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Abstract: Planning the required energy infrastructure for the energy transition is a crucial task for
various neighbourhood concepts, such as positive energy districts. However, energy planning often
comes with the challenges of data shortages and a lack of comparability among solutions for different
districts. This work aims to enable this comparability by introducing an approach for categorising
districts according to parameters that are relevant for the planning of neighbourhood energy in-
frastructures. Four parameters (climate, floor space index, heating demand and share of residential
buildings) and their respective ranges (bands) were derived from the literature. Additionally, this
work visualised the combination of all parameter bands across Europe to conveniently showcase
districts that are comparable according to the selected parameters. This approach and its visualisation
could be used in urban planning to share knowledge from existing energy district projects with those
planned in comparable districts.

Keywords: positive energy district; district energy infrastructure; decarbonisation of neighbourhoods;
GIS; energy transition

1. Introduction

Cities are responsible for about 70% of global CO2 emissions, to which the largest
contributor is the use of fossil fuels for buildings and transportation [1]. The concept of
positive energy districts (PEDs), which are districts or neighbourhoods that have net-zero
carbon emissions and positive annual energy balances, was proposed by the Strategic
Energy Technology Plan (SET-Plan) Action 3.2 in 2018 as a cornerstone for the creation
of carbon-neutral cities in Europe [2]. This action plan has led to various other initiatives
across Europe (e.g., Making City [3], +cityXchange [4], IEA EBC Annex 83 (International
Energy Agency’s Energy in Buildings and Communities programme) [5] and Pocityf [6]). In
academia, PED-based research has also been increasing [7–9]. PEDs have been developed
using different approaches and techniques from different actors. According to the Joint
Programming Initiative (JPI) Urban Europe [10], there were two operating PEDs at the
beginning of 2020, with 19 others in the implementation stage and 8 in the planning stage.
Furthermore, 32 other projects have not declared ambitions to become PEDs but present
characteristics of interest for PED development [10]. These projects span across Europe and
provide cases for a wide variety of climates, political contexts, social contexts and national
and local energy production mixes and infrastructure. These cases generate plenty of data
that other local planners could potentially use for initial assessments and replications. In
this context, comparability and replicability are crucial.
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The transition towards positive energy districts needs appropriate infrastructure, as
defined in Section 2. However, the kind of infrastructure and its capacity in terms of
electricity or heating and cooling depend on characteristics that vary across Europe. For ex-
ample, climate attributes, such as solar irradiation and temperature, affect the potential for
photovoltaic (PV) generation, as well as heating and cooling systems. Many district energy
system transformation projects rely on case studies for data specific to their locations [3–6].
However, it is not easy to know whether an analysis made for one area would apply to
another area within the EU. Therefore, our work aimed to develop a methodology for
classifying European districts based on parameters that are helpful in the initial evaluation
and planning phase of energy infrastructures that could lead to PEDs.

The method developed in this study clusters existing neighbourhoods within Europe
according to key categorisation parameters. This approach can provide benefits for both
practice and theory. For example, categorising districts according to their energy infrastruc-
ture requirements is of practical use for regional decision-making in the initial stages of
planning district energy infrastructures. It simplifies comparing solutions and approaches
from other districts that fall into the same district category. The categorisation also supports
learning from challenges and opportunities that arose from existing or studied areas, for
example, in the planning stage. Furthermore, this categorisation could be of particular
interest to academia within the field of energy modelling. The accessibility of data can
be a significant burden for energy modelling-related research. Using the presented cate-
gorisation approach could justify using data relevant to the infrastructure requirements of
another district with similar characteristics.

The remainder of the article begins by narrowing down the scope of the categorisation
and introducing important background information in Section 2. Subsequently, Section 3
introduces the overall methodology of the work. The results are presented in Section 4,
which also shows the procedure for identifying the relevant parameters for the district
categorisation for infrastructure comparability, as well as their ranges (Section 4.1). This is
followed by the application of this method to the creation of comparable districts using
visualisation maps of different parameter combinations (Section 5). The work is finalised
by an elaboration on the application, limitations and prospects of this method in Section 6.

2. Theoretical Background

The positive energy goal, i.e., positive renewable annual energy balance, is barely
achievable without the district energy infrastructures undergoing a major transforma-
tion [11]. Building on the works of Fulmer et al. [12] and Brozovsky et al. [13], this study
defined a district energy infrastructure as the physical components of building and energy
infrastructure systems (i.e., heating networks, electricity grids, generation, etc.) that provide
commodities and services (e.g., hot water, electricity, etc.) that are essential for enabling,
sustaining and enhancing societal living conditions.

