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Abstract—In this work we investigate the effectiveness of a
wireless in-shoe pressure sensing system used in combination with
a type of machine learning referred to as long term short term
memory networks (LSTMs) to classify multiple interacting gait
perturbations. Artificially induced gait perturbations consisted
of restricted knee extension and altered under foot centre of
pressure (COP). The primary aim was to assess the capacity to
diagnose gait abnormalities without the need to attend a gait
laboratory or visit a clinical healthcare professional, through
the use of technology. Ultimately, such a system could be used
to autonomously generate therapeutic guidance and provide
healthcare professionals with accurate up to date information
about a patients gait. The results show that LSTMs are capable of
classifying complex interacting gait perturbations using in-shoe
pressure data. When testing, 11 of 12 perturbation conditions
were correctly classified overall and 58.8% of all data instances
were correctly classified (8.3% is random classification). This
work illustrates that an automated low cost, non-invasive gait
diagnosis system with minimal sensors can be used to identify
interacting gait abnormalities in individuals and has further
potential to be used in a healthcare setting.

Index Terms—Gait abnormalities, insole technology, long term
short term memory networks, high performance computing

I. INTRODUCTION

Gait is the coordinated movement of an individuals limbs
enabling the forward propulsion of the center of mass (COM)
[1]. Whilst this is a simple routine activity for most able-
bodied individuals, various gait abnormalities affect numerous
people for multiple reasons. Such abnormalities are commonly
associated with neurodegenerative diseases, but are also syn-
onymous with brain injuries and/or physical disabilities [2],
[3]. Impairment of gait can have negative consequences on
an individuals quality of life through limited mobility and
independence [3]. Clinical gait analysis is used to detect
movement abnormalities for the purpose of diagnosis and
prescribing treatment for gait disorders. However, due to cost
and time, its use in every day clinical practice is limited
[2]. Clinical specialists typically rely on qualitative diagnostic
methods, such as visual observations or verbal descriptions,
to identify abnormal gait [4]. This is largely subjective based
upon the individual clinicians experience and knowledge;

therefore, more accessible quantitative methods of analysing
gait patterns could provide more objective measures [5].

Clinical diagnosis through identification of gait abnormali-
ties is challenging due to the number of different symptoms
which may be associated with multiple disorders. Various
methods and classification systems have been proposed to
facilitate movement disorder diagnosis and particular systems
are often associated with specific movement disorders [6], [7].
Three-dimensional motion capture systems, with integrated
force plates and electromyography (the gold standard) are
very expensive and require large areas of space for operation.
Furthermore, data capture and processing are time consuming,
invasive and the acquired data must be interpreted by a
trained professional. Perhaps even more costly to the patient
is that this type of analysis only provides a snap-shot of an
individuals gait, which may lead to the continuous adaptation
of compensatory strategies to be overlooked as they may never
be observed within the test time frame.

Various classification systems exist which again typically
focus on gait abnormalities in specific disorders. Examples in-
clude the Gait Profile Score (GPS), the Gross Motor Function
Classification System (GMFCS) and the Edinburgh Visual Gait
Score (EVGS) [4], [8], [9]. A strong correlation exists between
the GPS and the EVGS, furthermore, significant differences
have been identified for the GPS at the different levels of the
GMFCS demonstrating its efficacy [7]. However, [9] suggest
that the use of qualitative systems such as the GMFCS are
more prone to bias due to the subjective nature of assessment.

Although visual observations and grading criteria are an
appropriate way of diagnosing and treating disorders, the
identification of minor gait deviations resulting in random error
are not accounted for when treating the individual [10]. For
instance, less pronounced movement abnormalities in an indi-
vidual are more challenging to identify and classify than larger
deviations from normal gait. Additionally, certain gait abnor-
malities may not be present at the time of diagnosis, but can
reappear during the patients normal routines. Previous work
demonstrated a proof of concept that non-invasive in-shoe
data capture systems along with high performance computing
and machine learning have the capacity to provide qualitative



classifications of movement alterations during gait [11]. The
efficacy of deep learning architectures has been shown to be
proficient in sequence identification and pattern recognition in
image classification, signal processing and feature extraction
[12], [13]. Long term short term memory networks (LSTMs)
are a machine learning architecture which have the ability
to learn, both long and short term, large complex data sets
from varying time periods can be classified. It is therefore
possible for the LSTM to create its own interpretation of
gait function using only the raw unprocessed data. The use
of LSTMs for this work is based on a direct comparison to
convolutional neural networks in the aforementioned previous
work, which demonstrated the superiority of the LSTMs, as
they were significantly more effective at classifying the raw
under-foot pressure data [11].

