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ERP Detection Based on Smoothness Priors
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Abstract—Objective: Detection of event-related potentials
(ERPs) in electroencephalography (EEG) is of great interest in
the study of brain responses to various stimuli. This is challenging
due to the low signal-to-noise ratio of these deflections. To
address this problem, a new scheme to detect the ERPs based
on smoothness priors is proposed. Methods: The problem is
considered as a binary hypothesis test and solved using a smooth
version of the generalized likelihood ratio test (SGLRT). First,
we estimate the parameters of probability density functions from
the training data under the Gaussian assumption. Then, these
parameters are treated as known values and the unknown ERPs
are estimated under the smoothness constraint. The performance
of the proposed SGLRT is assessed for ERP detection in post-
stimuli EEG recordings of two oddball settings. We compared
our method with several powerful methods regarding ERP de-
tection. Results: The presented method performs better than the
competing algorithms and improves the classification accuracy.
Conclusion: SGLRT can be employed as a powerful means for
different ERP detection schemes. Significance: The proposed
scheme is opening a new direction in ERP identification which
provides better classification results compared to several popular
ERP detection methods.

Index Terms—Event-related potentials, P300, smooth signal,
detection, generalized likelihood ratio test.

I. INTRODUCTION

EVENT-related potentials (ERPs) are small deflections in
the brain activity signals which are related to the attention

and perception levels of the brain processes. These small po-
tentials can be evoked using sensory stimuli or even by motion
and cognitive events [1]. Detecting and studying ERPs are of
great interest in the field of biomedical signal processing, and
can be used for medical diagnostics [2] or brain-computer
interfaces (BCIs) [3]. Electroencephalography (EEG) is one
of the most convenient tools to capture these potentials. EEG
signals can be seen as a combination of desired signals
(i.e. ERPs), the background EEG (the constant brain waves
related to normal physiological activities), and noise (e.g. the
measurement noise, eye blinks, and movement artifacts). If the
non-ERP components are counted as noise, then the signal-
to-noise ratio (SNR) of ERP is low, and therefore, the other
sources often dominate the ERP waveform. Thus, detecting
ERPs and tracking their parameters through the ongoing EEG
are challenging [1]. Hence, new and effective signal processing
techniques to more accurately detect and estimate the ERPs
become necessary. ERP sequences are composed of several
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components and each component is related to a specific level
of brain process [4]. EEG-ERP frequency domain analyses
have indicated that these components have a smooth behavior
compared to the wide-band background activities [5], [6]. This
a priori on the desired signal structure can be used to improve
the conventional ERP detection techniques.

Contribution: In this research, we propose a new scheme
to detect ERPs from multichannel EEG signals based on
smoothness priors. The main contribution of this work is to
mathematically model and embed the smoothness constraint
into an ERP detection scheme and provide a unified powerful
method. To reach this goal, the problem is considered a binary
hypothesis test, and it is solved by a two-step generalized like-
lihood ratio test (GLRT). In the first step, the GLRT solution,
without considering smoothness priors, is obtained. It is shown
that the achieved detector tends to be a linear discriminant
analysis (LDA) method. In the second step, smoothness priors
are added to the problem. Consequently, the solution leads to a
smoothing operator that maps the data into a smooth subspace
to better estimate the desired signal. Then, this operator is
imposed on the GLRT solution and the proposed smooth
GLRT (SGLRT) is achieved. Monte Carlo simulations over
different ERP datasets show improved detection rates for the
new method. The proposed SGLRT mainly relies on a single
parameter that specifies the smoothness level of the desired
signal, and it can easily be tuned for different ERPs.

The proposed method is evaluated over two ERP compo-
nents namely P300 and mismatch negativity (MMN), focusing
on P300 as one of the most studied ERPs. These compo-
nents are more pronounced during the oddball paradigm. The
subjects are exposed to a series of frequent (non-target) and
infrequent (target) visual or auditory stimuli in such settings.
Research findings indicate that when a subject is exposed to
an infrequent stimulus, there is a small deflection in his/her
EEG [5], [7]. The brain response to a rare stimulus can
be used as a cue to control a BCI system. Generally, the
studies on ERP signals can be divided into two categories.
The first category focuses on ERP detection and tries to solve
a binary classification problem to determine the target stimuli
[3], suitable for BCI systems (e.g. a speller) [8]. The second
category focuses on the estimation of ERP subcomponents
and tracking their parameters (such as amplitude, latency,
and width). In these studies, the target trials are usually
known and the inter-trial variability of ERPs is of interest
[9], suitable for diagnostic purposes [2]. The scope of this
contribution is the detection of ERPs. According to the review
article by Philip et al. [8], the most frequently employed
classification methods for ERP (P300) elicitation are LDA,
support vector machines (SVM), distance-based classifiers,
artificial neural networks (ANN) and ensemble classifiers.
Among recent studies regarding ERPs, the following works
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can be named. Yang et al. [10] proposed a simultaneous spa-
tiotemporal equalization (STE) technique for whitening EEG
data based on a multivariate autoregressive (MVAR) model,
followed by a correlation detection (CD) method (STE-CD)
for P300 detection. Campos et al. [11] developed an efficient
algorithm to extract the underlying waveforms of ERPs using a
three-step spatial filtering method. These waveforms are called
principal ERPs (pERPs), and the method to represent ERP
signals based on the pERPs is called pERP-reduction (pERP-
RED). Oralhan [12] proposed a 3-dimensional convolutional
neural network (3D-CNN) for P300 detection, and Zhang
et al. [13] presented a deep neural network consisting of
parallel spatial and temporal units (named STNN) for P300
detection. Most of these studies consider the ERP smoothness
by roughly applying a low pass filter to the data. However,
in this study, the smoothness is a built-in property of the
presented method, which we believe, can be beneficial by
enhancing the estimation of ERPs.

SGLRT is compared with LDA, SVM, STE-CD, pERP-
RED, and STNN. The methods are evaluated over three
publicly available datasets on P300 and MMN. The results
demonstrate that the presented method can outperform the
competing algorithms in different experimental setups and
metrics. The rest of the article is as follows. In section II, the
proposed method is rigorously investigated. In section III, the
evaluation schemes, parameters selection, and the comparative
results of the different methods are presented. Section IV
includes the discussion on the competing methods. Finally,
the paper is concluded in section V.

II. METHOD

Here, a two-step GLRT approach is developed to detect
the activity of an ERP component in the background EEG.
This method is usually used when the probability density
function (PDF) parameters of observations are unknown. For
a binary hypothesis test, GLRT is extracted as the likelihood
ratio of observations, where the PDF unknown parameters are
calculated using maximum likelihood (ML) estimation under
the corresponding hypothesis. Then, the likelihood ratio is
compared with a predefined threshold and the hypothesis is
determined. The threshold is calculated based on a desirable
false alarm rate [14].

A. Proposed Detection Scheme

The framework for the proposed SGLRT consists of two
steps. First, the detection problem is solved by a GLRT
approach without smoothness priors. Second, the smoothness
priors are added to the problem and the solution is found.

