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Abstract

Resistive pulses generated by nanoparticles that translocate through a nanopore contain multi-
parametric information about the physical properties of those particles. For example, non-
spherical particles sample several different orientations during translocation, producing
fluctuations in blockade current that relate to their shape. Due to the heterogenous distribution of
electric field from the center to the wall of a nanopore while a particle travels through the pore,
its radial position influences the blockade current, thereby affecting the quantification of
parameters related to the particle’s characteristics. Here, we investigate the influence of these off-
axis effects on parameters estimated by performing finite element simulations of dielectric
particles transiting a cylindrical nanopore. We varied the size, ellipsoidal shape, and radial
position of individual particles, as well as the size of the nanopore. As expected, nanoparticles
translocating near the nanopore wall produce increase current blockades, resulting in
overestimates of particle volume. We demonstrated that off-axis effects also influence estimates
of shape determined from resistive pulse analyses, sometimes producing a multiple-fold
deviation in ellipsoidal length-to-diameter ratio between estimates and reference values. By
using a nanopore with the minimum possible diameter that still allows the particle to rotate while
translocating, off-axis effects on the determination of both volume and shape can be minimized.
In addition, tethering the nanoparticles to a fluid coating on the nanopore wall makes it possible
to determine an accurate particle shape with an overestimated volume. This work provides a
framework to select optimal ratios of nanopore to nanoparticle size for experiments targeting free
translocations.

Supplementary material for this article is available online

Keywords: off-axis effect, nanopore resistive-pulse sensing, finite element simulation, particle
shape
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Resistive pulse-based nanopore sensing relies on the Coulter
counting principle [1], where each particle transiting a
nanopore displaces highly conductive electrolyte and tran-
siently reduces the ionic current through the pore. The
amplitude, duration, and frequency of these resistive pulses

© 2022 The Author(s). Published by IOP Publishing Ltd
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provide information about the size, charge, and concentration
of the particles passing through the pore [2—4]. In the past two
decades, solid-state nanopores have become an emerging
technique for sensing and characterizing of individual bio-
molecules such as DNA [5-10], proteins [4, 11-14], and
viruses [15—17]. Moreover, as a non-spherical particle adopts
different orientations within the nanopore, it produces fluc-
tuations in the measured resistive-pulse current that relate to
the shape of the particle. For instance, an ellipsoid in its
lengthwise orientation blocks the current through a nanopore
less than in its crosswise orientation. This effect can be
quantified by the electrical shape factor, 7, a descriptor that
depends on the particle’s ellipsoidal shape, m, and orientation
within a cylindrical sensing volume [4, 18-21]. Here, particle
shape is approximated as an ellipsoid with axes A, B, B, and
m = A/B. By comparing the minimum and maximum current
values within a resistive pulse as well as the time-dependent
change of the current, nanopore sensing makes it possible to
characterize proteins with different sizes, shapes, charges,
dipole moments, and rotational diffusion coefficients [4,
22-25]. This approach of resistive pulse analysis, however,
assumes that the particles translocate along the central axis of
a perfectly cylindrical nanopore with a homogenous electrical
field, and that the particles are able to rotate freely within the
nanopore. When the particles diffuse away from the central
axis during their transit through the nanopore, however, they
distort the electric field asymmetrically and produce resistive
pulse fluctuations that depend on their distance from the
central axis [26-29], as well as on their orientation. Com-
putational studies of resistive pulses at the microscale showed
a distinct increase in pulse amplitude caused by this off-axis
translocation, resulting in the measurement of an inaccurately
large volume for spherical particles [27, 28]. By combining
the analysis of resistive pulses with optical measurements in a
microfluidic platform, Hinkle ef al confirmed experimentally
the correlation between the particles’ off-axis position with
the amplitude of the resistive pulse [29]. At the nanoscale,
such as in the case of nanopore sensing, the increases in the
pulse amplitude can be of the same order of magnitude as the
system noise. Therefore, the off-axis effect not only leads to
an overestimation of volume, but also increases the uncer-
tainty of the volume and shape estimation. Specifically, the
fluctuations produced when a spherical particle diffuses lat-
erally within the pore appear similar to those of a rotating
non-spherical particle passing through the center of a nano-
pore. It is therefore important to quantify the effects of off-
axis translocation on resistive-pulse measurements, especially
in the context of characterizing mixtures of proteins or
examining transient changes in a protein population.

