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ABSTRACT Music has been an integral part of the history of humankind with theories suggesting
it is more antediluvian than speech itself. Music is an ordered succession of tones and harmonies that
produce sounds characterised by melody and rhythm. Our paper proposes an ensemble deep learning
musical instrument classification (MIC) framework, named as MIC_FuzzyNET model which aims to
classify the dominant instruments present in musical clips. Firstly, the musical data is converted to three
different spectrograms: Constant Q-Transform, Semitone Spectrogram and Mel Spectrogram, which is then
stacked to form 3 channel 2D data. This stacked spectrogram is fed to transfer learning models namely,
EfficientNetV2 and ResNet18 which output the preliminary classification scores. A fuzzy rank ensemble
model is finally employed that assigns the classifier ranks, on the testing data in order to achieve final
enhanced classification scores which reduces error and biases for the constituent CNN architectures. Our
proposed framework has been evaluated on the Persian Classical Music Instrument Recognition (PCMIR)
dataset and Instrument Recognition in Musical Audio Signals (IRMAS) dataset. It has achieved considerably
high accuracy, making our proposed framework a robust MIC model.

INDEX TERMS Musical Instrument classification, MIC_FuzzyNET, Fuzzy integral, Spectrogram, Trans-
fer Learning, PCMIR dataset, IRMAS dataset.

I. INTRODUCTION
Sound plays an integral role in how living beings perceive

the world around them and communicate with each other.
Although conscious communication is multi-sensory and in-
volves tactile as well as visual cues in addition to audio cues,
most of the time we gather and analyse information about
the surrounding through sound cues without many wilful
attempts. However, the past few decades have witnessed con-
siderable innovation and research by amalgamating science
with the study of sound waves.

Audio comes in many forms including random noises,

verbal speech, wildlife and environmental sounds, and mu-
sic, which this paper deals with. Our research proposes an
intelligent system which can able to classify musical sounds
into their instruments based on spectrogram features. As
humans, we grow up listening to various genres of music
and artists. We can distinguish various instrument classes,
such as percussion, wind, and string instruments, to name a
few. With the escalation of online streaming platforms, both
audio and video data are generated at a tremendous rate,
meaning there must be services to analyse multimedia data.

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3208126

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-6075-2605
https://orcid.org/0000-0002-1987-538X
https://orcid.org/0000-0001-5206-272X
https://orcid.org/0000-0002-2664-3632
https://orcid.org/0000-0002-9598-7981
https://orcid.org/0000-0002-2037-8348


Sahoo et al.: MIC_FuzzyNET: Fuzzy Integral based ensemble for Automatic Classification of Musical Instruments from Audio Signals

Figure 1: Overall framework of our proposed MIC_FuzzyNET model for classifying musical instruments from musical
excerpts.

Music Instrument Classification (MIC) falls under the canopy
of Music Instrument Retrieval (MIR) domain, which mainly
deals with the analysing audio content such as feature extrac-
tion, classification, descriptor generation and segmentation
to name a few. The development of MIC frameworks can
assist music indexing, Human-Computer interaction systems,
genre classification, and recommendation systems, among
other potential applications.

Any audio classification pipeline has two important
phases: picking the right set of features for feeding the clas-
sification network and designing an efficient Machine Learn-
ing or Deep Learning architecture. Deep Neural Networks
(DNNs) and Convolutional Neural Networks (CNNs) have
had a lot of success and perform well for Machine learning
and vision problems. DNN architectures are employed in
various domains such as biometrics, healthcare, image clas-
sification, segmentation and generation, Natural Language
Processing and audio classification and understanding.

To train any deep learning model, audio data must be pre-
processed and features must be extracted to feed the model.
Sound has predominantly two kinds of features, the first is
temporal features, and the second is spectral features which
are obtained by converting the temporal features into the fre-
quency domain with Fourier transforms. Zero-crossing rate,
maximum amplitude, signal energy, and minimum energy are
some examples of temporal features. On the other hand spec-
tral features are represented using Mel Frequency Cepstral
coefficients (MFCC), chroma-stft, spectral density, constant-

Q transform (CQT) spectrograms, semitone spectrograms,
central bandwidth, and central rolloff, among other features.
Keeping into account the effectiveness and past success of
transfer learning CNN models, our proposed research has
taken into consideration 3 spectral features namely, Mel spec-
trogram, CQT spectrograms, Semitone spectrograms and
processed them into a format recognised by CNN architec-
tures. These architectures are pre-trained on huge datasets
and these weights are reused for extracting essential patterns
from the modified input spectrogram for classifying the dom-
inant instrument from the audio/music sample. A pictorial
view of our entire framework has been represented in Figure
1.

A. MOTIVATION AND CONTRIBUTIONS
1) A lot of data is needed for building an end-to-end deep

learning model. However, there is a shortage of labelled
and organised data for the purpose of MIC problem, as
a result of which we used pre-trained transfer learning
models namely, EfficientNetV2 and Resnet.

2) Training deep learning models directly on audio sam-
ples is computationally expensive because of massive
sampling rates. We have stacked three spectrogram
layers: Semitone, CQT and Mel spectrogram, together
into a 3D stacked spectrogram to extract features using
convolution layers thereby providing the classification
models with a better understanding of the audio data.

3) The use of a single transfer learning model to train the
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spectrograms may result in an imbalance. We use the
ensemble approach to gain a weighted opinion of all
base classifiers in order to reduce noise and get better
as well as unbiased prediction scores. As a result, it is
an innovative approach to the MIC problem.

4) A modified Gompertz function is employed to allocate
fuzzy ranks to the prediction scores of the different
models. The Gompertz function saturates exponentially
to an asymptote, with prediction scores seldom falling
below zero. Because fuzzy rankings based fusion ap-
plies adaptive priority weights to each model prediction
scores, it is different and more efficient than typical
ensemble pipelines.