1) GLRT Solution without Smoothness Priors: Here, we
should decide whether the post-stimulus EEG recordings in-
clude ERP. This is to separate the target and non-target trials
while the non-target trials are considered as the background
activity. Furthermore, the background activity is modeled as a
multivariate Gaussian noise with an unknown structure. The
mixing model of signal and noise is assumed to be additive,
widely used in the literature [15].

Let X ∈ RJ×N be a post-stimulus data matrix, where
J is the number of samples in time and N is the number
of recorded channels. The data matrix is then vectorized by
concatenating its columns, leading to JN×1 column vector x.
Each vectorized or matrix form of post-stimulus observations
is known as a trial. Let Class c0 be a collection of trials
excluding ERP, and class c1 be a collection of trials including
ERP.

Problem Formulation: Consider x0 as a vector of obser-
vations to be tested, and xik as k’th training trial of class
i ∈ {0, 1}. Here, the problem can be seen as a binary
hypothesis test,

H0 : x0 = v0 vs. H1 : x0 = p+ v0

and for both hypotheses, we have the training trials as{
x0k = v0k, k = 1, 2, ...,K0

x1k = p+ v1k, k = 1, 2, ...,K1

where K0 and K1 are the numbers of available training
data samples for the classes c0 and c1, respectively. In
the above representation, v0, v0k (k = 1, 2, ...,K0) and v1k
(k = 1, 2, . . . ,K1) are JN × 1 column vectors of noise
which are assumed to be drawn from a multivariate normal
distribution with unknown mean and covariance. These vectors
are assumed to be independent and identically distributed
(i.i.d.). However, the samples within each vector are correlated
as represented by the covariance matrix. The noise vectors are
assumed to be a combination of background EEG and other
noise sources (e.g. the noise of the recording device). p is a
column vector of length JN which indicates the presence of
ERP, also, p is a smooth sequence.

Formation of the likelihood ratio: To derive GLRT, the
likelihood ratio of PDFs under two hypotheses should be
formed. To this aim, the test and train data samples are
concatenated in a long vector and the PDF parameters of all
data under each hypothesis are found. Since we have assumed
that the trials are independent, there are only three parameters
to be estimated under each hypothesis, mean of the data that
does not contain ERP, mean of the data that contains ERP,
and covariance matrix of normal distribution. Although these
three parameters are the same for the two hypotheses, their
estimations are different under each hypothesis. Here, the
estimation of p is embedded in the estimation of the mean.

Let xall = [xT0 , x
0
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where αj = (1/(
√

2π
JN |Rj |1/2))1+K0+K1 is the normal-

ization coefficient of PDF function (|.| denotes determinant
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operator), and µ
0j

, µ
1j

and Rj are mean of the data that does
not contain ERP, mean of the data that contains ERP, and the
covariance matrix of normal distribution, respectively. For ML
estimation of unknown parameters under Hj , we have:

µ̂
0j

=
1

K0 + 1− j

(
(1− j)x0 +

K0∑
k=1

x0k

)
(2)

µ̂
1j

=
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K1 + j

(
jx0 +

K1∑
k=1

x1k

)
(3)

R̂j = 1
K0+K1−1

(
(x0 − µjj

)(x0 − µjj
)T

+
∑K0

k=1(x0k − µ0j
)(x0k − µ0j
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+
∑K1

k=1(x1k − µ1j
)(x1k − µ1j

)T
)

(4)

Here, R̂j is in fact the scaled and unbiased version of ML
estimation, known as sample covariance matrix (SCM). Note
that, the mean estimators are efficient and SCM is uniformly
minimum variance unbiased (UMVU). Therefore, they give
the best possible estimations from the available data samples.
SCM is unbiased regardless of the data distribution. However,
if the normality assumption is not met, it may not be UMVU
[16]. By likelihood ratio and using the estimated parameters,
GLRT can now be extracted as:

LGLRT (xall) =
f(xall; µ̂01

, µ̂
11
, R̂1, H1)

f(xall; µ̂00
, µ̂

10
, R̂0, H0)

(5)

The above equation is the exact GLRT solution for our
hypothesis test. However, it can be simplified by excluding x0
for estimation of unknown parameters. It can be shown that
under the Gaussian assumption, the estimation of mean and
covariance are unbiased and consistent (i.e. by increasing the
number of training samples, their estimations converge toward
the true values) [16]. Hence, for large datasets, x0 can be
ignored. In this case, µ̂

00
= µ̂

01
= µ̂

0
, µ̂

10
= µ̂

11
= µ̂

1
and

R̂0 = R̂1 = R̂, and we have:

µ̂
i

=
1

Ki

Ki∑
k=1

xik (6)

R̂ = 1
K0+K1−2

(∑K0

k=1(x0k − µ̂0
)(x0k − µ̂0
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+
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k=1(x1k − µ̂1
)(x1k − µ̂1

)T
)

(7)

where i ∈ {0, 1}. Now, using the simplified estimations to
form the likelihood ratio and taking the natural logarithm,
GLRT is achieved as,

LGLRT (x0) =
[
1
2 (x0 − µ̂0

)T R̂−1(x0 − µ̂0
)

− 1
2 (x0 − µ̂1

)T R̂−1(x0 − µ̂1
)
] H1

≷
H0

ηGLRT (8)

In the above equation, the weighted distance between the trial
under test (i.e. x0) and the mean of each class is calculated,
then, their difference is compared with a threshold and x0
is assigned to the closer class. The representation of GLRT

in (8) is equal to an LDA approach [17]. Note that LDA
is suboptimal to the Bayes classifier when the distributions
are Gaussian. In the Bayes classifier, a priori information (the
probability of each class) and loss coefficients are used to
form a fixed threshold. To designate each test data category,
the likelihood ratio is compared with this threshold. Here,
ηGLRT is considered as a floating threshold. However, it can
be set by considering a priori information and loss coefficients.
For example, if πi is the occurrence probability of hypothesis
i ∈ {0, 1} and lij , (i, j) ∈ {0, 1} is the loss of selecting Hi

in case of Hj , then an appropriate value for the threshold is
ηGLRT = ln ((l10 − l00)π0/(l01 − l11)π1) [14].

2) SGLRT - Improving GLRT by Exploiting ERPs Smooth-
ness: Here, it is proposed to use a smooth estimation of the
desired signal from observation vector x0 in GLRT instead of
x0 itself. This idea comes from the fact that ERPs have slow
fluctuations compared to the background EEG. Furthermore,
to test each incoming data vector x0, it is compared with the
mean signals of each class which are achieved by temporal
averaging. Hence, we suggest mapping x0 into a smooth sub-
space and increasing the SNR by eliminating high frequency
and noisy contents. Therefore, the EEG under test is pulled
closer to its corresponding class mean.