Here, we determine the effects of off-axis translocation in
the context of ellipsoidal nanoparticles in a cylindrical
nanopore using finite element simulations (COMSOL Multi-
physics 5.2a). We performed a wide parameter sweep, vary-
ing the radial position of individual particles as well as the
ratio of particle size to nanopore radius. We further examined
the effects of off-axis translocation on the estimation of
protein shape by considering particles with a fixed volume but
with different shapes, at different radial positions and

rotational orientations. The results reveal that (1) off-axis
effects increase as the diameter of the nanopore grows in
relation to the diameter of the particle, (2) ellipsoidal particles
with length-to-diameter ratios further from a sphere elicit
larger, and orientation-dependent, off-axis effects than sphe-
rical particles of the same volume, and (3) off-axis effects add
a noise-like element to resistive pulse recordings that can
produce errors in estimates of length-to-diameter ratio and
volume.

2. Analysis methods

2.1. Resistive-pulse sensing analyses based on ohm’s law

Resistive-pulse nanopore sensing monitors ion flux through a
sensing volume—here, the nanopore channel—in the pre-
sence and absence of non-conducting particles. The principle
is straightforward when considering the electrolyte as a
homogeneous conductive medium with resistivity p. The
resistance of a cylindrical nanopore with diameter of d, and
length of /, consists of two components: resistance to ions
passing through the confines of the pore itself, R, and
access resistance of ionic current paths converging to the
entrance and from the exit of the pore, R, c.;,- One commonly
used analytical equation for modelling the total resistance of a
cylindrical nanopore, R;,., can be written as [30]
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For resistive pulse-based analysis of data obtained with
cylindrical nanopores, the electric field is considered to be
uniform along the effective nanopore length, /¢, with a net
electric field strength of E = V/l ¢ [31]. Here Lo = 1, + %d,,
as implied by equation (1). We relate the volume of the
particle, A, and the shape- and angle-dependent electrical
shape factor, 7, to the magnitude of the current blockade
through the following equation [4, 22]

Al 4vA
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Here Al is the magnitude of the current change induced by a
particle translocation, and I, is the current of the nanopore in
the absence of the particle. For a perfect sphere, v is 1.5.
Therefore, the normalised magnitude of the resistive pulse,
Al/Iy, is proportional to the volume of the translocating
particle. Non-spherical particles have a maximum electrical
shape factor, vymax, and a minimum electrical shape factor,
Ymin» @S shown in figure 1(a). These two extreme shape
factors generate resistive pulses that fluctuate between

Abyy = — 0ot j0and Alpy = — ) [4]. The

mdy*(1, + 5d)

electric field produces a torque on non-spherical particles with
a permanent dipole moment that may bias them toward either
a minimum or maximum orientation [4, 22]. With the prob-
ability distribution of v, we can determine the shape and

ﬂd,,z(lp + %d,,)
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Figure 1. Schematical illustration of shape determination by resistive
pulse-based nanopore sensing. (a) The electrical shape factor, 7, as a
function of a particle’s length-to-diameter ratio, m [20]. The solid
curve represents the maximum electical shape factor 7y,,x. The
dashed curve represents the minimum electrical shape factor Y,-
(b) The distribution of electric field strength in the nanopore
determined by finite element simulation. The gray boxes at the left
and top represent the nanopore channel. The blue curves represent
the simulated electric field strength on the lateral and transverse axes
indicated by white dashed lines.

volume as fitting parameters by using an iterative convolution
fitting procedure, described previously in supplementary note
1 of [22]. Note that this consideration is only suitable when
the diameter of the particle, d,qysicie, is smaller than the dia-
meter of the nanopore (e.g. dpa,,,-de/dp < 0.5). When the
particle approaches the diameter of the nanopore, the electric
field distribution becomes non-uniform, and this model will
no longer apply [18].