The ultimate goal of this study was to combine deep
learning techniques and a robust, easy to use and affordable in-
shoe sensor technology to create an accurate gait analysis tool,
which can be used outside of a clinical environment. In order
to progress beyond a proof of concept, a more user friendly
and cost effective in-shoe measurement system is needed.
The F-scan (Tekscan, Boston, USA), which was used in our
previous study [11] although lightweight, requires the use of
ankle cuffs to connect the insoles to the telemetric device, a
belt to hold the battery and telemetry components, and cables
running from the ankle cuffs to the belt. Furthermore, the in-
shoe sensors are fragile and can be easily damaged. All of
which makes the use of such a system challenging for the
general public. The concept of the Smart (Moticon GmbH,
Munich, Germany) insole is that each insole can simply be
slipped into the users shoe and linked to an Android phone.
The greatest challenge therefore lies in the difference of the
amount of data available from the two systems. Each insole of
the F-scan system can provide up to 1260 channels, generating
252,000 data samples per second across both feet, whereas the
Moticon system consist of only 16 pressure sensors per foot
and 3200 data samples per second across both feet. However in
addition, each insole contains an x,y,z accelerometer producing
an extra 3 channels of data.

The primary aim of this research was therefore to explore
the capacity of combining wearable technology with limited
sensors and a deep learning architecture to identify gait abnor-
malities. The first objective was to examine whether LSTMs
can be used to classify gait alterations with significantly less
data and relatively cheaper devices to allow accessibility to the
wider population. A secondary objective was to understand
if this technology could be used to detect interaction gait
abnormalities, rather than just focusing on a single type.
Additionally, we wanted to provide further evidence that non-
invasive wearable technology combined with deep learning
techniques can accurately and reliably identify gait alterations
outside of a clinical setting. This research aimed to establish
the capacity for underfoot pressure sensors and LSTMs to
identify artificial gait perturbations derived from altered kine-
matics as well as under shoe perturbation conditions.

II. RELATED WORK

There has been a significant amount of work done in the
application of wearable sensors to provide more effective
treatment and diagnostics in healthcare setting [14], [15].
However, within the field of analysing gait, the two areas that
receive the most attention are that of Parkinsons’ disease [16],
[17], [18] and cerebral palsy [19], [20], [7].

A systematic review was conducted in [2] which surveyed
32 papers relating to analysis of movement using wearable
sensors. 29 of these were applied to the analysis of gait.
Until recently, machine learning is infrequently used in the
analysis of gait compare to more traditional measures [19],
[20], [7], [2]. However, more recently the use of machine
learning to analysie gait in combinations of settings and with
various modalities has become increasingly popular [21], [25],
[26], [22], [23], [24]. While much progress has been observed,
especially over the recent years, on predicting assessment
aspects, there is little effort to assist healthcare professionals
[26]. Clinical gait analysis for disease diagnosis and treatment
planning without a trained professional present remains rare.

In 2018, a subset of the research team involved with this
project released a paper where the Tekscan system was used to
analyse minor gait perturbations [11]. There are two significant
areas that this work builds upon. The first is the difference
in data acquisition, where we use the Motion wireless insole
instead of the tekscan system. The Moticon system is superior
to the Tekscan system primarily in terms of outright cost.
Additionally, the running costs are less as it doesn’t require
replacement of the insoles over a short period of time or a
PC to download the data. The interactions with the Moticon
system can be achieved using an Android enabled phone.
However, the Moticon system produces approximately 1%
of the data when compared to the Tekscan system which
reduces the possibilities in terms of machine learning. The
second difference in this work is that we use this data to
detect different interacting gait perturbations simultaneously
in both the feet and the knees, instead of just focusing on
a single perturbation. This is to demonstrate the efficacy of
such a system in a more real world environment, where it
is uncommon for large sets of people to have a single, well
defined non-interacting gait abnormality.