Smooth signal PDF: It is assumed that x0 = s + n,
where s is an unknown smooth template and n is a noise
component covering the corresponding frequency band and is
sampled from a zero-mean Gaussian distribution with known
covariance matrix R̂. The smooth template includes the ERP
component under H1 and excludes it under H0. In either case,
it can be estimated from x0 under smoothness constraint. Here
also an ML estimation approach is employed. Note that in
this representation, s is the unknown mean of the multivariate
normal distribution that x0 comes from, and we are going to
estimate this mean by using only one trial. It is straightforward
to show that without smoothness constraint ŝ = x0.

Consider s = Φs′, where Φ is a structural matrix chosen
to form s based on s′. Here, s′ is a template formed by the
concatenation of the temporal vectors from the main sources
contributing to the ERP components in the source space. Φ
gives the freedom to form a convenient structure for s based
on the underlying sources of ERP. For example, assume that
the P300 is best recorded in two positions on the scalp (one
from the frontal region and the other from the central). In this
situation, the concatenation of P300 sources can be modeled
as s′, and these sources can be projected to the channels of
interest by a linear combination of their time samples through
Φ. This example can be extended to more independent sources
over the scalp (see Appendix B for more details). Now, the
PDF of each observation vector x0 can be modeled as:

f(x0; Φs′, R̂) = β exp

(−1

2
(x0 − Φs′)T R̂−1(x0 − Φs′)

)
(9)

where β = 1/(
√

2π
JN |R̂|1/2) is the normalization factor of

PDF function. In the above representation, s′ is the unknown
smooth template to be estimated.

Desired signal estimation under smoothness constraint:
In modeling the smoothness constraint, we used the fact that
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the jth derivative of a smooth sequence is bounded and its
norm is smaller than a threshold [18], [19]. Here, a matrix form
of the discrete approximation of the differentiation operator is
adopted. Let dj be the finite impulse response approximation
of length M for the jth order derivative operator. For j > 2,
this operator can be achieved iteratively by dj = dj−1 ∗ d1,
where d1 = [1,−1] and “∗” indicates the convolution operator.
For a signal length L > M , Dj ∈ R(L+M−1)×L is defined
as a Toeplitz matrix form of dj (the derivative operator dj =
[dj1, dj2, . . . , djM ] is shifted along rows of Dj).

DT
j =


dj1 dj2 · · · djM 0 · · · 0

0 dj1 dj2 · · · djM
. . .

...
...

. . . . . . . . . . . . . . . 0
0 · · · 0 dj1 dj2 · · · djM


The left multiplication of Dj by any column-wise signal of
length L is equivalent to the jth order derivative approximation
of the signal [19].

The ML estimation of s′ is equal to the following optimiza-
tion problem which is regularized by smoothness priors.

ŝ′ = arg min
s′

(x0 −Φs′)T R̂−1(x0 −Φs′), s.t. ‖DjΦs
′‖2 ≤ δ2

(10)
Here δ2 indicates the smoothness bound. The problem is a
convex optimization problem with a quadratic constraint and
the Lagrangian form of the problem is:

ŝ′ = arg min
s′

{
(x0 − Φs′)T R̂−1(x0 − Φs′) + λ‖DjΦs

′‖2
}

(11)
where λ ≥ 0 is the Lagrange coefficient. This problem is in the
form of a constrained weighted least square error (CWLSE)
problem [20] and its solution is obtained by:

ŝ′ = (ΦT R̂−1Φ + λΦTDT
j DjΦ)−1ΦT R̂−1x0 (12)

and ŝ = Φŝ′. The Lagrange coefficient can be obtained
in two ways. When the smoothness bound is presumed or
known, an optimal λ can be calculated using singular value
decomposition (SVD) [19], [20], and when δ2 is unknown,
methods such as the L-curve are used [19], [21]. Let Ψ =
Φ(ΦT R̂−1Φ + λΦTDT

j DjΦ)−1ΦT R̂−1, then, Ψ can be seen
as a projection matrix which maps x0 into a smooth subspace
and pulls it in a direction to minimize the CWLSE. By
increasing λ from 0, the smoothness of the estimated signal
increases. Fig. 1b shows the estimated signal ŝ from x0 for
different values of λ, Φ = IJN (an identity matrix of JN
dimension) and derivative order j = 2. In this work, the
differentiation operator is adopted to model the smoothness
constraint. In practice, this operator may be replaced by other
operators that can quantify signal fluctuations (e.g. weighted
differentiators) since eventually, it is the value of λ that
controls the smoothness level of the estimated ERP.

Imposing smoothness priors on GLRT to achieve
SGLRT: Note that it is necessary to map the mean vectors
into the same space as data is mapped. This guarantees that
the weighted distance is measured in a common space. Now,
the proposed SGLRT method can be obtained by replacing
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Fig. 1. Selected ERP signals from dataset II of BCI competition III, subject
B and channel Cz . (a) A target versus non-target trial averaged over 15
repetitions. From the target trial, the P300 component can be identified as
a smooth positive signal centered around 300-400ms post-stimuli. From the
non-target trial, the ERP components contributing to attention are observable.
(b) Estimated ERP from a target trial for different values of λ.

(x0 − µ̂i
) by Ψ(x0 − µ̂i

), i ∈ {0, 1} in (8), and performing
some simplifications,

LSGLRT (x0) = xT0 ΨT R̂−1Ψp̂+ c
H1

≷
H0

ηSGLRT (13)

where p̂ = (µ̂
1
− µ̂

0
) is an estimation of ERP compo-

nent from training data, and c = (1/2)(µ̂T

0
ΨT R̂−1Ψµ̂

0
−

µ̂T

1
ΨT R̂−1Ψµ̂

1
) is a constant value. Equation (13) calculates

a weighted correlation of observation vector x0 and p̂ in a
smooth subspace to detect the presence of ERP. One may
consider that (x0 − µ̂i

) is in fact an estimation of centralized
(zero mean) noise under Hi. Therefore, Ψ(x0 − µ̂i

) can be
seen as the projection of noise into a smooth subspace that
increases SNR. Here, the SGLRT algorithm to detect ERPs is
summarized in Algorithm 1.

Algorithm 1 SGLRT algorithm to detect ERPs
Training Phase
1: Compute µ̂

0
, µ̂

1
, and R̂ based on (6) and (7).

2: Compute Ψ = Φ(ΦT R̂−1Φ + λΦTDT
j DjΦ)−1ΦT R̂−1.

3: Compute p̂ = (µ̂
1
−µ̂

0
) and c = (1/2)(µ̂T

0
ΨT R̂−1Ψµ̂

0
−

µ̂T

1
ΨT R̂−1Ψµ̂

1
).

Test Phase
1: Calculate LSGLRT for input data x0 based on (13).
2: If LSGLRT (x0) > ηSGLRT , x0 contains the desired ERP,
otherwise, it does not.

