
August 2022

EPL, 139 (2022) 42004 www.epljournal.org

doi: 10.1209/0295-5075/ac8176

Synchrony in directed connectomes

J. J. Crofts(a) , N. Chuzhanova, A. Padmore and M. R. Nelson

Nottingham Trent University, School of Science and Technology - Nottingham, NG11 8NS, UK

received 18 December 2021; accepted in final form 15 July 2022
published online 16 August 2022

Abstract – Synchronisation plays a fundamental role in a variety of physiological functions,
such as visual perception, cognitive function, sleep and arousal. The precise role of the interplay
between local dynamics and directed cortical topology on the propensity for cortical structures
to synchronise, however, remains poorly understood. Here, we study the impact that directed
network topology has on the synchronisation properties of the brain by considering a range of
species and parcellations, including the cortex of the cat and the Macaque monkey, as well as the
nervous system of the C. elegans round worm. We deploy a Kuramoto phase model to simulate
neural dynamics on the aforementioned connectomes, and investigate the extent to which network
directionality influences distributed patterns of neural synchrony. In particular, we find that
network directionality induces both slower synchronisation speeds and more robust phase locking
in the presence of network delays. Moreover, in contrast to large-scale connectomes, we find that
recently observed relations between resting state directionality patterns and network structure
appear to break down for invertebrate networks such as the C. elegans connectome, thus suggesting
that observed variations in directed network topology at different scales can significantly impact
patterns of neural synchrony. Our results suggest that directionality plays a key role in shaping
network dynamics and moreover that its exclusion risks simplifying neural activation dynamics in
a potentially significant way.
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Introduction. – Over the past two decades, network
science has had a profound impact on the study of com-
plex systems arising throughout the social and natural sci-
ences, communication and information technologies and
information sciences [1,2]. A defining feature of such
systems is their ability to synchronise; that is, for their
nodal dynamics to align (or become entrained) over time
through an intricate interplay between local dynamics and
structural connectivity [3,4]. Neuroscience, in particu-
lar, contains a plethora of examples of such synchrony,
which can be both advantageous (e.g., control of motor
systems [5]) and detrimental (e.g., Parkinson’s disease or
epileptic seizures [6,7]) to the functioning of such neural
systems.
Questions of synchronisation are thus of particular im-

portance in neuroscience, with coherent oscillations be-
tween distant brain structures proposed as a mechanism
for the propagation behaviour of neural activity [8], which
is commonly manifested via functional connectivity of
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the brain [9]. Modelling approaches that deploy biolog-
ically realistic connectivity data, obtained from modern
non-invasive structural brain imaging methodologies, have
been successfully used to probe synchronisation phenom-
ena related to oscillatory brain rhythms in both healthy
and diseased brains [10–13]. Such studies, however, pre-
dominantly treat the connectome (i.e., the wiring diagram
describing an organism’s nervous system) as an undirected
network, largely due to the inability of imaging techniques
to infer directionality of neural signals. Thus, the question
of how the directed topological structure of connectome-
based networks impacts mechanisms underlying synchro-
nisation phenomena is far from understood, despite a
small number of recent studies [14,15] highlighting the
significant impact of network directionality in subserving
network dynamics. In particular, it is largely unknown
whether or not directed topology enhances or destabilises
synchrony in the brain, or indeed, what effect it has on
the speed of synchronisation, and moreover the role that
time delays play when directionality is incorporated.
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In this letter we address these questions by simulat-
ing neural dynamics on connectome-based networks for
a range of species and parcellations that contain direc-
tionality information. Neural activity is described by a
phase-delayed Kuramoto Model (KM), which is perhaps
the simplest example of a delay-coupled oscillatory net-
work [16] and is thus well suited to assessing how di-
rected connectomes govern synchronisation properties of
the brain [17]. Our results highlight the important role
directionality plays in determining observed patterns of
phase synchronisation within both large- and micro-scale
cortical networks. In particular, we find that large-scale
mammalian connectomes appear to form a distinct family
of networks as characterised by their synchrony properties,
whilst the micro-scale invertebrate network of C. elegans
does not appear to fit within this classification, due to
variations in the directed network topology between these
networks.

