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Abstract— Over the last few years, the number of precision
farming projects has increased specifically in harvesting robots
and many of which have made continued progress from
identifying crops to grasping the desired fruit or vegetable. One
of the most common issues found in precision farming projects
is that successful application is heavily dependent not just on
identifying the fruit but also on ensuring that localisation allows
for accurate navigation. These issues become significant factors
when the robot is not operating in a prearranged environment,
or when vegetation becomes too thick, thus covering crop.
Moreover, running a state-of-the-art deep learning algorithm
on an embedded platform is also very challenging, resulting
most of the times in low frame rates. This paper proposes
using the You Only Look Once version 3 (YOLOv3) Convo-
lutional Neural Network (CNN) in combination with utilising
image processing techniques for the application of precision
farming robots targeting strawberry detection, accelerated on
a heterogeneous multiprocessor platform. The results show a
performance acceleration by five times when implemented on
a Field-Programmable Gate Array (FPGA) when compared
with the same algorithm running on the processor side with an
accuracy of 78.3% over the test set comprised of 146 images.

Index Terms— YOLOv3, Strawberry Detection, FPGA, Xil-
inx, Vitis-AI, DPU

I. INTRODUCTION
The majority of the UK’s land is used for agriculture

production [1]. The production of agricultural commodities
aids in the effort to be self-sufficient as production sustains
food levels in the country [1]. In order to support such mass
production, each year, the agriculture industry requires the
recruitment of hundreds of skilled labours to operate in the
country’s farmland [2]. A substantial amount of workers are
required given the size of the operation, and that most of the
work comprises of manual labour. As such, manual workers
spend a large portion of their day performing hours of
repetitive task, such as picking fruit and vegetables. However,
due to legislation changes in England, it has become more
difficult for farmers to find the workforce they need for
their fields [2]. It is important to note that the shortage of
field workers was present before Brexit [3]. Labour shortages
ultimately increase the amount of food waste when crops are
not collected before they spoil. Thus, shortening the amount
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of supply to a growing demand due to continued population
growth [4].

Several universities and private companies have invested in
smart farming to help reduce labour shortages and increase
the production of agricultural commodities [5]. While the
automation of agriculture presents opportunities to coun-
terbalance the labour shortage, smart farming also has the
potential to be more effective than traditional farming equip-
ment [4][6]. For example, heavy machinery such as tractors,
which is used in traditional farming, has been shown to
decrease the number of crop yields due to soil compaction
[4]. In the UK Robotics and Autonomous Systems (RAS)
white paper, it is argued that small intelligent farming robots
can aid in the reduction of waste, improve the economy,
decrease environmental harm and increase food sustainability
[4]. Therefore, there is a great need for innovation, that could
be potentially met by using smart farming robots capable of
performing at a commercial level. The soft fruit sector could
especially benefit from automating harvest collection on high
yield fruit like strawberries.

However, a robot capable of picking strawberries must
meet certain requirements to be successful. The first re-
quirement is detecting and localising the fruit. Detection
and localisation are essential because it takes visual data
as input. The collected visual information is then analysed
using a variety of different methods. A standard and suitable
design for detecting fruit use colour sensors that take the
colours in the image and analyses the pixels by colour and
shape. Calculations are conducted within the colour space
to determine if there are any items in the picture. Once one
or more strawberries are identified, a localisation strategy is
needed. Localisation is the process of identifying the location
of each located fruit. Once the fruit has been properly
localised, trajectory planning is required.

Trajectory planning is the second essential task and
equally as challenging as detecting the desired crop. For this,
a pre-planning approach may be more suitable for reaching
fruit located under challenging positions verse doing the
detection, localisation and end-effector manipulation all at
once. The project measures successful trajectory planning
based on three main criteria’s; starting with how well it can
manoeuvre around without being blocked or entangled by
vegetation. In the case where such criteria can not be met,
the robot should proceed with the next detected strawberry.
The second objective is to have the gripper positioned within
grabbing distance of the desired fruit. The last objective
measures robot control and perception by ensuring that
nearby crops are not damaged.

