B. Figure 3.13C shows excellent separation between the high 
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and low score groups, where the median EFS is undefined for the low scoring group and 

0.96 of a year for the high score group. The difference between the high and low groups in 

the HOVON dataset is significant, however only the TCGA dataset showed a significant 

difference in figure 3.14C. The result of TCGA showing significant differences in the group 

separation and TARGET showing no significant difference is in contrast to the result in 

figure 3.14A and B. 

0 5 10 15 20

0

50

100

EFS (years)

%
 P

o
p

u
la

ti
o

n
 W

it
h

o
u

t 
R

e
la

p
s
e

Low

High

<0.0001

Undefined

0.960833

0 20 40 60 80 100

0

20

40

60

80

100

100% - Specificity%

S
e
n

s
it

iv
it

y
%

     Area

     Std. Error

     95% confidence interval

      P value

0.7347

0.02512

0.6854 to 0.7839

<0.0001

EFS Relapse

-4

-2

0

2

4

Status

S
c
o

re

<0.0001

C

A B

 

FIGURE 3.13. PREDICTIVE ABILITY OF THE ROC WORKFLOW IN THE HOVON DATASET. FIGURE A SHOWS 

THE DISTRIBUTION OF THE SCORE CALCULATED FOR EACH PATIENT WHICH WAS SPLIT BY THEIR RELAPSE STATUS, 

THE MEDIAN VALUE FOR RELAPSE PATIENTS IS SIGNIFICANTLY HIGHER THAN EFS PATIENTS. FIGURE B SHOWS 

THE ROC CURVE WITH AN AUC OF 07347, INDICATING A 73.47% ACCURACY. FIGURE C SHOWS THE KAPLAN-

MEIER SURVIVAL PLOT SPLIT BY THE MEDIAN VALUE OF THE SCORE, THE GROUPS ARE SIGNIFICANTLY DIFFERENT, 

THE MEDIAN EFS FOR THE LOW SCORE GROUP WAS UNDEFINED WHEREAS THOSE WITH A HIGH SCORE HAD A 

MEDIAN EFS OF UNDER A YEAR. 
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FIGURE 3.14. VALIDATION OF THE ROC WORKFLOW IN TCGA AND TARGET AML. THE SCORE WAS 

CALCULATED FOR THE RELAPSE AND EFS PATIENTS IN EACH DATASET. FIGURE A SHOWS THE DISTRIBUTION OF 

THE SCORE, SPLIT BY THE PATIENTS RELAPSE STATUS, IN EACH DATASET. THERE WAS A SIGNIFICANT DIFFERENCE 

BETWEEN THE EFS AND RELAPSE PATIENTS IN TARGET AML, WHERE THE MEDIAN SCORE WAS SIGNIFICANTLY 

HIGHER IN RELAPSE PATIENTS. THERE WAS NO SIGNIFICANT DIFFERENCE IN THE TCGA DATASET. FIGURE B 

SHOWS THE ROC CURVE FOR THE SCORE IN THE DATASETS, BOTH DATASETS HAS A SIMILAR AUC AROUND 

0.63, INDICATING A 63% ACCURACY. FIGURE C SHOWS THE KAPLAN-MEIER SURVIVAL PLOT, WHERE THE 

PATIENTS WERE SPLIT BY THE MEDIAN SCORE OF THE DATASET, THERE IS NO SIGNIFICANT DIFFERENCE BETWEEN 

THE HIGH AND LOW GROUPS IN THE TARGET DATASET WHERE THERE IS A SIGNIFICANT DIFFERENCE IN TCGA. 
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3.3.2.6. BLR 

Using the pROC package in r, statistics associated with ROC curves, including AUC, sensitivity 

and specificity were calculated for every gene in the HOVON dataset. There were 41 genes 

with an AUC above 0.6, these were selected and a BLR was performed (supplementary table 

11), all except one gene was significant in the BLR. From the univariate BLR, the genes with 

the top 10 highest beta-values and the top 10 lowest beta-values were selected for the 

multivariate BLR, in each round the least significant gene was removed until all genes 

significantly contributed to the panel of genes (table 3.13). Once the multivariate BLR had 

determined the remaining 9 genes in the panel, the clinical annotations were included in the 

multivariate analysis, none of which significantly contributed to the panel. 

 
B S.E. Wald Sig. Exp(B) 

95% C.I.for 

EXP(B) 

Lower 

 95% C.I.for 

EXP(B) 

Upper 

PYROXD1 -0.768 0.203 14.330 0.000 0.464 0.312 0.691 

FEM1C -0.692 0.198 12.170 0.000 0.501 0.339 0.738 

NYNRIN 0.639 0.219 8.528 0.003 1.895 1.234 2.911 

MXRA7 0.410 0.159 6.686 0.010 1.507 1.104 2.056 

AGTPBP1 0.444 0.180 6.070 0.014 1.559 1.095 2.219 

LAPTM4B 0.161 0.067 5.794 0.016 1.175 1.030 1.340 

MPO -0.160 0.066 5.768 0.016 0.853 0.748 0.971 

HAL -0.373 0.175 4.555 0.033 0.689 0.489 0.970 

SOCS2-

AS1 

0.368 0.184 4.016 0.045 1.445 1.008 2.072 

TABLE 3.13. MULTIVARIATE BLR FOR THE BLR WORKFLOW IN THE HOVON DATASET. THE GENES WHICH 

WERE SIGNIFICANTLY ASSOCIATED WITH RELAPSE AFTER THE UNIVARIATE BLR WERE TAKEN FORWARD TO THIS 

MULTIVARIATE BLR, THESE ARE THE REMAINING GENES THAT SIGNIFICANTLY CONTRIBUTE TO THE PREDICTIVE 

PANEL. 

The beta values from table 3.13 were used to calculate the score in the HOVON dataset, the 

distribution of the score between the EFS and relapse patients can be seen in figure 3.15A. 

The scores of the relapse patients are significantly higher compared to the EFS patients, 

however there is still an overlap between the two groups (figure 3.15A). In figure 3.16A there 

is only a significant difference between the EFS and relapse patients in the TCGA dataset and 

not in the TARGET dataset. 

When looking at figure 3.15B, the AUC of this score is very high indicating an improved 

accuracy in differentiating between relapse and EFS patients compared to other methods 

discussed previously. In figure 3.16B the AUC for TCGA was 0.6759 quite high for the 
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validation datasets, especially compared to the AUC of the TARGET dataset of 0.5054, 

although the AUC is distinctly different between the validation datasets, this is indicating the 

differences between the two datasets overall.  
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FIGURE 3.15. PREDICTIVE ABILITY OF THE BLR WORKFLOW IN THE HOVON DATASET. FIGURE A SHOWS THE 

DISTRIBUTION OF THE SCORE CALCULATED FOR EACH PATIENT WHICH WAS SPLIT BY THEIR RELAPSE STATUS, 

THE MEDIAN VALUE FOR RELAPSE PATIENTS IS SIGNIFICANTLY HIGHER THAN EFS PATIENTS. FIGURE B SHOWS 

THE ROC CURVE WITH AN AREA OF 0.7618, INDICATING A 76.18% ACCURACY. FIGURE C SHOWS THE MEDIAN 

SPLIT OF THE CALCULATED SCORE, THE GROUPS ARE SIGNIFICANTLY DIFFERENT WITH THE MEDIAN EFS FOR THE 

LOW SCORE GROUP WAS UNDEFINED WHEREAS THOSE WITH A HIGH SCORE HAD A MEDIAN EFS OF UNDER A 

YEAR. 
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FIGURE 3.16. VALIDATION OF THE BLR WORKFLOW IN TCGA AND TARGET AML. THE SCORE WAS 

CALCULATED FOR THE RELAPSE AND EFS PATIENTS IN EACH DATASET. FIGURE A SHOWS THE DISTRIBUTION OF 

THE SCORE IN THE DATASETS SPLIT BY THE PATIENT RELAPSE STATUS, TCGA SHOWED A SIGNIFICANT 

DIFFERENCE BETWEEN THE RELAPSE OR EFS GROUP WHEREAS TARGET AML SHOWED NO SIGNIFICANT 

DIFFERENCE. FIGURE B SHOWS THE ROC CURVE FOR THE SCORE IN THE DATASETS, THE AUC FOR TCGA WAS 

0.6759 INDICATING AN ACCURACY OF 67.59% COMPARED TO TARGET WITH AN AUC OF 0.5054, 

INDICATING AN ACCURACY OF 50.54%. FIGURE C SHOWS THE KAPLAN-MEIER SURVIVAL PLOT SPLIT BY THE 

MEDIAN SCORE VALUE IN EACH DATASET, THERE WAS NO SIGNIFICANT DIFFERENCE BETWEEN THE HIGH AND 

LOW GROUPS OF THE TARGET DATASET, BUT THERE WAS A SIGNIFICANT DIFFERENCE BETWEEN THE HIGH AND 

LOW GROUPS IN TCGA, WHERE THE HIGH GROUP HAD A MEDIAN EFS OF UNDER A YEAR WHERE THE LOW 

SCORE GROUP HAD AN EFS OF 1.7 YEARS. 
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In figure 3.15C there is an excellent separation between the high and low scoring groups. 

With the median free survival for the high group at 0.96, indicating that 50% of the group 

relapsed before a year and the low group with an undefined median free survival, indicating 

the group did not reach 50% relapse. In comparison, figure 3.16C, the separation for the high 

and low groups in TCGA dataset is distinct and significant, with the median EFS for the low 

score group of 1.7 of a year and for the high group of 0.825 of a year. The large difference 

between the median EFS indicates the score can separate the group well. In comparison the 

TARGET dataset shows no significant difference between the high and low scoring group with 

the median EFS almost the same at 1.36 for the high score group and 1.27 for the low score 

group. 

3.4. Discussion and conclusions 

3.4.1. Comparison of prognostic scores 

When looking at summary table 3.14, although the ANN alone, ANN first and T-test method 

all performed well in the discovery dataset they were not significant in either of the 

validation datasets indicating a poor preforming score. Due to the lack of significance for 

these workflows they can be disregarded for the discovery of biomarkers in this instance, 

however, different datasets or a different clinical point for which biomarkers are required 

may be suitable for these workflows. Although they did not work for this investigation, the 

statistics and machine learning foundations are still valid and may be more applicable in 

different situations. 

The ANN second, ROC and BLR workflows were significant in the discovery dataset and 

significant in one of the validation datasets. When looking at the ROC workflow, it 

significantly distinguished between EFS and relapse patients in the TARGET dataset but not 

in the TCGA dataset, and the inverse is true when separating high and low scoring patients 

with a significant separation in the TCGA dataset but not in the TARGET dataset. The 

contradiction in the results could be corrected with more refinement in the boundary of high 

and low score, however in this instance, the inconsistency means the results of this workflow 

are not suitable as a predictive biomarker panel. 

The ANN second workflow was significant in the TARGET dataset, when looking at EFS versus 

relapse and high versus low score, but not in the TCGA dataset. The invers is true of the BLR 

workflow, which was significant in separating EFS and relapse patients as well as High and 

low scoring patients in the TCGA dataset rather than the TARGET dataset. Both workflows 
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have discovered a usable biomarker, and with further refinement they both could be useful 

predictors of relapse. Overall, the BLR workflow gave the best score as it showed higher 

significance when separating the EFS and relapse patients in the validation dataset, and the 

AUC was higher compared to the ROC workflow. 

  ANN 

alone 

ANN 

first 

T-test ANN 

second 

ROC BLR 

HOVON EFS vs 

Relapse 

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

ROC 0.7376 0.7259 0.7376 0.7174 0.7347 0.7618 

High vs 

Low 

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

TCGA EFS vs 

Relapse 

NS NS NS NS NS 0.0078 

ROC 0.5799 0.6019 0.5712 0.5538 0.6296 0.6759 

High vs 

Low 

NS NS NS NS 0.0203 0.0006 

TARGET EFS vs 

Relapse 

NS NS NS 0.0316 0.0104 NS 

ROC 0.5827 0.549 0.5418 0.6252 0.6502 0.5054 

High vs 

Low 

NS NS NS 0.0284 NS NS 

TABLE 3.14. SUMMARY OF RESULTS OF DIFFERENT METHODS OF BIOMARKER DISCOVERY. THE RESULTS 

FROM EACH OF THE VALIDATION GRAPHS IN ALL THREE DATASETS ARE SUMMARISED. 

The elements involved in the BLR workflow can all be written into a single streamline script 

in r, which would ensure its correct application and the reproducibility. As each element is 

processed through computational methods, human error can be avoided improving the 

reproducibility and the consistency of the panels being developed in the future. Unlike other 

workflows, the BLR workflow relies heavily on transparent and trusted statistical methods, 

which allows for a wider audience to understand the workflow and apply it in a clinical 

setting. 

The score discovered in the BLR workflow was the largest of the workflows with 9 genes as 

displayed in table 3.15. The common genes that regularly appeared in the workflows are 

highlighted in table 3.15, with SOCS2-AS1 appearing in 5 finalised panels, where NYNRIN and 
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CD109 appear in 4 panels. Interestingly, CD109 was also included in the ANN first workflow 

and HAL was included in the ANN second workflow before clinical annotations were 

introduced. 

ANN 

Alone 
ANN first T-test ANN second ROC BLR 

CD109 SOCS2-AS1 CD109 CD109 CD109 
SOCS2-

AS1 

SOCS2-

AS1 
HAL NYNRIN SOCS2-AS1 SOCS2-AS1 HAL 

ACVR1B NYNRIN FUT4 ACVR1B HAL NYNRIN 

DNMT3B TES   NYNRIN MXRA7 

ADPGK    TMEM243 AGTPBP1 

SLC31A2     LAPTM4B 

MSI2     MPO 

     PYROXD1 

     FEM1C 

 
Cytogenetic 

risk group 

Cytogenetic 

Risk Group 

Cytogenetic 

Risk Group 

Cytogenetic 

risk group 
 

TABLE 3.15. SUMMARY TABLE OF THE SCORES. PRIOR TO THE INTRODUCTION OF CLINICAL ANNOTATIONS 

CD109 WAS INCLUDED IN THE ANN FIRST METHOD AND HAL WAS INCLUDED IN THE ANN SECOND METHOD 

As noted previously there are common genes which appear in several panels, the first is 

CD109 which has the highest AUC (0.64) from every gene in the HOVON dataset 

(supplementary table 9), indicating that individually this gene could distinguish between 

relapse and EFS patients with 64% accuracy.  CD109 protein is a glycosyl-phosphatidylinositol 

linked glycoprotein that localizes to the surface of cells, which binds to and negatively 

regulates signalling by transforming growth factor beta144, the increased expression of CD109 

has been linked to negative outcomes across different cancers139,140,187,188. Although this gene 

did not appear in the score it is clearly an integral part of cancer progression. 

As for the genes in the score, SOCS2-AS1 is the only RNA gene, meaning it is not translated 

into protein. This gene is a long non-coding RNA (lncRNA), on the antisense strand of SOCS2, 
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which interestingly was not predictive in relapse. SOCS2-AS1 has already been associated 

with apoptosis inhibition and cellular growth in prostate cancer189, although has also been 

linked to inhibition of endometrial cancer190 and colorectal cancer191. It is thought to work as 

a regulator by inhibiting miR-1264 thus promoting the expression of SOCS2191, in addition it 

has been found to bind to and promote the degradation of Aurora kinase A190, a potent cell 

cycle regulator. 

Histidine ammonia-lyase (HAL) is a protein coding gene, it is a cytosolic enzyme associated 

with the degradation of L-histidine to trans-urocanic acid, it has no current association to 

cancer but may increase the sensitivity of cancer cells to certain chemotherapy drugs192, in 

addition, histidine as a dietary supplement showed promise in mouse models193 as a way to 

improve clinical outcome. 

High expressions of NYNRIN are a linked to poor overall survival in AML194. Although 

decreased expression has been shown to increase invasion by melanoma cells and high 

expression increases overall survival195. Mutations in NYNRIN have been associated with a 

predisposition to Wilms tumours196 and relapsed ALL197. Although this gene and the 

associated protein are not widely studied. 

The MXRA7 gene has not been widely studied but it codes for a transmembrane matrix 

remodelling protein, the gene has been linked to several different cancers using a datamining 

approach198, and an increased levels of the protein is associated with minimal residual 

disease in AML199. 

The gene AGTPBP1 codes for a protein that catalyses the deglutamylation of post-

translational modified proteins and removes polyglutamate chains from the carboxy-

terminus of proteins, this is seen particularly in tubulin. A decreased expression was found 

in lung cancer compared to the surrounding normal tissue, which has been linked to 

increased motility and proliferation in cellular studies200. 

