DOI: 10.1007/542979-022-01302-x

A Strategy-Based Algorithm for Moving Targets in an Environment

with Multiple Agents

Azizkhon Afzalov'® . Ahmad Lotfi'® . Benjamin Inden?

Abstract

- Mehmet Emin Aydin®

Most studies in the field of search algorithms have only focused on pursuing agents, while comparatively less
attention has been paid to target algorithms that employ strategies to evade multiple pursuing agents. In this study, a
state-of-the-art target algorithm, TrailMax, has been enhanced and implemented for multiple agent pathfinding
problems. The presented algorithm aims to maximise the capture time if possible until timeout. Empirical analysis is
performed on grid-based gaming benchmarks, measuring the capture cost, the success of escape and statistically
analysing the results. The new algorithm, Multiple Pursuers TrailMax, doubles the escaping time steps until capture
when compared with existing target algorithms and increases the target’s escaping success by 13% and in some individual

cases by 37%.

Keywords Multiple targets - Multi-agent path planning - Path finding - Assignment strategy - Search algorithm

Introduction

There has been extended research on search algorithms
for many years. The study and development of such algo-
rithms were based on the basic scenario of a single agent
that is tasked with finding a target or goal state on a graph
within minimal time. Each search algorithm has its own
purpose and need. Even in a simple, static environment,

This article is part of the topical collection “Agents and Artificial
Intelligence” guest edited by Jaap van den Herik, Ana Paula Rocha
and Luc Steels.

P4 Azizkhon Afzalov
azizkhon.afzalov2016 @my.ntu.ac.uk

Ahmad Lotfi
ahmad.lotfi@ntu.ac.uk

Benjamin Inden
benjamin.inden @mis.mpg.de

Mehmet Emin Aydin
mehmet.aydin@uwe.ac.uk

Nottingham Trent University, Clifton Campus,
Nottingham NG11 8NS, UK

Max Planck Institute for Mathematics in the Sciences,
Inselstrae 22, 04103 Leipzig, Germany

3 University of the West of England, Coldharbour Ln,
Bristol BS16 1QY, UK

the pathfinding search algorithm faces several challenges.
In complex environments, more challenges arise. Various
assumptions of this single agent with a single target, the
scenario can be relaxed, leading to more difficult problems:
there can be several pursuing agents that need to coordinate
their search, assigning strategy to the agents before follow-
ing targets, there can be multiple targets, all of which need
to be caught, and targets can move on the graph over time
rather than be in a fixed position.

Many suitable algorithms have been proposed for pursu-
ing agents in the domains of video and computer games,
robotics, warehouses [1], and military and surveillance
applications [2]. Some of these algorithms are for a single
agent, such as MTS [3], D* Lite [4] or RTTES [5] and some
are multi-agent, for example, FAR [6], WHCA* [7], CBS
[8] and MAMT [9]. These algorithms aim to find the short-
est path to the target location(s). While the shortest path is
important, the run time is essential, too, as considered by
real-time heuristic algorithms [10].

Besides a more standard pathfinding search for a single
agent pursuing a single target on a static map, the case could
be complicated with an increase in the number of agents or
dynamic changes in the environment. For example, in the
scenarios with moving targets, the target algorithms also
play an essential role in developing multi-agent scenarios,
but they are less studied. The goal of such algorithms is to
evade capture as long as possible.

http://orcid.org/0000-0002-1456-542X
http://orcid.org/0000-0002-5139-6565
http://orcid.org/0000-0001-6048-6856
http://orcid.org/0000-0002-4890-5648
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01302-x&domain=pdf

Consider a pursuit and evasion game, where players could
be human or computer-controlled. Other examples are video
games such as Grand Theft Auto and Need For Speed where
both sides of players can be controlled by the algorithms or
a flight simulation application where computer-controlled
targets are needed to catch or shoot [11]. To make the game
more interesting, intriguing, and challenging, the targets need
to behave intelligently. Therefore, good target algorithms are
an essential factor in improving the gaming experience.

Target algorithms that exist usually have strategies such
as maximising the escaping distance [12], random move-
ments to selected, unblocked positions in order to evade
from the capturer [13] or, in a state-of-the-art approach
called TrailMax, maximising the survival time in the envi-
ronment by considering the potential moves of pursuing
agents on each time step [14].

Multi-agent pathfinding (MAPF) problems have been
analysed in detail in the literature [15]. These problems are
known to be NP-hard [1]. As an example of such a prob-
lem in a video game is when all non-player agents need to
navigate from a starting location to the goal location on a
conflict-free route in a static or dynamic environment [16].

Algorithms developed for moving, in other words escaping
targets, can make the empirical study of MAPF problems more
meaningful, useful, and challenging. Thus, how can we improve
on existing ones? We previously introduced an algorithm [17]
based on TrailMax that can be used for multiple moving targets
to flee from multiple agents in a dynamic environment. A good
design of such an algorithm can help targets to escape more
intelligently, rationally and in a human-like manner.

This study considers more testing scenarios against more
pursuer strategies, target algorithms, benchmarked maps, player
combinations and improving the cost while the target expands
pursuers’ nodes. Empirical evaluations report different perfor-
mance metrics, such as capture cost, success rate, computation
time and statistical analysis for the significance of the findings.

In the remaining parts of this paper, the following section
presents the related work. “Multiple Pursuers TrailMax: Pro-
posed Approach” describes the new approach to the prob-
lem. Empirical comparisons are described in the subsequent
section, and "Discussion" and "Conclusion" sections follow

up.

Related Works

This section introduces several existing target algorithms in
the literature. The following is a brief description of each
algorithm.

Target Algorithms

Although there is plenty of research in the literature empha-
sising algorithms for pursuing agents, there are few studies
that are conducted on algorithms for mobile targets. The
A* algorithm is a classic example that is implemented as
an algorithm for many pursuing agents, as well as target
algorithms [15].

