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ABSTRACT Soft robotics is a rapidly evolving field where robots are fabricated using highly deformable
materials and usually follow a bioinspired design. Their high dexterity and safety make them ideal for
applications such as gripping, locomotion, and biomedical devices, where the environment is highly dynamic
and sensitive to physical interaction. Pneumatic actuation remains the dominant technology in soft robotics
due to its low cost and mass, fast response time, and easy implementation. Given the significant number
of publications in soft robotics over recent years, newcomers and even established researchers may have
difficulty assessing the state of the art. To address this issue, this article summarizes the development of
soft pneumatic actuators and robots up until the The scope of this article includes the design, modeling,
fabrication, actuation, characterization, sensing, control, and applications of soft robotic devices. In addition
to a historical overview, there is a special emphasis on recent advances such as novel designs, differential
simulators, analytical and numerical modeling methods, topology optimization, data-driven modeling and
control methods, hardware control boards, and nonlinear estimation and control techniques. Finally, the
capabilities and limitations of soft pneumatic actuators and robots are discussed and directions for future
research are identified.

INDEX TERMS Soft robotics, soft pneumatic actuator, design, modeling, sensing, control.

I. INTRODUCTION

Conventional robots are constructed from rigid links con-
nected through joints with a single degree of freedom (DoF)
and have been employed in industrial applications with
excellent speed and accuracy [1], [2]. However, these robots
have limited dexterity and are not effective in unstructured or
constrained workspaces [3], [4] as these may require a level of
versatility that is difficult to achieve using hard materials [5].
In contrast, soft robots are made of highly deformable
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materials and are generally characterized by high dexterity
and safety; therefore, they are ideal for applications where
the environment is highly dynamic, sensitive to physical
interaction, or constrained with restricted access [6], [7]. Soft
robots usually follow a bioinspired design [8], [9], including
snakes [10]-[13], worms [14], [15], fish [16]-[19], manta
rays [20], [21] and tentacles [22]-[24].

A comparison of the main actuation modes used in soft
robotics is provided in Table 1, where a relative comparison
of features from each of these modes is presented. For
fluid-driven actuation, gas or liquid is used to control the
chamber deformation [25]-[27]. For cable-driven actuation,
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TABLE 1. Comparison of popular actuation methods for soft robots. Legend: % % % easy/high, % % average/medium, and % difficult/low.

Actuation Displacement/Force Speed  Fabrication  Sensing Control  Efficiency  Miniaturization  Biocompatibility =~ Applications
Pneumatic ok k 2.8 8 ¢ ok ke ok * k * *k *k Yk ok
Hydraulic %k k 2. 8.8. 1 2. 8.8.1 * % 2.8, 8.9 * ok Yook Kk * %
Cable-driven ok k ok ke %k ok * k * k * *k * %
EAP * ok k *k ook Kk * k 2.8, 8.9 Yook *k *
SMM * ** *k ook Kk Yk * k ook ok *k *
Electromagnetic * ook K *k *hkk  kkk ek Yok ook * %
TCA %k * %k *kk  hkk * %k %k Kk * ok *

pull and release cables embedded in the soft actuator are
used to control the deformation [28]-[30]. For shape-memory
materials (SMM), temperature changes are used to control
phase change and deformation [31], [32]. For electroactive
polymers (EAP), such as dielectric elastomers, an electric
potential is applied between two electrodes to deform a
soft dielectric [33], [34]. For twisted-and-coiled actuators
(TCA), motion is achieved with temperature changes due to
thermal expansion and their spring-like structures [35]-[37].
For further details on soft robotic actuation technologies,
including their respective advantages and limitations, the
reader is referred to [38]-[42].

Pneumatic actuation remains the dominant technology
in soft robotics due to its light weight, fast response
time, and easy implementation [38], [43], [44]. In addition,
pneumatic systems can be developed using low-cost compo-
nents such as diaphragm pumps and on/off solenoid valves
[45]-[47]. Pneumatic soft robots offer high dexterity and
safety, large deformations, good power-to-weight ratio and
low manufacturing cost [43], [48]. These soft robots are
fabricated from Soft Pneumatic Actuators (SPAs), including
pneumatic network and fiber-reinforced actuators [27]. SPAs
can be actuated using positive or negative pressures. Negative
pressure actuation provides a fail-safe feature, improved
lifetime, and durability. Vacuum actuators are suitable for
constrained volume applications since they shrink under
actuation [39], [43]. In addition, the performance of SPAs
can be improved using a combination of both positive and
negative pressure [49], [50].

Soft pneumatic actuators exhibit a variety of motions,
such as bending, extension, contraction, and twisting [25],
[26], [51]. They can be fabricated using a molding pro-
cess [52], [53] or directly 3D-printed using flexible filaments
or elastomeric resins [54], [55]. Pneumatic soft robots are
used in applications such as minimally invasive surgery [56],
[57], rehabilitation [58], [59], elderly assistance [60], safe
human-robot interaction [61], [62] and handling of fragile
materials [63], [64]. Despite recent breakthroughs, soft
pneumatic actuators and robots experience challenges and
limitations related to autonomy, portability, scalability, noise,
repeatability, reproducibility, durability, accessibility, impact,
complex modeling, integrated sensing and intelligent control.

A significant number of review papers have been published
in the last five years due to the rapid advancement of soft
robotics. While these papers cover specific aspects of soft
robotics, they are not tailored to pneumatic-driven soft robots.
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A list of review articles focusing on fluid-driven soft robots
is presented in Table 2. The design, fabrication, and control
of soft pneumatic actuators and robots are reviewed in [25],
[26], [68]. However, these articles only address actuation
with positive pressure. On the other hand, [27], [65] have
focused on material characterization and modeling of soft
fluidic actuators, while [43], [67] only address 3D/4D-printed
SPAs.

Considering the large number of recent publications on
pneumatic-driven soft robotics, newcomers and even estab-
lished researchers have difficulty assessing the state of the art.
This article provides readers with a comprehensive overview
of pneumatic soft robots with a holistic approach covering
all aspects from design, modeling, fabrication, actuation,
characterization, sensing, control and applications. Moreover,
this review includes recent developments in pneumatic-driven
soft robotics such as

« novel soft pneumatic actuator designs,

« novel simulators, such as DiffAqua, SoMo, Sorotoki,
ChainQueen, Elastica, SoRoSim,

« recent analytical, numerical, and data-driven modeling
developments, such as dynamic/transient FEM and FSI
for soft actuators,

« evolutionary design and reality gap,

o pneumatic hardware control boards for soft robotics,
such as FlowlO, PneuSoRD, ProgrammableAir,
Pneuduino, and pneumatic parameter analysis and
selection,

o low and high-level model-based nonlinear controllers,
nonlinear estimation, observer-based nonlinear con-
trollers, and energy-based modeling and control.

The remainder of this article is organized as follows.
Section II introduces the various soft pneumatic actuator
designs with a classification based on their motion types.
Fabrication methods for these actuators using molding pro-
cedures and direct 3D-printing are presented in Section III.
Section IV discusses the analytical and numerical model-
ing of SPAs. This section also includes a discussion on
computational design and topology optimization. Section V
deals with pneumatic systems used for actuation, including
parameter analysis and selection, novel pneumatic control
boards, stiffening mechanisms, and untethered actuation.
Section VI describes the proprioceptive and exteroceptive
sensing technologies available for soft robots. Control
methods used for SPAs, such as model-based and data-driven
controllers are discussed in Section VII. Section VIII reviews
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TABLE 2. Recent review articles on fluid-driven soft robots.

Year  Design Modeling Fabrication Energy Sources  Sensing  Control  Applications  Ref.
Analytical ~ Simulation = Molding  3D-Printing
2021 v v v v [27]
2021 v v v v v v [65]
2021 v v v v v [43]
2021 v v v v v v [66]
2020 v v v v v v [67]
2020 v v v v v v v v [68]
2017 v v v v v v v [25]
2017 v v v v v v v v v [26]

the main applications for SPAs in the literature. Section IX
discusses the capabilities and limitations of pneumatic-driven
soft robots and identifies directions for future research.
Finally, Section X concludes this article.

Il. SOFT ACTUATOR DESIGNS

Using specifically-engineered anisotropic structures, soft
actuators can be made to display four different types of
motion: extension, contraction, bending, and twisting [25],
[26]. The two most popular categories of SPAs are the
fiber-reinforced and pneumatic network (PneuNet) actuators,
which are discussed below for each motion category. We also
present a range of unconventional and novel designs for SPAs,
as shown in Fig. 1.

A. EXTENDING AND CONTRACTION ACTUATORS
Pneumatic artificial muscles, also known as McKibben
actuators [66], [69], [70], were one of the first soft pneumatic
actuators. They are made of a flexible inner tube covered with
a helical braided shell [71]. On pressurization, the muscle
is inflated to generate a contractile force between the two
ends [72]. More recent designs for planar fluidic muscles
include Peano muscles or pouch motors, which provide
capabilities similar to McKibben actuators but in a slimmer
form [73], [74].

Symmetrical single chamber actuators can be used to
achieve extension motion. Fibers are wrapped around the
chamber to prevent the ballooning effect [75] and high radial
expansion [76]-[78]. Inspired by the McKibben actuators,
fiber reinforcements with a double helical wrapping restrict
the ballooning effect in soft actuators and increase stroke [45]
(Fig. 1a-2). With single fiber wrapping, maximum axial
extension occurs for fiber angles at 0°, while maximum radial
expansion with no axial extension occurs for wrapping at
90°. Fiber-reinforced actuators show enhanced extension,
require lower amounts of input flow, and minimize the
energy lost in radial expansion of the rubber [76], [79], [80].
Dense reinforcements generally require higher input air pres-
sure [76] but also improve linearity, reliability, and durability
[76], [81]. A circular cross-section is recommended for
extending actuators as this improves linearity and reduces
wear [81].
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Extension and contraction can also be achieved using
a structure with bellow chambers, which has a high
radial stiffness and confines ballooning effects [82]. Linear
bellow actuators can be obtained off-the-shelf [83], using
3D-printing [84], [85] or silicone molding techniques [86].
A 3D-printed linear soft vacuum actuator with a 6.49 Hz
bandwidth, 27 N output force, and 21500 cycle lifetime
was described in [87]. A vacuum SPA with an inextendable
tubular membrane over a series of ring-like (annular)
reinforcing elements is described in [88]. Vacuum linear
SPAs can also be created using reversible buckling in
assemblies of elastomeric beams [89] or origami-inspired
structures [90], [91].

Other novel designs include: (i) a scissor-mechanism-
based artificial muscle described in [92] (Fig. 1a-5), which
has a blocked force of 300 N, contraction ratio of 80%
under negative pressure, and 40000 cycle lifetime. (ii) a
3D-printed origami vacuum-driven pneumatic artificial mus-
cle with low vacuum pressure requirements, 62% contraction
ratio and capability to lift 200 times its self-weight [93].
(iii) a 3D-printed extension actuator with expandable pouches
that can achieve an extension ratio up to 600% [94].
(iv) pneumatic actuators with contractile units arranged
in parallel in a flexible matrix inspired by ultrasonic
measurements on skeletal muscle [95] (Fig. 1a-3).

B. BENDING ACTUATORS

Bending actuators are typically based on an asymmetric
geometry such as (i) an inflatable void, (ii) multi-material
fabrication, or (iii) corrugated membrane [25]. In (i), the
inflatable void is placed off center, which creates layers
of differing thickness [109]. Bending is maximized when
one of the layers is two to three times thicker than the
other [25], [52], [109]. Optimal force is obtained when the
ratio of length to width of the inflatable void is approximately
10 [25]. In multi-material fabrication (ii), the actuator utilizes
different rubber compositions; for example, a silicone rubber
with high stiffness is used for the bottom layer of the
actuator. This bottom layer may also have a larger thickness
or a strain limiting layer [110]. The third technique is the
multi-chambered or PneuNet actuator, whereby folds (fins)
on one side of the actuators expand under pressure generating
bending. PneuNet bending actuators are one of the most
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FIGURE 1. Soft pneumatic actuator designs. (a) Extension and contraction SPAs: (1) [47], (2) [96], (3) [95]. (4) [97] and (5) [92]. (b) Bending SPAs: (1) [98],
(2) [78]. (3) [99]. (4) [100] and (5) [101]. (c) Twisting and helical SPAs: (1) [102], (2) [96], (3) [103], (4) [104] and (5) [105]. (d) Bidirectional and
Omnidirectional SPAs: (1) [47], (2) [106], (3) [107], (4) [108] and (5) [49]. All figures are reproduced with permission.

investigated designs in the literature [58], [98], [111], which
consist of an elastic top layer and a bottom layer which is free
to bend but not extend. Slow PneuNets use a block of silicone
rubber with embedded air chambers [110], [111], while the
fast PneuNets contain gaps between the inside walls of each
chamber [98] (Fig. 1b-1).

The most significant factors affecting the bending angle
of PneuNet actuators are the: bottom layer thickness, wall
thickness, and gap size. In general, smaller gaps result in
higher bending but may damage the channels [112]. For
rapid actuation and low radial expansion, the internal walls
should be thinner and have a larger surface area than the other
exterior walls [58], [98]. For a fixed length, more chambers
enable greater bending at lower pressures [98], [113], [114],
and thicker chamber walls result in lower bending and lower
output force [58], [98], [110], [114]. The force output can
be increased by increasing the chamber height [58]. Another
advantage of bending PneuNet actuators is that actuation can
be achieved with positive, negative, or combined positive and
negative pressures [43], [49].

Fiber-reinforcement techniques can also be used in
bending actuators to limit the radial expansion and max-
imize performance [77], [81]. For pure bending motion,
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double helical wrapping is usually added to the actuator
(Fig. 1b-2). Fiber-reinforced bending actuators are usu-
ally achieved using a semi-circular cross-section with
an additional strain limiting layer at the bottom of the
actuator [78], [80], [115]. They are also referred to as
PneuFlex actuators [64], [116], [117]. For these actuators,
larger bending levels can be achieved with reduced wall
thickness, or increased length or radius [78]. Furthermore,
fiber-reinforced SPAs with a greater difference between
braided angles on opposite sides provide higher bending
angles and force at the same pressure level [118]. Combining
fiber angles of 70° and 35° in a single actuator was shown to
produce the highest bending angle in [119].

