
Measurement 200 (2022) 111485

Available online 9 July 2022
0263-2241/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

A novel few-shot classification framework for diabetic retinopathy 
detection and grading 

M. Murugappan a,b,*, N.B. Prakash c, R. Jeya d, A. Mohanarathinam e, G.R. Hemalakshmi f, 
Mufti Mahmud g,h,i,* 

a Intelligent Signal Processing (ISP) Research Lab, Department of Electronics and Communication Engineering, Kuwait College of Science and Technology, Kuwait 
b Department of ECE, School of Engineering, Vels Institute of Science, Technology, and Advanced Studies, Chennai, India 
c Department of Electrical and Electronics Engineering, National Engineering College, Kovilpatti, India 
d Department of Computer Science and Engineering, SRM Institute of Science and Technology, Chennai, India 
e Department of Biomedical Engineering, Karpagam Academy of Higher Education, Coimbatore, India 
f Department of Computer Science and Engineering, National Engineering College, Kovilpatti, India 
g Department of Computer Science, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK 
h Computing and Informatics Research Centre, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK 
i Medical Technologies Innovation Facility, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK   

A R T I C L E  I N F O   

Keywords: 
Diabetic Retinopathy 
Detection 
Grading 
Aggregated transformations 
Class activation 

A B S T R A C T   

Diabetes Retinopathy (DR) is a major microvascular complication of diabetes. Computer-Aided Diagnosis (CAD) 
tools for DR management are primarily developed using Artificial Intelligence (AI) methods, such as machine and 
deep learning algorithms. DR diagnostic tools have been developed in recent years using deep learning models. 
Thus, these models require large amounts of data for training. Consequently, these huge amounts of data are not 
balanced due to fewer cases in the dataset. To solve the problems associated with training models with small 
datasets, such as overfitting and poor approximation, this paper proposes a paradigm called Few-Shot Learning 
(FSL) which uses a relatively small amount of training data to train the models effectively. This paper proposes a 
novel prototype network, a type of FSL classification network capable of grading and detecting DR based on 
attention. The DRNet framework uses episodic learning to train its model on few-shot classification tasks. We 
developed a DRNet based on the APTOS2019 dataset for diabetic detection and grading. In the proposed 
network, aggregated transformations and gradient activations of classes are leveraged to design the attention 
mechanism to capture image representations. As a result, the system achieves 99.73 % accuracy, 99.82 % 
sensitivity, 99.63 % specificity in DR detection, 98.18 % accuracy, 97.41% sensitivity, and 99.55% specificity in 
DR grading. An analysis of objective performance metrics and model interpretation shows that the proposed 
model can detect DR more efficiently and grade the severity more accurately when using unseen fundus images 
than existing state-of-the-art methods. Therefore, this tool could help provide a second opinion to an ophthal-
mologist about the severity level of DR.   

1. Introduction 

According to the recent statistics from the International Diabetes 
Federation, in 2019, there are 463 million people affected by Diabetic 
Mellitus (DM) in the age group of 20 – 79 years. It is expected to reach 
700 million by 2045. Besides, 3 in 4 diabetic people live in low- and 
middle-income countries [1]. Management of DM is becoming a huge 
challenge for developing and developed countries globally. DR is the 
most common diabetic complication, a microvascular disorder of DM 

that causes visual impairment and blindness. According to international 
clinical standards, DR is categorized into four stages, namely, mild non- 
proliferative diabetic retinopathy (mnDR), moderate non-proliferative 
diabetic retinopathy (monDR), severe non-proliferative diabetic reti-
nopathy (SnDR), and severe proliferative diabetic retinopathy (SPDR). 
At present, Early Treatment Diabetic Retinopathy Study (ETDRS) [2] 
scale is used for severity assessment of DR, which classifies the DR stage 
based on the presence of Diabetic Macular Edema (DME), neo-
vascularization, hemorrhages, and exudates. 

* Corresponding author. 
E-mail addresses: m.murugappan@gmail.com (M. Murugappan), muftimahmud@gmail.com, mufti.mahmud@ntu.ac.uk (M. Mahmud).  

Contents lists available at ScienceDirect 

Measurement 

journal homepage: www.elsevier.com/locate/measurement 

https://doi.org/10.1016/j.measurement.2022.111485 
Received 12 January 2022; Received in revised form 12 May 2022; Accepted 11 June 2022   

mailto:m.murugappan@gmail.com
mailto:muftimahmud@gmail.com
mailto:mufti.mahmud@ntu.ac.uk
www.sciencedirect.com/science/journal/02632241
https://www.elsevier.com/locate/measurement
https://doi.org/10.1016/j.measurement.2022.111485
https://doi.org/10.1016/j.measurement.2022.111485
https://doi.org/10.1016/j.measurement.2022.111485
http://crossmark.crossref.org/dialog/?doi=10.1016/j.measurement.2022.111485&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Measurement 200 (2022) 111485

2

Early detection of DR and its severity level is essential to initiate 
clinical interventions to avoid adverse outcomes such as blurred vision, 
eye floaters, and vision loss. Identification of DR and grading through 
manual examination is a highly time-consuming error-prone process 
that requires highly skilled ophthalmologists to accurately evaluate the 
effects of DR. Pioneering works on automated [3] DR detection is based 
on fundus photography, as evident from the works reported in two de-
cades ago [4–6]. However, fundus photography is an invasive technique 
that requires pupil dilation and is therefore impractical in elderly pa-
tients or those with poor manual dexterity. Furthermore, repeated 
dilation can cause ocular discomfort and lead to long-term complica-
tions, such as mydriasis, cataract, and retinal detachment. 

Several machine learning models for DR diagnosis have been pro-
posed in the early years of automated detection. In [7], discrete classifier 
models, including k-Nearest Neighbor (kNN), Gaussian Mixture Model 
(GMM), and Support Vector Machine (SVM), trained with handcrafted 
features extracted with AdaBoost algorithm are employed in the clas-
sification of DR and non-DR lesions. Further, a three-stage model called 
DREAM [8], comprising image segmentation, lesion classification from 
extracted features, and severity grading demonstrates superior sensi-
tivity compared to baseline models. In this line, an ensemble [9] model 
with five base classifiers viz, AdaBoost, Decision Tree (DT), kNN, Lo-
gistic Regression (LR), and Random Forest (RF) classifiers is demon-
strated to surpass the performances of the individual classifier models. 
Though the computational requirements of machine learning models are 
competitive, these models based on handcrafted features are not capable 
of learning and incorporating novel features from the training data, and 
they are subject to overfitting. 