TrailMax. TrailMax is an intelligent algorithm that is
based on a strategy. It generates a path for a target consider-
ing the pursuing agent’s possible moves, i.e., it efficiently
computes possible routes by expanding its current and adja-
cent neighbouring nodes and agent’s nodes simultaneously
[14].

The aim of the TrailMax algorithm is to make the targets
stay longer by maximising the capture time. The players
can move on the map; thus, the target computes an action
on every time step with new updated information about the
players. It is for one-to-one player scenarios.

The algorithm works as follows. To compute a path,
an escape route that maximises its distance away from the
agent, it checks the best cost of the neighbouring states
against the pursuer’s costs and expands nodes accordingly.
The algorithm expands nodes that are not yet expanded and
not already occupied in the target closed list and not in the
pursuer closed list. The node with the best cost is added
to the target’s closed list, which would generate the path
afterwards. The first element in the path is an action for a
target to take. This procedure is repeated from scratch every
time step.

It is a state-of-the-art target strategy algorithm that per-
forms the best against pursuing agents, aiming to make the
targets less catchable or more difficult to be caught [12].

Minimax. When used as the target algorithm, it runs an
adversarial search that alternates moves between the pursu-
ers and the target. When the pursuing agent gets closer to the
target state, then the target distances itself from the pursuing
agent’s state. To make the algorithm faster, Minimax is run
with alpha-beta pruning search, where alpha («) and beta
(B) are constantly updated to avoid the exploration of subop-
timal branches [18]. The used depth is 5, i.e., the outcomes
after at most 5 moves of each party are considered.

Dynamic Abstract Minimax. Dynamic Abstract Minimax
(DAM) is a target algorithm that finds a relevant state on the
map environment and directs the target using Minimax with
alpha—beta pruning in an abstract space. There is a hierar-
chy of abstractions. Higher levels might not provide enough
information about the map and lose important details, such

as an agent at the close by, and fine abstract levels might be
very detailed and increase the computation costs.

The search starts on the highest level of abstraction, an
abstract space created from the original space. The minimax
algorithm runs a search at the highest level of abstract space
and continues to the next low level of abstraction. It stops
at the level where the target can avoid the capture. Then,
on this level of abstraction, if a path exists, an escape route
is computed using the PRA* algorithm (described in next
section). If the target cannot escape and there is no available
move to avoid the capture on the selected abstract space,
then the level of abstraction is decreased, and the whole
process repeats until the target can successfully run away
from being caught [18]. The used depth is 5.

Simple Flee. Another algorithm for targets is Simple Flee
(SF), which can be used to escape from the pursuing agents
to the predefined states on the map [19]. The SF algorithm
works as follows. At the beginning of the search, the target
identifies some random locations on the map. When the tar-
get starts moving, it navigates to the furthest location away
from the pursuers. To disorient the pursuing agents, such
as incremental heuristic algorithms, D* Lite [4] and MT-
Adaptive A* [20], that can search from the target’s state,
the direction towards the selected location changes in every
five steps, and if it is the furthest location, it keeps moving.
The number of locations on the map and the number of steps
before the change are the parameters of the algorithm.

Greedy. This is the standard greedy algorithm that repeat-
edly makes the best local optimal choices that, in hope,
would lead to global solutions. This is a simple and fast
approach to solving a problem that uses sub-optimal and
easily computed heuristics [21].

Greedy runs a cumulative Manhattan distance of maxim-
ising the gap towards the pursuers. It evaluates its options
and moves to that state. Once it is at that point, it will stay
until being captured, if any other maximum states are not
available [19].

Target algorithms, without strategy but considering a
pursuing agent’s location, make their way to the furthest
away state possible. When a target escapes from a pursuer,
which, in multi-agent scenarios, sometimes might fall into
the path of other pursuing agents. This causes an issue in
MAPF frameworks. To avoid this limitation, the study in this
paper considers all pursuers, and this new approach provides
a winning strategy for the target.

Pursuing Algorithms

This study sets out to develop a new multiple target algo-
rithm. Therefore, this part of the section briefly introduces
algorithms for pursuing agents, which will be used in the
experiments.

PRA*. Partial-Refinement A* (PRA*) is an algorithm that
reduces the cost of search by generating a path on an abstract
level of the search space. These abstracted spaces (graphs)
are built from the grid map. The abstract level is selected
dynamically. The A* algorithm is then used to run a search
with sub-goals on the abstract graph. The abstract path cre-
ates a corridor of states in the actual search space, through
which the optimal path is found.

This is a widely used approach and its variations have
been described with different search techniques [22].

STMTA*. In cases where more than one target exists,
an effective strategy for pursuing agents helps to win the
game. Strategy Multiple Target A* (STMTA*) algorithm
uses methods to intelligently assign agents to targets to cre-
ate an opportunity of capturing targets faster [23]. All routes
towards the targets are computed and based on the given
strategy the optimal combination is selected. Once the strat-
egy is assigned, the pursuing agents know the targets they
follow, all agents use the A* algorithm to move towards the
targets.

The routes are the distances from the pursuer to the tar-
get. Depending on the assignment strategy, the distances
between pursuer-target pairs are preferred. For the initial
assignment, summation cost or mixed cost criteria are mini-
mised [12]. The summation-cost sums all the distances (n)
and mixed-cost takes the longest distance, makespan (m2) but
in cases of tie break, it uses the sum of distances. The men-
tioned approach does not focus on re-assigning the agents
after their assigned targets have been captured.

Variants of this algorithm using different criteria such as
twin-cost, cover-cost, and weighted-cost, were introduced
and developed [24]. STMTA* uses these three criteria dur-
ing the tests because the previous study measured their per-
formance, and overall, they produced better results than the
other cost criteria. Throughout the experiments, if any target
is caught, the pursuing agent is reassigned to another target
depending on the strategy followed.

The twin-cost criterion multiplies the sum of distances n
with makespan m, (n * m). In situations, if a tie-breaker is
needed, then the average of n and m is taken.