This model considers that the electric field inside the
nanopore is uniform and describes the scenario whereby a
particle is located at the center of a large-aspect-ratio,
cylindrical nanopore. The mobility of ions in the nanopore is,
however, non-uniform as ions cannot diffuse freely near the
nanopore wall. In other words, the ohmic medium inside the
nanopore is non-homogenous. This heterogeneity leads to
deviations from the model when the particle leaves the central
axis of the pore and approaches its wall.

2.2. Resistive-pulse sensing analyses based on the PNP
function

The Poisson-Nernst—Planck (PNP) equations are commonly
used to express the flow of ionic current through a nanopore
[29, 32-38]. The Poisson function describes the distribution
of potentials, @, in an electrolyte solution containing ionic
species, i (K" or Cl7, in this case), at concentration ¢; and
charge z;

F
VZ(ID - - Z ZiCi. (3)
€
The Nernst—Planck equation describes the motion of the ions

in a fluid medium under an applied external potential by
considering the diffusion of ions, D; [39]

L:—an—%gDmV@ )

where F represents the Faraday constant, € is the dielectric
constant of the fluidic medium, R is the gas constant and T is
the absolute temperature. Table 1 lists the constants and

parameters we used in the simulations to solve PNP equations
in this work. The total ionic current is the integral of the z
component of the total ion fluxes, J;, over the cross-sectional
area of the nanopore, S

I= Ff(ZK*JK* + zerJer) - ndS 5)

where n is the unit vector in the direction of the z-axis. In
comparison to analytical models, numerical simulations of the
PNP equations make it possible to incorporate complex
parameters including surface charge and curvature at the
entrance to the pore, off-axis position of the particles, and
complex geometries for both the nanopore and the particles
[17, 22, 32, 35, 38, 40, 41].

In this work, we use COMSOL Multiphysics 5.2a to
solve the PNP equations. To simulate our experiments for
lipid-coated nanopores [4, 22, 40, 42-45], we defined the
nanopore length to be 40 nm (30 nm before coating) and the
surface charge on the nanopore wall to be zero [46]. We
applied 0.1 V across the nanopore containing 2 M KCI.
Because the effective ionic transference number (i.e. the
fraction of the overall conductance contributed solely by the
specific ionic species) is nonlinearly related to salt con-
centration [39, 47], we used a concentration of 1.68 M KCI
instead of 2 M according to the measured conductivity of the
solution, as listed in table 1 [40]. Figure 1(b) shows the
electric field distribution in a 30 nm diameter nanopore
determined by solving the PNP equations. The simulated
electric field distributions along the lateral and transverse
axes, represented by the blue curves on the left and top,
respectively, are not perfectly uniform inside the nanopore.

3. Results and discussion

3.1. Off-axis position modulates resistive-pulse amplitudes

A particle that passes through a nanopore near the pore wall
produces a larger resistive pulse than that same particle pas-
sing through the center of the pore [26-28, 48]. Figure 2 and
supplementary video 1 (available online at stacks.iop.org/
NANO/33/275501 /mmedia) demonstrate this phenomenon,
showing the passage of an 8 nm diameter particle through a
nanopore along two paths, as well as their associated current
traces. To demonstrate this phenomenon, we placed the par-
ticle across a range of z positions (i.e. between 30 nm before
the entrance and 30 nm after the exit of the nanopore), along
two fixed lateral positions: central axis (x = 0) and off axis
(x = 11 nm). The parameters used in this simulation are listed
in table 2. The boundary conditions and initial values used in
the Poisson and Nernst—Planck equations are listed in table 3.
We calculated the total ionic current from the integration of
ion fluxes across surface G indicated in table 3.