Novel actuator designs include: (i) free bottom pneu-
matic network actuators [114], where the outer sides
of the actuator are bonded to the bottom layer, which
results in approximately 20% greater bending and 40%
higher force compared to conventional PneuNet actuators.
(ii) high output force actuators fabricated using embedded
core casting, which consist of an airbag reinforced by fiber
layers (actuating core) and an elastic holder made of silicone
rubber [120]. (iii) a soft bending actuator using combined
positive and negative pressures to achieve blocked forces
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up to 150 N [101] (Fig. 1b-5). (iv) a 3D-printed fold-based
SPA with a sine-wave shape (Fig. 1b-4) and an internal
channel across the entire length of the actuator [121], which
provides 120° bending at 25 psi and lifts more than twice its
own weight [100]. (v) PneuNet actuators with a herringbone
chamber design (Fig. 1b-3) to facilitate simultaneous bending
deformations in both longitudinal and transverse directions,
which improves conformance in soft gripping [99].

C. HELICAL AND TWISTING ACTUATORS

Twisting and extending actuators can be obtained with a
single fiber wrapping around a symmetrical single chamber
(Fig. 1c-2), where a maximum twist is obtained for fiber
angles around 30° [122]. Twisting and bending actuators
can be obtained using one of the bending actuator designs
discussed above with a single helical wrapping. Similar to
pure bending actuators, this is commonly achieved using
semi-circular actuators with a strain limiting layer.

Helical pneumatic network actuators can achieve pro-
grammable bending and twisting motions [102] by adjusting
the chamber angles (Fig. lc-1). More specifically, as the
chamber angle increases, the bending decreases and twisting
increases [102]. 3D-printed SPAs with helical motion have
also been proposed [18], [123]. According to [123], the angu-
lar displacement increases with pressure and the inclination
angle, while the internal radius of the helix decreases with
both pressure and inclination angle. Increased chamber angle
results in lower bending and higher twisting, while the length
of the helical actuator only influences the number of loops
that are created [18]. These actuators were also shown to
have higher mechanical blocking force than other bending
actuators in [18].

Novel designs include: (i) torsional SPAs developed
by [103] (Fig. 1c-3), which achieve a torsion angle of
1.94 deg/mm and an output torque of 26 N-mm. (ii) a
modular actuator system presented in [124], which is capable
of multi-modal extension up to 70 mm, compression up to
24 mm, two-axis bending up to 115°, and twisting motion up
to 240°. (iii) a tube-type pneumatic helical actuator inspired
by the molecular structure of DNA (Fig. 1c-4), which consists
of two helical contraction actuators arranged in parallel and
covered by a sleeve [104]. (iv) bidirectional twisting actuators
proposed in [125] by exploiting the free form surface of the
actuator chamber, which allows a free rotation of 116.7° and
blocking torque of 0.81 N-m. (v) pure twisting actuators with
a PneuNet design, which were also combined with bending
and helical actuators in the fabrication of multi-segment soft
manipulators which can match complex 3D trajectories on
pressurization [105] (Fig. 1¢-5). (vi) a multi-modal helically-
interlayered actuator composed of two pneumatic chambers
coiling together into a tubular implant for tissue repair and
regeneration of tubular tissues [126].

D. BIDIRECTIONAL AND OMNIDIRECTIONAL ACTUATORS
Bidirectional actuators [10]-[12], [127] are created using
soft actuators with two chambers or by joining two bending

59446

actuators via the bottom layer. Bidirectional actuators with a
PneuNet design and sinusoidal bellows are discussed in [128]
and [129], respectively.

Omnidirectional actuators were proposed in [130], [131]
and further explored in [132]-[134]. The simpler omni-
directional actuator usually has three internal chambers.
These actuators have three DoF, which are pitch, yaw,
and stretch. When three chambers are actuated with the
same pressure, the actuator stretches. In contrast, when
only one or two chambers are actuated, the actuator bends
in the opposite direction to the pressurized chambers.
Actuators with three DoF can also be fabricated using three
parallel, externally connected actuators rotated 120° about
the longitudinal axis of the actuator in a design inspired
by the parallel bellows actuators in pneumatic continuum
robots [22], [61]. Parallel bellows actuators have been
proposed in soft robotics using fiber-reinforced extending
actuators [76], [135], [136], off-the-shelf rubber bellows [83],
3D-printed bellows actuators [49], [137] (Fig. 1d-5) and
bellows fabricated with silicone rubber [86], [138]. For omni-
directional actuators, higher bending is achieved with lower
wall thickness, greater length, greater chamber diameter,
and lower central diameter [132], [139]. In addition, the
bending ability of a triangular cross section is superior to
that of a circular shape [139]. Chambers with semi-circular
cross-sections have the least amount of ballooning, and
chambers with a ring-sector cross-section show the highest
bending [133].

Novel designs include: (i) omnidirectional actuators with
four chambers in a multi-layer cavity series fabricated using
a multi-step silicone molding process [140]. (ii) 3D-printed
omnidirectional actuators with three or four chambers and
a PneuNet-inspired design which can be actuated with
both positive and negative pressure [50] (Fig. 1d-1). (iii) a
3D-printed planar SPA capable of a workspace 2.4 times
larger than its initial length [141]. (iv) omnidirectional
actuators with external cosine shape and four chambers
(Fig. 1d-4), which can provide five working patterns with
inflation of different chambers [108].

IIl. MATERIALS AND FABRICATION

A. MATERIALS

Silicone rubbers are the most commonly used materials
for soft pneumatic actuators since they are highly flexible
and can undergo large deformations during pressurization.
Hyperelastic models are used to characterize their behavior
in soft robotic applications. In general, silicone rubber is
assumed to be isotropic and incompressible, while inelastic
phenomena such as viscoelasticity and stress-softening are
typically neglected [47]. The foremost hyperelastic models
used in soft robotics are summarized in Table 3 and further
details on these models are available in [154]-[157]. Each
of these models has a corresponding strain energy function
W, which is the amount of energy stored elastically in a unit
volume of material under the state of stretch specified by the
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TABLE 3. Stress-stretch equations for curve fitting with uniaxial tensile testing data.

Model Deformation range  Strain energy density Stress-stretch equation

Neo-Hookean Low W=C( -3)=51-3) o=2(A*-A"YH¢

Mooney-Rivlin Moderate W=Ci(I) -3)+C(L—3) o=2(A*-A"hH(C+CA™Y

Generalized Rivlin ~ Large W =Y7 g i—oCij(li =3)"(l,—3)/ 6=2(A2 =271 {Cro+Co1 A~ +Coo(A%+2271 -3)
+2C (22 +272=3)+3C1 (A — 1 —A"1+172)}

Yeoh Large W=Ci(l—3)+Co(l =32 +C3( =3 6=2(A2 =), iC; (A2 +227" —3)""

Ogden Large w=yN, %(kf’" + A+ A0 —3) o=X) | Hp <7L“f"1 —l‘(aﬂ/z*']))

TABLE 4. Mechanical properties and hyperelastic model parameters for popular soft robotic materials.

Material Shore Elongation Model Constants Ref.

Hardness  at break (%)
Silicone rubber
Ecoflex 30 00-30 900 Yeoh Cy =12.7kPa, C; =423Pa, C3 =-1.46Pa [142], [143]
Ecoflex 50 00-50 980 Yeoh C1 =0.019, C, =0.0009, C3 =-4.75x10"°MPa  [142], [144], [145]
DragonSkin 10 10A 1000 Neo-Hookean C; =0.0425MPa [96], [145], [146]
DragonSkin 30 30A 364 Ogden Uuy=75.5kPa, oy =5.84 [147], [148]
Elastosil M4601  28A 700 Yeoh C; =0.11, G, = 0.02MPa [78], [98], [149], [150]
Smooth-Sil 950 50A 320 Neo-Hookean Cy =0.34MPa [96], [146]
3D-Printed
NinjaFlex 85A 660 Generalized Rivlin ~ Cjo =-0.233, Cp; = 2.562, Cp9 =0.116 [50], [87], [151]

C11 =-0.561, Cp = 0.900 MPa

FilaFlex 82A 700 Generalized Rivlin ~ Cjo = 1.5941, Cy; =0.4393, Cy; =-0.0044 MPa [18]
Agilus30 30-35A 220-270 Generalized Rivlin ~ Cjo =-0.4889, Cy; =0.7147, Cy9 = 0.07929 [152], [153]

C|| = —0.2704, C02 = 0.4709, D| =0.4574MPa

principal stretches Aj, Ay and Az [154], [158], [159]. The
stretch ratios A; represent the deformation of a differential
cubic volume element along the principal axes of a Cartesian
coordinate system [160], [161]. Using the principal stretches,
the principal invariants are defined as

I = A7+ 23443,
L=M3+003+233, =212 (1

To account for the multiaxial stress states commonly
experienced by soft actuators, uniaxial, biaxial and shear test
data are recommended to determine hyperelastic parame-
ters [154], [156]. However, due to the increased complexity
of biaxial testing, most published research utilizes only
uniaxial testing [162], [163], [163]. The ASTM D142
standard is recommended for uniaxial tensile testing of
elastomers [164], [165]. Following tensile testing, the con-
stitutive model parameters can be determined from curve
fitting [155], [161], [165] using the stress-stretch equations in
Table 3.

The most extensively used silicone rubbers in soft robotics
include Ecoflex, DragonSkin, Elastosil M4601 and Smooth-
Sil. 3D-printed soft actuators use materials such as NinjaFlex,
FilaFlex, Agilus30, and TangoPlus. Ecoflex is softer than
the other elastomers and results in high deformation at low
pressure but lower blocked force. Mechanical properties
and hyperelastic constants for selected silicone rubbers are
summarized in Table 4. Comprehensive lists of materials and
hyperelastic parameters are presented in [27], [65], [165].
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B. MOLDED SOFT ACTUATORS

Soft pneumatic actuators are traditionally fabricated by 3D
printing molds into which silicone rubbers are cast and
consolidated [52], [53]. 3D printing allows the fabrication of
high precision molds with complex features in a low number
of manufacturing steps [54], [55]. Soft actuators fabricated
with silicone rubber offer durability, biocompatibility, and
high deformation at low pressure, especially with low
hardness materials such as Ecoflex [80], [133], [135].
However, although low hardness materials provide high
deformation, the force output is correspondingly low.

In the literature on soft fluidic actuators [52], [110],
[113] and the examples provided in the Soft Robotics
Toolkit [45], the following guidelines for fabrication can be
deduced: (i) silicone rubber should be degassed to remove air
bubbles, (ii) curing should be performed at room temperature.
However, curing time can be shortened using an oven at
approximately 60°C, (iii) fabricate 3D molds separately to
minimize the use of support material and facilitate removal
of the soft actuator from the molds, and (iv) employ mold
release agent to facilitate removal of the soft actuator body
from the mold.

C. 3D-PRINTED SOFT ACTUATORS

The molding process is time-consuming and requires sig-
nificant manual assembly, which can create issues with
weak seams, repeatability, and accuracy [166]. In addition,
complex geometries often require multi-stage casts using
techniques such as overmolding [167]. The final design
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might also require the addition of strain limiting layers
or fiber reinforcement, which requires significant operator
skill [123]. Alternatively, soft actuators can be fabricated
directly using additive manufacturing (AM) [168]. Addi-
tive manufacturing reduces manual process steps and is
well suited to complex geometries and multi-component
designs [166], [169].

Although silicone printing [166], [170]-[176], [176], [177]
has been used in the fabrication of soft pneumatic actuators,
the foremost 3D-printing techniques for direct fabrication of
these actuators are [55], [67], [169]:

1) Material extrusion: heated material is selectively
dispensed through a nozzle or orifice onto a surface,
which then fuses into a solid object upon cooling. This
includes fused deposition modeling (FDM), also known as
fused filament fabrication (FFF), and direct ink writing
(DIW). Using DIW, bending finger pneumatic actuators
were developed in [175] and multi-material soft actuators
with programmable contractile, expanding and twisting
motions were reported in [173]. FDM is the most commonly
used technique due to its accessibility and relatively low
price [18]. The range of fabricated actuators include bending
actuators [121], [168], [178]-[183], helical actuators [18],
[121], [123] and vacuum-powered actuators [87], [184].
The materials include NinjaFlex [87], [121], [123], [178],
[180], [184], Filaflex [168], eSUN eFlex [179] and Ultimaker
TPU [185]. The printers include Prusa i3 MK3 [180],
[182], FelixTec4 [183], Ultimaker 3 [181], Geeetech Prusa
Pro [178], LulzBot TAZ [121], [123] and Flashforge Inventor
[87], [184].

2) Material jetting (Polyjet): droplets of material are
selectively deposited then polymerized. Materials include
TangoPlus, TangoBlackPlus, VeroClear, VeroWhitePlus and
Agilus 30 [49], [84], [137], [186]. Modifications to a
Stratasys Objet260 Connex printer were performed in [187]
to fabricate actuators with solid and liquid components.
A Stratasys Objet 350 Connex 3 was used to fabricate
parallel bellow-shaped actuators in [49], [137]. This printer
was also used in [186] to incorporate embedded resistive
sensors into a fast PneuNet actuator. Polyjet bellows actuators
with optimized fatigue life were fabricated in [84]. One-shot
3D printing of entire granular-jamming grippers and multi-
material jamming-tendons have also been demonstrated using
an Stratasys Objet 500 Connex 3 printer [188], [189].

3) Vat polymerization: liquid photopolymer in a vat is
selectively cured by light-activated polymerization. This
includes digital light processing (DLP) and stereolithography
(SLA). The printing process takes place within a dense liquid
bath, which reduces the requirement for support materials to
print thin and hollow structures, and offers sub-micrometer
resolution [190]. Micro soft pneumatic grippers with fast
speed were fabricated in [191], [192] using DLP. In [193],
micro-bellows actuators are developed for extension and
bending using SLA with the SL5180 photopolymer. In [194],
bidirectional actuators with a bellows structure were fabri-
cated using a commercially available elastomeric precursor
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and a custom-made SLA printer. Omnidirectional actuators
with a PneulNet-inspired design are fabricated in [50] using
a Form 3 (Formlabs) SLA printer with a commercial elastic
resin.