The weighted-cost criterion multiplies these values with
a given percentage, totalling to 100% and adds them up.
During the experiments, the ratio of 50/50 was used for the
weighted-cost criterion, (n * 0.5) + (m * 0.5). The combi-
nation with the lowest value is selected for twin-cost and
weighted-cost criteria.

The cover-cost criterion uses a different approach. Instead
of using the distance cost, it computes the area each pursuer
covers. By taking turns, a pursuer and a target mark each
available, not occupied state covered P or T respectively.
The pursuer does need to reach the target, depending on the
players’ positions on the map, pursuers and targets intersect
in between. Each pursuer’s cover is measured and the com-
bination with most Ps is assigned to the pursuers. When a
pursuer computes its P, it is possible to overlap among other
pursuers. For example, the summations-cost criterion adds
all distances per combination and the lowest value among
all combinations is selected. In the cover-cost, the P values
are summed for each combination and the highest result is
preferred.

Multiple Pursuers TrailMax: Proposed
Approach

In the following section, a new target algorithm is described.
First, the motivation is given for the algorithm, then it follows
with pseudo code, see Algorithm 1, and finalises with further
improvements.

When the problem was described in the Introduction sec-
tion, it was stated that a smart target algorithm is very useful
to have. In the simple scenarios where a single agent pursues
one target, the target would know from which agent it needs
to escape, as there is only one. Some of the strategies to
run away from the agent have been discussed in the previ-
ous sections. But if a situation is considered where multiple
targets need to escape from the current state and move to the
safest destination in the dynamic environment, how would
targets know which pursuing agent they need to avoid for a

successful run? For example, SF can flee from the closest
pursuer but sometimes could run into other pursuers. What
would be a smart move for a target while avoiding capture if
there are many pursuers?

Although the TrailMax algorithm, as introduced in the
previous section, is a state-of-the-art algorithm, it has been
designed to work with only one agent, meaning a target does
not have any strategy to escape from one pursuer and avoid
another approaching pursuer at the same time.

For this specific reason, a target algorithm that would
be able to identify approaching multiple agents and escape
from all pursuers, a novel algorithm, called Multiple Pursu-
ers TrailMax (MPTM), is developed.

The MPTM algorithm uses a similar methodology as
TrailMax but is enhanced for MAPF problems. There are
two possible benefits that could come from extending Trail-
Max to MAPF problems. First, the target can identify the
state location of other targets and collaborate with them.
Second, it can ensure the escape not only from one pursu-
ing agent but from any approaching evading agents. Here
the focus is on the second issue. It is exhaustive, meaning it
considers all possible moves from the agents. Therefore, it
is relatively computationally intensive and provides a solu-
tion if one exists.

The Algorithm

The pseudo-code for the MPTM algorithm is depicted in
Algorithm 1. First, the current locations of all players (pur-
suers and target) need to be initialised in line 2. The next
step is to group all players according to their role and append
their positions into the relevant queues, all pursuers to the
pursuer_node_queue and a target to the target_node_queue.
At this point, all players will have a cumulative cost of zero,
lines from 3 to 5. To make it easier to follow the code, each
movement cost will be equal to one, unless it is in wait
action, then it is zero. This is with the assumption that there
is no octile distance. However, the algorithm works with
different speeds and distances.

Algorithm 1: The Multiple Pursuers TrailMax algorithm

: function MultiplePursuersTrailMax()

initialise position for all players (pursuers and target)

1
2
3: initial cumulative cost ¢ < 0 for each player
4: add target to target node queue

5: add pursuers to pursuer_node_queue

6: target caught states < 0

7

8

if target is not captured then
: while target node queue not empty do
9: ct «— get ¢ from target node queue

10: Ca < get ¢ from pursuer_node_queue

11: if (c: < c,) then

12: remove target from target node queue

13: if target not in target_closed and pursuer_closed and parent node not in pursuer_closed then
14: insert target into target closed

15: append target neighbours onto target node queue

16: else

17: for each p; of players do

18: get state s; for p;

19: if s; is pursuer then

20: Ca < get ¢ on pursuer_node queue

21: remove p; from pursuer_node_queue

22: if pi not already in pursuer_closed then

23: insert p; into pursuer_closed

24: if pi in target_closed then

25: increment target caught states

26: if target_caught_states is equal to size of target_closed then
27: return true

28: append p; neighbours onto pursuer_node_queue

29: generate target path

30: if target_closed not empty then
31: reverse target closed

32: return target path

The algorithm has four different lists. The target_node_
queue and pursuer_node_queue contain expanded, visited
nodes, such as the current state or neighbouring states for
both target and pursuers. The target_closed and pursuer_
closed lists contain states that are already visited and occu-
pied by players.

Since this is the target algorithm, in line 7, it starts first
to check if it is already caught or not. Then loops through if
there are any target nodes in the target_node_queue. As this
is the first step, it only contains the target’s current position.
Then, it computes the cumulative cost ¢, the highest value,
for target ¢, and pursuers c, at lines 9 and 10. If the c, is
lower or equal to the c,, then the target expands its nodes,
line 11.

During the expansion of nodes for targets in lines 12—15,
first, the target node is removed from the target_node_queue

Table 1 The name of testbeds used from Baldur’s Gate for the experi-
ments with their height and width (number of nodes), and traversable
states

Map names Height x Width (number of ~ Empty
nodes) States to
Expand
ARO311SR 54%52 558
ARO0407SR 54%52 576
ARO0507SR 54%52 739
ARO508SR 54x52 567
ARO512SR 54 %56 896
ARO0527SR 54x52 531
ARO0531SR 54x52 716
ARO707SR 59%56 974

Fig. 1 The experimented sam-
ple maps, (a) ARO311SR and
(b) ARO507SR, are used in the
Baldur’s Gate video game

(@)

and placed inside target_closed if it is not already in the list
and not in the pursuer_closed list. It also checks if the tar-
get’s parent node is not in pursuer_closed. The target loops
through its available adjacent neighbours and adds them to
the rarget_node_queue. These steps are iterated until no state
is left to expand. The nodes are expanded like in breadth-first
search, first-in-first-out.

