
ORGANICCHEMISTRY

FRONTIERS

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: C. Hui and A. P. Antonchick, *Org. Chem. Front.*, 2022, DOI: 10.1039/D2QO00739H.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the <u>Information for Authors</u>.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

4

60

Organic Chemistry Frontiers

Method

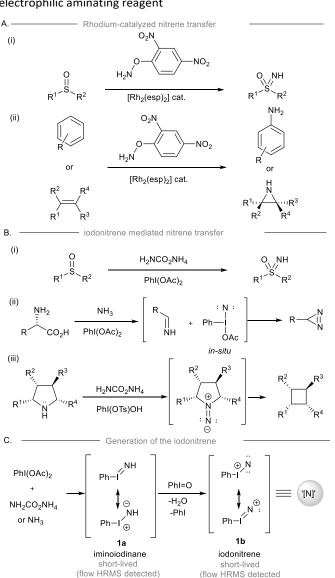
View Article Online DOI: 10.1039/D2QO00739H

Iodonitrene: A Direct Metal-free Electrophilic Aminating Reagent

Chunngai Hui^[a,b] and Andrey P. Antonchick^[a,b,c]*

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x


www.rsc.org/

The use of conventional nitrenoids and/or metal—nitrenes as electrophilic aminating reagents requires a pre-activated nitrogen atom which makes transfer of an unprotected NH—group a difficult challenge. Iodonitrene, which is generated *insitu* from phenyliodine(III) diacetate and ammonia surrogate, features a new class of reactive electrophilic aminating reagents. The novel reactivity of iodonitrene not only resulted in direct *NH*—group transfer to nucleophilic atoms such as sulfur and nitrogen but also led to new reaction development such as diazirines synthesis *via* decarboxylation and contractive synthesis of cyclobutanes *via* nitrogen extrusion. We highlight the contemporary advances in the application of iodonitrene and discuss the current limitations and future prospects.

1. Introduction

Direct access to nitrogen-containing functional groups is indispensable in the preparation of biological important molecules. Amination methods such as nucleophilic substitution, reductive amination, and metal-catalyzed amination reactions (e.g. allylic substitution, hydroamination, and C-N cross-coupling reactions) are widely used for amine synthesis.1, 2 Electrophilic amination requires the use of electrophilic aminating reagents, such as metal-nitrene equivalents, or oxaziridines as nitrogen sources, resulting in a net addition of an amino group to the electron-rich functionalities of the substrate.3-8 Conventionally, the dirhodium-nitrene chemistry enables intramolecular amination of inert C(sp³)-H bond to form a C-N bond via intermolecular nitrene transfer,9 that the condition was applied to the synthesis of NH-sulfoximine from sulfoxime¹⁰, and the direct preparation of NH-aziridines and anilines from alkenes and arenes, 11, 12 which have been broadly applied to organic synthesis (Scheme 1A).13 On the other hand, iodonitrene14 generated in-situ from the reaction between hypervalent iodine(III) reagent and ammonia or its surrogate has recently been prompted as a promising electrophilic aminating reagent (Scheme 1B). The synthesis of NH-sulfoximine (Bull, Luisi and co-workers; 2016)9, the synthesis of dizairines from unprotected amino acids (Reboul and coworkers; 2019)15, and contractive synthesis of cyclobutanes from pyrrolidines (Antonchick and coworkers; 2021)16 revealed the novel reactivity of iodonitrene distinguishing from the precedent

metal-nitrene chemistry. The use of iodonitrene as an electrophilic aminating reagent

 $\begin{tabular}{ll} Scheme 1. (A) Rhodium catalyzed amination reactions involved dirhodium nitrene transfer $^{10\cdot12}$. (B) Some examples of amination reactions using iodonitrene as $^{10\cdot12}$.} \label{table:eq:continuous}$

[a] Dr. Chunngai Hui and Prof. Andrey P. Antonchick
 Max Planck Institute of Molecular Physiology, Department of Chemical Biology,
 Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
 [b] Dr. Chunngai Hui and Prof. Andrey P. Antonchick

Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany

[c] Prof. Andrey P. Antonchick

Nottingham Trent University, School of Science and Technology, Department of Chemistry and Forensics, Clifton Lane, NG11 8NS Nottingham, United Kingdom Email: andrey.antonchick@ntu.ac.uk

and 15N labeling)

Itiers

60

Method

formation9.

electrophilic aminating reagent^{9, 15}. (C) The proposed mechanism of iodonitrene

not only provides a reactive nitrene species ready for nitrogen transfer but also circumvents the use of metals and activated reagents, such as O-mesitylenesulfonylhydroxylamine (MSH).17 Bull and co-workers disclosed the evidence of iodonitrene and possible intermediates (PhI=NH), for instance, iminoiodinane 1a and the unprecedented iodonitrene 1b (PhI=N+) via mass spectrometric analysis and isotopic labeling using 15N,18 (Scheme 1C). However, no evidence of any reactive intermediates was found throughout the NMR studies.19

Our group²⁰⁻²⁷ is engaged in the novel method development of hypervalent iodine(III) chemistry.²⁸⁻³⁵ Despite a personal account and a review on NH-sulfoximines which was reported by Bull group and Luisi group³⁶⁻³⁸ and no review has been published, to the best of our knowledge, discussing the chemistry of iodonitrene. We are motivated to provide a concise minireview, highlighting iodonitrene and its application in organic synthesis. This minireview could be useful to synthetic scientists in method development and natural product synthesis, and the pharmaceutical industry. Finally, we discuss the directions and prospects for the innovation of new reactions and potential applications in organic synthesis.

2. Electrophilic amination of sulfur-containing compounds

Sulfur-containing compounds possess significant biological profiles and appear as important elements in drug discovery.³⁹ For instance, sulfoximines are present as essential functional groups in drug candidates such as compound AZD6738 (Scheme 2, inset) from AstraZeneca.⁴⁰ Directing the transfer of the NH group from iodonitrene to sulfoxides gives NH-sulfoximines in one step. Accompanying the oxidizing power of hypervalent iodine(III) reagent, oxidation of the sulfur atom could take place before and/or after the nitrogen transfer from iodonitrene. In this section, the direct NH-group transfer to sulfoxides and sulfonamides is discussed. Moreover, the sequential NH-group transfer accompanying oxidation of sulfides, thiols, and sulfonamides are elaborated.