5) We have compared our performance and evaluation met-
rics with some recent approaches for MIC problem and
inferred that our MIC_FuzzyNet framework transcends
them, as a result, proving the novelty of our ensemble
approach.

6) Two open-source datasets are used to train and evalu-
ate the MIC_FuzzyNet model: Persian Classical Mu-
sic Instrument Recognition (PCMIR) and Instrument
Recognition in Musical Audio Signals (IRMAS). In
comparison to other machine learning as well as deep
learning frameworks, we are able to achieve the state-
of-the-art accuracy.

II. LITERATURE REVIEW
In 1995, Kaminsky and Materka 29 used principal com-

ponent analysis, short term RMS energy envelope and ra-
tio/product transformations for classification of monophonic
instruments with the help of K-nearest neighbour classifier
and neural networks. In 2000, Eronen and Klapuri 16 came
up with a system that took into account various temporal
and spectral features to classify pitch-independent musical
instruments and integrate this into a transcription system.

Essid et al. 17 studied various audio features and used
inertia ratio maximisation and genetic algorithms with fea-
ture space projection for choosing the most relevant set of
features. They employed Gaussian Mixture Models (GMMs)
and Support Vector Machines(SVM) for the musical instru-
ment classification phase with 75% accuracy in their baseline
GMM model. Heittola et al. 23 used a sound separation tech-
nique on polyphonic music data using a source-filter model
and Mel-frequency cepstral coefficients were the choice of
audio features. They achieved an accuracy of 59% on 6 note
polyphonic music.

Many researchers focused on instruments of a certain
genre or culture for uplifting art and research on their history.
Mousavi et al. 36 curated the PCMIR dataset which we will
also be using in this paper. He used Fuzzy entropy measure
for feature selection and a Multi Layer Perceptron for classi-
fication of Persian instruments. Shetty and Hegde 46 worked
on classifying 10 different Carnatic musical instruments by
extracting Linear prediction coefficients (LPC) and MFCC
features and comparing different Deep learning and Machine
Learning models for classification. Bosch et al. 6 , in their

Total Samples Training Testing Validation
Ud 339 271 35 33
Tar 461 368 47 46
Santur 443 354 45 44
Kamancheh 363 290 37 36
Ney 435 348 44 43
Setar 369 295 38 36

Table 1: Distribution of samples in different classes in the
train, test and validation subsets for PCMIR dataset.

paper, presented approaches combining source separation
and instrument recognition, where they learned that there is
32% improvement of the micro F1-measure over the original
algorithm.

Han et al. 22 ’s approach to identify instruments went
around extracting the various features from mel-spectrogram
using convolutional layers of CNN. They experimented with
various activation functions, out of which, ‘ReLU’ (alpha
= 0.33) gave the best classification result with the overall
F score of 0.602 on IRMAS training data, which we have
used as well. Goel et al. 20 showed how we can use musical
genres to distribute and manage music datasets to increase the
accuracy in finding a music item a person wants to listen to.
They presented research for creating an appropriate model
for genre recognition in audio files using machine learning
classifiers on the IRMAS dataset. Then the classification
of genre using Synthetic Minority Oversampling Technique
(SMOTE) algorithm has been characterised in the confusion
matrix. They achieved a maximum accuracy of 81.56% using
the ensemble classification model.

III. EXPERIMENTAL SETUP

Deep learning models have been loaded from Keras mod-
els API and trained using resources from Google Colabora-
tory. GPU used is Tesla K80 with 2496 CUDA cores and
VRAM of 12GB DDR5, single core hyper threaden Xeon
processors clocked at 2.3GHz and 12.6GB of available RAM,
all of which is provided by Google Colaboratory workspace.
Initial data visualisation and dataset analysis have been per-
formed in local machine with AMD Ryzen 5 4600H CPU,
8GB of DDR4 RAM and 4GB of GTX GeForce 1650 GPU.

IV. DATASET DESCRIPTION

A. PCMIR

The PCMIR dataset was designed to study few important
musical instruments used in Persian Music. The dataset con-
sists of music samples belonging to 7 musical instruments:
Kamancheh, Tar, Ney, Tonbak, Santur, Setar and Ud. This
dataset is primarily important because it is a maiden research
conducted for classifying Persian musical instruments. For
the transfer learning phase we have split the dataset into
training, testing and validation data in the ratio 8:1:1. The
data distribution is given in Table 1.
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Total Samples Training Testing Validation
Cello 388 310 40 38
Flute 451 360 46 45
Organ 682 545 69 68
Piano 721 576 73 72
Saxophone 626 500 64 62

Table 2: Distribution of samples in different classes in the
train, test and validation subsets for IRMAS dataset.

B. IRMAS
The IRMAS dataset consists of polyphonic musical sam-

ples with presence of 2 or more predominant musical instru-
ments. There are 3 second musical extracts in .wav format
of 16 bits. There are a total of 11 classes in the original
dataset which are: electric guitar, organ, piano, saxophone,
trumpet, violin , cello, clarinet, flute, acoustic guitar, and
human singing voice. Since these are polyphonic in nature
we have considered only 5 classes of instruments which
are cello, flute, organ, piano and saxophone. By leveraging
the pre-trained weights from the transfer learning models,
5 instrument classes were taken from the dataset to show
that our proposed model can perform well even with limited
datasets. Furthermore, the 5 instruments belongs to a differ-
ent class of musical instruments, adding to the robustness of
our proposed framework.

We have evenly and randomly split the samples in a
8 : 1 : 1 ratio as shown in Table 2 into training-testing-
validation subsets. This particular ratio was decided to enable
the model to train on enough data samples since our proposed
framework deals with small datasets, while optimizing the
number of unseen testing samples on which our framework
infers the performance of the ensemble model. The data
samples are not collected in studio environment but collected
across different genres, artists and decades which is why
there is great variety in quality of data points.

V. METHODOLOGY
The proposed framework has been divided into the follow-

ing subsections, namely feature extraction, creating stacked
spectrogram, CNNs, model training with transfer learning
and finally assigning the fuzzy ranks to the CNN models for
ensemble learning.