(b)

When the target c, is higher than c,, the condition on line
11, the pursuers take the turn, and they start to expand their
nodes. The main part of this algorithm is the lines between
16 and 28, where each pursuer loops through its state and
expands its nodes independently from other pursuers. The
target needs to know the position of pursuers’ states and
loops through each player. If it is a pursuing agent, then this

Table 2 The average number of

N Player combinations (Pursuer =~ Target Algorithms Pursuer Algorithms (number of steps)
steps (the ca}pture cqst) for each vs Target) .
target algorithm against pursuer PRA* STMTA* STMTA* STMTA*
algorithms twin-cost cover-cost weighted-cost
(50/50)
4vs2 SF 5044 51.22 51.94 52.73
Greedy 5332 5044 49.80 50.77
MMX 73.11 57.38 58.3 57.86
MPTM 117.30 119.45 125.62 117.92
4vs3 SF 52.78 55.98 57.14 55.33
Greedy 60.78 52.02 51.22 51.63
MMX 68.23 59.33 60.43 61.08
MPTM 130.27 138.97 146.26 132.28
Svs2 SF 4831 49.60 50.00 49.53
Greedy 5270 49.55 50.20 50.00
MMX 67.59 56.26 55.79 55.05
MPTM 106.72 100.77 108.36 104.81
S5vs3 SF 5131 5294 54.33 53.45
Greedy 58.57 54.04 51.66 54.94
MMX 63.59 56.36 56.93 56.00
MPTM 126.92 123.55 133.58 112.23
Mean for all combinations SF 50.71 52.44 53.35 52.76
Greedy 56.34 5151 50.72 51.84
MMX 68.13 57.33 57.86 57.50
MPTM 120.30 120.69 128.46 116.81

A larger number is better as it avoids the capture from the pursuing agents

particular agent will be removed from pursuer_node_queue
and placed inside pursuer_closed if not already in. The
neighbours will be added to the pursuer_node_queue. Any
state visited by the pursuer exists inside the rarget_closed
list, then target_caught_states is incremented and compared
to the size of target_closed, which returns true if equal.

Lines 29-32 generate a path. The last element in target_
closed is the furthest state that the target could move to. This
list is reversed to identify the route, and the first element
in the list is the action that the target takes. The function
repeats every time step to find the best action for the target.

This turn-based expansion goes to the point where all
states on the map have been occupied either by the target
or the pursuers. The target could only win if its state is not
taken by any pursuers until the timeout.

For multiple targets, the algorithm is run on each target,
and normally, each will get a different outcome based on
their location. The result will be the same if they are all in
the same state. Even if the starting position is different, the
targets could join their path if that is the optimal option.

Further Improvements

The strategy of TrailMax works for one-to-one agent sce-
narios, and to get the best cost from the list for each player is
straightforward. But this is not the case for the MPTM algo-
rithm as it considers many pursuing agents in one search.
The pursuer_node_gueue contains information for all pursu-
ers and their moving directions with costs.

It has already been discussed that the initial cost is zero
for all players. When line 11 is called, it will be true, and
the target will take turns to expand and increase its cost
by one. On the next iteration, this condition will be false,
as the cost for the target is 1, and all pursuers’ cost is still
zero. The expansion takes place for pursuers. As there are

Fig.2 The overall comparison

of the MPTM algorithm with 140
other target algorithms per a

pursuing agent algorithm. The

graph displays the mean for all

120
= MPTM
maps and all player combina- :
tions 100
E %
r, 60
40
20
0

PRA*

B Greedy

Number of escaping steps

many pursuers, line 20 will request for the first pursuer’s
cost from the pursuer_node_qgueue. Then this pursuer will
expand and increase its cost to 1. There is a problem here
because TrailMax requests the best cost on each iteration.
It would have been fine if there was only one pursuer, but
this is an issue with multiple pursuers. If the best cost was
considered for multiple pursuers, then only the first pursuer
would be expanded as only its cost would be incremented.
This leads to the fact that only the same pursuer is requested
with the best cost and all other pursuers are left without
expansion with initial cost zero.

To fix the above problem, the cost requested on lines 10
and 20 is not the best cost but a cost for each pursuer in
order of from the pursuer_node_queue. This gives greater
opportunity for a target to evaluate all pursuers’ moves and
make decisions more accurately.

Another enhancement is that MPTM does not only con-
sider and run away from the closest pursuing agent but takes
into consideration all pursuers on the map by checking each
pursuer’s state on line 18.

Empirical Evaluations

In this section, the empirical results will be presented to
demonstrate the efficiency of the proposed algorithm. First,
the experimental setup will be described, then, performance
results of the MPTM algorithm described in previous section
will be reported.

Experimental Setup
For better comparability, standardised grid-based maps from

the commercial game industry are used as a benchmark [25].
The environments used are eight maps from Baldur’s Gate

— Pathfinding Cost Mean for Target Algorithms

STMTA* twin-cost STMTA* cover-cost STMTA* weighted-cost

Target algorithms behaviour per pursuing algorithm

Table 3 Wilcoxon Rank Sum test results (p values) for MTPM compared against SF, Greedy and MMX algorithms

Maps used from Baldur’s Gate Video Game (p values)