2.1 Direct NH transfer to sulfoxides

In 2016, Luisi and Bull and co-workers reported the direct transfer of the NH-group from iodonitrene to sulfoxide to afford NH-sulfoximine.14 (Scheme 2) Under the standard conditions, the iodonitrene generated in-situ from the reaction between phenyliodine(III) diacetate (PIDA) and ammonium carbamate⁴¹ promoted a NH-group transfer to produce various NH-sulfoximines. Both aryl-substituted and alkyl-substituted sulfoxides carrying different reactive groups, such as ketones, free alcohols, and benzothiazoles, gave sulfoxides 2a - 2e from decent to good yield. When methyl p-tolylsulfoxide 2f was used as starting material, the stereospecific NH-group transfer took place under standard conditions and gave sulfoximine (S)-2g in 89% yield with 97:3 e.r. Mechanistically, the authors proposed that the nitrene transfer from

Organic Chemistry Frontiers

Scheme 2. Direct NH-group transfer to sulfoxide producing NH-sulfoximine. 14

iodonitrene (i.e. "[N]") to sulfoxide 2h may generate an iodonium salt 2i. Further oxidation of 2i by free phenyliodine(III) diacetate followed by workup afforded NH-sulfoximines 2j.

Scheme 3. Direct NH-group transfer in the synthesis of NH-sulfonimidamides from sulfinamides.42

2.2 Direct NH transfer to sulfinamides

Later, one-pot conversion of sulfinamides to sulfonimidamides via transfer of the electrophilic NH-group was reported by Stockman, Lücking, and co-workers (Scheme 3).42 Under the optimized conditions, sulfonimidamides (3a to 3d) were formed

3

4

5

6

7

8 9

10ଖ

112 130 140

Attribution-RonCommercial 350 1

Spandade of the state of the st

Bublishedon 4 June 2022 Do

ApenAccessArtic

44

45

46

47

48

49

50

51 52

53

54

55

56

57

58

59 60 instead of MeOH

ARTICLE

from sulfinamides in good to high yield. The replacement of the aryl substituents of tertiary sulfonamides by the 3-pyridinyl group 3c or cyclohexyl group 3d was tolerated. Importantly, the NH-group transfer to chiral sulfinamide 3e (51% e.e.) proceeded stereospecifically to give NH-sulfonimidamide 3f with 48% e.e.

2.3 One-pot NH- and O- transfer to sulfides

After the pioneering synthesis of NH-sulfoximines from sulfides using iodonitrene as an electrophilic aminating reagent by Bull and Luisi in 2016¹⁴, the synthesis of NH-sulfoximine from corresponding sulfides via a one-pot NH- and O- transfer were realized by several research groups using iodonitrene chemistry (Scheme 4). In 2017, Bull and Luisi first reported the one-pot NH- and O- transfer to sulfides to give NH-sulfoximines (Scheme 4A).43 Aryl-, alkyl- and benzothiazole-substituted (R1) sulfides gave the corresponding NH-sulfoximines in high yield (4a - 4c, 84%-94% yield). However, the low yield of vinyl substituent sulfoximine 4d is suggested to be the result of a possible polymerization of the substrate.

Scheme 4. (A) Direct NH-sulfoximination of sulfides by iodonitrene. (B) Variation of sulfides as starting material.43-49

Shortly after Bull and Luisi's work, other research groups reported variants of the transformation with modification of substrates and/or conditions (Scheme 4B), for instance, pyridinyl sulfides 4e (Reboul's group)44,50, S-perfluoroalkylated

sulfides 4f (Reboul's group)51, thiophene-derived sulfides 4g (Bolm's group)⁴⁸, bicyclo[1.1.1]pentyl sulfides 4n (ଅନ୍ୟୁକ୍ତ ଓଡ଼ ମ ଓଡ଼ି) ⁵³, θ -thioglycosides **4i** (Bull and Luisi's group)⁵⁴. Besides, sulfoximination of sulfides could be achieved to afford 4e in aqueous micellar conditions using surfactant TPGS-750-M as an additive.49

From sulfide to dibenzothiazine

Scheme 5. Synthesis of dibenzothiazines from sulfides through tandem NHsulfoximination/C(sp²)-H amination⁵².

After the report of direct sulfoximination of sulfides, a tandem NH-sulfoximination/C(sp2)-H amination of sulfides to give dibenzothiazines⁵² was developed by Chen and co-workers in 2018 (Scheme 5). Treatment of [1,1'-biaryl]-2-sulfides with PIDA and ammonium phosphate trihydrate afforded the NH- and Otransfer products NH-sulfoximines, which after intramolecular C(sp²)-H functionalization provided dibenzothiazines.^{55, 56} The variation of the substituents R1 and R2 gave the desired dibenzothiazine products 5a and 5b in high yield. A phenyl group on R³ (5c) significantly reduced the yield of the reaction to 45% yield. Heterocyclic dibenzothiazines such as 5d and 5e are also compatible with the reaction condition. The authors proposed that the oxidation of newly formed NH-sulfoximines 5f with PIDA gives 5g, which cyclized to give dibenzothiazines 5h (Scheme 5).

The proposed mechanism of one-pot synthesis of NHsulfoximines from sulfides was suggested by Bull, Luisi, and coworkers (Scheme 6) and based on direct nitrene NH-group transfer to sulfides and subsequent O-transfer from PIDA to afford sulfoximines. 43 (Scheme 6A) Later, an investigation by Reboul and co-workers44 revealed that iodonitrene could be generated when PIDA was reacted with either ammonium

from β-thioglycoside

3

4

5

6

7

8

9

10.00 11.00 12.00 14.00 16.00

150

Attribution-NonCommercial

cles Published on 14 June 2022. Stick Nord under a Creat article is licensed under a Creat

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

A. Proposed mechansim (Bull and Luisi, 2017)

$$R^{1} \xrightarrow{S} R^{2} \xrightarrow{\text{[N]'}} \begin{array}{c} NH \\ II \\ R^{1} \xrightarrow{S} R^{2} \end{array} \xrightarrow{\text{PhI(OAc)}_{2}} \begin{array}{c} R^{2} \\ I \\ O = S = NH \\ R^{1} \end{array}$$