When the particle passes through the nanopore along the
central axis, it produces a rounded resistive pulse shape due to
gradual changes in access resistance at the entrance and exit
of the pore (figure 2(b)). The off-axis passage, however,
yields a square-shaped resistive pulse due to sharp changes in
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Figure 2. Influence of off-axis effects on a spherical particle
translocating through a nanopore. (a) Electric field distribution in a
nanopore when a particle with a diameter of 8 nm passes through the
center (left) or off-axis (right). The fine lines represent the electric
field. (b) The current as a function of the particle position when the
particle transits through the center (black curve) and near the wall
(red curve) of the nanopore. See supplementary video 1 for
animations.

electric field at the corners of the pore. As expected, the
blockade current for off-axis translocation, Al is larger
than the blockade current from translocation along the central
axis, Al. We note that this observation is based on stationary
study results, and therefore no particle dynamics are
discussed.

The size of the nanopore relative to the size of the
nanoparticle strongly influences the magnitude of off-axis
effects. To quantify this influence, we allowed a spherical
particle with a radius of 4 nm to pass through nanopores with
varied radius, R, from 8 to 26.7 nm. We swept the radial
distance x from zero (corresponding to the center) to the
position R,-r, where the nanoparticle touches the nanopore
wall, as shown in figures 3(a) and (b). Figure 3(c) shows the
distortion of the resistive-pulse magnitude, or deviation in
Al/ly, for different off-axis positions of the spherical nano-
particle. These results calculated by finite element simulation
agree with the analytical results reported by Houghtaling et al
[22] and Qin et al [27]. As the particles translocated closer to
the wall, we observed increasing deviations of Al/I, espe-
cially in the case of small r/R), ratios. In other words, off-axis
effects are largest when small nanoparticles translocate near
the wall of a large nanopore.

3.2. Off-axis translocation leads to overestimates of particle
volume

Most approaches for characterizing particles and proteins with
nanopores involve analyzing a population of resistive pulses
[44]. In an ideal scenario, a population of identical, perfectly
spherical particles would produce several resistive pulses of
the same amplitude. Volume estimates of translocating par-
ticles are proportional to resistive-pulse amplitude, Al/I,, as
expressed in equation (2), where ~ equals 1.5 for a spherical
shape. In practice, ensemble analyses are influenced by the
recording noise of the experimental setup [49], which pro-
duces an approximately Gaussian distribution of resistive-
pulse amplitudes. The experimental Al/I, distribution can be
viewed as the convolution of the recording noise and the
theoretical resistive-pulse amplitude.

Figure 4 illustrates the off-axis effect on the measured
Al/I, distribution. We first determined the A/, values by
placing a nanoparticle at different distances from the central
axis, as discussed in figure 3(c). Assuming that the particle is
equally likely to be in any position inside a nanopore, we can
randomly sample the position with a probability function P
(x). As illustrated in figure 4(a), P(x) is the probability of
finding a particle at a distance of x + Ax from the center of
the pore

PQ) = % _ 2xAx

A Ry — 1) ©
where AA is the area of the band that could be occupied by
the particle at that off-axis distance, and A represents the total
possible cross-sectional area that the particle could sample
inside the nanopore. After random sampling, we added nor-
mally distributed noise (1 = 0, 0 = 25 pA) to the each point
of the simulation current [50], which is the typical level of
rms current noise of a nanopore recording experiment at 15
kHz bandwidth [4, 43].

