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Abstract 

Brain signals are recorded using different techniques to aid an accurate understanding of brain function and to 
treat its disorders. Untargeted internal and external sources contaminate the acquired signals during the recording 
process. Often termed as artefacts, these contaminations cause serious hindrances in decoding the recorded signals; 
hence, they must be removed to facilitate unbiased decision-making for a given investigation. Due to the complex 
and elusive manifestation of artefacts in neuronal signals, computational techniques serve as powerful tools for their 
detection and removal. Machine learning (ML) based methods have been successfully applied in this task. Due to 
ML’s popularity, many articles are published every year, making it challenging to find, compare and select the most 
appropriate method for a given experiment. To this end, this paper presents ABOT (Artefact removal Benchmarking 
Online Tool) as an online benchmarking tool which allows users to compare existing ML-driven artefact detection and 
removal methods from the literature. The characteristics and related information about the existing methods have 
been compiled as a knowledgebase (KB) and presented through a user-friendly interface with interactive plots and 
tables for users to search it using several criteria. Key characteristics extracted from over 120 articles from the literature 
have been used in the KB to help compare the specific ML models. To comply with the FAIR (Findable, Accessible, 
Interoperable and Reusable) principle, the source code and documentation of the toolbox have been made available 
via an open-access repository.
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1 Introduction
Neuronal signals are one of the cornerstones of neu-
roscience in understanding brain activity. They can be 
acquired non-invasively with methods such as elec-
troencephalography (EEG) and magnetoencepha-
lography (MEG), as well as invasively in the cases of 
electrocorticography (ECoG), local field potentials (LFP), 

and neuronal spikes [1, 2]. They are crucial in diagnosing 
and treating brain disorders, including neurodegenera-
tive diseases and mental health problems. These include 
Alzheimer’s disease, cognitive impairments, schizophre-
nia, Parkinson’s disease, dementia, epilepsy, migraine, 
and sleep disorders, to name a few [3]. Additionally, they 
are used for establishing brain–computer interface (BCI) 
applications targeting rehabilitation and restoring motor 
functionality [4–8].

However, acquiring the neuronal networks’ activities 
requires sophisticated electrical and mechanical appa-
ratus within the proximity of the sensors. Moreover, 
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the acquired neuronal activities can also be transferred 
using wired or wireless interfaces for digitisation and 
storage. All this equipment used in the process intro-
duces unavoidable contamination to the acquired sig-
nal [9–11]. This contamination, popularly known as an 
artefact, can be physiological or caused by an external 
source [12]. The undesired effects of its present range 
from causing a BCI device to operate erroneously, mis-
diagnosis of diseases or brain conditions (as in the diag-
nosis of schizophrenia, sleep disorders and Alzheimer’s 
disease [13]) or producing false alarms (as in generat-
ing false alarms for brain seizures [14]). A collection of 
applications that benefit from artefact removal, such as 
the aforementioned ones, is presented in Fig. 1.

Given the consequences of artefacts on acquired 
neuronal signals, many scientists have been interested 
in developing methods for detecting and removing 
them [15]. Several approaches are proposed for this, 
for example, filtering out the specific spectrum of an 
artefact. However, several artefacts have a broad fre-
quency band and cannot be easily filtered [9]. Another 
known strategy is an expert’s manual review of the neu-
ronal recording and discarding of contaminated seg-
ments. Nonetheless, the information loss is significant 
and highly undesirable [16]. Because of this, different 
automatic techniques have been developed to clas-
sify and remove artefacts to preserve the information. 
These include blind source separation, wavelet decom-
position, regression, empirical-mode decomposition, 
template subtraction, adaptive filtering, and other vari-
ations or hybrid approaches, each with pros and cons 
[15, 17].

However, there has been a rise in recent years of new 
approaches based on machine learning (ML) techniques 
[26], as there are benefits of employing them over other 
computational methods. First, their inherent characteris-
tic for not requiring expert observation to classify arte-
facts, as they recognise the patterns in the data, improves 
the classification accuracy. Consequently, ML techniques 
outperform other methods in terms of classification per-
formance [19]. In addition, they do not require a refer-
ence channel, unlike regression or filtering methods [15]. 
They can be used in single-channel recordings, unlike 
independent component analysis (ICA), which needs the 
number of recording channels equal to the number of 
independent sources [21]. Moreover, they are more flex-
ible than template subtraction, which may add new arte-
facts due to the inaccuracy of the reconstructed template, 
as both the artefacts and the signals have complicated 
shapes. They can also remove artefacts that overlap in the 
spectral domain, unlike wavelet decomposition, which 
may cause information loss and faulty reconstruction of 
clean signals [16]. Lastly, they are computationally effi-
cient, allowing for online applications boosted by hard-
ware accelerators [27].

The extensive literature on ML-based solutions can 
be overwhelming to find, compare and select the best 
method which suits the researcher’s experiments. This 
is aggravated for the experimenters who do not need to 
know the technical details of the artefact detection and 
removal process to select an appropriate method for 
their acquired signals [28, 29]. In the literature, we find 
meta-studies of artefact detection and removal methods 
that are compiled in Table  1. It is shown that not all of 
the reviews describe the various artefacts, and that all of 
them focus exclusively on EEG and not the other neu-
ronal signals. Furthermore, only four of them mention 
ML-based methods, with only a small subset of the avail-
able literature compared. Overall, there exists a lack of a 
holistic overview of the artefact detection and removal 
across all neuronal signals from an ML perspective.

To address these challenges and facilitate access to 
appropriate ML and data-driven artefact detection and 
removal method, we developed ABOT (Artefact removal 
Benchmarking Online Tool). The literature was surveyed 
as resources for the tool to create an up-to-date dataset 
and define key features for users to compare. A review of 
the different approaches was carried out to complete a 
more thorough report. Therefore, this paper provides the 
following contributions in the area of artefact detection 
and removal in neuronal signals:

• Creation of an online tool for the neuroscience com-
munity to use, also available through an open-access 
repository.
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• Compilation of a comprehensive bibliographic data-
set of ML-based methods for artefact detection and 
removal from neuronal signals and defining and 
extracting key features for comparison.

• Reviewing the methodologies across all signal modal-
ities.

This article is divided into seven sections. In Sect.  2, 
the different signal acquisition methods are presented, 
followed by the details of the different possible artefacts. 
Section  3 describes the online benchmarking tool from 
the software development perspective. Subsequently, 
Sect.  4 covers the creation of the bibliographic data-
set, continued by the review of the collected articles in 
Sect.  5. Lastly, Sect.  6 discusses challenges and future 
perspectives within the field, and Sect. 7 makes conclud-
ing remarks.