III. LONG TERMS SHORT TERM MEMORY NETWORKS
FOR SEQUENCE CLASSIFICATION

Long Terms Short Term Memory Networks (LSTMs) are a
type of deep neural network [27], [28], [29] which is derived
from the recurrent neural network [30] and is able to exhibit
temporal dynamic behaviour . Deep neural networks have
been responsible for many of the advancements in machine
learning including object detection, sentiment detection in text
and advanced signal processing [31], [32], [33], [30]. The
LSTM is comprised of LSTM units, which are particularly
well suited to analysing complex time series sequence data,
and are significantly better at this than the recurrent neural
network (RNN), the model in which they were based upon.
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Fig. 1. The moticon insole which is used to generate the data to link the
gait perturbations to their classification. Each insole has 16 pressure sensing
pads and an x,y,z accelerometer. In total there are 22 readings from the insole,
the three accelerometer readings and total force, center of pressure (x) center
of pressure (y) alongside the pressure readings. Although variable, all of the
sampling throughout this work will be done at 100hz.

The LSTM unit can be seen in Figure 2. The unit is made up
of many different structures, where one of the key structures
in this work is the forget gate. This allows the LSTM unit to
build representations of data over long time scales whilst also
being able to exclude any representations that prove not to be
useful. This allows for a robust efficient method in acquiring
and processing the most relevant features for the data [30].
For the type of data in this work, it has been previously shown
that LSTMs are better suited to classification than convolution
neural networks which are more typically used for visual
systems and for tasks such as object detection [11].

A further benefit of LSTM’s in this work is that they are ca-
pable of deriving their own representation of different classes
of data. And rather than relying on a set of specified human
generated rules to specify a classification, it can identify a
range of criteria some of which might not be available to
clinicians as it is not easy to visualise. Moreover, it provides
a probability of it’s correctness, which could prove useful in
real world classifications.

IV. METHODS

Eight able-bodied participants (21-36 years, 60-95 kg, 6-
11 UK shoes size) were recruited to complete 12 walking
trials around a figure of 8 walkway (40 m in length) for 120
seconds per trial. The experimental conditions included 12
artificially induced gait perturbation conditions (PCs) (Table
I). The artificially induced perturbations were generated using
two methods. Firstly, square compressible rubberised pads
were affixed to the sole of each shoe (3.5 cm2 with a depth
of 1.5 cm) located under 1) the lateral border of the forefoot,
2) the medial border of the forefoot and 3) the heel (Figure
3) . Additionally, a lockable knee brace on the left leg was
used to restrict knee movement by limiting the amount of
extension available to the individual. Two different levels of

Fig. 2. An illustration of an LSTM unit which makes up the LSTM network
derrived from [30]. Note the forget gait which allows these units to disregard
irrelevant information.

restriction were used, a minor (25 degree) and a major(45
degrees) restriction depicted in Figure 4. Upon arrival to
the laboratory, participants provided their written informed
consent prior to any testing. All participants wore standardized
trainers provided by the researchers for all trials (size specific)
to ensure consistency during data collection. Smart pressure
sensing insoles (Moticon GmbH, Munich, Germany) were
placed inside the trainers and were zeroed prior to the individ-
ual walking for each condition. This was achieved by asking
the participant to sit down and lift their feet off of the floor,
thereby removing all body-weight from the sensors. Body
mass of the participants was not required for the processing
of data in the current study as each participants data was
normalised to values between 0 and 1 based on the minimum
and maximum pressure values recorded.

Foot Pattern Brace Setting Classification
None None 1
None 25◦ 2
None 45◦ 3

1 None 4
1 25◦ 5
1 45◦ 6
2 None 7
2 25◦ 8
2 45◦ 9
3 None 10
3 25◦ 11
3 45◦ 12

TABLE I
THE ARTIFICIAL GAIT ABNORMALITIES AND THEIR CLASSIFICATION. ALL

OF THE FOOT STRIKE COMBINATIONS FROM FIGURE 3 ARE USED IN
COMBINATION WITH THREE KNEE BRACE SETTINGS; FULL MOVEMENT,

25◦ AND 45◦ (FIGURE 4). EACH OF THESE COMBINATIONS OF SETTINGS
IS GIVEN ITS OWN CLASSIFICATION NUMBER. THE PRIMARY ORDER IS

BASED UPON THE FOOT PATTERNS AND THE SECONDARY ORDERS IS
BASED UPON THE ANGLES OF THE KNEE BRACE. WHEN THE KNEE BRACE

IS SET TO ’NONE’ THE BRACE IS STILL WORN, BUT NO SETTING IS
ENGAGED.