Target

Player

Algo-

combi-

Map ARO507SR Map ARO508SR Map ARO512SR Map AR0527SR Map AR0531SR Map ARO707SR

Map AR0407SR

Map ARO311SR

rithms

nations

Position 2

(Pursuer Posi- Posi- Posi- Posi- Posi- Posi- Posi- Posi- Posi- Posi- Posi- Posi- Posi- Posi- Posi-

vs Tar-
get)

tion 1

tion 2

tion 1

tion 2

tion 1

tion 2

tion 1

tion 2

tion 1

tion 2

tion 1

tion 2

tion 1

tion 2

tion 1

0.0532 0.0021 0.0630 0.0594 0.0009

2.3E-07 4.6E-05 0.3284 0.4404

0.0010

3.6E-07 0.3907

0.0005 0.0006 0.0838 0.0386

0.8597
0.0395

SF

4vs2

9.6E-06 5.2E-09
0.0075
0.0528
0.0002
0.0110
0.3639
0.0006

5.9E-09 0.1084

7.9E-09 0.7811

0.0366
0.0045
0.2133
0.3248
0.0160

7.8E-09 3.9E-08 0.6926

4.0E-05 3.4E-07 0.0600

5.3E-08 0.1866

0.0009

Greedy
MMX

SF

5.7E-08
0.0060
0.0134

1.5E-08 0.0003

0.0065

2.3E-07 0.5473

0.0080

5.3E-05 4.6E-07 4.3E-06 3.7E-06 5.2E-06 0.1500

0.0121

0.6398
0.6354

0.0130

0.3486

1.3E-05 0.4311

6.6E-06

5.6E-07 0.1853

1.6E-05 0.0236

0.0050
0.1842
0.0002
0.0250
0.4322

4vs3

6.8E-09 0.0028

7.8E-09 0.3353

7.9E-09 3.5E-07 0.1892

9.8E-05 24E-06 5.7E-07 0.0363

0.0110

0.0013
0.0004

Greedy
MMX

SF

3.1E-07

1.3E-08 0.3939

0.2908

1.5E-08 0.3353

1.0E-05 2.5E-08 0.0004 0.2319
0.6161

2.8E-07

0.0118

5.8E-08
6.3E-05

0.0025

0.0024

1.1E-06 3.5E-08 4.0E-07 0.9455
7.8E-09

0.0007 4.6E-08 0.7649

0.2622

1.2E-05 0.0068
4.6E-07 0.0015

0.0477

S5vs2

7.8E-09 0.5570

7.5E-09 0.7806

0.0858
0.0997
0.8374
0.1025
0.1036

1.3E-08 0.9891

5.5E-08 0.0872

Greedy
MMX

SF

1.0E-04

6.7E-08 6.2E-07 0.0156
0.0066

1.1E-07 0.0497

0.3935

5.9E-08 8.8E-07 0.0202

0.0002

1.3E-08 0.0920

3.0E-07 0.2380

0.01364
0.0289
0.0162
0.6448

0.0070
0.5956
0.0004

0.1164 1.1E-05

0.4874

0.4524

9.6E-06 0.0369

1.8E-06 0.0005

0.0400
0.0197

5vs3

7.9E-09 0.0005 5.9E-09 0.0091 2.1E-05 1.1E-06
0.0008

7.9E-09 0.0005

1.6E-05 0.1549

7.9E-09

9.5E-07 0.0053

0.0001

Greedy

MMX

1.1E-06

8.4E-09 0.0016

3.0E-08 0.0773 0.0209

1.1E-07 0.4472

6.2E-05 0.0018

video game as shown in Table 1. Within the experiments,
these maps are used with a four-connected grid and impass-
able obstacles. Figure 1 displays sample maps used for the
experiments, where black coloured spaces are the obsta-
cles, and the white space is a traversable area. The maps
were chosen based on the presence of obstacles and diffi-
culty of navigation. The movement directions could be up,
down, left, and right with a cost of one each. That said, the
approach should work with different moving costs as well.

The scenarios were chosen to have multiple targets, and
for the experiments, initially, two and later three targets
were tested. The combination of pursuers versus targets is
displayed in Table 2. These scenarios help to understand
the behaviour of the MPTM algorithm when targets are
outnumbered.

All players are placed at different randomly selected loca-
tions on each map. There were two different sets of starting
positions. The first set has all pursuers in the same location
and all targets in the same location, and targets are posi-
tioned at the farthest distance from pursuers. The second set
has all players randomly positioned in disperse, in various
walls of the map. This helps to measure and analyse the
performance of the algorithms.

Each configuration runs 20 times. The implementation
[19] kindly provided by Alejandro Isaza was used as a basis
but extended such that multiple targets and various agent-
target assignment strategies could be used. The results were
obtained using a Linux machine on Intel Core i7 with a
2.2 GHz CPU and RAM with 16 GB.

Experimental Results

Performance analysis is conducted with respect to three
key indicators: (i) the number of steps taken for each target
algorithm before being caught, (ii) its success rate and (iii)
computation time. The first two of the measurements are
averaged considering all targets, and the time is normalised
per step.

During the experiments, each test run finishes when
all targets are caught or there is a timeout. If some pur-
suers already caught their assigned targets, the chase
continues as long as there are still uncaught targets.
With PRA*, all pursuers continue with the next clos-
est target, and it is possible that all pursuers will chase
only one closest target and leave others because of their
far distance. Whereas the STMTA* algorithm has an
assignment strategy, all targets are being chased, and
when one target is caught, the pursuer that becomes idle
is reassigned next uncaught target. Success for pursuers
is achieved when all targets are caught, and the number
of steps until the targets have been caught is recorded.
The success for the targets is to avoid the capture or stay
on the map as long as possible.

Capture Cost. To evaluate the MPTM algorithm, a
comparison with SF, Minimax and Greedy is displayed in
Table 2. This measures the performance in terms of the num-
ber of steps for all targets. The numbers indicate the mean
of steps for target algorithms on all maps.

Table 2 displays results for different target algorithms.
Each value is the mean of eight tested maps. The proposed
MPTM target algorithm offers a much longer stay on the
maps for all configurations. This indicates that it avoids cap-
ture and demonstrates smarter decisions. The higher number
is better.