The gene LAPTM4B codes for a multifunctional protein, which is crucial to lysosomal function 

including: EGFR degradation, ubiquitination inhibition, recruitment of Leucine transporters 

to the lysosome, activation of ATPase protein pump and negatively regulates TGFβ1 

production in regulatory T cells. Mutations in the gene have been associated with cancer 

susceptibility201 and poor prognosis due to increased proliferation and apoptosis resistance. 

An increase in the gene has been associated with autophagy202 in cancer cells, this provides 
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them with a resistance to metabolic stress, allowing increased proliferation. Additionally, an 

increased expression of this gene has been associated with chemotherapeutic resistance203.  

The gene MPO encodes the protein myeloperoxidase, a lysosomal enzyme involved in the 

antimicrobial response in neutrophils. The degranulation of neutrophils releases MPO into 

the extracellular space to combat pathogens. The reactive oxygen species released cause 

inflammation and could cause DNA damage in near cells. The increased presence of 

neutrophils and MPO has been associated with colorectal cancer204, lung cancer205 and breast 

cancer206,207, mutations that reduce MPO production decrease the risk of breast cancer. This 

is thought to be because of the reduced oxidative stress and inflammation. 

Upregulation of the gene PYROXD1 has been found in colorectal cancer208 compare to 

surrounding normal tissue, although the gene is not widely studied in cancer. The protein 

functions as a pyridine nucleotide-disulphide reductase, with C-terminal nitrile reductase 

domain, and is involved in the oxidative stress response. 

The downregulation of FEM1C in colorectal cancer has been associated with poor 

prognosis209. Although the processes of FEM1C are largely unknown it is through to play a 

role in post-transcriptional modification of RNA210 and the post-translational modification of 

proteins211. Each one of the genes discovered in this score show a relationship with cancer 

and the cell cycle, these all have the potential to be markers for diagnostics and targets for 

therapeutics. 

3.4.2. Comparison of the datasets 

Each dataset in this investigation has its own unique qualities, due to this there will be 

variation between the score performance within each dataset. For example, TARGET AML is 

a childhood dataset, whereas HOVON and TCGA are both adult datasets, there are inherent 

differences between the treatment and survivability of the AML in children compared to 

adults. These differences are difficult to control and the impact of which is not entirely 

obvious in the results but is likely to have an impact. In addition, TCGA and TARGET are both 

RNA sequence datasets, whereas HOVON is an Affymetrix dataset, as such the range of 

results in addition to the expression of certain genes will differ widely in the Affymetrix data 

compared to the sequence data. These differences are apparent and are reflected in the 

results, the range for the scores is typically in the 1000’s for the sequence data and in the 

10’s for the Affymetrix data. 
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In the workflows discussed the differences between the datasets were not controlled, 

resulting in the large differences in ranges, the lack of significance for certain workflows and 

the lower separation of patients in the validation datasets. By making the ranges and 

distribution as equal as possible, the results will likely be more comparable and have a wider 

application. 

To correct for the differences between the datasets an additional normalisation step is 

required, this takes all the datasets and attempts to equalise the range of the data. This 

would make the score more comparable between the platforms and potentially applicable 

across platforms. There are several ways to achieve cross-platform normalisation, although 

not all are comparable in their efficiency. Min-max normalisation is used post discover as a 

penultimate step before score calculation. After a final gene list is obtained, the gene 

expression values are used along with the minimum and maximum value of the specific gene, 

within the dataset. The gene expression values are scaled to be between 0 and 1, by using 

the following equation, where the minimum represents the minimum gene expression of the 

gene within the whole dataset, and similarly with the maximum:  

𝑔𝑒𝑛𝑒 𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚
 

Although this method would ensure the range is the same between datasets, it wouldn’t 

normalise the distribution of the data. The data in the HOVON dataset uses the whole range 

with a central median value, which is not seen the TCGA or TARGET dataset where the results 

are skewed due to the baseline value of zero. 

A different method of normalisation is using a housekeeper gene to calculate fold-change. 

Potential housekeeper would have to be consistently expressed across all datasets with little 

variance between relapse and EFS patients, the commonly used housekeepers from 

Qiagen212 are an ideal starting point for this. Finding housekeepers that are consistent 

between conditions and between datasets can be difficult, in addition the fold change can 

be skewed easily if the gene is reduced compared to the housekeeper, although this can be 

corrected using a log2 fold change. Although again the range of the gene expression can have 

a large impact where the RNA sequence datasets are into the 1000s with gene expression 

the Affymetrix datasets are in the 10s, this large difference will be reflected in the fold change. 

Another method of normalisation between different datasets is a workflow described by213 

which can be adapted as shown in figure 3.19, this workflow merges datasets from different 

technologies and normalises the datasets universally, making the technologies directly 
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comparable. This normalisation can be achieved using the “NormalizeBetweenArrays” 

function from the limma214 package in R, selecting the a-quantile normalisation setting. The 

benefit to this method is the results from discovery dataset can be directly compared to the 

validation datasets, however this also means the results should be deconvoluted after to 

provide a broader perspective in the original dataset. 

All three methods have advantages and disadvantages, although, the method that would 

provide the best overall normalisation, is the a-quantile normalisation between arrays. If the 

results were directly comparable between datasets it would be easier to find genes that were 

characteristic of relapse and remove those that weren’t. These will all be considerations for 

future biomarker discover and can be used as an improvement on the workflows described 

here. 

 

FIGURE 3.17. NORMALISE BETWEEN ARRAYS WORKFLOW. EACH DATASET IS INDEPENDENTLY COMPILED, 

AND QUALITY CHECKED BEFORE NORMALISATION WITHIN THE DATASET. THE DATASETS ARE MERGED AND 

NORMALISED TOGETHER USING A-QUANTILE NORMALISATION. 
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Chapter 4 - Impact of CD109 in AML 

4.1. Introduction 

As discussed in chapter three the relapse gene signature was discovered using a pipeline of 

different bioinformatics techniques. The aim of the prognostic score was to predict which 

patients were likely to relapse, in a clinical setting this would allow for closer monitoring and 

potentially use of alternative treatment strategies. During the analysis, CD109 was identified 

as the gene with the highest area under the curve (AUC) (supplementary table 9), indicating 

it could singly predict relapse in AML. The gene has independently been associated with 

relapse and poor prognosis in different cancers139,140,164,187,215,216, all showing CD109 has an 

important role in cancer progression and survival. In breast cancer CD109 has been 

associated with poor overall survival and carcinogenisis139,140,164,187,215,216. Interestingly CD109 

protein expression has been found in basal-like breast carcinomas, but not in non-basal-like 

carcinomas139. In addition, the expression of CD109 was associated with reduced fat invasion 

in the basal-like carcinoma subset139. In the epithelium of the oral cavity, increased 

expression of CD109 has been found in squamous cell carcinoma and precancerous legions, 

but normal epithelium did not highly express CD109, indicating its presence is associated 

with carcinogenesis and progression of pre-cancerous legions140. 

In AML it has been established that CD109 is associated with poor overall survival217 and 

when combined with CALCRL and LSP1 forms a prognostic panel allowing for the prediction 

of patient outcome164, additionally the gene been associated with resistance to induction 

chemotherapy218. Which is a key part in the clearance of AML and the ability to effectively 

treat patients.  

The mechanisms of CD109 transcript and the associated protein are somewhat unknown; 

however, the protein is a co-recepter144,219 for TGFBR1, which promotes the proteolytic 

degradation of TGFBR1144,145,147 reducing the downstream signalling. There is also some 

evidence CD109 sequesters147 TGFβ1 before it reaches the TGFBR1, again reducing the 

signalling potential of this pathway. Interestingly, a TGFβ1 neutralising antibody was shown 

to enhance apoptosis in AML by cytarabine220, which is contrary to CD109, in that a reduction 

in the TGFBR1 protein reduces the treatment sensitivity of AML in patients. As CD109 was 

consistently found to be highly associated with relapse in AML, and its association to other 

cancers, this gene was investigated further in the context of treatment response and survival. 
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It is expected that a reduction in CD109 expression will increase cellular response to TGFβ1 

and cytarabine induced cell death, which will be used to treat shRNA Knockdown cell lines.  

4.2. Methods and materials 

4.2.1. Tissue culture maintenance 

Cells were grown at 37°C in a humidified atmosphere with 95% air and 5 % CO2. The medium 

used was specific to the cell line, outlined in table 4.1. All centrifugation was performed at 

room temperature, 300xG for 5 minutes. Cells were counted using the “nucleocounter” with 

solution-18, as per the manufacturer’s instructions. 

Adherent cells were passaged when 80-90% confluent. Medium was discarded, and the flask 

was washed with PBS. A solution of 0.05 % trypsin and 0.02 % EDTA was added to the flask 

to cover surface. Flasks were incubated until cells had completely detached and were 

suspended individually. The cell suspension was transferred to a falcon tube, and complete 

growth medium was added before centrifugation. The supernatant was discarded, and cell 

pellet was resuspended in an appropriate volume of complete growth medium before 

counting and seeding at the required density. 

Suspension cells were passaged as required by transferring the suspension to a falcon tube, 

which was counted before centrifugation. The supernatant was discarded, and cell pellet was 

resuspended in an appropriate volume of complete growth medium for the required seeding 

density. 

Cell line Growth medium requirements 

HEK293 DMEM + 10% FCS + 1% L-Glutamine 

MDA-MB-468 DMEM + 10% FCS + 1% L-Glutamine 

THP-1 RPMI-1640 +10% FCS + 1%  L-Glutamine 

MolM-13 RPMI-1640 +10% FCS + 1%  L-Glutamine 

Kasumi-1 RPMI-1640 + 20% FCS + 1%  L-Glutamine 

TABLE 4.1. GROWTH MEDIUM REQUIREMENTS OF THE CELL LINES USED. THE SPECIFIC MEDIUM 

REQUIREMENTS AND ARE DEPENDENT ON CELL LINE, WHICH ARE OUTLINED IN THIS TABLE. 
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4.2.2. Quantitative PCR 

Cells were harvested at a density of 1x10
6cells/ml, a 1mL sample was centrifuged, and the 

supernatant was removed. The cell pellet was resuspended in PBS to wash and was 

centrifuged, the supernatant was removed. The RNA was extracted using an RNeasy kit from 

Qiagen and quantified using the nanodrop. From the RNA, cDNA was synthesised with oligo-

dt15 using up to 2000ng of RNA and Promega MMLV reverse transcriptase. 

The Qiagen rotorgene quantitative PCR machine was used to perform RT-qPCR. The reagents 

required for successful qPCR include: SYBR green PCR master-mix, making up half of the total 

reaction volume, 0.5µL of both forwards and reverse primers (10 pMole/uL) per reaction, 

nuclease free water to the volume required and 1 µL of cDNA sample. The temperature 

profile used began with a 95°C hold for 1 minute, followed by a cycle of 95°C for 20 seconds, 

58°C for 15 seconds and 72°C for 20 seconds. To obtain a melt curve the temperature ramped 

from 58°C through to 95°C. 

4.2.3. Viroid construction 

The viral particles were constructed in the HEK239 cell line, which contains the gene for 

adenovirus, using the optimised µg ratio of 8:6:2 for the shRNA plasmid, the packaging 

plasmid and the envelope plasmid. The cells were seeded in t25 flasks and allowed to adhere 

and grow to 70% confluence. To the flask 8μg of plasmid of interest, 6μg of packaging plasmid 

and 2μg of envelop plasmid were added to the flasks with 17μl lipofectamine p3000 and 32μl 

p3000 reagent, in 5ml of FCS free optiMEM medium. The flasks were incubated at 37°C with 

5% CO2. 

Twenty-four hours after HEK239 cells were transfected, the medium was removed, the cells 

were washed with PBS and fresh growth medium was added. After forty-eight and seventy-

two hours of the initial transfection, the medium containing the constructed virus was 

harvested. The harvested medium was centrifuged at 300xg for 5 minutes to remove large 

debris and cells, the supernatant was filtered using a 0.2-micron filter, removing any 

remaining cells and smaller debris, preventing contamination of cell lines. After the first 

harvest 5mL of fresh HEK293 medium was added for fraction-2 collection. The fractions were 

frozen at -80°C until required. 
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4.2.4. Viral transduction and spin-fection 

To transduce adherent cells, they were seeded and grown to 70-80% confluent. Medium was 

removed and cells were treated with Polybrene diluted in medium, at a concentration of 

10μg/μL. After a short incubation, the viral stock was added to the test wells and medium 

was added to the control wells. After 24 hours, spent medium was removed and replaced 

with fresh medium containing Puromycin at a concentration determined by a drug titration, 

which will kill the non-transfected cells. 

Cells in suspension were centrifuged at 300xg for 5 minutes, spent medium was discarded 

and cells were resuspended in 1mL of fresh medium containing polybrene at a concentration 

of 10μg/μL. After a short incubation with the polybrene medium, the viral stock was added 

to the test cells and medium was added to the control cells. After a short incubation, the cell 

suspensions were centrifuged at 800xg for 30-45 minutes at 32°C, the supernatant was 

removed, and cells resuspended in 3mL of fresh medium. Once the cells had recovered, 

usually 24-48 hours, Puromycin was added to the wells at a concentration determined by a 

drug titration (1ug/mL), to remove the cells that do not contain the plasmid. 

4.2.5. XTT cell proliforation assay 

Cell lines were seeded at 1x106/mL, the relevant treatment was added where applicable, 

whether that be cytarabine, Puromycin, TGFβ1 or no treatment, and control wells containing 

media with the corresponding treatment were also plated, the plates were incubated for 24 

hours. After the incubation, the suspension was mixed and 100µL was transferred to a 96-

well plate. A stock of XTT working reagent was made by combining 20µL/mL of electron 

coupling reagent and 5mL of the XTT Labelling reagent, which was then vortexed. 50 µL of 

the XTT working reagent was added to the wells of the 96-well plate, which were mixed by 

pipetting and then incubated for 4 hours. After the incubation the plates were mixed by 

tapping, any air bubbles were removed before the plates were read at 470 nm with a 

reference wavelength of 650 nm in a bioRad iMark microplate reader. 

4.2.6. NanoString 

Cell line samples were harvested, and the RNA was extracted as described above in 

“Quantitative PCR”. The RNA concentration was measured with the Nanodrop 8000 and 

diluted to a working stock concentration of 70ng/µL. the concentration of the samples were 

confirmed using the Nanodrop 8000 in triplicate. 150ng of RNA was pipetted into the strip 
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tubes provided in the kit, water was added to equalise the volume to 5µL before the reporter 

and capture probes were added. The cancer pathways panel, containing 770 genes, was used 

in this investigation. The tubes were mixed by tapping then centrifuged to collect the mixture 

in the bottom of the tubes which were then incubated at 65°C for 24 hours in a thermal cycler 

with a heated lid. After incubation the strip tubes were centrifuged briefly to collect the 

mixture in the bottom of the tubes, then loaded into the prep-station with the reagent plates 

and consumables, as per the manufacturer’s instructions. After the prep station had loaded 

the samples onto the chip, it was sealed and transferred to the nCounter, a High-resolution 

scan (fov 555) performed to acquire the digital count, and the RLF file 

“NS_CancerPath_C2535” used to generate the data. The output files (.RCC) were quality 

controlled using the nSolver software (Version 4.0). Differential expression and further 

analysis performed within the software.  

4.3. Results 

4.3.1. Drug titrations 

4.3.1.1. Puromycin titration 

Puromycin is an amino nucleoside antibiotic, an analogue of the 3' terminal end of 

aminoacyl-tRNA. Puromycin incorporates itself into a growing polypeptide chain and causes 

its premature termination, thereby inhibiting protein synthesis. Human cells have some 

tolerance to Puromycin, although when the threshold is reached it becomes toxic to cells 

apoptosis is initiated. In cell lines transduced with the PLKO.1 plasmid, Puromycin resistance 

is conferred on the plasmid, so Puromycin is transported out of the cell before it reaches the 

threshold. To determine the natural resistance of the cell line a titration was performed, this 

effectively determines the concentration required to remove non-transduced cells, leaving 

only cells transduced with the PLKO.1 plasmid. 

