
ACCOMMODATING USER PREFERENCES IN THE
OPTIMIZATION OF PUBLIC TRANSPORT TRAVEL

QIUJIN WU, JOANNA HARTLEY

School of Computing and Technology, The Nottingham Trent University,

Burton Street, Nottingham, NG1 4BU, U.K.
E-mail: qiujin.wu@ntu.ac.uk

Abstract: Traffic congestion is becoming a serious problem in more and more modern cities. Encouraging more
private-vehicle drivers to use public transportation is one of the most effective and economical ways to reduce
the ever increasing congestion problem on the streets (Hartley and Bargiela, 2001). To make public transport
services more attractive and competitive, providing travellers with individual travel advice for journeys becomes
crucial. However, with the massive and complex network of a modern city, finding one or several suitable
route(s) according to user preferences from one place to another is not a simple task. In this paper, the author
presents and compares two solutions to accommodate public transport users’ preferences. The first approach is
using three different single-purpose shortest path algorithms to accommodate three different user preferences.
And the second approach is using the K-shortest paths algorithm to compute a reasonable number of ranked
shortest paths, with the ultimate ‘most optimal’ path being selected by consideration of the preferences. Some
experiments have been done based on the public transportation network of Nottingham City.

Keywords: User preferences, K-shortest paths algorithms, Multi-objective algorithms

1. INTRODUCTION

With the increase of cars on the streets, more and
more congestion occurs. The traffic congestion
causes not only a monetary problem but also a
pollution problem at the same time (Peytchev,
2002). Policy debates, promoted by publication of
the Transport White Papers at UK and Scottish
levels, have identified the need to reduce the number
of car journeys and to encourage public transport
usage (Hine and Scott, 2000).

As public transport services become more popular,
public transportation users need individual route
information to help them plan journeys more
efficiently. One of the most important pieces of
information to be delivered to public transportation
users is the quickest bus route(s) between their
specified origin and destination according to their
preferences.

Route finding is a shortest path problem. Dijkstra’s
algorithm (Dijkstra, 1959) is often used for solving
this problem due to its efficiency and effectiveness.
However, Dijkstra’s algorithm does not allow for
time-dependent links, which is a necessary property
of bus routes. Dreyfus (1969) has considered a
number of methods incorporating time-dependent
links. However, it is still not sufficient because
public transport users have various preferences. This
paper presents the time-dependent shortest path(s)
algorithms which can accommodate public
transportation users’ preferences such as ‘minimum

travel time’, ‘minimum number of bus-changes’, and
‘minimum walking distance’.

Two different categories of shortest path(s)
algorithms are proposed in this paper to solve the
problem of accommodating user preferences in the
optimisation of public transport travel.

The first solution is found using single-purpose
shortest path algorithms. Single-purpose shortest
path algorithms are based on standard shortest path
algorithms. By adding specific objectives, the
developed algorithms can generate routes which
satisfy these users’ preferences. Although the single-
purpose shortest path algorithms work efficiently for
accommodating a single user preference, each
algorithm computes only one shortest path. The
constraints which are added to the algorithms must
be defined carefully, to ensure that the correct route
is found.

The second solution is found using K-shortest paths
(KSP) algorithms. The idea of the KSP algorithm is
to compute a reasonable number of ranked shortest
paths with the ultimate ‘most optimal’ path being
selected by consideration of the preferences. Using
KSP algorithms to accommodate user preferences in
the field of public transportation system is new and
very challenging. There are a large number of papers
concerning different algorithms for solving the KSP
(Palmgren and Yuan, 1998) but not many papers
dealing with the applications in real world problems
so far.

1

mailto:qiujin.wu@ntu.ac.uk

The feasibility of using KSP algorithms to
accommodate user preferences for a public
transportation network has been studied. The results
show that it is feasible, however, at the current stage,
there is still a high overlap rate for the generated K
shortest routes and the execution time of the KSP
algorithm is still long.

1

3 2

4 5

The experimental results for both single-purpose
algorithms and K-shortest paths algorithm based on
the public transportation network of Nottingham
City are also given and analyzed.

2. USERS’ PREFERENCES AND BI-MODAL
TRAVEL

One important feature of this research is that the
developed algorithm can accommodate public
transportation users’ preferences. Public transport
users’ preferences are various. Actually, it is
impractical to take every individual preference into
consideration. In this paper, the following
preferences are considered:

1. Minimum travel time, which can mean either
arriving at the destination at the earliest time or
leaving the origin at the latest time.

2. Minimum number of bus-changes. Some
travellers do not like changing buses, so they would
rather travel on a single bus even if the journey time
is longer.

3. Minimum walking distance. A traveller carrying
heavy or awkward objects may prefer to walk to the
nearest bus stop rather than walk a longer distance to
another bus stop on a quicker route.

Another feature is that the route finding is based on
a bi-modal travel network which considers not only
travelling by bus but also on foot. In reality, all bus
stops are linked to each other by foot. To make the
generated optimal route more practical in the real
world, the developed algorithm is based on a bi-
modal travel network. This makes the research more
challenging because it causes a fundamental
topological change to the network and significantly
increases the complexity of the network.

In the network of Figure 1, imagine that node 1 to
node 6 are bus-stops, if they are connected only by
buses, there are 6 links in the network.

 1

 2 3

4 5

6

Figure 1 A Simple Transportation Network
Connected Only by Buses

If the bus stops are connected by walking as well,
the network becomes much more complex. As we
can see in Figure 2, there are 21 links in the network
now.

Figure 2 A Simple Transportation Network
Connected either by Buses or by walking

3 NETWORK REPRESENTATION

Compared with road network, public transportation
network is very time sensitive. Because of the
stochastic and time-dependent properties of public
transportation network, it is necessary to investigate
how it can be best represented.

3.1 Notation and Definitions

The shortest path problem can be modelled as
finding the shortest path between two nodes in a
weighted and directed network. In some cases, it is
of interest to compute not only the shortest path, but
an ordered set of alternatives with the aim of finding
the shortest one that satisfies user preferences for
instance – K-shortest paths (KSP) problems.