2  Neuronal signal acquisition
There are distinct neuronal signals depending on the 
recording techniques, i.e., invasive or non-invasive. The 
non-invasive type includes those obtained by EEG as well 
as MEG. In contrast, the invasive type includes ECoG, 
LFP and neuronal spikes (including multi-unit activities, 
single-unit activities and patch-clamp recordings). The 
spatiotemporal resolutions of these techniques are shown 
in Fig. 2.

2.1  Non‑invasive signals
The principle behind MEG is acquiring the magnetic 
fields generated by the electric currents circulating in the 
neurons. These fields are 10−14 Tesla for evoked fields to 
10−12 Tesla in an epileptic episode and can be detected 
in cortical and subcortical regions by modern systems. 

These signals are captured by very sensitive magnetom-
eters, called SQUID (superconducting quantum interfer-
ence device), that require to be cooled at near absolute 
zero temperatures. Due to their sensitivity, the device 
must be stored in a magnetically shielded room to avoid 
external interferences. The advantages of the methods are 
that the spatial resolution of MEG ranges in a few mil-
limetres, and its temporal resolution is less than a mil-
lisecond, fast enough to detect any neuronal process. 
Furthermore, magnetic signals are much less depend-
ent on the conductivity of the extracellular space. Thus, 
skin and scalp muscles do not cause disturbances [30]. 

Table 1 Comparison of available reviews on methods applied to artefact removal, sorted by year of publication

AD artefact description, ML machine learning methods, LC literature comparison, #MLA number of machine learning articles compared

Authors Year AD Neuronal signals ML LC #MLA

Sweeney et al. [17] 2012 ✓ EEG ✕ ✓ 0

Khatwani et al. [18] 2013 ✕ EEG ✕ ✕ 0

Barua et al. [19] 2014 ✓ EEG ✓ ✓ 34

Rahman et al. [20] 2015 ✓ EEG ✓ ✕ 1

Urigu¨en et al. [16] 2015 ✓ EEG ✕ ✕ 0

Tandle et al. [12] 2015 ✓ EEG ✕ ✕ 0

Islam et al. [21] 2016 ✕ EEG ✓ ✓ 12

Jung et al. [22] 2016 ✓ EEG ✕ ✕ 0

Lai et al. [23] 2018 ✕ EEG ✕ ✕ 0

Manaan et al. [24] 2018 ✓ EEG ✕ ✓ 0

Jiang et al. [15] 2019 ✓ EEG ✕ ✕ 0

Sadiya et al. [25] 2021 ✕ EEG ✓ ✓ 13

Fabietti et al. 2022 ✓ EEG, MEG, ECoG, LFP, Spikes ✓ ✓ 127
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However, MEG must be used in combination with mag-
netic resonance data in order to create activation maps, 
as it does not provide anatomical information.

EEG records the electrical impulses coursing through 
the excitation of dendrites of several pyramidal neu-
rons in the cerebral cortex. The EEG signal acquisition, 
though depending on the application, usually records 
for 20–30  min and uses several different electrode lay-
outs, with the most popular one being the 10–20 system, 
whose spatial resolution is in the cm range. However, 
several acquisition systems have recently been pro-
posed to cover subcentimeter spatial resolution [31]. 
The electrodes utilised can be of different types: wet 
(requiring electrolytic gel or saline solution), semi-dry 
(tap water humidity) or dry (conductive foams, spring-
loaded fingers), where the latter can be beneficial in long 
term-experiments as they don’t dry up, but have higher 
impedance and are more sensible to artefacts. The low-
frequency range EEG works on can be assorted into Delta 
waves (0–3.5  Hz), Theta waves (4–7  Hz), Alpha waves 
(8–13  Hz), Beta waves (14–40  Hz) and Gamma waves 
(40  Hz). Since it possesses a low signal-to-noise ratio, 
elaborate processing is required to extract useful infor-
mation [22]. The main benefits of EEG is that its port-
ability allows to study real-time neuronal activity outside 
of laboratory settings, is non-invasive and requires a less 
complicated set-up, and modern technology advances 
had led it to be relatively inexpensive.

2.2  Invasive signals
ECoG signals are obtained with electrodes placed in 
the epidural or subdural layers of the brain, making it 
an invasive procedure. Still, it bypasses the distortions 
produced by the skull and intermediate tissue. The first 
location has a spatial resolution of 1.4  mm, while the 
second one of 1.25 mm. As the signal acquired has more 
amplitude than EEG, it is less sensitive to the artefact. 
Depending on the size of the electrodes, it can be clas-
sified as conventional ECoG for larger areas (e.g., mm in 
diam.) or µECoG for small areas (e.g., 100 µm in diam.). 
Furthermore, this method possesses a broad bandwidth 
(0–500  Hz) [32]. During the recording direct cortical 
electrical stimulation is frequently performed with it in 
order to do a cortical functional mapping and identi-
fication of critical cortical structures. A limitation this 
method has is the limited time window for recording, so 
sudden events such as seizures may not be recorded dur-
ing it.

LFPs are recorded by micro-electrodes (glass micro-
pipettes, metal or silicon electrodes) in deeper brain 
layers by low-pass filtering of the extracellular electri-
cal potential to under 100–300 Hz. The obtained signals 
encompass neuronal processes such as afterpotentials of 

somatodendritic spikes, synchronised synaptic poten-
tials, and voltage-gated membrane oscillations. Given its 
ability to capture different activities within a wide range 
of frequencies, it indicates the contribution of several 
different neuronal processing pathways [33]. They are 
recorded both in vivo and in vitro (brain slices), and can 
be utilised for closed-loop neuromodulation.

The single-unit recording detects neuronal activity 
with a microelectrode, which requires its size to be in 
the order of micrometres. The measured action poten-
tials’ amplitudes are generally 0.1  mV and are sampled 
at a 1 kHz or above frequency. Electrical currents can be 
injected into the cell to change the membrane potential 
in order to learn about its conductance, referred to as 
voltage clamp, and it can be carried out via different con-
figurations if the electrode is inside, outside or attached 
to the cell. When studying individual ion channels, a 
patch-clamp electrode is employed. If the electrode size 
is larger, it records the activities of a group of neurons, 
which is called multi-unit recording. Multi-unit record-
ing can be used to distinguish the number of cells sur-
rounding it, and which cell is the source for the spike is 
referred to as spike sorting [34].