Two sets of Smart insoles (sizes 7 and 10), designed to
function one UK shoe size above or below their defined
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Fig. 3. Underfoot locations of the rubberised pads used to generate the foot
strike pattern perturbations. Each rubberised pad was 3.5 cm(2) with a depth
of 1.5 cm and deformed under load by approximately 1 cm. One of these
perturbations was used at a time except when no perturbation was used.

size, were used for all data collection. The smart in shoe
pressure sensors consist of an insole containing 16 pressure
sensors per foot, a tri-axial accelerometer (x,y,z), a battery,
and a wireless telemetry to an Android App. (Moticon Science
version 03.06.02 (28)) (Figure 1). Data were recorded at 100
Hz over 19 channels per insole (16 pressure sensors and 3
accelerometer vectors) as well as a calculated total ground
reaction force (vertical component) and calculated underfoot
centre of pressure (COP) vectors (x = medio-lateral, y =
anterio-posterior). This generated 1.15 million data vectors
for all participants, over all perturbations with experiments
running for 120 seconds. Each of which contained 42 variables
from the two insoles. The vectors generated were combined
into five second data instances consisting of input from both
insoles; a graphical representation of one such instance can be
seen in Figure 5. In order for an LSTM to be able to classify
data it must first be trained. Data from this study were split into
two categories, training data and testing data. Participants were
randomly assigned to either the training or testing category;
the data from six participants was used to train the LSTMs
whilst the remaining two participants data where withheld for
testing purposes. The testing process enabled the evaluation of
each LSTM using unseen data from participants not involved
in training the LSTM, thus providing information about the
capacity of the LSTM to classify new data / participants that
had not been used in the training process. This was to promote
more real world statistical analysis, where the models are
used on patients which were not used in the design of the
models. Each instance of data was generated with seven one
100ths of a second gap between its predecessor and itself. This
ensured a comprehensive sampling of the data without being
prohibitively costly in the amount of time it took to train the
LSTMs (Figure 6). The LSTMs in this work will contained 21
cells and were shaped according to table 2 and optimised using
the Adaptive Moment Estimation optimiser with a mini batch
size of 128 over 50 epochs. These parameters were found to
be suitable through exploratory testing.

V. RESULTS AND ANALYSIS

The overall results of how well the LSTMs classified the
perturbations outlined in table I can be seen in figures 7 and 8.
Figure 7 presents data from the best performing LSTM in this
work based on classification accuracy. The network presented
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Fig. 4. The restrictions of extension of the knee designed to artistically perturb
the gait of a healthy person. A restriction of 25◦ is considered small and had
little effect on peoples gait. It is to be noted that whilst 25◦ of restriction via
the use of a knee brace is significant, a large proportion of that restriction
is absorbed through the tissue of the participant and results in a minor gait
change. Each participant specified that this perturbation had little / if any
restriction on their gait. This 45◦ of restriction via the use of a knee brace is
more substantial. Each of the participants specified that this perturbation has
a significant affect on their gait and was very restrictive of movement.

Layer Type Description
1 Sequence Input Length of 42
2 Bi-LSTM Layer 21 Cells
3 Dropout Layer 50% dropout likelihood
4 Fully Connected Layer 12 Outputs
5 Softmax Layer Convert the outputs to classification
6 Classification Layer Output vector

TABLE II
THE CONFIGURATION OF THE LSTM USED IN THIS WORK. THE LSTM
CONTAINS 39 CELLS AND PRODUCES AN OUTPUT VECTOR DESCRIBING

THE PROBABILITY OF EACH OF THE 12 CLASSIFICATIONS.