Some maps have island-type obstacles that allow the
targets to escape from pursuers more easily, see Fig. 1.
Although each map has many states to explore, as seen in
Table 1, all algorithms managed to find an escape route.
SF and Greedy both display similar capture time and their
results are close to each other. Minimax is better than SF and
Greedy but still not as good as MPTM.

The results compared in Table 2 show that for all player
combinations, the MPTM algorithm managed to escape all
pursuing agents two times longer than MMX. The same
algorithm when compared against SF or Greedy, the results
display that on average MPTM manages to run away from
the pursuers 2.3 times longer. The graph in Fig. 2 provides
a visual comparison of the times to capture between MPTM
and the other three target algorithms.

Comparing scenarios with a different pursuing agent and
target numbers shows that, as expected, when the pursuer to
target ratio increases, capture times tend to decrease, while
when the pursuer to target ratio decreases, capture times
tend to increase.

The evidence shows that the new MPTM algorithm out-
performs SF, Minimax and Greedy algorithms in the number
of steps in all test configurations.

While the experiments were designed to study target
algorithms, it is also interesting to note that the STMTA*
algorithm with its assignment strategy variations performs
overall better than PRA*.

Statistical tests are also used on the capture costs to
find out which of the results are significantly different.
The proposed MPTM algorithm is compared against exist-
ing SF, Greedy and MMX algorithms. Only the STMTA*

weighted-cost algorithm’s results are used for the compari-
son as it has shown overall the best results among other pur-
suer algorithms as shown in Table 2. The capture costs are
not normally distributed; therefore, the statistical results are
obtained using the Wilcoxon Rank Sum tests. A significance
level of 0.05 is used. The values obtained from the statistical
tests are provided on a map in Table 3.

Table 3 displays p values for all eight maps and four dif-
ferent player configurations separately that are used during
the experiments. There were two starting positions on each
map. Each set of players was aggregated on the first position
and on the second position, all players were dispersed. The
results in the table display p values individually for each
starting position.

From this data, it can be seen that the majority of the
results display statistically significant differences. p values
presented in Table 3, the results below 0.05 indicate signifi-
cant differences, while there are results that are below 0.01
the level of significance. Although some results are close
significant. Most of the aggregated positions show signifi-
cance, in contrast to dispersed positions.

It is possible to conclude that the results of the experi-
ments for capture cost are significant for 0.01 on most of the
tests. The findings should make an important contribution to
the field of target search algorithms.

Success Rate. Success for the agents is achieved when a
pursuing agent gets to the position of the target. In multi-
target scenarios, success is achieved when all targets have
been captured. For the target(s), success is the absence of
agent success. The success rate for algorithms is shown in
Table 4. The results presented in the table are for four target
algorithms against four pursuing agent algorithms for all sets
of configurations.

From this Table 4, the SF and MMX algorithm performs
the worst, and they always get caught by pursuing agents in
any tested combination. The Greedy algorithm shows being
caught in every possible test against STMTA* algorithm and
its variations. It also failed against PRA*, but only in one
instance, where it managed to succeed when the deadlock
occurred. It happened on the 5vs3 player configuration. In
this particular example, when the pursuers caught one target,
instead of approaching and catching the remaining targets,

Table 4 The overall success rate

. Target Algorithms Pursuer Algorithms (success rate)
of capture for all scenarios. For
targets, the lower is better PRA* STMTA* twin-cost STMTA* cover-cost STMTA*
weighted-
cost
SF 100.00% 100.00% 100.00% 100.00%
Greedy 99.92% 100.00% 100.00% 100.00%
MMX 100.00% 100.00% 100.00% 100.00%
MPTM 92.89% 90.55% 89.46% 91.41%

Fig.3 The performance rate of
success for the MPTM target

. 100%
algorithm for all test configura-
tions and maps. Lower is better
w
2
hi 95%
=
e
=
s3
c o 90%
& =
£8
E p—
&
(=9 85%
80%

The Success Rate for MPTM

4vs2 4vs3 Sva2 Svs3
—PRA* 93.75% 91.56% 9531% 50.94%
= STMTA* twin-cost 90.63% 87.50% 93 44% 90.63%
= STMTA* cover-cost 8938% 86.56% 93.13% 88.75%
= STMTA* weighted-cost 90.63% 89.69% 93.13% 92.15%
Player combinations
Table 5 The computation time (in seconds) per step for each target algorithm
Player combinations Target Algorithms Pursuer Algorithms (runtime in seconds)
(Pursuer vs Target) -
PRA* STMTA* twin-cost STMTA* cover-cost STMTA*
weighted-cost
(50/50)
4vs2 SF 0.00037 0.00038 0.00038 0.00038
Greedy 0.00019 0.00008 0.00008 0.00009
MMX 0.00166 0.00155 0.00154 0.00156
MPTM 0.15913 0.16537 0.16234 0.16284
4vs3 SF 0.00057 0.00055 0.00055 0.00055
Greedy 0.00020 0.00011 0.00011 0.00011
MMX 0.00141 0.00129 0.00140 0.00138
MPTM 0.24819 0.24975 0.24949 0.23835
Svs2 SF 0.00036 0.00038 0.00038 0.00037
Greedy 0.00014 0.00008 0.00009 0.00009
MMX 0.00171 0.00163 0.00163 0.00160
MPTM 0.15882 0.15846 0.16146 0.15964
5vs3 SF 0.00054 0.00054 0.00054 0.00054
Greedy 0.00019 0.00013 0.00012 0.00012
MMX 0.00151 0.00136 0.00143 0.00136
MPTM 0.24287 0.25920 0.24776 0.24295

the pursuers kept moving one step back and forward until
timeout.

On the other hand, MPTM shows better results in com-
parison with SF, Greedy and MMX. Although it has the
cases where it eventually gets caught 100% but in overall
performance MPTM manages quite well. The graph in Fig. 3

illustrates how MPTM performed for all test configurations
on all maps.