B. Mechanistic study (Reboul, 2017)

C. TFE promoted NH-sulfoximination of sulfide (Reboul, 2018)

$$R^{1} \stackrel{S}{\stackrel{}{\stackrel{}}} R_F = \stackrel{[N]'}{\stackrel{}{\stackrel{}{\stackrel{}{\stackrel{}}}} N^2} \stackrel{Ph}{\stackrel{}{\stackrel{}{\stackrel{}}} AcO} \stackrel{O}{\stackrel{}{\stackrel{}{\stackrel{}}} N^2} \stackrel{OH_2CF_3C}{\stackrel{}{\stackrel{}{\stackrel{}}} O} \stackrel{O}{\stackrel{}{\stackrel{}} N^2} \stackrel{OH_2CF_3C}{\stackrel{}{\stackrel{}} O} \stackrel{O}{\stackrel{}{\stackrel{}} N^2} \stackrel{OH_2CF_3C}{\stackrel{}{\stackrel{}} O} \stackrel{O}{\stackrel{}{\stackrel{}} N^2} \stackrel{OH_2CF_3C}{\stackrel{}{\stackrel{}} O} \stackrel{OH_2CF_3C}{\stackrel{}{\stackrel{}} O} \stackrel{OH_2CF_3C}{\stackrel{}{\stackrel{}{\stackrel{}} O} \stackrel{O}{\stackrel{}} N^2} \stackrel{OH_2CF_3C}{\stackrel{}{\stackrel{}} O} \stackrel{OH_2CF_3C}{\stackrel{}{\stackrel{}} O} \stackrel{OH_2CF_3C}{\stackrel{}{\stackrel{}} O} \stackrel{OH_2CF_3C}{\stackrel{}{\stackrel{}} O} \stackrel{OH_2CF_3C}{\stackrel{}{\stackrel{}} O} \stackrel{OH_2CF_3C}{\stackrel{}{\stackrel{}} O} \stackrel{OH_2CF_3C}{\stackrel{}} \stackrel{OH_2C}{\stackrel{}} \stackrel{OH_2C}{\stackrel{$$

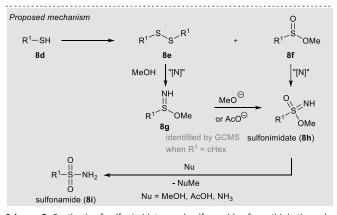
Scheme 6. Mechanistic investigation of direct NH-sulfoximination of sulfides. 42, 45,

carbamate or ammonium carbonate (**Scheme 6B**). Although the sulfilimine **6a** formed initially was short-lived and not detected, nucleophilic addition of methoxide or acetate to sulfilimines gave **6b** and **6c**, respectively, and could be detected by HRMS. The rate enhancement of sulfoximination of *S*—perfluoroalkylated sulfides could be ascribed to the *H*—bonding between the 2,2,2-trifluoroethanol (TFE) and the observed sulfanenitrile intermediate **6d** (**Scheme 6C**). The attack of TFE to the acetate on **6d** produced trifluoroethyl acetate. Acetyl group transfer from trifluoroethyl acetate to the reaction product *NH*-sulfoximines furnished *N*-Ac sulfoximines.

2.4 One-pot NH- and O- transfer to thiols

In 2018, Luisi and Bull and co-workers disclosed a one-pot chemoselective *NH-*, *O-* and *OR-* transfer to thiols using iodonitrenes to give sulfonimidates and sulfonamides⁵⁷ (**Scheme 7** and **8**). By reducing the amount of ammonium carbamate, the product distribution could be changed from sulfonimidate (4 equiv. of ammonium carbamate) (**Scheme 7**) to sulfonamide (1 equiv. of ammonium carbamate) (**Scheme 8**).

Organic Chemistry Frontiers


R1 = Ar.VidetArctiAlkvDnline

Scheme 7. Synthesis of sulfonimidates from thiols through a one-pot *NH-, O-, RO*-transfer.⁵⁷

$$R-SH \xrightarrow{PhI(OAc)_{2} (3.5 \text{ eq})} R-SH \xrightarrow{NH_{2}CO_{2}NH_{4} (1 \text{ eq})} R-S-NH_{2} R = Ar, \text{ HetAr, Alkyl}$$

$$= 18 \text{ examples, } 48-95\% \text{ yield}$$

$$= 18 \text{ examples, } 48$$

Scheme 8. Synthesis of sulfonimidates and sulfonamides from thiols through a one-pot NH-, O-, RO- transfer. 57

To prepare *sulfonimidates*, phenylthiol, thiophene-2-thiol and cyclohexanethanol were converted to the corresponding sulfonimidates **7a** - **7c** in moderate yield under the standard conditions (**Scheme 7**). Interestingly, 2-mercaptobenzylalcohol **7d'** was transformed into cyclization product **7d** in 57% yield. Treatment of phenylthiol **7e** with an excess of phenyliodine(III) diacetate afforded a mixture of methyl sulfinate ester **7f** and diphenyl disulfide **7g**. However, sulfonate ester **7h** was not observed. Exposure of methyl benzenesulfinate **7f** to

3

4

5

6

7

8

9 10ម

150

16ਵ਼

30 PM 200 PM 200

2502-151 202-151 202-151

Shortheded of Shorthed of Shor

44

45

46

47

48 49

50

51

52

53

54

55

56

57

58

59 60 Journal Name ARTICLE

Scheme 9. Synthesis of sulfonimidamides from sulfonamides through one-pot *NH*- and *O*- transfer⁵⁸

in-situ generated iodonitrene in acetonitrile afforded sulfonimidate **7a**. To prepare sulfonamides, phenylthiol, thiophene-2-thiol and cyclohexanethiol afforded the corresponding sulfonamides **8a** – **8c** in good to excellent yield (**Scheme 8**).

Based on the experimental evidence, the authors suggested a possible mechanism of these reactions (**Scheme 8**, *grey box*). Intermediate **8g** was detected by GCMS when R is a cyclohexyl group, which was reacted with methoxide or acetate to give sulfonimidate **8h** as the product. Sulfonimidate **8h** could be converted to sulfonamide **8i** by reaction with existing nucleophiles, including methanol, acetic acid, and ammonia.