6

2

Let (N,A) denote a given network, where N = {v1,
…, vn} is a finite set whose elements are called
nodes and A ={a1,…, am} is a finite set whose
elements are called arcs. Each arc ak is a pair (vi,vj)
of nodes. In the bus system context, nodes in the
graph are bus stops and arcs are links between two
bus stops. The input data to the algorithm consists of
a description of the bus transportation network
(timetables, description of links between bus stops),
the bus stop where the journey begins (the source
node) and the bus stop at which the journey ends
(the destination node). The objective is to find the
shortest path(s) between the two specified nodes.

Bus stops are point events in a transit network. A
bus stop can be identified by a street name, a street
intersection with a corner name or even a street
address with a house number. A bus stop is linked to
a bus service through the stop sequence. A stop
sequence is a many-to-many relation between the
bus service and bus stops. To represent the network
which contains many bus stops, a very important
approach is to use bus-stop codes instead of bus-stop
names. The unique bus stop codes are indicated on
all bus stops and are widely advertised in the public
information literature issued by the Nottingham City
Transport (NCT). For example, in the timetable
indicated in Figure 3, AR05 and subsequent stops
AR08 AR09 AR10 are assigned to indicate the bus
stops on the Front Street of Arnold through the bus
route 25.

A simple approach to represent the links is to ascribe
a cost to every link. The cost can be defined
arbitrarily such as time cost or money cost or fuel
cost. In this paper, only the time cost is considered.

3.2 Modelling the Bi-modal Travel Network

By adding walking links into the transportation
network, a new problem arises. Route finding for
travelling on buses is timetable-based which means
the length between any pair of nodes is not given
directly, the information must be retrieved from the
bus timetables. Route finding for travelling on foot
requires the distance between any pair of nodes to be
calculated according to their location. It is essential
to model the two types of arc information
consistently.

Table 1 Format of Bus Locations Information

3.2.1 Modelling of Bus Timetables

To represent a bus transportation network, bus
timetables need to be modelled. Figure 3 is an
example of a bus timetable.

Figure 3 Timetable of Bus 25 and Bus26

(http://www.nctx.co.uk/)

To measure the time it takes to travel between two
bus stops, a link is put into the directed graph to
represent a connection between two bus stops. A bus
departure time and the arrival time to the next bus
stop are also needed. This departure time represents
one entry in a timetable and the arrival time to the
next bus stop can be taken from the same bus
timetable at the next node. Each entry in a timetable
is associated with the links.

3.2.2 Modelling of Walking Links

The walking links must be modelled consistently to
the bus links, so that the information for both travel
on buses or on foot can be used by the algorithms.
This can be done by translating bus location
information (Table 1) into usable time data. The
physical distances between two bus stops can be
translated into walking time information. For
example, the physical distance between node i and j
can be calculated by the equation:

distance(i,j)=sqrt((x(i)-x(j))**2+(y(i)-y(j))**2) (1)

Then by assuming average walking speed as
5km/hour, the walking time between i and j is:

walktime(i,j)=distance(i,j)/(5000/60) (2)

Now the two types of information – travelling on
buses and travelling on foot -- are consistent.

IDSTOP LOCATION ADDRESS X_CD Y_CD
Aa CITY ANGELRD 457050.58 339922.27
Ab CITY ANGELRD 457036.02 339928.82
Ac CITY ANGELRD 457005.98 339943.61
Ad CITY ANGELRD 456986.82 339951.85

3

http://www.nctx.co.uk/

3.3 Network Representation

With the above definitions and modelling above the
public transportation network can be represented as
follows. The network for the route finding problem
in a bus system is represented as a graph G = (N, A)
where N is a finite set of n nodes and A is a finite set
of m arcs. Each arc (i,j) Є A also has a length (or
weight) lij ≥ 0. In the route finding context, the
network is the transportation network. Nodes are
bus-stops and arcs represent the time taken to travel
between each pair of nodes either by bus or on foot.
The task is to find one or a series of ranked shortest
paths between two nodes in this transportation
network. A graph representation of such a network is
shown in Figure 4, where the nodes are shown as
numbered circles and the arcs are represented by
lines and arrows linking the nodes.

1

 7:00am
 4 mins 3 mins

32

4 5

6

(4) Walking time for transfer at a node is

constant.
 7:02am 7:03am
 5 mins

 4 mins 5 mins 3 mins

Although some of the assumptions may not appear
to be realistic, they are necessary to reduce the
complexity of the algorithm and increase
performance. The assumption of on-time bus
departure and arrival can be relaxed in the future
when the time uncertainty is taken into consideration
and real-time traffic data is available.

 5 mins

 7:04am 7:05am
 6 mins

 2 mins 3 mins

 7:06am 7:07am

 Busline ------ Walking

Figure 4 Representation of a Transportation
Network

4 SINGLE-PURPOSE SHORTEST PATH
ALGORITHMS

The first approach of accommodating user
preferences in the optimisation of public transport
travel is using single-purpose shortest path
algorithms. Single-purpose shortest path algorithms
are based on standard shortest path algorithms. The
designed algorithms in this paper are based on
Dijkstra’s shortest path algorithm. Dijkstra’s shortest
path algorithm is extended to a time-dependent
network and schedule-based search. Each algorithm
accommodates one user objective in the route
finding. Specific conditions are added into the
standard shortest path algorithms or various basic
shortest path algorithms are combined together, so

that the developed algorithms can generate routes
which satisfy users’ preferences.

4.1 Assumptions and Trip Planning Preferences

To reduce the network redundancy and ensure the
efficiency of path finding, some assumptions need to
be defined:

(1) There is no congestion in the traffic system.
At this stage, traffic uncertainty is not
considered.

(2) All passengers are able to get on and get off

buses at any stops.

(3) Buses depart from and arrive at every bus-
stop on time. The bus arrival and departure
time for a non-time point is extrapolated
from the schedule of neighbouring time
points.

4.2 Three Single-purpose Shortest Path
Algorithms

Demands of public transportation users are many
and diverse. For example, some people expect to
arrive at their destinations before a specific time;
some people may have a planned starting time and
want to find the quickest path; some people want a
path with minimum bus transfers and some people
need a least walking time path. Three criteria are
built in the path finding algorithms in this paper:
earliest arrival time, minimum walking time and
minimum bus tranfers.