IV. MODELING

A. STATIC MODELING

Many soft robots can be approximated by a series of mutually
tangent constant curvature sections, i.€., piecewise constant
curvature (PCC) [195]. This approximation is acceptable as
the internal potential energy is uniformly distributed along
each section, especially for fluid-driven soft robots [1]. This
modeling method was initially applied to beam-like cable-
driven continuum robots that undergo a constant moment
along the length [2], [196]. The PCC assumption has
also been validated using Hamilton’s principle in [197].
As discussed in Webster and Jones [195], the kinematics of
continuum robots can be separated into robot-specific and
robot-independent components. The robot independent map-
ping can be obtained with arc geometry [2], [198], Denavit-
Hartenberg parameters [199]-[201], differential geometry
(Serret-Frenet frame) [2], [202], [203], integral representa-
tion [202], [204], [205], exponential coordinates [206] or
a revolute joint placed at the center of the arc defining
the trunk [23]. For the robot-specific transformation, most
authors have described the transformation from actuator
length to configuration space. This is because the length of
cable-driven actuators can be measured using inexpensive
and widely-available encoders at the output of motors [23],
[207]. For parallel bellows actuators, the robot-specific
transformation is described in [1], [195], [200]. For fluid-
driven actuators, one must also account for the transfor-
mation from input pressure to actuator length or input
pressure directly into configuration space. In the latter
case, Suzumori et al. [130], [131] obtained the robot-specific
transformation by linear analysis based on the theory of
infinitesimal elastic deformation and the constant curvature
assumption. An approach for the parallel bellows design has
been described in [22], [137].

The piecewise constant curvature approach is practical
when inertia effects are negligible [208]. However, the
PCC assumption is affected by the actuator’s weight and
external loading [209]. Neppalli and Jones [23] have shown
that the continuum robot is in good agreement with the
PCC assumption when resting on the ground but failed to
bend with a uniform curvature considering the effect of
gravity. In addition, the classic PCC model does not con-
sider the robot-environment interaction and any additional
deformation to the robot geometry is likely to invalidate
the kinematics. To solve this problem, Bajo et al [210]
proposed a modified PCC model with constrained kinematics
for the detection and localization of contacts with the
robot. The limitations of the PCC approach have led
researchers to investigate real-time dynamics and geometri-
cally exact non-constant curvature models using continuum
mechanics. Mahl et al. [211] derived a variable curvature
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kinematics model for multi-segment pneumatic continuum
robots (Festo’s Bionic Handling Assistant) with arbitrarily
shaped backbone curves assembled from segments with
bending and extension motion. The model describes the
deformation of a single bendable segment with a finite
number of serially connected circular arcs with constant
curvature, which yields a section model with variable
curvatures.

Aside from constant curvature methods and variations,
polynomial curves can be used for the modeling. In [212],
a variable curvature kinematic modeling method is presented
for a 2D pneumatic soft actuator with the external payload
being considered. The variable curvature model utilizes a
discrete modeling approach called absolute nodal coordinate
formulation [213], where a cubic polynomial is applied to
represent the robot geometry being discretized by finite
nodes. Singh et al. [214] modeled the variable curvature of
the Festo’s Bionic Handling Assistant using Pythagorean
Hodograph curves, where the polynomial parametric curve
is defined by five control points and can better fit the actual
curve of the specific robot. Likewise, other curve modeling
methods can be employed to mathematically represent the
soft robot geometry in the robot-independent mapping, such
as Bézier [215] and B-spline [216] curves. In [209], the
authors propose an Euler spiral-based variable curvature
method to kinematically model a long pneumatic-driven
continuum robot made of McKibben actuators. The variable
curvature model is also shown to outperform the conventional
PCC model in [217], [218] in the context of predicting the
static geometry of conic shape pneumatic grippers and long
curving robots.

Most continuum robots have a slender structure where one
dimension is much larger than the other two; hence, they
can be modeled using the theory of Cosserat rods [207],
[208]. Cosserat rod theory views the continuum arms as an
infinite series of infinitesimal rigid bodies that can rotate
independently from the rotations of their closest neigh-
bors [219]. The first application of this theory in continuum
robotics was presented in [220], where a geometrically
exact model was introduced that accounts for the large
deformations and loading using the Neo-Hookean model
for the nonlinear elasticity and the Cosserat rod theory for
the manipulator dynamics. This modeling approach was
proven to be ten times more accurate than the constant
curvature model when gravitational loading is considered.
Jones et al. [207] used Cosserat rods to model the continuum
robot as a curve in space shaped by shear, extension, and
bending. The modeling consists of Hooke’s law and force
and moment balance equations, which achieved an average
error of 0.61% between the measured and predicted tip
position, while the PCC approach poorly fits the physical
rod. These force and moment balance equations were also
considered in [208] but the bending was modeled using
the Euler-Bernoulli equation. Cosserat rods have also been
applied to PneulNet actuators [221] and more recently to
omnidirectional actuators [222], [223].
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To account for the mass of the actuator and exter-
nal loading, models have also been developed from
the Euler-Bernoulli equation or Castigliano’s method [25],
[197], [224]. In Gorissen et al. [109], the thick layer of an
actuator with an eccentric void is modeled with the Euler-
Bernoulli equation, while the bending actuator is modeled as
an ideal beam with a load at the tip in [25]. An omnidirec-
tional actuator is modeled using the Euler-Bernoulli principle
in [108]. In Drotman et al. [137], Castigliano’s method is
used to develop an analytical expression for the blocked force
of a 3D-printed parallel bellows soft actuator.

B. DYNAMIC MODELING

For dynamic modeling of soft robots, Newton-Euler
and Lagrange formulations [199], [225] can be used.
These formulations were initially employed for tentacle
manipulators with a uniformly distributed mass in [28],
[203]-[205]. The Euler-Lagrange formalism has also been
used to describe the dynamics of soft robotic manipulators
in [226]-[228]. A dynamic model for fiber-reinforced bender
actuators was derived in [229] using a Lagrangian approach,
where the distributed mass effect is accounted for by the
constant curvature assumption, and the silicone is described
using an incompressible Neo—Hookean model. To reduce
computational burden, Taylor series expansions are utilized
to simplify the dynamical model by eliminating higher order
terms. This approach has been adapted to bending PneuNet
actuators [230], [231].

Dynamic models for SPAs can also be developed using an
energy-based approach to derive lumped parameter models
for fluid circuit components [232], [233]. In particular,
pneumatic sources act as current sources, fluidic tubing and
channels act as impedances and fluidic chambers act as
capacitances [10], [234]. Relying on this electrical circuit
equivalence, the dynamic behavior of a bending soft actuator
can be approximated as a lumped second-order system
[10], [235]. The constant model parameters can be deter-
mined by least-squares curve fitting [235], [236] or system
identification with a periodic input signal [134], [237]. How-
ever, these model parameters vary with bending angle, which
can be addressed using robust control techniques [237], [238]
or nonlinear model parameters [239].

C. FINITE ELEMENT MODELING

Analytical modeling of soft actuators is challenging due to
their complex geometries, strong material nonlinearities, and
the compressibility of air [27], [151]. Recent articles involv-
ing the application of FEM in soft robotics have drawn the
following conclusions [78], [133], [151], [240]: (1) FEM can
cope with the large deformations associated with deformation
and inflation, (2) FEM can predict the performance of soft
actuator designs under various inputs, providing a rapid and
efficient design strategy which reduces cost and development
time, (3) FEM can improve our understanding of the stress
concentration and strain distribution in soft actuators, which
can be used to evaluate fatigue performance, and (4) FEM can
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FIGURE 2. Overview of the FEM procedure for soft pneumatic actuators: (1) drawing the soft actuator geometry in CAD software, (2) assignment of
material properties, (3) meshing, (4) boundary conditions and loads (internal pressurization, mechanical fixture and gravity), and (5) analysis of results.

Adapted with permission from [27].

handle contact nonlinearities associated with environmental
interaction.

Commercial FEM software for soft robotics includes
Abaqus, ANSYS, COMSOL, and Marc. An overview of the
FEM procedure is shown in Fig. 2. FEM has been used
to analyze and optimize the various soft actuator designs
discussed in Section II, such as pneumatic network [98],
[113], [114], fiber-reinforced [76], [78], [122], omnidirec-
tional [86], [108], [140] and 3D-printed actuators [18],
[50], [87], [151]. The aforementioned packages also allow
for force measurements, modeling of the interaction with
other objects, and analysis of multiphysics phenomenon
such as fluid-structure interaction [241] and thermostructural
analysis [242], [243]. Open-source alternatives for the
simulation of soft actuators are MOOSE and VegaFEM.
Soft pneumatic fingers with a fiber-reinforced design are
modeled with VegaFEM in [244]. However, MOOSE is
limited to the Neo-Hookean hyperelastic model [245] and
VegaFEM does not implement collision detection or contact
handling [246]. The previously described FEM packages
have slow computational speed, which inhibits their use
for real-time control. SOFA, an open-source toolkit geared
towards interactive medical simulation [247], includes a soft
robotics plugin [248] and allows for fast, real-time simulation
and control [249]-[251].

Many factors influence the accuracy of the FEM results.
Firstly, the hyperelastic parameters obtained from uniaxial
testing might not be representative of the load conditions and
multi-axial stress-strain which occurs during pressurization.
Secondly, the properties of hyperelastic materials are also
affected by curing temperature, mixing ratio, and degassing.
Moreover, compressibility, viscoelasticity, stress softening,
and the Mullins effect are usually ignored in FEM but also
impact the performance of SPAs [27].

The vast majority of FEM studies employ quasi-static
simulations with pressure loads being ramped up at small
time steps. However, dynamic effects might need to be
included for simulations at high pressures or for fast
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actuation, where the quasi-static assumption does not hold
and vibrations can be observed [129], [134]. Dynamic
finite element analysis was performed in [252] for semi-
circular fiber-reinforced actuators. The inflation of the SPA
is modeled as a stress in the internal surfaces and triangular
actuation is used with time increments set to 1/200-1/100
of the oscillation period. The authors have observed that
increased length and lower bottom layer thickness lead to a
reduction in the natural frequencies. In addition, while the
inflation pressure has a stiffening effect on the first natural
frequency, the second and third frequencies are reduced as
the pressure is increased. In [253], vibration analysis was
conducted on a single-link soft finger from which the first ten
fundamental frequencies and mode shapes were computed.
Alternatively, a small amount of Rayleigh damping can be
added in quasi-static simulations to improve the convergence
of the model at high pressures, which keeps kinetic effects to
a minimum and ensures quasi-static conditions [122], [240].

D. FLUID-STRUCTURE INTERACTION

Fluid-structure interaction (FSI) is the mutual interaction
between a deformable solid body and an internal or
surrounding fluid flow where the flow has a strong impact
on the structure, and vice versa [241]. The fluid flow exerts
hydrodynamic forces which deform the structure and the
fluid geometric domain is simultaneously updated since the
deformed structure imparts velocity to the fluid domain and
changes its shape [254].

While most FEM simulations apply a uniform pressure
boundary condition to the internal cavities of the soft
actuators in (quasi-) static simulations, physical SPAs are
pressurized by applying flow into the actuator from a variety
of pneumatic sources, as reviewed in Section V. To achieve
more realistic modeling of the pressurization of soft actuators,
FSI simulations can be used. FSI allows to investigate the
influence of the fluid flow and pressurization rate on the
performance of soft actuator, understand the internal fluid
mechanics behavior and internal pressure distribution of
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FIGURE 3. Recent advances in the simulation of soft robots. (a) Modeling of internal flow with FSI simulations [256]. (b) Tracking of a moving target in
Elastica [257]. (c) Manipulation task of a rigid manipulator equipped with a soft pneumatic gripper using Gazebo and ROS [258]. (d) Soft robotic hand
manipulating a cube in a hardware experiment (left) and in a simulation using SoMo (right) [259]. (e) Optimization of walking distance of a soft
quadruped in DiffPD [260]. (f) Motion of a flagellate soft robot in SoRoSim [261]. All figures are reproduced with permission.

the actuator, and analyze the dynamic characteristics of the
actuator.

Modeling of soft fluidic actuators requires two-way FSI
simulations since both fluid and solid domains undergo
large deformations. The meshless local Petrov—Galerkin
method was used to perform two-way FSI analysis of a
worm soft robot in [255], where the proposed FSI method
was shown to be more accurate than conventional FEM.
In [256], COMSOL Multiphysics was used to perform
two-way FSI simulations of PneuNet bending actuators using
a time-dependent study and the assumption of incompressible
and laminar flow (Fig. 3a). The FSI results were compared
to static finite element simulations using Abaqus, where FSI
simulations better captured the soft actuator motion at high
pressurization rates.

E. PHYSICS-BASED AND DIFFERENTIAL SIMULATORS
Among physical simulators, differentiable simulators incor-
porate gradient-based optimization algorithms. The cal-
culated gradients can be directly input into numerical
optimization algorithms, which provides a mathematical
framework to: (1) detect and close application specific
simulation-reality gaps, (2) optimally control embedded soft
actuators for grasping and locomotion tasks, and (3) estimate
the mechanical state of the soft system from a set of
optimally embedded sensors [262]. Simulation-driven state
estimation for soft robots has been demonstrated for an
optimal liquid-metal strain sensor network in [263], which
combined capacitive and pressure sensing in [264].

Recent efforts have been made to develop simulators
that can also train and evaluate controllers, such as those
arising from reinforcement learning. ChainQueen is a real-
time, differentiable hybrid Lagrangian-Eulerian physical
simulator for deformable objects, which also allows for
physical inference, control of soft robots, and co-design of
robotic arms [265]. DiffPD is a fast differentiable simulator
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based on projective dynamics for efficient soft-body learning
and control applications [260] (Fig. 3e), which has also
been coupled with a differentiable, analytical hydrodynamic
model to assist with the modeling and control of an
underwater soft robot [266]. Other differential simulators for
underwater soft-bodied animals include SoftCon [267] and
DiffAqua [268]. SoftGym is a set of open-source simulated
benchmarks for manipulating deformable objects with a
standard OpenAl Gym application programming interface
and a Python interface for creating new environments [269].
Elastica couples a Cosserat rods simulator with five state-
of-the-art reinforcement learning algorithms (TRPO, PPO,
DDPG, TD3, and SAC) for the modeling and control of
soft actuators with rod-like structures that can bend, twist,
shear, and stretch [257] (Fig. 3b). SoMo is a standardized
framework using PyBullet that allows for fast and accurate
simulations of soft and soft-rigid hybrid robots in environ-
ments with complex contact interactions [259] (Fig. 3d).
Traditional rigid body simulators have also been adapted
to soft robotics. Gazebo and ROS have been used in [258]
and [270] to simulate robotic manipulation using a rigid
robotic arm equipped with a soft pneumatic gripper (Fig. 3c).
An open-source ROS-Gazebo toolbox is proposed in [271]
for the dynamic simulation of articulated soft robots driven by
compliant-actuated joints. SoORoSim is a MATLAB toolbox
based on the geometric variable strain approach providing
a unified framework for modeling, analysis, and simulation
of soft, rigid, and hybrid manipulators [261] (Fig. 3f).
Another MATLAB toolkit for soft robotics is SOROTOKI,
which includes tools such as FEM with hyperelastic mate-
rials, topology optimization, dynamical modeling through
differential geometric theory and real-time control of soft
robots via Raspi-interface [272]. Evosoro [273] is a soft
robot simulator based on Voxelyze, a general-purpose voxel-
based soft-matter physics engine for static and dynamic
analysis [274]. Other robotic simulators with capabilities for
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FIGURE 4. A potential future optimization architecture for soft robots. The complex task of designing soft robots is assisted by machine learning
surrogates or fitness prediction, and the optimization is divided into a series of smaller problems and optimized by assembling feature libraries into
components and robots. We may also adaptively evolve a robot in a physics simulator by progressively increasing resolution and feature density. Learning
from both simulated and experimental data increases the efficiency and accuracy of the optimization process. Reproduced with permission from [276].

modeling of soft robotic components include Bullet/PyBullet,
MuJoCo, and Chrono [275].