In 2019, Bull and co-workers reported the direct one-pot NH-and O- transfer from sulfonamide to sulfonimidamides (**Scheme 9A**). Treatment of sulfonamides with 2.5 equivalents of iodosylbenzene and 2 equivalents of ammonium carbamate in the presence of 1 equivalent of AcOH as additive gave sulfonimidamides in good yield. Phenyl-sulfenamide, 4-pyridinyl-sulfenamide, and cyclohexyl-sulfenamide performed well under the standard conditions to give the corresponding sulfonaimidamides $\bf 9a - \bf 9c$ in decent yield. Secondary sulfenamides containing an NH moiety gave sulfonimidamide

PhIO (2.5 eq.), NH₂CO₂NH₄ (2 eq.), TsOH (1 eq.),
$$R^1$$
 NH₂ R³ = alkyl, aryl tertiary amine hydrazinium salt 29 examples, 41-99% yield N-amination of tertiary amine NH₂ NH₂ NH₂ TsO OH NS% OAC NS% OA

Scheme 10. Chemoselective electrophilic amination of tertiary amines. 59

10e

66%

from atropine

9e in 30% isolated yield, along with the corresponding sulfinamide as the major side product.

10f

30%

from lincomycin

Unexpectedly, *tert*-butylphenylsulfenamide **9f** was converted to **9h** in 77% yield under the standard conditions (**Scheme 9B**). It is rationalized that direct one-pot *NH*- and *O*- transfer to **9f** followed by activation by an excess of iodosylbenzene leads to the formation of iminoiodinane intermediate **9g**. Imination of **9g** by another equivalent of sulfenamide **9f** produced **9h**. When the reaction was performed in the absence of acid, sulfenamide **9i** was converted into λ^6 -sulfanenitrile **9j** and sulfonimidamide **9k** in a ratio of 74:26 determined by ¹H NMR. The λ^6 -sulfanenitrile **9j** was fully characterized through HRMS, ¹H- and ¹³C-NMR and IR.

The proposed mechanism is depicted (**Scheme 9**, grey box). Sulfonamide **9I** is reacted with the iodonitrene to afford sulfinamidine salt **9m**. Elimination of iodobenzene from **9m** forming the S \equiv N triple bond may occur before or at the same time as an attack of a nucleophile, being either R-OH/H $_2$ O to give alkoxy-amino- λ 6-sulfanenitrile **9n** or AcOH to give sulfonimidamide **9o**. Finally, **9n** is converted to the desired sulfonimidamide **9p**. Alternatively, sulfonimidamide **9o** reacts with water from solvent or the solubilization of iodosylbenzene to produce sulfonimidamide **9p** under the standard conditions to give the corresponding sulfonamidamides **9a** – **9c** in decent yield, respectively.

3. Selective electrophilic amination of tertiary amines

In 2021, Bull and Luisi disclosed the electrophilic amination of tertiary amines to give the corresponding hydrazinium salts (**Scheme 10**).⁵⁹ Treatment of tertiary amines with 2.5 equivalent of iodosylbenzenes and 2 equivalents of ammonia carbamate in the presence of *p*-methylbenzenesulfonic acid gave hydrazinium salts. The study of the substrate scope revealed

3

4

5

6

7

8

9

108

150

88

940mm25

Published on 4 June 2022, Do Control of the second of Seative

44

45

46

47

48

49

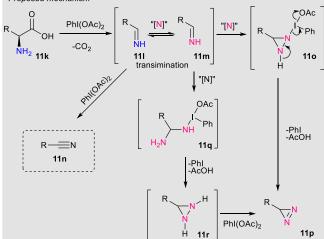
50

51

52

53

54


55

56

57

58

59 60 Method Organic Chemistry Frontiers

Scheme 11. Synthesis of terminal diazirines from amino acids through a tandem decarboxylation /iodonitrene transfer.⁶⁰

that many reactive functional groups are well-tolerated under the standard conditions.

For instance, hydrazinium salts of primary alcohol **10b**, ethyl ester **10c**, alkyne **10d** were prepared successfully in good yield under the reported protocol. Importantly, chemoselective electrophilic amination of the tertiary amino group on atropine and a lincomycin derivative took place to give the corresponding hydrazinium salts **10e** and **10f**, respectively.

4. Synthesis of terminal diazirines from amino acids through tandem decarboxylation/iodonitrene transfer

In 2019, Reboul and co-workers disclosed the synthesis of terminal diazirines from amino acidsothrough/dagtandem transfer⁵⁹ decarboxylation/iodonitrene (Scheme Treatment of amino acids with phenyliodine(III) diacetate and 7M ammonia solution produces terminal diazirines as major products accompanied by a small number of undesired nitriles that resulted from over-oxidation. Amino acids such as Lhistidine, L-tyrosine, N-Boc-L-tryptophane, L-citrulline, and 4iodo-L-phenylalanine were converted to the corresponding diazirines 11a, 11b, 11d, 11e, and 11h in high yield. However, unprotected L-tryptophane resulted in a volatile diazirine **11c** in 27% yield, which was not accurate for quantification. Besides, sulfurated amino acids such as cysteine (Cys)⁵⁷ and methionine (Met)⁵⁰ were incompatible with the reaction conditions due to possible side reactions with PIDA. Prior protection of the sulfur, for instance, (S)-trityl-L-cysteine and (S)-Bn-L-cysteine sulfoxide gave the corresponding terminal diazirines 11f and 11g in poor to moderate yield. Noteworthy, no sulfoximination⁴⁵ product was observed when the sulfoxides above were subjected to the standard conditions.

Treatment of L-histidine with PIDA and 15 N-labeled ammonia afforded 15 N₂-diazirine **11i** in 57% yield with 75% 15 N-label incorporated. This implied that both nitrogen atoms of the newly installed diazirine group originated from the ammonia solution. Primary amides, such as L-glutamine, gave diazirines in low yield due to sublimation. In particular, a Hofmann-like rearrangement of L-glutamine took place to give urea **11j** in 7% yield. This rearrangement could be alleviated by prior N-ethylation of L-glutamine.

The authors proposed a possible reaction mechanism (**Scheme 11**, grey box). Amino acid **11k** is subjected to decarboxylation upon treatment with phenyliodine(III) diacetate to give an imine **11l**.^{61, 62} The imine **11l** formed could be oxidized to nitrile **11n** in the presence of excess oxidant. Transimination⁶³ of imine **11l** takes place with iodonitrene to give **11m**¹⁴, which reacts with the second moiety of iodonitrene *via* insertion to give the diaziridine intermediate **11o**.⁶⁴ Subsequent oxidation with the release of iodobenzene and acetic acid, affords the desired diazirine **11p**.⁶⁵ Another possible pathway involves nucleophilic addition of ¹⁵NH₃ to give **11q**,⁶⁶ followed by cyclization into diaziridine **11r**. Oxidation of diaziridine **11r** by phenyliodine(III) diacetate afforded diazirine **11p**.