4.2.1 The Algorithm for Finding the Route of
Earliest Arrival Time

Earliest arrival time or latest departure time is the
first user preference to be accommodated. Both of
them request a shortest journey time. Two search
methods are developed: forward search and
backward search. They can be used separately or
together.

4

With the forward search approach, the origin and
destination nodes as well as a planned departure
time are specified by the passenger. The algorithm
starts search from the origin node towards the
destination node until all transfer nodes on the
network are searched. The earliest possible arrival
time at each transfer node and other arrival
information are maintained. Walking time is also
compared with the bus-travel time in finding the
shortest route.

Figure 5 is the pseudo code for the forward search
algorithm.

Find all branch nodes for each root node,

 Find all accessing traversals from the root
node for each branch node,

 Do begin

 Record the earliest departure time
at the root node for the route

 Record arrival time at the branch
node;

 If the branch node is a new node,
then

 Record arrival time;
 Else if it is a searched node then

 If new arrival time is earlier
than exist one then

 Replace old arrival
time by the new one;

 Else
 Skip the route;
 End if
 End if
 End
 Label the searched branch node;
 End do
 Turn all searched branch nodes to root nodes
 End, close the root node

Figure 5 Algorithm for Forward Search

Backward search works quite similarly: the origin
and destination nodes and an expected arrival time
are specified. The algorithm starts search from
destination node towards the origin node until all
transfer nodes are searched. The latest possible
departure time at each transfer node as well as other
departure information are maintained. Walking time
is considered as well. When network search is
completed successfully, the optimal path can be
retrieved from the nodes.

Forward search algorithm and backward search
algorithms can be used independently to
accommodate user preferences. However, a better

performance can be achieved if they are used
together.
For example in figure 6, a passenger wants to travel
from Arnold to Clifton and arrive at 8:00am, the
backward search algorithm finds the route as: taking
Bus 58 (route 1) at Arnold at 6:25am and arriving
City Centre at 6:55am, transferring to Bus 2 (route
2) at 7:30am and arriving at Clifton at 7:58am. This
trip plan is correct because it ensures the passenger
arrives at Clifton before 8:00am. However, there is
another bus which leaves City Centre at 7:00am and
arrives Clifton at 7:30am, which means taking this
trip will give the passenger more leisure time in
Clifton rather than waiting at City Centre. To solve
this problem, a forward search algorithm can be used
after a backward search algorithm.

Arnold City Centre Clifton

Figure 6 Travel from Arnold to Clifton, expected
arrival time 8:00 am

In summary, the forward search algorithm
accommodates the user preference of ‘earliest arrival
time’ and the backward search algorithm
accommodates the user preference of ‘latest
departure time’. Using them together can sometimes
generate a better route which is closer to human
cognition.

4.2.2 The Algorithm for Finding the Route with
Minimum Walking Time

The algorithm for finding a shortest path with
minimum walking time is an extension of the
forward search algorithm. One more parameter is
involved to record the total walking time.

Each transfer node takes a walk time property.
Walking time is only taken into consideration if a
transfer is absolutely essential. This means if it is
possible to get to the next bus-stop by staying on a
bus, the algorithm will not choose a path by walking
even though walking might be quicker than
travelling on a bus.

4.2.3 The Algorithm for Finding the Route with
Minimum Bus-Changes

The minimum transfer path approach searches from
the origin node towards the destination node. Search
information maintained at each transfer node

5

includes the total number of transfers up to this
point. The difference between the minimum transfer
algorithm and the forward / backward search is that
while minimizing the number of transfers, all
arrivals with same number of transfers must be
maintained at the node. For example, in figure 7, if
node C is arrived from node A with 1 transfer and
arrived from node B with 1 transfer, information for
both arrivals must be maintained in node C.

Figure 7 A Bus Transfer Network

Figure 8 is the pseudo code for the minimum
transfer search algorithm.

Find all branch nodes for each root node,

 Find all accessing traversals for each branch
node,

 Do begin

 If the arrival traversal exist in the
arrival information of root node, then

 Transfer = root node transfer;
 Else
 Transfer = root node transfer + 1;
 End if
 If branch node is a new node, then
 Record arrival information
 Else

 If transfer is less than existing
transfer, then

 Replace existing arrival
information with new one;

 Else if transfer equals existing
transfer, then

Record new arrival
information to existing
one;

 Else (transfer is greater than
existing transfer)

 Skip;
 End if
 End if
 End do
 Label a searched branch node;
 End
 Turn all searched branch nodes to root nodes
End, and close root node

Figure 8 Algorithm for Minimum Transfer Path Search

The minimum transfer search is non-scheduled due
to the difficulties of combining the schedule with
other criteria in the search process. Therefore, post-
processing is required to provide timetable
information. The minimum transfer route may not be
the earliest arrival one or the latest departure one,
but it is still a valid option and it does accommodate
one of the important user preferences. Also it is the
one which is similar to human cognition in using the
public transportation system.

5 K-SHORTEST PATHS ALGORITHM

The second approach of accommodating public
transportation users’ preferences is by K-shortest
paths algorithm. Compared with single-purpose
algorithms, KSP algorithm is based on multi-
purpose network search. It computes a number of
ranked shortest routes in one time. The background
information of finding ranked K-shortest paths is
presented first.

Same as the shortest path problem, listing the K
shortest paths is also a classic networking
programming problem (Martins 1998, Martins
1999). Although it has not been studied as
intensively as the shortest path problem, there are
numerous papers that can be referred to
(http://liinwww.ira.uka.de/bibliography/Theory/k-
path.html).

Generally speaking, there are two classes of solution
methods to KSP problem. The first class consists of
labelling algorithms and the second class of
algorithms based on constructing a tree that contains
K shortest paths (Palmgren and Yuan, 1998).

Labelling algorithms for KSP problem are very
similar to the classical labelling algorithms for
shortest path problems. They can be further divided
into Label Correcting (Shier, 1974; Shier, 1976;
Shier, 1979) and Label Setting (Dreyfus 1969;
Martins 1984; 1996, Azevedo et al, 1993; Azevedo
et al, 1994) algorithms.