F. COMPUTATIONAL DESIGN

The use of nonlinear materials, large displacements, and
distributed actuation make designing and optimizing soft
robots vastly more challenging than rigid robots. Rather
than modeling a robot as a set of rigid links with exact
displacements and rotations, soft robot designers generally
employ one of the analytical or numerical methods previously
discussed as the basis for design optimization. The methods
broadly trade-off accuracy for generality or speed, hence
soft robot design optimizations focus on elementary com-
ponents. In contrast, evolutionary design generates complex
morphologies but the simulations translate poorly into real-
world performance. Automating the design of soft robots
would enable the rapid generation of application-specific soft
robots and accelerate the growth of soft robotics. Whilst not
yet demonstrated in practice, automated soft robot design
through physics-informed, multi-scale modeling is a viable
solution in the medium term [276]. It divides the ‘hard’
soft robot design problem into a series of simpler problems
and solves them hierarchically by increasing resolution and
adding features or building libraries of subcomponents and
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assembling them (Fig. 4). Detailed reviews of computational
soft robotic design approaches and design optimization of
soft robots can be found in [276], [277].

1) PARAMETRIC DESIGN OPTIMIZATION AND TOPOLOGY
OPTIMIZATION

The most common soft robotic design optimization method
optimizes a small set of design parameters to maximize
the performance of a design candidate. In soft components
with a defined mechanical objective (force, displacement,
bending, etc), a straightforward numerical optimization
can meaningfully increase performance with little effort.
General guidelines for soft actuator parameter design have
been reviewed in Section II. Because of their frequent
use in soft robots, the chamber shape and dimensions of
PneuNet actuators have been a regular optimization tar-
get [112], [278], [279]. Single and multichambered fluidic
soft actuators were optimized in FEM to maximize bending
angle by evaluating their deformation across a set of
geometric parameters [280]-[282].

Even relatively basic soft actuators require dozens of
design parameters to fully specify their shape. To optimize
across every parameter would require thousands of FEM
iterations, and would still be unlikely to find a global
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optimum. Rather than extensively searching the design
space with a large number of simulations, machine learning
can be applied to learn the design space, producing a
surrogate model of the design space for use in future
designs [180], [283]. Alternately, machine learning [284],
[285] can be applied to learn the nonlinear design space
and kinematics of SPAs from FEM results, i.e., the finite
element simulation is treated as a data generator mechanism
that yields the required training data sets for artificial neural
networks [286].

Topology optimization is a local computational design
method that finds the material distribution which maxi-
mizes fitness. Like the parametric methods, it requires the
designer to specify the boundary conditions, making it most
applicable to fixed manipulators and grippers. However,
topology optimization does not require the designer to
specify a set of geometric design parameters. Instead, it is
parameterized by the elements of a FEM mesh, which are
optimized to be either solid material, or empty space. Despite
its origins as a structural optimization method for stiff,
lightweight components, topology optimization of flexible
mechanisms is now well established [30], [287]-[289],
including pressure-loaded compliant mechanisms [290],
[291]. Several research groups have linearly optimized
single-material pneumatic soft actuators. To do so, a pressure
load is applied to nodes within a defined hollow section,
and the placement of the surrounding material is optimized
to maximize bending or output force [292]-[294]. Rather
than specifying a fixed input face, the optimizer should
ideally permit design-dependent loading, so that the load
location forms part of the design space. A binary material
optimization was investigated in [153], while capturing
the design-dependent loading, it produced disjoint cavities
which would not inflate in reality. A 3-material model,
which allows solid, high-pressure, and low-pressure regions,
overcame this issue by forcing a solid boundary between
high and low-pressure [295]. Nonlinear optimizations, which
capture the large deformation of soft actuators are desirable
to predict the true behavior of SPAs but usually create
intractable, non-convergent simulations. A single chamber
section was optimized using a nonlinear Solid Isotropic
Material with Penalization (SIMP) optimization with design-
dependent loading, however, it too produces unworkable
discrete chambers [296].

2) EVOLUTIONARY DESIGN

Evolutionary algorithms present an attractive methodol-
ogy for designing soft robots. Evolution is used as a
population-based iterative black-box optimizer where search
operators are inspired by genetics and Darwinian selection.
The black-box aspect is particularly useful for optimization
directly from the quality of observed orchestrated behaviors.
Initially, evolutionary algorithms were used to generate a
single optimal solution with the population used as a means
to an end. Later, the population was used more directly
to generate a set of optimal trade-offs between various
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desired traits (e.g., [297]). Recent evolutionary algorithms
have pushed into a new area called ‘quality diversity’ [298],
which generates diverse libraries of high-performance robots,
components, or behaviors, and has been used as a basis
for future frameworks to realize embodied cognition in soft
robots [299], [300]. Examples to date include an impressive
array of soft robots (sometimes called ‘animats’), including
a range of bioinspired bipeds, quadrupeds, fish-like robots,
and plants, as well as grippers and novel uncategorizable
designs [301]-[303].

As evolution is population-based and iterative (typically
requiring at least hundreds of generations to reach good
solutions), experimentation primarily occurs in physics
simulation [275], [304], [305], which tends to emphasize
computational efficiency over accuracy. Physics simulators
that are suitable for evolutionary design typically do not
model features essential to physical implementation such
as actuators, joints, and materials that capture real-world
behavior. As a result, evolved soft robots are primarily
used as models of soft robot behavior or as a source
of design inspiration, rather than a verbatim design that
is directly translatable into experimental settings. Trans-
fer to reality typically requires significant modification
[306], [307]. However, purely physical evolution of soft
grippers using 3D printing has shown promise [308].

V. ACTUATION

A. OVERVIEW OF PNEUMATIC ENERGY SOURCES

The main components of a pneumatic system is the source for
generating pressurized air, the pneumatic line for connection,
and the valves for controlling flow direction [309]. Pneumatic
energy sources used in autonomous and wearable soft robots
are compared in [46]. The role of valves, pneumatic lines, and
soft actuator design parameters are discussed in [47], [309].
Generally, pneumatic sources can be approximated as con-
stant flow or constant pressure sources [47], [309]. A popular
example of the latter includes pressure-regulated air receivers
(gas tanks), which can be added to improve efficiency and
minimize the required pump flow rate [234], [309], [310].
Additionally, the presence of the receiver allows for rapid
bursts of flow and, therefore, fast actuation with rise times
in the milliseconds range.

B. SYRINGE PUMPS AND FLUIDIC DRIVE CYLINDERS
Commercially available syringe pumps are generally expen-
sive and designed for small volumes [49]. Considering
these issues, low-cost volumetric control systems using
syringe pumps have been investigated in the literature [311].
To convert the rotation of a motor to linear motion, syringe
pumps use either a rack and pinion mechanism [312], [313]
or lead-screw [49], [314]-[316]. In the latter, the motor
rotates a threaded rod that drives a nut attached to a syringe
adapter [15]. Alternatively, fluidic drive cylinders have been
proposed in [317], [318] to allow precise analog control of
airflow to and from actuators in a multi-segment soft robotic
arm.
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C. COMPRESSED-AIR SYSTEMS

Pressure control in the soft actuator is usually achieved with
on/off solenoid valves [236], [237], [319] since proportional
valves are bulky and expensive. The most popular pneumatic
control architecture for soft robotics is the fluidic control
board shown in Fig. 5a, an open-source hardware platform
available from the Soft Robotics Toolkit [45], which was
originally employed in the experimental platforms of [58],
[80]. The fluidic control board has since inspired many
pneumatic control systems [10], [11], [323]. The board
consists mainly of a diaphragm pump and a set of solenoid
valves. MOSFETs allow the use of Pulse-Width Modula-
tion (PWM) to control the pressure of a fluid passing through
the valves. Pressure sensors provide feedback on the behavior
of the system. Pressure can also be controlled using pressure
regulators, which are best suited to on/off applications.
Basic control options are manually adjusting switches and
knobs or control algorithms running on the included Arduino
microcontroller [324]. Advanced control options can be
implemented using LabVIEW or Simulink [132], [325].

In addition to the fluidic control board, a number of
pneumatic boards have also been proposed in the literature.
FlowIO (Fig. 5c) is a miniature, modular, fully integrated
development platform with 5 pneumatic input/output (I/O)
ports for driving soft robots with pressure ranges from
—26 psi to 30 psi and flow rates up to 3.2 LPM (liters per
minute) [320]. Pneuduino (Fig. 5d) comprises two pneumatic
valves (S070C), an air pressure sensor (MPXHZ6400), and an
ATMega328P microprocessor for pneumatic control of one
soft actuator [326]. Programmable Air provides similar capa-
bilities to Pneuduino while using more affordable parts and
integrating two 3.2 LPM pumps into the device itself [321].
The Pneumatic Soft Robotics Driver (PneuSoRD) proposed
in [322] (Fig. 5e) can be used to drive both proportional
and on/off valves, acquire data from up to 12 sensors and
control up to 31 pneumatic actuators simultaneously. User-
friendly interfaces for pressure control with Proportional-
Integral-Derivative (PID) and on-off controllers and various
valve configurations are provided in [322] with LabVIEW
or Simulink options. A miniature, multi-mode pressure
regulator is proposed in [319] (Fig. 5b) for integration directly
into a centimeter-scale soft robot using the 12C protocol.

59454

Practical soft robotic systems usually require a large
number of actuators, possibly in closed-loop, with multiple
input lines and valves, which results in multiple control inputs
and, consequently, complex control strategies and hardware
setups. To address this issue, passive band-pass valves are
proposed in [327] to control serially connected soft robotic
actuators from a single pressure source. The effects of viscous
flow in narrow tubes can be exploited to achieve a range
of functionalities in interconnected soft actuators using a
single input line [328]. A single on/off valve and 3D-printed
flow resistor tubes are used in [329] for passive control
and sequential activation through the principle of pressure
drop in multi-capillary orifices. Alternatively, fully integrated
fluidic circuitry can be embedded into the soft actuator
during fabrication [330], [331], which provides a powerful
alternative to enhance soft robot autonomy and eliminate
tethering requirements [332].

D. PARAMETER ANALYSIS AND SELECTION

Several advanced control techniques for soft pneumatic
actuators are reviewed in Section VII. However, these are
only effective if the response time is not limited by the
dynamics of the pneumatic system. While the actuation
mode, force, and displacement are governed by the SPA
design and loading conditions, the actuation speed is largely
determined by the pressure and flow dynamics of the
SPA [333]. Therefore, regardless of the soft actuator design,
the pneumatic system critically affects the pressure dynamics
of soft actuators [234], [309] and plays a major role in the
overall performance of soft robots [236], [334].

To ensure the open-loop response time is sufficient
for a given application, appropriate parameters must be
selected to satisfy requirements on the actuator response.
A step towards resolving this issue is the work of [309]
in which the authors introduce a mathematical model of
the pneumatic system for the selection of source, valve,
and pneumatic lines. In [47], the authors present a practical
process for pneumatic component selection and controller
design based on Simscape Fluids simulations. The effect
of various pneumatic parameters in the rise time of the
soft actuator response and air consumption during actuation
are summarized in Table 5. Generally, faster actuation can
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TABLE 5. General guidelines for pneumatic parameter selection. The
upward arrows indicate larger rise time or energy consumption for
increased parameter values, the opposite is valid for downward arrows.

Parameter Rise time  Air consumption

Pump/compressor flow rate

Valve conductance/flow coefficient
Valve critical pressure ratio
Receiver pressure

Receiver volume

Actuator volume

Tubing length

Tubing diameter

o |
|

be achieved with greater valve sonic conductance, greater
receiver pressures, and lower actuator volumes. The receiver
volume has little impact on the response as long as it is above
10 times the volume of the actuator [47], [309]. The selection
of tube diameter requires careful consideration since a large
diameter has minimum flow resistance but large capacitance,
while small diameters increase flow resistance [335].

Valve configuration is another important characteristic to
consider when designing a pneumatic system for soft robotic
applications. 3/2 (3-way, 2-position) valve systems are
economical and straightforward to implement at the expense
of low accuracy and high energy consumption. Dual 2/2
(2-way, 2-position) valve systems improve energy-efficiency
and valve lifetime by reducing the number of switching
events. Alternatively, more complex 3/3 or 5/3 valves can
be used to obtain the same behavior as dual 2/2 valve
systems [134]. Proportional valves can further increase the
accuracy of controllers but these are significantly more
expensive [322], [336]. For further details on the selection of
pneumatic system configurations and components, the reader
is referred to [47], [309], [322], [333].

E. UNTETHERED ACTUATION

Pneumatic sources for SPAs are traditionally outside the
body of the robot. Untethered actuation was reviewed in [3],
including actuation methods based on light, combustion, elec-
trothermal force, and electrostatic force. On-board pneumatic
sources are described in [337], [338]. Embedded microfluidic
or pressure activated valves and self-contained fluidic engines
can control systems with many degrees of freedom, which
reduces the number of external connections [339]. These
methods are highly scalable and can perform complex logical
behaviors.