The next task combines grasping the fruit and removing it



from its peduncle. The challenges are to remove the peduncle
and grasp the fruit without inflicting any damage to it. Re-
moving the peduncle wrong leads to the fruit being exposed,
causing early spoilage. The other crucial part of the task is
grasping the strawberry with a suitable amount of pressure.
Applying too much pressure can lead to bruising on the
strawberry. Two methods to determine how much pressure
to apply are the use of visual and pressure sensors. When
a strawberry ripens, its’ colour becomes darker; therefore,
the robot can begin adjusting what grip is suitable by the
degree of ripeness. In the case of uneven ripeness, a pressure
sensor on the gripper would be the most suitable means of
determining the amount of pressure to apply.

The overall smart farming process can be accomplished
by improving farming vision, tactile sensing and perception.
In this paper a vision system is achieved through the use
of YOLOv3 operating on the Xilinx ZCU104 development
board 1, a heterogeneous platform fitted with the Xilinx
Multi-Processor ZU7EV which is analysed for its suitability
for identifying and localising crops such as strawberries.

A brief literature review is presented in section II, the
methodology in presented in section III, preliminary results
are discussed in section IV and the conclusions and future
work are given in section V.

II. RELATED WORK

The UK employs up to 29,000 seasonal pickers and
generates over 160,000 tons of fruit each year [7]. One can
see that agriculture requires a tremendous amount of people
to produce adequate returns. However, it is essential to note
that while such a high number of people are employed there
is still a shortage of workers. The shortage of workers is,
in fact, an invaluable opportunity to maximise production
through automating soft fruit harvesting like strawberries.
One significant aspect of automating the collection of straw-
berry is that they are grown in most places in the world
[7]; thus, an automated harvest would bolster the efficiency
of strawberry agriculture world-wide. Currently, there is
an extended amount of research conducted on fruit and
vegetable picking robots. These research efforts have brought
about significant advances in fruit-picking robots, such as the
Argobot2, which uses 24 end-effectors to pick strawberries,
and Sweeper, which is a robot designed to collect yellow
peppers [8]. While there are many robots capable of locating
and grasping said fruit or vegetable, none are at a commercial
standard [5] as of yet. These robots have not yet achieved
a better harvesting performance than the methods currently
commercially used for fruit or vegetable collection [7].

Any robot task with crop picking is faced with the
questions of what methods will the robot use for informa-
tion gathering on its environment. For instance, will the
system implement computer vision [9], and if so, what
methods would it use to process visual information; would

1Available online, https://www.xilinx.com/products/
boards-and-kits/zcu104.html, last accessed 30/07/2020

2Available online, https://www.agrobot.com/, last accessed:
31/07/2020

it use a neural network or a machine learning algorithm?
One group focused on designing an algorithm that used
multi-template matching for identifying cucumbers in natural
surroundings[10]. Bao et al. [10] proposed the use of an
image that serves as a reference point for incoming images.
The reference point slides across an image and is then
compared with the template to identify labels in picture
[10]. Their system used 65 templates to detect mature
Radit cucumbers. The method proposed by Bao et al. [10]
was designed to overcome the issue of misidentifying the
cucumber due to its complex environment[10]. The author
states other methods which focus on the feature extraction
of the cucumber such as the shape, or the colour, struggle
with accurate detection. The cucumber, unlike the strawberry,
is green, which makes it harder to differentiate between the
vegetable and the leaf [10]. Nonetheless, the author reported
that their implementation was able to achieve 98% accuracy
[10]. In spite of the results being certainly interesting, the
work was done in 2016, and new emerging methodologies
should be explored. In this case, template matching can
still be improved to distinguish crop despite occlusion and
lighting[2]. However, template-matching shows promising
results when differentiating between subtle differences.