Very recently, Reboul's chemistry on direct diazirine synthesis from amino acids was used to prepare a diazirine tag for chemical proteomics.⁶⁷

5. Stereoselective and contractive synthesis of cyclobutanes from pyrrolidines

In 2021, stereoselective and contractive synthesis of cyclobutanes from the corresponding pyrrolidines was reported by Antonchick and co-workers ⁵⁹ (Scheme 12). Iodonitrene, which was generated *in-situ* from the reaction between 2.5 equivalents of hydroxy(tosyloxy)iodobenzene (HTIB) and 8 equivalents of ammonium carbamate, acts as an electrophilic aminating reagent and converted the pyrrolidines into the corresponding cyclobutanes in a stereoselective manner. *Meso*-cyclobutanes carrying α -aryl and/or α -heterocyclic substituents, such as 12a and 12b, could be prepared in decent yield from the corresponding pyrrolidines under the standard conditions. The pyrrolidine possessing α -quaternary center could be converted

3

4

5

6

7

8

9

10ଖ

11៦

12 13

150

Attribution-NonCommercial

b Sport Sport of the sport of t

cke. Published on J 4 June 2022 Do article is licensed under a Creative

Open-Access-Actic

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

ARTICLE

Journal Name

From pyrrolidines to cyclobutanes

37 examples, 24-88% yield

Stereospecificity of ring contraction

Scheme 12. Stereospecific contraction synthesis of cyclobutanes from pyrrolidines. ⁵⁹

to the corresponding cyclobutane **12c** in 48% yield. Furthermore, double ring contraction of bipyrrolidines under additional amounts of HTIB (i.e. 5 equiv.) provided polyspirocyclobutane **12d** in 59% yield. The contractive synthesis of cyclobutane **12e** effected by HTIB instead of PIDA served as an essential intermediate to the preparation of the cytotoxic cyclobutane natural product piperarborenine B. ⁶⁸⁻⁷⁰

When optically-pure spirooxindole **12f** was subjected to the standard conditions, spirocyclobutane **12g** formed with excellent stereocontrol (*d.r.*>20:1, *e.e.*=97%) validating the

stereospecificity of the ring contraction. More importantly the stereospecific nature of the ring contractions was courther substantiated by the formation of cyclobutanes *cis-12h* and *trans-12h*. Although both ring contractions afforded low yields (i.e. 24%), the outstanding diastereo- and enantiocontrol for *cis-12h* (*d.r.*>20:1, *e.e.*>97%) and *trans-12h* (*d.r.*>20:1, *e.e.*>99%) indicated a memory of chirality for the developed novel ring contraction allowing access to enantiopure novel cyclobutane derivatives.

The proposed reaction mechanism is depicted (**Scheme 12**, grey box). Treatment of pyrrolidine **12i** with the *in-situ* generated iodonitrene species leads to electrophilic amination affording 1,1-diazene **12j** as a possible intermediate. The reactive 1,1-diazene **12j** proceeds further to give 1,4-biradical **12k** *via* dinitrogen extrusion. Intramolecular cyclization of 1,4-biradical **12k** leads to C-C bond formation to give cyclobutane **12l**.

6. Summary and Outlook

This review provides an overview of iodonitrene chemistry and illustrates its development since 2016. Through the discovery of iodonitrene as an in-situ generated reactive species from the reaction between hypervalent iodine(III) and ammonia, iodonitrene has been used extensively as an electrophilic aminating reagent on the amination of sulfides and sulfoxides. Until 2019, the unprecedented synthesis of diazirenes from unprotected amino acids was achieved by Reboul making use of hypervalent iodine(III) as an oxidant for decarboxylation and the iodonitrene as a source of nitrogen. Diazirenes generated by this method can be served as a tag once they are incorporated into bioactive compounds and could be used for various biological investigations. Later, our group reported the stereospecific contractive synthesis of cyclobutanes from pyrrolidines featuring iodonitrene-promoted electrophilic amination of the N-atoms of pyrrolidines followed by nitrogen extrusion. Taking into account the reaction we described above, iodonitrene not only serves as an electrophilic aminating reagent but also shows oxidation properties of hypervalent iodine(III). This makes iodonitrene a very interesting reagent for the development of new methods.

lodonitrene, acts as a convenient and easily manageable reagent in organic synthesis. Besides its metal-free nature, the use of iodonitrene provides comparable reactivity to rhodiumcarbene in the synthesis of NH-sulfoximines from sulfoxides but requires no use of transition metal. This provides a fascinating opportunity that rhodium-catalyzed nitrene transfer reactions might be accomplished by iodonitrene chemistry, for instance, in the amination of arenes and alkenes. One major issue that needs to be addressed is the stoichiometric amounts of hypervalent iodine(III) reagent necessary to react with ammonia or its surrogate in order to generate iodonitrene. Inspired by the organocatalytic reactions developed by us and others, hypervalent iodine(III) formed from catalytic quantities of aryl iodide and *m*-CPBA as stoichiometric oxidant might react with ammonia to give iodonitrene, avoiding the use of stoichiometric amounts of hypervalent iodine(III). Furthermore, the prospect of asymmetric iodonitrene transfer might be enabled by iodonitrenes prepared from chiral hypervalent iodine(III) compounds. New method development involving the usage of iodonitrene continues to be an active research area. We envision that synthetic application of the reported iodonitrene chemistry, such as the preparation of diazirene tags

59

60

Method **Organic Chemistry Frontiers**

16.

17.

and the synthesis of bioactive natural products, will be flourished as practically useful chemistry applied widely in the synthetic communities and the pharmaceutical industry.

Acknowledgments

A.P.A. acknowledges the support of the DFG (AN 1064/4-1) and Boehringer Ingelheim Foundation (Plus 3). acknowledges the International Max Planck Research School for Living Matter (Dortmund, Germany).