The proposed framework could be simply extended to
multiple hypothesis testing if the signal part of each hypothesis
is smooth compared to noise. In a multiple decision task, the
likelihood ratio of different pairs of hypotheses is formed, and
by comparing all the pairs, the most probable one is selected
(this is also the solution for optimal Bayes classifier if the
loss functions are assumed uniform) [14]. Consequently, the
decision-making scheme is very similar to the binary test.
Hence, the smoothness priors can be simply applied to each
pair of hypotheses to increase the SNR level.

Ngr
Highlight
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B. Validity of the Assumptions

An underlying assumption of this study is the smoothness
of ERPs compared to background activities. This is supported
by several studies. For instance, consider P300 which consists
of two subcomponents namely p3a and p3b. p3a arrives
first and is mostly related to attention while p3b is mostly
related to memory update. In an extensive review article
by Polich [5], the strong relationship between the theta (4-
8Hz) and alpha (8-12Hz) band activities of EEG signals and
the P300 subcomponents are discussed. In another study by
Spencer and Polich [22], spectral analysis of the p3b from
an auditory oddball task showed a strong increase in the
theta band activity. Furthermore, other studies reported alpha
suppression observed during sensory stimuli and also cognitive
tasks related to attention and memory [6]. This phenomenon
is called alpha event-related desynchronization (ERD). Alpha
ERD along with delta (1-4Hz) and theta-range event-related
synchronization (ERS) reveals an energy shift from higher
toward lower frequencies when an ERP is elicited [5]. This
indicates the slow variations of induced ERPs compared to
wide-band (0-60Hz) background activities.

In the method derivation, non-target trials are considered
background activity. This may be questionable as we know
there are also ERP components related to attention in response
to both target and non-target stimuli (e.g. p3a, see Fig. 1a).
From another perspective, ERPs can be categorized into two
general classes, endogenous and exogenous responses. Exoge-
nous responses relate to the processing of external stimuli by
the sensory system and can not be prevented by intention.
However, endogenous responses are considered as a result
of information processing related to the paradigm [23]. From
this, one may conclude that in any designed experiment for
emerging ERPs through sensory stimuli, there are exogenous
responses in non-target trials (for instance, visual evoked
potential in visual P300 speller paradigms). Note that in the
proposed SGLRT, the exogenous responses are hidden in the
class means. This means the proposed SGLRT can be used
either for separating the target from non-target trials or for
separating EEG data containing ERPs from EEG data not
containing ERPs at all. It is also worth mentioning that (13)
is a weighted correlation between the observation vector x0
and the difference wave in p̂, and in the difference wave
any exogenous responses are canceled out. Furthermore, the
background activity is modeled as Gaussian noise. This choice
is based on the idea that the background activity results from
the superposition of the signals from numerous neurons which
are quasi-randomly activated. Based on the central limit the-
orem, its distribution tends toward a Gaussian function. This
assumption is also tested using Henze-Zirkler’s and Mardia’s
multivariate normality tests [24] on the employed datasets.
For P300 data, the first test approves Gaussian assumption
at significance level p = 0.05, while the other approves
the skewness test. However, for MMN data, only Mardia’s
skewness test is fulfilled.

In the derivation of the GLRT solution, it is mentioned that
the test trial can be excluded from the estimation of PDF
parameters if the number of training trials is large enough.

For a specific dataset, the sufficient number of data can
be investigated using a t-test on the estimated parameters,
including and excluding the test trial. When there are no
meaningful changes in the estimated parameters by increasing
the data size from a certain point, the sufficient number of data
is found. For the studied datasets in this work, using more than
twenty trials is enough to approve the assumption at p = 0.05.

III. METHOD EVALUATION

A. Data

1) P300: The presented method is investigated using two
publicly available P300 datasets from [25] and [26] (dataset
II of BCI competition III). The first dataset consists of ten
subjects while trying to spell 10 (5 for training and 5 for
testing) characters. Subjects were exposed to a 6×6 matrix of
characters while focusing on the desired one. The third to tenth
subjects (S3, S4, . . . , S10) used the row-column speller scheme
where all rows and columns of this matrix were successively
and randomly intensified for 100ms, followed by the blank
matrix for 60ms. Two out of 12 intensifications (one row and
one column) contained the desired character. This led to 20
target and 100 non-target trials. Each stimulus was repeated
15 times. 8 channels captured EEG signals at 256Hz. In the
second dataset, data was recorded from two subjects (SA
and SB) while trying to spell 185 (85 for training and 100
for testing) characters. Again, subjects used the row-column
speller with 100ms intensification of rows/columns followed
by the blank matrix for 75ms. This led to 370 target and
1850 non-target trials. Each stimulus was repeated 15 times.
64 channels captured EEG signals which then passed through
a 0.1 to 60Hz bandpass filter, and were finally digitized at
240Hz.

2) MMN: This dataset is obtained from a publicly re-
leased project called SPM [27], [28]. It is a 128-channel
single-subject EEG dataset acquired from an auditory oddball
paradigm. There are 480 non-target trials and 120 target trials
in the dataset. SPM12 software is used to preprocess and
segment the data. The data are passed through a 0.1 to 60Hz
bandpass filter and down-sampled to 240Hz.

B. Statistical Methods and Metrics

The proposed SGLRT is evaluated and compared with the
other methods based on three metrics: accuracy, F1 score, and
Kappa coefficient. Four experiments are performed for method
evaluation. In the first experiment, SGLRT is compared with
LDA, SVM, STE-CD, and pERP-RED (the represented data
by the pERP-RED are fed to an LDA classifier) in terms
of classification accuracy. In this regard, a 10-fold cross-
validation approach is applied to two equal-size groups of
randomly chosen trials where one contains the ERP component
and the other one does not. Training sets of different sizes
are used to perform this task, and for each case, at least four
random and non-overlapping groups of data are generated. The
final results are the averages over the results of these groups.
Furthermore, to see if the improvements made by SGLRT are
statistically meaningful, the significance of its results is also
tested by paired t-tests. To this aim, SGLRT is considered
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as the reference method (noted by “ref.”), and the p-values
that indicate the significance of its results compared with the
competing methods are reported (see Tables I and II where the
p-values are reported in parentheses). The competing methods
are also evaluated in different SNRs using the P300 datasets.
For this, the trials are averaged over the first kr repetitions
which increases SNR (or decreases noise level) approximately
kr times. Moreover, finding a proper λ value and its effect on
the classification performance is investigated.

In the second experiment, F1 scores and Kappa coefficients
of the competing methods are obtained for the three datasets
in different repetitions. The results include all subjects within
each dataset. For P300, training and testing sets are chosen
based on the description of each dataset. For MMN, the first
half of the samples are used for training and the rest for
testing. Moreover, to see the performance of SGLRT and its
competitors in situations with a large number of different data,
an inter-subject experiment is carried out on the first P300
dataset. In this experiment, the methods are tested using the
data of each subject while they are trained by the data of the
other seven subjects. The results for all repetitions (i.e. kr = 1
to 15) are accumulated and the corresponding F1 scores and
Kappa coefficients are reported.