The second class of KSP algorithms is called the
deviation algorithm. This class of algorithms
attempts to build a tree of K shortest paths. The early
references to deviation algorithms are Yen (1971)’s
Finding the k shortest loopless paths in a network
and Martins et al (1997)’s A new algorithm for
ranking loopless paths.

Again, a large number of papers
(http://liinwww.ira.uka.de/bibliography/Theory/k-
path.html) concerning different algorithms for
solving the KSP problem can be found but not
many papers dealing with the applications in real
world problem. The reason why it isn’t widely used

A
C D

B

6

http://liinwww.ira.uka.de/bibliography/Theory/k-path.html
http://liinwww.ira.uka.de/bibliography/Theory/k-path.html

might be that using KSP algorithms is an expensive
way of generating a large number of infeasible
paths. For example, according to Desrosiers and
Soumis (1991), the ‘pickup and delivery problem’ is
a typical constrained shortest path problem that can
be solved by the KSP algorithms, but dynamic
programming takes advantages of the additional
constraints and its efficiency increases with the
number of constraints.

However, there are more and more efficient
algorithms existing to solve KSP problems. And by
reducing the value of K and taking the additional
constraints into consideration, the approach of using
KSP algorithms is becoming more and more
attractive.

5.1 Finding the Ranked Shortest Paths

The developed KSP algorithm for public
transportation network in this paper is based on the
principal of label setting KSP algorithms. However,
it must be time-dependent and suitable for bus
system.

Transportation networks in the real world are very
complex. The considered network is a bi-modal
travel network. Route finding for travelling on buses
is timetable-based which means the length between
any pair of nodes are not given directly, the
information must be retrieved from the bus
timetables. Route finding for travelling on foot
requires the distance between any pair of nodes to be
calculated according to their location. The two types
of arc information are mixed up. The algorithm must
be able to distingush between the two different types
of information.

Suppose the network in Figure 4 is a transportation
network, step-by-step explanations of finding the
ranked K-shortest paths from node 1 (origin) to node
6 (destination) are given below: (Wu and Hartley,
2004)

Step 1: Find the closest node to the origin node by
bus.

Figure 9: Step 1 of the Algorithm

Suppose node 2 is the closest node to node 1 by bus
travelling, record the arrival time timebus(2).

Step 2: Find the closest node to the origin 1 by
walking.

 1

Figure 10: Step 2 of the Algorithm

Suppose node 3 is the closest node to node 1 by
walking, record the arrival time timewalk(3)

Step 3: Compare the arrival time of timebus(2) and
timewalk(3). If (timebus(2)< timewalk(3)) then label
node 2, if (timewalk(3) < timebus(2)) then label
node 3.

As explained before, for the KSP problem more than
one label is assigned to each node, a flag is used to
record how many times a node has been labelled.

Step 4: Upgrade the network according to the
labelled node.

Suppose in Step 3: (timebus(2) < timewalk(3)) and
node 2 is labelled then the network is upgraded as
follows:

In Figure 4, there is a bus link from node 2 to node
4, so the network is upgraded by adding a bus link
from node 1 to node 4.

There are also walking links from node 2 to node 3,
node 4 and node 5, so the network is upgraded by
adding links from node 1 to node 3, node 4 and node
5.

Since there is already a walking link between node 1
and node 3, the walking link 1 2 3 becomes the
second walking link from node 1 to 3. It must be
recorded separately as a second walking link.

Figure 11: Step 4 of the Algorithm

Or, suppose in Step 3: timewalk(3) < timebus(2) and
node 3 is labelled then the network is upgraded
using the same principle:

2

1

2 3

2 3

1

2
3

4 5

7

Figure 12: Step 4 of the Algorithm

Step 5: If the labelled node is the destination node,
output the route from the origin to the destination.

Step 6: Repeat step 1 to step 5 until the Kth ranked
shortest path has been outputted.

Figure 13 is the pseudo code for the KSP algorithm.

count(i) – number of paths that were determined from
origin to destination
elm(i) – flag assigned to each node
K – number of routes to be computed

For each node i, count(i)=0, elm(i)=0.
For the original node, count(origin)=1, elm(origin)=1

 If there is a bus link or a walking link from origin
node to node i, then

 elm(i) = 1
 End if

For each node i, while count (destination) < K
 Do begin
 j records the closest node to the origin node

 Time(j) records the arrival time of the closest
node

 Count(j) = count(j) +1
 If (j=des), then
 Output the route
 End if

 If count (i) ≤ K

 If there is a bus link or walking link from j to
i, then

 Elm(i) = elm(i) +1

 Upgrade the network by adding nodes and
links

 End if
 End if
 End do

End, and close root node

Figure 13 Algorithm for the KSP algorithm

5.2 Using the KSP Algorithm to Accommodate
Users’ Preferences

1

To accommodate users’ preferences, the routes must
satisfy more conditions. This can be done by either
comparing each route with the preferences and
choosing the first route which satisfies the
preferences or regarding the preferences as
constraints and embedding them into the algorithm.

The first solution has been implemented and some
efforts have been made to add constraints to the
developed KSP algorithm. As mentioned before,
public transportation networks are very sensitive to
point of time, it is quite difficult to use a weighting
system with the schedule-based shortest path
algorithms. Furthermore, KSP algorithms are very
computational time and memory consuming, the
constraints which are added to the KSP algorithm
must be defined carefully.

On the current stage of my research, the designed
algorithm generates a list of ranked shortest routes
and those routes are compared with the users’
preferences until the ultimate path is selected. A
walking limitation has been added to the developed
KSP algorithm as a constraint.

In figure 14, for example, a journey starts from
GR01 to GR05 at 7.000am, the developed KSP
algorithm generates 4 ranked shortest paths which
are described in Table 2.