Reference

- M. T. Pirnot, Y.-M. Wang and S. L. Buchwald, Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes, Angew. Chem. Int. Ed., 2016, 55, 48-57.
- 2. R. Dorel, C. P. Grugel and A. M. Haydl, The Buchwald-Hartwig Amination After 25 Years, Angew. Chem. Int. Ed., 2019, 58, 17118-17129.
- 3. M. Corpet and C. Gosmini, Recent Advances in Electrophilic Amination Reactions, Synthesis, 2014, 46, 2258-2271.
- 4. P. Starkov, T. F. Jamison and I. Marek, Electrophilic Amination: The Case of Nitrenoids, Chem. Eur. J., 2015, 21, 5278-5300.
- K. Muñiz, Promoting Intermolecular C–N Bond Formation under the Auspices of Iodine(III), Acc. Chem. Res., 2018, 51, 1507-1519.
- 6. S. Sabir, G. Kumar and J. L. Jat, O-Substituted hydroxyl amine reagents: an overview of recent synthetic advances, Org. Biomol. Chem., 2018, 16, 3314-3327.
- 7. R. Y. Liu and S. L. Buchwald, CuH-Catalyzed Olefin Functionalization: From Hydroamination to Carbonyl Addition, Acc. Chem. Res., 2020, 53, 1229-1243.
- 8. L. G. O'Neil and J. F. Bower, Electrophilic Aminating Agents in Total Synthesis, Angew. Chem. Int. Ed., 2021, 60, 25640.
- 9. C. G. Espino, K. W. Fiori, M. Kim and J. Du Bois, Expanding the Scope of C-H Amination through Catalyst Design, J. Am. Chem. Soc., 2004, 126, 15378-15379.
- 10. J. Miao, N. G. J. Richards and H. Ge, Rhodium-catalyzed direct synthesis of unprotected NH-sulfoximines from sulfoxides, ChemComm, 2014, 50, 9687-9689.
- 11. J. L. Jat, M. P. Paudyal, H. Gao, Q.-L. Xu, M. Yousufuddin, D. Devarajan, D. H. Ess, L. Kürti and J. R. Falck, Direct Stereospecific Synthesis of Unprotected N-H and N-Me Aziridines from Olefins, Science, 2014, 343, 61.
- 12. M. P. Paudyal, A. M. Adebesin, S. R. Burt, D. H. Ess, Z. Ma, L. Kürti and J. R. Falck, Dirhodium-catalyzed C-H arene amination using hydroxylamines, Science, 2016, 353, 1144.
- 13. B. Darses, R. Rodrigues, L. Neuville, M. Mazurais and P. Dauban, Transition metal-catalyzed iodine(iii)-mediated nitrene transfer reactions: efficient tools for challenging syntheses, ChemComm, 2017, 53, 493-508.
- 14. M. Zenzola, R. Doran, L. Degennaro, R. Luisi and J. A. Bull, Transfer of Electrophilic NH Using Convenient Sources of Ammonia: Direct Synthesis of NH Sulfoximines from Sulfoxides, Angew. Chem. Int. Ed., 2016, 55, 7203-7207.
- 15. T. Glachet, H. Marzag, N. Saraiva Rosa, J. F. P. Colell, G. Zhang, W. S. Warren, X. Franck, T. Theis and V. Reboul, Iodonitrene in Action: Direct Transformation of Amino Acids into Terminal Diazirines and 15N2-Diazirines and

Soc., 2019, 141, 13689-13696. DOI: 10.1039/D2Q000739H C. Hui, L. Brieger, C. Strohmann and A. P. Antonchick, Stereoselective Synthesis of Cyclobutanes by Contraction of Pyrrolidines, J. Am. Chem. Soc., 2021, 143, 18864-18870. J. Mendiola, J. A. Rincón, C. Mateos, J. F. Soriano, Ó. de Frutos, J. K. Niemeier and E. M. Davis, Preparation, Use, and Safety of O-Mesitylenesulfonylhydroxylamine, Org Process Res Dev., 2009, 13, 263-267.

Their Application as Hyperpolarized Markers, J. Am. Chem.

- C. Iacobucci, S. Reale and F. De Angelis, Elusive Reaction Intermediates in Solution Explored by ESI-MS: Reverse Periscope for Mechanistic Investigations, Angew. Chem. Int. Ed., 2016, 55, 2980-2993.
- 19. K. W. Fiori, C. G. Espino, B. H. Brodsky and J. Du Bois, A mechanistic analysis of the Rh-catalyzed intramolecular C-Hamination reaction, *Tetrahedron*, 2009, **65**, 3042-3051.
- 20. A. P. Antonchick, R. Samanta, K. Kulikov and J. Lategahn, Organocatalytic, Oxidative, Intramolecular C-H Bond Amination and Metal-free Cross-Amination of Unactivated Arenes at Ambient Temperature, Angew. Chem. Int. Ed., 2011, 50, 8605-8608.
- 21. A. P. Antonchick and L. Burgmann, Direct Selective Oxidative Cross-Coupling of Simple Alkanes with Heteroarenes, Angew. Chem. Int. Ed., 2013, 52, 3267-3271. 22. K. Matcha and A. P. Antonchick, Metal-Free Cross-Dehydrogenative Coupling of Heterocycles
- Aldehydes, Angew. Chem. Int. Ed., 2013, 52, 2082-2086. 23. K. Matcha, R. Narayan and A. P. Antonchick, Metal-Free Radical Azidoarylation of Alkenes: Rapid Access to Oxindoles by Cascade CN and CC Bond-Forming Reactions, Angew. Chem. Int. Ed., 2013, 52, 7985-7989.
- 24. S. Manna, K. Matcha and A. P. Antonchick, Metal-Free Annulation of Arenes with 2-Aminopyridine Derivatives: The Methyl Group as a Traceless Non-Chelating Directing Group, Angew. Chem. Int. Ed., 2014, 53, 9695-9695.
- S. Manna and A. P. Antonchick, Organocatalytic Oxidative 25. Annulation of Benzamide Derivatives with Alkynes, Angew. Chem. Int. Ed., 2014, 53, 7324-7327.
- 26. S. Manna, K. Matcha and A. P. Antonchick, Metal-Free Annulation of Arenes with 2-Aminopyridine Derivatives: The Methyl Group as a Traceless Non-Chelating Directing Group, Angew. Chem. Int. Ed., 2014, 53, 8163-8166.
- 27. L. Bering and A. P. Antonchick, Selective transition-metalfree vicinal cis-dihydroxylation of saturated hydrocarbons, Chem. Sci., 2017, 8, 452-457.
- 28. E. M. D. Allouche, E. Grinhagena and J. Waser, Hypervalent Iodine-Mediated Late-Stage Peptide and Protein Functionalization, Angew. Chem. Int. Ed., 10.1002/anie.202112287.
- T. Wirth, Hypervalent iodine chemistry in synthesis: Scope 29. and new directions, Angew. Chem. Int. Ed., 2005, 44, 3656-3665.
- J. Charpentier, N. Fruh and A. Togni, Electrophilic 30. Trifluoromethylation by Use of Hypervalent Iodine Reagents, Chem. Rev., 2015, 115, 650-682.
- 31. Y. F. Li, D. P. Hari, M. V. Vita and J. Waser, Cyclic Hypervalent Iodine Reagents for Atom-Transfer Reactions: Beyond Trifluoromethylation, Angew. Chem. Int. Ed., 2016,
- 32. A. Yoshimura and V. V. Zhdankin, Advances in Synthetic Applications of Hypervalent Iodine Compounds, Chem. Rev., 2016, 116, 3328-3435.