A. FEATURE EXTRACTION
An eclectic choice of features from the musical samples

we have, is of prime necessity if we want to extract more
information for instrument classification. There is availability
of various temporal and spectral features corresponding to
audio data which include Mel spectrograms, LPCC, MFCC
to name a few. However there are few spectrograms which
are easy to visualize and can be used for our MIC problem.
For our proposed model, we have chosen three features
which are CQT spectrogram, Semitone Spectrogram and Mel
Spectrogram.

Figure 2: A CQT spectrogram corresponding to a Setar
audio sample.

1) Constant Q Transform Spectrogram

A spectrogram is a visual representation of the signal
strength of a signal versus time at various frequencies present
in a particular waveform. In a spectrogram, it can be seen
whether there is more or less energy but it can also seen how
energy levels vary over time. In the field of signal processing,
the CQT, which goes by CQT15, transforms a data series to
its corresponding frequency domain. It is derived from the
Fourier transform and also closely related to the complex
Morlet wavelet transform.

The transform can be taken as a series of filters δfk, spaced
logarithmically in frequency, with the k-th filter having a
spectral width δfk equal to a multiple of the previous filter’s
width:

δfk = 21/n · δfk−1 =
(
21/n

)k

· δfmin, (1)

where, δfk is the bandwidth of the k-th filter, δfmin is the
central frequency of the lowest filter, and n is the number of
filters per octave.

In CQT, the frequency will be converted into a log scale
and the colour dimensions (amplitude) into decibels to form
a spectrogram. Figure 2 shows a CQT spectrogram corre-
sponding to a Setar audio sample.

2) Mel Spectrogram

A detailed graph called a spectrogram contains data on the
frequency, duration, and amplitude of sound waves. Colors
are utilised as the third dimension in spectrograms, which are
typically two dimensional. A Fourier Transform is applied
to each of the broken-up, little temporal chunks or frames
that make up the audio stream. The colour scales of the
spectrograms indicate the frequency’s amplitude or power
in the resulting frequency versus time graph. Humans hear
frequencies logarithmically rather than linearly. As a result,
a 100Hz difference in the Mel Scale corresponds to what
a human would typically perceive in the actual world. This
issue is resolved by the Mel scale, which converts a tone’s
perceived frequency to its actual frequency.
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Figure 3: An audio sample and its corresponding Mel
spectrogram representation.

Mel spectrograms hold sound information which the hu-
man ear could perceive. The Mel scale and Hertz(Hz) are
related by the given formula:

m = 2595 log10(1 +
f

700
) (2)

Figure 3 shows the raw audio waveform of a clip taken
from Ud instrument class of the PCMIR dataset along with
its Mel spectrogram which has been extracted using Librosa
library in Python.

3) Semitone Spectrogram
The smallest musical interval employed in Western music

is the semitone, commonly referred to as a half step or half-
tone. When performed harmonically, a semitone is thought
to be the most discordant39. A semitone is the distance in
pitch between two notes that are close to one another on
a 12-tone scale. When a test signal is run through a signal
processor, such as a filter, the results are typically analysed
using spectrograms to show the performance. For particular
spine notes, the semitones filter determines melodic semitone
intervals. The filter can highlight repetitions, steps, leaps, and
the direction of intervals in the rendered notation.

Significance of chosen spectrograms
The hertz values are remapped to the Mel scale in the

Mel spectrogram. So, Mel spectrograms are better suited for
applications that need to replicate human hearing perception,
such as music.

Figure 4: Pictorial representation of the 3D stacked spec-
trogram employed as our feature vector in the present
work.

The CQT has a few characteristics that make it a better
fit for musical data when compared to the rapid Fourier
transform. Since the output of the transform is essentially am-
plitude/phase against log frequency, fewer frequency bins are
required to adequately cover a given range. When frequencies
cover several octaves, this is advantageous. This reduction in
output data is significant because the human hearing range
extends from 20 Hz to around 20 kHz or about ten octaves.

The majority of musical instruments, nowadays, employ
the 12-tone chromatic scale, which divides an octave into 12
evenly spaced parts on a logarithmic scale. A semitone53,
the tiniest interval in music, is seen as dividing each part.
For most instruments, tuned to an evenly tempered scale, the
middle octave note A is tuned at 440Hz. To calculate the
short-time mean-square power (STMSP) for each band, the
subsequent filtered time samples are added together. How-
ever, the semitone spectrogram generates 85 filters with one-
semitone bandwidths and the MIDI pitches keeping [24, 108]
as center frequencies when it is launched using the default
set of parameters. In 1972 Deutsch 13 claimed that although
people seem to perceive in octaves, pitch organisation within
octaves varies culturally. The equal-tempered scale, which
splits the octave into twelve equally spaced semitones, has
served as the main organisational framework for Western
music. It is to be noted that the smallest pitch unit in Western
music is the semitone.

B. CREATING STACKED SPECTROGRAM
The novelty of our proposed algorithm, partly lies in the

presentation of audio features into a 3D matrix, the structure
of which is similar to that of images. Semitone, Mel and
Constant Q transform spectrograms are the selected features
for our MIC_FuzzyNET model and they are stacked together
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in a 3D matrix, where each spectrogram is analogous to a
channel in an image.

The transfer learning models namely, EfficientNetV2
and Resnet18, are extremely effective in classifying image
datasets. They can easily pick up low level and high level
features from images and determine the classes or segment
images with high levels of accuracy. We are exploiting this
property of the CNN models in our proposed paper. By
synthesising analogous data structures using the constituent
spectrograms, the CNN models can similarly pick up fea-
tures and perform convolutions, pooling and classification
on the stacked spectrograms. Hence, we have successfully
reduced the data dimensions from audio sampled at 44kHz
to 3D matrices of size (3x224x224). Notwithstanding the
3 dimensional shape of inputs, the CNN models perform
2D convolutions and not 3D convolutions. 2D convolutions
implies that the kernel traverses in 2 dimensions only (i.e.,
along the height and width of the image or similar input).
Despite the kernel being a 3D matrix, it will move only along
the height and breadth of the image while the third dimension
overlaps with the channel dimension of the images. Fig 5
represents the 2D convolution operations performed on 3D
data with 3D kernels.

