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 Executive Summary 

In August 2017 Moors for the Future Partnership (MFFP) contracted Nottingham Trent 

University and CS Conservation Survey to undertake a project assessing the potential of 

remote sensing imagery to map vegetation change in response to conservation 

intervention. This report covers all aspects of that project, describes the imagery and 

processes used, the results obtained, and discusses their implications. It supersedes, and 

replaces, all annual interim reports. To ensure relevance to those working in peatland 

restoration this project was undertaken using data sources, software and techniques that 

would be expected to be accessible to all UK conservation agencies and NGOs. 

Originally predicated on the utilisation of extremely high-resolution imagery (XHR) 

obtained from an unmanned aerial vehicle (UAV), this project expanded to include MAV 

(manned aerial vehicle) and orbital earth observation (EO) data. As a result, this 

document reports on the results obtained using examples of the majority of remote 

sensing imagery types available to the conservation sector. An extensive campaign of 

field data acquisition was undertaken with samples being recorded at over 7000 locations, 

each DGPS-logged to centimetre accuracy to enable precise geo-registration with image 

pixels. The desire to quantitatively detect change in vegetation using XHR imagery 

rationally precluded inclusion of established community and habitat typologies, so this 

project mapped to individual species. All image classification results were tested for 

accuracy using ground-truth data and should therefore provide a significant body of 

evidence to guide future projects. 

UAVs offer potential advantages over MAVs, for example the ability to fly at short notice 

to suit needs and/or meteorological conditions. They also offer the potential for repeated 

seasonal coverage allowing the incorporation of phenological change into image 

classification processes, something that is likely to be prohibitively expensive using MAV 

platforms. The results gained here suggest that such platforms are potentially able to 

provide imagery suitable for classification (against the criteria tested here). However, 

operational factors, mainly flight times for complete coverage of large areas, can result in 

image quality degradation owing to changes in illumination and sun angle during capture. 

Their use, if image classification is required, can therefore only be realistically 

recommended for surveys over areas that can be captured in a single flight (typically <0.5 

km2 depending on platform/sensor combination used). 

Commercially contracted MAV-captured digital 4-band imagery, at 5 cm ground sample 

distance (GSD), proved able to map common upland species to accuracies that might be 

usually seen using far broader classes. This would make it ideally suitable for use over 

wide areas. However, as errors in determining change between classified images are 
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generally assumed to be multiplicative it would be unwise to follow such baseline 

assessments by more than one subsequent monitoring round, without supporting ancillary 

survey data. The overall consistency of this kind of imagery was generally superior to that 

from UAVs, although a number of caveats to this are noted. 

Mapping to vegetation groups defined by MFFP as applicable for conservation 

management planning and monitoring purposes increased levels of accuracy much 

further. These groups, based as they are on unambiguous field data, fully error-checked 

and providing a typology suited to MFFP needs, demonstrated successful remote sensing 

of vegetation for monitoring using 4-band MAV imagery. 

The use of EO data, with larger GSDs, resulted in a marked reduction in classification 

accuracies when compared to MAV, although it must be acknowledged that these results 

will have been affected by the typology and field sampling protocols used. Even with that 

caveat this does indicate the application of EO imagery data for plant species mapping 

(except perhaps trees) is clearly going to be problematic in most habitats as very few 

species form single species stands of a size resolvable in such imagery. 

Within the overall project scope, a series of additional objectives were set by MFFP. WP4 

required mapping of bare peat: this has been found to be readily achievable to high 

accuracies (>90%). This would allow for reliable baselining and identification of areas 

revegetating after management intervention as well as worsening situations. 

Demonstration of the use of thermal data for soil moisture determination was undertaken 

in WP5 and this showed some success under the conditions tested. However, conceptual 

issues severely limit the value this might serve in monitoring, because it can only provide 

data in patches of bare peat, a small areal component of most moorland. Attempts 

explored in WP6 to utilise UAV-derived data to map erosion/accumulation were 

unsuccessful using the protocols tested, showing further development, testing and 

verification are required before it can be considered as operationally deployable. 