Other projects have been done on creating a smart farm-
ing robot for apple extraction [11]. Red apples, unlike
cucumbers, are easier to distinguish from leaves. However,
automating apple farming presents challenges in visually
recognising maturity because of uneven maturity [11]. The
author proposed a visual method using red, green, and
blue (RGB) sensors to identify mature apples. One clear
difference in the previous project on cucumber recognition
was their visual processing method. They used a multi-
template technique for visualisation. However, the Ni et al.
[11] project utilised an image processing algorithm based on
an RGB colour scheme. The colour scheme is popular for
colour models because a large array of colours can be created
from varying the degrees of red, green and blue values. The
system was broken into separate tasks. The first task was
acquiring visual data to process, which was done by taking
snapshots of the apple tree. Once the image was acquired, the
image was then analysed based on its RGB traits [11]. Image
processing based on colours play a crucial role in identifying
objects of interest from noise [11]. Ni’s method is beneficial
because it is intuitive and able to adapt to changes in colour.
However, it was asserted that Ni’s method of intensifying the
colour spectrum to identify apples might not be as effective
in image processing if there are subtle differences with its
environment[10]. Furthermore, it may be beneficial to add
supplemental vision techniques to increase the accuracy rate
and reduce false positives. False positives mislead the system
to believe it has the correct prediction [11]. The most critical
similarity is that apples and strawberries share the same
colour. Therefore, image processing based on RGB sensors
may prove essential for a foundational understanding of the
farming environment for strawberries.

The red and green colour scheme for image processing
was utilised in a smart farming project focused on automat-



ing cherry tomato harvesting [12]. Similar to the previous
projects, the main challenge was identifying mature cherry
tomatoes [12]. Feng et al. [12] also used a colour scheme
method for image processing, but instead of using RGB,
they used R-G. The author stated that a red and green
model would help differentiate the targeted tomatoes from
its background as a consequence of the colour intensity
formed by having only red and green to represent their
colour spectrum. The article reported having an 83% harvest
success, yet the robotic arm would sometimes collide with
the branches, therefore, in its attempts to grab a tomato [12].
Ultimately, the colour model can be used in different ways
to reduce the amount of white noise in image processing
[12]. The proposed method was reported useful for tomato
picking, and it could be useful for collecting apples. It is
unlikely that it would be useful in cucumber harvesting due
to cucumbers sharing the same colour with their background.
Intensifying the colour spectrum may only create more false
positives identifying leaves as cucumbers. The proposed
method could be beneficial for strawberry picking as they
are sometimes grown in clusters. Strawberries also ripe
unevenly, so identifying the mature strawberries could be
more challenging when closely confined with other berries
[5].

Another group provided two research papers on strawberry
picking. The first report used an RGB Depth camera and
two infrared sensors to detect the depth of the object in its
environment. The visual component of their robot system
has two abilities: detection of individual strawberry, the
localisation of the fruit for its separation. The process of
filtering out pixel noise is used to assist in identifying
strawberries by using a colour threshold[5]. The author
stated that image processing based on RGB provides fast
performance for live detection. It also discussed cases where
the robot failed due to the vision system. They reported that
their vision system was impaired by occlusions, duplicate
detections, inaccurate localisation, and segmentation failures
[5]. Obstruction of the camera view appears to be the main
issue in each smart farming project. It appears that it is
more challenging when harvesting strawberries, probably,
due to strawberries being small and easily covered by leaves
and easily hidden from the robot’s end-effector. Another
unsuspected issue is duplicate detections of the same fruit.
The research that covered cucumber detection used template-
matching however, it appeared that objects did not obscure
the camera view from taking sufficient images during testing.
Nonetheless, a multi-template system may help mitigate
duplicate detection. Xiong et al. [7] attempted to improve
their computer vision algorithm by creating a subsystem
that created a threshold for adapting to colour changes
specifically to sunlight. The subsystem did its calculations on
2-dimensional images and allowed for simplicity in their al-
gorithm and fast performance. However, segmentation issues
caused localisation error while processing the image. Xiong
et al. suggested that it could potentially be resolved by doing
3-dimensional image processing[7]. However, the approach
would require more complex solutions, for instance, a deep

learning algorithm [7].
In addition to computer vision, it is important to consider