Methods. –

Cortical networks. To investigate the impact of direc-
tionality on the synchronisation properties of connectome-
based networks we consider a variety of different organ-
isms across a range of scales, including a parcellation of
the cat cortex, two different parcellations of the Macaque
cortex, and a representation of the nervous system of C.
elegans, which is a tiny round worm and one of only a few
organisms to date for which the entire nervous system is
mapped out. All networks are available via the Brain Con-
nectivity Toolbox [18]. Connectivity of each connectome
is described by a binary connectivity matrix A, such that
aij = 1 if brain region (neuron) i projects onto brain region
(neuron) j and is otherwise zero. Note that we restrict
our analysis to the giant strongly connected component of
each network since this guarantees the existence of a glob-
ally synchronised state [19]. Undirected representations of
each network are obtained by making all connections bidi-
rectional resulting in a symmetric adjacency matrix given
by B = sgn

(

A+AT
)

, where sgn(x) denotes the sign func-
tion. See table 1 for details of the size and density of the
networks in both the directed and undirected cases.
In addition, fig. 1 shows the results of a network anal-

ysis for different connectomes using a range of standard
network measures, including network density ρ; the global
Watts-Strogatz clustering coefficient 〈C〉; the global effi-
ciency ǫ; and the Newman-Girvan (NG) modularity score
Q. The reader is referred to the excellent text by New-
man [2] for the precise definitions of the aforementioned
metrics. In general, the loss of directionality has the ef-
fect of artificially inflating network measures; local metrics
such as density and clustering increase due to the inclusion
of reciprocal edges, whilst network efficiency is enhanced
since the additional false positive connections facilitate
shorter routes within the network. In contrast, we find
that network modularity decreases across all four connec-
tomes with a smaller number of modules observed and/or
a breakdown of the modularity structure (as quantified by

Table 1: Number of nodes N and edges m in the giant strongly
connected components of the directed connectomes and their
undirected representations.

Connectome
Directed Undirected
N m N m

Cat 52 818 52 515

Macaque
70 745 70 437
85 2356 85 1481

C. elegans 235 1841 235 1656

Fig. 1: Network measures for both directed (red) and undi-
rected (blue) connectomes: ρ = density; 〈C〉 = mean clustering
coefficient; ǫ = efficiency; and Q = Newman-Girvan modular-
ity score.

the NG score) due to the existence of false positive con-
nections in the undirected brain networks.

Oscillator dynamics. Here, we consider N Kuramoto
oscillators [20,21] whose interconnectivity is encoded by
the cortical connectivity matrices defined in the previous
section. The dynamical variable θi(t) ∈ S1 = 2πR/N gives
the phase of the i-th oscillator at time t. By deploying
such a simple model of neural activity we aim to reveal
mechanistic insights into the role that directed topology
plays in neural synchrony. (See [12] for a discussion of
the relationship of this model to neurobiological systems,
including its inherent limitations.)
Oscillator dynamics are governed by the following set of

equations:

dθi
dt

= ωi + S
N
∑

j=1

aji sin (θj − θi − β) for i = 1, . . . , N.

(1)
Here, S is the coupling strength, β is a phase delay term
that accounts for finite signal propagation speeds, ωi de-
notes the natural frequencies of the uncoupled oscillators,
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and aij describes the elements of the cortical connectivity
matrix as described above.
For β = 0 the system in (1) admits a fully synchronised

solution of the form

θi(t) ≡ θj(t) =: θ(t). (2)

For non-zero values of β the solution in (2) is no longer
guaranteed, rather in this case we observe either phase
locked solutions such that θi − θj is constant ∀i, j or so-
called cluster states in which two or more groups of syn-
chronised oscillators coexist [19,22].

Results. – In the experiments to follow, eq. (1) was
integrated from t = 0 to t = 100 using the built-in Matlab
solver ode45 with step size δt = 0.01 and absolute and rel-
ative tolerances set at 10−8. In accordance with [23,24],
natural frequencies of the oscillators were drawn from a
Gaussian distribution with mean frequency f = 10Hz (or
ω = f · 2π rad/s) and variance one. Note that this choice
of frequencies allows for ease of comparison with related
work [23–25]; however, our numerical experiments suggest
that for small non-zero values of the phase delay β, the
results are qualitatively similar regardless of the choice of
the mean natural frequency ω. To determine the depen-
dence on initial data, each simulation was repeated 100
times with different sets of initial conditions θ(0) drawn
uniformly at random form the interval [0, 2π).

Synchronisation speed. In this section we assume iden-
tical oscillators so that ωi = ω and set the phase lag β = 0
thus guaranteeing the existence of the completely synchro-
nised solution in (2). To determine the time scales of syn-
chronisation for the different connectomes we compute the
distance

d(t) = max
i,j

dist (θi, θj) , (3)

where

dist (θ, θ′) = min {|θ − θ′|, 2π − |θ − θ′|} (4)

is the circular distance between two phases θ and θ′ on
S1. Note that after some initial transient, convergence to
the synchronous state decays as d(t) ∼ exp(−t/τ), where
τ denotes the characteristic time scale of each cortical net-
work. Theoretically, this characteristic time scale is given
by

τ = −
1

Re(λ2)
, (5)

where λ2 is the second largest eigenvalue of the graph
Laplacian [26], which in this case coincides with the sta-
bility matrix, or Jacobian, of (1) evaluated at the syn-
chronous state. (See, for example, [27] for further details.)
In fig. 2 we plot the logarithm of the decaying distances

for directed (red line) and undirected (blue line) represen-
tations of each of the connectomes described in table 1.
In addition, we plot slopes of −1/τ for both directed (red
dashed line) and undirected (blue dashed line) networks,