There are two objectives for performing the third exper-
iment. Firstly, to evaluate the presented method when the
number of EEG channels is not limited, and to compare it
with the methods that do not apply this limitation. Secondly,
to compare the method with a recent deep learning structure.
To these goals, SGLRT is compared with SVM, and STNN
over the second P300 dataset with the same criterion as in
[13] (i.e. classification accuracy over the data testing set when
the method is trained by the training set samples, using all 64
channels).

The last experiment is dedicated to the effect of structural
matrix Φ on the performance of SGLRT. In this experiment,
the classification accuracy of letters (CAL) is obtained for SA
and SB of the second P300 dataset using all 64 channels. To
this aim, after model training by the training set, LSGLRT is
calculated for rows and columns data of each letter in the test
set, and this letter is predicted by the intersection of the row
and the column with the highest score. Furthermore, the data
transmission capacity of SGLRT, often called as information
transfer rate (ITR) [8], [12], is reported for this experiment.

C. Data Preparation and Parameter Selection

For the P300 dataset, trials are extracted using 700ms
windows of post-stimuli signals, and for the MMN dataset,
suggested by [28], windows from -100ms to 400ms regarding
stimuli are used. In general, the analyzing window should be
long enough to include the complete ERP component, although
the start and finish points can slightly be altered. For the first
two experiments the P300 data from eight channels (Fz , Cz ,
P3, Pz , P4, PO7, PO8, and Oz) are used since they are
the most P300-related informative channels [25]. For MMN
data, ten channels from the scalp EEG (every 14 channel
from the first one) including C21 (corresponding to Fz [28])
are considered. For LDA, SVM, and STE-CD, the data are
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Fig. 2. The performance of the competing methods in different SNRs, and
sample size 20. (a) P300-S4 data and (b) P300-S8 data.

bandpass filtered, using a 0.1 to 15Hz Butterworth filter of
order 4. However, the raw data are fed to SGLRT and pERP-
RED as they benefit from built-in noise reduction procedures.
Finally, the P300 and MMN data are down-sampled at rates
1/4 and 1/3 (resulting in 45, 42, and 40 temporal samples
per channel for the three described datasets), and the trials
are normalized to have zero mean and unit variance in each
channel.

Here, a list of selected parameters in this study is presented.
For SGLRT, ηSGLRT is set to zero (the same as the LDA, STE-
CD, and pERP-RED threshold). λ = 5 and 2 are used for P300
and MMN datasets, and the derivative order is set to 2. The
structural matrix Φ = IJN (except for the fourth experiment)
implies that a separate ERP source for each recording channel
has been considered (see Appendix B). The pERP-RED-based
classifier is implemented in R using the pERPred package
[11]. Here, the set of selected parameters for pERP-RED is
shown as {Np, Vp} where Np is the number of pERPs and
Vp is the percent variation used in the electrode PCA step.
The set of chosen parameters is {4, 85} for P300 data, and
{3, 80} for MMN data. The MATLAB platform is used for
the implementation of other methods. To realize the SVM
classifier, the ”svmtrain” function is employed while using the
least square method as its optimization technique, and a linear
(SVM-lin), also an order three polynomial (SVM-pol) function
as its kernels. For the realization of STE-CD, the Arfit package
[29] is used. The minimum and maximum orders of the MVAR
model are set to 4 and 16, respectively (suggested by [10]).
For each case, the optimizer of Schwarz’s Bayesian criterion is
chosen as the best order. Note that, for each method, different
settings have been examined through 10-fold cross-validations
for several sample sizes, and the best set of parameters has
been chosen based on paired t-tests of the results.

D. Results

1) First Experiment: Fig. 2 shows the performance of
competing methods in different SNRs (i.e. different kr values).
The results have been presented for P300-S4 and S8 data, and
a sample size of 20. The proposed method provides higher
accuracy almost in all SNR levels (except for S4 and kr < 5,
where pERP-RED performs slightly better). By increasing the
SNR, the performance of all methods increases, as expected.
Table I indicates the averaged performance (over different
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TABLE I
MEAN ACCURACY (P-VALUE ≤) OF THE COMPETING METHODS FOR

DIFFERENT DATASETS IN FIVE SAMPLE SIZES

Data Method Size of Training Set
30 60 120 240 360

P300, SGLRT 77.1 (ref.) 78.9 (ref.) 80.9 (ref.) 82.3 (ref.) 82.5 (ref.)
SA LDA 74.1 (0.02) 76.3 (0.01) 78.6 (0.01) 81.1 (0.01) 82.3 (0.23)

SVM-lin 70.9 (0.01) 69.1 (0.01) 70.0 (0.01) 75.3 (0.01) 78.7 (0.01)
SVM-pol 66.0 (0.01) 71.1 (0.01) 74.2 (0.01) 76.1 (0.01) 76.5 (0.01)
STE-CD 73.5 (0.01) 76.0 (0.01) 78.2 (0.01) 80.2 (0.01) 81.1 (0.01)
pERP-R. 77.9 (0.78) 78.4 (0.28) 79.4 (0.01) 79.7 (0.01) 80.2 (0.01)

P300, SGLRT 83.3 (ref.) 85.1 (ref.) 87.8 (ref.) 87.9 (ref.) 88.0 (ref.)
SB LDA 76.6 (0.01) 80.5 (0.01) 84.7 (0.01) 85.7 (0.01) 86.1 (0.01)

SVM-lin 74.4 (0.01) 72.4 (0.01) 75.8 (0.01) 81.4 (0.01) 83.1 (0.01)
SVM-pol 65.5 (0.01) 72.6 (0.01) 77.3 (0.01) 79.7 (0.01) 80.0 (0.01)
STE-CD 79.9 (0.01) 82.7 (0.01) 85.9 (0.01) 86.3 (0.01) 84.4 (0.01)
pERP-R. 80.7 (0.01) 82.9 (0.01) 85.8 (0.01) 85.9 (0.01) 86.1 (0.01)

MMN SGLRT 74.3 (ref.) 75.9 (ref.) 78.8 (ref.) NA NA
LDA 72.7 (0.01) 69.0 (0.01) 70.4 (0.01) NA NA

SVM-lin 72.1 (0.05) 68.9 (0.01) 65.7 (0.01) NA NA
SVM-pol 60.0 (0.01) 66.1 (0.01) 73.1 (0.01) NA NA
STE-CD 69.1 (0.01) 71.1 (0.01) 75.8 (0.02) NA NA
pERP-R. 61.7 (0.01) 68.5 (0.01) 71.7 (0.01) NA NA