Figure 5: Diagrammatic representation of 3D kernel on
3D input data with 2D convolution operations.

Using these three spectrograms, we are able to explore
different modalities of audio data. All the three constituent
spectrograms represent different properties of the audio data,
hence the stacked spectrogram gives us the power to simul-
taneously perform convolutions on all three feature vectors
and make more informed and accurate predictions. Figure 4
shows the pictorial representation of the 3D stacked spectro-
gram for a clip taken from the Ud instrument class of the
PCMIR dataset.

C. CONVOLUTIONAL NEURAL NETWORKS
In the field of deep learning, CNN is a type of Artificial

Neural Network (ANN) which is generally used in image
recognition and processing because it is designed especially
to process pixel data. CNN are powerful Artificial Intel-

ligence (AI) that perform both generative and descriptive
tasks, by using machine vision that have both image and
video recognition, along with recommender systems and the
Natural Language Processing (NLP).

If we consider the history of CNN, LeNet, named after
Yann LeCun, was one of the very first CNNs which helped
immensely the field of Deep learning. This pioneering work
was named LeNet534 after many previous successful and
building efforts since 1988. In those days, the LeNet ar-
chitecture was used in research works related to character
recognition tasks like reading pin codes, digits, etc. AlexNet,
developed in 2012, showed that AI, a branch of deep learning,
which uses multi-layered neural networks, needs to be look
at. The availability of large sets of data, such as the Ima-
geNet dataset with many labeled pictures, and vast compute
resources enabled researchers to make complex CNN that
would perform computer vision tasks that were previously
impossible.

CNNs are generally used to take the benefit of their ability
to develop an internal representation of a two-dimensional
image. This way it allows the models to learn position and
scale invariant structures in the data, which is very important
when working with image datasets. CNNs work well with
data that has a spatial relationship, such as in a document
of text, there is an ordered relationship between words, or
in the time steps of a time series etc. Although ConvNets
achieve state-of-the-art (SOTA) results on problems such as
document classification, mostly used in sentiment analysis,
entity extraction and related problems in NLP. This paper10

showed how deep ConvNets surpassed other traditional ma-
chine learning algorithms like Random Forest, SVM and
Gradient Boosting classifiers, especially in terms of classi-
fication accuracy.

The reason why CNNs are highly rated is because of their
architecture, which has no need for feature extraction. The
core concept of CNN is, it uses convolution of image and
filters to get invariant features which are passed onto the next
layer and therefore it learns feature extraction on it’s own.
The features in the next layer are convoluted with different
filters to generate more invariant and abstract features and
the process continues till one gets the final output which is
invariant to occlusions. The CNN input is traditionally two-
dimensional, a field or matrix, but also it works with one-
dimensional, allowing it to develop an internal representation
of a one-dimensional sequence. Now, CNNs can extract
informative features from images, eliminating the necessity
of manual image processing methods, which is the traditional
one, used for years.

The formula for convolution can be written as follows:

s[t] = (x ∗ w)[t] =
a=∞∑
a=−∞

x[a]w[a+ t] (3)

where, s[t] is Feature map, x is input and w is kernel. There
are generally three-way layering in a CNN: Convolutional
Layers, Pooling Layers and Fully Connected Layers. When
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Figure 6: A pictorial representation of a CNN sequence to
classify stacked spectrogram.

an image is given as input in the ConvNet model, each layer
generates several activation functions that are passed onto its
subsequent layers. The convolutional layer extracts primary
features like horizontal or diagonal edges. This output is
passed onto its subsequent layer which as we move deeper
into the network, can identify even more complex features
such as objects, faces, etc. The initial convolutional layer
or layers learn characteristics like edges and straightforward
textures. Later, convolutional layers pick up elements like
more intricate patterns and textures. The last convolutional
layers pick up on properties like objects or their compo-
nents1. The completely linked layers acquire the ability to
link the activations from the specific classes to be predicted to
the high-level characteristics. Based on the activation map of
the ultimate convolution layer, the classification layer outputs
a collection of confidence scores (a value between 0 and 1),
that specifies how likely the image is to belong to a class
or set of desired output. For example, if we have a Network
model that detects cats, dogs, and cars from just their images,
it is possible that the output of the final layer contains any of
those already considered input images. Figure 6 shows the
schmatic diagram of the various layers in CNN sequence,
which has been used to classify stacked spectrogram.

The pooling layer is used to reduce the spatial size of
the convolved features, like the convolutional layer. There
are mainly two styles of pooling: Average pooling and Max
pooling. In Max pooling, the maximum value of a pixel
from a part of the image covered by the kernel is selected.
This layer discards the noisy activation altogether and also
performs de-noising alongside dimensionality reduction. On
the opposite hand, Average pooling returns the average of
all the values from the portion of the image covered by
the kernel. It generally performs dimensionality reduction,
as a noise suppressing mechanism, as a result of that, Max
pooling performs tons better than Average pooling. At the
last stage of the network, the fully connected layers are used,
after feature extraction and consolidation has been performed
by the convolutional and pooling layers. These are used to
create final non-linear combinations of features and then for
creating the final predictions by the network.

As we have already covered, CNNs do well when it comes
to picture classification. Additionally, earlier studies have
already demonstrated how well-known CNN architectures,
including AlexNet, VGG, Inception, and ResNet, performed
when applied to audio-based classifications. To create a spec-
trogram, which served as an input to the network models, the
audio time signal is typically decomposed using a short-time
Fourier transform. Then, we use transfer learning to accom-
plish the goal with relatively little data. After the majority
of the layer weights are frozen during the transfer learning
process, a pre-trained network is employed, with only a few
of the last layers being retrained using the audio training
data. The next step is to train CNNs using spectrogram and
raw audio inputs. Layer-wise Relevance Propagation (LRP)
is then chosen to investigate further how the models choose
features and make judgments. Thereafter, results also show
that spectrogram inputs result in higher accuracy over raw
audio inputs. The audio signal is then pre-processed with the
Mel spectrogram in order to describe it in a more detailed
way. In order to effectively identify the audio data, both
transfer learning along with a smaller CNN architecture can
be used at the same time.