in Figure 7 was trained over eleven epochs, resulting in an
accuracy rate of 58.8%. This is for each individual time step
of data, however, when grouped together as a sequence as seen
in figures 7 and 8 - the classification for the entire sets of data
for each condition is 83% and 92% respectively. The confusion
matrix provides the overall accuracy as well as information on
how the LSTM classified each PC. Based on the 12 different
PCs, a random classification rate of each PC would be 8.3%.
The diagonal running from the top left of the confusion matrix
to the bottom right represents the number (and percentage) of
correct classifications of each PC. Perturbation condition 11
was the most accurately classified with a correct classification
over 97% of the time. In contrast to this PC 7 was the least
accurately classified with correct classification occurring at a
rate of only 15%. This LSTM correctly classified the exact
condition more frequently than any other, for 10 out of the 12
PCs.

Figure 8 presents data from an LSTM trained over 23
epochs with an overall classification accuracy of 46.8%. Al-
though the network presented in Figure 8 achieved an overall
lower classification accuracy than that of Figure 7, the LSTM
was able to correctly classify the right PC on aggregate over11
of the 12 PCs.

Figure 9 presents performance data for the LSTMs over
time based on training and testing. As the number of epochs
increases up to approximately ten, both training and testing
show a steady improvement with a testing peak reached at



Fig. 5. Graphical interpretation of the time separation of each instance of data used to train the LSTM networks. Each horizontal bar represents an instance
of data consisting of 500 consecutive data points (depicted in Figure 4). A 7 data point gap was used to reduce the amount of data required to train the LSTM
networks whilst maintaining comprehensive sampling. In terms of pressure, from 0 being the lowest and 1 the highest, the blue colors represent values closer
to 0, and the yellow colors represent colors closer to 1. Each column consists of a single time step of data for both insoles, and the accelerator data can be
seen by the two bands of data (consisting of the x,y,z accelerator values and the ground reaction force (vertical component) and calculated underfoot centre
of pressure (COP). This data is represented by two bands at the top and the middle of the image. The rest of the image shows the pressure data from the
insoles.

500 time steps

7 time steps

1

2

3

Fig. 6. A representation of how the data from each individual step is collated
into an instance of data used to train the LSTM. Each horizontal bar can be
considered 1 instance of data consisting of 500 time steps of data (information
from both insoles). There is a 7 time step gap in between each instance of
data (0 time step gap would be perfect overlap). The reason for this gap is
that it gave a comprehensive sampling of the data, without being prohibitively
costly to train in terms of time.

11 epochs (the LSTM presented in Figure 7). At 15 epochs
there was a substantial drop in training accuracy which did
not appear to affect testing accuracy. However, the decrease
in training accuracy is reversed by 20 epochs. The network
presented in Figure 8 is represented by the blue square in
Figure 9, although it is evident that after 25 epochs the training
accuracy is maintained at near 100%, the testing accuracy
begins to decline suggesting that training the LSTM beyond
this point holds no benefit and becomes time costly.

Figure 11 highlights the activations of the biLSTM layer
within the network and shows that the activations for the top
half of the figure which correspond to the data from the left
foot are much more varied and dynamic than those from the
right foot. Broadly speaking this shows that the data from the
left foot has more effect on the dynamics of the network and its
behavior than that of the right foot. The difference is striking,
suggesting that the data from the left foot is overwhelmingly
responsible for the output of the network, which is the side the
knee brace is attached. Although surprising that the data from
the right foot was not used more by the network, the data in
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Fig. 7. Presentation of data from the best performing LSTM in this work
based on classification accuracy. The network gave an overall accuracy rate of
58.8%. The confusion matrix however provides the overall accuracy as well as
information on how the LSTM classified each PC. Based on the 12 different
PCs, a random performance woukld be 8.3%. The diagonal running from the
top left of the confusion matrix to the bottom right represents the number
(and percentage) of correct classifications of each PC. Perturbation condition
11 was the most accurately classified with a correct classification over 97 %
of the time. In contrast to this PC 7 was the least accurately classified with
correct classification occurring at a rate of only 15 %. This LSTM correctly
classified the exact condition more frequently than any other, for 10 out of
the 12 PCs. As a general trend, it can be seen that the model is classifying
a large proportion of the data accurately, which can be seen by the values
within the blue diagonal.

the right foot was broadly a mimic of a subset (without the
information from the knee brace as that was on the left leg)
of data from the left foot, and was therefore not as valuable
to the decision making process.