According to JPI Urban Europe [2], each PED is supposed to find its own optimal
balance between three main elements: the energy efficiency of the infrastructure, local
renewable energy production and energy flexibility within the district (see Figure 1). These
three elements are relevant to different parts of a district’s energy infrastructure, e.g.,
energy efficiency primarily relates to building envelopes and heating and cooling systems.
Thermal insulation, more efficient decentralised boilers and district heating systems are
crucial in colder climates. Buildings in warmer climates require insulation and ventilation
to reduce cooling demands during hot summer periods. Once the energy efficiency limit
is achieved, local energy supply from renewable sources, such as PV or wind power, is
deployed to cover the local energy demands. Finally, the flexibility of an energy system
can be provided by storage technologies and emerging services, such as dynamic charging
for battery electric vehicles (BEV). Although this example has advanced and grown in
importance over recent years, this work did not focus on BEVs and their charging. Smart
charging and vehicle-to-grid technology are not yet widely implemented. Furthermore,
readers can infer relevant information regarding mobility from some of the parameters
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selected for the classification efforts (Section 4), i.e., the residential share of the total gross
floor area and the floor space index. Hence, necessary transformations are the measures
(and their ambitions) that need to be implemented to achieve each “sub-goal” (i.e., element).
For example, the “transformation” of a building envelope (e.g., insulating walls) or heating
system (e.g., installing heat pumps) is necessary for energy efficiency, as energy efficiency
is defined by the conditions or characteristics of those infrastructures.

Figure 1. The key concepts/elements of positive energy districts (adapted from [2]).

Hence, for the purpose of this study, a PED infrastructure encompasses the following
technology: renewable energy generation, energy storage, charging technology, building
envelopes and heating and cooling systems. Each technology also has parametric and
installed capacity requirements. Parametric requirements refer to, for example, the supply
temperature needed for space heating. Finally, the installed capacity indicates the size of
each system, e.g., the installed capacity of renewable generation technologies or the neces-
sary capacity of district heating generation. Such parametric and capacity requirements are
usually estimated using energy models [14].

Previously, several studies have attempted to analyse infrastructure requirements by
creating district typologies. A German study presented a method for estimating infrastruc-
ture costs (for regional spatial planning) based on the structural type of the settlement [15].
Such typology-based approaches are based on the assumption that urban areas with similar
building typologies and urban structures are similar in terms of infrastructure configu-
rations and demands. Another approach for creating a district typology was proposed
by [16] for estimating heat demands and thermal gains (and losses) within a district. The
classification of districts was based on the building typologies and urban forms; thus, pa-
rameters such as building shape, district density and building age were used to categorise
the districts. Other studies have not created archetypes but have instead analysed the urban
characteristics of districts that could help create a sustainable neighbourhood [17,18]. As
observed, district categorisation is highly dependent on the location; hence, it is usually
not meant to be applied outside its original scope and region.

3. Methodology

This section presents the approach taken in this work to develop the district categori-
sation method, which was based on infrastructure requirements. This work incorporated
three stages, as shown in Figure 2.

First, based on a critical review of the background literature, this work selected district-
level energy models and identified the commonly used input parameters from those
selected models. Appendix A shows the list of selected models, and information relevant to
this study. The models covered the analysis and planning of the energy infrastructures, as
discussed in Section 2. The next step was synthesising the findings to define the parameters
for district categorisation according to energy infrastructures. Defining the approximate
ranges of the values for each parameter was based on the relevant literature. Furthermore,
this study showed that this conceptual method could be realised and applied in practice by
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extracting the raster layers of the defined parameters from Hotmaps, which is a validated
open-source application for heating and cooling planning at various spatial levels [19–21].
These raster files of the parameters, which are essential for strategic heat planning, are
estimated data. Hence, the limitations of these data should be taken into account (discussed
further in Section 5). The Hotmaps data focus on residential buildings; therefore, using
these data in non-residential areas must be performed with care. However, since PEDs are
a highly residential concept, this limitation was justifiable. The Hotmaps data were further
manipulated using the QGIS software. As a result, this study demonstrates similar districts
across Europe that are likely comparable regarding infrastructure requirements. Figure 2
illustrates the overall methodology of our work.

Figure 2. Our methodological approach to classifying districts from an energy modelling point
of view.