D. MODEL TRAINING WITH TRANSFER LEARNING
Creating newer architectures for every classification prob-

lem in deep learning is bottlenecked by the lack of sufficient
and properly labelled data. To tackle this problem, transfer
learning is employed where models pre-trained on millions
of data points are reused for problems with small datasets.
Transfer learning refers to the exploitation of information
gathered by training on very large sized datasets to prob-
lems with less data. Models trained to differentiate between
different plants can be used to also classify food images.
Deep neural networks only recognise sophisticated patterns
like color and specific features in the later layers; the initial
few layers only recognise general patterns like shape, edges,
noise, etc. To identify or predict our own datasets, we can
use the initial layers, remove the latter layers, and add our
own layers. This is achieved by transferring the weights from
the previous model to a newer model. Not only does transfer
learning leverage the usefulness of small datasets, but it also
reduces training time by freezing weights of some layers and
training only a subset of layers for the new problem. CNN
models can sometimes be very resource demanding with lots
of computations which makes it unsuitable for systems with
less computational power. Hence, transfer learning models
can be used where the re-training of the entire model is
unnecessary. In our chosen models, we have only modified
the valence layer which is the linear dense layer by changing
the output classes from their default values to that of the
number of instrument classes according to the datasets. The
training method is quicker than updating the complete CNN
architecture using forward and backward propagation since
we are only training the final layer of the CNN models rather
than the full architecture. As a result, our suggested model
performs better in terms of time complexity.
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Figure 7: Effect of coupling different factors while scaling
in a CNN network.

We have employed pre-trained transfer learning model
in our proposed work for cross-domain datasets. Both the
EfficientNetV2 as well as ResNet18 models are initially
trained on ImageNet but our dataset has spectrogram images.
However, leveraging transfer learning models for datasets
where the source and target domains are different have been
experimentally verified38 and is an effective choice for small-
sized datasets as already seen in the literature.

Both the datasets are divided into training, testing, and
validation subsets in the ratio 8:1:1. The training and valida-
tion datasets containing the stacked 3 channel spectrogram
data are used to fine-tune the 2D CNN transfer learning
models. The test data samples are unseen by the model
during training. Both the ResNet18 as well as EfficientNet
models can be accessed from the Pytorch Model Zoo. The
two transfer learning models are described below as follows:

Stage Operator Stride #Channels #Layers
0 Conv 3x3 2 24 1
1 Fused-MBConv1, k3x3 1 24 2
2 Fused-MBConv4, k3x3 2 48 4
3 Fused-MBConv4, k3x3 2 64 4
4 MBConv4, k3x3, SE0.25 2 128 6
5 MBConv6, k3x3, SE0.25 1 160 9
6 MBConv6, k3x3, SE0.25 2 256 15
7 Conv1 & Pooling & FC - 1280 1

Table 3: A tabular representation of the EfficientNetV2 archi-
tecture used in the present work.

We used early stopping to reduce overfitting and used
fewer epochs, with an empirical cap of 20 epochs, to ensure
that our training phase did not overfit the training data.
Additionally, we used an ideal 8:1:1 train-validation-test split
in order to allocate more data to the training phase.

1) EfficientNetV2
Convolutional networks have paved their way into com-

puter vision community and have retained a permanent spot,

however the problem of model scaling remains quiet a prob-
lem. Model scaling refers to the problem of increasing per-
formance accuracy at the cost of increasing model depth and
complexity in architecture. Often times the tuning of model
depth and layer sizes becomes time and resource demanding
which is why this new class of CNNs, EfficientNet52, were
created by Google in 2019.

The EfficientNet class of CNNs have a mobile-size ar-
chitecture with reduced parameters and Floating Point Op-
erations per Second compared to contemporary state of the
art CNN architectures. They employ a compound scaling
methodology to maximise the gain in accuracy proportional
to model size.

The main idea behind EfficientNet comes from the ob-
servation that a model can be scaled wither by increasing
layer depth, input resolution or width of network. However
changing any one factor after a certain point saturates the
accuracy, which is experimentally observed. Hence, change
in any one factor must be coupled with tweaks in the other
properties to maximise the gain in accuracy. Hence during
convolutional network scaling, resolution, width and model
depth must be scaled proportionately, the result of which
is shown in Figure 6. In our proposed paper, we have
used a newer version of EfficientNet called EfficientNetV2
which use progressive training and fused-MB convolutional
layers56. These Fused-MB Convolutional layers are charac-
teristic to the EfficientNetV2 which has lesser parameters
and FLOPS while also being able to use modern GPU/CPU
accelerators. Unlike traditional EfficientNet models which
compound scales all the stages(resolution, depth and width)
equally, the EfficientNetV2 scales the layers in a non-uniform
fashion. This is because the early layers only are responsible
to capture high level features and don’t require much scaling.

The EfficientNetV0 has achieved 87.3% accuracy on the
ImageNet dataset with faster training times compared to state
of the art architectures. Hence, it is a perfect choice for
our transfer learning phase. Table 3 gives a tabular view of
the model architecture which contains the new fused-MB
convolutional layers along with the MBConv layers from the
initial EfficientNetB0 models.