2.3  Artefacts
Each type of artefact manifest in a specific frequency, and 
amplitude bands can be periodic or irregular and single 
or multichannel. They have distinct sources, classified as 
internal (or physiological) and external (or non-physio-
logical). We describe them in the subsequent paragraphs, 
but readers are directed to Ref. [12, 17] for more in-depth 
reviews.

The electrical activity within the body causes inter-
nal artefacts. The main ones include electrooculogram 
(EOG) generated by eye movements, electroretinogram 
and blinking [35, 36], electromyogram (EMG) produced 
by the contractions of muscles, electrocardiogram (ECG) 
caused by the electric activity of the heart [37] or the 
spiking activity of local neurons in extracellular record-
ings [38], in other words, spike leakage. In addition, there 
are other artefacts that are barely mentioned in the lit-
erature that we have surveyed, such as skin potentials or 
respiration [39–41]. External artefacts are those gener-
ated by electronic devices or external electromagnetic 
waves, e.g., power lines [42], cell phone signals and light 
stimulation [43]. In studies where electrical stimulation 
is done to the brain, said signal may also appear in the 
recordings, known as a stimulation artefact [10]. Lastly, 
artefacts may be generated due to instrumental errors in 
the recording process, such as an electrode’s poor con-
tact, popping, lead movements and electrode drift, i.e., 
changes in the electrode’s position in relation to the brain 
[44].
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In regard to their properties, they can be described by 
their frequency band and their shape. EOG changes the 
potentials of the electrodes in the frontal region, appear-
ing as high amplitude 3–10 Hz signals, and its repetition 
produces slow waves similar to delta waves. EMG ampli-
tudes and waveforms vary on the muscle and the degree 
of contraction, spanning a frequency range from 2 up to 
200 Hz, and it can be harder to detect due to their fewer 
repetition than the other artefacts. ECG has a regular 
pattern with frequencies near 1.2 Hz, and an amplitude 
in the millivolt range. Respiration artefacts manifest in 
the 5–10  Hz range, overlapping with the theta band in 
rats. Interference artefacts such as the transmission line 
(50/60  Hz) can be easily removed using a notch filter, 
whereas cell phone signals are in the order of megahertz 
and can be avoided in the experimental set-up. Lastly, 
instrumental artefacts generated by poor electrode con-
tact are of low frequency, whereas lead motions have a 
more irregular shape that bears little resemblance to neu-
ronal activity.

Therefore, each artefact manifest in particular fre-
quency bands, amplitudes and shapes, many that over-
lap with the neuronal signals of interest and even among 
themselves. Due to this, filtering without producing 
information loss or a distortion of the signal becomes 

difficult. As an alternative, computational methods such 
as ML techniques have been developed to identify and 
remove them automatically. Having reviewed the differ-
ent neural signals and artefacts, the functionalities of the 
online tool are described in the following section.

3  Online benchmarking tool
The online tool1 has been developed using the R lan-
guage. It is dependent on the packages "Shiny" [81], which 
facilitates the construction of interactive web apps, "DT", 
which provides an interface to the JavaScript library 
DataTables, "shinyjs" for performing common useful 
JavaScript operations in Shiny, "shinyWidgets" to control 
the appearance, "shinyalert" for error messages, "readxl" 
to import the tables, "dplyr" to filter them, "ggplot" and 
"plotly" to generate the graphs. A user-friendly three-
tab layout constitutes the app with a simplistic theme. A 
functional block diagram is displayed in Fig. 3. The rela-
tionships between the displays and user inputs in the 
GUI, the functions in the business logic layer, and the 
files in the back end are related. Upon opening the tool, 
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Fig. 3 Functional block diagram of the online tool, where the relationships between elements of the graphical user interface, the business logic 
and the back-end are displayed

1 https:// nacho dev. shiny apps. io/ ABOT/.

https://nachodev.shinyapps.io/ABOT/
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a pop-up message is displayed introducing the app and 
how to operate it.

A screenshot of the main page of the online tool is 
shown in Fig. 4. The user can input the metrics of their 
approach in the side panel (training examples, features 
extracted, hyperparameters, select which performance 
metric they have used and its value) to compare their 
results to the literature. In addition, they can send sug-
gestions of literature to add or comments about the 
tool, such as features they wish to see implemented via 
an online form. The first tab, "Comparison Plots", has 
four plots, each displaying the violin plot and the scatter 
points of each metric from the collected dataset. Below 
them, options are available to filter the plots based on 
the signal, method or artefact type, year of publica-
tion, number of examples, features extracted, hyperpa-
rameters and normalised performance. Multiple filters 
can be used simultaneously, and if the search yields no 
result, an alert appears to notify the user. In addition, 

the app takes the inputs of the side panel and displays 
the value as a white triangle to differentiate it clearly 
from the other values. By hovering over a point, the col-
lected information (reference, year, signal, etc.) specific 
to it is displayed, allowing easier identification for the 
posterior use of the other tabs.

The second tab, "Comparison Table", contains the 
table with the methodologies found across the litera-
ture and their previously reported details, the original 
performance metric reported, and the normalisation 
used. The user can select how many entries are shown, 
filter through each detail, define intervals in numeric 
details, or use keywords to search for specific ones. The 
last tab, "References Table", contains the list of Digital 
Object Identifiers (DOI) and the complete references, 
which can be sorted by author or keywords as well. The 
second and third tabs are depicted in Fig.  5A and B, 
respectively.

Fig. 4 Screenshot of the main page of the online tool, where input values and display filters have been applied to showcase the functionality
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Fig. 5 Second and third tab of the online tool, showing A the comparison table and B the references table
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The collected data and the tool’s code are made pub-
licly available2 to foster reproducibility by making it FAIR 
(Findable, Accessible, Interoperable and Reusable). This 
allows users to find relevant, multiple research models or 
customise one to their needs. In the next section, the cre-
ation of the tool’s dataset from articles with ML methods 
for artefact removal and detection is presented.