The first stage of this work (Section 4.1) looked at the existing review papers that
deal with models and tools that are used within the energy system modelling domain for
various purposes. The article by [14] served as a starting point. The authors listed previous
review articles that categorised or analysed energy system models and tools. Many review
articles have focused on models that are suitable for analysing local-, community-, district-
and neighbourhood-scale energy systems [22–28]. Hence, from the known models, we
selected several models that comply with the following criteria, which we extrapolated
from our energy infrastructure definition in Section 2:

(a) A district or neighbourhood geographical scale (or any cluster of buildings);
(b) A time resolution from hourly to seasonal;
(c) An infrastructure that was within the scope of this work, i.e., renewable energy

generation technology, energy storage and EV charging technology, heating and
cooling systems and building envelopes;

(d) Aims that are relevant for energy planning (i.e., not frequency regulation or power
sector specifics).

The next step after model selection was to summarise the information that was used
as the inputs and outputs of the models, as well as the modelling approach (i.e., method),
spatial and temporal scales and the covered infrastructure types. Then, we analysed and
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generalised the input parameters (along with the other information that was collected) to
derive the parameters for our district categorisation (Section 4.1). As specific and granular
data are not always available, using generalised district parameters could help with the
research for and planning of PEDs (or other related district energy concepts). The extracted
district categorisation matrix is illustrated in Section 5, which shows the district typologies
that are present in Europe. The cities of Amsterdam, Frankfurt and Torres Vedras, along
with selected districts, were used to showcase the use of the final parameter map. These
cities were selected in line with the case study cities of the PED-focused “Smart-BEEjS”
project. Furthermore, to adequately showcase the comparison map, two cities/districts
within the same climate zone were needed (Frankfurt and Amsterdam).

4. Model Details
4.1. Input Parameters for District Categorisation

This study revised several district energy models with the aim of identifying their input
requirements. The results of the review are presented in Table A1. These comprehensive
and detailed input requirements were grouped into smaller sets of representative and
comparable parameters that could be used to classify European neighbourhoods (Table 1).
To achieve a feasible categorisation, four parameters that represent the most important
input requirements were chosen. The summarised results of the energy modelling review,
which are shown in Table 1, were in line with the literature research that was carried out
by [29,30].

Table 1. The synthesis of parameters for the district categorisation.

Matching Data Requirements Representative Parameters

Meteorological data, renewable energy supplies, weather data and climatic
characteristics −→ Climate Zone

Demand profiles, building envelopes, U-values, insulation and household
equipment −→ Heating Demand

Available area, building type, building height, building archetype and building
geometry −→ Floor Space Index

Occupancy behaviour, time of use, net energy demands and PV production −→ Share of Residential Buildings

The “climate zone” parameter in Table 1 refers to meteorological and weather- and
climate-related data. This input influences heat demands and renewable energy supplies
and, therefore, is crucial for the selection of local energy infrastructures. The most widely
used climate classification is the Köppen–Geiger (KG) classification [31], which divides the
world into five regions and 30 sub-regions according to the threshold values and seasonality
of monthly air temperature and precipitation [32]. This classification scheme has been used
in the PV community to analyse regions of interest easily [33]. For example, the European
project PVSites applied the Köppen–Geiger classification, together with the parameters of
the European heat index and European cooling index, to create a zoning map for nearly
zero energy buildings (nZEBs) [34].

The “heating demand” parameter indicates the levels of demand for space heating
in buildings, which mainly depends on the climate and the energy efficiency state of the
buildings. The values and ranges for the annual heat demand were identified from the
available data, as explained further in Section 5. This parameter mainly influences the
building envelopes and heating and cooling systems.

The “floor space index” parameter (FSI) can also be an indication of the space that is
available for renewable energy generation in relation to the number of people living and
consuming energy in that specific area, as described by [35]. The FSI (also called the floor
area ratio) is defined by Equation (1) [36]:

FSI =
gross f loor area

plot area
(1)
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The FSI ranges indicate the type of the settlements within a neighbourhood: very rural
settlements (<0.25), single-family houses (0.25–1), row housing (1–2) and block housing to
very dense urban settlements (>2) [35]. A lower FSI could indicate that a larger area (roofs)
is available for renewable energy generation, while the overall energy demand density stays
low. Thus, a low FSI indicates the increased technical ease of achieving the PED energy
balance requirements. However, it does not indicate anything about economic aspects.

The “share of residential buildings” parameter is an indication of the type of energy
consumer that is present in a neighbourhood. The type of consumer affects the final
net energy consumption of building operations and the load distribution over time [37].
More specifically, the ratio of residential to commercial consumers influences the final
net consumption of buildings, as commercial buildings have higher energy requirements
(especially supermarkets) [37]. In addition, the electric load distribution of residential
buildings is significantly different from that of non-residential buildings, with the resi-
dential load being higher during morning and evening hours [38]. Additionally, potential
EV charging schedules also depend on the residential share of buildings, as cars are usu-
ally available for charging at night in residential districts and during working hours in
non-residential districts.