Figure 14 Shorest Route from GR01 to GR05

2
3

4 5

8

1st Route 2nd Route

Bus

stop

Time Services Bus

stop

Time Services

GR01 7.020 Bus 21y GR01 7.000 Walking

GR02 7.025 Bus 21y SA01 7.040 Bus 41y

GR03 7.030 Bus 21y SA02 7.060 Bus 41y

GR04 7.035 Bus 21y SA03 7.070 Bus 41y

GR05 7.040 Bus 21y SA04 7.080 Bus 41y

 SA05 7.090 Walking

 GR15 7.125 Bus 21x

 GR16 7.130 Bus 21x

 GR17 7.135 Bus 21x

 GR05 7.139 walking

Total Walking 0 0.075

Bus Change 0 2

3rd Route 4th Route

Bus

stop

Time Services Bus

stop

Time Services

GR01 7.000 Walking GR01 7.020 Bus 21y

SA12 7.093 Bus 40x GR02 7.025 Bus 21y

SA13 7.120 Bus 40x SA03 7.058 Walking

GR05 7.162 Walking GR15 7.125 Bus 21x

 GR16 7.130 Bus 21x

 GR04 7.235 Walking

 GR05 7.240 Bus 21y

Total Walking 0.132 0.138

Bus Change 0 2

Table 2 Four Ranked Shortest Paths between GR01

and GR05

By comparing the 4 shortest paths, the 1st one is
selected as the route of earliest arrival time,
minimum walking time and minimum bus changes.
The second shortest route with minimum bus
changes is the 3rd shortest path. The 2nd and 4th
routes have the same number of bus changing,
however the 2nd route takes shorter walking time.

To limit the complexity of the network, a walking
limitation has been added to the KSP algorithm,
because if each pair of bus-stops are linked either by
bus-services or by walking or by both of them, the
network will be certainly burdened by the walking
links. In reality, seldom people would take the
advice to walk over 1 hour from one bus node to
another if they choose to use public transportation
system. Therefore, the the walking time is restricted
to 10 mins in the KSP algorithm -- any walking link
which is more than 10mins will be removed from the
network. This was proved to be very helpful to
ensure the efficiency of the algorithm.

However, it remains a problem that how many
routes need to be generated to find the ‘desired’ path
for the public transport users. The value of K
directly affects the efficiency of the algorithm and
determines the capability of the KSP algorithm of
finding the desire route.

Furthermore, in Table 2, we can tell that there is still
a high overlap ratio between the ranked K shortest
paths. Some routes are mostly overlapped which
causes a waste of computation resource. A paper by
Chen and Feng (1999) propses an approach of using
‘Restricted KSP algorithm’ to reduce the overlap
ratio. By introducing an ‘overlap ratio’ and a ‘route
travel difference’ into the KSP algorithm, the
overlap ratio can be controlled. This solution is
under testing now on the public transportation
network of Nottingham City.

6 EXPERIMENTAL RESULTS AND
ANALYSIS

The experiments are based on the public
transportation network of Nottingham City which
has 2398 bus-stops in total and 292 bus services
running everyday, with the results comparing the
performance of the single-purpose (single purpose)
shortest path algorithms and the KSP (multi-
purpose) algorithm. All the bus stops and links are
represented by bus timetables. The departure and
arrival time at a particular bus stop can be found in
these timetables.

6.1 Perfomance of the Single-purpose Shortest
Path Algorithms

Two criteria determine the performance of an
algorithm: the ability of finding the shortest bus
route and the efficiency of the algorithm.
Concerning the efficiency of an algorithm, time-
complexity and memory requirement need to be
considered. All of the three single-purpose
algorithms are based on Dijkstra’s algorithm, so that
they perform similarly from the time-complexity and
memory requirements points of view.

6.1.1 Experimental Results of the Single-purpose
Shortest Path Algorithms

A careful implementation of a time consuming
shortest path algorithm saves expensive and crucial
time.

In figure 15 a passenger wants to travel from SN01
to CA12 with the earliest arrival time. The test result
shows that to find the shortest path, a careful
implementation of the time-dependent Dijkstra
algorithm takes only 0.5 seconds.

9

Although an execution time of 0.5 seconds is
satisfactory, it can be further reduced. Dijkstra
algorithm has a bottleneck that is all nodes have to
be visited at each iteration in order to select the node
with the minimum distance label. A bucket data
structure can be used to conquer this problem.
Bucket data structure means: an area of storage
where items with a common property are stored, so
that the labelled nodes in a data structure can be
maintained in such way that the nodes are sorted by
distance labels. To translate this idea to the
transportation network, an up-bound time (this
means adding more restrictions into the code) can be
set in the iteration. For example, if the leaving time
is 7:00am, we may only search the time no later than
9:00am, because in practice, passengers usually
won’t take bus more than 2 hours to the destination.
The test result shows that this implementation
improves the shortest path algorithm’s efficiency
when it works on a very complex transportation
network.

Figure 15 Shortest Route from SN01 to CA12

6.1.2 Analysis of the Single-purpose Algorithms

Time complexity

As Dreyfus (1969) pointed out in his article, the
algorithm for a network with time dependent costs
of links has the same time complexity as the Dijkstra
algorithm. It is very well known that the Dijkstra
algorithm can work in O(n2) time, where n is the
number of nodes in the network. This time
complexity is the worst-case for the Dijkstra
algorithm. Since the developed single-purpose
algorithms belong to the group of algorithms for a
network with time dependent costs of links, they
have the same time complexity as the Dijkstra
algorithm.
The time efficiency of the algorithm depends on the
method used in the implementation. Most principles
devised for the Dijkstra algorithm can be very easily
used to increase the efficiency of the bus algorithm.
The Dijkstra algorithm has been implemented by the

author using a priority queue. This implementation
runs in O(kn+lm) = O(n+m). The coefficients k and l
depend on the implementations of the loops, k
expresses the cost of the loop, which processes
nodes and l expresses the costs of the loop which
processes links.

An article by Cherkassky et al. (1996) examines
several implementations of the Dijkstra algorithm.
For example: the implementation using Fibonacci
heaps, the implementation using R-heaps, the
implementation using buckets and others. Fibonacci
heaps, R-heaps, and buckets are different data
structures, and these three implementations are all
aiming to speed up Dijkstra algorithm. And the
result from the article by Cherkassky et al. (1996) is
that one of the best implementations is with the
priority queue. Detailed explanations about these
three data structure can be found in any data
structure book.

Not only is the priority queue implementation one of
the fastest, but it is also simple and clear. The
simplicity and efficiency of the priority queue
implementation made the author of this paper follow
this approach.