VI. DISCUSSION

The primary goal of this research was to determine if
an affordable and easy to use gait analysis tool could be
developed using in-shoe pressure sensors and deep learning
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Fig. 8. Presentation of data from an LSTM trained over 23 epochs with
an overall classification accuracy of 46.8%. Although the network presented
achieved an overall lower classification accuracy than that of Figure 7,
the LSTM was able to correctly classify the correct PC more often than
any other with 11 of the 12 PCs correctly classified overall. The overall
accuracy of this second network was lower based on a greater number of
incorrect classifications being more evenly spread, resulting in a lower number
of correct classifications overall, yet the highest classification values were
attributed to the correct class for 11 of the 12 conditions.
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Fig. 9. Graphical representation of the performance of the LSTMs over time
during training and testing. The red dot identifies the best performing LSTM
(Figure 7) and the blue square denotes the LSTM which presented with the
highest number of correct classifications (11 out of 12, Figure 8).

tools. The first objective was to explore the impact of fewer
channels of data available to the LSTMs based on a relatively
limited number of pressure sensors within the insoles, whilst
increasing both the number and complexity of the artificially
induced gait perturbations. The results show that a peak
accuracy of 58.8% for individual time steps of data was
achieved using the Moticon sensors (Figure 1) and a five
second data instance (Figure 6) on unseen data (data not used
for training purposes). This network correctly classified 10 of
the 12 perturbations correctly providing an accuracy of 83%
on aggregate.

The confusion matrices presented in this study show that
the LSTMs used were able to form patterns pertaining to
the classification of the PCs. Both Figures 7 and 8 clearly
illustrate that some PCs were correctly classified more often
than others (eg. PC 11 in both experiments) and that some PCs
were misclassified more often as one or two other (similar)
PCs such as PCs 1 and 12, whilst some were misclassified
over a broader spectrum (eg. PC 6). Moreover, some PCs

were never misclassified as others for example, PC 12 was
never misclassified as anything other than PC 11, and PC 11
was never misclassified as anything other than PC 10 (Figure
7). Some of these patterns can be logically explained based
on the characteristics of the conditions. Table 1 and Figure
1 presents those factors which dictate each PC. PCs 10 to
12 all consist of an under-heel rubber pad. It is therefore
possible that the networks identified the foot strike pattern
easily. This was evidenced by limited misclassifications of any
of the under-heel PCs to each other and minimal numbers of
misclassifications as PCs 3 and 4 (Figure 7). In Figure 8 only
two other PCs (3 and 7) were misclassified as PC 10 and
none were misclassified as PCs 11 or 12. The LSTMs were
clearly capable of differentiating between the three underfoot
perturbation conditions, irrespective of the knee angle restric-
tions. However, the two forefoot conditions were quite often
misclassified as the no under-foot condition but very rarely
as each other. The most obvious example of this is evident
in Figure 7 where the medial border underfoot perturbation
was only misclassified as a lateral foot PC a total of 14
times, whereas it was misclassified as one of the no underfoot
conditions 3719 times out of a possible 9838 instances.

A secondary objective of this study was to understand to
what extent underfoot pressure sensors, accelerometry data
and LSTMs would be able to identify multiple interacting
artificial gait perturbations derived from altered kinematics, as
induced at the knee joint, as well as those generated by under
shoe perturbations. Unlike the clear pattern seen relating to the
under-shoe perturbations described above, it was much more
challenging to identify a pattern within the LSTM output in
the confusion matrices related to the kinematic perturbations.
There are several plausible reasons for this: firstly, it is possible
that the impact of the restricted knee extension did not present
with substantially altered underfoot pressure for the LSTMs
to easily detect. This may have placed a greater reliance on
the accelerometry data. Secondly the method used to induce
the restricted knee extension was a locking knee brace, which
may have produced different kinematic responses from each
individual based on the fitting and physical properties of each
participant. Although the brace was secured as tightly as
possible to each participant, any slack in the system would
translate into different movement characteristics. Furthermore,
the different volumes of adipose tissue and muscle mass
within each participants leg may have altered the fitting. It
is therefore likely that the angular position of the knee is less
distinguishable by the networks. However, the present data
suggest that with a greater number of training instances and
participants this issue could be alleviated as the LSTMs did
correctly identify the kinematic conditions 1) (freely movable)
45.9% of the time, 2) (25◦ restriction) 72.0% of the time and
3) (45◦ restriction) 58.6% of the time.