This project has tested many approaches and imagery types. It shows that remote 

sensing, if executed properly, with extensive field support, using repeatable typologies 

and with full error appraisal can deliver detailed data as a key part of a monitoring 

programme. However, the accuracies achievable suggest it should not be deployed 

alone, but rather used in conjunction with other survey data as part of an integrated 

monitoring programme.  
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Section 1: Introduction 

1.1 Background 

Awareness of the importance of peatlands, for both habitat provision (e.g. Lindsay et al., 

1988; Joosten & Clarke, 2002; Bragazza, 2009) and long-term carbon storage and 

sequestration (Yu et al., 2011; Scharlemann et al., 2014), has increased markedly over 

the past few decades. In the UK, around 80% of such peatlands are defined as blanket 

bog, where the primary peat forming taxon historically was Sphagnum (Lindsay et al., 

1988). 

Most areas of blanket bog in the UK are now classified as degraded with a reduced 

presence or, in many places, a complete absence, of the Sphagnum species responsible 

for peat formation (Tallis, 1987). This situation arises as a result of pressures including, 

inter alia: wildfire (Yeloff et al., 2006); prescribed burning (Yallop et al., 2006) and 

atmospheric deposition (e.g. sulphur compounds: Ferguson & Lee, 1983). The presence 

of Sphagnum is considered essential to creating and maintaining the moisture regimes 

necessary for the accumulation of partly-decomposed plant remains as peat. Therefore, 

the re-establishment of these mosses is seen as an important component in restoring the 

functioning and resilience of upland bog ecosystems. 

Since 2003 MFFP have undertaken a range of restoration techniques on blanket bog 

across the moorlands of the Peak District National Park (PDNP) and the South Pennine 

Moors (SPM) Special Area of Conservation (SAC). These activities include revegetation 

of bare peat (MFFP, 2013), gully-blocking (Maskill et al., 2015) and more recently, the re-

introduction of Sphagnum (Caporn et al., 2018). 

Under MoorLIFE 2020, MFFP aims to diversify the vegetation assemblage of areas of 

blanket bog that have become dominated by single species such as cotton grass, purple 

moor grass and heather. The approach adopted by MFFP will mainly involve, but is not 

restricted to, the planting of Sphagnum propagules. Monitoring of the establishment of 

Sphagnum will be focussed in the first instance on a series of experimental catchments 

(‘Field Laboratories’) established on different blanket bog communities. Monitoring at 

these field laboratories involves measurements of water flow, water table, peat 

accumulation/ erosion, and vegetation survey. 

Specifically, the overall aims of MFF 50 2016-17 are to: 

1. Monitor land cover change across the Project area, including: 

a. Increases in the extent of Sphagnum moss; 
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b. Reductions in the dominance of cotton grass, purple moor grass and heather; 

c. Reductions in the extent of bare peat. 

2. Monitor changes in surface wetness 

3. Monitor rates of peat accumulation and erosion 

The project recognises that monitoring such restoration activities is key to quantifying 

results and developing improved strategies. Many restoration projects are monitored 

intensively at the local scale by researchers ‘on the ground’, but as the area undergoing 

restoration expands, there is an increasing requirement for monitoring using less labour-

intensive approaches such as remote sensing. Therefore, within the overall project aims, 

MFFP also identified a need to utilise small UAVs to capture multi-temporal imagery to 

monitor the impact of blanket bog conservation actions at a ‘landscape scale’, rather than 

using traditional site-based surveys. 

1.2 MFF 50 2016-17 specifications 

To develop such a monitoring programme in August 2017 MFFP contracted a consortium 

of Nottingham Trent University and CS Conservation Survey to supply services under 

‘MFF 50 2016-17 MoorLIFE 2020 - monitoring the impact of blanket bog conservation in 

the South Pennine Moors Special Area of Conservation using an Unmanned Aerial 

Vehicle’. 

The requirements of this project were defined in seven ‘work packages’: 

 1: Design of Monitoring Programme 

 2: Design of Data Preparation and Processing Protocols 

 3: Monitor Changes in the Cover of Sphagnum Moss 

 4: Monitor Changes in Cover of Vegetation and Bare Peat 

 5: Monitor Changes in Surface Wetness 

 6: Monitor Rates of Peat Accumulation and Erosion 

 7: Investigate the Relationship Between Ground and Airborne Data 

It should be noted that within these general specifications, MFF 50 2016-17 has 

developed with experience gained, so the approaches used changed as the project 

progressed. As such the project has transitioned from being based on an assumption of 
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capabilities to refining objectives as actual data and results were obtained to define what 

could actually be achieved. 