what sensors can be used to gauge distance from the targeted
crop. These are interlinked with the overall performance of
the smart farming robot, and research shows that different
sensors can be invaluable in simplifying distance calculations
[2]. The use of different sensors is important because it can
assist the trajectory planning for the chosen end-effector.
Once the end-effector is designed, and its range of motion
has been determined, a trajectory planning algorithm can
be tested [13]. All of these separate components working
together are needed to plan a successful grasping attempt.
An important note is how trajectory planning and design
of the end-effector is based on the nature of the crop and
raises important questions to answer when attempting a
grasping application. Each robot is faced with visualising
the targeted crop, using a well-designed end effector suited
for grasping the harvest, and trajectory planning to the target
crop. Previous work [13] shows that soft fruit requires more
care when handling them, unlike apples, to prevent bruising.

The size of the fruit and the way it grows may present
additional difficulties when attempting to grasp the item. A
good example is comparing how cucumbers grow compared
to strawberries. Cucumbers grow in a way that makes them
easy to reach because they usually are not obscured by
vegetation. ; however, strawberries can grow in quite an
unpredictable and hidden fashion[7]. Therefore, it is essential
first to understand the nature of how strawberries will grow
and what planning can be done in advance to increase
performance. An essential aspect to consider when analysing
the challenges to strawberry picking is their environment.
Strawberries planted in greenhouses may grow in a more
organised manner, so the fruits are less likely to be hidden
from the view of the robot[14]. As a result, it makes it easier
for a robot to find and collect each strawberry. However, the
same cannot be said about strawberries grown in a field,
as they would require more probing around obstacles to
find and grasp them[7]. A low-efficiency rating will cost
the agriculture industry unnecessary loss, thus defeating the
purpose of smart farming and addressing the needs of the
robot efficiently complete the tasks.

Another critical challenge is that strawberries ripe un-
evenly thus further complicating grasping the soft fruit. If the
end-effector grasps the strawberry with too much pressure,
the fruit can be damaged[9]. Gauging the right amount of
force must be adaptable to the ripeness of each fruit. One
way to determine if a fruit is ready to collect is based
on its ripeness which is reflected in its colour. The robot
must adapt to the different ranges of red in strawberries
to differentiate the pre-mature fruit from the mature ones.
Finally, strawberries are small in size and sometimes grow in
clusters. Strawberry picking is considerably challenging for a
robot[7], because the robot has to distinguish each fruit from
the other while locating the mature strawberry in a cluster of
different colours. Failure to accurately identify the right berry
may result in picking the wrong one or damaging nearby
strawberries. Therefore, such a task would not be feasible



without computer vision.

III. METHODOLOGY

Our review on automated robots clearly shows that while
each picking task is different, the robot’s visual sensory
largely impacts its success. Although one could argue that
the end-effector and gripping strategy plays an equal part in
the success of precision farming, it is evident that without
a reliable and robust way to visually survey the crops envi-
ronment, the following task may fail. Thus the contribution
to our paper analyses how YOLOv3 operating on the Xil-
inx ZCU104 development board could improve strawberry
classification—thus providing an essential function for fruit
picking robots.

A fruit grasping algorithm includes five distinct phases,
namely, 1) fruit classification: use the CNN algorithm to
classify fruits in the image; 2) pose estimation: estimate the
best pose to pick the object; 3) path searching: search the
best path assuming the current position of the objects in the
scene; 4) path planning: predict moving objects trajectory
and estimate the optimal path while avoiding collisions and
5) grasping: process grasping the target fruit.

The fruit grasping steps are represented in Figure 1.

Fig. 1. Fruit grasping steps

The focus of this paper is on phase 1: the fruit classi-
fication. The objective during the classification stage is to
improve strawberry detection in 6 key areas. These areas
comprise of improving localisation accuracy, building model
durability to light variances, enabling background adaptabil-
ity, identifying partially hidden strawberries, increasing accu-
racy confidence, and achieve real-time processing speed. To
accomplish such feats, the project utilises the deep learning
network YOLOV3, which will operate on a Xilinx ZCU104
development board.