As shown in figure 4.1, cell lines grow exponentially without the inhibition of Puromycin, 

however with the introduction of a small concentration of Puromycin the cell growth was 

halted. Although cell growth was stopped after just 0.5µg/mL of Puromycin it is important to 

see this in conjunction with cell viability, as the aim is to remove all sensitive cells. Ideally the 

concentration should kill the sensitive cells within 2-3 days, allowing for transduced cells to 

grow without contamination from non-transduced cells. In figure 4.2, the cell viability for the 

titration is displayed, which shows as the concentration of the Puromycin increases the cell 

viability decreases. Taking figure 4.1 in conjunction with figure 4.2, we see that cell cycle 
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arrest is induced with a small concentration of Puromycin and there is minimal effect of 

increasing the concentration on further population decrease (figure 4.1), however looking at 

the cell viability (figure 4.2) shows that the concentrations not only stop cell division but 

actively reduce the viability of those cells. To achieve the removal of Puromycin sensitive, 

non-transduced, cells from a population the cell viability should be reduced as well as the 

cell population. All measurements were taken using the NucleoCounter, although this 

method is reliable and consistent, it anecdotally has a tendency to over-estimate the cell 

population. 

The concentration of Puromycin required to kill the cells is different depending on the cell 

line, although the graphs show that many of the concentrations used would be suitable to 

clear sensitive cells, it is important to look at the health of the cells and visualise which 

concentration causes the cells to begin apoptosis in a short time scale. Figure 4.3 shows 

photographs of the line MolM-13 at x20 magnification, treated with different concentrations 

of Puromycin. The photographs demonstrate that the cell population increases over time in 

the condition without Puromycin, in contrast with the conditions treated with Puromycin 

where there is a reduction in the cell population and a decreased cell viability, shown by the 

granular appearance of the cells and the reduced cell number. Similarly, in figure 4.4 and 

figure 4.5, the THP-1 and Kasumi-1 cell lines follow the same trend as in figure 4.3. Looking 

at the results in combination, each cell line requires a different concentration of Puromycin 

to be effective, the concentrations chosen for MolM-13, THP-1 and Kasumi-1 were 1µg/mL, 

3µg/mL and 1µg/mL respectively. The concentrations were chosen based on the reduced cell 

viability and evidence of cell clearance within 3 days of treatment. 
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FIGURE 4.1. PUROMYCIN TITRATION AND CELL GROWTH IN AML CELL LINES. THE MINIMUM 

CONCENTRATION OF PUROMYCIN REQUIRED TO KILL THE CELLS WAS DETERMINED BY COUNTING THE CELLS AT 

24-HOUR INTERVALS. FIGURES A, C AND E SHOW THE FULL RANGE OF CONCENTRATIONS USED WITH A 

COMPARISON TO THE CELL GROWTH WITHOUT PUROMYCIN. FOR CLARITY, FIGURES B, D AND F SHOW THE 

TITRATION WITHOUT THE UNTREATED RESULT TO ALLOW FOR A MORE DETAILED VIEW OF THE RESULTS. 

FIGURES A, C AND D SHOW EXPONENTIAL GROWTH OF THE UNTREATED CELL LINES, COMPARED TO ALL 

CONDITIONS WITH PUROMYCIN. N=3 
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FIGURE 4.2. PUROMYCIN TITRATION AND CELL VIABILITY OF AML CELL LINES. EACH CELL LINE WAS TREATED 

WITH PUROMYCIN AT DIFFERENT CONCENTRATIONS WITH AN AIM TO REMOVE ALL SENSITIVE CELLS. THE CELL 

VIABILITY IS CALCULATED AS A THE % OF LIVE CELLS FROM THE WHOLE CELL POPULATION INCLUDING THE DEAD 

CELLS. N=3 
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FIGURE 4.3. PHOTOGRAPHS AT X20 MAGNIFICATION FOR MOLM-13 CELLS TREATED WITH PUROMYCIN. 

TIME IN HOURS IS DISPLAYED ON THE LEFT AND PUROMYCIN CONCENTRATION IN µG/ML IS DISPLAYED AT THE 

TOP. CELL POPULATIONS IN THOSE TREATED WITH PUROMYCIN DECREASE OVER TIME, WHEREAS THE 

UNTREATED CELLS GREW EXPONENTIALLY 

 

FIGURE 4.4. PHOTOGRAPHS AT X20 MAGNIFICATION FOR THP-1 CELLS TREATED WITH PUROMYCIN. TIME 

IN HOURS IS DISPLAYED ON THE LEFT AND PUROMYCIN CONCENTRATION IN µG/ML IS DISPLAYED AT THE TOP. 

CELL POPULATIONS IN THOSE TREATED WITH PUROMYCIN DECREASE OVER TIME, WHEREAS THE UNTREATED 

CELLS GREW EXPONENTIALLY. 
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FIGURE 4.5. PHOTOGRAPHS AT X20 MAGNIFICATION FOR KASUMI-1 CELLS TREATED WITH PUROMYCIN. 

TIME IN HOURS IS DISPLAYED ON THE LEFT AND PUROMYCIN CONCENTRATION IN µG/ML IS DISPLAYED AT THE 

TOP. CELL POPULATIONS IN THOSE TREATED WITH PUROMYCIN DECREASE OVER TIME, WHEREAS THE 

UNTREATED CELLS GREW EXPONENTIALLY. 

 

4.3.1.2. Cytarabine titration 

Cytarabine is a cytosine analogue which competitively binds to the corresponding purine 

during S-phase221. When incorporated into the DNA structure it sterically hinders the rotation 

of the molecule within DNA, in addition it inhibits alpha-DNA polymerase and DNA repair 

through beta-DNA polymerase. These compounding factors mean DNA replication ceases, 

and cell cycle arrest occurs specifically in S-phase221. Cytarabine is used in combination with 

Daunorubicin to treat AML in a regime known at 7+3 where 7 days of Daunorubicin is given 

followed by 3 days cytarabine222–224. 

To determine which concentration of cytarabine was effective in each of the AML cell lines a 

titration was performed. As there was no existing data on appropriate concentrations to use 

in cell lines, a wide scale titration was performed with ranges from 1nM to 1mM. To 

determine the effect of cytarabine on the cell lines the cell density was recorded at 24-hour 

intervals, showing the growth rate of the cell lines at the different concentrations. The initial 

titration in figure 4.6A and 4.7A was used to target a more selective range for the cell line. 

The growth rate for cells without cytarabine is exponential, with the addition of 1nM of 

cytarabine there was very little effect on the growth rate. The condition with 100nM of 
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cytarabine inhibited the growth rate of the cell lines noticeably, and the conditions with 1µM, 

100µM and 1mM induced complete cell cycle arrest. Interestingly, in Figures 4.6B and 4.7B 

the condition with 1 µM of cytarabine shows cell cycle arrest but the cell viability remains 

high, this is important to consider for the next titration as the goal is to induce cell cycle 

arrest with a minimal concentration of cytarabine. 

The second titration range was between 250nM and 50 mM as shown in figure 4.6C and 4.7C. 

The conditions without cytarabine showed exponential growth and every condition with 

cytarabine shows growth inhibition, generally with the higher the concentration the more 

inhibition. In figure 4.6D, the concentrations of 10µM and 50mM reduced the cell viability 

whereas all other concentrations did not, despite the reduced cell growth in figure 4.6C. 

Similarly, in figure 4.7D, only the 10µM and 50mM treatment reduced cell viability, as such 

the final titration was between 0.9µM and 8µM to bridge the gap between the first two 

titrations. Figure 4.6E all conditions show a similar growth curve to the control condition, 

with only a slight reduction in the cell density, this is reflected in the viability of the cells in 

figure 4.6F with only the two highest concentrations reducing the viability. As such the 

concentration used to treat THP-1 cell lines was 10µM. In figure 4.7E all the concentrations 

reduced the cell growth, however in figure 4.7F, the 0.9µM and 2µM concentrations 

minimally affected the cell viability compared to the 4µM, 6µM and 8 µM which reduced the 

cell viability, as such the most appropriate concentration to inhibit the cell cycle for the 

MolM-13 cell line is 4 µM. As expected, the effective concentrations are slightly different for 

each cell-line.  

The Kasumi-1 cell line was titrated separately and based on the experimental results 

obtained for both MolM-13 and THP-1 the initial concentrations were between 250nM and 

50µM as shown in figure 4.9. As shown in figure 4.9A all the concentrations had an effect on 

the cell growth rate, however in figure 4.9B the 250nM concentration showed less of an 

effect on the cell viability compared to the other concentrations used. The second titration 

was between 150nM and 450nM, shown in figure 4.9C and D, all concentrations inhibited 

the cell growth rate however as the 150nM concentration did not reduce the cell viability as 

drastically as the other concentrations used the concentration of 300nM was chosen for 

further experiments. 
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FIGURE 4.6. CYTARABINE TITRATION IN THP-1 CELL LINE. FIGURES A, C AND D SHOW THE CELL DENSITY OF 

THE THREE TITRATIONS, AND FIGURES B, D, F SHOW THE CELL VIABILITY OF THE CORRESPONDING TITRATION. 

FIGURES A AND B WERE THE INITIAL LARGE-SCALE TITRATION TO DETERMINE THE RANGE OF THE SUBSEQUENT 

TITRATIONS. THE CONCENTRATION CHOSEN FOR FUTURE TREATMENTS OF THE THP-1 CELL LINE WAS 10µM. 

N=1 

 



 Page 103 
 

0 50 100

0

2×105

4×105

6×105

8×105

Hours

C
e
ll
s
 p

e
r 

m
L

0 nM

1 nM

100 nM

1 uM

100 uM

1 mM

0 50 100

70

80

90

100

Hours

%
 V

ia
b

il
it

y

0 nM

1 nM

100 nM

1 uM

100 uM

1 mM

0 50 100

0

5×105

1×106

1.5×106

2×106

Hours

C
e
ll
s
 p

e
r 

m
L

0 nM

250 nM

500 nM

750nM

10 uM

50 mM

0 50 100

75

80

85

90

95

100

Hours

%
 V

ia
b

il
it

y

0 nM

250 nM

500 nM

750nM

10 uM

50 mM

0 50 100

0

5×105

1×106

1.5×106

2×106

Hours

C
e
ll
s
 p

e
r 

m
L

0.9 uM

2 uM

4 uM

6 uM

8 uM

0 uM

0 50 100

60

70

80

90

100

Hours

%
 V

ia
b

il
it

y 0.9 uM

2 uM

4 uM

6 uM

8 uM

0 uM

A

E

D

B

C

F

 

FIGURE 4.7. CYTARABINE TITRATION IN MOLM-13 CELL LINE. FIGURES A, C AND E SHOW THE CELL DENSITY 

OF THE TITRATIONS, AND FIGURES C, D AND F SHOW THE CORRESPONDING CELL VIABILITY. THE INITIAL 

TITRATION IN FIGURES A AND B WERE USED TO SELECT AN APPROPRIATE RANGE FOR SUBSEQUENT TITRATIONS. 

THE SELECTED CONCENTRATION FOR THE MOLM-13 CELL LINE WAS 4µM. N=1 
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FIGURE 4.8. CYTARABINE TITRATION IN KASUMI-1 CELL LINE. FIGURES A AND C SHOW THE CELL DENSITY OF 

THE TITRATIONS, AND FIGURES B AND D SHOW THE CORRESPONDING CELL DENSITY. THE INITIAL TITRATION IN 

FIGURES A AND B WERE USED TO DISCOVER AN APPROPRIATE RANGE FOR THE FOLLOWING TITRATION IN 

FIGURES C AND D. THE CONCENTRATION OF CYTARABINE USED TO TREAT THIS CELL LINE WAS 300NM. N=1 

4.3.1.3. Transforming growth factor β titration 

The gene CD109 was found to be highly expressed in AML patients who go on to relapse. The 

protein CD109 promotes the degradation of the TGFBR1 protein135,139,144,146,219 and limits its 

downstream signalling potential.  Transforming growth factor β is a cytokine which has many 

different functions225–228, including pro-apoptotic signalling pathways and prevention of cell 

cycle progression, to induction of differentiation and promotion of metastasis in solid 

cancers. 

According to the literature the treatment concentration is normally around227,22810ng/mL, 

which is why the initial titrations from figure 4.9 attempt to reduce this concentration. The 

literature is based on solid cancers and the impact it has on epithelial to mesenchymal 

transition, as shown in figure 4.9 these concentrations had no effect of the AML cell lines, 

even with the increased concentration shown in figure 4.9E and F. Therefore higher 

concentrations were required in AML cell lines as discussed later in this chapter. 
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FIGURE 4.9. TGFΒ1 TREATMENT OF AML CELL LINES. THE AML CELL LINES WERE TREATED WITH VARIOUS 

CONCENTRATIONS OF TGFΒ1 TO INDUCE A CHANGE IN GROWTH RATE. FIGURE A, C AND E SHOW THE CELL 

DENSITY OF EACH OF THE TITRATIONS AND FIGURES B, D AND F SHOW THE CORRESPONDING CELL VIABILITY. 

FIGURES A AND B SHOW THE MOLM-13 CELL LINE, FIGURES C AND D SHOW THE THP-1 CELL LINE AND 

FIGURES E AND F SHOW THE KASUMI-1CELL LINE. N=1 

4.3.2. PCR primer efficiency calculations 

In quantitative PCR (qPCR) amplification efficiency is essential to provide consistent and 

reliable results. Reaction efficiency is assessed by creating standard curves; both a primer 

dilution series and a sample dilution series are used. The efficiency testing was performed 

for all primers used, including the housekeeper and genes of interest. For ease of 

experimentation it is preferable if both the “housekeeping” primer pair and the gene of 

interest primer pair achieve efficiency at the same temperature, although this is not a 

requirement. To assess primer efficiency in the specific PCR conditions, a few key 
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requirements should be met: the efficiency should be above 0.9 but below 1.1 and the melt 

should be a single clean peak with no tail. 
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FIGURE 4.10. PRIMER EFFICIENCY TESTING. THE YWHAZ AND CD109 PRIMERS WERE TESTED AT 58°C, A 

STOCK OF CDNA WAS DILUTED IN A 1IN 5 DILUTION SERIES, THE SAMPLES WERE RUN IN TRIPLICATE TO 

DETERMINE IF THE PRIMERS WERE EFFICIENT AT THE CHOSEN TEMPERATURE. N=3 

The first efficiency testing used is a sample titration; nucleic acid (cDNA) samples were 

diluted in a 1:2 or a 1:5 dilution series, depending on the native expression of the gene of 

interest. The dilution series chosen should be reflected in the cycle threshold values obtained, 

which are used to create the standard curve to assess efficiency in the specific PCR conditions 

used. Each sample in the dilution series was performed in triplicate to calculate standard 

deviation of the cycle threshold and exclude any results which were anomalous. 

Predominantly, when a primer is designed the Tm value selected is around 60°C, the first 

melt temperature tested was 58°C, and this will allow a stable interaction between the 

template and the primer for the extension of the DNA sequence prior to the Melt at 60°C. 

When looking at the primer efficiency the dilutions series should have equally spaced on cT 

values, which form a straight line giving the r squared value between 0.9 and 1.1, which is 

equivalent of the primer efficiency. 

The first primer pair to be efficiency tested was YWHAZ, which is a stably229–231 expressed 

gene in AML making it an ideal “housekeeping” gene. Using a stably expressed gene allows 

a benchmark to be set for comparing gene expression across various samples, where the 

concentration of cDNA may vary. The stable expression of the gene allows relative expression 

to be calculated across different samples, different treatments and different cell lines. 

Secondly the CD109 primer pair was tested, this is crucial to the understanding of CD109 
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expression in different cell lines and with different treatments. It will also enable the 

knockdown efficiency to be calculated. In figure 4.10 a stock of AML cDNA was diluted in a 1 

in 5 series, the samples were run at 58°C in triplicate, both the YWHAZ and CD109 primers 

have an r squared value of 0.99, indicating they are efficient at 58°C. 

4.3.3. Viral transduction 

There are several methods to knockdown gene expressions in cell lines, including CRISPR-

Cas9, siRNA and shRNA. CRISPR-Cas9 is expensive but creates stable cells in which the gene 

expression is reduced to 0% of the initial expression, as the gene is effectively deleted. When 

using siRNA the Knockdown is transient and therefore the expression must me checked 

regularly, this limits the time available to conduct experiments. Using shRNA a stably 

transfected cell line is established where the Plasmid DNA is inserted into the cell and 

expressed when the selection condition is applied, although the knockdown efficiency is 

variable, but there is no time limit to conduct further experiments. As an additional check, 

the Knockdown efficiency should be tested regularly, especially before beginning 

experiments. 

4.3.3.1. Adherent cells 

Following the method outlined above, MDA-MB268 were transduced with the CD109 shRNA 

knockdown plasmid and the control plasmid. The transduced and a non-transduced control 

were treated with Puromycin at a concentration of 0.2 µg/mL for a minimum of 72 hours or 

until the control cells were dead, shown in figure 4.11. The cells which contained the plasmid 

survived and those without underwent apoptosis, as demonstrated by the control cells in 

figure 4.11D. 