4  Bibliographic dataset creation
To survey the literature, three databases were searched: 
the ISI. Web of Knowledge database of the Clarivate Ana-
lytics,3 the IEEEXplore4 and the Scopus database of the 
Elsevier.5 The article title, abstract and author keywords 
fields of these three databases were searched using search 
phrases composed of "artefact removal" in conjunction 
with "EEG", "MEG", "ECoG", "LFP", and "spikes". The 
obtained results from three databases formed three data-
sets and were saved in separate comma-separated values 
(CSV) files. The datasets were compared and pruned by 
removing duplicate and irrelevant entries returned by the 
search results. The pruned and combined final dataset 
contained a total of 1084 publications whose yearly publi-
cation frequency is reported in Fig. 6.

Out of the shortlisted 1084 papers, manual scrutiny 
revealed that only 95 of them applied ML-based tech-
niques in artefact detection and removal. To have the 
most up-to-date review, the aforementioned literature 
search is complemented with Google Scholar, reaching a 
total of 127 articles that apply machine learning to arte-
fact detection and removal from neuronal signals.

The distribution of the type of signal, artefact type 
and method type in the extended dataset is presented 

in Fig.  7. For each distribution, articles that dealt with 
more than one type had each of them counted separately. 
For example, an approach for EEG that deals with EOG 
and EMG using a single support vector machine (SVM) 
model equals values of: 1 EEG, 1 EOG, 1 EMG and 1 
SVM.

There is a significant difference in the number of 
approaches published for EEG (84%), which is followed 
by MEG at 6% and the invasive recordings between 4 and 
2%. This difference can be attributed to the accessibility 
of non-invasive recording methods and the number of 
open-access datasets [45]. Regarding the type of artefact, 
EOG and EMG represent 71% of all approaches. The for-
mer has high amplitude and disturbs mainly the record-
ings anterior scalp regions. In contrast, the latter has a 
large frequency span and the activity of the head, face 
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and neck muscles are conducted through the entire scalp, 
so detecting and removing them is of vital importance. 
The remaining 29% is divided between ECG, power line, 
noise and others. The "noise" category was assigned to 
those which did not address the origin of the artefacts 
and referred to them as such, while the "other" included 
ones such as electrode pop, ballistocardiogram or elec-
tromagnetic interference. The most popular method has 
been neural networks (NNs) (44%), which are composed 
of multiple layers of neurons for processing non-linear 
information and were inspired by how the human brain 
works and are known to achieve good performances 
across domains, but require large amounts of informa-
tion. They are followed by support vector machines (27%) 
and any form of clustering (13%), while the least applied 
are linear discriminant analysis (LDA) (5%), k-nearest 
neighbours (kNN) (2%) and other techniques (9%), which 
includes approaches such as swarm algorithms or sparse 
representation.

In Fig.  8, the relationship between artefact type and 
ML method used to identify or remove it is shown. Both 
EMG and EOG follow SVM, NNs, clustering, and kNN, 
while ECG, noise, movement, power line and other arte-
facts are addressed mostly by NNs instead of SVM.

Our survey results show that there is no standard per-
formance metric, constituting a challenge to compare 
the different results obtained by authors. To address this 
issue, Valipour et  al. [46] have compiled the different 
metrics frequently used in research papers to consider 
the effectiveness of EOG removal algorithms. In addition, 

Islam et  al. [21] stated the necessity for using a unique 
standard evaluation method composed of quantitative 
and qualitative metrics.

While developing a metric or scale suitable for all the 
different applications may not be feasible, to compare 
them, observing four key characteristics of ML mod-
els are proposed: the amount of training examples, the 
amount of extracted features, the model’s hyperparam-
eters and the model’s performance. Machine learn-
ing models require information to make predictions 
accurately. However, the amount varies depending on 
each one. In particular, neural networks are known as 
data-hungry algorithms due to the amount they need 
to be trained; however, alternatives such as pre-trained 
models and one-shot learning help with this issue. Out 
of two models of equal or similar performance, the one 
which needs fewer data should be favoured. The sec-
ond characteristic is the number of handcrafted features 
extracted. To choose handcrafted features that require 
expertise and represent the information fed to a model, 
one should penalise the number extracted from a sig-
nal. The third characteristic is the algorithm’s number 
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Table 2 Examples of hyperparameters of machine learning 
methods

Method Hyperparameters

Neural network Learning rate
Momentum
Weight decay
Epochs
Batch size
Number of hidden 
layers
Neurons per hidden 
layer
Neuron’s activation 
function
Regularisation
Dropout
Weight and bias initia-
tion loss function
Output function num-
ber of classes [47]

Convolutional neural network (spatial feature 
learning)

Patch size
Convolutional layers
Fully connected layers
Number of filters
Filter size [48]

Support vector machine Kernel
Cost
Gamma
Degree [49]

k-nearest neighbour K

Linear discriminant analysis None

Clustering N clusters
Distance function
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of hyperparameters (see Table  2). This was chosen to 
reward algorithms that are less complex to train.

The last characteristic is a normalised performance 
score, as described in the following expression:

Here, the first case applies to metrics such as accu-
racy, the area under the receiver operating character-
istic (ROC), F1-score, sensitivity, specificity, expert 
agreement, R2; the second one to mean squared error 
(MSE), root mean squared error (RMSE), artefact 
residue; and the third one to signal-to-noise ratio, 
contrast-to-noise ratio and others. Due to the lack of 
a standard metric for evaluating artefact detection 
and removal, we have devised Eq.  1 as a way of aid-
ing the visual selection of methods, as the normal-
ised performance scales all metrics between 0 and 1. 
This information is meant to be utilised in conjunc-
tion with the rest of the information provided in the 
tool via hoovering or via the description table, not as 
an absolute comparison criterion on the performance 
of the method. This proposed scale is the first step to 
closing a major gap in the field, and its limitations are 
discussed in Sect. 6.

These four characteristics were chosen because 
they are the most consistently reported elements that 
can be used to compare the algorithms. In contrast, 
time complexity, memory complexity, parallelisabil-
ity, portability and interpretability were inconsistently 
reported. The selected characteristics were extracted 
from all the collected articles, and their distributions 
are displayed in Fig. 9. Overall, the majority have used 
less than 65,000 training examples, which is expected 
for machine learning models. Regarding the features 
extracted, most of them are under 20 with the pres-
ence of some outliers. As neural networks do not 
depend on them to achieve good performance and are 
the most utilised technique (see Fig.  7), the distribu-
tion is right-skewed. The hyperparameters take dis-
crete values, generating a gap in the distribution where 
there are no methods with that particular amount. The 
upper half is the neural network approaches, which 
present 44% of the total approaches, and the lower 
half is the remaining methods. Lastly, the normalised 
performance concentrates above 0.7 since research 
is sought to be published after achieving a successful 
performance level. Values lower than that are due to 

(1)Normalisedperformance =















metric
maxmetric , if bestmetric = 1

metric
1+metric , if bestmetric = 0

1− metric
1+metric , if bestmetric = ∞















the normalisation function, where removal techniques 
that haven’t achieved low MSE are significantly penal-
ised. Subsequently, we review the articles compiled in 
the dataset for a more in-depth analysis.