Our custom YOLOV3 model was trained on 1454 images
of strawberries obtain from various sources. The selection of
images played a key part in ensuring our model could adapt
to light and background variances. This is also important
when training the network to identify strawberries partially
engulfed by vegetation. To reduce the resource demands for
training, the images were resized to 416x416. Reducing the
size of the images allowed our machines to process training

better, but it also meant that there was a loss of detail in
the images. The model was trained up to 30k epoch’s 3

which iterated by 10k. After testing each model trained at
varying epochs, it was evaluated that the model trained at 20k
epochs produced the best accuracy; Therefore, this model
was chosen to operate on the Xilinx ZCU104.

The Xilinx ZCU104 development board, powered by a
powerful Xilinx Zynq UltraScale+ ZU7EV MPSoC, was
used to implement and accelerate the YOLOv3 at the edge.
The Xilinx Zynq UltraScale+ ZU7EV MPSoC is charac-
terised by including a 64-bit quad-core ARM Cortex A53 as
the Processor System (PS) for running a standard embedded
Linux Operating System, a Graphical Processing Unit (GPU)
for accelerating the graphics processing, Field-Programmable
Gate Arrays (FPGA) for accelerating the state-of-the-art
AI algorithms and Real-Time Processing Unit (RTU) for
processing events in real-time4. Only the PS and FPGA units
were used.

An Intel RealSense D435i camera5 is used to capture RGB
and depth image frames that are forwarded to the MPSoC.
The classification is accelerated on the FPGA side, and
the remaining steps are completed on the processor system,
which then controls the mechanical arm to pick the fruit. The
overall approach is shown in Figure 2.

Resource consumption in embedded systems and the lack
of fruit and vegetable datasets are two drawbacks with using
deep learning for crop classification. Thus the reasons why
traditional image processing techniques have been widely
used[15]. However, deep learning algorithms used for object
detection are more adaptable to variance in light and are
able to detect sophisticated patterns in data. While using
deep learning for precision farming trades off speed for
recognising complex images, utilising an optimised AI model
on a Multi-Processor System-on-Chip (MPSoC) could help
balance the scale between speed and accuracy. To do this, the
Vitis-AI tool was used to quantise the 32-bit floating-point
model into an 8-bit processing model. Quantising the model
reduces its overall complexity while ensuring very little
accuracy is lost8. The quantising process is then followed up
by compiling the model which enables the model to utilise
the board’s deep processing unit (DPU).

The Xilinx Deep Learning Processor Unit (DPU) is a
programmable engine that was designed for accelerating
convolutional neural networks. The DPU contains a register
module, a data controller module, and a convolution com-
puting module. There is a specialised instruction set for the
DPU, which enables it to accelerate several state-of-the-art
convolutional neural networks (CNNs)6.

The DPU was configured with the Xilinx recommended

3One epoch is when an entire dataset is passed forward and backwards
through the neural network only once.

4Available online, https://www.xilinx.com/products/
silicon-devices/soc/zynq-ultrascale-mpsoc.html, last
accessed 31/07/2020

5Available online, https://www.intelrealsense.com/
depth-camera-d435i/,last accessed 31/07/2020

6Available online, https://www.xilinx.com/products/
intellectual-property/dpu.html, last accessed 31/07/2020



Fig. 2. High Level Block Diagram

parameters7.

Fig. 3. DPU configuration with 2 cores of the B4096 architecture, low
RAM usage, channel augmentation, Depth Wise convolution, ReLU type:
ReLU + LeakyReLU + ReLU6 and 1 SFM core

The Vitis-AI development environment was designed for
AI inference targeting the Xilinx hardware platforms, the in-
cluding ZCU104 used in this project. It consists of optimised
IP (e.g. the DPU), tools, libraries, models, and example
designs8.

Table III shows a list of resources and tools used in
the project to perform the classification using YOLOv3
accelerated on the FPGA side.