Figure 4(b) plots the PDF of the measured AV, after
considering the random spatial distribution and noise effect
for the two extreme scenarios in figure 4(c). Compared to the
PDFs in gray generated by central-axis translocation, off-axis
translocation influences estimates of protein volume in two
ways: (1) off-axis effects increase Al/I, values and thus lead
to an overestimation of the particle volume, and (2) the spread
of the distribution of Al/I, widens, which can produce errors
in determining length-to-diameter ratios relative to reference
values. Both of these consequences of off-axis translocation
influence the accuracy of parameter estimates determined
based on resistive pulses. Figure 4(c) shows the deviation of
Al/I, obtained by fitting the PDF with a Gaussian distribu-
tion function, as a function of the #/R, ratio. Based on this
deviation, we expect a 5% to 15% overestimation of volume
if the particle is equally likely to be found in any given radial
position within the nanopore, as described in equation (6).

Equation (6) assumes that the lateral diffusion of particles
inside the nanopore is unbiased. This assumption, however,
ignores the particle dynamics affected by Brownian motion,
fluidic drag force and the electrophoretic force inside the
nanopore. These forces will bias the particles toward the
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Table 1. Constants and parameters used for COMSOL Multiphysics simulation.

Parameters Values Details
K 1 The charge of K
Zql -1 The charge of C1™
F 96485 C-mol ! Faraday constant
€ 80 Dielectric constant of the fluidic medium
R 8.31 J- (mol-K)™! Gas constant
T 295 K Absolute temperature
Dk 1.957 x 107° m®s~! Diffusion coefficient of K"
Dqy 2.032 x 107" m*s~"  Diffusion coefficient of C1~
P —-0.1V Applied voltage across the nanopore
¢; KT or CI) 1680 mol m™> Effective concentration of the K* and Cl~ ions according to the measured solution conductivity
ILp 40 nm Length of the nanopore after coating
o_pore 0 mC-cm 2 Surface charge on the nanopore wall
Table 2. Parameters used for COMSOL Multiphysics simulation in figure 2.
Parameters  Values Details
d_particle 8 nm Diameter of the particles
o_particle 0 mC-cm™? Surface charge density of the particles
A 268 nm> Volume of the particle
m 1.0 Length-to-diameter ratio m of the particle
X 0 nm for center Radial distance from the particle center to the pore center
11 nm for off-axis
z —50 nm to 50 nm  Particle position along the pore channel

Table 3. Boundary conditions for PNP equations.

Surface  Poisson equation (equation (3)) Nernst-Planck equation (equation (4))
A Constant potential V, = — 0.1 V. Concentration ¢; = 1.68 mol L

B, F Zero charge, n-VV = 0 Insulation n-J = 0

C, D, E Surface charge of the nanopore, 0  Insulation n-J = 0

H* Surface charge of the particle, 0 Insulation n-J = 0

G® Ground V, =0 Concentration ¢; = 1.68 mol L™

No field interaction on particle surface H.

b . . . . .
Tonic current is calculated from the integration of ion fluxes across surface G.

central axis [51], hence mitigating the off-axis effect. In
addition to the particle dynamics, the simulation conducted
here assumes a homogenous distribution of ions. All-atom
molecular dynamics simulations, which provide a higher
degree of accuracy than finite element simulations, have
shown that the ion conductivity decreases to zero near the
surface of the particle and the surface of the nanopore
[52, 53]. The zero-conductivity zone around the particle leads
to larger-than-expected resistive pulses when the particle
translocates through the nanopore. When particles are at an
off-axis position that is close to the nanopore surface,

however, the overlap of the zero-conductivity layers of the
particle and the nanopore surface reduces the blockade cur-
rent, thus mitigating the off-axis effect. From the above dis-
cussion, we expect a less pronounced overestimation of the
particle’s volume due to the off-axis effect in a true experi-
ment in comparison to the simulated results presented here.