To assess knockdown efficiency of the plasmids used, a sample was harvested for RNA 

extraction and cDNA synthesis. A qPCR was performed comparing the CD109 gene 

expression and the expression of the housekeeping gene YWHAZ. Looking at table 4.2 the 

estimated KD efficiency of each plasmid is shown according to the relative delta-delta-Ct 

value. In table 4.2, We see plasmid 52 and 50 have very different KD efficiencies, plasmid 50 

gave a KD efficiency of around 73% and plasmid 52 gave a KD efficiency of 50%. Although the 

knockdown efficiency can vary depending on the cell line used, both plasmid 50 and 52 were 

used to knockdown CD109 expression in the AML cell lines. 
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TABLE 4.2. KNOCKDOWN EFFICIENCY IN THE MDA-MB268 CELL LINE. THE MDA-MB268 CELL LINE WAS 

TRANSDUCED WITH PLASMID DNA CONFERRING THE CD109 SHRNA. THE KNOCKDOWN EFFICIENCY WAS 

CALCULATED BY THE CHANGE IN CT VALUE BETWEEN YWHAZ AND CD109 THEN THE CHANGE OF CT VALUES 

FOR DIFFERENT PLASMIDS COMPARED TO THE CONTROL PLASMID, THROUGH GENE EXPRESSION ANALYSED 

USING QPCR. N=3 

 

FIGURE 4.11. TRANSDUCED MDA-MB268 CELLS. PHOTOS AT X20 MAGNIFICATION 72 HOURS AFTER THE 

TRANSDUCED CELLS WERE TREATED WITH 0.2 µG/ML OF PUROMYCIN. FIGURE A SHOWS THE CELL LINE 

TRANSDUCED WITH PLASMID 50, FIGURE B SHOWS THE CELL LINE TRANSDUCED WITH PLASMID 52, FIGURE C 

SHOWS THE CELL LINE TRANSDUCED WITH THE CONTROL PLASMID AND FIGURE D SHOWS THE CELL LINE 

WITHOUT PLASMID TRANSDUCTION. 

 Average Ct 

YWHAZ 

Average Ct 

CD109 

ΔCt ΔΔCt Estimated 

Knockdown 

efficiency 

Plasmid control 18.02 15.81 2.21 NA NA 

Plasmid 50 19.56 15.45 4.11 1.90 73% 

Plasmid 52 18.91 15.69 3.22 1.01 50% 
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4.3.3.2. Suspension cells 

The method used for adherent cells involved adding the virus to the monolayer and 

incubating, when this method was applied to suspension cells it was only affective in the 

THP-1 cell line. In all AML cell lines, except THP-1, the virus failed to enter the cells, did not 

transcribe the plasmid encoding Puromycin resistance or were destroyed in the process 

through toxicity. To transduce the remaining AML cell lines a “spin-fection” protocol was 

applied, which involved a small volume of high-density cell suspension centrifuged at 800xg 

for 30-45 minutes with the viral particles. The initial attempt with a centrifugation of 30 

minutes was successful in the MolM-13 cell line, the second attempt with a centrifugation of 

45 minutes was successful in Kasumi-1 cell line. After the cell lines had become established 

the knockdown efficiency was calculated for these cell lines shown in table 4.3. The 

Knockdown was not as strong as expected, with only a 20% knockdown in the MolM-13 cell 

line for both plasmids, and 31% and 45% knockdown in Kasumi-1. The knockdown was 

strongest in the THP-1 cell line with a 76% and 40% knockdown for plasmid 50 and 52 

respectively. From this it is evident that different cell lines respond differently to the plasmid 

DNA and each plasmid has a different potency of knockdown, showing the importance of 

using more than one cell line and plasmid for the transfection. 

Cell line plasmid Average Ct 
YWHAZ 

Average 
Ct CD109 

ΔCt ΔΔCt Estimated 
Knockdown 
efficiency 

THP control 14.91 18.08 3.17 NA NA 

50 14.14 19.58 5.44 2.27 76% 

52 14.43 18.34  3.92 0.74 40% 

Kasumi-1 Control 15.15 18.92 3.77 NA NA 

50 14.89 19.50 4.61 0.84 45% 

52 14.78 19.07 4.29 0.52 31% 

MolM-13 Control 13.54 18.64 5.10 NA NA 

50 13.79 19.25 5.45 0.35 20% 

52 13.81 19.28 5.47 0.37 20% 

TABLE 4.3. KNOCKDOWN EFFICIENCY OF THE AML CELL LINES. THE AML CELL LINES WERE TRANSDUCED 

WITH PLASMID DNA CONFERRING THE CD109 SHRNA KNOCKDOWN. THE RELATIVE EXPRESSION OF CD109 

COMPARED TO YWHAZ WAS CALCULATED (ΔCT) AND THE CHANGE IN EXPRESSION (ΔΔCT) CALCULATED 

FROM THERE. THE ESTIMATED RELATIVE KNOCKDOWN OF THE CD109 GENE IS SHOWN. 
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When cell lines are transduced with plasmid DNA, the cellular mechanisms transcribe the 

DNA which provides a survival advantage for those cells, in this case the resistance to 

Puromycin which was in the growth medium, this is a selective pressure to encourage the 

continued transcription of the plasmid DNA. To increase KD efficiency, the cell lines were 

grown in a higher concentration of Puromycin to force the transcription of the plasmid 

containing the shRNA and the Puromycin resistance. 

4.3.4. Cell proliferation and apoptosis 

Cellular metabolic activity reduces Tetrazolium salts to formazan232 which is the basis of the 

XTT assay. The coloured formazan product in the XTT assay is soluble, so exits the cell without 

the need for lysis, unlike the product of the MTT assay which is crystallised and requires a 

lysis step to release. The colorimetric change that occurs can be measured using a 

wavelength of 470 nm with a subtraction wavelength over 650nm. 

There are certain limitations of using tetrazolium salt assays, one such limitation is the 

dynamic range; for the MTT assay there is a relatively small dynamic range, in which samples 

may appear similar to one another, especially as the colour becomes more saturated. The 

XTT has a larger dynamic range in comparison the MTT assay, meaning it is easier to discern 

the different metabolic activity of samples across the range. 

Although the colorimetric changes are correlated to cell number, it may be unreliable to 

directly compare between different cell-lines, within the same cell line should be 

consistent232. Despite the fact direct quantitative comparisons cannot be drawn between cell 

lines, this is a crucial tool for comparing the impact of treatments within a cell line. 

Additionally, additives in the media can cause the reduction of tetrazolium salt 

independently of cellular metabolic activity233, therefore regulation of the media and 

additives in crucial to getting a reliable result.  

4.3.4.1. Impact of reduced CD109 expression on growth rate 

High expression of CD109 has been linked to negative outcomes in various cancers, it is 

crucial to determine if CD109 is associated with increased proliferation of if it has another 

roll in cell survival. An XTT assay was implemented in each of the CD109 knockdown cell lines 

to assess the growth rate when CD109 is reduced compared to the normal high expression. 

The cell lines with the shRNA plasmid were seeded in at a density of 4x10
5 in 96-well plates, 

the XTT reagents were added to a separate plate daily and after a 4-hour incubation the 

absorbance was measured. 
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FIGURE 4.12. GROWTH RATE OF CD109 KNOCKDOWN CELL LINES. THE CELL LINES TRANSDUCED WITH 

PLASMID DNA CONFERRING CD109 SHRNA WERE SEEDED AND THE GROWTH RATE WAS MEASURED BY THE 

XTT ASSAY EVERY 24HOURS. EACH FIGURE REPRESENTS A DIFFERENT CELL LINE WITH THE SAME PLASMID 

TRANSFECTION. N=3 
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The XTT assay uses a reference wavelength of 650nm, the reading for which was subtracted 

from the measurement wavelength of 470nm to give the relative absorbance. In addition, a 

medium blank was measured in the same way to allow the reading to be background 

corrected as displayed in figure 4.12. It is clear from figure 4.12 the reduced expression of 

CD109 does not affect growth rate, all cell lines show the same trend in cell growth despite 

the introduction of the plasmid DNA. As CD109 does not appear to be critical to the cell 

growth it must have another function within the cell. 

4.3.4.2. The effect of TGFβ1 on cell proliferation 

The initial titrations for TGFβ1 treatment in AML cell lines indicated lower concentrations of 

TGFβ1 do not elicit a response. To gage the impact of TGFβ1 in the transfected AML cell lines 

a 25ng/mL concentration was used, as shown in figure 4.13. Although this concentration is 

higher than expected based on literature, all previous cell lines treated with TGFβ1 were 

adherent cell lines which respond to TGFβ1 differently. An XTT assay was performed in the 

CD109 knockdown AML cell lines shown in figure 4.13, it is clear TGFβ1 induces cell cycle 

arrest in the cell lines at the 25ng/mL concentration. Figure 4.13C shows the THP-1 cell line, 

although the cell cycle arrest was not as dramatic as the MolM-13 (figure 4.13A) or Kasumi-

1 cell line (figure 4.13B), there is a reduced cell proliferation. It is important to note that 

despite the effects of TGFβ1 on the cell lines, the CD109 knockdown conditions did not 

exhibit any further differences in the cell proliferation rate compared to the control 

conditions. 
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FIGURE 4.13. ASSAY OF CD109 KNOCKDOWN CELL LINES TREATED WITH TGFΒ1. THE CD109 KNOCKDOWN 

CELL LINES WERE TREATED WITH TGFΒ1 AND THE ABSORBANCE WAS MEASURED EVERY 24 HOURS. FIGURE A 

SHOWS THE MOLM-13 CELL LINE, FIGURE B SHOWS THE KASUMI-1 CELL LINE AND FIGURE C SHOWS THE THP-

1 CELL LINE. N=3 
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4.3.4.3. Cytarabine and TGFβ1 treatment in AML cell lines 

It was found that a TGFβ1 neutralising antibody had the ability to enhance cytarabine 

induced apoptosis in AML220, from this it would be expected that in the CD109 knockdown 

cell lines the response to cytarabine may be reduced as the TGFβ1 signalling is uninterrupted. 

Despite the different expression of CD109 in the AML cell lines and the knockdown cell lines, 

it has been established that TGFβ1 causes cell cycle inhibition regardless. Looking at the 

combination of cytarabine and TGFβ1 may indicate how CD109 affects treatment response 

and how high CD109 promotes cancer progression and relapse. To do this the AML cell lines 

transduced with different plasmids were seeded and treated with TGFβ1 and cytarabine at 

the concentration corresponding to their calibration titration. An XTT assay was use and the 

cell line were measured every 24 hours to determine the difference in cell respiration. 
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FIGURE 4.14. XTT ASSAY OF THE THP-1 CELL LINE TREATED WITH TGFΒ1 AND CYTARABINE. THE THP-1 

CELL LINE WAS TRANSDUCED WITH DIFFERENT PLASMIDS, TWO CONFERRING CD109 SHRNA TO REDUCE THE 

EXPRESSION OF CD109. THESE CELL LINES WERE TREATED WITH TGFΒ1 AND CYTARABINE TO DETERMINE THE 

EFFECT OF CELL PROLIFERATION AND APOPTOSIS, AS MEASURED BY THE XTT ASSAY. N=3 

Figure 4.14 displays the THP-1 cell line and the response to TGFβ1 and cytarabine, overall, 

the different expression of CD109 does not appear to affect the response to cytarabine or 

TGFβ1 with all plasmids following the same trend each time.  Without any treatment the 

different plasmid conditions grow continually over the course of the experiment (figure 
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4.14A), however, with the introduction of TGFβ1 (figure 4.14D) the growth rate was reduced. 

When the THP-1 cells were treated with cytarabine there was a total cell cycle arrest with no 

increase in the cellular population, as shown in figure 4.14B. Interestingly when the cell line 

was treated with both TGFβ1 and cytarabine the cell population decreased over the course 

of the experiment (figure 4.14C), likely due to the increase apoptosis. In indication that 

TGFβ1 increases cellular apoptosis in response to cytarabine is in direct contrast so the 

research220 by Tabe. Y et.al (2013) which indicated reducing the TGFβ1 signalling increased 

cytarabine related apoptosis. 
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FIGURE 4.15. XTT ASSAY OF THE MOLM-13 CELL LINE TREATED WITH TGFΒ1 AND CYTARABINE. THE 

MOLM-13 CELL LINE WAS TRANSDUCED WITH DIFFERENT PLASMIDS, TWO CONFERRING CD109 SHRNA TO 

REDUCE THE EXPRESSION OF CD109. THESE CELL LINES WERE TREATED WITH TGFΒ1 AND CYTARABINE TO 

DETERMINE THE EFFECT OF CELL PROLIFERATION AND APOPTOSIS, AS MEASURED BY THE XTT ASSAY. N=3 

Similarly, the MolM-13 cell line was treated with a combination of TGFβ1 and cytarabine in 

figure 4.15. MolM-13 cells without treatment showed continued cell growth with little or no 

difference between the plasmid conditions (figure 4.15A). When the cells were treated with 

cytarabine (figure 4.15B) the cell cycle was inhibited and showed some signs of apoptosis by 

the slight downward trajectory of the relative absorbance. In figure 4.15D, TGFβ1 induces 

cell cycle arrest as displayed by the completely flat relative absorbance in each of the plasmid 

conditions, although plasmid 50 showed a lower relative absorbance compared to the other 

conditions the difference is minimal. When the cell line was treated with both TGFβ1 and 

cytarabine (figure 4.15C) there is a downward trajectory of the relative absorbance indicating 
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the combined condition induces cell cycle arrest and apoptosis. Overall, in figure 4.15, there 

was no difference between the plasmid conditions, indicating CD109 expression does not 

impact treatment response. 
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FIGURE 4.16. XTT ASSAY OF THE KASUMI-1 CELL LINE TREATED WITH TGFΒ1 AND CYTARABINE. THE 

KASUMI-1 CELL LINE WAS TRANSDUCED WITH DIFFERENT PLASMIDS, TWO CONFERRING CD109 SHRNA TO 

REDUCE THE EXPRESSION OF CD109. THESE CELL LINES WERE TREATED WITH TGFΒ1 AND CYTARABINE TO 

DETERMINE THE EFFECT OF CELL PROLIFERATION AND APOPTOSIS, AS MEASURED BY THE XTT ASSAY. N=3 

In figure 4.16 the cell line Kasumi-1 was treated with combinations of cytarabine and TGFβ1. 

In figure 4.16A the cells were not treated with TGFβ1 or cytarabine as a baseline 

measurement, it is clear there is no growth inhibition and the cells continue to proliferate 

over the course of the experiment. In figure 4.16B the cells were treated with cytarabine 

which inhibited the cell proliferation to a similar degree in each of the plasmid conditions as 

shown by the flatter relative absorbance rate compared to the untreated condition. When 

the cells were treated with TGFβ1 (figure 4.16D) there is inhibition of the cell cycle shown by 

the flatter rate of the relative absorbance compared to untreated cells. In figure 4.16C the 

Kasumi-1 cell line was treated with both TGFβ1 and cytarabine, the cell proliferation was 

inhibited and there is an indication that apoptosis was induced by the downward trajectory 

of the relative absorbance over the course of the experiment. 
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Overall, treating AML cell lines with either TGFβ1 or Cytarabine induces cell cycle arrest, 

when both Cytarabine and TGFβ1 are used in conjunction the cell cycle is inhibited and 

apoptosis was induced. Although in this instance the different plasmid conditions did not 

behave differently to the treatments used, suggesting that CD109 expression did not affect 

the treatment response. 

4.3.5. NanoString in CD109 knockdown cell lines 

The cell line THP-1 was transduced with three plasmids, one conferring Puromycin resistance, 

and two conferring the CD109 knockdown shRNA. As the CD109 protein binds to and 

promotes the degradation of TGFβ1 receptor protein144–146, the cells with reduced expression 

of CD109 should have increase signalling through TGFBR1. The transduced THP-1 cell lines 

were treated with cytarabine and TGFβ1 to determine the effects on the TGFβ1 pathways, 

and treatment response, using the NanoString platform. The human cancer pathology probe 

set was selected as this contains the TGFBR1 gene and the downstream signalling molecules 

associated with the TGFβ1 pathway. In table 4.4 there is an outline of the different 

treatments used and the combination of TGFβ1 and Cytarabine for each plasmid condition. 