Like for capture costs, success rates are also dependent
on pursuer and target ratios. The success was proportional
to the number of pursuers and targets. More pursuers for the
same number of targets increased the captivity. The success

Fig.4 The Baldur’s Gate bench-
marked gaming ARO311SR
map (Fig. 3a) with pursuers the
targets at the initial position

Multiple Agents, Moving Target Search Simulation

Time: O -- Level 0 —- Selected: O (0, 0)

rate was increased when the number of targets incremented
versus the same number of agents, as displayed on the graph,
see Fig. 3.

The behaviour of the MPTM algorithm is better on the
maps that have obstacles that could be navigated around, for
example, the maps illustrated in Fig, 1. These types of maps
may be suitable for adaptive target algorithms as they offer
opportunities for escape but may be difficult for the pursuing
agent algorithms if they do not have strategies such as the
trap strategy [26]. The maps AR0311SR, AR0527SR and
ARO707SR have dead-ends or blind alleys and thus make it
more difficult to find an escape route, leading to lower target
performance on these maps.

With some algorithms, pursuing agents sometimes fail
to catch the targets, although these are outnumbered. They
might catch one target but fail to catch the other, or keep fol-
lowing the target, or end in a deadlock until timeout. This is
commonly seen in PRA* as there is no assignment strategy
before starting the move, unlike STMTA*.

On average, over all maps per player configuration, the
success rate can be 13% better than Minimax, Greedy and
SE.

Timing. This section measures the time taken for each
algorithm during the same tests that measured the capture
cost and the success rate. Each experiment is recorded in
seconds and averaged over all tests.

Table 5 provides the results for each target algorithm.
SF, Greedy and MMX do not do as much computation as
MPTM prior to moving, therefore their results are smaller
and closer to each other in comparison to MPTM, which has
greater differences.

To find the best possible action, the MPTM algorithm
computes all possible moves for the target and all pursuers
on the map, therefore the computation time is much higher.

Discussion

Results presented in the previous section show that the
MPTM algorithm has a greater chance of escaping from
multiple pursuing agents, which has been the main focus
of this study. The MPTM algorithm can predict the possi-
ble future movements of pursuers and therefore MPTM can
function smartly by avoiding capture and fleeing as far as
possible until it runs out of all options. This could be similar
to cop and robber situations, where the robber is a villain and
escapes from the cops as illustrated in the simulation gaming
map from Baldur’s Gate in Fig. 4. The simulation displays
the initial position of four cops (pursuers) and three robbers
(targets) on the map.

The proposed MPTM algorithm is measured and com-
pared against SF, Greedy and MMX algorithms. MPTM
offers better results by staying much longer on the maps and
manages to escape the pursuing agents. The number of steps
is the capture cost, where in some cases the MPTM avoids
capture by 2.6, 2.9 and 2.4 times longer than SF, Greedy and
MMX, respectively. Moreover, these results were statisti-
cally tested using the Wilcoxon Rank Sum test to establish
the significance of the findings. Table 3 displays the p-values
and with a 95% level of confidence, most of the results indi-
cate significant differences. Another key measurement is
the success rate that exceeds expectations for MPTM with

91.08% of being caught, the lower is better, whereas SF and
MMX get caught 100%, and Greedy with 99.98%.

Based on different maps and various player configuration
settings, the suggested new algorithm allows functioning
efficiently. Despite MPTM’s success rate and outsmarting
pursuers, further research is needed on improving the com-
putation process. To avoid exhaustive and intensive compu-
tation with larger player configurations and to speed up the
search, it might be more beneficial to have a branching factor
or window-based search.

Conclusion

The aim of this paper was to provide a solution for MAPF
problems and develop a target algorithm that would con-
sider multiple pursuers and make a smart escape. Numer-
ous interesting studies have been conducted on search
algorithms, and among them are solutions to the MAPF
frameworks. Only a few studies have been carried out on
target algorithms, especially in multi-target environments.

This research shows that the TrailMax is a successful
algorithm for control of targets if developed further for
dealing with multiple pursuers. We have proposed amend-
ments to the TrailMax algorithm to make it work as a strat-
egy for multi-agent multi-target search problems in dynamic
environments.

The resulting MPTM algorithm has been shown to out-
perform other target algorithms for the same scenario, and
that can make pursuit and evasion scenarios in computer
games more challenging, meaningful, and interesting. The
results clearly show that the MPTM algorithm performs far
better, with at least doubling capture cost and escaping suc-
cess by 13% on the gaming maps used for benchmarking.

The issue of comparatively high computational costs
could be explored in further research, for example, by
exploring the use of heuristics that cut off parts of the search
space. Although this study focused on evasion from multiple
pursuers, further investigation to extend MPTM to collabo-
rate with other targets would be very interesting.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval Not applicable.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes

were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. LiJ, Gange G, Harabor D, Stuckey PJ, Ma H, Koenig S New
techniques for pairwise symmetry breaking in multi-agent path
finding. presented at the proceedings international conference on
automated planning and scheduling (2020).

2. Panait L, Luke S Cooperative multi-agent learning: the state
of the art. 11, 387-434 (2005); https://doi.org/10.1007/
$10458-005-2631-2.

3. Ishida T Moving target search with intelligence. Presented at the
proceedings tenth national conference on artificial intelligence.
pp. 525-532 (1992).

4. Koenig S, Likhachev M: D* lite. presented at the proceedings of
the national conference on artificial intelligence (2002).

5. Undeger C, Polat F. RTTES: Real-time search in dynamic envi-
ronments. Appl Intell. 2007;27:113-29. https://doi.org/10.1007/
$10489-006-0023-1.

6. Wang K-HC, Botea A: Fast and memory-efficient multi-agent
pathfinding. Presented at the ICAPS 2008 - Proceedings of the
18th international conference on automated planning and schedul-
ing (2008).

7. Silver D Cooperative pathfinding. Presented at the proceedings of
the first AAAI conference on artificial intelligence and interac-
tive digital entertainment (AIIDE’05), Marina del Rey, California
(2005).