Recently, the evolution of ocular imaging technologies such as op-
tical coherence tomography (OCT), confocal scanning laser ophthal-
moscopy, etc., and the emergence of deep learning algorithms have 
simplified the process of DR screening through CAD systems based on 
retinal images [10]. A two-stage hybrid model proposed in [11] com-
bines Convolutional Neural Network (CNN) for feature extraction and 
conventional machine learning approaches for classification. Experi-
mental results with SVM classifiers trained on features extracted from 
retinal images with four different CNNs show that the Inception-v3 [12] 
can capture the most discriminating features. Most recent Deep 
Learning-based DR screening systems have attempted to detect micro-
aneurysms by analysing the image content [13]. While these methods 
show promise, they also suffer from several limitations, including an 
imbalance in the number of healthy and unhealthy images. In addition, 
they have an insufficient number of images to train the networks and 
diverse morphologies and anatomical locations of the features. There-
fore, it cannot be realistic to expect the same number of images from the 
same patient for each class. This results in the deep network learning 
only the typical pattern for each class, ignoring the individual differ-
ences of the patients. 

It would be extremely difficult to collect a large number of samples of 
clinical information for any given application in a real-life scenario. In 
general, to develop a more robust CAD system for medical applications, 
most contemporary artificial intelligence methods, such as Deep Neural 
Networks (DNN), require a large amount of data. This problem could be 
solved with the FSL approach [14], where a single model is trained with 
the training images for a specific class and then tested with the unseen 
images of the class. Unlike traditional deep learning models, FSL models 
can learn the class-specific patterns from a few sample images. Attention 
is a powerful mechanism employed in deep learning to address the 
problem of long-term dependencies. In image processing problems, it is 
used to focus on a specific region of an image to capture significant 
features. This research employs this mechanism to capture intricate 
features for DR detection. 

This paper presents a novel FSL-based framework called DRNet for 
DR detection and grading using an attention-based meta-learning 
mechanism. This framework is a prototypical network that constructs a 
meta-classifier from several base classifiers, trained on smaller subsets of 

the training data. 
The major contributions of this research are:  

1. We have designed and developed a novel prototypical network called 
DRNet with an inbuilt attention mechanism for DR detection and 
grading. The proposed model achieved a higher DR detection rate 
and grading accuracy than the state-of-the-art methods reported in 
the literature.  

2. We have also proposed a mechanism for constructing the image 
embeddings with Gradient Class Activation Maps (GCAMs) and 
aggregated transformations for FSL.  

3. The proposed DRNet has been trained and fine-tuned with the 
hyperparameters in multiple episodes on the open-source Asia Pa-
cific Tele-Ophthalmology Society (APTOS2019) [15] dataset, and it 
exhibits superior performances compared to conventional deep 
learning models. 

The system achieves an accuracy of 99.73%, a sensitivity of 99.82%, 
and a specificity of 99.63% in DR detection, and 98.18% accuracy, 
97.41% sensitivity, and 99.55% specificity in DR grading. These results 
indicate the ability of the model to discern different types of DR 
unambiguously. 

The paper is structured as below. In section 2, existing works on DR 
detection, grading, and FSL mechanisms are reviewed. Section 3 pre-
sents the dataset and the underlying methods employed in this research. 
The proposed prototypical network architecture and the training process 
are discussed in section 4. Experimental results with interpretations, 
comparative and explainable analyses, and advantages and limitations 
of the model are presented in section 5, and the paper is concluded in 
Section 6. 

2. Related works 

This section presents a comprehensive review of deep learning-based 
DR detection and grading models and briefly accounts for the FSL 
approach. Convolutional neural networks (CNN) are primarily used for 
image recognition and classification. Many researchers have demon-
strated that deep CNN models can effectively solve complex real-life 
problems of diverse nature [16,17]. For feature extraction and classifi-
cation of fish species into four categories, a VGG16-based CNN is used 
[18]. Based on the training samples, the model extracts hierarchical 
features that identify each type of fish and achieves a mean classification 
accuracy of 100%. The study found that the model’s performance im-
proves as the CNN depth increases. 

Further, deep CNN models have been used in building intelligent 
systems in renewable energy [19]. Further, LSTM-based networks have 
been used in solving classification, prediction, and detection problems 
with time-series data, including model developments for thermal pro-
cesses [20]. Due to their ability to extract and learn image features, 
flexible and scalable architectures, and portability, CNNs are essential in 
medical imaging-guided clinical interventions. 

A detailed survey on deep learning-based DR detection models is 
presented in [21]. The pioneering work in deep learning-based DR 
detection was proposed in [22], which used a CNN with several con-
volutional blocks in the initial layers and fully connected layers as the 
final classification layers. This model achieves 75% accuracy and 95% 
sensitivity in DR grading with five classes (Non-Diabetic Retinopathy 
(NDR), mnDR, monDR, SnDR, and SPDR). An investigation by Gulshan 
et al. [23] employing the Inception-v3 for DR detection reportedly 
achieves 97.5% sensitivity and 93.4% specificity for the EyePACS [24] 
dataset and 96.1% sensitivity and 93.9% for Messidor-2 [25] datasets. A 
DR detection framework proposed in [26] employs a customized resid-
ual deep learning network for feature extraction, and a DT is used as a 
classifier. Here, the DT classifier is trained with meta image data 
appended with these features for binary classification (DM or Normal) of 
fundus images, and a maximum mean sensitivity of 93% and specificity 
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of 87% are reported on the Messidor-2 dataset. 
Similar to the model proposed in [23], an Inception-v3-based ar-

chitecture is proposed in [27] for DR and macular edema grading, 
achieving an Area Under Curve (AUC) of 0.987, sensitivity and speci-
ficity of 89.6%, and 97.4% in referable DR detection, respectively. The 
CANet [28] performs joint grading of DR and DME with separate 
disease-specific and disease-independent attention networks. The image 
features maps are initially extracted with ResNet [29] and fed simulta-
neously to the subnetwork branches. The disease-specific attention 
modules leverage the relationship between features across channels and 
spatial locations to capture the disease characteristics. The disease- 
independent attention modules aggregate the channel features from 
the branches. This model achieves a joint accuracy of 85.1% in DR and 
DME grading. The Weighted Path Convolutional Neural Network (WP- 
CNN) [30] employs a weighted-path strategy to capture discriminative 
features, eliminating redundancies in referable DR detection. This 
approach enhances the network’s attention to vital features, achieving 
an accuracy, sensitivity, and specificity of 94.23%, 90.94%, and 95.74%, 
respectively. A Region-based Fully Convolutional Neural Network (R- 
FCN) [31] is used for DR grading and lesion detection, and it is realized 
by modifying the ResNet-101 network for feature extraction and a Re-
gion Proposal Network (RPN) for DR detection. The R-FCN achieves a 
sensitivity of 92.59% and specificity of 96.20% on the Messidor dataset. 
However, the ability of the model to detect smaller lesions such as 
microaneurysms and hemorrhages is found to be less due to the lack of 
annotation in the training samples. A patch-based DR model employs a 
customized CNN as a selection model to process image patches to 
localize red lesions and generate the lesion probability map [32]. DR 
detection is performed by deriving a probabilistic value from this map. 
The CF-DRNet [33] for five-stage DR classification employs two sub-
networks, a coarse network for DR detection and a fine network for 
grading the images that are classified as DR positive by the coarse 
network. Both the networks are modeled on the ResNet18, and an 
attention module is employed in the coarse network to capture the 
discriminative features for DR detection. However, this framework 
achieves a detection accuracy of only 56.19% on the IDRiD [34] dataset. 