The cells were seeded at a density of 1x10
6 cells/mL, TGFβ1 was added to the appropriate 

conditions at a concentration of 25ng/mL and incubated for 24 hours before cytarabine was 

added to the corresponding conditions at a concentration of 10µM. After a further 

incubation of 48 hours the cells were harvested, and the RNA was extracted.  

 THP plasmid control THP plasmid 50 THP plasmid 52 

Cytarabine + + - - + + - - + + - - 

TGFβ1 + - + - + - + - + - + - 

TABLE 4.4. EXPERIMENTAL DESIGN FOR THE TREATMENT OF CD109 KNOCKDOWN CELLS. THE THP-1 CELL 

LINE WAS TRANSDUCED WITH SHRNA CONFERRING A CD109 KNOCKDOWN, THE DIFFERENT PLASMID 

CONDITIONS WERE TREATED WITH A COMBINATION OF TGFΒ1 AND CYTARABINE. 

After treatment the cells were harvested, RNA was extracted, and cDNA was synthesised. A 

qPCR was performed for each sample looking at the Genes YWHAZ and a housekeeper and 

CD109 as the gene of interest. From the results of the qPCR the knockdown efficiency was 

calculated for each sample as displayed in table 4.5, comparing the knockdown plasmid 

condition to the corresponding condition for the control plasmid165. Although all cells were 

seeded for the same flask of transduced cells each condition shows a different knockdown 
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efficiency. Interestingly in THP cells transduced with plasmid 50 the knockdown without 

treatment was 76% however with the introduction of cytarabine the knockdown was 

completely null, in comparison to TGFβ1 treatment which reduced the knockdown to 45% 

and with TGFβ1 and cytarabine the reduction was to 25% knockdown. In THP cells 

transduced with plasmid 52 the knockdown without treatment was 40%, the introduction of 

cytarabine had no effect but treatment with TGFβ1 reduced the knockdown to 25%, 

interestingly in the condition with both cytarabine and TGFβ1 the knockdown was null. The 

differences seen between the plasmids is due to the shRNA sequences which target different 

sections of the CD109 RNA, altering the efficiencies. The changes in knockdown efficiency 

between the different treatments is interesting and as yet unexplained: it may be due to 

treatments inducing apoptosis and inhibiting the transcription mechanisms, or CD109 may 

be a TGFβ1 inducible gene which contributes to a negative feedback loop, further 

investigation is needed to fully understand the reason for altered expression between 

conditions. 

Once the CD109 expression had been determined for each of the conditions, the NanoString 

cancer pathology probe set was used to further understand the pathways that are active in 

the cells. Figure 4.17 shows the correlation between the log2 counts of the untreated cells 

compared to the treated cells from the same plasmid group. Figure 4.17A shows the 

correlation in THP-1 cells transfected with the control plasmid, comparing the untreated cells 

to the treated cells. Overall, the counts for the genes are correlated, as displayed in the R2 

value, although there is some variation between the treatment conditions. Treating the cell 

with both cytarabine and TGFβ1 shows the largest change in correlation out of all the 

treatment conditions. In figure 4.17B the correlation between treated and untreated THP-1 

cells transfected with plasmid 50. All conditions are highly correlated with the untreated cells, 

however the condition treated with both cytarabine and TGFβ1 shows the largest variation. 

The same trend is shown in figure 4.17C where the least correlated treatment is the condition 

with both cytarabine and TGFβ1. Although all treatments are highly correlated there is 

variance from the untreated condition in every plasmid group. 
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 Cyt TGFβ1 Average 

Ct YWHAZ 

Average 

Ct CD109 

ΔcT ΔΔcT Estimated 

Knockdown 

efficiency 

TC + + 15.11 18.36 3.26 N/A N/A 

+ - 15.05 18.35 3.30 N/A N/A 

- + 14.16 16.83 2.67 N/A N/A 

- - 14.91 18.08 3.17 N/A N/A 

T50 + + 13.85 17.43 3.58 0.32 25% 

+ - 14.28 17.41 3.13 -0.18 0% 

- + 15.16 19.25 4.08 1.41 45% 

- - 14.14 19.58 5.44 2.27 76% 

T52 + + 15.11 17.97 2.86 -0.40 0% 

+ - 14.64 18.57 3.93 0.63 40% 

- + 15.01 18.64 3.63 0.96 25% 

- - 14.43 18.34 3.92 0.74 40% 

TABLE 4.5. THE CALCULATED KNOCKDOWN EFFICIENCY POST TREATMENT FOR EACH CONDITION. THE THP-

1 CELL LINE WAS TRANSDUCED WITH THREE PLASMIDS, ONE CONTROL PLASMID AND TWO SHRNA PLASMIDS 

FOR CD109. THE CYCLE THRESHOLD WAS DETERMINED BY A QPCR OF THE SAMPLES IN TRIPLICATE, FOR BOTH 

CD109 AND THE HOUSEKEEPING GENE YWHAZ. THE ΔCT WAS CALCULATED AS THE CHANGE IN THE CYCLE 

THRESHOLD BETWEEN THE TWO GENES, THEN THE ΔΔCT WAS CALCULATED AS CHANGE IN THE CYCLE 

THRESHOLD BETWEEN THE CONTROL PLASMID AND THE CORRESPONDING CONDITION OF THE KNOCKDOWN 

PLASMID. 
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FIGURE 4.17. GENE EXPRESSION OF THP-1 CELLS TREATED WITH TGFΒ1 AND CYTARABINE. CORRELATION 

BETWEEN THP-1 CELLS TREATED WITH TGFΒ1 AND CYTARABINE COMPARED TO THP-1 CELLS WITHOUT 

CYTARABINE AND TGFΒ1, FROM THE SAME PLASMID CONDITION.  
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FIGURE 4.18. HEAT MAP WITH HIERARCHAL CLUSTERING OF THE THP-1 CELL LINE. THE NOMENCLATURE ON 

THE RIGHT INDICATES THE PLASMID USED TO TRANSDUCE THE SAMPLE FOLLOWED BY THE CYTARABINE STATUS 

THEN THE TGFΒ1 STATUS. HIERARCHAL CLUSTERING SHOWS THE SAMPLES MOST SIMILAR TO ONE ANOTHER.  
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To compare each of the different conditions the heat map in figure 4.18 was used. The 

hierarchal crusting across the top shows the relationship of each of the genes in the panel. 

Along the side the hierarchal clustering shows which of the conditions are most similar in 

their gene expression. The clustering shows overwhelmingly cytarabine treatment was the 

definitive factor for the gene expression profiles, as indicated by the first “+” or “-“ in the 

sample name, then followed by the TGFβ treatment as indicated by the second “+” or “-“ in 

the sample name. There are two main branches of the hierarchal clustering which are 

distinctly separated by the cytarabine treatment conditions, where all cytarabine positive 

samples are together and all cytarabine negative samples are together. Interestingly the 

plasmid 52 cytarabine negative and TGFβ1 negative sample clustered independently of all 

other samples. Within each subsection of clustering, there is no relationship between which 

sample had the highest CD109 knockdown (table 4.5) and which sample is more closely 

related to the control plasmid. 

In figure 4.19 the fold change was calculated by comparing the CD109 knockdown condition 

to the corresponding condition in the control plasmid, from there the most down regulated 

genes for each of the treatment options for plasmid 50 was compared to the other conditions. 

In figure 4.19A, the top 10 downregulated genes associated with plasmid 50 treated with 

both cytarabine and TGFβ1 are displayed with a comparison to the other treatment 

conditions. Interestingly, looking at the gene RASGRP1, in the treatments with cytarabine 

there is a decrease in this gene, however in conditions without there is an upregulation of 

this gene, although plasmid 52 treated with cytarabine only and without treatment do not 

follow this pattern. The genes DKK1, THBS4, FGF22 and MAP2K6 are highly downregulated 

in plasmid 50 treated with both cytarabine and TGFβ1 but overall were upregulated in the 

other treatment conditions.  

Looking at figure 4.19B, plasmid 50 with cytarabine showed a similar fold change in the genes 

compared to the other conditions. The gene UTY showed the least similar fold change values 

to the other conditions, where this gene was downregulated in the plasmid 50 and 52 

cytarabine treated cells only, where the other conditions showed a slight upregulation or no 

major difference in fold change. In figure 4.19C all the top 10 downregulated genes show a 

similar pattern in the different treatment conditions, with the majority of them showing a 

downregulation and to a similar magnitude.  
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FIGURE 4.19. TOP 10 DOWNREGULATED GENES FOR PLASMID 50. THE THP-1 CELL LINE WAS TRANSDUCED 

WITH PLASMID DNA CONTAINING SHRNA TO REDUCE THE EXPRESSION OF CD109, THESE CELLS WERE 

TREATED WITH A COMBINATION OF CYTARABINE AND TGFΒ1. DIFFERENCE IN GENE EXPRESSION COMPARED 

TO THP-1 CELLS WITHOUT CD109 SHRNA WAS CALCULATED AS A FOLD-CHANGE, WHICH WAS COMPARED 

TO THE DIFFERENT TREATMENT CONDITIONS. 
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Figure 4.19D displayed the top 10 most downregulated genes of plasmid 50 without 

treatment, which has the most highly downregulated gene expression of all the conditions 

in figure 4.19. Although the genes displayed here are highly downregulated with reduced 

CD109 expression, the same genes are not downregulated to the same magnitude in plasmid 

52. The genes displayed show a large fold change, compared to the other conditions where 

there is minimal difference from the control plasmid.  

Figure 4.20 shows the top 10 upregulated genes for plasmid 50 in each of the treatment 

conditions compared to all other treatment conditions. In figure 4.20A there are four genes 

which are upregulated in plasmid 50 treated with both cytarabine and TGFβ1 that show a 

different pattern compared to other conditions. These genes are CDKN2A, IL12B, FGF4 and 

INHBA, which are mostly down regulated in the other conditions or have a very slight 

upregulation. Interestingly the gene IL12B is highly upregulated in plasmid 50 and 52 when 

treated with both TGFβ1 and cytarabine. 

Figure 4.20B shows plasmid 50 treated with cytarabine, in general the top ten most 

upregulated genes in this condition behave similar to all other conditions. However, there 

are two genes that are exclusive to the plasmid 50 conditions, ITGB7 and IL1B, which in the 

plasmid 52 conditions are downregulated.  

Figure 4.20C shows plasmid 50 treated with TGFβ1, overall, the upregulated genes in THP-1 

cells transduced with plasmid 50 treated with just TGFβ1 showed a similar pattern to all other 

conditions. Many of the genes showed plasmid 50 and 52 both treated with TGFβ1 showed 

the same downregulation of the genes and often to the same magnitude. The genes RNF43 

and SFN were highly upregulated compared to all other conditions, showing these are crucial 

to the response in this cell line. 

The most upregulate genes of the THP-1 cell line transduced with plasmid 50 without 

treatment are shown in figure 4.20D. Similar to figure 4.19D the magnitude of the 

upregulated genes are very high, meaning they are very different to the THP-1 cell line 

transduced with plasmid control. The genes SOCS3 and FOS were both upregulated in the 

plasmid 50 conditions but downregulated in the plasmid 52 conditions. The genes HIST1H3H 

and HIST1H3B were both highly upregulated in this condition compared to all other 

conditions which showed minimal difference compared to the control plasmid conditions. 

Overall, there were only 5 genes that were commonly differentially expressed in figures 4.20 

and 19. These were CRLF2, TLX1, NODAL, THBS4 and CACNB4, although there were genes 

from the same family that were common to different conditions. 
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FIGURE 4.20. TOP 10 UPREGULATED GENES OF PLASMID 50. THE THP-1 CELL LINE WAS TRANSDUCED WITH 

PLASMID DNA CONTAINING SHRNA TO REDUCE THE EXPRESSION OF CD109, THESE CELLS WERE TREATED 

WITH A COMBINATION OF CYTARABINE AND TGFΒ1. DIFFERENCE IN GENE EXPRESSION COMPARED TO THP-1 

CELLS WITHOUT CD109 SHRNA WAS CALCULATED AS A FOLD-CHANGE, WHICH WAS COMPARED TO THE 

DIFFERENT TREATMENT CONDITIONS. 
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In figure 4.21 shows the downregulation of genes in THP-1 cells transduced with plasmid 52. 

In figure 4.21A the downregulated genes when the cells were treated with both TGFβ1 and 

cytarabine are shown, notably MMP9 and RASFGRF1 are both down regulated in the plasmid 

52 conditions compared to the plasmid 50 conditions. Overall, the genes shown in this figure 

are not correlated to a specific treatment or plasmid. 

In figure 4.21B, the genes most downregulated in the THP-1 cells transduced with plasmid 

52 treated with just cytarabine are shown. Interestingly, the gene GADD45G is highly 

downregulated all conditions without TGFβ1 but shows upregulation in those conditions 

with TGFβ1. The gene BMP2 was downregulated in both plasmid 50 and 52 treated with just 

cytarabine as opposed to all other conditions which showed slight upregulation. Both MMP9 

and RASFGRF1 were part of the top 10 for this condition and plasmid 52 treated with both 

cytarabine and TGFβ1. 

In figure 4.21C, the THP-1 cells transduced with plasmid 52 were treated with TGFβ1, the top 

10 most downregulated genes are shown. The gene WNT7A was downregulated in both 

plasmid 50 and 52 treated with just TGFβ1 but was upregulated in all other conditions except 

for the untreated plasmid 52. Overall, the genes most downregulated in this condition are 

also downregulated in the other treatment conditions. 

Figure 4.21D shows the top 10 downregulated genes associated with plasmid 52 transduced 

cells without treatment. The gene WNT2B was downregulated in both plasmid 50 and 52 

untreated conditions but upregulated in all other conditions. Interestingly, the gene ITGA8 

was down regulated in all conditions except for plasmid 50 and 52 treated with TGFβ1 and 

Cytarabine. Generally, the genes downregulated in this condition were also downregulated 

in the other conditions. 

In figure 4.22, the genes most upregulated in THP-1 cells transduced with plasmid 52 in 

different treatment conditions are shown. In figure 4.22A the genes upregulated in cells 

treated with both TGFβ1 and cytarabine are shown. Overall, the genes upregulated in this 

condition are also upregulated in the other samples. The gene CNTFR is highly unregulated 

in this condition compared to the other samples which show a very small fold-change 

increase or decrease in comparison. In comparison to the other conditions, ACVRC1 also 

shows an upregulation although there were small fold-change increase or decrease in the 

other conditions. In all conditions with plasmid 52 LEF1 shows high upregulation, but a slight 

upregulation or a downregulation in the plasmid 50 conditions. 
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FIGURE 4.21. TOP 10 DOWNREGULATED GENES FOR PLASMID 52. THE THP-1 CELL LINE WAS TRANSDUCED 

WITH PLASMID DNA CONTAINING SHRNA TO REDUCE THE EXPRESSION OF CD109, THESE CELLS WERE 

TREATED WITH A COMBINATION OF CYTARABINE AND TGFΒ1. DIFFERENCE IN GENE EXPRESSION COMPARED 

TO THP-1 CELLS WITHOUT CD109 SHRNA WAS CALCULATED AS A FOLD-CHANGE, WHICH WAS COMPARED 

TO THE DIFFERENT TREATMENT CONDITIONS. 
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FIGURE 4.22. TOP 10 UPREGULATED GENES FOR PLASMID 52. THE THP-1 CELL LINE WAS TRANSDUCED WITH 

PLASMID DNA CONTAINING SHRNA TO REDUCE THE EXPRESSION OF CD109, THESE CELLS WERE TREATED 

WITH A COMBINATION OF CYTARABINE AND TGFΒ1. DIFFERENCE IN GENE EXPRESSION COMPARED TO THP-1 

CELLS WITHOUT CD109 SHRNA WAS CALCULATED AS A FOLD-CHANGE, WHICH WAS COMPARED TO THE 

DIFFERENT TREATMENT CONDITIONS. 
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Figure 4.22B shows plasmid 52 cells treated with just cytarabine, although there was some 

variance the genes fold-change values were similar to the other conditions, with the 

exception of PLCE1 was upregulated in this condition but only showed minimal changes in 

fold-change for the different conditions.  

In figure 4.22C the genes upregulated in plasmid 52 treated with TGFβ1 are shown, overall, 

the genes that are upregulated in this condition are also upregulated in the other conditions. 

The gene NODAL was upregulated in both plasmid 52 untreated, plasmid 52 treated with just 

TGFβ1 and the plasmid 50 condition also treated with just TGFβ1 but downregulated in the 

other conditions. The gene PIK3R3 was upregulated in all the plasmid 52 conditions but 

downregulated or show minimal fold change differences in the plasmid 50 conditions. 