F. STIFFENING AND HYBRID ACTUATION

In applications that require high force and low deformation
due to externally applied forces, pneumatic actuation may
not be suitable. Variable-stiffness SPAs offer adaptive
stiffness (from very compliant to rigid), allowing the SPA
to achieve both high compliance/deformability and high
force transference. Stiffness can also be seen as a tuneable
property that can be exploited to elicit specific continuums
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of performance from the actuator. Stiffening SPAs can be
realized in numerous ways, including [340]:

e Jamming structures, which can be granular, fibres,
or layered in nature [189], [341], [342] and typically use
negative pressure to vary stiffness,

o Electro Active Polymers (EAPs), which deform under
electric field [33], [343], [344],

o Electro- and magneto-rheological materials (ERM/
MRM), which use embedded magnetic/electric particles
that cause stiffening under a magnetic/electric field,

o Low Melting Point Alloys/Polymers (LMPA/LMPP)
[345], [346] which display rapid stiffness change with
varying temperature,

« Fluidic actuators [347] (e.g., PneuNets), and

« Shape memory materials (SMMs) which can be alloys or
polymers [348]-[352] and deform due to temperature.

Comparatively, jamming provides higher maximum stiff-
ness than fluidic actuation, SMM, EAP, ERM, and MRM
mechanisms, but typically requires attachment to a vac-
uum pump which may be infeasible depending on the
application. Similarly, EAPs and ERMs require electric
fields to be generated, MRMs require magnetic fields,
SMMs, LMPAs and LMPPs can be difficult to modulate
with temperature. Additionally, SMMs, LMPAs and LMPPs
have comparatively slow stiffness transitions due to cooling
requirements, whereas jamming, fluidic actuation, EAPs,
ERMs, and MRMs are often faster. Each also has unique
footprint requirements, with some infeasible geometries.
Jamming actuation is particularly popular in the field, due
to a combination of low cost, rapid stiffness variation,
and dramatic differences between attainable minimum and
maximum stiffness [353].

Granular jamming is the most popular jamming mecha-
nism, being popularized in 2010 [354]. Granular jamming
is the natural phenomenon of transitioning a compliant, low
density packing of granular matter into a rigid, high-density
packing via externally applied stress. Loose, unjammed
grains function as fluids, while rigid, jammed grains behave
as solids [355]. Both naturally-occurring (coffee, corn,
gravel, rice, pepper, salt, sugar), and man-made (plastic,
glass, and rubber) granular materials have been studied in the
literature [353]. Rubber cubes are frequently used in robotic
‘paws’ as they are more controllable and have favorable force
dissipation properties. Recent work makes grain choice a part
of the design problem, either 3D printing promising grains
from modeling [356], or using machine learning to decide
on grain shape with 3D printed grains [297], [357]. Optimal
membrane morphology for granular jamming grippers can
also be decided through machine learning [308]. Several
studies have shown the benefits of auxiliary mechanisms
in increasing performance, including positive pressure [358]
and vibration [359].

Jamming is not restricted to granular materials; for
example, layers of sheets [360]-[366] (layer jamming) and
bundles of threads [189], [367]-[369] (fiber jamming) can
also transition from compliant to rigid structures. However,
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neither function as fluids when unjammed so stiffness
variation is less than in the granular case. Hybrid SPAs
utilizing more than one jamming mechanism are a recent
trend [370], [371]. Negative pressure is most commonly used
to force a phase transition [354], [358], [372]-[374]; however,
the following methods have also been reported: interstitial
liquid [375], [376], inflation of a neighboring cavity [362],
[371], cable-driven volume reduction [377], [378], external
membrane compression [364], injection of grains [379], and
linking via a thread [380]. Jamming structures are relatively
unrestricted in their possible morphologies, and as such have
been deployed in a variety of use cases including minimally
invasive surgical tools [381], supportive exoskeletons [382],
[383], robotic paws [384], [385] and tendons [189], and
damping end effectors for UAVs [386]. Modern additive
manufacturing techniques serve to facilitate more thorough
design exploration [188] and are poised to further increase the
range of useful application domains whilst reducing required
labor.

Cable-driven and pneumatic actuation have also been
combined in several practical applications for improved speed
and external force, including soft robotic fingers, [387],
hands [388], manipulators [23], [389] and grippers [390].
A novel dual-actuation mechanism is proposed in [391] to
switch between two stable states, which utilizes pneumatic
pressure for closing and tendons for opening. This process
provides large force exertion, fast closing and opening speeds,
and robust damping effects.

V1. SENSING

A. OVERVIEW OF SENSING TECHNOLOGIES

Closed-loop control of soft robots requires sensors to
measure the pose of the actuator [393]. Embedded sensing
strategies have been proposed using commercial flex bend
sensors [237], [393], inclinometers [238], optical waveguide
sensors [129], liquid conductors [399] and magnetic sen-
sors [127]. Generally, soft sensors should be more compliant
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than the soft actuator to minimize any mechanical resistance
to actuation, ensure sensing stability, and prolong the sensors
lifetime [400].

For a soft actuator to be bodily aware, it must be inte-
grated with proprioceptive and exteroceptive sensors [401].
Proprioceptive sensors are used to measure the state of the
soft robots and are usually embedded in their structure, while
exteroceptive sensors are used to measure the state of the
environment that soft robots are interacting with. In this
section, the main sensing technologies for SPAs are reviewed,
as shown in Fig. 6. For further details on sensing for soft
robotics, the reader is referred to [398], [402].

B. RESISTIVE AND PIEZORESISTIVE SENSORS

The most commonly used strain sensors in soft robotics
are resistive-based sensors. Resistive sensors measure the
variation in resistance of a liquid, embedded elastomer,
conductive polymer, or hydrogels due to the deformation
of a soft actuator [398] (Fig. 7a). They are first calibrated
using an electromagnetic positioning system [393] or, more
commonly, camera tracking systems [230], [403]. Commer-
cially available resistive flex bend sensors (Fig. 6a) have
been embedded within the strain limiting layer and used for
modeling and closed-loop control of bending actuators [237],
[393], [404], [405]. Three conductive rubber cord stretch
sensors (Adafruit) were used for sensing three dimensional
deformation of fiber-reinforced actuators in [406]. A stretch-
able strain sensor composed of a thin layer of screen-printed
silver nanoparticles on an elastomeric substrate is fabricated
using conventional screen printing technology in [407] and
employed to detect bending with strains over 20% with a
gauge factor above 50000.

Strain sensors were also 3D-printed by integration of
single-walled carbon nanotubes (SWCNT) and TPU [408].
These piezoresistive sensors improved the repeatability of
strain measurements [409]. The optimum sensor performance
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was observed with 0.2% by weight SWCNTs in the com-
posite matrix. TPU-based filament and carbon black (CB)
were used to create a 3D-printed tactile piezo-resistive sensor
as the conductive filler [410]. In comparison to standard
CNT-Ecoflex, the printed CNT-Ecoflex shows encouraging
outcomes. TPU and PLA-G filaments are combined to create
a piezoelectric tactile sensor that can be 3D-printed with
promising lifetime in [411]. A gel piezoelectric sensor is
3D-printed and embedded into a jellyfish-like soft robot that
utilizes certain composite gel materials, including ion gel,
ionic liquid, and shape-memory gel. The study demonstrates
that an ion gel could be used for pressure sensing due
to its variable impedance properties [412]. Piezo-based gel
sensors are 3D-printed among other composite materials with
potential applications in SPAs [412], [413].
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C. CAPACITIVE SENSORS

Capacitive sensors measure the change in distance between
conductive plates, or the change in area of an elastic conduc-
tive plate [398] (Fig. 7c). The soft continuum proprioceptive
arm proposed in [428] includes a 2-axis capacitive flex
sensors (Bend Labs Inc.), which allows shape measurement
and external contact force estimation. The silicone-based
capacitive strain sensors proposed in [429] were used to
control bidirectional PneuNet bending actuators in [394]
(Fig. 6¢). The sensors are constructed as a parallel-plate
capacitor using an expanded graphite silicone composite for
the active conductive layer and unmodified silicone elastomer
for the dielectric layer [394]. Two paper-based resistive and
capacitive sensors are integrated into a soft gripper in [430]
as strain limiting layers.
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TABLE 6. Integrated 3D printing of sensors and SPAs.

Sensor types 3D Printer =~ Materials Pros (+) and Cons (-) Ref.
FDM TPU + Non-degradable — Agglomeration [408]
FDM TPU + Force and contact point — Hysteresis [410]
SLA Cilia + High resolution — Nonlinearity [411]
Resistive Inkjet Tango Black + Pressure and shear — High-stress deviation — [412]
FDM Bioagents/PLA/ABS -+ High precision — Post-treatment [413]
FDM PLA/carbon fiber + Negative Poisson’s ratio — Strain shift [414]
Extrusion TPU silver + Low cost — Adhesion [409]
FDM TPU + High sensitivity — Simple geometries [415]
Capacitive Extrusion Tonic gel + High sensitivity — Environmental effects [416]
p DLW Nanocrystals + High Spatial resolution — Coupling loss [417]
FDM TPU/PI-ETPU + Negative Poisson’s ratio — Low stretch [418]
Maenetic FDM Copper/ABS + Non-contact + High temperature range [419]
& FDM Magnetite/ABS — Low sensitivity — Environmental effect [420]
Inductive Inkjet VisiJet/silver + Wireless — Dissolving sacrificial [421]
FDM Magnetite/PCL + Linear response — Delamination [422]
FDM ABS + Linear response — High Deviation [423]
Optical Inkjet InkOrmo/InkEpo + Mass production — Coupling loss [424]
FDM FBG/PLA + High sensitivity — Post assembling [425]
Pneumatic FDM TPU + Multi-sensing — Noisy [387], [426]
Ultrasound Polyjet Phononic crystals + Non-contact — Post assembling [427]

3D-printed capacitive strain gauge sensors [431]-[433]
have also been utilized to manage strain with a defined
sensitivity that can be adjusted by the printing parameters.
A metamaterial capacitive uniaxial stretch sensor array has
been 3D-printed for the measurement of normal forces during
a stretching process. The electrodes are fabricated from elec-
trically conductive carbon black thermoplastic polyurethane
(PI-ETPU). The negative Poisson ratio designed via auxetic
patterns enhanced the compliance and deformation in com-
mon SPAs [418]. Micro-sized force sensors have also been
3D-printed on complicated geometries for tactile applications
including touch location and intensity detection [415]. Direct
laser writing (DLW) has been widely utilized to create
3D-printed capacitive sensors using conductive inks for
temperature and humidity measurements [416], [417].

D. MAGNETIC SENSORS

Magnetic sensors are comprised of a permanent magnetic
source and a magnetic field sensor. As the soft actuator
deforms the position and orientation of the permanent
magnet relative to the magnetic sensor varies, which is
used to determine the actuator deformation [398] (Fig. 7e).
Custom magnetic sensors have been used to measure the
curvature of bending actuators in [127], [395] (Fig. 6d).
These sensors utilize a magnet and a one-dimensional
Hall effect sensor on a flexible circuit board [434]. This
approach is simple to manufacture and instrument. In [395],
magnetic sensors returned noisy but accurate data, while the
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commercial resistive flex sensor had an offset at steady-state
conditions.

The deformation of SPAs can also be detected using
3D-printed magnetic displacement sensors, which have been
created for non-contact operation with a broad temper-
ature range. These sensors are advantageous for harsh
environments due to their non-contact nature [419], [420],
[435], [436].

E. INDUCTIVE SENSORS

The inductance of a coil is determined by the coil diameter
and the spacing between the coil windings. As the actuator
elongates, the space between turns increases while the coil
diameter decreases, which reduces inductance, and vice
versa [398] (Fig. 7e). Compared to 3D-printed resistive
and capacitive sensors, inductive sensors provide more
design freedom and are compatible with a wide range of
materials [421], [437]. In [396], a metal spring covering a
cylindrical soft actuator is used to limit the radial expansion
of an extending actuator and estimate length as the inductance
of the spring changes during pressurization (Fig. 6e).

F. OPTICAL SENSORS

Optical sensors measure variations in light intensity and
phase. As the length of an optical guide changes, the
measured phase is related to deformation. Deformation can
also be inferred from the intensity of received light if
the optical guide is partially or fully obstructed along its
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length [398] (Fig. 7d). A customized optical waveguide made
from flexible polymethyl methacrylate material is used to
measure bidirectional bending in [129]. This sensor is free
of radial deformation and can provide steady linear output
under pressure. Hybrid rigid and soft optical fibers have
been demonstrated for measuring the bending and grasping
force PneuNet actuators [438]. In [439], a soft optical
waveguide with an embedded LED, a photodiode, and a
reflective metal coating are integrated into bending actuators.
In [397], stretchable optical waveguides were used as
curvature, elongation, and force sensors in a fiber-reinforced
soft prosthetic hand. Fiber optic sensors such as Fibre
Bragg grating (FBG) sensors are significantly more linear
than resistive and capacitive sensors. They are inexpensive,
transparent, highly sensitive, and can be directly 3D-printed
with SPAs [423]-[425], [440].

G. PNEUMATIC SENSING

Soft pneumatic deformable sensing chambers rely on vol-
ume change in their internal structures when they are
mechanically deformed [43]. Such sensors can be used in
soft wearable gloves for virtual reality applications, human
motion tracking, soft grippers telecontrol [441], real-time
position and force control of soft robotic fingers [387],
[426] (Fig. 6g), soft robotic interactive skins [442], [443],
force and curvature measurement [444], three-axis force
measurement [445], and tactile sensing for cooperative
robots and manipulation [446], [447]. Also, haptic feedback
devices [441], game controllers [448], throttle controllers
[441] and robotic controllers [449] are developed based on
soft pneumatic sensing chambers.

H. ACOUSTIC SENSING

Tactile sensors based on polymeric acoustic waveguides have
been developed for strain, deformation, localization, and
twist measurement [450]. Contact sensors for soft robotic
hands have also been developed using active acoustic sensing
[451], [452]. Acoustic sensors for extending SPAs were
used to measure the length by generating a broadband
acoustic signal in the tube and measuring the resonance
characteristics [453]. 3D-printed waveguides can also be
integrated into the SPA to reduce air leakage [427].