All parameters are shown with their respective ranges in Figure 3. The ranges of the
parameters were derived based on the available data, as described in Section 5.

Figure 3. The district categorisation matrix.

The procedure for visualising of district types across Europe is illustrated in Figure 4.
First, a raster file of each selected parameter (except for the climate zone parameter) was
extracted from the Hotmaps library [20]. The raster layers had a resolution of one hectare;
therefore, each hectare equalled one pixel of the raster layer and was associated with one
relevant parameter value (e.g., heating demand). To limit the combination of possibilities,
this study reduced the available values of the raster layers to our predefined ranges,
according to Figure 3. The multiplication of all the Hotmaps-derived raster files resulted
in one raster layer with a maximum number of nx possible district typologies, where n
is the number of parameters and x is the number of values that each parameter could
obtain. Furthermore, we imported a Köppen–Geiger climate raster file [32] of Europe
and overlaid it on the output file (i.e., the district typology map). The climate layer was
not multiplied with the remaining parameter layers as it would significantly increase
the number of possible combinations that were available. Therefore, the climate layer
functioned as an initial filter to find districts within the same climate zone before advancing
with the remaining layers. The final two-layer map showed all available combinations of
the heat demand, FSI and residential share parameters (as defined in Section 4) on one
layer and the climate zone parameter on another layer. Therefore, the map enabled the easy
comparison of different districts according to the predefined parameters.
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Figure 4. Our methodological approach for the visualisation of the selected parameter combinations
on a map.

Defining the parameter value ranges was essential to the categorisation effort. The
number of bands had to be kept low to decrease the possible combinations of the values
but high enough to guarantee sufficient detail. As the FSI was unavailable as a raster file,
this study approximated it using the gross floor area per hectare. The heating demand and
the FSI value distributions followed an F-distribution. Furthermore, the heating demand
distribution was strictly related to the FSI; thus, the quantiles of the FSI thresholds were
transferred to the heat demand values, as defined in Section 4.1, to generate the thresholds
that are shown in Figure 3. The residential share distribution showed two peaks on the left-
and right-hand sides of the graph, with a valley in the middle. This distribution showed that
the most common districts had either a low or high residential share of the gross floor area.
Nonetheless, many districts still had a residential share between these two peaks. Applying
the exact quantiles used for the FSI and heat demand parameters meant considering a
large proportion of the districts to be highly residential, which distorted the categorisation
efforts. Consequently, this work divided the residential share values into four equidistant
bands. For the first three parameters in Figure 3 (heat demand, FSI and residential share),
the letters A to D were used to classify the bands, with A being the lowest and D being the
highest value. All of the prevalent climate zones in Europe, according to [32] were used.
This work only included heating demand instead of additionally including the cooling
demand. Arguably, across one climate zone and one FSI category, the heating demand and
cooling demand would be negatively correlated, meaning that heating demand band A
would correlate to cooling demand D and vice versa. Thus, adding this additional layer
would have increased complexity without adding much additional value. The final district
categorisation matrix with the selected parameters and their relevant bands is illustrated in
Figure 3.

Figure 5 shows the general application process of the final district typology map
(openly accessible). Firstly, two or more districts located in the same KG climate zone need
to be chosen for the analysis. After using this climate filter, the climate map can then be
disabled to only visualise the districts’ typology created by the heat demand density, the FSI
and the residential share. The analysis of this can be visual or statistical by extracting the
values of the raster layers belonging to each district. If the districts have similar typologies,
a high potential for a similar approach towards energy infrastructure requirements can be
deducted. Thus, districts that are very similar according to the defined parameters and fall
into the same climate zone can initiate knowledge exchange within the planning teams.
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On the other hand, if the district typologies vary significantly, the potential for a similar
approach is lower.

Figure 5. The application process of the final district visualisation map.

5. Visualisation of Results

This section shows the application of the approach presented in Section 3 to three
European districts. Figure 6 shows a map of the different climate zones according to
the Köppen–Geiger classification across Europe, which was used to filter out districts of
interest located in the same climate zone. For further discussion, three partner cities of the
"Smart-BEEjS" project for PEDs were selected [39]. Amsterdam and Frankfurt are located in
the same climate zone of Cfb (temperate oceanic climate). In contrast, Torres Vedras in the
south of Europe is characterised by the Csb climate zone (warm-summer Mediterranean
climate). Thus, according to the first layer of diversification, districts in Amsterdam and
Frankfurt could be used for comparison. The different climate in Torres Vedras might
already have different implications for the energy infrastructures of potential districts;
therefore, Torres Vedras could not be compared to the two other cities.