5  State‑of‑the‑art in artefact detection 
and removal

In the following sections, the articles from the dataset 
are reviewed, organised progressively by each level of the 
acquisition method’s spatial resolution. Given the exten-
sive literature available on EEG signals, the most popular 
articles are chosen to be discussed, while the rest will be 
provided as a table in the online tool. We define popu-
larity as the number of citations, however recentness also 
plays a factor in the number of citations, so we express 
the popularity of an article as stated in the following 
equation:

where i = 1,…, n and n equal the number of EEG articles 
in the dataset. Figure  10 depicts the publication trend 
in artefact removal from neuronal signals as a function 
of the citations and years since publication. While the 
popularity index allows the identification of high-impact 
articles, it does have a negative bias toward more recently 
published articles that may be of high relevance. None-
theless, the key information of those articles is available 
through the toolbox for users to explore and compare.

5.1  Magnetoencephalography
Hasasneh et al. [50] developed an ECG and EOG artefact 
classifier based on a combined convolutional neural net-
work (CNN), utilising temporal and spatial information 
of independent component analysis (ICA) components. 
From 48 subjects, 7122 examples were obtained after 
data augmentation, and the model achieved an accuracy 
of 94.4%. This has proven that accuracy improves when 
temporal and spatial information is incorporated. Addi-
tionally, the model was trained without relying on auxil-
iary signal recordings, and it allows for EEG and various 
sensor types as well.

(2)

Popularity
i
=

citationsi

max(citationsi,...,n)
∗ 0.9

+
1

1+ years since publications
∗ 0.1,
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Garg et al. [51] proposed two ECG and EOG identifiers 
composed of a deep 1-D CNN from ICA components. 
Resting state MEG data from 49 subjects were used to 
train the model and reached a 96% sensitivity and 99% 

specificity on the ECG model and 85% sensitivity and 97% 
specificity on the ECG model. Finally, gradient-weighted 
class activation maps were generated to visualise learned 
features, which shows how the model operates.
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In another publication by Garg et al. [52], they applied 
a 10-layer CNN, which labels EOG artefacts. The MEG 
data were extracted from 44 subjects, out of which 14 
were used for training and 30 for testing. The obtained 
accuracy on the testing set was 99.67%. The saliency 
maps and gradient-weighted class activation maps 
revealed that the model’s learned features correspond to 
those used by human experts.

The approach by Phothisonothai et  al. [53] consists 
of extracting the central moment of frequency, fractal 
dimension, Kurtosis, probability density and spectral 
entropy from independent components. Next, a Gaussian 
kernel SVM was trained to identify these features. From 
a dataset of ten healthy children, the obtained accura-
cies were 98.15%, 99.18%, and 92.33% for high amplitude 
changes (HAM), ECG and EOG, respectively.

Duan et  al. [54] presented a weighted SVM as an 
ECG, EOC and sudden high amplitude change artefact 
predictor. This method was chosen to address the class 
imbalance factor of the independent components. By re-
weighting, the examples belonging to the negative class, 
the specificity of the classifier was boosted. Using a data-
set composed of the MEG data of ten healthy children, 
the model’s accuracy was 97.91% ± 1.39%.

Rong et al. [55] applied two clustering methods to ICA 
components: threshold-based and an Adaptive Reso-
nance Theory (ART) neural network. The characteristics 
compared for thresholding were the statistical aspects, 
topographic patterns, and power spectral patterns. The 
MEG data were acquired from five healthy right-handed 
adults, and the chosen performance metric was "cor-
rectness". This can be defined as the proportion of real 

artefactual independent components identified over the 
total independent components identified by the algo-
rithm. The ART network achieved 60% correctness on 
ECG data and 70% on EOG data, underperforming con-
siderably against the 100% and 90%, respectively, the 
threshold method achieved. Lastly, they compared the 
number of real artefactual independent components 
identified over the total artefact independent compo-
nents in the dataset to measure named "coverage" to 
measure the underestimation of artefacts. This showed 
that the coverage of the network was approximately 85% 
over both artefacts.

Croce et al. [56] trained a CNN with the independent 
component’s spectrum and the topographic distribution 
of its weights, extracted from multichannel MEG and 
EEG recordings. From 503 brain and 564 artefact compo-
nents of the EEG recordings along with 2730 artefact and 
2019 brain independent components of the MEG record-
ings, the final dataset was downsampled to 2012 (503 
each category). The classification accuracies obtained 
through cross-validation were 92.4% for EEG, 95.4% for 
MEG and 95.6% for EEG + MEG.

Lastly, Treacher et al. [57] employed a combination of 1 
dimensional CNN for the independent components and 
a 2-dimensional CNN for the spatial maps to detect eye 
blinks, saccades and cardiac artefacts. The data set was 
composed of 294 scans from 217 subjects, out of which 
232 scans or 49,100 independent components were used 
to train the model. After hyperparameter optimisation of 
both networks, an accuracy of 98.87% was achieved on 
the test data by the ensemble model, surpassing the per-
formance of the individual temporal and spatial models.

In the case of MEG, we can observe that researchers 
constructed both artefact-specific models and multi-
ple-artefact models. The model by Duan et al. is able to 
identify multiple artefacts with near 98% accuracy, a per-
formance comparable to the models of other authors that 
are able to identify a single artefact. Treacher et al. also 
identify multiple artefacts but is more computationally 
expensive as it requires training two CNN models, and 
the model developed by Croce et  al. was trained jointly 
with the data of EEG, which may not be available in most 
experiments.