8. Sharon G, Stern R, Felner A, Sturtevant NR. Conflict-based search
for optimal multi-agent pathfinding. Artif Intell. 2015;219:40-66.
https://doi.org/10.1016/j.artint.2014.11.006.

9. Goldenberg M, Kovarsky A, Wu X, Schaeffer] Multiple agents
moving target search. Presented at the IJCAI international joint
conference on artificial intelligence (2003).

10. Loh PKK, Prakash EC: Novel moving target search algorithms for
computer gaming. 7, 27:1-27:16 (2009); https://doi.org/10.1145/
1541895.1541907.

11. Moldenhauer C: Game tree search algorithms for the game of cops
and robber, (2009).

12. Xie F, Botea A, Kishimoto A A scalable approach to chasing
multiple moving targets with multiple agents. Presented at the
proceedings of the 26th international joint conference on artifi-
cial intelligence, Melbourne, Australia (2017); https://doi.org/10.
24963/ijcai.2017/624.

13. Pellier D, Fiorino H, Métivier M: Planning when goals change: a
moving target search approach. Presented at the 12th international
conference on advances in practical applications of heterogeneous
multi-agent systems: the PAAMS collection (2014); https://doi.
org/10.1007/978-3-319-07551-8_20.

14. Moldenhauer C, Sturtevant NR: Evaluating strategies for running
from the cops. Presented at the IJCALI international joint confer-
ence on artificial intelligence (2009).

15. Sigurdson D, Bulitko V, Yeoh W, Hernandez C, Koenig S: Multi-
agent pathfinding with real-time heuristic search. Presented at the
14th IEEE conference on computational intelligence and games
(CIG) (2018). https://doi.org/10.1109/C1G.2018.8490436.

16. Chouhan SS, Niyogi R. DiMPP: a complete distributed algo-
rithm for multi-agent path planning. J] Exp Theor Artif Intell.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10458-005-2631-2
https://doi.org/10.1007/s10458-005-2631-2
https://doi.org/10.1007/s10489-006-0023-1
https://doi.org/10.1007/s10489-006-0023-1
https://doi.org/10.1016/j.artint.2014.11.006
https://doi.org/10.1145/1541895.1541907
https://doi.org/10.1145/1541895.1541907
https://doi.org/10.24963/ijcai.2017/624
https://doi.org/10.24963/ijcai.2017/624
https://doi.org/10.1007/978-3-319-07551-8_20
https://doi.org/10.1007/978-3-319-07551-8_20
https://doi.org/10.1109/CIG.2018.8490436

18.

19.

20.

21.

22.

2017;29:1129-48. https://doi.org/10.1080/0952813X.2017.13101
42.

. Afzalov A, Lotfi A, Inden B, Aydin ME: Multiple pursuers Trail-

Max algorithm for dynamic environments. In: ICAART 2021—
Proceedings of the 13th international conference on agents and
artificial intelligence (2), pp. 437 (2021). https://doi.org/10.5220/
0010392404370443.

Bulitko V, Sturtevant N State abstraction for real-time moving
target pursuit: a pilot study. presented at the proceedings of AAAI
workshop on learning for search (2006).

Isaza A, Lu J, Bulitko V, Greiner R A cover-based approach to
multi-Agent moving target pursuit. Presented at the proceedings of
the 4th artificial intelligence and interactive digital entertainment
conference, AIIDE 2008 (2008).

Koenig S, Likhachev M, Sun X Speeding up moving-target search.
Presented at the proceedings of the 6th international joint confer-
ence on autonomous agents and multiagent systems, Honolulu,
Hawaii (2007); https://doi.org/10.1145/1329125.1329353.
Burke EK, Burke EK, Kendall G, Kendall G Search methodolo-
gies: introductory tutorials in optimization and decision support
techniques. Springer (2014).

Sturtevant NR, Sigurdson D, Taylor B, Gibson T Pathfinding
and abstraction with dynamic terrain costs. Presented at the

23.

24.

25.

26.

proceedings of the 15th AAAI conference on artificial intelligence
and interactive digital entertainment, AIIDE 2019 (2019).
Afzalov A, Lotfi A, Aydin ME A strategic search algorithm in
multi-agent and multiple target environment. pp. 195. Springer
(2021); https://doi.org/10.1007/978-981-16-4803-8_21.
Afzalov A, He J, Lotfi A, Aydin ME: Multi-agent path plan-
ning approach using assignment strategy variations in pursuit of
moving targets. In: smart innovation, systems and technologies.
Springer (2021); https://doi.org/10.1007/978-981-16-2994-5_38.
Stern R, Sturtevant NR, Felner A, Koenig S, Ma H, Walker TT,
Li J, Atzmon D, Cohen L, Kumar TKS, Boyarski E, Bartak R
Multi-Agent Pathfinding: Definitions, variants, and benchmarks.
presented at the proceedings of the 12th international symposium
on combinatorial search, SoCS 2019 (2019).

John TCH, Prakash EC, Chaudhari NS. Strategic team Al path
plans: probabilistic pathfinding. Int J Comput Games Technol.
2008;2008:1-6. https://doi.org/10.1155/2008/834616.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1080/0952813X.2017.1310142
https://doi.org/10.1080/0952813X.2017.1310142
https://doi.org/10.5220/0010392404370443
https://doi.org/10.5220/0010392404370443
https://doi.org/10.1145/1329125.1329353
https://doi.org/10.1007/978-981-16-4803-8_21
https://doi.org/10.1007/978-981-16-2994-5_38
https://doi.org/10.1155/2008/834616

	A Strategy-Based Algorithm for Moving Targets in an Environment with Multiple Agents
	Abstract
	Introduction
	Related Works
	Target Algorithms
	Pursuing Algorithms

	Multiple Pursuers TrailMax: Proposed Approach
	The Algorithm
	Further Improvements

	Empirical Evaluations
	Experimental Setup
	Experimental Results

	Discussion
	Conclusion
	References