Synergic Deep Learning (SDL) is employed in a DR severity grading 
model which utilizes the histogram-based segmentation of the Region of 
Interest (RoI) in the medical images, followed by classification with a 
synergic network [35]. This framework employs two deep CNNs to 
process training images in parallel and the synergic labels generated by 
these networks are fed to the synergic network for DR grading. This 
model reportedly achieves a maximum mean classification accuracy of 
99.28%, a sensitivity of 98.54%, and specificity of 99.38% on the 
Messidor dataset. However, this paper does not explicitly specify which 
pre-trained models are used in the first stage of classification. The two- 
stage hybrid architecture performs DR detection in the first stage, fol-
lowed by four-class grading of images in the second stage on the images 
classified as DR in the first stage [11]. DR detection network is realized 
by transfer learning, by fine-tuning the pre-trained networks. DR 
detection with seven such pre-trained networks shows that the 
Inception-v3 achieves the best AUC of 0.993 and accuracy of 98.4% on 
the APTOS2019 dataset. DR grading is performed with AlexNet, VGG16, 
ResNet, and Inception-v3 as feature extractors, and Principal Compo-
nent Analysis (PCA) for dimensionality reduction and training an SVM 
classifier with these features. 

The most recent work in this context, DeepDR [36] consists of a base 
network and three subnetworks for image quality assessment, lesion 
segmentation, and DR grading. The DR base network is constructed from 
the pre-trained ResNet, and the weights of this network are shared with 
the subnetworks. A test image is given as input to each of the sub-
networks to perform the specific tasks. The features extracted by the 
lesion-aware subnetwork are concatenated with those extracted by the 
DR grading network for classification. This network performs six stages 
of DR grading including NDR, Mild NPDR, moderate NPDR, severe 
NPDR, proliferative DR, and referable DR. This model achieves the best 

performance metrics for PDR detection such as 0.961 of AUC, 93.2 %of 
sensitivity, and 86.2% of specificity. However, DeepDR is relatively 
complex compared to the rest of the networks proposed in the literature, 
due to the constituent subnetworks. 

In recent years, FSL based classifiers are slowly replacing conven-
tional learning models owing to their ability to learn from few training 
samples. 

There are several meta-learning frameworks reported in the litera-
ture to construct a classifier model, aggregating the base classifiers 
trained on data subsets [37]. A prototypical [38] network is a kind of 
meta-learning framework with the capability of learning from multiple 
instances of a task and can be used for classification, detection, seg-
mentation, etc., with the goal of generalization. An attentive prototype 
learning network based on capsule networks for image embedding is 
demonstrated to achieve superior classification performances compared 
to that of baseline classifiers [39]. However, the application of FSL- 
based learning models in medical imaging-based diagnostics is 
extremely limited and there have been comparatively few investigations 
reported in the recent past. An FSL framework for DR detection and 
other common pathologies is based on a two-stage network consisting of 
a multi-task detector for detecting common pathologies and a probabi-
listic detector for detecting rare diseases [40]. Experimental results 
show that the best AUC value of 0.966 is achieved with the Inception 
networks for the classification of frequent conditions. Further, the 
learning and inference pipeline includes PCA projection and K Nearest 
Neighbour (KNN) regression. The t-distributed Stochastic Neighbour 
Embedding (t-SNE) method employed for dimensionality reduction in 
this model is also computationally expensive as the data must be log- 
transformed. FEDI [41], a recent FSL model based on a deep residual 
network and Earth Mover’s Distance (EMD) algorithm performs classi-
fications on 39 categories in a 1000 sample fundus image dataset. The 
residual network is used as feature extractor and the EMD algorithm is 
used to match the image features. Experimental results show classifi-
cation accuracy of 95.87% is achieved in 3-way 10-shot classification. 
However, the authors do not present explicit results for the classification 
of 39 classes in their work. 

Considering the literature reviewed above, it is evident that 
attention-based neural networks, which focus on significant image fea-
tures, yield the best results for the detection and grading of DR. Addi-
tionally, existing FSL models for DR detection require more 
computational power, are inherently complex in design, incorporate 
other machine learning approaches like SVM and statistical exploratory 
techniques like PCA, and incorporate other machine learning ap-
proaches such as SVM. Therefore, the need for developing a less complex 
FSL framework for the detection and grading of DRs has become highly 
apparent. 

3. Materials and methods 

This section describes the dataset and the methods used in building 
the proposed model. 

3.1. Database description 

In this present work, we have used the open-source DM database for 
developing our model for DM severity detection using an FSL approach. 
The APTOS2019 [15] dataset comprises 5590 images and is grouped 
into training (3662 images) and testing (1928 images) datasets. Here, 
only the training datasets are labeled with different stages of DR, and 
testing images are not labeled. In this work, we have selected 3662 
training images to design and develop a DRNet for DR detection and 
grading. The training dataset is organized into five classes namely NDR, 
mild DR (mnDR), Moderate DR (monDR), Severe DR (SnDR), and Severe 
ProliferativeDR (SPDR) with 1805, 370, 999, 295, and 193 images, 
respectively. The total number of training images is split into the 
training (2564 images) and testing (1098 images) set based on a 
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70:30ratio. In this work, we have performed binary classification (DR vs 
NDR) and multi-class (mmDR, monDR, SPDR, SnDR, and NDR). For 
binary classification, the images in four classes other than NDR are 
grouped under the DR class. The distribution of images used for devel-
oping our model is given in Table 1. All the images in the dataset are 
having a resolution of 3216 × 2136 in.png format and the images are 
resized to a lesser resolution of 256 × 256 to reduce the computational 
complexity of our proposed system. 