Fig. 2: Time scales for synchronisation of connectome-based
oscillator networks for directed (solid red line) and undirected
(solid blue line) representations. Dashed lines have slope given
by −1/τ , where τ = −1/Re(λ2) is the theoretical characteristic
time scale for each network and λ2 is the second largest (in real
part) eigenvalue of the associated graph Laplacian.

where τ is the theoretical time scale given in (5). Impor-
tantly, we find that in all cases synchronisation times are
increased for the directed connectomes, and also, that,
with the exception of the Macaque network on N = 70
nodes (which displays very similar time scales regardless of
directionality), these differences scale with the size of the
network. This result is consistent with our earlier network
analysis in that the heightened efficiencies observed for
the undirected networks would appear to promote faster
(although likely unrealistic and undesirable biologically)
synchrony propagation. We further note that the theoret-
ical time scales predicted by (5) are in excellent agreement
with the simulation results.

Stability of the phase-locked state. For non-zero β the
solution in (2) is no longer guaranteed to exist; however,
by introducing the following local order parameter

rje
iΘj =

1

kinj

N
∑

k=1

akje
iθk , (6)

and deploying a rotating coordinate frame (i.e., introduc-
ing the change of variables φ = θ − Ωt, where Ω is the
asymptotic population frequency) eq. (1) can be rewritten
as

dφi

dt
= ωi−Ω+Skini ri sin(Φi−φi−β) i = 1, . . . , N. (7)

Here, Φi = Θi − Ωt.
Importantly, provided |ωi − Ω| ≤ Skini ri ∀i, the system

in (7) exhibits a stable fixed point solution (i.e., (1) has a
stable phase locked solution) φ∗ as long as the conditions

cos (Φi − φ∗

i − β) > 0, i = 1, . . . , N (8)
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Fig. 3: Stability of the phase-locked state as a function of beta
for the directed (red) and undirected (blue) connectomes dis-
played in table 1. Solid lines display the real part of the largest
eigenvalue of the Jacobian of (7), whilst dashed lines display
the value of (8) for the corresponding eigenmode.

are satisfied. To see this, note that the Jacobian matrix
for the system in (7) is given by

Jij = −Skini ri cos (Φi − φi − β) δij . (9)

Here, we are assuming that ri,Φi are constant ∀i and δij
denotes the Kronecker delta.
Figure 3 displays stability of the phase-locked state for

each of the four connectomes as a function of the phase lag
variable β. Solid lines display the real part of the largest
eigenvalue of the stability matrix of (7) for directed (red)
and undirected (blue) connectomes, whilst dashed lines
display the value of (8) for the corresponding eigenmode.
We see that directionality has the general effect of increas-
ing the robustness of the phase-locked state with all but
the cat cortical network showing decreased stability in the
bidirectional case. In contrast to the other connectomes
studied, the addition of false positive connections (that
arise when directionality is neglected) in the cat connec-
tome significantly elevates the minimal in-degree (from 3
to 7 as can be seen in fig. 3(a)), which has a positive
stabilising effect on the fully synchronised (i.e., β = 0)
solution. This follows since for β = 0 the Jacobian matrix
in (9) reduces to Jij = −Skini δij . Thus, whilst we observed
increased decay rates (as a function of β) of the eigen-
modes across all undirected network representations, the
undue elevation of the stability properties for the cat con-
nectome enhances its robustness relative to the directed
connectome. For values of β outside of these ranges par-
tially locked states can be observed in which a subset of
nodes are phase locked whilst the remaining nodes drift
monotonically.

Phase lag/lead relationships. The relationship be-
tween local dynamics, phase and network structure has

recently received considerable interest [23–25] due to the
significant role of neural oscillations in healthy brain func-
tion. Deploying directed phase lag index (dPLI) [28] as
a measure of directed functional (or effective) connectiv-
ity, the authors of [23,24] found that network degree was
an excellent predictor of the type of directed functional
connectivity patterns typically observed experimentally in
undirected connectomes. Here, we deploy dPLI to inves-
tigate the extent to which directed structural topology
impacts phase relationships between signals from distant
brain areas.
For a given node pair, dPLI is measured as

dPLIij = 〈sgn (∆θij(t))〉, (10)

where ∆θij(t) = θi(t) − θj(t) denotes the instantaneous
phase difference between nodes i and j; the sign func-
tion yields 1 if ∆θij(t) > 0, 0 if ∆θij(t) = 0 and −1 if
∆θij(t) < 0; and angled brackets denotes a time average.
The range of dPLI is [−1, 1]. If a node leads on average
then it obtains a dPLI score in (0, 1]; if it lags on average
a score in [−1, 0) and a score of zero in the absence of a
phase-lead/lag relationship [28].
For sufficiently small positive values of β (i.e., such that

the phase-locked solution of (1) exists) we have the follow-
ing analytic expression for the asymptotic phases:

φ∗

i = sin−1

(

ωi − Ω

Skini ri

)

+Φi − β, i = 1, . . . , N, (11)

which results from solving the right-hand side of (7) set
equal to zero. From the above we see that the phase dy-
namics depend on both the in-degree and the local order
parameter given in (6); in [23,24] it was shown experi-
mentally that an inverse relationship between node degree
and phase (as measured using dPLI) exists for undirected
large-scale connectomes, that is, that the effect of the lo-
cal order parameter was largely negligible. In our exper-
iments, we found a similar result held for the large-scale
connectomes in both directed and undirected representa-
tions, although the correlations were weaker in the di-
rected representations (see the Supplementary Material
Supplementarymaterial.pdf). However, in the case of
the invertebrate C. elegans connectome, we found evi-
dence suggesting a breakdown in these relations at this
scale for the directed network.
Figure 4(a) displays simulation results in which eq. (1)

is solved numerically for both directed (top) and undi-
rected (bottom) representations of the C. elegans connec-
tome. In these experiments we set the coupling strength
S = 1 and the phase delay β = 0.1. A snapshot of the
Kuramoto model in action at time t = 100 is plotted on
the unit circle for both networks (left), as well as a plot of
the relative phase φ against time (right). In addition, in
each plot we highlight in yellow the five nodes with lowest
degree and in green the five nodes with highest degree.
In the case of the undirected network, we observe, in ac-
cordance with [23,24], a clear relationship between phase
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Fig. 4: Numerical simulations with β = 0.1 for the C. elegans connectome for both directed (top) and undirected (bottom)
representations. (a) Snapshot (t = 100) of the phase dynamics (S = 1) plotted on the unit circle (left) and relative phase, φ,
vs. time, t (right). (b) dPLI as a function of coupling strength S.

and node degree: low-degree nodes phase lead whist high-
degree nodes phase lag. For the directed network no such
relation is evident, rather low- and high-degree nodes are
interspersed amongst nodes of varying degree. Moreover,
it is evident from fig. 4(b), where we display mean dPLI
(i.e., 〈dPLIij〉j) of each node arranged in ascending order
of its in-degree for coupling values, S, ranging from zero to
five, that the aforementioned patterns prevail under vari-
ation of the coupling strength S. Importantly, this result
implicates a potentially distinctive role for directed net-
work topology in determining the nature of synchronous
neural activity at different scales within the brain.

Conclusion. – In this letter, we have investigated the
impact that network directionality has on the synchronisa-
tion dynamics of neural activity in connectome networks.
Deploying a Kuramoto phase model of neural dynamics,
we performed numerical simulations to probe important
properties of neural synchrony, such as synchronisation
times, the impact of neural delays and the role of direction-
ality in determining phase relationships between distant
brain regions. The Kuramoto model is a highly simpli-
fied model with which to investigate synchrony properties
in directed connectomes; indeed, several features of rel-
evance such as complex node dynamics, stochasticity or
distance-dependent coupling and/or delays, are omitted
from our formulation; however, such an approach allows

us to provide a more powerful exposition of the impor-
tance of network structure imparted by the directed cor-
tical topology, in isolation.
Our results are significant for a number of reasons.

First, they demonstrate how perturbing the directed
topology (i.e., via the inclusion of false positive connec-
tions inherent in generating undirected representations of
the connectome) can significantly impact both synchoni-
sation times and robustness properties of synchonised and
phase-locked states. We found that undirected networks
synchronise faster but are less robust to the inclusion of
time delays, thus suggesting network directionality as a
potential candidate mechanism for regulating spreading
dynamics within the brain. Second, our study suggests
that recent developments (see, for example, [23,24]) high-
lighting relations between network degree and functional
directionality patterns, whilst remaining consistent across
directed large-scale connectomes, appear to break down
for micro-scale neuroarchitectures such as the C. elegans
connectome. These results are likely a manifestation of
observed differences between motif and community net-
work structures (see, for example, [29,30] and references
therein) that exist for the different species considered here,
and which have recently been hypothesised to underpin
phase-synchrony in large-scale brain networks [31].

The focus of future work shall be twofold: i) investigate
how the results obtained in this study are altered when

42004-p5



J. J. Crofts et al.

deploying a signal transition model which more accurately
reflects the behaviour of a neural unit (brain region or
neuron depending upon the scale); and ii) consider other
micro-scale architectures (e.g., drosophila and mouse con-
nectomes) to determine the extent to which macro- and
micro-scale networks can be characterised by their syn-
chrony properties.
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