3

4

5

6

7

8

9

10ଖ

11ទី

12=

135

145

150

Attribution-NonCommercial:

eu. A cce se Acticles Publishedon J. 4 June 2022 Downleaded of the Acticles See Seed under & Ceative Pommons

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59 60

ARTICLE Journal Name

49.

- 33. X. Wang and A. Studer, Iodine(III) Reagents in Radical Chemistry, Acc. Chem. Res., 2017, 50, 1712-1724.
- 34. W. W. Chen, A. B. Cuenca and A. Shafir, The Power of Iodane-Guided C-H Coupling: A Group-Transfer Strategy in Which a Halogen Works for Its Money, Angew. Chem. Int. Ed., 2020, 59, 16294-16309.
- 35. R. Zhao and L. Shi, Reactions between Diazo Compounds and Hypervalent Iodine(III) Reagents, Angew. Chem. Int. Ed., 2020, 59, 12282-12292.
- 36. J. A. Bull, L. Degennaro and R. Luisi, Straightforward Strategies for the Preparation of NH-Sulfox-imines: A Serendipitous Story, Synlett, 2017, 28, 2525-2538.
- 37. M. Andresini, M. Colella, L. Degennaro and R. Luisi, Hypervalent iodine (III) reagents and ammonia as useful combination for highly chemoselective N-transfer to lowvalent organosulfur compounds and amines, ARKIVOC, 2021, **2021**, 141-163.
- 38. M. Andresini, A. Tota, L. Degennaro, J. A. Bull and R. Luisi, Synthesis and Transformations of NH-Sulfoximines, Chem. Eur. J., 2021, 27, 17293-17321,
- 39. C. Zhao, K. P. Rakesh, L. Ravidar, W.-Y. Fang and H.-L. Qin, Pharmaceutical and medicinal significance of sulfur (SVI)-Containing motifs for drug discovery: A critical review, Eur. J. Med. Chem., 2019, 162, 679-734.
- 40. A. M. Weber and A. J. Ryan, ATM and ATR as therapeutic targets in cancer, Pharmacol. Ther. 2015, 149, 124-138.
- 41. N. A. Romero, K. A. Margrey, N. E. Tay and D. A. Nicewicz, Site-selective arene C-H amination via photoredox catalysis, Science, 2015, 349, 1326.
- 42. F. Izzo, M. Schäfer, R. Stockman and U. Lücking, A New, One-Pot of Practical Synthesis Unprotected Sulfonimidamides by Transfer of Electrophilic NH to Sulfinamides, Chem. Eur. J., 2017, 23, 15189-15193.
- A. Tota, M. Zenzola, S. J. Chawner, S. S. John-Campbell, C. Carlucci, G. Romanazzi, L. Degennaro, J. A. Bull and R. Luisi, Synthesis of NH-sulfoximines from sulfides by chemoselective one-pot N- and O-transfers, ChemComm, 2017, 53, 348-351.
- 44. J.-F. Lohier, T. Glachet, H. Marzag, A.-C. Gaumont and V. Reboul, Mechanistic investigation of the sulfoximination of sulfide. Evidence for $\lambda 6$ -sulfanenitrile intermediates, ChemComm, 2017, 53, 2064-2067.
- J. F. Lohier, T. Glachet, H. Marzag, A. C. Gaumont and V. 45. Reboul, Mechanistic investigation of the NHsulfoximination of sulfide. Evidence for lambda(6)sulfanenitrile intermediates, ChemComm, 2017, 53, 2064-
- 46. A. Tota, M. Zenzola, S. J. Chawner, S. St John-Campbell, C. Carlucci, G. Romanazzi, L. Degennaro, J. A. Bull and R. Luisi, Synthesis of NH-sulfoximines from sulfides by chemoselective one-pot N- and O-transfers, ChemComm, 2017, 53, 348-351.
- 47 S. Chaabouni, J. F. Lohier, A. L. Barthelemy, T. Glachet, E. Anselmi, G. Dagousset, P. Diter, B. Pegot, E. Magnier and V. Reboul, One-Pot Synthesis of Aryl- and Alkyl S-Perfluoroalkylated NH-Sulfoximines from Sulfides, Chem. Eur. J., 2018, 24, 17006-17010.
- 48. B. Verbelen, E. Siemes, A. Ehnbom, C. Rauber, K. Rissanen, D. Woll and C. Bolm, From One-Pot NH-Sulfoximidations of Thiophene Derivatives Dithienylethene-Type to Photoswitches, Org. Lett., 2019, 21, 4293-4297.