3.2. Few-Shot learning 

Conventional machine learning models are trained with large vol-
umes of labeled data for classification. However, the availability of large 
amounts of labeled data is generally not feasible in many applications 
which are related to real-world problems or scenarios. This has led to the 
emergence of FSL [42], which aims to rectify this gap by leveraging 
meta-learning approaches to train a classification model with a limited 
number of samples. FSL methods can learn a representation of classes 
that can be used to generalize to new classes. In image classification [43] 
problems, FSL systems are trained to learn a function that transforms an 
input image into a class label, starting from an input feature represen-
tation, i.e., a high-level representation of images. FSL framework has 
been described as meta-learning mainly because it aims to develop a 
function that can be used to generalize the prediction of new classes 
without having direct access to the output layer of the model. 

The meta-learning frameworks are divided into metric learning 
techniques [44] that minimize a distance function to learn the mapping 
between feature space and output layer and embedding techniques [45] 
that use feature embedding to learn the mapping between feature space 
and output layer. A metric learning approach is highly preferred in FSL 
since the mapping is generally learned unconstrainedly without the 
assumption of a pre-defined distance function between the classes. They 
capture high-level image representations of classes that are invariant to 
specific data distributions, providing robust predictions across domains 
and tasks. 

The FSL problem is based on metric learning, and it is formulated to 
learn a mapping function from input data to class targets such that, the 
output distance is smaller for input–output pairs of similar classes and 
larger for input–output pairs of dissimilar classes. For a feature space X, 
this problem can be expressed as in Eq. (1). 

min
f∈F

∑

(x,y)∈X×Y

d(f (x), y)2 (1)  

where,d(⋅, ⋅) is a distance metric on the input space, x is an instance of X, 
Y is a finite set of labels, y is an instance of Y and f(x) is the transforming 
function. 

3.3. Prototype networks 

Prototypical networks are based on the premise that there exists an 
embedded function that maps data points to a compact space, such that 
the similarity between any two data points can be computed by the 
distance between their corresponding embeddings. For a given support 
set of N labeled examplesS =

{(
xi, yi

) }N
i=1, a prototypical network is a 

function fθ(x) that maps data points to a compact space such that the 
similarity (S θ) between any two data points can be computed by the 
distance between their corresponding embeddings: 
S θ(xi, xj) = ‖fθ(xi) − fθ(xj)‖

2 . For each input class ci, prototypical 
networks compute an embedding vector eci ∈ Rd for that class. The 
prototype of a class ci is the average of all the embeddings of the ex-
amples in the support set of the class ci as given in Eq. (2). 

eci =
1
|S|
∑

xi∈S
ci (2) 

Given an input x belonging to a class ci, the similarity between x and 
the prototypes of all the classes ci is computed as Sθ(x, ci) =

‖fθ(x) − eci‖
2
∀i = 1, 2,⋯.C , where ci is class instance and C is the 

number of target classes. Finally, the network prediction is defined as 
the average of the similarities to all the prototypes of the classes in the 
support set of the input, as given in Eq. (3). 

fθ(x) =
1
|S|

∑|S|

i=1
Sθ(x, ci)eci (3) 

During inference, given an input class c that has never been seen 
before, the network predicts the probability of the input being of class c 
with the Eq.(4). 

P(c|x) =
exp(Sθ(x, c))

∑|S|

j=1
exp(Sθ(x, cj))

(4) 

For each class ci, a prototypical network is trained with a set of 

labeled examples Sci = {(xi, yi) }
N′

i=1 and their prototypes eci =

1
|Sci |

∑
xi∈Sci

ei, where N′ is the number of samples in each class. The 

network parameter θ is optimized to minimize the cross-entropy be-
tween the predicted probability and the ground truth and the network is 
used for inference. The loss function is defined as in Eq. (5). 

Loss(θ) =

(
∑|S* |

i=1
− P(ci|xi)exp(Sθ(xi, ci)eci )

)2

(5)  

where,S* = {(xi, ci) }
N′

i=1. 
The number of examples in the support set can differ for each input 

class depending on the training set size. 

3.4. ResNeXt architecture 

ResNeXt [46] is an extension of the conventional ResNet architec-
ture, inspired by Inception networks. It is a highly modularized residual 
network architecture based on an aggregation of a set of similar mod-
ules, that can be used to model different types of relationships between 
the image regions. ResNeXt follows the split-transform-merge approach, 
where the network splits the input into several lower-dimensional em-
beddings, transforms the embeddings with a stack of convolutional 
layers, and concatenates the transformed embeddings. The final output 
is obtained by concatenating the input with the merged embeddings. 
The schematic of a ResNeXt block is shown in Fig. 1. It can be used to 
model different types of relationships between image regions, such as 
the relationship between the whole image and the parts of the image, the 
relationship between the parts of the image, and relationships between 
different parts of the image at multiple scales. This architecture 

Table 1 
Dataset Distribution.  

Class DR Detection DR Grading 

No. of 
Training 
Images 

No. of 
Testing 
Images 

No. of 
Training 
Images 

No. of 
Testing 
Images 

NDR 1264 541 1264 541 
DR 1300 557 – – 
Mild DR 

(mnDR) 
– – 259 111 

Moderate DR 
(monDR) 

– – 699 300 

Proliferative DR 
(SPDR) 

– – 207 88 

Severe DR 
(SnDR) 

– – 135 58 

Total 2564 1098 2564 1098  
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introduces a new parameter called cardinality, the size of the set of 
transformations to be concatenated. Exercising a ResNeXt with different 
cardinalities shows that, the value of cardinality affects the quality of the 
predictions, with a higher value of cardinalities resulting in better pre-
dictions. Fig. 1 shows a 256-d input split into 32 paths (cardinalities), 
each with a stack of three convolutional layers for transforming the 
input and creating a final embedding by concatenating the outputs of 
these stacks with the original input. 

4. Proposed system 

This section presents the mathematical description of the DR detec-
tion and grading problems and describes the architecture of the pro-
posed DRNet with schematic diagrams. 

4.1. Problem definition 

The DR detection and grading are formulated as binary and multi- 
class classification problems respectively. In binary classification, a bi-
nary classifier is trained to detect the presence or absence of DR in a test 
image. This problem is formulated as follows: Given a set of training 
images, each image has been annotated as DR or NDR. The binary 
classifier is trained to predict whether an arbitrary test image is DR or 
NDR. 

Given a training set S of input-label pairs, where S = {(xi,

yi)|xi ∈ Rd; yi ∈ R}, the task of the binary classifier is to learn a decision 
function fb(x) that maps a new test image x to a binary label. Here, the 
decision function is defined as in Eq. (6), where δ(x) is the predicted DR 
probability for x by the classifier. 

fb(x) = 1[δ(x) > 0] (6) 

The multi-class classification problem is formulated as follows: A 
multi-class classifier is trained for five-class classification to discriminate 
NDR, mild, moderate, proliferative, and severe DR. Given a set of 
training images, where each image has been annotated with its DR 
severity, the multi-class classifier is trained to predict the severity of DR 
in the test image. 