SNRs) of different methods for P300-SA, P300-SB, and MMN
data, and for five sample sizes. As can be seen, SGLRT
provides meaningfully higher detection rates compared to all
the other methods for all sets of data (except for P300-
SA and sample size 30, where pERP-RED performs slightly
better). Among all the competing methods, pERP-RED has
the closest performance to SGLRT. SVM-pol has the weakest
average results for small amounts of training data. However,
by increasing the size of the training set, its performance
improves. Note that, for P300 data the performance gap
between SGLRT and LDA is higher for smaller amounts of
training data, however, by increasing the size of the training
set, LDA approaches SGLRT. This is due to better estimation
of LDA parameters (i.e. mean and covariance) for larger
amounts of training data. It can also be seen that SGLRT
has good performance in detecting a weak ERP component
such as MMN, even if the Gaussian assumption is not fully
met (see subsection II-B). Table II presents the averaged
results of different methods for P300-S3 to S10, and sample
size 20. In most cases, the proposed SGLRT outperforms
the competing methods except for pERP-RED. The average
results of all eight subjects indicate the close performance of
SGLRT compared to pERP-RED and its superior performance
compared to the other methods. In Fig. 3, the effect of λ
values on SGLRT performance is assessed with regard to the
size of the training set and SNR. Note that for λ values near
zero and for Φ = IJN , SGLRT tends to LDA (see (12) and
(13)). In general, the results suggest 2 ≤ λ ≤ 5 as proper
values. The results also suggest larger λ values for smaller
training sets and smaller values for larger ones. This may be
due to the reason that SGLRT calculates a weighted distance
between the input data and the mean of each class in the
smooth subspace to predict the data label. For larger training
sets the estimated means are smoother. Therefore, smaller λ
values are required. By increasing λ from proper values, the
performance of SGLRT degrades. The drop is more noticeable
for higher SNRs as the smoothness of both input data and class

TABLE II
MEAN ACCURACY (P-VALUE ≤) OF THE COMPETING METHODS FOR

P300 DATA (S3 TO S10) AND SAMPLE SIZE 20

Subj. Method
SGLRT LDA SVM-lin SVM-pol STE-CD pERP-RED

S3 78.7 (ref.) 77.7 (0.21) 69.9 (0.01) 74.0 (0.02) 76.6 (0.09) 83.9 (1.00)
S4 91.0 (ref.) 86.5 (0.01) 84.0 (0.01) 77.7 (0.01) 87.2 (0.01) 90.7 (0.38)
S5 90.9 (ref.) 86.1 (0.01) 86.0 (0.01) 73.7 (0.01) 90.0 (0.17) 88.7 (0.02)
S6 68.9 (ref.) 69.8 (0.74) 61.0 (0.01) 53.8 (0.01) 71.8 (0.97) 65.4 (0.04)
S7 78.6 (ref.) 71.9 (0.01) 77.2 (0.26) 66.0 (0.01) 76.4 (0.08) 82.5 (1.00)
S8 91.8 (ref.) 87.4 (0.01) 81.9 (0.01) 71.1 (0.01) 88.7 (0.01) 88.4 (0.01)
S9 86.0 (ref.) 87.8 (1.00) 88.5 (0.01) 65.3 (0.01) 83.6 (0.04) 85.5 (0.29)
S10 88.0 (ref.) 83.8 (0.01) 85.9 (0.04) 73.1 (0.01) 89.5 (0.90) 89.4 (0.88)
Avg. 84.2 (ref.) 81.4 (0.02) 78.3 (0.01) 69.3 (0.01) 83.0 (0.09) 84.3 (0.53)
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Fig. 3. The effect of λ on SGLRT performance for P300-SA data. (a)
Training-set size is 20. (b) Training-set size is 360.

means increases. Results interpretation suggests an interesting
solution in terms of adaptive smoothness for improving the
SGLRT performance. This means an adaptive λ value can be
used based on the data SNR level. As a rule of thumb, for high
SNR situations, λ should be set near zero, and by decreasing
the SNR, λ should be increased.

2) Second Experiment: Table III represents F1 scores and
Kappa coefficients of the intera-subject test in the second
experiment. For the first P300 dataset, SGLRT outperforms
all the other methods for kr = 1 and 5 except for pERP-
RED. For kr = 10 and 15, SGLRT outperforms all the other
methods (except for kr = 10 and for pERP-RED, where their
performances are the same). For the second P300 dataset,
SGLRT outperforms all other methods in kr = 1. For the
other numbers of repetitions, LDA shows the best performance
while SGLRT is the second-best method. For the MMN dataset
SGLRT outperforms all the other methods. Table IV depicts
the results of inter-subject experiment. These results show that
SGLRT outperforms the other approaches in five cases. The
second best method is pERP-RED which performs the best in
three cases.

3) Third Experiment: For this experiment the results are
presented in Table V. For the results of the deep structure
refer to Table 8 in [13] (STNN-6,2 represents the best results
in [13]). Evidently, SGLRT performs better than SVM and
STNN for both kr = 5 and kr = 15.

4) Fourth Experiment: Table VI represents the results of
this experiment for two structural matrices Φ = IJN and
Φ = Φx, in which Φx is generated based on xDAWN algo-
rithm (see Appendix B for more details). Evidently, SGLRT
can benefit from a well-defined structural matrix to improve
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TABLE III
F1 SCORES, KAPPA COEFFICIENTS OF THE COMPETING METHODS OVER

DIFFERENT DATASETS IN DIFFERENT NUMBER OF REPETITIONS (kr )

Data kr Method
SGLRT LDA SVM-lin SVM-pol STE-CD pERP-R.

P300, 1 0.16, 0.04 0.09, -0.01 0.22, 0.04 0.02, 0.01 0.05, -0.08 0.26, 0.08
1st 5 0.62, 0.57 0.34, 0.29 0.47, 0.36 0.11, 0.09 0.43, 0.37 0.65, 0.58

Data- 10 0.83, 0.80 0.76, 0.72 0.70, 0.64 0.28, 0.24 0.66, 0.62 0.83, 0.80
set 15 0.91, 0.89 0.85, 0.83 0.77, 0.72 0.28, 0.24 0.75, 0.71 0.88, 0.86

P300, 1 0.39, 0.23 0.37, 0.21 0.37, 0.20 0.17, 0.11 0.36, 0.19 0.36, 0.18
2nd 5 0.62, 0.53 0.63, 0.55 0.57, 0.47 0.33, 0.26 0.54, 0.43 0.59, 0.48

Data- 10 0.74, 0.68 0.77, 0.73 0.69, 0.63 0.51, 0.45 0.69, 0.62 0.71, 0.65
set 15 0.81, 0.77 0.84, 0.81 0.76, 0.70 0.61, 0.55 0.77, 0.72 0.78, 0.73

MMN 1 0.68, 0.59 0.50, 0.37 0.57, 0.43 0.36, 0.31 0.50, 0.38 0.61, 0.49

TABLE IV
F1-SCORES, KAPPA COEFFICIENTS OF THE COMPETING METHODS FOR

INTER-SUBJECT EXPERIMENT ON P300 DATA (S3 TO S10)