Figure 7 zooms into the three cities of Frankfurt, Amsterdam and Torres Vedras to
visualise their district typologies in further detail. Areas that are presented in purple, red
or even light orange have increasingly dense heat demands, higher floor space indices
and larger shares of residential building usage. Conversely, green areas are less dense and
indicate mixed-use or even low residential districts. As this map aimed to compare (but
not rank) districts, the order of district combinations in the legend is of little importance. It
is simply the result of the prime number approach described in Appendix B. The prime
numbers were back-calculated to the respective alphabetical code. The colour code just
provides an indication of the density. Additionally, not all of the 64 theoretically possible
combinations appear in Europe.

Frankfurt and Amsterdam are similar in size and also show a comparable picture in
terms of the district typologies that are present. Both cities show a highly dense centre
that is shaded in red/violet, but the central area in Amsterdam is larger and denser. The
dense, red-shaded areas are surrounded by blue and then green zones. Frankfurt appears
to have multiple smaller settlements around the core city, while Amsterdam seems to be
more connected. At the edges of the city and in the canal zones, Amsterdam is mainly
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shaded in light green. This most likely shows highly industrial areas and ports. Torres
Vedras, on the other hand, is predominantly shaded in green and only peaks at light blues
in the city centre. This, combined with the warmer climate zone, suggests advantages in
terms of the required energy infrastructure for a PED as the heating demand is lower, the
potential solar gains are higher, and the available space for local energy generation is larger.

These observations were supported by histograms of the district typologies of the
cities. Figure 8 shows the size of each of the ten most common district typologies (in
hectares) across the whole cities (Torres Vedras only has seven). The three most common
typologies in Frankfurt and Amsterdam are very similar. Both show medium-low heat
demands and floor space indices. Amsterdam, however, seems to be slightly less residential
and has more highly dense areas within the ten most common categories, such as CCB.
Torres Vedras, on the other hand, shows an entirely different picture. The city has a low
heat demand thanks to its climate and also a very low floor space index in most areas. The
town is very residential but has highly non-residential zones surrounding it, which are
most likely industrial or commercial areas.

Figure 6. A map of Central Europe, with climate zones according to the Köppen–Geiger
classification [32]. Amsterdam, Frankfurt and Torres Vedras are marked on the map.
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Figure 7. The visualisation of the district typologies in Frankfurt am Main (a), Amsterdam (b)
and Torres Vedras (c): FHDD, final heat demand density; FSI, floor space index; %Rdt., share of
residential buildings.

Torres Vedras is not located within the same climate zone as Frankfurt and Amsterdam
(Figure 6) and, therefore, was filtered out by the climate layer as it could not be compared
to the other two cities. As Amsterdam and Frankfurt are located within the same climate
zone, two example districts were selected to compare according to their district typologies.
A PED project called Atelier is located in the south of Buiksloterham in Amsterdam [40]. In
Frankfurt, the Griesheim-Mitte district also has major renovation ambitions [41]. Figure 9
shows the distributions of the available district typologies in Frankfurt (Griesheim-Mitte)
and Amsterdam (southern Buiksloterham). First of all, Griesheim-Mitte is significantly
larger than southern Buiksloterham. Secondly, both districts have predominantly low to
medium heating demands and FSI values. However, buildings in Griesheim-Mitte have
higher levels of residential usage than those in southern Buiksloterham. Furthermore,
southern Buiksloterham shows many areas with low heating demands and FSI values,
with AAB, AAA and AAC being among the five most common areas within the district.
On the contrary, Griesheim-Mitte has few areas with higher heating demands and FSI
values, with CCC and CCB being in the top five categories. As southern Buiksloterham
has, on average, lower heating demands and FSI values, there is more available space for
energy generation, in the form of solar PV or solar thermal panels, in relation to the energy
demand. Furthermore, the lower share of residential buildings could be beneficial for the
self-supply of the district as commercial energy demands may be more aligned with sun
hours and, thus, with renewable energy generation. The comparison indicated a relatively
low similarity between the districts and, therefore, limited potential for knowledge transfer
among the districts.
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Figure 8. A comparison of the frequency of the district categories in Frankfurt am Main, Amsterdam
and Torres Vedras.

Figure 9. A comparison of the frequency of the district categories in Frankfurt - Griesheim-Mitte am
Main and Amsterdam - Buiksloterham-South.