I. ESTIMATION
Integrating sensors into soft robots remains a challenge
due to their flexible nature. Angular velocity, for example,
is generally required by control laws for precise closed-loop
bending control. While this is often achieved using solid-state
sensors such as tachometers, speedometers or gyroscopes
with rigid robots, these sensors cannot be used with soft
actuators since they would affect their flexibility [230], [231].
State estimation is an attractive alternative for indirect
sensing where the robot dynamics and available sensor
measurements are used to estimate variables that cannot be
measured directly [454]. For nonlinear systems such as soft
robots, nonlinear variants of the Kalman filter [455] such
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as the Extended Kalman Filter (EKF), Unscented Kalman
Filter (UKF) and Particle Filter (PF) can be used. Extended
Kalman filters have been used in [456], [457] to estimate
the curvature of soft bending actuators using empirical
state-space models with measurements from an embedded
flex sensor. An adaptive unscented Kalman filter based on
a neural network was proposed in [458] using pressure and
flex sensor readings to estimate the proprioceptive state and
exteroceptive inputs of a pneumatic soft finger.

The aforementioned filters, however, disregard the motion
dynamics of soft robots and have not been employed for
control purposes. A high-order sliding mode observer using
a dynamic model based on the Euler-Lagrange method is
proposed in [231] to estimate velocity and track desired
trajectories. In [459], simulation results are presented where
a state observer is used with a nonlinear feedback controller
to regulate the position of a pneumatic soft bionic fin.
Observer-based controllers are implemented for pneumatic
soft robotic arms using an EKF in [460] and an adaptive
Kalman filter in [461]. Observer-based nonlinear controllers
are also proposed in [462] for bending angle control, where
a feedback linearization controller is used with estimated
variables from the UKF based on measurements from a
pressure sensor and an embedded resistive flex sensor.

VIi. CONTROL

Soft robots are difficult to control with conventional
model-based methods due to their significant degrees of
freedom and highly nonlinear dynamics [285], [334]. The
nonlinearities arising from hyperelasticity are compounded
by nonlinearities associated with pneumatic actuation includ-
ing the compressibility of air, the nonlinearity of flow
through valves, and actuation time delays [235], [238],
[463]. Although numerous soft sensing technologies were
described in Section VI, the use of such technologies in
closed-loop control is still in its infancy [464]. In addition,
soft sensors are usually limited by multiple factors including
a slow and nonlinear response, hysteresis, and drift [43].
In the following, we review control methods used in
pneumatic-driven soft robotics.

A. EXPERIMENTALLY-TUNED CONTROLLERS

Most fluid-powered soft robots use experimentally-tuned
controllers. For example, in the control of robots including
snake-like [10], [11], worm-like [14], [15], [465], soft-bodied
fish [16], and manta rays [20], [466]. Experimentally-tuned
PID controllers are commonly used [116], [137], [237],
[393], [467]. In [467], a PID controller was shown to
outperform a sliding mode controller for trajectory tracking
at the expense of higher overshoot and lower robustness
to external forces. Conversely, the sliding mode controller
with a PID sliding surface in [134] damps vibrations
compared to a model-free PID controller. In [468], the
authors argue that existing work on model-free control
uses manually tuned parameters, which is a laborious task.
Consequently, automatic tuning of ordinary, piecewise, and
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fuzzy PID controllers using a heuristic-based coordinate
descent algorithm is proposed in addition to manual tuning
using the Ziegler-Nichols method [469], [470] as a starting
point.

In [10], bang-bang control was used regulate the pressure
of a pneumatic receiver. In [14], [465], [471], the same
approach is used to actuate valves for peristaltic locomotion.
A dead zone can also be introduced to reduce frequent
switching of the valves [78], [472].

B. MODEL-BASED CONTROLLERS

Model-based static or kinematic controllers are most com-
monly based on the piecewise constant curvature assump-
tion. A theoretical model based on the incompressible
Neo-Hookean model was used to control the bending angle of
a fiber-reinforced actuator in [26]. A model predictive neural
controller was designed to control the grasping force of a
soft robotic manipulator under slippery conditions in [473].
Cascade control structures have also been proposed where
the faster inner layer performs pressure control and the
outer layer is responsible for open-loop angle control [474],
[475] with the angle mapping obtained from experimentally
extracted mapping functions [474].

Currently, model-based dynamic controllers for soft fluidic
actuators are still in their nascent stage [237], as summarized
in Table 7. By using the energy-based second-order models
described in Section I'V-B, sliding mode controllers are devel-
opedin [127], [134], [235] to control the bending of soft actu-
ators governed by high-speed on/off solenoid valves. A slid-
ing mode controller with a static feedforward input [235]
improved the tracking performance with dynamic trajecto-
ries. A model reference adaptive controller augmented by
inverse feedforward control was also demonstrated in [236].

Adaptive fuzzy-sliding mode [476] and energy-based [477]
nonlinear controllers have been proposed for pneumatic
artificial muscles using dynamic models derived using
Lagrange’s method. Energy-based controllers for soft
pneumatic actuators using the interconnection and damping
assignment passivity based control (IDA-PBC) methodology
have been used in [478], [479], where the system dynamics is
represented in port-Hamiltonian form. The port-Hamiltonian
approach focuses on the energy interactions associated with
the system and offers an alternative for the modeling of
multi-domain physical systems based on the concept of power
conjugate variables [480], [481].

Many articles have described high-level controllers for
bending angle or extension [334]. However, few works
have considered the impact of the pneumatic system, which
requires low-level pressure control. In [237], a pneumatic
model was used to control the bending angle of a pneumatic
network actuator using a robust backstepping controller with
2-way, 2-position on/off valves. Sliding mode controllers are
proposed in [467], [482] to control the pressure of a soft
actuator using proportional valves. State-Dependent Riccati
Equation (SDRE), sliding mode and feedback linearization
controllers are compared in [483] for low-level control of
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soft actuators driven by a pressure-regulated receiver and
single on/off solenoid valve. In [238], a pneumatic model is
included to control the bending angle of a fiber-reinforced
actuator using two 3-way, 2-position on/off valves with a
backstepping adaptive controller and sliding mode controller.
These controllers have also been employed in [239] using
a second-order model with nonlinear parameters, where the
experimental results demonstrated high performance of the
adaptive robust controller. In [484], feedback linearization is
proposed to control the motion of a bellow-shaped continuum
manipulator with proportional valves.

C. VISION-BASED SENSING AND CONTROL

A vision equipped robotic system can measure the robot
shape and gather information from the surrounding environ-
ment. Hence, visual sensing can be used to determine the
position and orientation of the soft robot for modeling and
feedback control [392], [485], [486]. 2D or 3D vision system
can be installed at a fixed location near the robot (eye-to-
hand) or attached to the robot (eye-in-hand).

Model-less feedback controllers with vision-based sensing
for continuum robots have been described in [487], [488].
This method avoids the accurate model formulation and cal-
ibration between camera and robot required in model-based
approaches [487], which is particularly relevant considering
the complicated kinematic and dynamic models required for
soft robots and interaction with the external environment.
Shape-based [487] and color-based tracking [488], [489]
have been studied for concentric tube robots. Visual servoing
has also been proposed for various cable-driven soft robots.
In [490], an adaptive controller using eye-in-hand visual
servoing is presented for a soft manipulator in a constrained
environment. In [491], the visual servoing method was used
to attain the inverse kinematics in robot-specific spaces
and collision detection. The work in [492] presented an
underwater dynamic eye-to-hand visual servoing method
for a cable-driven soft robot arm with online distortion
correction. Lai et al. [493] presented an eye-to-hand closed-
loop controller to manipulate a two-segment soft robot with
payload in 2D using an online estimate of the Jacobian matrix.

Although the aforementioned methods can be generalized
to soft robots with different actuation technologies, few works
describe the application of visual servoing to fluid-driven
soft robots. In [494], a motion capture system is used
to implement a model-less proportional controller on a
honeycomb pneumatic network manipulator [495], which
resulted in compensation of gravity and external loads.
In [496], an eye-in-hand visual servoing method was applied
to a single segment pneumatic soft robot to regulate the tip
position. Color-based camera tracking using colored markers
embedded around a worm-like soft robot is described in [15].
These markers allow a single camera to determine the 2D
position of an actuator within the field of view of the
camera. The employment of 3D vision enabled by RGB-D
cameras [497] and stereo cameras have also been reported
for soft robotic arms [498], [499].
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TABLE 7. Summary of model-based controllers for soft pneumatic actuators. ESOLD: empirical second-order lumped dynamics, VVC: variable volume
chamber, CVC: constant volume chamber, NVM: nonlinear valve model, NTM: nonlinear tube model, EL: Euler-Lagrange, ESOD: empirical second-order

dynamics.
Task Model Valve Sensing Estimation Controller Ref.
Pneumatic Motion

Bending ESOLD Proportional Pressure, Optical Sliding mode [129]

Bending ESOLD 3/2 On/oft Pressure, Magnetic Iterative liding mode [127]

Bending ESOLD 3/2 On/oft Pressure, Magnetic Model reference adaptive control ~ [236]
Dynamic feedforward control

Bending ESOLD 3/2 On/off Pressure, Optical Sliding mode with feedforward [235]

Bending VVC, NVM, NTM Proportional Pressure, Flow Sliding mode, PID [467]

Bending ESOLD 3/3 On/off Pressure, IMU Sliding mode with PID surface [134]

Bending VVC,NVM ESOLD  Dual 2/2 on/off Pressure, Resistive Robust backstepping [237]

Bending CVC,NVM ESOLD  Dual 3/2 on/off Pressure, Inclinometer Backstepping, Sliding mode, PID  [238]

Bending CVC,NVM ESOLD  Dual Proportional ~ Pressure, Inclinometer Backstepping, Sliding mode [239]
PID with feedforward

Bending EL Pressure, Resistive Robust PD-type controller [230]

Bending EL Pressure, Resistive Sliding mode observer Adaptive sliding mode [231]

Bending VVC, NVM, NTM 5/3 Proportional Pressure, IMU Static inverse measurement  Sliding mode, PID [482]

Bending ESOD Proportional Extended state observer Nonlinear error feedback control [459]

Extension ESOD Proportional Pressure, Inductive PID [396]

Motion capture allows high accuracy sensing and control;
however, there are several difficulties. First, an unobstructed
line of sight from the actuator to the camera system is
required for stable visual feedback. Second, visual servoing
requires the development and use of robust image processing
algorithms, such as image segmentation, auto-focusing,
contour detection, image distortion, object recognition,
and 3D reconstruction. Third, camera calibration plays an
essential role in vision-based robotic systems. The calibration
includes the estimation of intrinsic and extrinsic parameters,
which require time and effort in the preparation stage.
Computational speed may also restrict the use of this method.
Fourth, many stationary cameras surrounding the markers are
required to resolve the 3D orientation and translation of the
tracked object.

D. MODEL-FREE AND DATA-DRIVEN MODELING AND
CONTROL

As previously discussed, soft robots are difficult to control
with conventional model-based controllers. Also, analytical
models for SPAs are usually established based on assump-
tions that are only applicable to certain simplified designs and
in structured environments. This has created fertile ground for
the application of machine and deep learning approaches in
soft robotics [257].

Effective bending control of SPAs is challenging due
to nonlinearities arising from the pneumatic system and
material properties. The nonlinearity due to solenoid valves
has been modeled using a data-driven machine learning
technique [405]. A purely data-driven approach can be used
to control the bending angle of soft actuators using a static
model with combined measurements from commercially
available pressure and flex sensors [404], [405]. This
approach avoids the need for precise physical and material
models, and the experimental data generated implicitly
accounts for variations in operating conditions that are
otherwise difficult to model mathematically. However, this
approach requires sufficient experimental data describing the
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behavior of the SPA under various operating conditions so
that the derived models can be generalized to new untrained
scenarios [404]. To better understand the dynamics of SPAs in
unconstrained dynamic settings, data-driven modeling might
be used to learn nonlinearity and hysteresis in SPA dynamics
models. The visco-hyperelasticity of SPAs was modeled
using a modified Kelvin—Voigt model in [500]-[503]. Model-
based feedback control could be achieved using the suggested
model, which was confirmed using experimental data to
properly capture the SPA’s nonlinear and hysteresis behavior.

Hyperelastic material characteristics and design geome-
try make the kinematics of SPAs extremely nonlinear in
an unstructured environment [404]. Linear regression and
artificial neural network (ANN) models were shown to
predict the bending angle of SPAs with more accuracy
than the linear regression model in [504]-[506]. ANN
models were used to approximate the Jacobian function of
SPAs and find the PID gains of the controller to attenuate
external disturbances [334]. Due to the nonlinearity of SPAs,
conventional PID controller design methods may not be
appropriate. As an alternative, position tracking accuracy was
improved using cascade controllers with machine learning to
optimize PID gains [507], [508]. Extended Kalman Filters
and nonlinear observers based on wavelet and sigmoid
networks were created to accurately forecast SPA behav-
ior [456]. Nonlinear regression was employed to simulate
SPA behavior in an unstructured environment using a flexible
Sensor.

Reinforcement learning (RL) can be implemented as
model-based learning in SPAs. In model-based RL, optimal
feedback commands are calculated based on supervised
learning algorithms to minimize a cost function [267], [509],
[510]. The data required for training is acquired from sensors
during the interaction of soft robots with their surroundings.
A model-free approach, on the other hand, eliminates the
need to learn a model to predict optimal actions [511].
Control rules can also be optimized through model-free
approaches known as Q-learning [284], [512]-[515]. A direct
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policy model-free method for closed-loop dynamic control of
SPAs can be implemented in three steps. First, the forward
dynamics can be formulated using training data and a deep
learning ANN algorithm to generate the possible trajecto-
ries of the SPA [516]. Trajectory optimization algorithms
generate samples to learn open-loop control policies in real
environments [517]. Next, the trajectories provide samples
for the appropriate control action to drive each region of the
manipulator to the desired states. To develop a closed-loop
optimal control policy, the control actions for each reachable
state of the manipulator are required. Finally, accessing all
the new trajectories, a supervised learning model can be
employed to directly learn the appropriate closed-loop control
policies for each system state via the dynamic adaptability of
deep and RL algorithms [516].

Deep learning is an autonomous training algorithm based
on existing data to identify trends. Additionally, the algorithm
is capable of producing predictions for new future data by
altering previous patterns using several ANN layers [518].
As a result of recent advances in deep learning, prediction
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models can now be built for SPAs that analyze unexpected
data sets in an unstructured environment based on the model
earlier developed using training data [519]. The combination
of deep learning and RL has shown encouraging results in
the control of autonomous SPAs [520], [521]. Reinforcement
learning is used to extract needed information from embedded
printed sensors, and to optimize the control algorithm in
response to environmental conditions [522], [523]. Using
FEM as part of a machine learning loop may also help
reduce risk factors by exploring additional movements and
situations. Fig. 8 illustrates a procedure for the data-driven
control of SPAs.