Subj. Method
SGLRT LDA SVM-lin SVM-pol STE-CD pERP-RED

S3 0.36, 0.21 0.29, 0.16 0.46, 0.31 0.23, 0.12 0.20, 0.00 0.46, 0.31
S4 0.75, 0.69 0.67, 0.60 0.60, 0.50 0.46, 0.39 0.30, 0.12 0.64, 0.55
S5 0.40, 0.25 0.48, 0.36 0.48, 0.36 0.37, 0.30 0.18, -0.07 0.41, 0.28
S6 0.47, 0.36 0.38, 0.29 0.34, 0.21 0.24, 0.17 0.24, 0.05 0.47, 0.36
S7 0.68, 0.62 0.58, 0.50 0.47, 0.37 0.30, 0.22 0.32, 0.15 0.70, 0.64
S8 0.79, 0.74 0.76, 0.71 0.70, 0.62 0.57, 0.50 0.47, 0.35 0.73, 0.67
S9 0.72, 0.66 0.72, 0.66 0.59, 0.48 0.35, 0.26 0.24, 0.04 0.69, 0.61

S10 0.76, 0.70 0.71, 0.63 0.61, 0.51 0.35, 0.28 0.35, 0.17 0.70, 0.62

TABLE V
ACCURACY OF THE COMPETING METHODS OVER DATASET II OF BCI
COMPETITION III FOR SUBJECT A AND B IN 5 AND 15 REPETITIONS

Method kr = 5 kr = 15
SA SB Avg. SA SB Avg.

SGLRT 87.4 92.5 90.0 96.8 96.7 96.7
SVM-lin 72.8 82.9 77.9 86.5 87.2 86.8
SVM-pol 84.4 84.8 84.6 89.1 88.4 88.7

STNN-6, 2 88.4 89.8 89.2 NA NA NA

its performance (e.g. using Φx improves CAL by 4% for SB
and kr = 15). Note that in this experiment, the probability
of choosing the correct letter by chance is 1/36 while in the
former experiments the chance level is 1/2.

In Table VI, ITR (bits/min) is also reported for each case,
which is calculated based on the following equation [12],

ITR =
60

T

[
log2 L+ P log2 P + (1− P ) log2(

1− P
L− 1

)

]
(14)

where 0 < P < 1 is the probability of selecting a tar-
get command (P is calculated based on the classification
accuracy), L is the number of possible commands that a
BCI system can generate, and T (sec) is the required time
to generate a command. In our case L = 36, and T =
((12×kr−1)×0.175+0.700)+ tgs for kr repetitions, where
tgs = 2.5sec is the required time for gaze shifting. As can
be seen, for a lower number of repetitions, ITR is higher.
However, the applicability of BCI systems in low repetitions
may not be taken for granted as the low accuracy makes the
users frustrated. Since for a specific BCI scheme and a certain
number of repetitions, L and T are constants, then, the method
with higher classification accuracy has a higher ITR as well.
By this logic, it can be concluded that our proposed method

TABLE VI
CLASSIFICATION ACCURACY OF LETTERS (CAL) AND ITR (BITS/MIN) OF

SGLRT FOR Φ = IJN AND Φ = Φx

kr SA SB
Φ = IJN Φ = Φx Φ = IJN Φ = Φx

CAL ITR CAL ITR CAL ITR CAL ITR
1 17 3.0 18 3.3 33 9.6 33 9.6
5 55 8.3 63 10.3 75 13.6 73 13.1

10 82 8.9 82 8.9 91 10.7 93 11.1
15 94 7.9 94 7.9 92 7.6 96 8.2

provides higher ITR compared to the other methods mentioned
in the former experiments. Note that for this specific BCI
scheme and for kr = 15, the best achievable ITR is 9.0.

IV. DISCUSSION

This work presents a new scheme to detect ERPs based on
smoothness priors. The main goal of this study is to improve
conventional methods by adding this extra information to the
desired signal morphology. The proposed SGLRT benefits
from an internal smoothing operator that can estimate the
desired signal based on an adjustable smoothness level. This
allows for a more specific and accurate trial-by-trial ERP esti-
mation and detection by increasing the SNR. SGLRT mainly
relies on the data covariance and mean to separate the target
from non-target trials. Hence, enhancing their estimations also
leads to improved detection rates. This can be achieved by
increasing the size of the training set since estimations of mean
and covariance matrix are unbiased and consistent (see II-A1,
Formation of the likelihood ratio, also see Table I).

In the derivation of the proposed method, the EEG data
matrix is vectorized by concatenating its columns. This may
lead to discontinuities in the transition between channels. To
mitigate these abrupt changes, the selected windows should
be long enough to let the ERP components tend toward zero
at the start and finish points of the selected sequence in each
channel. In addition, some other points help mitigate these
discontinuities. First, we have used some sort of baseline
correction to zero-mean the data before segmentation. Second,
by averaging over more repetitions, the discontinuity level
between channel transitions decreases. Finally, the smoothing
operator is designed to allow the ERP components to pass
while the abrupt changes are blocked. Therefore, the method
itself mitigates these discontinuities.

Conventional methods usually consider smoothness priors
by roughly passing the data through a bandpass filter. In con-
trast, the proposed method employs a smoothing filter which
is specifically designed to maximize the separability of target
and non-target trials. Some of the new methods use dynamic
models for ERPs and incorporate temporal smoothness and
spatial correlations. For example, the authors in [2] developed
a cooperative particle filtering approach for ERP tracking over
trials. These methods proved to be very effective. However,
those models might not exactly follow the structure of ERPs.
In our method, there is no constraint on ERP morphology
and different components with different shapes (polynomial
of any order, Gaussian, etc.) and latencies can be considered.
The only constraint is the smoothness of the ERP component,
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and its level is adjustable for different ERPs through the λ
value. It should be noted that the proposed method filters
the data in the time domain, and tries to find a smooth
subspace to enhance ERPs. Several approaches in the literature
use spatial filtering to find a subspace for better emerging
of ERPs (for instance, the well-known xDAWN algorithm
[30]), or to estimate underlying sources of ERPs (for instance,
the pERP-RED method). Although these methods are very
effective, smoothness priors are not considered for signal
structure in time. For instance, in [11], the authors say ”A
second limitation is that the derived pERPs are not penalized
in time to attain a desired degree of smoothness.”. One idea
that comes to mind is to consider smoothness in a joint time-
space domain, or add smoothness priors to the previously
developed spatial filtering methods and achieve even more
powerful schemes regarding ERP estimation or detection.

The proposed SGLRT can be directly applied to many ERP-
based BCI systems (e.g. P300 mind speller). Furthermore,
accurate detection of ERPs can help better the separation of
ERP subcomponents (e.g. p3a and p3b in P300) in a later
stage, which can then be used by various BCI applications
and mental activity evaluations. It can also be used as a
template for ERP localization in a forward source localization
solution [9], [31]. In addition, the proposed method can be
considered as a general framework for signal activity detection
since by increasing the sampling frequency by a certain
amount, many bandlimited signals can be considered smooth
compared to wide-band noises. The proposed method can also
be implemented online. But before that, a session of recordings
is required for model training. Moreover, in the online testing
phase, the system needs to collect data after applying the
stimuli several times (i.e. for several repetitions), which is
time-consuming. This is the current issue in all ERP-based
systems. However, by training better models like SGLRT, we
can improve the speed and performance of these systems.