CA 12

Memory requirements

Memory requirements by these single-purpose
algorithms are also the same as required by the
Dijkstra algorithm. Therefore they need k*n words
to represent information about nodes and lm words
to represent information about links. The k
coefficient depends on the type of data structure
used.

SN 01

In the code the data structure by itself had k=5,
because every node stores the following
information:

– the node number
– the previous node of the shortest path
– the node number of a link to the previous node
– the time cost of the shortest path to this node
– the status of this node.
The l coefficient equals 2 for the produced code. It is
so because every link has two members:

node_no – the number of the finish node
link_no – the number of this link

Therefore the overall memory requirements for the
single-purpose algorithms are 5n+2m. This memory
is required by plain data to represent the network
structure. However, the network is still not
completely described. More memory is needed to
store timetables. Every timetable implemented in the
code needs approximately 30 words (2 words for
each entry, and say there are about 15 buses a day of

10

one bus line). Finally the memory required to store
completely the network is 5n+2m+30x, where x is
the number of timetables.

The single-purpose algorithms meet the research
target very well, as they are fast and have very small
memory requirements.

6.2 Performance of the KSP Algorithm

6.2.1 Experimental Results for the KSP
Algorithm

The KSP algorithm takes a longer execution time,
and the execution time increases significantly with
the increase of the length of the journey and the
value of K. Taking the travel plan in Figure 14 as an
example again, the performance for the KSP
algorithm is as follow:

1. To find 2 ranked (K=2) shortest paths from

GR01 to GR05, the developed KSP algorithm
spends 2.38 seconds. And compared with the
results of the three single-purpose algorithms,
the 1st shortest path is the path with all the
features of earliest arrival time, minimum
walking time and minimum bus-changes.

2. To find 4 ranked (K=4) shortest paths from

GR01 to GR 05, the KSP algorithm spends 8.6
seconds. Again, compared with the results of
the three single-purpose algorithms, the 1st
shortest path is the path which satisfies all of the
three preferences; and the 3rd path is the one
with minimum bus-changes as well, however it
arrives at the destination later due to the
involvement of walking.

To further analyse the KSP algorithm, more
experiments are done by randomly choosing the
departure and arrival bus stops. In summary, the
developed KSP algorithm performs much better for
shorter and medium length of travel. The average
run time for a short length of travel (bus stops less
than or equal 10) is 2.8 seconds and the average run
time for a medium length of travel (bus stops
between 10 and 20) is 8.96 seconds. If the K is set to
be 4, the successful rate of finding the 3 ‘desired’
shortest paths is more than 95% for a short journey
and 91% for a medium journey – depending on the
locations of the bus stops. For instance, the
algorithm is more likely to fail to find the ‘desired’
routes if the bus stops are within the city centre
where each bus stop is used by many bus services.
Expanding the journey to more than 20 bus stops
(long length of travel), say from GR01 to HC, the
algorithm takes much longer time (29.8 seconds) to
find 4 ranked shortest paths. And there is only about
75% successful rate to accommodate the 3 user

preferences by the 4 ranked shortest paths in those
long journey. To increase the successful rate, the
value of K needs to be set big enough which causes
longer execution time consequently. Therefore,
heuristic methods are investigated to reduce the
infeasible routes produced by the KSP algorithm and
different hierarchical methods need to be
investigated as well to improve the efficiency of the
KSP algorithm.

6.2.2 Analysis of the KSP Algorithm

The time complexity of KSP algorithms is much
higher than shortest path algorithms, and it differs
with different algorithms. General labelling KSP
algorithms take longer execution time but the time
complexity can be reduced by advanced data
structure. For example, David Eppstein (1997) stated
in his paper that the K shortest paths can be found in
total time of O(m+nlogn +Kn) for the worst case.
Deviation algorithms takes shorter execution time.
Martins et al (2000) developed a new
implementation of Yen’s ranking loopless paths
algorithm which takes O(Kn(m+nlongn))
computational time.

The KSP algorithm developed by the author is based
on the general label setting algorithm, so that the
computaional compexity is similar to the generilized
Dijkstra’s shortest path algorithm.

6.3 Comparison of Results

According to the experimental results, the single-
purpose algorithms work much more efficiently than
the KSP algorithm. However, the longer execution
time of the KSP algorithm is expected as the multi-
objective algorithm finds several required routes at
the same time. And from an academic point of view,
multi-criteria shortest path(s) algorithms for public
transportation networks have great research potential
and consequently will lead to a great commercial
potential as well. Detailed comparison of
computational runtime between the KSP algorithm
and those single-purpose shortest path algorithms
can be found in the Table 3 and Table 4.

 Single Purpose Algorithms’
Average Runtime (sec)

 Earliest
arrival

Minimum
walking

Minimum
bus-change

Short
 (≤ 10 bus stops)

0.08

0.08

0.09

Medium
(≤ 20 bus stops)

0.60

0.61

0.64

Long
(≥ 30 bus stops)

0.84

0.86

0.90

Table 3 : Executive Time of Single-purpose

Algorithms

11

 KSP Algorithms’

Average Runtime (sec)
 K=2 K=3 K=4

Short
 (≤ 10 bus stops)

2.80

4.20

8.60

Medium
(≤ 20 bus stops)

8.96

13.78

18.67

Long
(≥ 30 bus stops)

21.60

36.57

52.36

Table 4 : Executive Time of KSP Algorithms

7 CONCLUSION

Two different solutions – single-purpose shortest
path algorithms and KSP algorithm are developed to
accommodate user preference in the optimization of
public transportation travel. The feasibility of using
KSP algorithms to accommodate users’ preferences
for a public transportation network is discussed in
this paper. Different kinds of KSP algorithms are
compared and an algorithm based on the label
setting algorithms is developed and implemented on
the Nottingham Public Transportation Network.

The experimental results show that the single-
purpose shortest path algorithms work efficiently but
can only accommodate one single user preference
and the K-shortest path algorithm generates multiple
routes in one time, however, with a longer
computational execution time.

The feasibility study of using KSP algorithms to
accommodate user preferences for a public
transportation network gives a positive answer as
well.