- G. Zhang, H. Tan, W. Chen, H. C. Shen, Y. Lu, C. Zheng and H. Xu, Synthesis of NH-Sulfoximines: by 1 by 1 by 1 by 2 Recordable Hypervalent Iodine(III) Reagents under Aqueous Micellar Conditions, ChemSusChem, 2020, 13, 922.
- 50. H. Marzag, M. Schuler, A. Tatibouët and V. Reboul, Synthesis of Methionine-Derived Endocyclic Sulfilimines and Sulfoximines, Eur. J. Org. Chem., 2017, 896-900.
- 51. S. Chaabouni, J.-F. Lohier, A.-L. Barthelemy, T. Glachet, E. Anselmi, G. Dagousset, P. Diter, B. Pégot, E. Magnier and V. Reboul, One-Pot Synthesis of Aryl- and Alkyl S-Perfluoroalkylated NH-Sulfoximines from Sulfides, Chem. Eur. J., 2018, 24, 17006-17010.
- Y. N. Ma, C. Y. Guo, Q. Y. Zhao, J. Zhang and X. N. Chen, Synthesis of dibenzothiazines from sulfides by one-pot N,O-transfer and intramolecular C-H amination, Green Chem., 2018, 20, 2953-2958.
- 53. R. M. Bär, L. Langer, M. Nieger and S. Bräse, Bicyclo[1.1.1]pentyl Sulfoximines: **Synthesis** and Functionalizations, Adv. Synth. Catal., 2020, 362, 1356-
- 54. A. Tota, C. Carlucci, L. Pisano, G. Cutolo, G. J. Clarkson, G. Romanazzi, L. Degennaro, J. A. Bull, P. Rollin and R. Luisi, Synthesis of glycosyl sulfoximines by a highly chemo- and stereoselective NH- and O-transfer to thioglycosides, Org. Biomol. Chem., 2020, 18, 3893-3897.
- 55. Y. Li, Q. Ding, G. Qiu and J. Wu, Synthesis of benzosultams via an intramolecular sp2 C-H bond amination reaction of o-arylbenzenesulfonamides under metal-free conditions, Org. Biomol. Chem., 2014, 12, 149-155.
- C. Martínez, A. E. Bosnidou, S. Allmendinger and K. Muñiz, 56. Towards Uniform Iodine Catalysis: Intramolecular C-H Amination of Arenes under Visible Light, Chem. Eur. J., 2016, 22, 9929-9932.
- A. Tota, S. St John-Campbell, E. L. Briggs, G. O. Estevez, M. Afonso, L. Degennaro, R. Luisi and J. A. Bull, Highly Chemoselective NH- and O-Transfer to Thiols Using Hypervalent Iodine Reagents: Synthesis of Sulfonimidates and Sulfonamides, Org. Lett., 2018, 20, 2599-2602.
 - E. L. Briggs, A. Tota, M. Colella, L. Degennaro, R. Luisi and J. A. Bull, Synthesis of Sulfonimidamides from Sulfenamides via an Alkoxy-amino-lambda(6) -sulfanenitrile Intermediate, Angew. Chem. Int. Ed., 2019, 58, 14303-14310.
- 59. A. Tota, M. Colella, C. Carlucci, A. Aramini, G. Clarkson, L. Degennaro, J. A. Bull and R. Luisi, N-N Bond Formation Using an Iodonitrene as an Umpolung of Ammonia: Straightforward and Chemoselective Synthesis of Hydrazinium Salts, Adv. Synth. Catal., 2021, 363, 194-199. 60.
 - T. Glachet, H. Marzag, N. S. Rosa, J. F. P. Colell, G. Zhang, W. S. Warren, X. Franck, T. Theis and V. Reboul, Iodonitrene in Action: Direct Transformation of Amino Acids into Terminal Diazirines and N-15(2)-Diazirines and Their Application as Hyperpolarized Markers, J. Am. Chem. Soc., 2019, 141, 13689-13696.
- 61. V. N. Telvekar and K. A. Sasane, Oxidative Decarboxylation of 2-Aryl Carboxylic Acids Using phenyliodine(III) diacetate for Preparation of Aryl Aldehydes, Ketones, and Nitriles, Synlett, 2010, 2778-2780.
 - R. M. Moriarty, M. Sultana and Y.-Y. Ku, Cleavage of NH2 terminal tyrosyl-peptide bonds using hypervalent iodine, J. Chem. Soc. Chem. Commun. 1985, 974-975.

58.

Method

1

3

4

5

6

7

8

9

10ଖ

12

135

14

150

Second Se

Open Access Acticle, Published on J 4 June 2482. Downloaded Action 1971.

- M. Ciaccia and S. Di Stefano, Mechanisms of imine exchange reactions in organic solvents, *Org. Biomol. Chem.*, 2015, 13, 646-654.
- 64. R. R. Mondal, S. Khamarui and D. K. Maiti, Photocatalytic Generation of Nitrenes for Rapid Diaziridination, *Org. Lett.*, 2017, **19**, 5964-5967.
- 65. R. D. Richardson, M. Desaize and T. Wirth, Hypervalent lodine-Mediated Aziridination of Alkenes: Mechanistic Insights and Requirements for Catalysis, *Chem. Eur. J.*, 2007, **13**, 6745-6754.
- L. Lykke, K. S. Halskov, B. D. Carlsen, V. X. Chen and K. A. Jørgensen, Catalytic Asymmetric Diaziridination, *J. Am. Chem. Soc.*, 2013, 135, 4692-4695.
- L. P. Conway, A. M. Jadhav, R. A. Homan, W. Li, J. S. Rubiano, R. Hawkins, R. M. Lawrence and C. G. Parker, Evaluation of fully-functionalized diazirine tags for chemical proteomic applications, *Chem. Sci.*, 2021, 12, 7839-7847.
- W. R. Gutekunst and P. S. Baran, Total Synthesis and Structural Revision of the Piperarborenines via Sequential Cyclobutane C-H Arylation, J. Am. Chem. Soc., 2011, 133, 19076-19079.
- 69. R. A. Panish, S. R. Chintala and J. M. Fox, A Mixed-Ligand Chiral Rhodium(II) Catalyst Enables the Enantioselective Total Synthesis of PiperarborenineB, *Angew. Chem. Int. Ed.*, 2016, **55**, 4983-4987.
- J. L. Hu, L. W. Feng, L. J. Wang, Z. W. Xie, Y. Tang and X. G. Li, Enantioselective Construction of Cyclobutanes: A New and Concise Approach to the Total Synthesis of (+)-Piperarborenine B, J. Am. Chem. Soc., 2016, 138, 13151-13154.

Chunngai Hui obtained his BSc in Chemical Technology from the Hong Kong Polytechnic University (China) and his MSc in biotechnology from Hong Kong University of Science and Technology (China). He completed his PhD at Max Planck Institute of Molecular Physiology under the supervision of Prof. A. P. Antonchick. His research interests include the synthesis of bioactive natural products

and their related biological investigations.

Organic Chemistry Frontiers

Andrey P. Antonchick studied at
Belarusian State University (Minsk,
Belarus). He received a PhD at the
Institute of Bioorganic Chemistry of the
National Academy of Sciences of Belarus
and the Max Planck Institute for Chemical
Ecology (Jena, Germany) under the
guidance of Prof. V.A. Khripach and PD
Dr. B. Schneider. After a postdoctoral
appointment with Prof. M. Rueping at
Frankfurt University, he joined Prof H.
Waldmann at the Max Planck Institute of
Molecular Physiology (Dortmund,

Germany). In 2011, he was appointed group leader at the Max Planck Institute of Molecular Physiology and Technical University of Dortmund. Since August 2020, he holds the position of an Associate Professor at Nottingham Trent University (Nottingham, UK).