Figures 10 and 11 show aerial views of Griesheim-Mitte and the considered part of
Buiksloterham, respectively. The figures support our analysis of the district histograms
well and, therefore, also act as validation for the created map. First of all, the size difference
between the two districts is evident. Moreover, a large share of the BBC areas in Griesheim-
Mitte is seen towards the mid-right of the district in Figure 10, which are predominantly
made up of residential buildings. On the other hand, southern Buiksloterham has a small
residential area in the lower-left corner with more prominent areas of non-residential
buildings, according to the aerial view. Finally, the floor space index appears to be lower at
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first glance. These observations were consistent with the previously discussed histograms
in Figure 9.

Figure 10. An aerial view of Griesheim-Mitte [42].

Figure 11. An aerial view of southern Buiksloterham [43].

6. Conclusions

In light of the energy transition process that is partly facilitated by positive energy
districts across Europe, methods that enable comparability of such district projects and
thus encourage learning among them is becoming vital. One of the important aspects of
creating PEDs is the physical energy infrastructure that is necessary for an existing district
to transform into a PED. This article presented a method to facilitate district comparison
regarding their energy infrastructure requirements. This work derived four indicators from
the literature on energy system modelling: climate, heating demands, floor space index
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and the share of residential buildings. Furthermore, this study applied the developed
methodology using QGIS and data that were openly available from the Hotmaps project,
which led to a direct visualisation of each hectare of the cities and districts within Europe,
thereby enabling an easy and direct comparison of the different areas. This clustering
approach could facilitate the comparison of districts that are very similar according to
the developed indicator values. The clustering methodology could also help districts to
learn from the successes and challenges that arose in previous energy renovation projects
that occurred in similar district categories. The example application using the districts of
Griesheim-Mitte in Frankfurt and southern Buiksloterham in Amsterdam indicated the
potential of this method for comparing districts.

Beyond this, the map also indicated which zones would be more challenging to convert
into PEDs and could therefore work complementarily with the method of [9], which also
shows which zones would be the most and least suitable for PEDs using a GIS-based
approach. In our map, zones that are coloured in orange or red have high heat demands,
high floor space indices and high shares of residential buildings. Those attributes increase
the difficulty of achieving PED status as energy loads are less distributed and less space is
available for energy generation in relation to the higher energy demands. On the contrary,
green zones will likely be easier to convert into PEDs. This information could be vital in
district-level renovation projects. It could allow for the differentiation of the areas within
a district that require the most attention from a technical standpoint from the areas that
could provide the energy generation surplus that is needed to achieve a positive balance
overall. Based on the same information, would also be possible to evaluate whether a
district needs renewable energy production outside of the district’s boundaries to offset
its consumption. This analysis could estimate to what extent building stocks need to be
improved or how much PV production would be required. Assuming that some energy
production would need to be positioned outside of a district, this method could also suggest
whether regional electrical infrastructures require further improvement. As of now, the aim
of the visualisation map is only to compare districts and potentially transfer knowledge
among similar projects. These further applications would require more PED (or PED-like)
projects in existing areas and, subsequently, validation.

As stated in Section 1, there are currently only two PEDs operating in Europe, which
limits the amount of information that is available regarding the implemented infrastructures.
Furthermore, these two PEDs are newly built and are not renovation projects. As the
number of implemented PEDs increases in the near future, the addition of more marked
areas on the map will become possible. As the map shows data from 2015, it shows
district typologies from before any renovations. These future additions would allow local
policymakers and administrations to locate implemented PED projects that match their
district typology and learn from those already existing projects. The two-layer visualisation
map could also be used as an initial step for tracking existing PED projects over time
and pinpointing them on the map as a working document. Readers should note that this
categorisation comprises only four parameters. District renovations often require a holistic
approach that also includes the social fabric of the area in question. Although a solution
that was derived from another similar project may be technically feasible in a local context,
it may be not socially accepted. This issue, combined with the estimated nature of the data
that were used to develop the district typology map, should remind readers that this tool is
intended for initial planning and policymaking based on findings from other projects. Thus,
the map could be used as the first tool for PED planning to identify projects in similarly
structured districts for knowledge transfer.

Further detailed research and calculations are necessary for specific districts as there
may be other aspects that need to be considered, e.g., the availability of waste heat. Future
research should focus on further verifying whether this method leads to two different
districts within the same classification having similar infrastructures to achieve PED status.
In addition, it is possible to create other typology and raster maps for different aims and
visualisations. Other future work, still revolving around the necessary infrastructures,



Energies 2022, 15, 4720 14 of 21

should focus on whether there is enough energy generation potential in relation to demand
at a hectare level. It could be possible to compare the solar PV yearly potential raster to
the yearly heat demand and obtain a rough estimate of the energy balance. Overall, this
would be an initial step towards creating comparability in terms of buildings and energy
infrastructures among European districts.