The report generated by Xilinx Vivado shows the utilisa-
tion of:

• 40% of Look-up-Tables (LUT): used to buffer data
• 8% of LUT ditributed RAM (LUTRAM): used as small

data buffers;

7Available online, https://www.xilinx.com/support/
documentation/ip_documentation/dpu/v3_2/pg338-dpu.
pdf, last accessed: 30/07/2020

8 Available online, https://www.xilinx.com/products/
design-tools/vitis/vitis-ai.html, last accessed 31/07/2020

TABLE I
LIST OF EQUIPMENT AND TOOLS

Resources Type Description
GMV/Sundance
Dennis robot
prototype

Dennis robot
prototype
fitted with
the Sundance
VCS-junior
system prototype

The Sundance VCS-junior sys-
tem prototype is light version
of the Xilinx ZCU104 de-
signed to control small robots.

Xilinx ZCU104
development
board

Xilinx Zynq
UltraScale+
ZU7EV MPSoC

FPGA used for accelerating
the classification of strawber-
ries.

Intel RealSense
D435i sensor

Camera Camera used to capture colour
and depth image frames.

YOLOv3
algorithm

AI-Model A single shot algorithm that
localises and classifies objects
from one input.

Xilinx Vivado Xilinx EDA tool used for implementing the
DPU on the FPGA side and
connect it to the PS side using
the AXI bus.

Xilinx DPU Xilinx Deep Pro-
cessing Unit

used for accelerating YOLOv3
on the FPGA side.

Vitis-AI
quantizer

Xilinx tool Converts 32-bit floating-point
weight into a fix-point 8 bit
integer

Vitis-AI compiler Xilinx tool Plots the AI model to an in-
struction set to be used by the
DPU

Deep Learning
processor unit

Xilinx tool An optimised engine which
can be programmed for deep
neural networks use.

• 37% of flip-flops (FF): used to describe logic circuits;
• 57% of built-in RAM (BRAM): store data;
• 55% of Digital Signal Processing (DSP): used to process

signals inside the FPGA;
• 1% of Global Clock Buffer (BUFG): used to buffer

signal and assure that all the logic circuits receive the
same clock signal within the acceptable tolerances;

• 13% of Phase Locked Loop (PLL): clock controller is
used compensate the clock signal;

The resources utilisation shows that about half of the
FPGA side is available to perform acceleration of algorithms
from the next phases of fruit picking (i.e. pose estimation
until grasping).



IV. PRELIMINARY RESULTS
Two test were conducted to determine how well the model

could identify strawberries in a farm setting. The first test
assessed the detection percentage over the validation set
of a 146 images. The validation set contained images of
strawberries not limited to a farming environment. When
testing the model threshold was set to 70% this parameter
reduces the risk of false positives. As a result, the model was
able to detect at an impressive 78.3% over the validation
set. The second test used a youtube video collected on a
strawberry farm9. It is important to note that the full video
does not contain strawberries on frame; however, this allowed
us to gather insight on how well the model would perform in
adverse environments. The video contained a total of 7439
frames. Our experiment analysed the video and created two
filters. The first was to check how many frames did our model
identify a potential strawberry. In this case, the model de-
tected strawberries in 3371 frames. Of this, 2346 frames were
identified as having a low confidence score ranging from
.30 percent to .60 percent. When identifying these frames,
it was evident that the model, even at a low confidence
rate had few false positives; however, the model was not
able to capture a high degree of all the strawberries in any
frame. Furthermore, the network struggled to identify closely
coupled strawberries. Another key area was localisation
accuracy; this area focuses on how well was the strawberry
encapsulated in the bounding box. Unfortunately, results
were volatile; therefore, measuring the localisation accuracy
was unreliable. Certain frames showed that the strawberry
was located within the centre of the bound box, while other
images of strawberries were partially encapsulated. In some
cases, the network would falsely classify the ground or a
leaf with red coating. Due to the current localisation results,
other methods such as segmentation by colour should be
used to calibrate the bounding box and help reduce false
positives. The second metrics to evaluate was how fast the
network detected on the ZCU104 Development board after
being acclerated by the DPU.