Given a training set S of input-label pairs, where S = {(xi,

yi)|xi ∈ Rd; yi ∈ R}, is a training set of input images and labels, the task 
of the multi-class classifier is to learn a decision function fm(x) that maps 
a new test image x to a label as in Eq. (7), 

fm(x) = arg max
k=1,⋯,5

[δ(x) = k] (7)  

where δ(x) is the predicted DR severity grade for x and k is the number of 
classes. 

4.2. Prototypical DR detection network 

The proposed DR detection system is realized as a prototypical 

Fig. 1. ResNext Block. (Each layer is shown with # Input Channels, Filter Size, # of Output Channels).  
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network. Initially, the training set (2564 images) is divided into support 
sets and query sets. The support set is further divided into two parts such 
as episodic learning, and embeddings of the support. This model is 
realized as a two-class two-shot and five-class two-shot classification 
network for binary and multi-class classifications, respectively. This 
model comprises a base layer, meta-layer, and classification layer, and 
embeddings of the support and query sets are constructed with an 
embedding module. The schematics of the prototypical architecture for 
five-class two-shot learning and the embedding module are shown in 
Figure 2. 

Attention of the network to significant regions of the fundus images 
is realized with the embedding module. This module is designed to 
construct a representation of the input fundus images with the con-
volutional layers of the ResNext-50 network. This network is used for 
creating embeddings and classification as shown in Fig. 2b. The pro-
posed DNN has five convolutional layers, in which each layer is stacked 
with different numbers of convolutional blocks and each block is 
configured with a diverse set of convolutional filters. The embedding of 

a fundus image is constructed from the gradients of the activation map of 
the final convolutional layer using the Grad-CAM [47] approach. This 
representation captures the significant regions of the input image which 
influence the classifier decision. As seen in Fig. 2b, the ResNext archi-
tecture consists of a Global Average Pooling (GAP) layer and a Fully 
Convolutional (FC) layer following the five convolutional layers. The 
base classifier is realized with the GAP and FC layers. As shown in 
Fig. 2a, the base classifiers are trained with the image embeddings of the 
training sets for classification, producing prototypes for each class. The 
prototypical network is constructed from these prototypes and is fine- 
tuned with the training set images for the given classes. In this 
manner, the prototypes are the parameters of the network and are 
trained with the support and query images of the training set. For 
example, the prototype for DR is the mean of the images with this label 
in the training set. For classification of each test image, the prototype is 
passed to an FC layer and the class with the highest activation score is 
chosen. 

According to the schematic diagrams, it is evident that the DRNet is 

Fig. 2a. Prototypical DRNet.  
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not implemented with any additional explicit attention mechanism. 
However, it is attentive in virtue of the components it contains. Both the 
prototypical network and the ResNext are intrinsically attentive. The 
prototypical network learns from a compact image embedding carrying 
significant image features, and ResNext is capable of capturing the re-
lationships between image components at multiple scales. With the 
prototypical network and the ResNext embedding module, the ability of 
the DRNet to focus on significant image features has been improved. 

4.3. Prototypical DRNet training 

Episodic learning is a standard training strategy in prototypical 
networks to learn a function f by minimizing the loss function with the 
overall samples as given in Eq. (8). 

LE =
1
∑

isi

∑

(x,y)i∈E

1
si
||y − f (x)||2 (8) 

Given a training set S of input-label pairs, where S = {(xi,

yi)|xi ∈ Rd; yi ∈ R}, training episodes are formed by randomly selecting 
an example x and its label y. The function f is defined to be the mean of 
all s -sized subsets of the input x and is given by: f(x) = 1

s
∑

S⊆xs|S|. It is 
possible to learn the function f using the loss function for episodic 
learning. In this work, we have used the loss function to form episodes as 
above and then use those episodes to update f as given in Eq. (9). 

f (xn) =
1
∑

isi

∑

S⊆xn

sn|S| (9) 

If an episode is formed by selecting the set xn, where sn is the number 
of samples in xn, the update rule gives f and that is the average of all 
subsets of xn. 

The episodic learning procedure is as below.  

1. Generate random samples E = {(xi, yi)}
m
i=1 

Fig. 2b. Embedding module.  
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2. Find s -sized subsets of E  
3. Learn the function f by minimizing the episodic loss LE  
4. Generate a new sample, xn and find sn-sized subsets of xn  
5. Learn the function f by minimizing the update rule: f(xn) =

1∑
i
si

∑
S⊆xn

sn|S|. 

It is worth noting that the learning algorithm can be extended to 
learning a mixture of prototypes. using a mixture of prototype functions 
as given in Eq. (10), where each pj is a prototype. 

f (x) =
∑k

j=1
pjfj(x) (10) 

Initially, the episodes are formed by selecting xn and the sn-sized 
subsets of xn and then the prototype functions fj is learned using the 
episodic learning procedure. For this, the prototype functions are 
trained one at a time, with each prototype function learning using the 
update rule. The learning update rule for a prototype function is given by 
Eq. (11). 

fj(xn) =
1
∑

isi

∑

S⊆xn

sn|S| (11) 

Further, a mixture of prototype learning can be done by learning all 
prototype functions, fj, simultaneously using the update rule given in 
(12). 

f (xn) =
∑k

j=1
pjfj(xn) (12) 

The DRNet is trained by episodic learning as described above. The 
hyperparameters for training the network are given in Table 2. 

These parameters are optimized by grid search, with a grid G of 
hyperparameters, constructed by sampling the parameter space. The 
hyperparameter space is divided into N equal sized intervals, and for 
each interval, K samples are taken at random. The hyperparameter grid 
G is the union of all the sampled hyperparameter values. A typical 
training episode is given in Algorithm 1. 

Algorithm 1. Episodic Training Algorithm for Parameter Optimization. 

Input: Episodic input samples Xe, 
Output: Episodic output samples Ye, Episodic history of values for 

each parameter combination He, Episodic reward Se, Model 
parameters.θ  

i. Select K samples from Xe  
ii. Repeat until convergence:  

iii. for each episode e:  
iv. Predict the label ye for instance of the input xe 

ye = f (xe)

v. Compute the loss for each set of samples 

L =
1
K
∑K

n=1
[(1 − yn

e)logyn
e + (yn

e)log(1 − yn
e)]

vi. Compute the Episodic reward 

Se = L +αsS (ye,He)

vii. Record history for each parameter combination 

Ht
e = Ht− 1

e , St
e = St− 1

e    

viii. Set learning parameters to the model parameters from the 
sampled parameter grid. Store reward and learning parameters  

1. St+1
e = St

e + γSt+1
e  

2. θt+1 = θt − μ ∂L
∂θ  

ix. End  
x. Go to step 2 

Compared to the conventional randomized search approaches for 
model optimization, the grid search optimization employed in this 
research performs an exhaustive search and optimizes the hyper-
parameters, ensuring that the model converges for each episode. 