The numerous limitations of remote sensing approaches are frequently overlooked. The 

potential to map broad landscape-scale habitat classes such as conifer or deciduous 

forest, lake waters or grassland to modest accuracies, or for tasks such as identifying 

zones of chlorophyll anomalies within crops for agricultural disease/nutrient-deficit 

monitoring is well established. However, its usefulness for conservation monitoring of 

change within diverse habitats comprised of many plant species in mixed swards such as 

those present across MFFP’s sites is unclear. In the majority of published academic 

studies, the subject area of this project would typically comprise one, or at most two, 

classes within a wider landscape classification. 

The mapping of numerous subdivisions of landscape-scale classes is required to deliver 

MFFP’s monitoring objectives, so this project had to develop in an area with a dearth of 

pre-existing knowledge. As such, MFF 50 2016-17 has provided a wealth of information, 

over and beyond an original expectation of simply reporting changes. This will help guide 

not only future MFFP restoration monitoring projects but hopefully others in the uplands 

of the UK and elsewhere. 

1.3 General notes on image classification 

It is not within the scope of this report to provide a full grounding in remote sensing 

techniques, but some background is provided as a guide to the inherent limitations of the 

processes used, to balance expectations about what is achievable and to judge the 

outcomes achieved. This is far from an exhaustive description, but rather a generalisation 

of issues considered relevant to this project. 

Owing to one primary project objective, a demonstration of the ability to map Sphagnum 

species, together with a desire to obtain the highest repeatability during field data 

collection, the typology used throughout this project has simply been based on individual 

plant species as the identification of these is unambiguous (assuming surveyor 

competence). This decision was also deemed optimal for the use of XHR imagery, as 

most pixels will represent spectral signatures from single species. 

However, this inevitably leads to a very high number of classes, and it is a statistical axiom 

that classification accuracies decrease as the number of classes increases. Spectral 

space (essentially a hypervolume of n dimensions, where n equals the number of bands 

in the imagery), in which classification algorithms cluster and then differentiate spectral 

classes, is finite. Overlaps at the boundaries of clusters inevitably propagate as class 

numbers increase, and there are simply fewer opportunities for a class to occupy relatively 
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discrete space. This problem is acute in detailed conservation monitoring programmes 

because the great majority of classes of interest are of vegetation and most plants are 

green. Therefore, spectral clustering and class differentiation is largely restricted to what 

can be achieved in one axis. This will reduce the number of classes we might reasonably 

expect to extract relative to one involving other land cover types. 

The summary above holds if class frequencies are relatively balanced within a scene. It 

is more problematic if there is considerable unevenness in this factor. Parametric 

classification algorithms essentially fit statistical distributions to the values recorded in the 

sample training data to define spectral clusters for each class. These are then used to 

classify unknown pixels in the rest of the image. According to the central limit theorem, 

this distribution will represent the true spectral space with increasing accuracy in 

proportion to the square root of the number of training pixels that are available. In the 

context of this project this impacts rarer species more as the probability of classifying and 

mapping these well is unlikely owing to the paucity of training data for rare species. The 

creation of wide spectral classes owing to limited sample numbers means a high 

probability of overlap with more common classes. Allocation of class membership of 

unknown pixels within these overlaps is based on the probability that a pixel belongs to a 

class based solely on geometric distance from the ‘centre’ of overlapping clusters. The 

basic equation assumes that these probabilities are equal for all classes, and that the 

input bands have normal distributions. Therefore, rare classes are usually over-

represented or ‘over-mapped’ in classified map outputs. Some algorithms allow 

manipulation of these probabilities based on frequency of occurrence in training data. 

However, for this to be valid, field survey would need to random, i.e. representing true 

class frequency on the ground. This is not always appropriate for conservation monitoring 

as rare, and often desirable classes from the perspective of the conservation effort, may 

not be recorded using such an approach. Indeed, because of this consideration, field 

sampling in this project was not undertaken using a randomised approach. 

An optimised remote sensing project will therefore seek to determine limits to the species 

to be included in a mapping/monitoring programme, essentially trading off the number of 

classes for mapping accuracy. In this case, however, as is usual from the perspective of 

a monitoring program, it is frequently the rarer species that are of greatest conservation 

interest e.g. Sphagnum sp. on degraded peatlands. Related to this issue is consideration 

of how to treat records of such rare species (i.e. those that do not meet minimum sample 

numbers in the field data). These species are clearly present, yet their mapping is unlikely 

to be accurate. However, if they are not utilised, the classification and error assessment 

processes will be ‘blind’ to their occurrence. The pixels in which they occur in the image 

will be classified as something else, but the user will be unaware of the fact. This can be 
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thought of as ‘apparent accuracy’ because accuracy measurements are in reality no more 

than a mathematical measure of image classification concordance with field data, and 

carry no information about the abundance of those species not recorded or not included 

in the classification because of their low frequency. 