3.3. Off-axis effects on determination of a particle’s ellipsoidal
shape

Non-spherical particles rotate as they translocate through
the nanopore, and these rotations produce characteristic
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Figure 3. Influence of the ratio between particle size and nanopore
size on off-axis effects. (a) Illustration of a small 7/R, ratio, showing
a nanopore with a radius of 26.7 nm and a particle with a radius of 4
nm. (b) Mlustration of a large 7/R, ratio, showing a nanopore with a
radius of 8 nm and a particle with a radius of 4 nm. (c) Deviation of
Al/Iy as a function of normalized radial position, x/R,. The radius
of the spherical nanoparticle is fixed (»r = 4 nm), while the radius of
the nanopore, R, varies from 6.7 to 26.7 nm.

fluctuations in the associated resistive pulse [4, 22, 27, 54].
Figure 5(a) shows the fluctuations within a resistive pulse
caused by different orientations of ellipsoidal particles with
the same volume but different length-to-diameter ratios. The
particles pass through a nanopore while rotating at a constant
step (0.28 nm, 10° per step), which imposes periodicity in the
fluctuations of blockade current. The ratio of maximum to
minimum blockade current, Al./Al,,, can be used to
estimate the particle’s ellipsoidal shape, as shown in
figure 5(b). When a sphere transits through a nanopore while
oscillating in lateral position between opposite sides of the
pore (see supplementary video 2), the blockade current,
represented by the red curve in figure 5(a), exhibits oscilla-
tions similar to those generated by a prolate and oblate
(supplementary video 3). In other words, the fluctuations due
to off-axis effects from a perfectly spherical particle could
lead to an erroneous shape estimation that deviates from that
of a sphere (m = 1).

In addition, the shape and orientation of a translocating
particle dictate the range of possible deviations in its radial
position, which in turn influence the shape predicted from its
current trace. In previous work we showed that this
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particle with a radius of 4 nm inside a nanopore with a radius of 26.7
nm (left inset, /R, = 0.15), or inside a nanopore with a radius of
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Al are the maximum and the minimum blockade current when the
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Determination of length-to-diameter ratio using Al /Al with
Al and Aly, indicated in panel a and equations 14 and 15 in
supplementary information of [4].
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Figure 6. Effects of off-axis translocation on Al/I, for non-spherical
particles in different orientations. (a) Oblate particles have two
minimum orientations, and can produce more than 15% deviation in
Al/l, in the most extreme case (blue box and curve). (b) Prolate
particles have two maximum orientations, and can distort Al/I, by
15% in their most extreme minimum orientation (blue box and
curve). The nanopore radius for these simulations was 13.35 nm, the
particles’ volume was 268 nm°, and the 7/R ratio equalled 0.3. The
scale bars are 10 nm.

orientation-dependent off-axis effect could influence shape
determination [22]. Figure 6 shows oblate and prolate parti-
cles of the same volume translocating in their Y, and Ymax
orientations through a nanopore. Due to symmetricity, oblate
particles exhibit two orientations with minimum cross-sec-
tional area, henceforth referred to as minimum orientation. In
contrast, prolate particles occupy two orientations with
maximum cross-sectional area, henceforth referred to as
maximum orientation. These two minimum (oblate) or

maximum (prolate) orientations produce the same blockade
current when particles transit through a nanopore along its
central axis. When considering the off-axis effect, however,
these two orientations could lead to different extreme off-
center positions due to their differences in curvature (see the
example of an oblate transiting through a nanopore at its two
maximum orientations in supplementary video 4). Figure 6
illustrates different scenarios for three extreme orientations of
both an oblate and a prolate, as well as the deviation of
measured Al/I, as a function of the off-axis position. As the
particle approaches the pore wall, the deviation of AV,
increases for each orientation. The maximum deviation in
Al/l, appears when sampling the minimum orientations for
both oblates and prolates, because these two orientations
allow the smallest distance between the center of the particle
and the pore wall. These deviations in Al/I, lead to uncer-
tainty in the protein’s shape evaluation when performing
resistive pulse-based nanopore sensing.