5. Experimental results and discussions 

This section presents the experimental setup for deploying DRNet, 
DR detection and grading results, comparative analyses, Explainable 
Artificial Intelligence (XAI) analysis of the proposed prototypical 
network, merits, and drawbacks of the model. The proposed model is 
implemented with Matlab 2021b software employing the deep learning 
and image processing toolboxes. It is trained and tested with a 64-bit i7- 
7700 K processor, with 4.5 GHz CPU speed, equipped with 32 GB RAM, 
and NVIDIA GeForce GTX 1080 GPU. Initially, the model is fine-tuned 
with a subset of the training and testing datasets under episodic 
learning until the loss function reaches the minimum. 

5.1. DR detection and DR grading 

The classification performances are evaluated with the objective 
metrics such as accuracy, sensitivity, specificity, precision, F1 score, and 
Matthews Correlation Coefficient (MCC). These metrics are based on the 
True Positive (TP), True Negative (TN), False Positive (FP), and False 
Negative (FN) values of the classifiers on the test dataset.  

• Accuracy, a measure of the overall accuracy of a model, is defined as 
the ratio of the number of correctly classified instances to the total 
number of instances as given in Eq. (13). 

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(13)   

• Sensitivity is the measure of the performance of a model on pre-
dicting positive instances. It is expressed as the number of correctly 
detected positive samples out of the total number of positive sam-
ples, computed with the equation given in Eq.(14). 

Sensitivity =
TP

(TP + FN)
(14)    

• Specificity is a measure of the performance of a model on predicting 
negative instances. It is the ratio of the correctly predicted negative 
instances out of the total number of negative samples as in Eq.(15). 

Specificity =
TN

(TN + FP)
(15)   

Table 2 
Training Hyperparameters.  

Parameter Values 

Maximum Epochs 100 
No. of Episodes 100,75,50 
Momentum 0.9000 
Learning Rate 0.001 
Optimization SGDM 
L2 Regularization Parameter 0.001 
Cardinality (ResNext) 32  
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• Precision is the number of samples correctly identified out of the 
total number of positive samples predicted as in Eq.(16). 

Precision =
TP

(TP + FP)
(16)   

The above metrics range from 0 to 1, signifying the worst and best 
performances of the model, respectively.   

• F1 score and MCC metrics have been shown to better discriminate 
classifiers models under imbalanced dataset scenarios. F1 score gives 
equal weight to both precision and sensitivity metrics to provide a 
balance between the two. The F1 score can be computed using the 
equation given in Eq. (17) and it ranges from 0 to 1. The smallest 
value (0) refers to the worst performance of the classifier and the 
highest value (1) refers to the best performance of the classifier. 

F1 = 2*
Precision × Recall
(Precision + Recall)

(17)   

• The MCC is defined as the harmonic mean of precision and sensi-
tivity, measuring the correlation between the predicted output of the 
model with actual classes. By using the value of TP, TN, FP, and FN, 
the MCC can be computed using the equation as given in Eq. (18). It 
is a generalization of the well-known Pearson correlation coefficient 
(PCC), the value of MCC usually ranges from − 1 to 1. The value of 
MCC closer to 1 indicates that the model classifies the positive and 
negative samples with equal accuracy otherwise with different 
accuracy. 

MCC =
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (18) 

The mean values of classification performance metrics of the pro-
posed model are given in Table 3. It is seen that the performance of the 
binary classifier is better compared to the multi-class classifier, which 
shows that the proposed model is good in DR detection compared to 
severity grading. 

The performances of the model are depicted with the confusion 
matrices in Figure 3. It is seen that, in DR detection, only a few mis-
classifications are evidenced with DR and NDR classes (Fig. 3a). Further, 
in DR severity grading, misclassifications are evidenced with all classes 
and the errors are highly pronounced with 6.7% for severe DR, followed 
by 4.5% for proliferative DR, 4.4% for mild DR, 1.7% for moderate DR, 
and 0.4% for NDR (Fig. 3b). 

Due to the lower number of training samples (135 less than other 
classes as can be seen in Table 1), the high error rate for severe DR is 
attributable to the low number of samples over the class. Often, in multi- 

class classification problems, when the number of training samples is 
relatively small, a classifier may have difficulty distinguishing the target 
class from the other classes. It is very likely that the classifier will not be 
able to learn the distinguishing features of these classes from a few 
training samples. This is because it cannot generalize well to unknown 
data. Conventional deep learning models can resolve this issue through 
data augmentation. Nevertheless, the class imbalance issue in FSL is 
complex as it manifests at the meta-dataset or task level. Several FSL 
rebalancing techniques have been developed over the years, including 
random sampling, random shot meta-learning, and loss function reba-
lancing. However, the implementation and evaluation of the effective-
ness of these approaches are extremely challenging because of the 
computational overhead. 

Fig. 4 shows the Receiver Operator Characteristics (ROC) curves of 
the binary and multi-class classifiers. As indicated by the curve, the 
number of true positives can be plotted against the number of false 
positives in a continuous-valued feature space. AUC quantifies the ac-
curacy of the classifier as it pertains to false positives. The optimal 
operating point (OOP), the point where the ROC curve reaches the 
upper-left corner, represents the balance between false positives and 
false negatives that is optimal. At this point, the number of true positives 
is equal to the number of false positives, and the classification process is 
optimal. AUC ranges from 0.5 (random chance) when the classifier 
cannot reliably differentiate the two classes, to 1.0 for accurate classi-
fication. The AUC value for binary and multi-class classifications in this 
research is 0.9999 and 0.9879, respectively. These values are consistent 
with the results presented in Table 3. 

In Table 4, we have compared the performance of the proposed 
model for DR detection with the earlier work [11] which utilizes the 
same dataset with different deep learning models. In [11], DR detection 
is performed with seven classifiers constructed by fine-tuning the pre- 
trained network such as AlexNet, VGG16, ResNet, Inception-v3, NAS-
Net, DenseNet, and GoogLeNet networks. The top two best values in 
Table 4 are highlighted in black and blue. It is seen that the best results 
are achieved by the proposed model without any preprocessing (color 
constancy, histogram equalization, and others) of the test images. 
Further, Inception-v3 exhibits the best accuracy and AUC values for the 
images preprocessed by the color consistency approach, rendering them 
invariant to the color of the source of illumination in [11]. 