Figure 4.22D shows the genes most upregulated in cells transduced with plasmid 52 without 

treatment, generally, the genes upregulated in this condition are also upregulated in the 

other conditions. The gene FGF17 was highly upregulated in the untreated plasmid 52 cells 

but showed minimal fold-change differences in the other conditions. Both LEF1 and CPL4A5 

shows upregulation in the plasmid 52 conditions but is downregulated or slightly upregulated 

in the plasmid 50 conditions. 

Between figure 4.21 and 4.22 there were 13 genes which were common between the 

plasmid 52 up and down regulated genes, in comparison to just six for plasmid 50. Overall, 

there were 13 genes which appeared in both plasmid 50 and plasmid 52 analysis, showing 

there are common genes associated with the CD109 knock down cells. 

4.4. Conclusion 

CD109 has been associated with treatment resistance and relapse218,234 in multiple cancers 

as well as cancer progression139,140,187,188,215. The results obtained in this chapter show 

reduced CD109 gene expression does not impact cell growth rate, however, as an 

upregulation has been shown to increase progression in patient samples, it is still crucial to 

understand the role of this gene and the associated protein. The expression of CD109 in AML 

cell lines has no quantitative comparison, it is unknown whether the expression is relatively 

high or low. An additional investigation looking at increased and decreased CD109 gene 

expression in AML, by knock-in and knock-out cell manipulation studies, may indicate if the 

gene has an impact at higher quantities. An alternative method of CD109 knockdown may 

decrease its expression to 0% which would highlight id this gene was critical to cellular 

function or an accessory to tumour progression. 
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Although increased CD109 expression is associated with relapse and treatment resistance218, 

here the results indicate CD109 doesn’t change the cells response to cytarabine treatment, 

therefor must have another role in cancer progression. In different cancers alternative drugs 

are used to treat the specific type of cancer, as this experiment was isolated to cytarabine in 

AML, a wider ranging study of different cancers and their associated treatments would give 

better perspective on the impact of CD109 and treatment response. Although the analysis 

focused on gene expression, the assays used focused on protein function, a better 

understanding of the relationship between transcript and protein is required.  

Relatively little is known about CD109, only that it downregulates TGFBR1 protein145,146,219 on 

the surface of cells, and the soluble147 form also downregulates TGFβ1, any functionality of 

the gene transcript itself is unknown. As the results showed cells with reduced CD109 gene 

expression do not respond differently to TGFβ1 treatment, it is likely the protein expression 

of CD109 was unchanged or other pathways are also involved which have yet to be explained. 

Although the expression of CD109 did not alter the response to TGFβ1, the AML cell lines did 

respond as shown by the cell cycle arrest and the changes in the expression profiles of the 

different treatment conditions. To better understand the role of TGFβ1, treated cells could 

be analysed by mass spectrometry or through RNA sequencing to give a larger profile of the 

responsive cells.  

Gene expression profiles do change depending on the treatment of the cell lines, with some 

commonality of the genes upregulated and downregulated in the cells with the same 

treatment but transduced with different plasmids. A larger comparison of the up and 

downregulated gene expression from the NanoString platform could show which pathways 

are active. To further investigate this, the cell lines should be treated again with a 

combination of cytarabine and TGFβ1, but the samples should be analysed in triplicate to 

ensure any differences are significant from the other conditions. In addition, the treated cells 

should be analysed using mass spectrometry to identify key changes in protein expression. 

Another interesting experiment would be to stain the treated cells with antibodies to identify 

changes in cellular location, as CD109 is a surface marker but is internalised with TGFBR1 

when active. 
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4.4.1. Future work 

During the analysis of gene expression in chapter three, CD109 was identified as a key marker 

in relapse AML. Through literature research, it was shown to be linked to treatment 

resistance, progression and poor overall survival in many138–140,143,164,187,188,215,218 other 

cancers. Transcribed RNA is translated into protein; however, many RNA transcripts have 

functionality independent of their translated protein. The relationship between RNA 

expression and protein expression is not linear, meaning a gene transcribed in small 

quantities may show a high protein expression or vice versa. Relating the RNA expression to 

the protein expression for CD109 would be insightful in determining its influence on cancer 

progression and treatment response. 

It is known that CD109 is a transmembrane protein146, which promotes the internalisation 

and degradation of TGFBR1. It would be interesting to identify the cellular location of the 

CD109 protein in relation to the TGFBR1 protein, especially in different treatment conditions. 

By identifying the different cellular locations of CD109 and how this changes with treatment, 

the function of CD109 can be better explained. 

This series of experiments focuses on a single dose of cytarabine without Daunorubicin: the 

standard treatment for AML includes two chemotherapeutics, cytarabine and Daunorubicin. 

The standard 7+3 treatment is a 7-day continuous infusion of Daunorubicin followed by a 3-

day treatment of cytarabine, the two drugs are used in conjunction as they have two 

different rolls in the treatment of AML. Cytarabine integrates into the DNA and prevents DNA 

synthesis therefor halting cell cycle progression, whereas Daunorubicin is a DNA intercalator 

which prevents DNA replication, in addition it disrupts macromolecules, specifically 

preventing the re-joining of the DNA double helix once broken during DNA replication. One 

focuses on cell cycle arrest whereas the other promotes cell death. In future experiments, 

an adaption of the treatment schedule could be utilised to determine the full effects of 

CD109 on treatment resistance and minimal residual cell populations. Additionally, after the 

initial treatment schedule, any residual cell population should be harvested and expanded 

to see the differences in this resistant population, which would likely be responsible for 

relapse in a patient. 

The three cell lines used in this investigation were from various different patients, but all 

were from relapse AML and all were male: The cell line THP-1 was line established from a 

one-year-old male at relapse, Kasumi-1 from a seven-year-old male at second relapse and 

MolM-13 from a 20-year-old male at relapse235–237. As the cell lines were from relapse 
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patients it is logical to assume, they may have some native resistance to cytarabine and may 

activate alternative pathways, owing to their survival. Additional cell lines which are from 

diagnostic samples would be ideal to test how CD109 expression changes treatment 

response; a comparison back to the relapse cell lines could highlight fundamental differences. 

To better investigate the impact of CD109, patient samples at different clinical time points 

could be analysed and correlated with the treatment received. Different clinical time points, 

for example diagnosis, relapse and remission, could elucidate changes of CD109 expression 

over time and understand its role in cancer progression. 
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Chapter 5 - Discussion and future work 

5.1. Introduction 

Cancer is a complex group of diseases that share the same fundamental characteristics of 

uncontrolled proliferation and the ability to metastasis, and as such here are many different 

types of cancer affecting every tissue in the body. It is said that 50% of the population will 

get cancer, but cancer affects everyone, including friends, family and the team caring for the 

patient.  

Most cancers are solid tumours, however, there are also an array of blood cancers. There are 

four main subtypes of blood cancer, AML, CML, ALL and CLL; of all these, AML has the highest 

mortality rate and remains the second most common type of blood cancer. The survival rate 

for AML is very poor at just 30%64,73,238. Around 50% of AML patient achieve remission, of 

those patients, 50% will relapse within three years, which is associated with poor 

prognosis239. 

After treatment for AML, a sample is taken and tested for minimal residual disease73,105,108,239, 

modern tests are far more sensitive compared to the older tests, allowing MRD to be 

detected even in small quantities, not just through the observation of abnormal cells but 

through molecular testing240. Relapse is associated with MRD, and resistant sub-populations 

of cells present at diagnosis104,106,241,242. The resistant sub-populations have an evolutionary 

survival advantage over other AML cells in the bone marrow241–243, which means these cells 

resist treatment and can re-colonise the bone marrow. AML has many leukemic stem cell 

properties which affords them chemo-resistance and the ability to self-renew241–243. Cell can 

also acquire mutations during the treatment process, which provide resistance to 

treatment241–243, and the new sub-clone can remain in-situ. 

Biomarkers are key tools used in the clinical environment, which are a measurable biological 

component that is characteristic of a particular disease or disease state166. Of particular 

interest are molecular biomarkers, which can be obtained from a patient sample and 

measured by protein, DNA or RNA expression. There are seven main types of biomarker, all 

with different applications111,120, although the primary biomarker type of interest in this 

investigation is the prognostic biomarker. A prognostic biomarker allows the prediction of a 

particular outcome, in this instance, determining which patients will relapse and which will 

not. 
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As relapse is so prevalent in AML239,241,242 there is high demand for a clinical tool to predict 

relapse before it happens. Patients identified as high-risk would benefit from closer 

monitoring and alternative or more aggressive treatment option. As such the first key aim of 

this investigation was to develop a biomarker panel to predict relapse in AML. In the process 

of biomarker discovery, different methods were trialled, and a robust workflow was 

developed, which will speed up the discovery pipeline in the future. By combining machine 

learning and statistical approaches of biomarker discovery, a workflow that is quick and easy 

to understand has been developed, which was the second key aim of this investigation. As 

part of the biomarker discovery workflow clinically relevant genes were identified; the third 

aim of this investigation is to determine the impact of clinically relevant genes on AML. 

5.2. Discussion 

5.2.1. Methods of biomarker discovery 

There are several methods of biomarker discovery used in industry, ranging from 

computational machine learning129 to statistical analysis111, each with its own advantages 

and disadvantages179. Each method of biomarker discovery is valid and has the potential to 

discover a robust biomarker panel. A drawback with heavily computational methods is the 

lack of understanding and trust by the wider scientific community, and as such the 

application of the discovered biomarkers is somewhat limited. 

For this investigation a variety of biomarker discovery methods were implemented and 

combined to determine which gave the best overall panel of biomarkers, in the context of 

relapse in AML. A key aim of the workflows of biomarker discovery was to achieve 

transparency and ensure it was understandable by non-experts, this encourages trust in the 

prognostic panel discovered and allows for wider application.  

Six different workflows were developed and tested, each returning a unique panel of 

biomarkers. The biomarker panels were discovered in the HOVON dataset and validated in 

two additional datasets, TCGA and TARGET, to determine which could be applied beyond the 

discovery dataset. Form the six different workflows tested in this investigation, the binary 

logistic regression workflow was the best overall: the panel was significant in both adult 

datasets, HOVON and TCGA, which was not seen in the other workflows. The BLR workflow 

was not significant in the TARGET dataset, which is a childhood dataset, and therefore some 

intrinsic differences are expected which cannot be controlled including increased survival 

and increased relapse free survival. 
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The panel discovered through the BLR workflow comprised of 9 different genes: SOCS2-

AS1191, HAL192, NYNRIN196, MXRA7199, AGTPBP1200, LAPTM4B201, MPO207, PYROXD1208 and 

FEM1C210. Each of the genes in the panel can independently determine which patients are at 

risk of relapse, however in combination they provide a powerful prognostic tool which will 

determine this to a higher degree of accuracy. Through literature review, each of the genes 

or their associated protein has been linked to cancer. Many of the genes discovered in this 

panel are linked to cell cycle control, which is usually tightly regulated in proliferation, but 

dysregulated in cancer. The genes discovered here provides a key insight to target genes, 

and cellular processes even before a risk score has been calculated. 

The elements involved in the BLR workflow are transparent and trusted statistical 

methods244,245, which allows for a wider audience to understand the workflow and apply it. 

The workflow has the potential to be utilised for different clinical outcomes and for different 

conditions. As the constituting elements of the workflow don’t require a time point, only a 

binary condition, many other clinical outcomes can be investigated. As the workflow is based 

on statistics this can be easily coded in R, which would ensure its correct application and the 

reproducibility. 

The score developed in this investigation has the potential to indicate which patients are at 

risk of relapse and provide assist clinicians by identifying patients in need of additional 

monitoring and more aggressive treatment. However, as this score was only validated in 

patient datasets it is uncertain how it will perform in a clinical setting and which platform is 

best for identifying these patients. Additional testing is required in patient samples using 

equipment most commonly found in a biomedical setting, likely a qPCR machine. Firm 

boundaries are required when identifying patients who are likely to relapse, as such the score 

developed here would benefit from further refinement. 

5.2.2. CD109 in AML 

During the analysis of gene expression in relation to relapse in AML, the gene CD109 was 

identified as a key marker. The gene CD109 had the highest AUC of all the genes in the 

HOVON dataset, when analysed using ROC curves, indicating it can independently predict 

relapse in AML. Through literature research, CD109 has been linked to treatment 

resistance218, progression140,246 and poor overall survival164,187,188 in many other cancers. It is 

known that CD109 is a transmembrane protein, which promotes the internalisation and 

degradation of TGFBR1143,144,146, in turn reducing the signalling potential. 
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As increased CD109 expression was found to be associated with adverse outcomes in AML 

and other cancer, this gene was investigated further in the context of AML. In this 

investigation AML cells were transduced with plasmid DNA that confers CD109 shRNA to 

reduce the expression of CD109. The cells with reduced CD109 expression were treated with 

TGFβ1 and Cytarabine, at a dose dependent on the cell line. To determine the impact of 

CD109 expression on treatment response and survival, the growth rate was measured, and 

gene expression changes were analysed. 

The results obtained show reduced CD109 gene expression does not impact cell growth rate, 

indicating is not a critical component for cell cycle progression. Because CD109 is a co-

receptor for TGFBR1, the cells were treated with TGFβ1 to determine the impact on cell 

growth; this induced cell cycle arrest in the AML cell lines, however down regulation of 

CD109 had no impact on the magnitude of the response. The cell lines Kasumi-1 and MolM-

13 had the most dramatic reduction in proliferation, which was completely arrested. In THP-

1 cells the proliferation rate was reduced but not to the same degree as the other cell lines. 

It has previously been established that TGFβ1 induces cell cycle arrest226,247,248, however, this 

cytokine has also been implicated in differentiation225,249–251 and metastasis227,228,252,253, these 

processes are both heavily reliant on gene expression changes251,252,254–257. Although TGFβ1 

has many roles, the specific pathway activated will depend heavily on the microenvironment 

and other cytokines present. It is important to note the concentration of TGFβ1 was high in 

comparison to what would be expected in a biological context. 

As CD109 has been associated with treatment resistance in the literature218, the effect of 

CD109 expression and the response to cytarabine was investigated. As it is known that TGFβ1 

has a roll in microenvironment a combination of Cytarabine and TGFβ1 were used to treat 

the cells. Four main conditions were investigated, untreated, cytarabine, TGFβ1 and 

Cytarabine with TGFβ1. It was shown that cytarabine induces cell cycle arrest in AML cell 

lines, but the expression of CD109 did not affect the magnitude of response. When cell lines 

were treated with cytarabine in combination with TGFβ1, the cell cycle was arrested and the 

cells began to undergo apoptosis, again the expression of CD109 did not impact the response 

to treatment. Although the expression of CD109 did not impact the response to treatment 

through the observation of cell growth curves, the gene expression profiles do change 

depending on the treatment conditions. Some commonality was observed between the 

genes upregulated and downregulated in the cells with the same treatment but transduced 

with different plasmids. Two key genes observed were NODAL and LEFTY1258,259, both are 

secreted ligands of the TGFβ family of proteins but have largely different roles in the TGF 
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signalling pathway. NODAL is an activator of TGFβ signalling through the recruitment of 

SMAD, whereas LEFTY1 is an inhibitor of TGFβ signalling predominantly the inhibition of the 

NODAL/TGFβ interaction260. 

Although reducing CD109 expression did not alter the response to treatment in terms of 

growth rate in AML cell lines, the cells do respond through modified gene expression profiles. 

The changes in gene expression profiles indicate alternative pathways are activated through 

the treatment. A further analysis of the gene expression profiles will provide a better 

understanding of the role CD109 plays in cancer progression, relapse and treatment 

resistance. To better understand the role of TGFβ1 in treatment response, de-novo AML cell 

lines should be used as opposed to the cell lines obtained from relapse AML, which likely 

already have a resistance to treatment. 

5.3. Conclusion 

Overall, this investigation has generated a biomarker panel that can be used to predict 

relapse in AML with an accuracy of 76% in the HOVON dataset and 67% in the TCGA dataset. 

The panel consisted of 9 genes, many of which have been previously identified in different 

cancers and are heavily involved in cell cycle control. This panel can be used to aid clinicians 

in determining which patients should receive additional monitoring and alternative 

treatments, with an aim to improve overall survival in AML. Although this score provides an 

excellent foundation, the score should be validated further in additional datasets and patient 

samples, ensuring it can be used in a clinical setting. 

Through the development of the biomarker discovery workflow a consistent and relatively 

fast method has been established for the discovery of clinically relevant biomarkers. 