To estimate the possible uncertainty that could be gen-
erated due to off-axis effects, we considered two extreme
scenarios for each particle shape and r/R ratio by simulation:
maximum Al,,, in combination with minimum AIl;,, and
minimum Al,,,, in combination with maximum Al ;,. These
two scenarios lead to the boundaries of the gray area shown in
figure 7. The gray areas represent the possible deviation of the
estimated shapes from true shapes for different particle-to-
pore size ratios, ranging from 0.15 to 0.4. When the particle-
to-pore size ratio is small, the estimated shape for a prolate
could deviate multiple fold from its real shape, as shown in
figure 7(a). This estimation represents the extreme errors one
can expect from off-axis effects. On the other hand, when
selecting a nanopore with a diameter close to the size of the
particle (while still allowing the particle to rotate freely), the
estimated shapes are close to the actual particle shape. Esti-
mates for oblates are within 5% of their actual shape, while
estimates for extreme prolates are within 20% (figure 7(d)).
Previous experimental observations confirm that the estimated
shape of free translocated proteins is within 20% deviation
from their true shape (figure 3(B) in [22]).

In previous work [4], we employed crosslinkers to tether
proteins to a fluid lipid-bilayer coating on the nanopore wall.
This tether keeps proteins close to the pore wall at all times.
We estimated the shape in such a scenario for different par-
ticle-to-pore size ratios, as represented by the red circles in
figure 7. We found that tethering particles to the nanopore
walls improves estimates of shape relative to freely translo-
cating particles. The largest deviations from true shape values
in both tethered and untethered translocations occur when the
pore is much larger than the protein, or when the particle has a
relatively extreme prolate shape.

Note that figure 7 assumes no bias in the orientation or
lateral diffusion of the particles translocating through the
nanopore. In reality, particles with a permanent dipole
moment may not rotate randomly while passing through the
nanopore; instead, the electric field acts on the particle’s
dipole moment and tends to align the particle’s longest axis
parallel to the local electric field [51, 55]. Ai and Qian
reported that when the flow field and electrophoretic force are
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Figure 7. Effect of off-axis translocation on the estimation of a
particle’s shape, expressed as length-to-diameter ratio, m. (a)—(d)
Simulated and true shapes for different particle-to-pore size ratios,
ranging from 0.15 to 0.4. The gray areas represent the uncertainty of
shape determination for free translocations, and the red circles
represent the estimated shapes when particles are tethered to the pore
walls. For the tethered simulations, we fixed the minimal distance
between the edge of the particle and the nanopore to 0.2 nm.

taken into account, particles tend to translocate along the
central axis at their minimal orientations [51]. In this scenario,
off-axis translocation leads to an extreme estimation of
shape, m,, compared to the true shape, my, (i.e. M., < myp
for oblates and m,; > my for prolates). This conclusion
agrees with our previous experimental observation reported in
[22]. Interestingly, when the electric field is relatively low
(2x10* V. m™ "), the initial orientation of a particle above the
nanopore entrance can influence the lateral movement of the
particle [51]. When the longest axis of the particle is misaligned
with respect to the center axis of the nanopore, it rotates before
entering the nanopore and at the same time moves laterally
[51, 55]. This orientational and lateral adjustment during the
capture dynamics could slow down an ellipsoid while it
approaches the nanopore, hence increasing the time to capture.
Therefore, we expect a higher order of randomness in the
capture time for ellipsoids compared to spherical particles.

4. Conclusion

Off-axis effects produce larger-than-expected estimates of
particle volume in resistive-pulse experiments, which can
result in error in estimates of length-to-diameter ratio. Select-
ing a nanopore with a diameter that is as small as possible
while still allowing the particle to fully rotate within the pore
minimizes off-axis effects; in this case, the estimated shape
falls within 5% of the actual particle shape in most cases, with

no more than a 20% discrepancy in the case of extreme par-
ticle shapes. Tethering nanoparticles to fluid coatings on the
nanopore wall mitigates the effects of off-axis translocation on
estimates of nanoparticle shape, in particular for particles with
shape values between m = 0.1 and m = 2.0 [4].
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