In Table 5, the severity grading performance of the proposed model 
is compared with that of [11], in which the researchers have used four 
pre-trained classifiers as feature extractors, and SVM is used as a clas-
sifier. The two top values are shown in red and blue fonts. These results 
show that the best DR grading results achieved with the proposed model 
are far superior compared to other networks. Further, the SVM classifier 
achieves the best results with the features extracted with the Inception- 
v3 network from the fundus images preprocessed by the color constancy 
approach. 

In addition to the above, a generic comparison with the state-of-the- 
art models is presented in Table 6, highlighting the significance of the 
proposed model. From the above analysis, it is seen that the proposed 
framework is better than the state-of-the-art methods concerning design 
and performance metrics. The size of the proposed model is smaller by a 
factor of 2 compared to the hybrid architecture [11] and the number of 
trainable parameters is higher by 2 million. While the number of pa-
rameters of the proposed DRNet is smaller by 0.6 million compared to 
DeepDR, the size is smaller by a factor of 4. Though the size of CF-DRNet 
is 4 times smaller than DRNet, the number of parameters is larger by 8 
million and the accuracy of this model is very low compared to the other 
models. This analysis reveals that a larger number of trainable param-
eters do not always increase the accuracy and the underlying mecha-
nisms of the model pipeline play a crucial role in classification and 
staging problems. 

Table 3 
Classification Performance Metrics.  

Metrics Classification Type 
Binary (DR 
Detection) 

Multi-class (Five classes) (DR 
Grading) 

Accuracy 0.9973 0.9818 
Sensitivity 0.9982 0.9741 
Specificity 0.9963 0.9955 
Precision 0.9964 0.9647 
F1 0. 9973 0.9693 
MCC 0.9945 0.9646 
Per-class 

Accuracy 
0.9982 (DR) 
0.9963 (NDR) 

0.9729 (Mild) 
0.9733 (Moderate) 
0.9926 (NDR) 
0.9659 (Proliferative) 
0.9655 (Severe)  
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5.2. Explainable artificial intelligence analysis 

XAI, also known as interpretable artificial intelligence, facilitates the 
interpretation of the behavior of machine learning models. In this work, 
the classification results in DR grading are analyzed by XAI analysis. 
Generally, this is performed by analyzing the Class Activation Map 
(CAM) of the final learnable layer output of a classifier. As GCAMs are 
used as embeddings of the support sets for the base classifiers in the 
proposed framework, XAI analysis does not require an explicit CAM 
construction and analysis. 

Gradient Class Activation maps (GCAMS) and aggregated trans-
formations are used in creating image embeddings in the proposed 
framework. The GCAMs and corresponding classification scores are 
presented in Fig. 5 for visual interpretation of the classifier activations. 
The GCAMs are heat maps in which the image components driving the 
classifier decision appear as bright red regions and rest have a dark blue 

hue. It is seen that the classification scores for correct classifications are 
closer to 1 as seen in the first two columns. Further, classification scores 
for misclassifications are greater than 0.5 for the last three images. These 
values signify ambiguity in the classification process which may be due 
to fine variations in features between target and misclassified classes. 
Further investigations on the GCAMs and classification scores can pro-
vide generalized definitions of the morphologies of OD under different 
severity levels and minimize the risks in treating the misclassified cases. 

There are several CAM variants that can perform XAI analysis, 
including Grad-CAM++, Score-CAM, Ablation-CAM, and XGrad-CAM. 
GCAMs calculate the coefficients of the activation maps by averaging 
the gradients of the activated neurons that reflect the behavior of the 
model. It is imperative to note that Grad-CAM++ ignores subtle details 
which may be significant to clinical decisions, focusing only on higher- 
order derivatives and positive influences of neurons. The score-CAM and 
the ablation-CAM employ heuristic methods in the prediction of the 

Fig. 3a. Confusion Matrix for Binary Classification.  

Fig. 3b. Confusion Matrix for multi-class (five class) Classification.  

M. Murugappan et al.                                                                                                                                                                                                                          



Measurement 200 (2022) 111485

11

coefficients, and these methods are quite lengthy. As a result of the 
simplicity of GCAM implementation and its characteristic of considering 
all neurons, this research utilizes GCAMs for creating image embed-
dings. Additionally, these maps are captured from the ResNext model 
which performs aggregated transformations to improve the attention 
ability of the model. 

5.3. Ablation study 

An ablation study is performed in this work by reducing the number 
of training episodes. While the maximum number of episodes of the 
model is 100, 75 and 50 episodes are considered for ablation study. 
These assumptions are based on the experimental results produced by 
the model under 100 episodes. It is reasonable to evaluate the perfor-
mance of the model with 75% and 50% of the maximum number of 
episodes. Though the support and query sets are constructed by selecting 
the samples randomly, it is ensured that the samples are not repeated 

across episodes. The performance of the model is evaluated with the 
same test dataset, training the model with 75 and 50 episodes. These 
results are presented in Table 7 for DR detection and grading. It is seen 
that there is a degradation in performance by 5% for every 25% of the 
episodes reduced. 

5.4. Advantages and limitations 

The DRNet proposed in this paper offers some advantages that might 
be of interest to the international DR research community.  

1. Generalized Classification model 

A DRNet trained on a smaller dataset facilitates DR classification and 
detection on arbitrary images with high accuracy [48,49]. In the light of 
the promising results produced by this model, DRNet can be extended to 
other pathologies such as Age-Related Macular Degeneration (AMD), 
glaucoma, diabetes, mineral deficiency, and any disorder with limited 
clinical presentations.  

2. Adaptive embedding module 

Embeddings are learned in meta-learning from a task-agnostic 
perspective. This is different from traditional methods that employ 
pre-defined feature extractors. This paper uses an embedding module to 
encode a set of inputs into a fixed-dimensional vector space in order to 
determine the intrinsic features of fundus images. It is possible to use 
this module discretely to create image embeddings for any pathology, 
modality, and task. 

Fig. 4. ROC Curves a) Binary Classification b) Multi-class Classification.  

Table 4 
Performance Comparison -DR Detection on APTOS2019 Dataset.  