The developed KSP algorithm is ideally expected to
find a set of ranked shortest paths which can
accommodate users’ preferences easily and without
many infeasible routes. However, at the current
stage, there is still a high overlap ratio for the
generated K shortest routes and the execution time
of the KSP algorithm is still long.

As expected, all the algorithms developed in this
research are ready to be used for other cities.
Compared with other cities, such as London,
Nottingham is a small city. Only Nottingham City
Transport (NCT) bus stops (2398 bus stops) are used
by the developed algorithms so far. If all public
transport services in Nottingham are used, there
might be around 5,000 bus stops. Furthermore, if the
developed algorithms are implemented to the
London public transportation network which
contains more than 45,000 bus stops, the execution
time will increase significantly.

8 FUTURE WORK

The objective of this research is to develop an
efficient algorithm to accommodate public
transportation users’ preferences in the real world.
Therefore, the next stage of the research will largely
focus on improving the efficiency of both single-
purpose algorithms and the KSP algorithm.

Both types of algorithm do not take the time
uncertainty factor and real-time bus location
information into account, so that the time
uncertainty factor will be introduced to both the
single objective and KSP algorithms. The efficiency
of the algorithms will be improved by investigating
different hierarchical methods. Neural networks,
distributed and parallel computing systems will be
investigated and implemented one after another until
a satisfying performance is gained.

REFERENCES:

Bellman R. E., 1958, ‘On a Routeing Problem’,
Quarterly of Applied Mathematics 16, 87-90

Brander A.W., Sinclair M.C., 1995. ‘A Comparative
Study of k-Shortest Path Algorithms’ Proc. 11th UK
Performance Engineering Worksh. for Computer
and Telecommunications Systems

Chen H.K, Feng G, 1999, Heuristics for the
stochastic/dynamic user-optomal route choice
problem, European Journal of Operational Research

26 (2000) 13-30. 1

Cherkassky B.V., Goldberg, and T. Radzik A.V.,
1996. ‘Shortest Paths algorithms: Theory and
experimental evaluation’. Mathematical
Programming, 73: 129-196.

Cooke, K.L., Halsey, E., 1966, The shortest route
through a network with time-dependent internodal
transit times, Journal of Mathematical Analysis and
Applications.

Datar M. and Ranade A., 2000, Commuting with
delay prone buses. In Proceedings of the Eleventh
Annual ACM-SIAM Symposium on Discrete
Algorithms, 22-29.

Dijkstra, E., 1959. ‘A note on two problems in
connexion with graphs’, Numerische Mathematik 1,
269-271.

Dreyfus, S.E., 1969. ‘An Appraisal of Some
Shortest-path Algorithms’. Operations Research,
vol.17, no. 395-412.

Dumas, Desrosiers and Soumis, 1991, The pickup
and delivery problem with time windows. European
Journal of Operational Research 54 (1991) 7-22.

12

Frank H, 1969, Shortest paths in probabilistic
graphs, Operations Res., Vol.17, 583-599.

Gallo G., Pallotino S., 1988, Shortest path
algorithms, Annals of operations research, Vol. 13,
3-79

Gallo G., Pallotino S., 1984, Shortest path methods
in transportation models, Transportation Planning
Models, M.Florian (Editor), Elsevier Science
Publishers B.V (North-Holland), pp.227-242.

Jakob R., Marathe M.V., Nagel K., 1998, A
computational study of routing algorithms for
realistic transportation netwoks, Proceedings
WAE’98, Saarbrucken, Germany, August 20-2, 167-
178.

Hartley, J.K., Bargiela, A., 2001. “Decision Support
for Planning Multi-Modal Urban travel”, Proc. of
13th European Simulation Symposium, Marseille,
October 2001, ISBN: 90-77039-02-3, pp 387-391.

Hine J., Scott J., 2000, ‘Seamless, accessible travel:
user’s views of the public transport journey and
interchange’, Transport Policy 7, 217-226.

Hsu-Shih S., 2001, An Interactive Approach for
Integrated Multilevel Systems in a Fuzzy
Environment, Mathematical and Computer
Modelling 36 (2002) 569-585.

Kamburowski J., 1985, A note on the stochastic
route problem, Operations research, Vol.33, No.3,
696-698.

Martins, E.Q.V., Pascoal, M.M.B., Santos, J.L.E.,
1997. A New Algorithm for Ranking Loopless
Paths, Research Report (submitted).

Martins, E.Q.V., Pascoal, M.M.B., Santos, J.L.E.,
1998. The K Shortest Paths Problem, Research
Report.
http://www.mat.uc.pt/~eqvm/cientificos/investigaca
o/r_papers.html

Martins, E.Q.V., Pascoal, M.M.B., Santos, J.L.E.,
1999, Labelling Algorithms for Ranking Shortest
Paths, Research Report.

Micheal P. Wellman, Matthew F., and Kenneth L.,
1995, Path Planning under Time-Dependent
Uncertainty, in Proceedings of the Eleventh
Conference on Uncertainty in Artificial Intelligence
(UAI-95).

Miller-Hooks Elise D, Mahmassani Hani S, and
Ziliaskopoulos Athanasios, 1994, Path search
techniques for transportation networks with time-
dependent, stochastic arc costs, IEEE international
conference on systems man and cybernetics: human
information and technology, Vol.2, 1716-1721.

Miller-Hooks E.D., 1997, Optimal routing in time-
varying, stochastic networks: algorithms and
implementations, PhD thesis, The university of
Texas at Austin.

Miller-Hooks E.D. and Mahmassani H.S., 1998,
possible time paths in stochastic time-varying
networks, Computers Ops Res, Vol.25, No.12, 1107-
1125.

Miller-Hooks E.D. and Mahmassani H.S, 2000,
Least expected time paths in stochastic time-varying
transportation networks, transportation Science,
Vol.34, No.2, 198-215.

Minty, G., 1957, A comment on the shortest route
problem. Operation research.