TABLE II
FRAME RATES OBTAINED RUNNING YOLOV3 IN DIFFERENT

ARCHITECTURES

Model Frames
per second
(FPS)

Device

YOLOv3 on the
processor system

2.66 Raspberry PI 3 model B

YOLOv3
accelerated
on the FPGA

13.05 ZCU104 with no modifications

YOLOv3 [16] 30 Workstation fitted with a NVIDIA
Quadro P2200 and Intel Xeon Gold
with 20 hyper-threaded cores and
64 GB of DDR3

Table IV displays the frames per second achieved running
YOLOV3 on different processors. The YOLOv3 achieved

9Available online,https://www.youtube.com/watch?v=
-br6dVv9yDs, last accessed 15/08/2020

30 FPS when running on the powerful workstation and
accelerated by a powerful Graphics Processing Unit (GPU)
which is not suitable to be installed on robots and has more
processing resources than embedded processors such as the
64-bit quad-core ARM cortex a53 which is found in the
ZCU104. When running the YOLOv3 on the Xilinx ZU7EV
Processor System, 2.66 FPS was achieved whereas, the
ZCU104 Processor System accelerated by the DPU described
on the FPGA side achieved the impressive 13.05 FPS4
demonstrated when detecting a strawberry. It is important to
highlight that the maximum power consumption was 20W as
opposed to the typical 350W consumed by the workstation
described in Table IV.

Fig. 4. Classification of a strawberry using the YOLOv3 running on the
MPSoC

The network performed surprisingly well when identifying
strawberries in different lighting. While true, the networks
detection on the bases of lighting was not consistent. The
network tended to identify strawberries that were well lighted
better than the ones cascaded by a shadow.

In this evaluation, the model showed that different back-
grounds did not affect the network. This could be seen in
the video as the background was everchanging. Another key
aspect is that the video was not used in the training data.

Another property that displayed that the model began to
generalise is that it showed signs that it was capable of
detecting partially hidden strawberries. Generalisation was
displayed at different ranges of distances proving that the
model was beginning to become quite robust. Furthermore,
our model was able to detect partially hidden strawberries.
While the model was able to identify strawberries hidden in
vegetation, there is also the issue of false-positive.

V. CONCLUSION AND FUTURE WORK

Currently, the project is proceeding to the second de-
velopment stage, which poses estimation, while improving
classification by increasing the training dataset. Therefore,
the current achievements of this work is the classification
of strawberries using YOLOV3 on a ZCU104 development
board which is accelerated using a DPU. Hence, achieving
fast and accurate detection at 13.05 FPS within its’ testing
stage. However, as with many deep learning algorithms,
their accuracy is dependent on the quality and volume of
data. Thus, there is still a need to improve the accuracy
of the classifications with our model. This especially true
when detecting strawberries in complex environments like
greenhouses or farmland. Nonetheless, the current results
show that our model can adapt to varying degrees of light and



Fig. 5. Classification of strawberries over four image frames extracted
from a video footage

can accurately detect strawberries in ideal positions. The key
takes away is to include more data, especially images that
contain strawberries in clusters. As such, it is expected that
problems will arise when testing the algorithm in different
settings—another foreseeable issue adapting the algorithm
to detect strawberries in clusters. More research and testing
would need to be conducted to find a potential solution.

Future work will include increasing the model’s FPS. This
will be done by utilising the Xilinx optimiser tool to prune
and finetune the model. Most neural networks have redundant
layers that are not essentially needed. The Xilinx optimiser
tool allows an engineer to remove specified layers to improve
detection time. The removal of layers, however, does reduce
the models’ accuracy slightly, but finetuning the model can
help restore accuracy. Thus, achieving faster detection with
little accuracy lost. Future work will also include using a
colour segmentation algorithm to help calibrate the bounding
boxes over the strawberry and assist with estimating the
position of the strawberry. Once these key conditions have
been met, further testing will include the use of a robot.
However, our robot will accomplish faster image processing
by accelerating the AI model using the Sundance VCS-
110 and VCS-junior systems fitted with a powerful Xilinx
ZU4EV MPSoC 11.
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