The decision to adopt a large number of classes for this project, with perhaps lower class 

accuracies, instead of using a smaller set with a probably higher apparent accuracy was 

therefore a difficult one and needs to be justified. The arguments underpinning this 

decision are presented in Section 2. In addition, such an approach would deliver data of 

direct application to MFFP’s requirements e.g. Sphagnum species mapping, so it was 

important to test its feasibility. 

1.4 Structure of this document 

During its four years of execution this project has undertaken an extensive array of 

analyses and, in the process, generated a large number of results and outputs. Balancing 

the presentation of these is difficult: trying to include sufficient information to inform 

transparently as well as providing the necessary evidence to justify statements made, 

while not including so many results as to make the whole report impenetrable and 

incomprehensible. Where possible, summary data are presented in each section for 

clarity and more complete results are supplied in the annexes for reference where 

required. 

This document is structured in such a way as to illustrate the temporal progression of the 

project, how the results and experience gained each year informed the processes and 

imagery to be used for the following phase. It also reports on several discrete ancillary 

pieces of work executed during the four year period. This structure should allow the 

developmental reasoning behind the final concluding statements to be followed. 

Section 2 summarises the background and rationale for the general methodological 

approaches adopted for work packages 1, 2, 3, 4 and 7. The specific methods used, their 

application and results obtained for each annual phase of vegetation mapping activities, 

are presented in each discrete section. Sections 3, 4 and 5 reprise the annual summary 

reports for 2018, 2019, and 2020 and effectively replace those documents as some 

additions to those reports are included. These sections include the recommendations 

arising from each round where these contribute to the raison d’être for the work reporting 

in the subsequent section. In addition to these summaries, more comprehensive 

conclusions and discussion from each piece of work are included in Section 10. Section 

6 reports for the first time on species aggregation approaches and the results achieved. 

Section 7 compares the results achieved mapping species and aggregations using UAV, 
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MAV and orbital EO imagery. Section 8 examines the potential application of the use of 

UAV-derived thermal imagery for soil moisture determination and Section 9 explores the 

potential use of high-resolution digital surface models (DSM) to assay topographical 

change. Conclusions drawn from all aspects of this study, observations on lessons 

learned and final recommendations for the future are provided in Section 10. As these 

summarise all parts of the project there is some inevitable repetition between this final 

section and some comments made in earlier sections of the report. References and 

annexes conclude the report.  
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Section 2: Methodological considerations 

2.1 Project ethos 

All aspects of MFF 50 2016-17 have been predicated on the central purpose of developing 

and assessing practical approaches and techniques that are robust and within reach of 

most conservation NGO operations with limited specialist staff, computing, or financial 

resources. This project has therefore been restricted to the application of commercially 

standard GIS and remote sensing software packages (ArcGIS and ERDAS IMAGINE 

respectively) and mainstream classification protocols. Where more specialist approaches 

like multivariate mathematical analyses have been included, they are shown for illustrative 

purposes only and are not necessary for application. 

As a result of the desire to demonstrate readily applicable processes and outputs we have 

not tried to extract small incremental improvements in accuracy by working exhaustively 

on single images, exploiting increasingly complex processes like machine-learning or 

developing unique code or classification hierarchies. While such approaches are common 

in most academic studies, and are valuable in their own right, they invariably provide 

unique solutions that require re-development from scratch for the next study area or 

require access to proprietary software. The target has been to demonstrate what non-

specialist staff should reasonably be able to achieve in a conservation setting. 

All aspects of this project include full error data for the results presented, as should be a 

default requirement in any remote sensing project of this type. There are many 

unsubstantiated claims of success in the use of small-scale remote-sensing in 

conservation, especially in the application of UAVs, and this project will not add to them. 

Instead, it is hoped that by undertaking the project in an objective manner, the results 

represent a significant body of verified evidence that is directly relevant to MFFP and 

other conservation bodies with similar monitoring requirements. 