Palmgren M. and Yuan D., ‘Shortest summary on K
shortest path: Algorithms and applications’,
http://www.esc.auckland.ac.nz/People/Staff/Mason/
Courses/LinkopingColGen99/kth.pdf

Peytchev E., Coggan J., 2002. ‘See before you go’,
Traffic Technology International

Pallottino S., 1984, ‘Implementation and Efficiency
of Moore Algorithms for the Shortest Root
Problem’, Mathematical Programming 7, 212-222

Ruihong H. and Zhong-Ren P., 2002. ‘An Single-
purpose GIS Data Model for Transit Trip Planning
Systems’, Journal of the Transportation Research
Board: Transportation Research Records, No.1804,
pp. 205-211.

Shier D., 1974. ‘Computational experience with an
algorithm for finding the k shortest paths in a
network’, Journal of Research of the NBS, 78:139-
164

Shier D., 1976. ‘Interactive methods for determining
the k shortest paths in a network’, Networks, 6:15 1-
159.

Shier D., 1979. ‘On algorithms for finding the k
shortest paths in a network’, Networks, 9:195-214.

Yen J.Y. 1971, ‘Finding the k shortest loopless paths
in a network’, Management Science, 17:712-716

Orda A. and Rom R., Shortest-Path and Mimimum-
Delay Algorithms in Networks with Time-
Dependent Edge-Length, Journal of Association of
Computing Machinery, Vol.37, No.3, 607-625, 1990

Orda A. and Rom R., Shortest path algorithms for
time-dependent networks, IEEE INFOCOM ’88 –
The conference on computer communications
proceedings, Seventh annual joint conference of the
IEEE Computer and Communications Societies –
Networks: Evolution or Revolution?, IEEE, 282-7,
New York, NY, USA, 1998

Sigal C.E., Pritsker A. Alan B and Solberg James J,
The stochastic shortest path problem, Operations
research, Vol.28, No.5, 1122-1129, 1980

Wu Q., Hartley J.K., 2004, Using K-Shortest Paths
Algorithms to Accommodate User Preferences in the
Optimization of Public Transport Travel, in
Proceeding of UKSIM 2004, 113-117.

13

http://www.mat.uc.pt/%7Eeqvm/cientificos/investigacao/r_papers.html
http://www.mat.uc.pt/%7Eeqvm/cientificos/investigacao/r_papers.html
http://www.esc.auckland.ac.nz/People/Staff/Mason/Courses/LinkopingColGen99/kth.pdf
http://www.esc.auckland.ac.nz/People/Staff/Mason/Courses/LinkopingColGen99/kth.pdf

Wu Q., Hartley J.K., 2004, Accommodating User
Preferences in the Optimization of Public Transport
Travel, in Proceeding of the 4th European Congress
and Exhibition on ITS.

Zhan F.B. and Noon C.E., Shortest path algorithms:
An evaluation using real road networks,
Transportation Science, Vol.32, No.1, 65-73, 1998

Zhan F.B., Three fastest shortest path algorithms on
real road networks: data structures and procedures,
Journal of geographic information and decision
analysis, Vol.1, No.1, 69-82, 1997

Ziliaskopoulos A, 1994, Optimum path algorithms
on multidimensional networks: analysis and design,
implementation and computational experience, Ph.D
dissertation, Department of Civil Engineering The
University of Texas at Austin.

Nottingham Trent University, Advanced traffic and
travel information system,
http://www.doc.ntu.ac.uk/RTTS/Projects/grr32468/p
ublic.html

http://www.nctx.co.uk/

http://liinwww.ira.uka.de/bibliography/Theory/k-
path.html

BIOGRAPHIES:

Ms. Qiujin Wu is a research
student at the School of
Computing and Technology, the
Nottingham Trent University. She
was rewarded a MA degree in
Information Technology at the
University of Nottingham in 2002
and got her bachelor in
engineering in year 1998 from Shanghai University,
China. Ms. Qiujin Wu started her PhD study in
October 2002 under the supervision of Dr. Joanna
Hartley and Professor David Al-Dabass. Her
research topic is: “Accommodating User Preferences
in the Optimisation of Public Transport Travel”.

Dr. Joanna Hartley was awarded
a BSc (Hons) degree in
Mathematics at the University of
Durham in 1991. In 1992, she
became a research assistant at The
Nottingham Trent University and
was awarded a PhD in 1996. The
title of her PhD is “Parallel
Algorithms for Fuzzy Data
Processing with Application to Water Systems”.
She is now a senior lecture at The Nottingham Trent
University and an active member of the simulation
and Modelling group. Her current research interests
include parallel processing, mathematical modelling
and probabilistic state estimation relating to urban
traffic networks and water distribution systems.

14

http://www.doc.ntu.ac.uk/RTTS/Projects/grr32468/public.html
http://www.doc.ntu.ac.uk/RTTS/Projects/grr32468/public.html
http://www.nctx.co.uk/
http://liinwww.ira.uka.de/bibliography/Theory/k-path.html
http://liinwww.ira.uka.de/bibliography/Theory/k-path.html

	QIUJIN WU, JOANNA HARTLEY
	Burton Street, Nottingham, NG1 4BU, U.K.
	4 SINGLE-PURPOSE SHORTEST PATH ALGORITHMS
	4.1 Assumptions and Trip Planning Preferences
	Although some of the assumptions may not appear to be realistic, they are necessary to reduce the complexity of the algorithm and increase performance. The assumption of on-time bus departure and arrival can be relaxed in the future when the time uncertainty is taken into consideration and real-time traffic data is available.
	4.2 Three Single-purpose Shortest Path Algorithms
	Demands of public transportation users are many and diverse. For example, some people expect to arrive at their destinations before a specific time; some people may have a planned starting time and want to find the quickest path; some people want a path with minimum bus transfers and some people need a least walking time path. Three criteria are built in the path finding algorithms in this paper: earliest arrival time, minimum walking time and minimum bus tranfers.
	5 K-SHORTEST PATHS ALGORITHM
	5.1 Finding the Ranked Shortest Paths
	6 EXPERIMENTAL RESULTS AND ANALYSIS
	6.1 Perfomance of the Single-purpose Shortest Path Algorithms
	6.1.1 Experimental Results of the Single-purpose Shortest Path Algorithms

	Time complexity
	Memory requirements
	6.2 Performance of the KSP Algorithm
	6.2.1 Experimental Results for the KSP Algorithm
	6.2.2 Analysis of the KSP Algorithm
	6.3 Comparison of Results
	7 CONCLUSION