The limitations of our approach were closely related to the limitations of the Hotmaps
data. The gross floor area was calculated using the average gross floor area per dwelling
and the average persons per household, based on the available statistical data at the
NUTS3 level (e.g., “Landkreise” in Germany). While this approach provided a reasonable
estimation for residential building stocks at a hectare level, the non-residential gross floor
area calculation was less robust [20]. The heat demand data were calculated at the NUTS0
level (country level) from the statistical data on energy consumption, as well as the national
building stock characteristics. The grid cell-specific energy demand per floor area data were
derived from the surface to volume ratios of buildings from the OpenStreetMap database,
the shares per construction period and the heating and cooling degree days [20]. Each of
these indicators were estimations in themselves and thus, were limited in their accuracy.
Furthermore, the validation of the model was only based on aerial views of the studied
districts. While this provided an initial indication of the model’s validity, further studies
still need to prove this.
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Appendix A

Table A1. A list of the reviewed models.

Model Aim/Output Requirement/Input Method Time Resolution Spatial Aspect Sectors

Calliope [44–46] Energy portfolio and
dispatch optimisation

Demand profiles,
technology to consider,

available area,
meteorological data and

costs

Bottom-up; MILP User defined User defined Electricity, heating and
mobility (limited)

City-BES [47]

User defined, e.g.,
energy-, emissions- and

cost-related KPIs for
each retrofit scenario

The footprint, type,
height, year of

construction and
number of stories of the

buildings, shading
buildings, shared walls

and weather

Bottom-up;
physics-based (based on

EnergyPlus)
Sub-hourly Cities Electricity and heating

City Energy Analyst [48]

Building energy
consumption patterns in

neighbourhoods and
districts

Weather data, urban GIS
data building archetypes,

distributions database
(occupancy schedules; 16

types in this case) and
measurements database
(for non-standardised
energy services in the

area, e.g., stadia)

Bottom-up (two methods
of load calculation:

analytical and statistical)
Hourly Neighbourhoods Electricity and heating

CitySim [49]
Heating and cooling
demands and urban

planning

Building characteristics
and climate files

Dynamic building
energy simulation;

reduced-order RC model
1 min–1 h Streets to districts Electricity and heating

DER-CAM [50] Energy portfolio and
dispatch optimisation

Demand profiles,
technology to consider,

available area,
meteorological data and

costs

Bottom-up; MILP User defined (reference:
days)

Buildings to microgrids
(districts)

Electricity, heating and
mobility (limited)
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Table A1. Cont.

Model Aim/Output Requirement/Input Method Time Resolution Spatial Aspect Sectors

DIMOSIM [51]

Raw outputs, i.e., states
of each object (e.g.,

temperature) and energy
fluxes (e.g., consumption

per fuel) and KPIs
generated from the raw
outputs that related to

thermal indoor comfort,
energy, power and costs

Climatic characteristics,
building geometry,

U-values and surface
ratios of the different

components within the
envelope, HVAC system

characteristics,
occupancy rates,

insulation types (e.g.,
indoor or outdoor) and

inertia level

Bottom-up; simulation;
possible optimisation

User defined (range of
minutes to hours)

Small neighbourhoods to
cities Electricity and heating

EnergyPlan [52]

Operation of energy
systems and

environmental and
economic impacts

Installed capacity,
available energy and

energy demands

Bottom-up; simulation
(based on heuristic

technique)
Hourly Cities to countries Electricity and heating

EnergyPlus [53] Dynamic building
simulations and HVAC

Climate data, U- and
g-values, heating and

cooling systems,
temperature set-point
(min; max), air change
per hour, internal heat

gain, external
short-wave absorbance

and long-wave
emissivity

Bottom-up;
physics-based User defined Buildings Electricity and heating

ESP-r [54] Dynamic building
simulations and HVAC

Climate data, U- and
g-values, heating and

cooling systems,
temperature set-point
(min; max), air change
per hour, internal heat

gain, external
short-wave absorbance

and long-wave
emissivity

Bottom-up;
physics-based User defined Buildings to districts Electricity and heating
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Table A1. Cont.