Soft pneumatic actuators have seen a radical develop-
ment in manufacturing and design with the aid of 3D
printing and functional materials [524]-[526]. Therefore,
a concurrent advancement in deep learning algorithms is
required to provide increased autonomy when dealing with
complex manipulation tasks, which may include stable
operation with uncertain and perhaps fragile environments
[29], [527]-[534].
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TABLE 8. Summary of bioinspired pneumatic soft robots. Adapted with permission from [276].

Animal/Feature Bioinspiration Applications Actuation/Movement Principle References
Octopus/Cephelapod Tentacles Muscular Hydrostats Kinematics Soft Grasping Pneumatic Artificial Muscles [540]-[542]
Elephant Trunk Muscular Hydrostat Kinematics Soft Grasping Pneumatic Artificial Muscles [543]
Tendon Guided Pneumatic Actuation [23], [389]
Stiffness Adjustable Compliant Gripping Soft Grasping Pneumatic [544]
Worm Muscular Hydrostatic Locomotion through Propagating Waves Complex Terrain Navigation Pneumatic Artificial Muscles with Jamming [545]
Peristaltic Locomotion Pipe-crawling Fiber-Reinforced Pneumatic Actuator [14], [79], [122]
Inchworm Locomotion Locomotion in Confined Spaces Pneunet Bending [546]
Caterpillar Propagating Wave Motion Locomotion in Confined Spaces Pneumatic [547]
Propagating Wave Motion and Passive Adhesion Feet Climbing Pneumatic Actuation with Compliant Gripping [548]
Propagating Wave Motion and Passive Adhesion Feet Confined Space Locomotion Pneumatic Actuation with Friction Gripping [549]
Snake Serpentine and Sidewinding Motion Ground-based Locomotion Pneumatic Bending Actuator [135]
Climbing Locomotion through Coiled Grasping Tree Climbing Pneumatic [550]
Serpentine Motion Ground-based Locomotion Pneumatic Bending Actuator [10], [323]
Fibre Reinforced Pneumatic Actuator [12]
Gecko Climbing through adhesion and gait Climbing Mobile Robots Pneunet Kinematics/Active Suction [551]
Quadruped Walking Gait Human Assistance Tendon Guided Pneumatic Actuation [552]
Dynamic Galloping Gait High-Speed Locomotion Bistable Pneumatic Actuator [553]
Fish Underwater navigation through tail and fin movement Aquatic Mobile Robots Pneumatic Bending via Synthetic Vascular System [554]
High-speed maneuverability of flexible tail Aquatic Mobile Robots Pneunet Bending [16]
Rays/Batoid Swimming through Undulatory Flapping Motion Aquatic Locomotion Pneumatic Bending [20]
Tendon Guided Pneumatic Actuation [555]
Squid Soft Morphing Fins Aquatic/Aerial Hybrid Locomotion Pneumatic Bending Actuator [17]
Frog Paddling Gait Agquatic Locomotion Pneumatic [556]
Starfish Multigait Locomotion Rough Terrain Exploration Pneumatic Artificial Muscles [557]
Pneumatic Bending Actuator [558]
Octopus Soft Body Soft Mobile Robots Fluidic via a Chemical Reaction [4]
Octopus Tentacle Positive Pressure Adhesion Climbing Inclined Surfaces Pneumatic [559]

VIIl. APPLICATIONS

A. BIOINSPIRED SOFT ROBOTS

Biological creatures have designs that evolution has spent
millennia perfecting. Animals exploit soft structures to
move effectively in complex natural environments. They can
achieve locomotion such as morphing, squeezing, climbing,
growing, and crawling that would not be possible with an
approach based only on rigid links. Consequently, bioinspired
design has proven to be extremely beneficial toward the
advancement of soft robotics [9]. Soft roboticists have often
drawn inspiration from the rich and diverse set of designs
found in nature, including natural materials, actuators,
and locomotion strategies. We also note that, although
complete understanding and duplication of the complex
actuation mechanisms of biological materials and structures
are unlikely in the foreseeable future, bioinspired designs
will continue to be an important source of inspiration for the
design of soft robots [535].

The following section discusses some common bioinspired
designs. A summary of bioinspired soft robotic designs
are presented in Table 8. For further details on bioinspired
materials, structures and locomotion modes, the reader is
referred to [536]-[539].

1) ELEPHANT TRUNKS AND OCTOPUS TENTACLES

Soft continuum manipulators inspired by muscular hydrostats
(such as octopus tentacles and elephant trunks) have been
investigated for more than two decades. The parallel bellows
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continuum actuator described in [22] and included in
AMADEUS [560] consists of three oil-filled bellows and
is controlled by hydraulic pressure. Two other popular
pneumatic designs are the Air-Octor [389] and OctArm [543].
The Air-Octor consists of a single central chamber (dryer
hose) with 3 cables separated by 120°, it is less complex
to build and control but has high cable friction and low
flexibility and strength. The OctArm consists of multiple
pressurized chambers (McKibben actuators), it is flexible
and has good strength and performance, but is complex to
build and control. A new design proposed in [23] combines
the advantages of both of these designs in a single central
rubber tube covered with an expandable nylon sleeve and
three cables.

2) WORM AND SNAKE-LIKE SOFT ROBOTS

A popular alternative for locomotion in soft robotics is peri-
staltic crawling, whereby longitudinal muscles are contracted
in the anchoring segments, while circumferential muscles
are contracted in the advancing segments [561]. Pneumatic-
driven soft peristaltic robots composed of three artificial
muscles were discussed in [14], [15], [122]. They consist
of a back radial actuator, a central axial actuator, and a
frontal radial actuator. The posterior and anterior actuators
are used to anchor the robot, while the central actuator is
used to extend and contract the robot. This mechanism can
be used to develop catheters and endoscopes to navigate
inside the human digestive and circulatory systems with
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little human intervention [14]. The inchworm-inspired soft
robot developed by [546] is composed of three modules with
two bending PneulNet actuators and can reach a speed of
7.89 mm/s and pass obstacles with a height 42.8 mm. The
addition of adhesive feet enables inchworm soft robots to
climb smooth vertical surfaces. In [559], two adhesive feet
deform in response to pressure, and a central pneumatic
bending actuator produces forward movement through cycles
of expansion and contraction.

Soft snake robots, which utilize serpentine locomotion,
have also been developed to navigate unstructured terrain and
confined spaces [10], [12], [135], [317], [323]. Serpentine
motion relies on anisotropic friction to generate a forward
thrust that exceeds the drag produced by its body [537].
In Onal et al. [10], the robot consists of four bidirectional
fluidic actuators in series with valves and passive wheels
attached between segments and on-board electronics at the
tail. A detailed model of this robot is reported in [323]
using a similar approach to [562]. In [11], a new thin and
long fluidic elastomer actuator with semi-circular shape and
fiber reinforcements is proposed for snake robots, resulting
in high deflection and short response time. Fiber-reinforced
actuators were also used in [12]. Qin et al. [135] presented a
soft robotic snake, where each tube is made of silicone rubber
wrapped in thread and the three tubes are fused together with
silicone.

3) FISH AND RAY-INSPIRED SOFT ROBOTS

Despite the diversity of aquatic locomotion methods,
swimming soft robots are primarily inspired by the flapping
motion of fishtails [16], [563] or the undulatory waves
produced by rays’ pectoral fins [20]. Soft ray robots generate
waves through one or more multichamber pneumatic bending
actuators on each side of the ray. While a single actuator
produces an up-down flap of each fin, multiple actuators
enable more complex traveling waves. In [20], fiber-
reinforced actuators with bidirectional motion are analyzed
using FEM and employed to drive a manta robot composed
of silicone rubber. Drawing inspiration from PneuNets
actuators, multichambered fins have been developed
in [17], [466]. In contrast, 10 tendon-guided pneumatic
actuators enable smooth continuous motion in [555].

B. BIOMEDICAL APPLICATIONS

Soft robots can elastically deform and adapt their shape
to external constraints and obstacles, which makes them
ideal for biomedical devices. Compared to conventional
robots, soft robots do not compromise tissue integrity,
freedom of movement, conformability, and overall human
bio-compatibility [564], [565]. In the following, the main
biomedical applications of fluid-driven soft robotics are
reviewed.

1) MINIMALLY INVASIVE SURGERY
Soft robotic devices have been developed for improved
maneuverability and safety during surgical procedures.
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Robotic steerable catheters and endoscopes can reduce
trauma, pain, blood loss, and recovery time [41], [56],
[565]. The most popular designs for steerable catheters
using fluidic actuation resemble the flexible microactuator of
Suzumori et al. [130], [131]. Garbin et al. [83] has proposed
a disposable pneumatic endoscope composed of off-the-
shelf rubber bellows. An endoscope for colonoscopy was
developed in [573] with three active pneumatic chambers
and three additional chambers to reduce the radial expansion
of the active chambers. A 6-mm diameter two-DoF soft
pneumatic actuator, able to bend more than 180deg in
every direction and incorporating a 1 mm working channel,
is presented in [574] for endoscopy. An 18 mm diameter
inchworm-inspired soft robot for colonoscopy is reported
in [575] and consists of two balloons connected by a
three-DoF soft pneumatic actuator. A low-cost, soft robotic
endoscope for gastrointestinal tract procedures was pre-
sented in [576]. Ikuta et al. [312], [577], [578] has designed
a single-input, multi-output control mechanism for soft
catheters in which a single input system drives bellows-
type actuators. Forceps manipulator with four chambers and
metal spring reinforcements are proposed in [579] for surgical
robots, which achieved bending motion in two DoF and
maximum angle of 53 deg. Pneumatically actuated, origami-
inspired soft robots have also been explored for gastrointesti-
nal endoscopic applications [580] and neurosurgical brain
retraction [581].

A multi-module variable stiffness manipulator was devel-
oped in [24], [381] for surgical applications (Fig. 9a). The
so-called STIFF-FLOP (STIFFness controllable Flexible and
Learnable Manipulator for surgical OPerations) offers omni-
directional bending and includes variable stiffness through
granular jamming and an external braided sheath to limit
radial expansion and maximize longitudinal deformation.
A 2-module robot also offering omnidirectional motion
is proposed in [106] for laparoscopic procedures which
includes an internal free lumen along the central axis to
guide flexible endoscopic tools or house endoscopic sensors.
A stiffening system based on fiber jamming transition
(Fig. 9b) is discussed in [368] to widen the applicability of
the STIFF-FLOP by increasing its stability and producing
higher forces. A soft polymer tip with 50 um diameter
microfluidic channels distally attached to a 1.6 m catheter
with a contiguous lumen is presented in [582], where the
authors have demonstrated the ability of their device to
navigate through vessels and to deliver embolization coils to
the cerebral vessels in a live porcine model.

2) WEARABLE ROBOTICS, REHABILITATION, AND
ASSISTANCE

Over the last decade, the number of publications on soft
wearable robotics has increased 10 fold [583]. Due to
advantages such as high power density, high output force,
compliance, durability, and affordability, pneumatically actu-
ated soft structures are used in wearable robotics applications
such as ankle-foot orthosis, exosuits for gait and upper
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FIGURE 9. Biomedical application of pneumatic soft robotics: (a) STIFF-FLOP [566], (b) novel STIFF-FLOP with fiber jamming [368], (c) soft robotic gastric
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body rehabilitation, robotic gloves for hand and thumb
rehabilitation, assistive robots for elderly care and haptic
feedback systems [584]-[587].

Wearables with pneumatic actuation can be based on cham-
bered actuators or fabric-based inflatables and textiles [583],
[588]. Such actuators have been used for joint rehabilitation
of the finger, hand, wrist, elbow (Fig. 9f), ankle (Fig. 9g),
and shoulder [58], [324], [589]-[591]. Other applications
include massage [592] and functional assistance [123], [593],
[594]. Pneumatic actuators are also used in assistive devices
such as soft wearable upper and lower exoskeletons for
human performance augmentation [595]-[598]. In [189],
a pneumatic jamming ankle used variable stiffness tendons
to damp impacts and improve the ability to traverse variable
terrains. An elastic ligament was used to reduce the peak load
experienced by an elbow in [599].

Haptic feedback systems based on soft pneumatic actuators
assist stroke patients by improving the biofeedback provided
during their rehabilitation process [600]-[602]. Other haptic
applications include actuator skins for contact sensing and
vibrotactile feedback [603], soft inflatable rings for rich
haptic feedback [604], soft inflatable balloon actuators
for robotic surgery [605], worn haptic interfaces (e.g.,
armbands) [606], and for tactile sensing on fingertips [607],
[608]. Soft pneumatic hands may soon recover some of
the function from lost upper limbs [609] with integrated
tactile feedback and simultaneous myoelectric control [610].
Soft wearable pneumatic gloves [569] (Fig. 9e) are potential
candidates for virtual reality applications [611].

3) IMPLANTABLE DEVICES, ARTIFICIAL ORGANS, AND BODY
SIMULATORS

Soft robotic devices for the heart, including ventricular
assist and direct cardiac compression devices, have received
significant attention due to their relatively simple function
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(similar to a pump) and can assist cardiac function, which
may be required before transplant. A soft robotic sleeve with
embedded McKibben-based actuators is proposed in [242],
[568] (Fig. 9d), which is implanted around the heart and
actively compresses and twists to act as a cardiac ventricular
assist device. Alternatively, individual McKibben actuators
are wrapped around the heart ventricles in [612] to contract
and relax in synchrony with the beating heart. Soft actuators
with a McKibben pneumatic artificial muscle design are
also used in [613] to provide external compression to the
outer ventricle wall and, therefore, dynamically augment
left ventricular contraction. Entire soft artificial hearts have
also been explored using soft silicone [614], fluid-powered
low-density foam actuators [615], and 3D-printed lost-wax
casting techniques [616].

Soft body simulators can be used to simulate the physio-
logical motions of the human body for training applications
and to reduce animal or human testing. A soft robotic gastric
simulator is discussed in [567], [617] that emulates peristaltic
contractions using an array of circular air chambers (Fig. 9c).
A soft robotic respiratory simulator is addressed in [618]
which recreates the motion and function of the diaphragm
using pneumatic artificial muscles. A soft robotic esophagus
with layers of pneumatic hollow chambers is developed
in [619] for stent testing.