Method Accuracy AUC 

Raw Images Color Constancy Histogram Equalization Raw Images Color Constancy Histogram Equalization 

DRNet (Proposed) 99.73 ± 0.105 NA NA 0.9946 ± 0.003 NA NA 
AlexNet [11] 96.15 ± 1.7 96.80 ± 1.2 96.20 ± 1.8 0.981 ± 0.05 0.988 ± 0.03 0.982 ± 0.04 
Inception-v3 [11] 96.60 ± 1.7 98.00 ± 1.3 97.20 ± 1.5 0.988 ± 0.03 0.993 ± 0.03 0.989 ± 0.03 
ResNet [11] 96.70 ± 1.7 97.60 ± 1.4 96.80 ± 1.7 0.984 ± 0.02 0.990 ± 0.02 0.984 ± 0.02 
VGG16 [11] 96.23 ± 1.6 97.00 ± 1.3 96.90 ± 1.9 0.982 ± 0.04 0.989 ± 0.03 0.988 ± 0.03 
NASNet [11] 95.90 ± 2.0 96.70 ± 1.8 96.20 ± 1.9 – – – 
DenseNet [11] 96.00 ± 1.4 96.30 ± 1.3 96.20 ± 1.9 – – – 
GoogLeNet [11] 96.20 ± 1.6 96.70 ± 1.0 96.10 ± 1.5 – – – 

NA- Not Applicable. 
- Not Reported in their work. 

Table 5 
Performance Comparison -DR Grading on APTOS2019 Dataset.  

Method Accuracy in (%) 

Raw Images Color Constancy Histogram Equalization 

DRNet (Proposed) 98.18 ± 0.15 NA NA 
AlexNet[11] 75.7 ± 6.8 81.6 ± 5.4 80.5 ± 6.2 
Inception-v3 [11] 79.8 ± 6.4 85.7 ± 5.4 83.7 ± 6.0 
ResNet [11] 78.9 ± 7.1 84.9 ± 8.4 83.7 ± 7.7 
VGG16 [11] 76.8 ± 5.3 83.5 ± 6.1 82.3 ± 5.7 

NA- Not Applicable. 
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Table 6 
Comparative analysis with State-of-the-art methods in DR detection and grading.  

Models Datasets Detection/ 
Grading 

Accuracy AUC Sensitivity Specificity Model Size/No. 
of Parameters 

Model Characteristics 

DRNet (Proposed) APTOS2019 Detection 0.9973  0.999  0.9982  0.9963 96 MB/25 × 106  • The same architecture is 
employed in DR detection and 
grading 

No exclusive classifier is 
employed 

Grading 0.9818  0.9879  0.9741  0.9955 

Hybrid Architecture 
Inception-v3 [11] 
Narayanan et al. (2020) 

APTOS2019 Detection 0.9800  0.993  –  –   

2 × 97 MB/23.8 
× 106  

• Different Architectures are 
employed for DR detection 
and grading 

PCA used for dimensionality 
reduction 

SVM is used in DR grading 

Grading 0.857  –  –  – 

DeepDR [36] Dai et al. 
(2021) 

EyePACS Grading –  0.961  0.932  0.862 4 × 98 MB/ 
25.6 × 106  

• Employs a base network and 
three subnetworks 

Overall Detection 
performance is not given 

FEDI [41] Pan et al. (2021) Kaggle Fundus 
Image 

Grading (3 shot 
10-way) 

0.9587  –  –  – –  • Results are not available for 
individual classes 

CF-DRNet [33] Wu et al. 
(2020) 

IDRiD Grading 0.5619  0.8310  0.89  0.5399 2 × 11.4 MB/ 
33.3 × 106  

• Two separate networks are 
used for DR detection and 
grading 

EyePACS Grading     0.9122 

Multi-task Detector [40] 
Quellec et al. (2020) 

OPHDIAT Grading (11 
frequent 
disorders)   

0.966  –  – –  • Involves expensive 
computations 

Customized CNN [23] 
Gulshan et al. (2016) 

EyePACS Grading –  0.991  0.975  0.934 –  • Grading is performed with 
multiple binary classifications. Messidor-2 Grading –  0.990  0.961  0.939 

Residual CNN [26] 
Gargeya&Leng (2017) 

Messidor-2 Detection –  0.94  0.93  0.87 –  • Image meta-data is appended 
with a feature vector 

DT Classifier is used for 
classification 

E-Optha Detection –  0.97  0.94  0.98 

- Results not reported. 

Fig. 5. XAI Analysis.  

Table 7 
Performance Metrics Under Ablation Study.  

Classifier Type No. of Metrics 

Episodes Accuracy in % Sensitivity in % Specificity in % Precision in % F1-Score MCC 

Binary (DR Detection) 75  94.24  94.33  94.15  94.16  0.9424  0.9398 
50  89.76  89.84  89.67  89.68  0.8976  0.8951 

Five- Class (DR Grading) 75  93.27  92.54  94.57  91.65  0.9208  0.9164 
50  87.87  87.18  89.10  86.34  0.8675  0.8633  
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3. Highly modularized Framework 

With the modularization of the framework, the component embed-
ding module and aggregated convolutional module can be replaced with 
other embedding and aggregated modules. A generic framework must 
meet this requirement in order to be flexible enough to be used across a 
wide range of applications.  

4. Inbuilt attention mechanism 

In deep learning models, attention mechanisms are usually imple-
mented as separate units with CNNs. By integrating the underlying meta- 
learning approach and embedding module, the DRNet substantially re-
duces additional computational overhead. 

All of these features of the DRNet are highly desirable for an intel-
ligent automated diagnosis system, irrespective of the pathology. 

It is evident from the experimental results and comparative analysis 
that the proposed model is more effective than the state-of-the-art ap-
proaches reported in the literature. The present study, however, has two 
limitations that should be addressed in future investigations. First, few- 
shot classification in DR detection and grading cannot be benchmarked 
due to a lack of benchmarked data sets. Consequently, the comparisons 
made in this paper are limited to the results reported on diverse datasets 
in the literature. The second limitation is that the episodes are not able 
to explore the entire dataset due to the maximum number of episodes. 
This is assumed to be 100. There may be instances in which some of the 
samples are not included in the training process during random episodic 
training. As a result, this effect of episodes needs to be considered in our 
future research. However, while the proposed system achieves better 
results than the hybrid model presented in [11], which utilizes the entire 
dataset, optimization of the training process by minimizing classifica-
tion losses and episodes is expected to provide better generalization. 

6. Conclusion 

A novel framework for FSL-based detection called DRNet is pre-
sented in this paper as a new prototypical grading and detection 
framework for DR. This meta-classifier exhibits superior performance 
characteristics and objective metrics on the APTOS2019 dataset when 
compared to baseline classifiers and hybrid approaches. In order to 
achieve high detection, and grading accuracy, the proposed framework 
makes use of the aggregated transformation capabilities of ResNext to 
construct image embeddings to train the base classifiers. In addition, the 
system can be easily adapted to screen and stage various kinds of ocular 
disorders such as glaucoma, age-related macular degeneration, and dry 
eye disease. There may be opportunities to expand on the results of this 
work by developing an objective grading scheme based on disc mor-
phologies in an attempt to better define the relationship between disc 
morphologies and class scores, thus providing a more precise interpre-
tation of disc morphology as the disease advances. 
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