2) ResNet18
ResNet also called Residual Network was developed in

2015 and is a 2D CNN model that employs the concept of
residual mapping which is effective against the “degradation
problem” in deep neural networks. The optimisation phase
of the CNN model is greatly enhanced by the residual map-
ping. The ResNet-18 is pre-trained on the ImageNet dataset
which has been trained on millions of images, making it a
good CNN model for transfer learning. The input size of
images for the model is 3x224x224. For ResNet architec-
tures, the performance is greatly impacted by the depth of
the network(total number of layers). ResNet-18, ResNet-34,
ResNet-50, ResNet-101, ResNet-110, are few depth wise im-
plementations of ResNet architectures. The ResNet18 model
(see Figure 8 for further details) used in our proposed paper
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Figure 8: ResNet-18 CNN transfer learning model in pictorial form.

Figure 9: Graphical representation of the modified Gom-
pertz function used to determine the fuzzy ranks of con-
stituent classifiers.

is an ideal trade off between performance and computational
complexity.

Because the chosen CNN models, in the present work,
have substantially fewer parameters, the system needs less
memory. It is to note that the Resnet18 model needs 41MB
to load, whereas the Resnet152 model needs 214MB. Despite
this significant increase in model size, it was unable to deliver
a commensurate performance advantage. Additionally, the
EfficientNetV2 model requires 21MB of space to load. Our
models perform better than other well-known models like
AlexNet (216 MB), Densenet161 (106 MB), and VGG16
(489 MB), both in terms of performance as well as memory
requirements.

E. FUZZY RANKING
In the literature, the traditional ensemble method uses pre-

calculated weights for the classifiers and assigns equal weight
to the classification scores of all constituent CNN models.
The main issue with such an ensemble is the creation of static
weights, which can be challenging to control in the section
when we categorise samples. However, each base classifier’s
predictions rankings are taken into account for each sample

separately in the proposed fuzzy-rank framework. By us-
ing our ensemble technique, rankings for prediction can be
obtained that are more favourable and accurate. Since this
is a dynamic approach, it is not necessary to initialise new
weights for various data samples.

Time series that increase gradually at the beginning and
end of a period are described by the Gompertz function.
Although it is now frequently used in biology, it was pri-
marily used to explain the mortality rate in proportion to
advancing age. The Gompertz function can be used to explain
population increase, the development of cancerous tumours,
the spread of bacterial colonies, and the number of people
affected by an epidemic. We use the following equation to
understand the function:

f(t) = ae−eb−ct

(4)

where, a represents an asymptote, b determines the x-axis
displacement, c scales the y-axis, and e is Euler’s number.

Figure 9 depicts the modified Gompertz Function that is
used in our suggested approach. We have N number of pre-
diction scores for each image in the test split of the database,
where N is the number of constituent models. As previously
mentioned, we used three CNN models for transfer learning,
hence N=3. If the dataset’s label count is L, then:

L∑
l=1

S
(n)
l = 1;∀n, n = 1, 2, 3, . . . , N (5)

The prediction scores for each class for each set of sample
data, denoted by S in Equation 5, are taken into consideration
for constructing the fuzzy ranks. The following formula gives
the fuzzy ranks due to the nth constituent model for the lth

class:

R
(n)
l = (1− ϵ−ϵ−2×S

(n)
l )

∀l, n; n = 1, 2, ..., N ; l = 1, 2, ..., L
(6)

There may be k top classes that correspond to each class in
the dataset; in our suggested strategy, we have selected "2" as
these top classes. For the class l, the eqs. (7) to (8) is utilised
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to determine the fuzzy ranks (FRSl) and complement of
confidence factor sum (CCFSl). A penalty value of PR

l and
PCF
l is applied on the appropriate class if the label l does

not fall under the top K classes. By multiplying the (FRSl)
and (CCFSl) and selecting the class with the lowest value
overall, as demonstrated in eq. (9), the final projected class
for the data instance X is determined.

FRSl =

N∑
i=1

{
R

(i)
l , ifR

(i)
l ∈ K(i)

PR
l , otherwise

(7)

CCFSl =
1

N

N∑
i=1

{
CF

(i)
l , ifR

(i)
l ∈ K(i)

PCF
l , otherwise

(8)

class(X) = min {FRSl × CCFSl} (9)

VI. RESULTS AND DISCUSSION
In the next section, a tabular data regarding the results

are presented which has been acquired after working on
the two aforementioned freely available MIC datasets. The
final ensemble model, as well as the assessment measures
and performance of the transfer learning models, are all
thoroughly detailed. Combining an ensemble technique with
deep learning 2D CNN models that take as input modified
3 channel inputs enabled us to attain state-of-the-art perfor-
mance in categorising instruments from polyphonic music
samples, according to our findings.

A. EVALUATION METRICS
Accuracy, Precision, Recall, and F-1 score are the evalu-

ation measures used to assess performance. The most used
metric for deep neural network challenges is training, valida-
tion, and testing accuracy, hence our proposed study also uses
it. The next subsections thoroughly compare our suggested
model and other earlier frameworks and architectures.

Basic parameters like True Positives, True Negatives, False
Positives, and False Negatives can be used to produce the
aforementioned evaluation metrics. The following are the
related formulas:

Accuracyx =

∑
x Mxx∑

x

∑
y Mxy

(10)

Precisionx =

∑
x Mxx∑

x

∑
y Myx

(11)

Recallx =

∑
x Mxx∑
y Mxy

(12)

F1 Scorex =
2

1
Precision + 1

Recall

(13)

The percentage of correctly classified data to all classified
data is a model’s accuracy. The aforementioned calculations
indicate that high precision and recall will result from reduc-
ing the overall amount of false positives and false negatives.

Since the F1-Score takes into account both recall and pre-
cision values, it is safe to claim that it is a good evaluation
metric that becomes 1 if both recall and precision values
become 1.

B. PERFORMANCE OF CNN MODELS
The two base 2D CNN models have been loaded from

Pytorch and pre-trained on the most important image dataset,
ImageNet12 dataset. The pre-trained weights of the CNN
models for the initial layers have been frozen to prevent
training the entire model and re-initializing the weights.
Since the ImageNet dataset has a total of 1000 classes, the
classification layer also has an output dimensions of 1000.
The final prediction dense layer have been modified to the
shape (1, num_of_classes) for our training phase. Each base
classifier has been trained for 25 epochs after which the
model starts overfitting and converging. The model weights
with best validation accuracy have been saved for the testing
phase. The training and validation phase have been run with
a different number of epochs and batch sizes and the hyper-
parameters have been chosen empirically for our proposed
model.