5.2  Electroencephalography
Winkler et al. [58] proposed an ICA-based approach that 
estimates the source components for the classification of 
general artefacts by factoring in temporal correlations, 
named temporal decorrelation source separation. Com-
ponents extracted from data of 12 healthy right-handed 
male subjects during two auditory stimuli in an oddball 
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paradigm were labelled by two experts. They were bro-
ken into 690 examples for training and 1080 examples for 
testing a Linear Programming Machine, a Gaussian ker-
nel SVM and a regularised LDA model. The LPM clas-
sifier obtained a classification error of 8.9% based on six 
handcrafted characteristics, while the difference between 
the two expert scores was 13.2%. For validation, they used 
data from two studies: 18 subjects in an auditory event-
related potential paradigm and 80 subjects in the motor 
imagery BCI paradigm. The former dataset achieved an 
average MSE of 14.7%, compared to 10.6% disagreement 
between experts. At the same time, the latter showed that 
eliminating up to 60% of the framework did not affect the 
overall performance of the BCI classification.

Shao et al. [59] applied a weighted version of SVM to 
handle the inherently unbalanced nature of ICA’s com-
ponent classification. By giving a higher penalty on the 
classification errors generated by the minority class sam-
ples, the algorithm compensates for the bias of prior 
class probabilities. EEG recordings were obtained from 
ten right-handed volunteers, segmented into 12 s epochs 
and then decomposed each one into independent com-
ponents by the ICA. Each independent component was 
manually labelled, and six features were extracted from 
them to train the models, trained with the recordings of 
9 subjects and tested with the left-out subject. The com-
pared models included the Gaussian mixture model, 
kNN, LDA, standard SVM and weighted SVM with and 
without error correction. The weighted SVM obtained 
the best results with error correction, an accuracy of 
95.67%, and a reduction of 98.4% and 96.8% in the epochs 
of ECG artefacts and EOG artefacts, respectively.

Shoker et al. [60] used ICA with SVM with handcrafted 
features. Ten 7-min-long EEG data sets were built with 
data supplied by King’s College Hospital, London, UK. 
After applying the blind source separation method, 200 
independent components were obtained: 100 free of 
artefact and 100 containing eye blinks; from them, four 
handcrafted features were extracted and used to train the 
classifier. The SVM was trained using linear, cubic poly-
nomial and Gaussian kernels, with the latter achieving 
the highest accuracy of 98.5 ± 1.00%.

Hader et al.’s [61] approach consisted of the application 
of ICA and SVM on the topography and power spectral 
density of the independent components. Four different 
artefacts were recorded from four healthy and paralysed 
subjects to train a Gaussian SVM using 20-fold cross-val-
idation. The accuracy was 99.39% for eye blinks, 99.62% 
for eye movement, 92.26% for jaw muscle and 91.51% for 
forehead, averaging 95.70% between them.

Lawern et al. [62] addressed artefact removal by means 
of implementing auto-regressive models for feature 

extraction coupled with a Gaussian SVM classifier. Seven 
participants made a series of facial and head movements 
that induced artefacts, which involved moving the jaw 
vertically, clenching the jaw, moving eyes left, moving 
eyes upwards, blinking both eyes, moving the eyebrows 
and rotating the head. An eight multi-class SVM was 
trained with these recordings, using fourfold cross-vali-
dation to determine its optimal parameters, finally reach-
ing a 94% accuracy.

Gao et  al. [63] presented a method where ICA is 
applied to obtain independent components; then, a peak 
detection algorithm recognises eye-blink artefacts, fol-
lowed by a classifier trained on the topographic and spec-
tral features to recognise eye-movement artefacts and 
finally, the artefact-free components are used to restore 
the signal. Their dataset was composed of 600 EEG 
epochs from 15 healthy subjects for 3 s per epoch. They 
compared three different classifiers: MLP, Fisher Discri-
minant Analysis and SVM, with the latter achieving the 
best scores of 98.7% sensitivity and 97.9% specificity, 
using tenfold cross-validation.

Li et al. [64] employed the Lomb–Scargle periodogram 
to determine the spectral power from recordings that had 
parts contaminated by artefacts removed and used those 
features to train an autoencoder and a Gaussian SVM. 
Evaluated with simulated and real motor imagery data, 
the autoencoder proved to be comparable to the SVM. 
Moreover, results show that accuracy is not reduced dra-
matically if various amounts of data are discarded. There-
fore, they concluded that rather than discarding an entire 
segment, it could use all the same to generate commands 
after removing the parts with artefacts.

O’Regan et al. [65] proposed complementing EEG sig-
nals with gyroscope signals to detect head-movement 
artefacts. They collected data on head movement from 
seven healthy male adults for 30 min. Both types of sig-
nals were preprocessed and divided into epochs for the 
analysis. A total of 69 and 80 features were extracted 
from each epoch of the EEG and gyroscope signals. For 
each type of signal, a Gaussian kernel SVM classifier was 
trained, and a third feature fusion classifier surpassed 
the former two. The fusion model reached an average 
AUROC of 0.822 for the participant independent model 
and 0.98 for the participant dependent model. This 
shows that additional information about the presence of 
EEG artefacts is given by gyroscope features and boosts 
their detection. Nguyen et al. [66] named "wavelet neural 
network" their EOG detection methodology. It is com-
posed of three steps: (i) decompose the raw signal into 
a group of wavelet coefficients; (ii) pass the coefficients 
in low-frequency wavelet sub-bands to an MLP for cor-
rection; (iii) reconstruct an artefact-free signal based on 
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the corrected coefficients. The technique was trained on 
simulated data and validated on two datasets, recorded 
during a visual selection task and a driving test. The 
authors achieved an RMSE of 12.2 for the driving dataset 
and 19.21 for the visual selection dataset, surpassing the 
results they obtained with ICA. Furthermore, the solu-
tion is computationally efficient and more practical than 
ICA, suggesting an online deployment is feasible.

Gonçalves et al. [67] focused on removing artefacts in 
EEG from the magnetic resonance sequence magnetic 
fields during the co-registration of EEG and functional 
magnetic resonance imaging. They utilised a hierarchical 
clustering algorithm, which employs Euclidean distances 
to aggregate the different pulse artefacts. The averages 
of each cluster were then used to generate an artefact 
template that was subtracted from the respective pulse 
occurrences belonging to each cluster. The artefact cor-
rection in this situation has no ground truth to compare 
the outcome of the correction algorithm. Nonetheless, 
the authors used the estimated acquisition time of one 
slice to determine the quality of the successful correction.

We can observe that most of these articles share the 
commonality that they have utilised SVM as the classifi-
cation model. From them, Lawern et al. has been able to 
achieve a performance nearing 96% in a model that is able 
to identify 7 types of artefacts, the most out of any arti-
cle reported in the literature. This is achieved with only 
a second-order auto-regressive model as a feature, and 
was tested in real patient data. A benefit of the feature is 
that it is scale-invariant, so it is stable across subjects and 
computationally efficient to calculate, in contrast to ICA-
based approaches. However, Lawern et  al.’s approach 
must be used in conjunction with other methods for 
those looking to recover the underlying signal.