For the SGLRT training, there are three computationally
intensive steps, 1) covariance matrix estimation, 2) covariance
matrix inversion, and 3) computation of the smoothing matrix
Ψ. The first two steps can be performed efficiently with
complexity O((K0 + K1)(J2N + JN2)) and O(J3 + N3 +
J2N2) (see Appendix A), and Ψ can be computed with
complexity O(3J3N3) if Φ = IJN , and with complexity
O(J3(3N2Ms + 3NM2

s +M3
s )) otherwise. LDA and pERP-

RED share the first two steps with SGLRT while pERP-
RED also requires three steps of spatial filtering to extract
the underlying ERPs and another step to represent the data
based on those ERPs. STE-CD does not require covariance
matrix estimation and inversion, instead, it fits a multivariate
autoregressive (MVAR) model to the data and pre-whitens
the data before classification. Generally, model training of
the competing methods in our study is completed in a time
scale of seconds. Here, the training run-times (average of 100
runs) of the competing algorithms are reported for the most
computationally intensive case of our study using a 2.13GHz
Core i3 CPU with a 3GB RAM, which are 7.18, 1.51, 0.24,
0.25, 9.08, and 4.20 seconds for SGLRT, LDA, SVM-lin,
SVM-pol, STE-CD, and pERP-RED, respectively. The test
phase of SGLRT require a fairly low computational complexity

(O(JN)) as it calculates a linear function of the input data to
predict their labels.

Finally, SGLRT has some limitations. First, the estimated
smooth ERPs are a combination of all ERP subcomponents.
Hence, this method is useful for an ERP detection scheme
and cannot estimate separate ERP subcomponents (such as p3a
and p3b in P300). Second, the proposed method is covariance-
based. Hence, increasing the number of EEG channels and/or
sampling rate increase the computational burden (see Ap-
pendix A for some solutions to mitigate this shortcoming). It
should also be noted that since SGLRT imposes no constraint
on the number of EEG channels, the optimal channels can
be selected to reduce the computational burden. Third, the
proposed scheme is derived based on the assumption that the
data follows a normal distribution. If this assumption is not
met, the proposed method performance may degrade.

V. CONCLUSION

Contributions: In this study, a novel and powerful method
for ERP detection from multichannel EEG signals was pre-
sented. The method was derived through a two-step GLR
test and based on the smoothness priors of ERPs. Findings:
We applied SGLRT to three real ERP datasets and com-
pared it with LDA, SVM, STE-CD, pERP-RED, and a deep
structure (STNN). For these comparisons, three experiments
were carried out and the methods were evaluated by three
metrics (accuracy, F1 score, and Kappa coefficient). Based
on the results, we found out that in many cases SGLRT
can improve the detection of ERPs for small and large
datasets over different numbers of trial repetitions. This is very
promising as the ERP-based BCI systems mainly suffer from
lack of classification accuracy. Hence, it is an important step
toward real-life applicability of these systems. Future lines:
In future studies, an approach based on adaptive smoothness
corresponding to different noise levels will be investigated.
Moreover, a joint spatiotemporal smoothing filter, which may
improve the results, is of interest. For this, a set of spatial
filters can be used before the proposed method to reduce space
dimension. However, how these filters affect smoothness priors
is not known. At last, the role of structural matrix Φ and
underlying sources of ERPs should be investigated more.

APPENDIX A
COVARIANCE ESTIMATION AND INVERSION IN SGLRT

SGLRT, LDA, and pERP-RED are covariance-based meth-
ods. Hence, a good estimation of the covariance matrix plays
an important role in their performances. Covariance estimation
is challenging for high dimension data and usually requires
a large dataset. For example, in the case of the JN data
dimension, K > JN independent trials are required to gain
a full rank and positive definite estimation. One approach to
address this issue is the matrix normal distribution assumption
for EEG data [32]. By this assumption, the estimation of the
covariance matrix is obtained by R̂ = V̂ ⊗ Û , where Û is the
ML estimation of the J × J temporal covariance matrix, V̂ is
the ML estimation of the N × N spatial covariance matrix,
and ⊗ is the Kronecker product. This assumption reduces the
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required number of trials for a positive definite covariance
estimation to K > max{J/N,N/J}. In this study, this model
is used for P300 data. However, for MMN data, it is used
whenever it could provide better results. Furthermore, the first
kr trials are treated independently for covariance estimation
(rather than using their average), which provides more data.
From a practical point of view, an infinitesimal value can also
be added to the diagonal elements of the covariance matrix
to stabilize its inversion. SGLRT requires the inversion of
the covariance matrix of the JN dimension, which can be
computationally expensive. As mentioned, the matrix normal
distribution is a well-suited assumption for EEG data [32].
Therefore, the inverse of the estimated covariance matrix can
be obtained by R̂−1 = V̂ −1 ⊗ Û−1, which dramatically
decreases the computational burden. Moreover, the calculation
of Ψ in (13) involves inversion of (ΦT R̂−1Φ+λΦTDT

j DjΦ).
This summation could be inverted in a recursive manner if the
summation itself and at least one of its terms (i.e. ΦT R̂−1Φ
or λΦTDT

j DjΦ) are not singular [33]. In a special case when
Φ = IJN , the inverse of the first term is R̂. Therefore, there
is no need to invert any matrix [33].

APPENDIX B
GUIDELINES FOR DESIGNING THE STRUCTURAL MATRIX Φ

Consider sm ∈ RJ×1, m = 1, 2, . . . ,Ms as the underlying
sources contributing to ERPs, where s′ ∈ RJMs×1 is formed
by their concatenation. It is assumed that the recorded ERP in
each of the N channels is explained by a linear combination
of these sources. Let amn (n = 1, 2, . . . , N) be the weight to
map the mth underlying source to the nth channel, and let z
be a row vector of J−1 zeros, then, φn ∈ RJ×JMs is formed
as a Toeplitz matrix form of [a1n, z, a2n, z, . . . , amn, z] ∈
R1×JMs , which is a matrix of coefficients that maps s′ to
the nth channel. Now, Φ ∈ RJN×JMs can be obtained by
concatenation of φn matrices. Various methods can be adopted
to obtain the coefficients of matrix Φ. For instance, one may
use pERP-RED to extract the underlying sources of ERPs and
then estimate the coefficients based on these sources [11].
Another approach can be by using the spatial filters extracted
by the xDAWN algorithm [30]. If Ux ∈ RN×N is the set
of filters extracted by xDAWN, then, the mth row and the
nth column of U−1x contains amn. From [30], the first filters
are mostly contributed to ERPs while the last ones mostly
extract noise. Therefore, it is suggested to use only the first
four filters (i.e. Ms = 4). Note that, if it is desired to select
a subset of recording channels contributing the most to the
underlying sources of ERPs and it is desired to consider a
separate source for each selected channel, then, Φ should be
equal to an identity matrix.
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