Figure 10 illustrates how the LSTM (represented in Figure
7) interpreted data to make a classification. For each PC, a
matrix (44 x 50) of zeros was established and at random
a single zero was replaced with a one. If the addition of
the randomly assigned one improved the probability of the
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Fig. 10. A representation of how the LSTM from figure 7 interprets data to make classifications. This was built by starting off with a 44 * 50 matrix of
zeros, and at a random position a 1 is added. If this addition improves the probability of the network assigning a certain classification (this is repeated through
all the classifications) then the change stays. If it worsens the probability of said classification it is removed. This process is repeated for each of the 12
classifications so that the LSTM is over 99.9% sure each of the matrices is a specific classification. Then a final search is done to remove the 1’s whist not
reducing the 99.9% probability for the classification. What this more generally means is that for each of the 12 classifications, what is the minimum amount
of data required for the LSTM to be over 99.9% sure that that data represents a given classification. As can be seen in the image, each classification requires
different elements of data to be sure of an accurate classification.
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Fig. 11. A representation of the activations within the LSTM from figure 8 during a single instance of test data. What can be seen is that there are a range
of different activations in the top half of the graph which corresponds to the data from the left foot. The higher and more varied the activations show that
broardly those data channels are being used dynamically to alter the behaviour of the network. The data from the bottom half of the graph is more monotone,
and shows that the data from the right foot is not being used to dynamically alter the state of the network as much as the top half. This suggests that the
LSTM is placing more significance on the data from the left foot, which was the side of the body the knee brace was used.

network correctly classifying the PC, then the alteration to
the matrix remained. If the probability was not altered or
decreased the one was removed. This process was repeated for
all 12 PCs until the LSTM was able to classify a specific PC
with each matrix at over 99.9% probability. Finally, a search of
each of the 12 matrices was completed to remove the randomly
assigned ones, without reducing the classification probability
in order to reveal the minimum amount of data required for
a 99.9% classification probability for each of the 12 PCs. As
can be seen in Figure 10, each PC requires different elements
and amounts of data to be accurately classified. Perturbation
condition 3 clearly required minimal data for a classification
to be made (Figure 10). Moreover, the data required for a PC 3
classification exists on two horizontal bands which correspond
to the locations of the accelerometry data within the matrix.
This suggests that for PC 3 classification (which was classified
with 90% accuracy in figure 7), only the accelerometry data
may be required and pressure data was superfluous in this
instance. A similar trend was evident in PC 6, although the
division between the upper and lower band was not as clear
(Figure 10) and some elements of pressure data were evident in

the matrix locations. All other classifications appear to require
data from both the accelerometers and the pressure sensors for
the LSTM to be able to determine the appropriate PC.

Figure 11 builds upon this by showing that in more real
world situations, where classifications by the networks are
rarely over 99% certain, the bulk of the decision making
process is achieved from the data from the left foot - cor-
responding to the side of the body the leg brace was used.
It shows that over time, the data from the left foot results in
high activations and low activations meaning that certain parts
of the data are used more variably then others over a single
instance of data containing 500 time steps. The data from
the right foot in the lower half of the figure rarely contains
any activation outside of 0 ± 0.2. This suggests that for the
majority of the decision making, only one of the Moticon
insoles was required - and that both insoles were not treated
equally in the decision making process.

Overall and on balance, it can therefore be acknowledged
that the use of an appropriately trained LSTM can be used in
combination with the Moticon insoles to distinguish between
interacting artificially induced gait perturbations.



VII. CONCLUSION

This work has demonstrated that non-invasive wireless
insoles, in combination with LSTMs can be used to classify
interacting gait perturbations related to underfoot pressure and
kinematic restrictions. The separation of training and testing
data also demonstrated that the LSTM is capable of accurate
classification on unseen data from participants not used to
train the LSTM. This suggests that such technology has the
potential of future deployment to better inform movement
disorder diagnosis with implications to reduce the financial
and time burdens in clinical care settings.
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