The EfficientNetV2 model achieved 99.86% training ac-
curacy, 89.82% validation accuracy and testing accuracy of
85.67%. The training starts to converge after 10 epochs, so
the epochs were experimentally set to 20 and not more. Since
the audio excerpts in IRMAS dataset are polyphonic and
even humans find it difficult at time to differentiate between
instruments when melody contains multiple musical sounds
from different instruments, testing accuracy of 85.67% is sat-
isfactory. The ResNet18 model has 100% training accuracy,
91.57% validation accuracy and testing accuracy of 85.01%
for the IRMAS dataset.

For the PCMIR dataset, the performance of 2D CNN
models is remarkable due to the monophonic nature of music
excerpts making it easier for the neural network to classify
the instruments discretely. The Resnet18 model has 100%
training accuracy at peak which converges after 10 epochs.
The validation and testing accuracies are found to be 98.74%
and 96% respectively. Coming to the EfficientNetV2 model,
we have achieved the maximum training accuracy at 99.99%,
validation accuracy of 98.74% whereas the final testing accu-
racy is found to be 96.34%.

Our CNN models can recognise more features for clas-
sification because we are simultaneously employing three
separate spectrograms instead of only one. On the ImageNet
dataset, which contains 3 channel RGB images, the trans-
fer learning models have already been trained. We did not
need to alter the model architecture as a result. Because the
dynamic ensemble model incorporates transfer learning, it
outperforms earlier efforts that did not take advantage of the
simultaneous training of various spectral features. Table 14
gives a detailed analysis of the running time for training, val-
idation and testing times for each datasets. It also highlights
the time taken for the Fuzzy-rank based ensemble model to
make its final classification.

10 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3208126

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Sahoo et al.: MIC_FuzzyNET: Fuzzy Integral based ensemble for Automatic Classification of Musical Instruments from Audio Signals

(a) EfficientNetV2 (b) ResNet18

Figure 10: Graph showing the CNN model training and validation curves on the IRMAS dataset using (a)EfficientNetV2
model and (b) ResNet18 model.

(a) EfficientNetV2 (b) ResNet18

Figure 11: Graphical representation of the variation of CNN model training and validation curves on the PCMIR dataset
using (a)EfficientNetV2 model and (b) ResNet18 model.

Table 4: Performance of our MIC_FuzzyNET model compared to state-of-the-art MIC works for the PCMIR dataset.

Sl No. Researcher Methodology Feature space used Classification
Accuracy

1 Mousavi et al. 36 (2019) Muliti Layer Neural Network Combined vector of MFCC, SC,
SR, ZCR, EE Features

82.57%

2 Sahoo et al. (2022) MIC_FuzzyNET model Mathematically synthesised 3
channel spectrogram using Mel,
Constant Q Transform and
Semitone spectrogram

98%

Table 5: Performance of our proposed MIC_FuzzyNET model compared with state-of-the-art MIC works for the
IRMAS dataset.

Sl No. Researcher Methodology Feature space used Classification
Accuracy

1 Racharla et al. 43 (2019) Support Vector machine Mel-frequency cepstral coefficients 79%
2 Kim et al. 31 (2019) Modified VGG-16 CNN model Hilbert Spectrum Analy-

sis–Intrinsic Mode Functions
to generate spectrograms

80%

3 Hing and Settle 27 (2021) Transfer Learning model Mel Spectrogram 60.43%
4 Sahoo et al. (2022) MIC_FuzzyNET model Mathematically synthesised 3

channel spectrogram using Mel,
Constant Q Transform and
Semitone spectrogram

88.36%

C. PERFORMANCE OF ENSEMBLE MODEL

The categorisation scores obtained by the two transfer
learning models in V-D are given fuzzy rankings by the

ensemble model. Classification results from the previous
transfer learning phase are saved for each sample in the test
set. In this phase, we penalise the other class predictions
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Table 6: Performance of the MIC_FuzzyNET model on
the PCMIR dataset.

Class Precision Recall F1 Score Support
Kamancheh 1.0000 0.9730 0.9863 4097

Ney 0.9778 1.0000 0.9888 44
Santur 1.0000 0.9778 0.9888 45
Setar 0.9737 0.9737 0.9737 38
Tar 0.9787 0.9787 0.9787 47
Ud 0.9444 0.9714 0.9577 35

Accuracy 0.9800

Table 7: Performance of the MIC_FuzzyNET model on
the IRMAS dataset.

Class Precision Recall F1 Score Support
Cello 0.8571 0.9 0.8780 40
Flute 0.8444 0.8261 0.8352 46

Organ 0.8553 0.9420 0.8966 69
Piano 0.9315 0.9315 0.9315 73

Saxophone 0.9107 0.7969 0.8500 64
Accuracy 0.8836

and award fuzzy ranks to the top k classes as explained
in V-E. The ensemble model calculates the final prediction
scores for the number of classes in each dataset. tables 6
to 7 display the ensemble’s ultimate accuracy as well as
the accuracy, recall, precision, and F1 score. Each dataset’s
musical instrument classes are listed in the class column. The
six musical instrument classes included in the PCMIR dataset
are as follows: Kamancheh, Ney, Santur, Sitar, Tar, and Ud,
while the five classes used in the IRMAS dataset are cello,
flute, organ, piano, and saxophone.

The classification performance of our ensemble model is
displayed using the ROC curve, also known as the receiver
operating characteristic curve. The ROC curve can be used
for multi-class classification even though binary classifica-
tion is its more popular application. The ground truth class
is treated as a single label by the One versus All approach,
whereas the other classes are treated as a group. The capacity
of a model to distinguish between classes is measured by
the ROC curve. The area under the ROC curve indicates the
accuracy with which a class is correctly classified. The True
Positive rate and False Positive rate are compared on the ROC
curve.