Model Aim/Output Requirement/Input Method Time Resolution Spatial Aspect Sectors

Homer [55] Energy portfolio and
dispatch optimisation

Demand profiles,
technology to consider,

available area,
meteorological data and

costs

Bottom-up User defined Microgrids (districts) Electricity, heating and
mobility (limited)

oemof [56]

Multiple Python libraries
for optimisation and
modelling of energy

systems

Demand profiles,
technology to consider,

available area,
meteorological data and

costs

Bottom-up User defined (reference:
days)

Buildings to microgrids
(districts)

Electricity, heating and
mobility (limited)

Smart-E [57]

Energy demand
simulation,

implementation of
demand–response
strategies in cities

Weather data, household
composition, envelope
characteristics, heating

energy demands,
location, time of use

(schedule) and
probabilities (household

equipment, set points,
etc.)

Bottom-up; simulation Daily Cities to larger territories Electricity and heating

TRNSYS [58]

Thermal and electrical
energy systems, dynamic
systems, traffic flow and

biological processes

User defined
components and library

components

Simulation; linear and
nonlinear programming 0.01 s–1 h Buildings to districts Electricity, heating and

mobility

urbs [59] Energy portfolio and
dispatch optimisation

Demand profiles,
technology to consider,

available area, renewable
energy supplies as time

series and costs

Bottom-up User defined User defined Electricity, heating and
mobility (limited)

UMI [60]

Walkability,
environmental

performance and
daylight potential

Parks, streets, shadings,
boundaries, ground and
the geometry, occupancy

and fenestration of
buildings

Simulation (based on
EnergyPlus, rhinoceros

and Daysim)
... Streets to districts Electricity, heating and

mobility
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Appendix B

This section explains how we developed the map that categorises the districts and
areas in Europe. The reasons for the selection of each parameter and their related thresholds
are not subjected to further analysis here but rather the process itself for replication. The
analysis that was conducted in Section 3 led to the selection of the relevant raster files from
the Hotmaps repository. These raster files were:

• Total gross floor area;
• Residential gross floor area;
• Final heat demand density.

The first two rasters were relevant for producing the floor space index and the resi-
dential gross floor area percentage. To generate the latter, we utilised the raster calculator
function in QGIS. We divided the residential gross floor area by the total gross floor area.
Using a similar process, the total gross floor area was converted into an approximation of
the FSI by simply dividing the raster by 10,000, as each pixel equalled one hectare and
the pixel’s value was expressed in square meters. Section 3 already explained the reasons
behind the selection of each threshold; hence, it is not part of this section. This section
explains how the rasters were changed to show the thresholds rather than the values.
Again, the raster calculator included in QGIS was the tool that was used to generate the
typologies of these rasters. Four bands were generated by setting the following conditions
on each raster file:

((”Rx” > 0)AND(”Rx” ≤ t1)) ∗ p1.x + ((”Rx” > t1)AND(”Rx” ≤ t2)) ∗ p2.x + ((”Rx” > t2)AND
(”Rx” ≤ t3)) ∗ p3.x + (”Rx” > t3) ∗ p4.x

(A1)

where Rasterx is the raster subject to be transformed, t1 to t3 are the set thresholds and p1.x
to p4.x indicate the prime numbers that were applied to the first to fourth bands of the xth

layer. Each threshold was defined by a prime number rather than a letter as QGIS does
not support strings as a data type. The use of prime numbers allowed for the creation of
the final visualisation map. The final visualisation map raster condensed the information
from each pixel in the three rasters (i.e., total gross floor area, share of residential gross floor
area and final heat demand density) into one raster, as shown in Figure A1. QGIS does not
allow the multiplication or addition characters; hence, we used prime numbers to track the
original values.

Figure A1. The process for blending the three original layers into the visualisation map. The subscript
y indicates the band to which pixel belongs.

The prime numbers allowed us to retain the information from all of the layers that
made up the map. The product of three prime numbers could only be obtained by multiply-
ing those exact prime numbers. It is important to note that each threshold had a different
prime number related to it, as indicated in Table A2.
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Table A2. The code to transform letter indicators into prime numbers and vice versa.

Thresholds Letter Indicator Prime Number Indicator

Final Heat Demand Density

417 A 2
417–1417 B 3
1417–2961 C 5

2961 D 7

Total Gross Floor Area

0.25 A 9
0.25–1 B 11

1–2 C 13
2 D 17

Percentage of Residential GFA

0.25 A 23
0.25–0.5 B 27
0.5–0.75 C 29

0.75 D 31

Let us consider an example in which a pixel on the map (i.e., one hectare) has a
final heat demand that is indicated by A, a total gross floor area of B and a percentage of
residential GFA of C. The resulting pixel on the visualisation map would have the value of
the product of their prime number indicators (in this case, 638). Because this number can
only be derived from the multiplication of these three prime numbers, each pixel can be
unequivocally identified and categorised.
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