Currently there are very few clinically relevant biomarkers available, however this workflow 

aims to speed up this process and provide an accurate panel for the desired clinical 

annotation. The binary logistic regression workflow is simple to follow and can be applied in 

a variety of situations provided there is a binary event.  

CD109 was identified as a clinically relevant gene in relation to relapse, and though literature 

searching it was implicated in treatment resistance and cancer progression. This 

investigation established that a decreased expression of CD109 did not alter the response to 

TGFβ1 and cytarabine, in that the cell proliferation rate was no different to cells with normal 

levels of CD109 expression. However, there was altered gene expression in cells with 

reduced CD109 expression in relation to different treatment conditions. A more in-depth 
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investigation would provide a better understanding of the pathways activated and 

deactivate in response to TGFβ1 and cytarabine, and how these pathways are altered with 

CD109 expression. 

It is important to recognise the benefits of the work already done, but also see the 

conclusions as a steppingstone on the way to a fuller understanding of relapse in AML and 

the impact of CD109 in cancer. 

5.4. Future work 

5.4.1. Reverse engineering the score 

Although the score overall is consistent between the HOVON and TCGA datasets, a drawback 

of the score created is that it relies on median splits to determine whether a patient is “high” 

or “low” risk with arbitrary boundary determined by the individual dataset, meaning the 

score is less applicable to a clinical setting. The score needs to be more applicable to a clinical 

setting, and a fundamental change in the normalisation process will facilitate this. 

The current process of normalisation begins after the data is collected from an array or RNA-

sequencing platform. The data is quality checked and RMA normalised to ensure the data is 

consistent within a dataset, at this point the data is used for biomarker discovery. In future 

work the datasets can be merged, and a-quantile normalisation can be used to ensure 

consistency between datasets, this will facilitate direct comparison between platforms. 

Using the processed data, the discovery workflows can be trialled again, and it will become 

apparent whether the score and workflow is good or if a different workflow and panel 

overtake its prognostic benefits. After the overall panel has been determined and validated, 

the original data, before a-quantile normalisation, could be used to re-calculate the score 

and determine boundaries for each of the patients in the datasets. This should give a higher 

predicting score with better more specific boundaries facilitating increased discrimination 

between high and low risk patients. 

5.4.2. Application to other cancers 

AML is a small part of the cancer story; although AML is the largest cause of leukaemia deaths 

in the UK, many other cancers have a higher incidence, mortality and relapse rate. The 

workflows developed for biomarker discovery should be applied to other cancers and other 
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clinically relevant points. This will allow for the workflows to be validated and a useful 

biomarker panel to be developed. 

5.4.3. CD109 in AML 

To fully understand the role of CD109 in AML native expression of CD109 gene and protein 

should be measured, this would indicate the relationship between gene and protein 

expression, whether it is solely an upregulation of the gen or if the protein is also over 

expressed. By indicating a base line expression, the cells can be transduced to again reduce 

the expression of CD109 and separately to increase the expression of CD109, again furthering 

the understanding of the translational relationship. The full range of differently expressed 

CD109 cells can be treated with TGFβ1 and cytarabine to determine the effect on cell 

behaviour and survival. Ideally the cells would be analysed with both RNA sequencing and 

mass-spectrometry to fully establish the changes that occur on a molecular level. 

The standard treatment for AML uses a combination of Daunorubicin and cytarabine, 

whereas this series of experiments focused on a single dose of cytarabine. To improve on 

this existing work an adapted treatment schedule could be utilised, to determine the full 

effects of CD109 on treatment response. This would give a wider view of the effects of CD109 

including treatment resistance, proliferation, apoptosis and activated signalling pathways, in 

a more accurate experimental design. 

As CD109 is known to bind to and internalise TGFBR1, it would be interesting to identify the 

cellular location of the CD109 protein in relation to the TGFBR1 protein, especially in 

different treatment conditions. This could be achieved through antibody staining of each of 

the conditions, for both CD109 and TGFBR1. By identifying the different cellular locations of 

CD109 and how this change with treatment, the function of CD109 can be better explained. 

This experiment would determine if the over expression of CD109 causes increased function 

in the cancerous cells. 

5.4.4. CD109 in other cancers 

The gene CD109 was identified in most of the workflows used in this investigation. The gene 

CD109 had the highest AUC out of all the genes present in the HOVON dataset, indicate it 

has a key role in relapse. This gene has also been implicated in treatment resistance, relapse 

and progression in other cancers, showing it has an important influence on cancer as a whole, 

as this gene has such an impact in cancer it warrants further investigation. Through dataset 
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searching and literature review the larger story of CD109 can be shown, particularly looking 

at the association of CD109 to outcomes in different clinical datasets. 

To fully investigate the role of CD109, cell lines from a variety of cancers can be transduced 

with knock-down plasmid DNA and knock-in DNA to determine how both under and over 

expression changes cellular behaviour. These cells can be treated with TGFβ1 and 

chemotherapeutic drugs to determine if increased or decreased CD109 expression changes 

response to treatment. Ideally the protein expression changes would be analysed using 

mass-spectrometry and the gene expression changes analysed using RNA sequencing. 
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SUPPLEMENTARY TABLES 

5.4.5. Supplementary table 1 

Gene name B S.E. Wald Sig. Exp(B) 

95% 

C.I.for 

EXP(B) 

Lower 

95% 

C.I.for 

EXP(B) 

Upper 

CD109 0.379 0.080 22.349 0.000 1.461 1.248 1.709 

ADGRG1 0.384 0.084 20.833 0.000 1.468 1.245 1.731 

NYNRIN 0.611 0.142 18.489 0.000 1.842 1.394 2.433 

SIRPB2 -0.359 0.084 18.351 0.000 0.698 0.593 0.823 

ACVR1B -0.590 0.142 17.208 0.000 0.554 0.419 0.733 

FUT4 -0.438 0.108 16.518 0.000 0.645 0.522 0.797 

ZC3H12C 0.365 0.091 15.931 0.000 1.440 1.204 1.723 

SOCS2-AS1 0.507 0.128 15.637 0.000 1.660 1.291 2.134 

HDAC4 -0.397 0.102 15.112 0.000 0.672 0.550 0.821 

DNMT3B 0.363 0.094 14.925 0.000 1.437 1.196 1.727 

HAL -0.482 0.125 14.827 0.000 0.618 0.483 0.789 

KIAA0125 0.397 0.106 14.051 0.000 1.488 1.209 1.831 

RAB27A -0.358 0.097 13.681 0.000 0.699 0.579 0.845 

ADGRG5 0.391 0.106 13.615 0.000 1.479 1.201 1.820 

PIWIL4 -0.375 0.103 13.211 0.000 0.687 0.561 0.841 

SOCS2 0.221 0.063 12.370 0.000 1.247 1.103 1.411 

SVIP 0.436 0.134 10.516 0.001 1.546 1.188 2.012 

ARHGAP22 0.318 0.098 10.483 0.001 1.374 1.134 1.665 

MAP7 0.245 0.076 10.392 0.001 1.278 1.101 1.484 

MYO1B 0.366 0.114 10.242 0.001 1.442 1.152 1.805 

PXK -0.393 0.125 9.802 0.002 0.675 0.528 0.863 

SPNS3 0.318 0.105 9.234 0.002 1.375 1.120 1.688 

TRIM16 0.329 0.110 8.891 0.003 1.389 1.119 1.725 

MID1IP1 -0.364 0.127 8.169 0.004 0.695 0.541 0.892 

SPNS2 0.323 0.113 8.138 0.004 1.381 1.106 1.723 

FNDC3B -0.337 0.121 7.810 0.005 0.714 0.564 0.904 
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MAP1A 0.320 0.117 7.521 0.006 1.377 1.096 1.731 

ABCG1 0.412 0.154 7.189 0.007 1.510 1.117 2.041 

ST3GAL6 -0.287 0.108 7.103 0.008 0.750 0.608 0.927 

MSI2 0.180 0.069 6.821 0.009 1.197 1.046 1.370 

CXXC5 0.231 0.089 6.784 0.009 1.260 1.059 1.498 

SV2A 0.291 0.114 6.552 0.010 1.337 1.070 1.670 

TLR2 -0.234 0.093 6.400 0.011 0.791 0.660 0.949 

CD53 -0.349 0.139 6.326 0.012 0.706 0.538 0.926 

LCT 0.354 0.143 6.100 0.014 1.425 1.076 1.887 

CCDC102A 0.322 0.136 5.581 0.018 1.380 1.056 1.803 

DEAF1 0.341 0.146 5.493 0.019 1.407 1.057 1.871 

HOMER3 -0.188 0.081 5.309 0.021 0.829 0.707 0.972 

ADPGK -0.434 0.191 5.141 0.023 0.648 0.445 0.943 

DAPK1 0.205 0.091 5.012 0.025 1.227 1.026 1.468 

SLC31A2 -0.226 0.103 4.818 0.028 0.797 0.652 0.976 

GNA12 0.296 0.139 4.518 0.034 1.344 1.023 1.766 

MAST4 0.277 0.131 4.501 0.034 1.319 1.021 1.703 

FKBP15 -0.282 0.134 4.457 0.035 0.754 0.580 0.980 

USP20 0.287 0.137 4.363 0.037 1.333 1.018 1.745 

GPSM1 0.213 0.103 4.285 0.038 1.237 1.011 1.514 

TMEM167A -0.295 0.144 4.207 0.040 0.744 0.561 0.987 

LILRA2 -0.172 0.084 4.167 0.041 0.842 0.713 0.993 

EMILIN2 -0.191 0.095 4.044 0.044 0.826 0.686 0.995 

MFSD1 -0.278 0.140 3.935 0.047 0.757 0.576 0.997 

PHC2 -0.352 0.178 3.928 0.047 0.703 0.496 0.996 

FRMD4B 0.168 0.085 3.889 0.049 1.183 1.001 1.399 

P4HB -0.301 0.156 3.715 0.054 0.740 0.544 1.005 

AGTRAP -0.131 0.106 1.519 0.218 0.878 0.713 1.080 

ARID3B 0.318 0.169 3.539 0.060 1.374 0.987 1.913 

ARRDC1 -0.168 0.150 1.262 0.261 0.845 0.630 1.134 

ATG7 -0.242 0.136 3.178 0.075 0.785 0.602 1.024 

CPD -0.183 0.112 2.673 0.102 0.833 0.669 1.037 

CRADD 0.106 0.174 0.373 0.541 1.112 0.791 1.563 
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DNAJC5 -0.191 0.143 1.779 0.182 0.826 0.624 1.094 

DPP4 0.283 0.148 3.676 0.055 1.328 0.994 1.774 

ERMP1 0.234 0.124 3.544 0.060 1.264 0.990 1.613 

FHL1 0.147 0.078 3.579 0.059 1.159 0.995 1.350 

GALNS -0.277 0.162 2.940 0.086 0.758 0.552 1.040 

GLA -0.295 0.157 3.532 0.060 0.745 0.547 1.013 

HSF5 0.097 0.138 0.494 0.482 1.101 0.841 1.442 

LRBA 0.171 0.120 2.033 0.154 1.187 0.938 1.502 

MCU 0.003 0.165 0.000 0.987 1.003 0.726 1.385 

MFSD10 -0.182 0.134 1.853 0.173 0.834 0.641 1.083 

MLX -0.240 0.156 2.356 0.125 0.787 0.579 1.069 

NFATC2 0.272 0.141 3.713 0.054 1.312 0.995 1.730 

NIPSNAP1 0.170 0.166 1.051 0.305 1.185 0.857 1.640 

PDK2 0.171 0.160 1.137 0.286 1.186 0.867 1.623 

PEX5 0.163 0.158 1.063 0.303 1.177 0.864 1.603 

PHKA2 -0.223 0.169 1.739 0.187 0.800 0.574 1.115 

PRDM15 0.114 0.170 0.448 0.504 1.120 0.803 1.562 

PRKCH 0.053 0.091 0.342 0.559 1.055 0.882 1.261 

PRKD2 0.197 0.160 1.516 0.218 1.217 0.890 1.664 

RNF185 -0.096 0.168 0.331 0.565 0.908 0.654 1.261 

SEMA4F 0.086 0.194 0.198 0.657 1.090 0.745 1.595 

SPPL2B 0.218 0.144 2.305 0.129 1.244 0.938 1.649 

TCF4 0.138 0.072 3.663 0.056 1.148 0.997 1.323 

TLR5 -0.048 0.095 0.251 0.616 0.953 0.791 1.149 

ZNF438 -0.273 0.162 2.826 0.093 0.761 0.554 1.046 

SUPPLEMENTARY TABLE 5.1. UNIVARIATE BLR RESULTS OF THE ANN WORKFLOW. AFTER THE ANN WAS 

PERFORMED THE 84 UNIQUE GENES, IDENTIFIED AS RELATIVE TO RELAPSE, WERE VALIDATED USING BLR, FROM 

WHICH 52 WERE SIGNIFICANTLY ASSOCIATED WITH RELAPSE AS SHOWN IN GREEN. 
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5.4.6. Supplementary table 2 

Gene 

name B S.E. Wald Sig. Exp(B) 

95% 

C.I.for 

EXP(B) 

Lower 

95% 

C.I.for 

EXP(B) 

Upper 

CD109 0.255 0.101 6.370 0.012 1.291 1.059 1.573 

SLC31A2 0.380 0.183 4.291 0.038 1.462 1.021 2.095 

ADPGK -0.894 0.342 6.821 0.009 0.409 0.209 0.800 

ACVR1B -0.763 0.238 10.277 0.001 0.466 0.292 0.743 

DNMT3B 0.587 0.173 11.511 0.001 1.799 1.281 2.526 

MSI2 -0.255 0.127 4.019 0.045 0.775 0.604 0.994 

SOCS2-

AS1 

0.548 0.177 9.571 0.002 1.729 1.222 2.446 

CEBPA 

double 

mutations 

-0.802 0.497 2.603 0.107 0.449 0.169 1.188 

SUPPLEMENTARY TABLE 5.2. MULTIVARIATE BLR OF THE ANN WORKFLOW INCLUDING CEBPA. THE GENES 

WHICH SIGNIFICANTLY CONTRIBUTED TO THE SCORE BASED ON THE MULTIVARIATE BLR IN THE ANN 

WORKFLOW WERE ANALYSED AGAIN USING A BLR BUT INCLUDED CLINICAL ANOTATIONS. 
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5.4.7. Supplementary table 3 

Gene 

name B S.E. Wald Sig. Exp(B) 

95% 

C.I.for 

EXP(B) 

Lower 

95% 

C.I.for 

EXP(B) 

Upper 

CD109 0.302 0.098 9.408 0.002 1.352 1.115 1.640 

SLC31A2 0.397 0.182 4.752 0.029 1.487 1.041 2.124 

ADPGK -0.949 0.340 7.787 0.005 0.387 0.199 0.754 

ACVR1B -0.762 0.237 10.337 0.001 0.467 0.293 0.743 

DNMT3B 0.544 0.170 10.242 0.001 1.723 1.235 2.405 

MSI2 -0.277 0.128 4.704 0.030 0.758 0.590 0.974 

SOCS2-

AS1 

0.553 0.176 9.882 0.002 1.738 1.231 2.454 

flt3-itd 0.252 0.277 0.826 0.363 1.287 0.747 2.217 

SUPPLEMENTARY TABLE 5.3. MULTIVARIATE BLR OF THE ANN WORKFLOW INCLUDING FLT3-ITD. THE 

GENES WHICH SIGNIFICANTLY CONTRIBUTED TO THE SCORE BASED ON THE MULTIVARIATE BLR IN THE ANN 

WORKFLOW WERE ANALYSED AGAIN USING A BLR BUT INCLUDED CLINICAL ANOTATIONS. 
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5.4.8. Supplementary table 4 

Gene name B S.E. Wald Sig. Exp(B) 

95% 

C.I.for 

EXP(B) 

Lower 

95% 

C.I.for 

EXP(B) 

Upper 

CD109 0.275 0.099 7.742 0.005 1.317 1.085 1.598 

SLC31A2 0.369 0.184 4.021 0.045 1.446 1.008 2.073 

ADPGK -0.996 0.344 8.399 0.004 0.369 0.188 0.724 

ACVR1B -0.680 0.242 7.893 0.005 0.506 0.315 0.814 

DNMT3B 0.547 0.171 10.221 0.001 1.727 1.236 2.415 

MSI2 -0.282 0.129 4.796 0.029 0.754 0.586 0.971 

SOCS2-AS1 0.605 0.180 11.332 0.001 1.831 1.287 2.603 

t(8;21)(q22;q22) -0.682 0.402 2.882 0.090 0.505 0.230 1.111 

SUPPLEMENTARY TABLE 5.4. MULTIVARIATE BLR OF THE ANN WORKFLOW INCLUDING T(8;21)(Q22;Q22). 