The model is perfect if the ROC curve’s area under it
equals 1. It can accurately and completely distinguish be-
tween several classes. The lowest performing model is a
ROC curve that has almost 0 area under the curve since it
will predict incorrectly for each sample dataset. Figure 12 to
Figure 13, respectively, presents the ROC curves produced by
our suggested ensemble model for the IRMAS and PCMIR
datasets.

TPR =
TP

TP + FP
(14)

FPR =
FP

TN + FP
(15)

The key takeaways of our framework is the reduction of
errors of the individual models by the fuzzy rank ensemble

Figure 12: ROC curve created for the IRMAS dataset following ensem-
ble classification

Figure 13: ROC curve created for the PCMIR dataset following ensem-
ble classification

phase thereby ensuring more precise final classification of
the musical instrument classes. Subsequently, our proposed
framework does not use static weights as compared to tradi-
tional ensemble approaches and assign dynamic ranks to the
classifiers, hence providing better results. The tables 4 to 5
provide a comparison of our model with the state-of-the-art
frameworks with respect to performance, methodology and
features used, corresponding to PCMIR and IRMAS datasets.

D. STATISTICAL SIGNIFICANCE TEST
We conducted a thorough investigation of our suggested

model’s performance on two benchmark MIC datasets in the
preceding section and discovered that the proposed ensemble
of the two base models surpasses each of them in terms of
accuracy. We conducted a non-parametric statistical test48

known as the Friedman test to specifically demonstrate the
superiority and efficacy of our suggested ensemble model
over the base models.

For each dataset under consideration, we chose 10 alter-
native subsets at random, each of which had 40 samples
from the test data, with equal representation from each of
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Phase Model IRMAS PCMIR
Training and Validation Resnet18 4 minutes 2 minutes 15 secs
Testing 4 secs 3 secs
Training and Validation EfficientNetV2 5 minutes 45 secs 2 minutes 6 secs
Testing 3 secs 3 secs
Proposed StackNET ensemble model 8 secs 6 secs

Table 8: Execution time analysis of the different deep learning phases.

Figure 14: Chi-Square Right Tail Probability Table

Models Mean ranks of classifier models for MIC datasets
PCMIR IRMAS

Resnet 2.0 2.4
EfficientNetV2 2.6 2.4

MIC_FuzzyNET 1.4 1.2

Table 9: According to their accuracy on ten different subsets of each MIC
dataset, mean ranks are awarded to the two base models as well as the
proposed MIC_FuzzyNET model.

the class labels. Then, we determined the mean rank for each
of the three models including the proposed ensemble across
all 10 sample subsets using the formula given below, and the
classification accuracies of each model over those samples
are measured and ranked according to their accuracies.

Ry =
1

N

N∑
x=1

rxy (16)

where, for the xth sample, rxy is the rank of the yth

classifier or model. Table 9 displays the classifiers’ computed
mean ranks.

All classifiers or models are the same, according to the
null hypothesis (H0). Their rank must therefore be equal.
We determined the value of the Friedman statistic using the
following formula47 to support the null hypothesis.

x2
F =

12N

(k + 1)k

[∑
y

R2
y −

k(k + 1)2

4

]
(17)

Dataset Friedman Value
PCMIR 7.2
IRMAS 9.6

Table 10: Friedman statistic values calculated for each MIC dataset.

where, N is the total of sample datasets and k is the count
of classifiers which in our proposed framework are 10 and
3 respectively. Table 10 displays the statistic’s determined
value for the two separate MIC datasets utilised in this
research work.

The standard Friedman static value at significance level
0.05 is determined to be 5.991, which is much lower than the
computed values, as shown in Table 10 as can be seen from
the Chi-square table (shown in Figure ??) at k − 1 degrees
of freedom, which in our case is 2, degrees of freedom (df).
As a result, the null hypothesis can be rejected. The results
obtained by the base models and suggested ensemble model
are statistically significant, i.e., not equal, as may be inferred
from the aforementioned statistical tests.

VII. CONCLUSION
This paper used transfer learning 2D-CNN models to cre-

ate an ensemble learning-based framework for categorising
musical instruments by synthesising a 3-channel spectro-
gram. The extraction of significant features from spectro-
grams of audio data has been demonstrated using models
pre-trained on large image datasets, effectively converting
audio processing and detection into a computer vision chal-
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lenge. The proposed MIC_FuzzyNET model combines trans-
fer learning, CNNs, and a fuzzy rank based ensemble tech-
nique using the Gompertz function and a 3-channel stacked
spectrogram. Because the datasets used for training the deep
CNNs are not large, transfer learning is a good option.
The dynamic assignment of ranks to the classifiers allows
predictions to be produced for new datasets without the need
to initialise a new set of weights for the entire ensemble phase
of the framework. The fuzzy ranking approach compensates
for the faults made by each CNN classifier individually.
Furthermore, our CNN models can collect characteristics
from three spectrograms at the same time with no additional
computational burden or time complexity by integrating three
separate spectrograms into a single 3D matrix, comparable to
RGB photographs. According to the experimental results, the
MIC FuzzyNET model achieved state-of-the-art accuracies
of 98 percent and 88.36 percent for both the PCMIR and
IRMAS datasets. The MIC problem is tackled by combining
transfer learning and ensemble approaches in a promising
way.

There are few areas where our proposed MIC_FuzzyNET
model can be improved which are as follows:

1) Better data augmentation techniques, such as voice con-
version utilising a generative model55 and speed pertur-
bation, can improve the framework’s generalisation.

2) Web scraping can be used to get more data from across
the internet which can be used to create datasets with
greater variety and instrument choices.

3) We can extend our proposed framework and make
necessary modifications to not only classify but also
segment different musical notes from polyphonic music
and excerpts.
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