5.3  Electrocorticography
Alagapan et  al. [68] developed an artefact removal 
algorithm for ECoG labelled shape adaptive non-local 
artefact removal (SANAR). This approach works by 
approximating the Euclidean median of k-nearest neigh-
bours of each artefact in a non-local manner, acquiring 
a template of the artefact, which then is removed from 
the original signal. It was applied to data obtained from a 
single subject carrying out a working memory task while 
being simultaneously stimulated, as well as a simulated 
ECoG and direct cortical stimulation, where an antenna 
connected to a function generator acts as a virtual dipole, 
and a saline solution emulates the conductivity of the 
grey matter. Artefact residue index was used to measure 
performance, which should be close to 0. ICA achieved 
0.430 ± 0.015, while SANAR 0.388 ± 0.011, reaching bet-
ter performance. Nonetheless, one must consider the 

extended calculation time as one of the main limitations 
of the method.

From another perspective, Tuyisenge et al. [69] devel-
oped a model for detecting bad channels in ECoG 
recordings of seizure patients undergoing pre-surgical 
recordings and stimulation. They extracted the corre-
lation, variance, deviation, amplitude, gradient, Hurst 
exponent and Kurtosis from each channel and fed it to a 
bagging tree model for classification. They explored the 
model’s performance based on the number of subjects 
used to train it, which plateaued at 99.7% accuracy with 
110 subjects. The wrong channels consisted of artefacts 
such as electrode pop, power line noise and intermittent 
electrical connection.

Nejedly et  al. [70] proposed using CNN with five dif-
ferent frequency bands of the recordings as inputs to 
identify between physiological, pathological, noise and 
muscle activity and power line noise. Their analysis was 
made using two large datasets. They made a general 
model (trained with one dataset and validated with the 
other) and a specific model (retraining the general model 
with 8% of the second dataset and validating with the 
remaining data). The general model achieved an F1-score 
of 0.89 in the noise and muscle activity class, while the 
specific model achieved 0.98 and 0.97 in power line and 
noise and muscle activity classes, respectively. The overall 
performance of the specific model was 0.96, including the 
physiological and pathological ECoG classes.

Finally, Fabietti et al. [76] explored the impact of sam-
pling frequency in the four-way classification of baseline 
brain activity, seizure, line noise and noise and muscle 
activity. After down-sampling to balance the classes; they 
used 67,992 examples to train a CNN. At 5  kHz, they 
achieved a sensitivity of 99.7% for the line noise class and 
91.9% for the artefact class. When the signals are down-
sampled to 250 Hz, the respective sensitivities are 99.4% 
and 87.8%, indicating a small loss of performance for a 
sequence reduction of 20 times.

Taking these articles into consideration, Tuyisenge 
et al.’s approach to utilise bagged decision trees achieves 
the best performance of artefact detection in ECoG sig-
nals. The performance was tested on the left-out data of 
100 patients, indicating the robustness of the method. 
It is also worth highlighting that they utilised the least 
amount of training examples, as it was not a deep learn-
ing model, and achieved the performance with only 7 
handcrafted features.

5.4  Local field potentials
Regarding artefact detection in LFP, Fabietti et  al. 
have explored several approaches. Their dataset com-
prises multi-site electrode recording in freely moving 
male Long Evans rats. First [72], they proposed using a 
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multi-layered perceptron for the binary classification of 
LFP and artefacts of various origins. They explored how 
the performance varied based on the input length in both 
subject-specific and cross-subject models. The cross-sub-
ject model achieved an accuracy of 93.2%. This was fol-
lowed by their second work [68].

A recurrent architecture, namely a long-short term 
memory (LSTM), was also used for binary classification 
and an approach based on forecasting. After comparing 
different parameter combinations, the best classification 
model achieved an accuracy of 87.1%, while the fore-
casting approach could not identify the two classes with 
good performance. The third approach [73] consisted 
of using CNNs, where three popular architectures were 
adapted for the one-dimensional signal. The best perfor-
mance was achieved by the Alexnet [74] inspired model, 
with an accuracy of 95.1%. In addition, grad cam maps 
were extracted to understand which portions of the sig-
nal the model used for assigning each class. Continuing 
to explore interpretability, a decision tree-based model 
was the basis for the fourth research article [75]. They 
explored three feature extraction toolboxes combined 
with three feature selection methods to obtain an accu-
rate and interpretable model. The accuracy of the deci-
sion tree was 89.3%.

From the artefact removal perspective, Fabietti et  al. 
[77] proposed using an LSTM network to forecast "nor-
mal" neural activity to replace the artefactual segment. 
An open-source dataset of rodents in a treadmill was 
used to train the model, fed 200 ms long sequences and 
was asked to predict the subsequent data point in a slid-
ing window approach. The performance was evaluated 
as the RMSE of 100  ms across four individual subject 
models and a cross-subject model, which achieved a per-
formance of 0.189 in the test set. Afterwards, the gener-
ated signals were compared in the temporal and spectral 
domains, where they mimic the properties of the physi-
ological recordings. These approaches have been com-
piled into an open-access toolbox for artefact detection 
and removal [78].

In general, it can be said Fabietti et al. has compared a 
wide range of architectures for artefact detection in LFP, 
and over two datasets the CNN [74] has achieved the 
best accuracy and the lowest computational time to clas-
sify a minute of recording. In regard to artefact removal, 
the use of LSTM to forecast over corrupted LFP seg-
ments has shown promise, and may prove use useful in 
single-channel EEG applications.

5.5  Spikes
Klempivr et al. [79] approached artefact detection using 
transfer learning with a CNN based on AlexNet. The 
dataset was composed of thousands of 10-s extracellular 

microelectrode recordings of 58 patients with Parkin-
son’s disease. Approximately 75% of the recordings did 
not contain any artefacts, and the preprocessed dataset 
consisted of nearly 100,000 one-second signal segments. 
Continuous wavelet transform was applied to gener-
ate a time–frequency image, which was the input to the 
network. This pipeline attained an accuracy of 88.1% for 
artefact identification and 75.3% accuracy for the individ-
ual classes of artefact identification.