THE GENES WHICH SIGNIFICANTLY CONTRIBUTED TO THE SCORE BASED ON THE MULTIVARIATE BLR IN THE 

ANN WORKFLOW WERE ANALYSED AGAIN USING A BLR BUT INCLUDED CLINICAL ANOTATIONS. 
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5.4.9. Supplementary table 5 

Gene name B S.E. Wald Sig. Exp(B) 

95% 

C.I.for 

EXP(B) 

Lower 

95% 

C.I.for 

EXP(B) 

Upper 

CD109 0.273 0.100 7.409 0.006 1.313 1.079 1.598 

SLC31A2 0.374 0.183 4.169 0.041 1.454 1.015 2.083 

ADPGK -0.853 0.343 6.168 0.013 0.426 0.217 0.835 

ACVR1B -0.735 0.238 9.509 0.002 0.479 0.301 0.765 

DNMT3B 0.496 0.173 8.230 0.004 1.643 1.170 2.306 

MSI2 -0.253 0.128 3.917 0.048 0.776 0.604 0.998 

SOCS2-AS1 0.548 0.176 9.677 0.002 1.730 1.225 2.443 

Cytogenetic 

Risk 

0.332 0.206 2.603 0.107 1.394 0.931 2.088 

SUPPLEMENTARY TABLE 5.5. MULTIVARIATE BLR OF THE ANN WORKFLOW INCLUDING CYTOGENETIC RISK. 

THE GENES WHICH SIGNIFICANTLY CONTRIBUTED TO THE SCORE BASED ON THE MULTIVARIATE BLR IN THE 

ANN WORKFLOW WERE ANALYSED AGAIN USING A BLR BUT INCLUDED CLINICAL ANOTATIONS. 

  



 Page xxx 
 

5.4.10. Supplementary Table 6 

Gene FDR Original 

CD109 0.000 0.000 

ADGRG1 0.001 0.000 

NYNRIN 0.001 0.000 

SIRPB2 0.001 0.000 

FUT4 0.002 0.000 

ACVR1B 0.003 0.000 

SOCS2-AS1 0.003 0.000 

ZC3H12C 0.004 0.000 

RAB27A 0.007 0.000 

HDAC4 0.007 0.000 

DNMT3B 0.007 0.000 

HAL 0.008 0.000 

PIWIL4 0.009 0.000 

NGFRAP1 0.009 0.000 

TPM2 0.009 0.000 

TES 0.010 0.000 

KIAA0125 0.010 0.000 

ADGRG5 0.010 0.000 

EVI2B 0.010 0.000 

SOCS2 0.011 0.000 

SUPPLEMENTARY TABLE 5.6. CORRECTED P VALUE FOR THE T-TEST METHOD. ALL THE GENES IN THE HOVON 

DATASET WERE ANALYSED USING A T-TEST, THE P-VALUE WAS CORRECTED FOR THE FALSE DISCOVERY RATE. 

THE TOP 20 SIGNIFICANT GENES ARE SHOWN HERE 
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5.4.11. Supplementary table 7 

Gene 

Name B S.E. Wald Sig. Exp(B) 

95% 

C.I.for 

EXP(B) 

Lower 

95% 

C.I.for 

EXP(B) 

Upper 

CD109 0.379 0.080 22.349 0.000 1.461 1.248 1.709 

ADGRG1 0.384 0.084 20.833 0.000 1.468 1.245 1.731 

NYNRIN 0.611 0.142 18.489 0.000 1.842 1.394 2.433 

FUT4 -0.438 0.108 16.518 0.000 0.645 0.522 0.797 

ACVR1B -0.590 0.142 17.208 0.000 0.554 0.419 0.733 

SOCS2-AS1 0.507 0.128 15.637 0.000 1.660 1.291 2.134 

ZC3H12C 0.365 0.091 15.931 0.000 1.440 1.204 1.723 

RAB27A -0.358 0.097 13.681 0.000 0.699 0.579 0.845 

HDAC4 -0.397 0.102 15.112 0.000 0.672 0.550 0.821 

DNMT3B 0.363 0.094 14.925 0.000 1.437 1.196 1.727 

HAL -0.482 0.125 14.827 0.000 0.618 0.483 0.789 

PIWIL4 -0.375 0.103 13.211 0.000 0.687 0.561 0.841 

NGFRAP1 0.261 0.069 14.275 0.000 1.298 1.134 1.485 

TPM2 0.415 0.110 14.128 0.000 1.514 1.219 1.879 

TES -0.397 0.116 11.779 0.001 0.672 0.536 0.843 

KIAA0125 0.397 0.106 14.051 0.000 1.488 1.209 1.831 

ADGRG5 0.391 0.106 13.615 0.000 1.479 1.201 1.820 

EVI2B -0.391 0.111 12.391 0.000 0.676 0.544 0.841 

SOCS2 0.221 0.063 12.370 0.000 1.247 1.103 1.411 

SUPPLEMENTARY TABLE 5.7. UNIVARIATE BLR FOR THE T-TEST METHOD. ALL THE GENES IN THE HOVON 

DATASET WERE ANALYSED USING A T-TEST, THE TOP 20 SIGNIFICANT GENES WERE ANALYSED USING A 

UNIVARIATE BLR.  
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5.4.12. Supplementary table 8 

Gene name B S.E. Wald Sig. Exp(B) 

95% 

C.I.for 

EXP(B) 

Lower 

 95% 

C.I.for 

EXP(B) 

Upper 

CD109 0.379 0.080 22.349 0.000 1.461 1.248 1.709 

ADGRG1 0.384 0.084 20.833 0.000 1.468 1.245 1.731 

SIRPB2 -0.359 0.084 18.351 0.000 0.698 0.593 0.823 

FUT4 -0.438 0.108 16.518 0.000 0.645 0.522 0.797 

ACVR1B -0.590 0.142 17.208 0.000 0.554 0.419 0.733 

NYNRIN 0.611 0.142 18.489 0.000 1.842 1.394 2.433 

HAL -0.482 0.125 14.827 0.000 0.618 0.483 0.789 

ZC3H12C 0.365 0.091 15.931 0.000 1.440 1.204 1.723 

HDAC4 -0.397 0.102 15.112 0.000 0.672 0.550 0.821 

RAB27A -0.358 0.097 13.681 0.000 0.699 0.579 0.845 

DNMT3B 0.363 0.094 14.925 0.000 1.437 1.196 1.727 

PIWIL4 -0.375 0.103 13.211 0.000 0.687 0.561 0.841 

SOCS2-AS1 0.507 0.128 15.637 0.000 1.660 1.291 2.134 

KIAA0125 0.397 0.106 14.051 0.000 1.488 1.209 1.831 

NGFRAP1 0.261 0.069 14.275 0.000 1.298 1.134 1.485 

ADGRG5 0.391 0.106 13.615 0.000 1.479 1.201 1.820 

ALDH1A1 0.278 0.083 11.196 0.001 1.320 1.122 1.554 

ST6GALNAC4 0.393 0.116 11.483 0.001 1.481 1.180 1.859 

CD58 -0.384 0.108 12.747 0.000 0.681 0.552 0.841 

TPM2 0.415 0.110 14.128 0.000 1.514 1.219 1.879 

SUPPLEMENTARY TABLE 5.8. UNIVARIATE BLR FOR THE ANN SECOND WORKFLOW. A T-TEST WAS USED TO 

IDENTIFY THE TOP 1000 MOST SIGNIFICANT GENES WHICH WERE THEN TAKEN TO THE ANN ALGORITHM, 

WHICH WAS USED TO IDENTIFY THE TOP 20 GENES WITH THE LOWEST AVERAGE TEST ERROR. THE TOP 20 GENES 

WERE VALIDATED USING A BLR AS SHOWN HERE. 
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5.4.13. Supplementary table 9 

 Gene AUC Threshold Specificity Sensitivity Accuracy 

1 CD109 0.64327284 6.56919522 0.69536424 0.54978355 0.60732984 

2 ACVR1B 0.63435681 9.20827611 0.53642384 0.68831169 0.62827225 

3 HAL 0.63214931 8.79603168 0.53642384 0.69264069 0.63089005 

4 ADGRG1 0.63183395 9.68445381 0.69536424 0.51515152 0.58638743 

5 SIRPB2 0.63008515 8.82584584 0.61589404 0.61038961 0.61256545 

6 NYNRIN 0.62711792 7.6329554 0.52980132 0.66233766 0.60994764 

7 FUT4 0.62610017 10.314327 0.65562914 0.56709957 0.60209424 

8 HDAC4 0.6256128 7.63938101 0.63576159 0.61038961 0.62041885 

9 ZC3H12C 0.62501075 5.7619593 0.60264901 0.61038961 0.60732984 

10 RAB27A 0.62288925 10.6348025 0.51655629 0.70995671 0.63350785 

11 SOCS2-AS1 0.61592271 6.17108324 0.68874172 0.51515152 0.58376963 

12 NGFRAP1 0.61503397 10.0423651 0.64900662 0.55411255 0.59162304 

13 CD58 0.61483329 9.14070847 0.54304636 0.66666667 0.61780105 

14 TMEM243 0.61431725 8.37580431 0.56953642 0.63203463 0.60732984 

15 KIAA0125 0.61385855 8.88778748 0.52980132 0.67099567 0.61518325 

16 ADGRG5 0.61377254 8.13890611 0.58940397 0.61038961 0.60209424 

17 DNMT3B 0.61331384 8.41619179 0.62251656 0.58874459 0.60209424 

18 MPO 0.61285514 12.5762519 0.61589404 0.57575758 0.59162304 

19 TMSB10 0.61182306 12.921338 0.59602649 0.5974026 0.59685864 

20 PIWIL4 0.61050429 8.80586137 0.63576159 0.53679654 0.57591623 

SUPPLEMENTARY TABLE 5.9. TOP 20 AUC FOR THE BLR WORKFLOW. ALL THE GENES IN THE HOVON 

DATASET WERE ANALYSED USING A ROC CURVE, THE TOP 20 GENES WITH THE HIGHEST AUC ARE DISPLAYED 

HERE. 
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5.4.14. Supplementary table 10 

Gene name B S.E. Wald Sig. Exp(B) 

95% 

C.I.for 

EXP(B) 

Lower 

 95% 

C.I.for 

EXP(B) 

Upper 

CD109 0.379 0.080 22.349 0.000 1.461 1.248 1.709 

ACVR1B -0.590 0.142 17.208 0.000 0.554 0.419 0.733 

HAL -0.482 0.125 14.827 0.000 0.618 0.483 0.789 

ADGRG1 0.384 0.084 20.833 0.000 1.468 1.245 1.731 

SIRPB2 -0.359 0.084 18.351 0.000 0.698 0.593 0.823 

NYNRIN 0.611 0.142 18.489 0.000 1.842 1.394 2.433 

FUT4 -0.438 0.108 16.518 0.000 0.645 0.522 0.797 

HDAC4 -0.397 0.102 15.112 0.000 0.672 0.550 0.821 

ZC3H12C 0.365 0.091 15.931 0.000 1.440 1.204 1.723 

RAB27A -0.358 0.097 13.681 0.000 0.699 0.579 0.845 

SOCS2-AS1 0.507 0.128 15.637 0.000 1.660 1.291 2.134 

NGFRAP1 0.261 0.069 14.275 0.000 1.298 1.134 1.485 

CD58 -0.384 0.108 12.747 0.000 0.681 0.552 0.841 

TMEM243 -0.420 0.120 12.252 0.000 0.657 0.519 0.831 

KIAA0125 0.397 0.106 14.051 0.000 1.488 1.209 1.831 

ADGRG5 0.391 0.106 13.615 0.000 1.479 1.201 1.820 

DNMT3B 0.363 0.094 14.925 0.000 1.437 1.196 1.727 

MPO -0.177 0.051 11.842 0.001 0.838 0.757 0.927 

TMSB10 -0.541 0.160 11.393 0.001 0.582 0.425 0.797 

PIWIL4 -0.375 0.103 13.211 0.000 0.687 0.561 0.841 

SUPPLEMENTARY TABLE 5.10. UNIVARIATE BLR FOR THE ROC WORKFLOW. ALL THE GENES IN THE HOVON 

DATASET WERE ANALYSED USING A ROC CURVE, THE TOP 20 GENES WITH THE HIGHEST AUC WERE ANALYSED 

USING A UNIVARIATE BLR. 
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5.4.15. Supplementary table 11 

Gene name B S.E. Wald Sig. Exp(B) 

95% 

C.I.for 

EXP(B) 

Lower 

 95% 

C.I.for 

EXP(B) 

Upper 

CD109 0.379 0.080 22.349 0.000 1.461 1.248 1.709 

ACVR1B -0.590 0.142 17.208 0.000 0.554 0.419 0.733 

HAL -0.482 0.125 14.827 0.000 0.618 0.483 0.789 

ADGRG1 0.384 0.084 20.833 0.000 1.468 1.245 1.731 

SIRPB2 -0.359 0.084 18.351 0.000 0.698 0.593 0.823 

NYNRIN 0.611 0.142 18.489 0.000 1.842 1.394 2.433 

FUT4 -0.438 0.108 16.518 0.000 0.645 0.522 0.797 

HDAC4 -0.397 0.102 15.112 0.000 0.672 0.550 0.821 

ZC3H12C 0.365 0.091 15.931 0.000 1.440 1.204 1.723 

RAB27A -0.358 0.097 13.681 0.000 0.699 0.579 0.845 

SOCS2-AS1 0.507 0.128 15.637 0.000 1.660 1.291 2.134 

NGFRAP1 0.261 0.069 14.275 0.000 1.298 1.134 1.485 

CD58 -0.384 0.108 12.747 0.000 0.681 0.552 0.841 

TMEM243 -0.420 0.120 12.252 0.000 0.657 0.519 0.831 

KIAA0125 0.397 0.106 14.051 0.000 1.488 1.209 1.831 

ADGRG5 0.391 0.106 13.615 0.000 1.479 1.201 1.820 

DNMT3B 0.363 0.094 14.925 0.000 1.437 1.196 1.727 

MPO -0.177 0.051 11.842 0.001 0.838 0.757 0.927 

TMSB10 -0.541 0.160 11.393 0.001 0.582 0.425 0.797 

PIWIL4 -0.375 0.103 13.211 0.000 0.687 0.561 0.841 

TPM2 0.415 0.110 14.128 0.000 1.514 1.219 1.879 

PYROXD1 -0.445 0.139 10.291 0.001 0.641 0.488 0.841 

SVIP 0.436 0.134 10.516 0.001 1.546 1.188 2.012 

SOCS2 0.221 0.063 12.370 0.000 1.247 1.103 1.411 
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LAPTM4B 0.171 0.050 11.570 0.001 1.186 1.075 1.309 

SH3BP4 0.326 0.095 11.632 0.001 1.385 1.149 1.670 

EVI2B -0.391 0.111 12.391 0.000 0.676 0.544 0.841 

PLIN2 -0.344 0.105 10.707 0.001 0.709 0.577 0.871 

PXK -0.393 0.125 9.802 0.002 0.675 0.528 0.863 

YPEL2 -0.448 0.134 11.139 0.001 0.639 0.491 0.831 

MXRA7 0.405 0.117 11.915 0.001 1.499 1.191 1.886 

RNF130 -0.506 0.160 10.023 0.002 0.603 0.441 0.825 

NPDC1 0.345 0.099 12.226 0.000 1.412 1.164 1.714 

HOPX 0.203 0.066 9.459 0.002 1.225 1.077 1.395 

TMSB4X -0.643 0.197 10.644 0.001 0.526 0.357 0.774 

AGTPBP1 -0.331 0.104 10.044 0.002 0.718 0.585 0.881 

ALDH1A1 0.278 0.083 11.196 0.001 1.320 1.122 1.554 

TES -0.397 0.116 11.779 0.001 0.672 0.536 0.843 

GIMAP7 -0.038 0.062 0.381 0.537 0.962 0.852 1.087 

FEM1C -0.337 0.134 6.356 0.012 0.714 0.550 0.928 

ARHGAP22 0.318 0.098 10.483 0.001 1.374 1.134 1.665 

SUPPLEMENTARY TABLE 5.11. UNIVARIATE BLR FOR THE BLR WORKFLOW. THE GENES IN THE HOVON 

DATASET WERE ANALYSED USING A ROC CURVE, ALL GENES WITH AN AUC OVER 0.6 WERE ANALYSED USING 

A UNIVARIATE BLR. 

 