C. GRIPPERS AND PARALLEL MANIPULATORS

Soft manipulators are continuum arms that are used for
manipulation tasks [40], [42] or gripping. A soft manipulator
can also be equipped with a soft gripper [63] for improved
maneuverability [39], [620]. Soft robotic grippers can employ
two [621], [622], three [623]-[625] or four fingers, and
may use vacuum jamming mechanisms, or employ suction.
Soft grippers come in many varieties to suit the wide range
of applications [39]. Soft grippers based on SPAs can be
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fabricated using commercially available soft materials, and
can handle a wide variety of payload stiffnesses without
the need for closed-loop control. Due to their inherent
softness, pneumatic grippers are safe to operate alongside
humans and in unstructured environments. Soft grippers
based on SPAs are widely used for pick and place applications
[626]-[628], including fruit and vegetable harvesting [629],
food packing [630], and warehouse automation. Soft grip-
pers based on SPAs can be designed with self-healing
properties [631], conformability [632], dexterity [633],
versatility [625], [634], high payload [120], [635], stiff-
ness variation [347], [636], enhanced grasping [637] and
micro-gripping capabilities [191].

The development of universal grippers that can handle a
wide variety of objects remains a challenge. To overcome
this in both static and dynamic conditions, a large contact
area between the object being handled and the gripper
is required [632]. Layer-jamming suction grippers with a
kirigami pattern for stiffness tuning were developed by [363],
which only requires a single vacuum pump, and is able
to lift 154 times its own weight for curved surfaces.
In [473], a soft manipulator was equipped with a bionic
polydimethylsiloxane nanofiber film to increase friction
and achieve grasping performance under wet or slippery
conditions. In [632], [638], a 3D-printed modular soft gripper
with highly conformal fingers was developed with positive
pressure bending soft pneumatic actuators. The passive
component consists of a soft auxetic structure and compliant
ribs which enhances the conformability of the soft gripper and
reduces out-of-plane deformation.

IX. DISCUSSION

A. CAPABILITIES

SPAs possess several capabilities and functionalities which
make them the most used actuators in soft robotic sys-
tems including self-healing properties, fail-safe features,
resilience, scalability, customizability, modularity, multi-
modal programmable actuation, fast actuation, and most
importantly their amenability to different 3D printing tech-
nologies. A review of these capabilities is included below.

1) SELF-HEALING

The ability of biological muscles to self-heal after being
damaged or mechanically stressed is a desirable property
because any damage or crack in their structure would lead
to air leaks and consequently their failure [639]-[641].
Developing SPAs with self-healing properties lead to the
realization of more mechanically robust soft systems that
can handle extreme mechanical loading without catastrophic
failure [641]. Sunlight can be focused on the structure of soft
bidirectional bending actuators to rapidly self-heal punctures
and restore functionality [642]. SPAs with self-healing
capabilities were used to develop soft grippers, hands, and
artificial muscles [631], [643]. Another example is the ability
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of SPAs to self-heal and re-operate after being cut into
different pieces and then brought into contact [644].

2) SAFETY

SPAs can remain functional after a rupture or crack in
their structure. For instance, vacuum-based SPAs remain
operational under a continuous supply of negative pres-
sure [87], [137]. Positive pressure SPAs based on a composite
of elastomer and fibers resist puncture from sharp objects
and continue to operate even after being punctured [645].
SPAs are highly resilient [646], [647] due to their tolerance
to extreme mechanical deformation and harsh environ-
ments [648]-[650].

3) SCALABILITY AND MODULARITY

SPAs can be scaled in their overall size and internal
volume from micro-scale to macro-scale and extremely large
robots [651]. Miniature soft robotic systems and devices
include grippers, artificial muscles, locomotion robots, and
camouflage robots [191], [193]. SPAs can be ultrathin for
applications requiring lightweight robots that can fit in small
spaces [652].

Similarly, macro-sized SPAs can be scaled either in
terms of their internal volume or in terms of the number
of actuators assembled in one single unit [87]. Modular
SPAs allow soft robots to self-reconfigure so that they
can form new morphologies and consequently adapt to
different environments and tasks [184], [653]. In addition,
the modularity of SPAs allows the distribution of actuation
and sensing, and consequently improves the functionality
and reliability of the actuators and leads to reduced overall
costs [654], [655]. Distributed actuation and sensing allow
for different configurations of the same soft robot to target
specific requirements [13], [601], [656], [657].

4) MULTIMODAL ACTUATION

SPAs that can bend, twist, contract, and extend simulta-
neously are essential for various robotic applications that
require multiple modes of deformation to accomplish the
desired task. For example, the gripping performance of
a soft gripper can be enhanced by using soft helical
actuators that wrap around grasped objects to realize a
firm grip by generating bending and twisting motions
simultaneously [18], [658], [659]. The function of soft
actuators can be programmed by 3D printing [173], [660],
or by fiber orientation [96], [122] and structures such as
soft pads [661]. Vacuum-based SPAs generate simultaneous
linear and twisting motion [662]. Bellow-inspired actuators
generate linear and bending motion [50], [87] and additional
twisting in some designs [124]. Bubble SPAs are monolithic
actuators where shape can be tailored to applications ranging
from artificial muscles to grippers. [663].

5) FAST ACTUATION
SPAs can be designed to actuate very rapidly, e.g., fast
PneuNets. The components of a pneumatic system can be
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selected to reduce the rise time of the actuator response,
as discussed in Section V-D. Alternatively, elastic instabilities
can be harnessed to realize fast SPA-based locomotion
robots [553] and actuators [664]. Similarly, the stored elastic
energy in SPAs is exploited to achieve very fast actuation
speeds [665]. Ultra-fast miniature SPAs were constructed
using melt electrowriting [666]. SPAs can also be actuated
rapidly through the use of valves with snapping shells [667].

B. CHALLENGES AND FUTURE OUTLOOK

A number of challenges limit the performance of soft robotic
actuators, as discussed below. Despite these challenges, the
future of soft robotics is promising in terms of growth and
adaptation to a wide range of applications [668], [669]. For
each of these limitations, we also present recent efforts and
directions for future research.

1) PORTABILITY

SPAs require a pneumatic source that is typically larger than
the actuator itself and may include a pump, power supplies,
driving circuits, and pneumatic valves. This equipment limits
the adoption of SPAs in portable applications such as
robotic hands [670]. Peripheral components can be signif-
icantly downsized when only small forces or deformations
are required [603]. Many research projects are currently
underway to develop lightweight and portable pneumatic
pumps [671], hydraulic and self-healing soft portable pumps
[672], and electronics-free pneumatic circuits for soft robots
control [673].

2) NOISE AND VIBRATION

SPAs do not emit significant acoustic noise but their actuation
requires potentially noisy air compressors or vacuum pumps,
which are undesirable in many applications [674]. This
challenge is being addressed by silent pumps based on
electrostatically actuated pressure vessels [675] and bidirec-
tional pumps based on charge-injection electrohydrodynam-
ics [676]. Vibration in soft actuator responses are usually
a result of the small natural damping of soft materials,
but can also arise from the pneumatic system, e.g., on/off
valves. Note, however, in some applications, such as granular
jamming [359], vibration can be desirable. In addition, note
that noise and vibration also limit the portability of SPAs
since they reduce patient comfort and satisfaction, especially
when additional volume or weight is required for their
suppression.

3) ADDITIVE MANUFACTURING AND FABRICATION TIME

One of the foremost challenges in 3D printing is the
development of materials with low elastic moduli, for
example, when attempting to mimic tissue with a modulus
ranging of 3 kPa to 900kPa [55], [642]. To address such a
challenge, novel additive manufacturing technologies along
with polymer chemistries must be developed [55]. Recently
developed 3D-printable materials such as silicones [177] and
hydrogels [677] can be used. Moreover, multi-material 3D
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printing is essential to fabricate soft actuators and robots in a
single manufacturing step [332].

3D printing technologies such as FDM require multiple
hours to produce a single airtight SPA [87]. However, the
printing speed can be increased using novel 3D printing tech-
nologies to produce silicone-based soft pneumatic actuators
[678]. The capability of FDM to produce complex geometries
and features such as thin walls also requires improvement.

4) 3D-PRINTED INTEGRATED SENSING

Composite materials are the focus of current studies to
enhance the durability and performance of 3D printed
sensors. Advances in fabrication include new materials and
machine learning algorithms [679]-[681]. The quality of 3D
printed sensors tends to be sensitive to common artefacts
of 3D printing such as delamination between layers and
discontinuity. Continuous operation reduces the longevity
of 3D-printed SPAs with integrated sensors due to the
lifetime of conductive circuits. Further advances in soft
sensing will require soft structures with individual layers with
specific optical, electrical, and magnetic characteristics. This
is expected to require multi-material 3D printing, external
fields during printing, or core-shell printing to introduce
heterogeneities or anisotropies.

5) MASS PRODUCTION, REPEATABILITY AND
REPRODUCIBILITY

The majority of SPAs in the literature are produced using
slow prototyping methods that are not suitable for mass
production. At present, mass production tends to be in-house,
which requires significant repeat development of processes.
We also recall that the molding fabrication process using
silicone rubbers is time-consuming and requires significant
manual assembly, which can create issues with repeatability
and reproducibility.

On the other hand, 3D-printed soft robots can be easily
mass-produced and address the aforementioned issues with
molding. Advances in 3D-printing equipment, automation
methods and the inclusion of learning-based techniques
towards integrated fabrication workflows are expected to
facilitate mass production. For example, an advanced com-
puterized machine knitting method is proposed in [682] to
manufacture pneumatic knitted actuators towards viable mass
production. Alternatively, topology optimization can be used
to simplify the mechanical structure of SPAs, which increases
reproducibility and the potential for mass production [683].

6) NONLINEAR MATERIAL PROPERTIES AND DURABILITY

The nonlinearities arising from material properties affect the
performance of SPAs and hinder the development of mod-
eling and control techniques. Visco-hyperelasticity, stress-
softening, hysteresis and polymer aging, for example, affect
the dynamic response of soft actuators and result in nonlinear
time and rate dependent behavior [240], [684]. Data-driven
modeling might be used to learn these nonlinearities in
dynamic models for SPAs [685]. Material-based models for
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viscoelastic behavior have been developed in [500] using
a modified Kelvin-Voigt model, and in [240] by measuring
stress relaxation. A Bouc-Wen hysteresis model is presented
and experimentally validated in [686] for a pneumatic muscle.
In [684], hysteresis is modeled and compensated using the
Prandtl-Ishlinskii method.

These characteristics also affect the durability and lifetime
of SPAs, i.e., the maximum number of cycles that the
actuators can sustain before failure. We note that the lifetime
of soft actuators can be improved using materials with
self-healing capabilities and by exploiting the fail-safe feature
of vacuum-based SPAs, as discussed in Section IX-A.

7) IMPACT AND ACCESSIBILITY

The rapid growth in soft robotics has highlighted the need
to consider the impact and contribution of soft robotics
to the wider fields of robotics and engineering [687].
For example, are soft robotic devices addressing practical
industrial challenges? And are the proposed design and
fabrication methods cost-effective compared to conventional
technologies? To address the somewhat limited scope of
industrial applications of pneumatic-driven soft robots,
a synergy between fundamental research in academia and
applied research in industry is required. In addition, based
on this review, it is clear that the advancements in the soft
robotics field require multidisciplinary teams of scientists and
engineers.

Accessibility to soft robotics can be improved by its
inclusion in early formal academic programs. This will
require the development of suitable soft robotics textbooks,
and the availability of development kits that can be integrated
into a curriculum. The field would also benefit from
the availability of non-technical short courses that convey
capabilities and limitations to end users such as biomedical
device developers and health professionals.

8) COMPUTATIONAL MODELING

Although FEM studies have been widely employed for
soft robotic modeling, the field has been primarily driven
by experimental research and prototype-based development.
Further work is required to improve the modeling of
environmental interactions, and to reduce the reality gap
between simulations and experiments. Future development
in soft robotic applications will require fast simulation
and optimization tools to support the design process and
development of controllers [262]. Custom physics-based
and differential simulators developed for soft robotic appli-
cations, such as ChainQueen and Elastica, are expected
to grow in popularity and facilitate time-effective co-
design of robot geometry, materials, and optimization-based
closed-loop control [265]. Topology optimization techniques
assisted by high-level calibration, machine learning and
evolutionary design algorithms can also facilitate fast and
automated soft robot design. A key challenge for future
evolutionary soft robotics is the provision of techniques that
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combine simulation with data-driven modeling and physical
experimentation to combine scalability with practicality.

Alternatively, mesh-free methods such as Smoothed Parti-
cle Hydrodynamics (SPH) [688], [689] show strong potential
to bridge the reality gap and have many advantages over
mesh-based methods such as the FEM. SPH uses spatially
distributed nodes, known as particles, to represent matter
(whether solid or fluid) but, unlike FEM, these nodes are not
constrained by element connectivity. Instead, the particles can
flow and rearrange [690], which has many potential benefits
in soft robotics. First, fluid interactions with deforming and
moving solids can be handled naturally and without re-
meshing [691]. Second, the mesh creation component of
model development is not needed and therefore complex
geometries can be considered with little additional pre-
processing. Third, material history flows with deforming
or moving matter which avoids the numerical diffusion
in mesh-based methods and enables high levels of cou-
pling between mechanical and chemical processes [692].
SPH has been used for human movement simulation in
sports such as swimming, diving, and kayaking in which
robotics algorithms are used to represent skeletal motions
[693]-[695]. SPH has also been used to model swimming and
crawling elastic worms in fluid [696], and coupled FEM-SPH
methods have modeled thin elastic objects in a liquid [697].
It is expected that the benefits of SPH to soft robotics will
increase as the technique advances and more software tools
become available.

9) ROBUST STATE ESTIMATION AND INTELLIGENT CONTROL
The complex geometries and high compliance of soft
actuators impose significant challenges to the development
of sensing and control strategies, especially in real-world
applications that involve interactions with the environment.
Future work is expected to require the integration of multiple
sensing techniques with robust sensor fusion for state
estimation. Intelligent controllers will also be required that
can provide high-level functionality without major design
effort, for example self-learning methods.

X. CONCLUSION

This article provides an overview of soft pneumatic actua-
tors including the design, fabrication, modeling, actuation,
characterization, sensing, control, and applications. The
capabilities of these actuators and associated challenges are
also identified and discussed. We anticipate this article will
inspire, guide, and assist current and prospective researchers
to explore the soft robotics field and its advancements, as well
as spark new ideas and multidisciplinary collaborations that
can address current challenges.
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