From another angle, Hosny et al. [80] explored the use 
of machine learning to detect artefacts from multi-elec-
trode recordings. Their data consisted of recordings from 
17 Parkinson’s disease who showcased artefacts such as 
mechanical motion, electromagnetic interference, base-
line drift, irritated neuron and others. Power spectral 
density and wavelet packet decomposition was used to 
obtain 106 features, which were used to train classifiers 
such as Gaussian SVM, decision trees, AdaBoost, Bag-
ging learners, LogitBoost and an LSTM network with 
3785 examples. The best performing model was the 
LSTM network, with an accuracy of 97.49% on the test 
set.

Overall, Hosny et  al. out-performs Klepmvir et  al. in 
regard to the achieved accuracy on binary classification. 
Furthermore, Hosny’s model was trained with nearly 
half the amount of examples that the latter used, and 
the examples included a wider range of artefacts. How-
ever, training a LSTM network end-to-end is significantly 
more computationally expensive than to apply transfer 
learning to the Alexnet CNN.

We proceed to discuss the challenges in the field and 
the advantages and limitations of the tool in the subse-
quent section.

6  Discussion
The toolbox allows filtering the data to find approaches 
that match the application of interest and compare them. 
However, if the user does not filter the data, is it a valid 
comparison between different types of signals, types of 
subjects and types of artefacts? For example, a method 
for removing muscle artefacts from human EEG record-
ings may not be very useful when developing or search-
ing for methods for removing stimulation artefacts in a 
rodent’s patch-clamp data. The difference between the 
different neuronal signals across subjects is significant 
enough to expect deviations when adapting from one to 
another. In addition, preprocessing such as filtering and 
feature extraction may also be needed to be adapted as 
means to obtain a working model. Regarding adopting a 
model of one type of artefact to another, some authors 
have applied the same model to different artefacts and 
achieved similar performances [52, 82, 83].
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Furthermore, the approaches that address multiple 
types with a single model do so at a performance simi-
lar to other approaches with the same model that deal 
with only one type. Overall, the comparison outside 
the application must be done diligently, knowing that 
it does not mean that the performances will be main-
tained. Still, it can help orient those looking for which 
method to apply by discarding those that don’t perform 
well. The normalised scale may also miss-represent 
results; for example, a high classification accuracy will 
be mapped to a value near 1; however, one must achieve 
an extremely low RMSE to achieve the same results. 
Nonetheless, it provides an approximation of the per-
formance of the approach, which can be evaluated fur-
ther on the table with the same metrics if desired. To 
the best of our knowledge, no other attempts to solve 
this issue have been made before so that it can be used 
as a starting point.

Out of the many challenges the field currently poses, 
replicability is the main one. Most studies have used 
private datasets, and outside the few hosted in physio-
net [84] or BCI competitions [85], the data have been 
removed from their respective websites. A limitation of 
this work is that despite the key characteristics of the 
approaches have been listed, details such as preprocess-
ing steps or the layers of the neural networks are not 
listed. That information can be behind paywalls, lead-
ing to the inability to reproduce and compare results 
among studies. A second shortcoming is that the listed 
characteristics may not be sufficient for some research-
ers to decide; for example, the processing time is crucial 
information for selecting algorithms when looking for 
online implementations. However, the selected charac-
teristics mainly were present throughout the surveyed 
literature, whereas others, such as the normalisation 
procedures, hyperparameter values, hardware utilised 
for training and computational time, were very incon-
sistent. Lastly, the toolbox focuses on machine learning 
solutions, excluding the wide range of artefact removal 
methods listed in Sect.  1. While this limits the tool’s 
utility for those looking for the "best approach across 
the board", it is hoped that it will be useful for those 
looking at data-driven solutions or those with academic 
purposes such as method development or comparisons 
of machine learning methods.

Moving forward, automatic removal has a significant 
role to play in neuroscience. Craik et al.’s [86] review of 
deep learning for electroencephalogram classification 
tasks indicates that 63% of the studies did not methodi-
cally remove the artefact. Moreover, 29% removed 
them manually, and only 8% of studies used automatic 
methods, which mainly relied on ICA-based algo-
rithms. In addition, Roy et al.’s [87] deep learning-based 

electroencephalography analysis review showcases in 
their survey that 47% did not remove artefacts, 30% 
did not mention if it was applied at all, and only 23% 
removed artefacts. Thus, there is an excellent opportu-
nity to apply the methods listed in the tool in classifica-
tion and other tasks. As previously indicated in Fig. 6, 
there is a consistent growth in the number of articles 
published every year that mention artefact removal. 
Filtering them, extracting the key characteristics and 
incorporating them into the tool takes time, another 
limitation of the proposed work. However, we hope 
that users will help us with its improvement via the sug-
gestion email option by drawing our attention to where 
updates are needed. Hopefully, this will mean that the 
tool will remain valuable and necessary.

As online processing is taking more relevance, com-
putationally and energy-efficient methods are desired. 
The trend shows that machine learning will most likely 
be the future direction in the field, given that those 
approaches suit the requirements mentioned above. 
This means that the next step is focusing on develop-
ing more interpretable models, especially those that 
include neural networks, providing insight into how 
variables interact and the model operates. In addi-
tion, models should allow interaction, such as choos-
ing which artefact to detect, turning it off when it is 
not required, or allowing modification of the classifi-
cation probability threshold. There is no wide range 
of techniques that excel for all possible artefacts and 
conditions; therefore, approaches should improve the 
robustness across multiple subjects and different bio-
logical contexts [88]. The use of several processing 
stages in which each phase eliminates each artefact to 
increase the signal’s quality by using a series of algo-
rithms remains a possibility [16].

7  Conclusion
To analyse brain signals without interference from arte-
facts, researchers have proposed different means to 
detect and remove them. Because of the extensive litera-
ture on the topic and the wide range of signals, artefacts, 
and ML techniques, we have developed an online tool 
that facilitates browsing through the literature. The user 
can compare the performance of approaches for bench-
marking or for implementation via the graphs and tables 
available in the tool. We have successfully surveyed the 
literature and extracted key characteristics of the differ-
ent machine learning methods for the tool to showcase. 
In addition, the compiled articles were reviewed for a 
more comprehensive analysis. We hope the community 
adopts the tool; for that purpose, we have made it open-
access and made its code available and allowed users to 
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send suggestions via the tool. By facilitating the bench-
marking of new methods, as the state of the art of artefact 
detection and removal techniques improve over time, so 
will the results of brain studies and BCI applications.
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