2.2 Rationale for remote sensing and field surveys approaches adopted 

This project was purposed with obtaining data to allow the effects of restoration to be 

monitored and assessed. It was initially predicated on the use of imagery obtained from 

sensors carried on small UAVs. These provide resolutions at centimetre scale and the 

use of such data to deliver full accuracy-assessed monitoring of diverse habitat, over large 

areas, is a novel field. As such there were no ‘go to’ or ‘off-the-shelf’ solutions available 

to this project. The following section provides a summary background to the 

considerations behind the approaches adopted for MFF 50 2016-17 and broadly 

discusses these issues as they apply to both remote sensing and field survey 

components. 
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Typologies. All forms of survey require the usage of appropriate metrics or units for 

observation and comparison, commonly called a typology. A frequently overlooked, but 

fundamental requirement of a typology, if it is to serve for monitoring, is that it must be 

unambiguously identifiable in the field by all qualified surveyors, every time. We can refer 

to this as ‘repeatability’ i.e., any observer would get the same result, in the same place, 

on the same day (or within a quantifiable margin of error). If a typology does not satisfy 

this singular criterion, then it cannot differentiate real change from that arising from 

ambiguities in mapping, and the process is unsuitable for monitoring. Whatever typology 

this project was to use had to address this issue across two domains, field survey and 

image analysis. The early computer era adage ‘garbage in - garbage out’ (GIGO) is 

applicable here: it is manifestly pointless to provide incorrect data to image analysis 

algorithms, then test the results against more incorrect data.  

Vegetation. Most techniques used in conservation vegetation survey have roots in the 

concept of plant associations or ‘communities’, the idea that, whether coincidental or 

edaphically determined, species aggregate into spatially recognisable groupings. Beyond 

an attempt to understand plant species distribution in response to environmental and 

stochastic events, such groupings are routinely used as general descriptors to illustrate, 

for example, the vegetation present in particular locations.  

Within the UK the general approach adopted has latterly mostly been based on the 

precepts of the NVC (National Vegetation Classification: Rodwell 1991-2000) system. 

This is often utilised for monitoring site condition despite its well understood inapplicability 

to that task (Cherril & McClean 1999, Hearn et al. 2011). Less formalised approaches and 

descriptors may also frequently be used, for example: ‘sparse Calluna/Eriophorum’; 

‘dense Calluna’ or ‘mixed dwarf-shrub heath.’ While both approaches provide some 

information, they are fundamentally unsuitable to any form of rigorous monitoring 

because: 

(i) Neither provide quantitative data and hence no valid comparison through 

time is possible. 

(ii) Sampling undertaken is not unbiased (e.g. random) and hence cannot be 

examined statistically. 

(iii) Boundaries are arbitrarily mapped by the observer, hence are not 

repeatable and so cannot be used to derive estimates of areal change. 

(iv) They do not collect comprehensive species listings, yet many species 

present will be important restoration targets or indicators of change. 

(v) Different surveyors frequently reach different interpretations of the same 

location. 
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This project required multiple field surveys, undertaken by different people, on different 

sites. Surveyor disagreements are frequent at a community or sub-community level, with 

obvious consequences. 

The issues arising from the lack of repeatability in community mapping are long 

understood and are amply shown, for example, in Cherril & McClean (1995). 

The use of plant associations for vegetation mapping also becomes problematic as they 

only have any derivation at an arbitrary scale at which they become apparent. It would 

obviously be irrational to attempt to assign plant community membership to the species 

within a single 10 x 10 cm quadrat, without reference to additional information, e.g. co-

existing species at the 1-10 m range. At scales of only a few cm most vegetation stands 

or swards actually comprise a single species or even a single specimen which, of itself, 

contains no information with regard to any conceptual larger-scale grouping. Hence, in 

isolation it is impossible to define any community grouping from it, as there is no 

community at that scale. For example, the presence of a specimen of Calluna could be 

indicative of one of many NVC sub-communities (see below). Only by metaphorically, or 

literally, ‘standing back’ can any conceptual community be recognised. 

The NVC user’s handbook (Rodwell, 2006), recommends quadrats to be taken at different 

scales depending on the habitat type, from 2 x 2 m for habitats like dwarf shrub heath to 

50 x 50 m for woodland canopies, so the former would be the relevant size here. The 

handbook runs to 66 pages and has detailed instructions regarding quadrat placement – 

identifying ‘homogenous’ stands and avoiding ecotones. The NVC itself is described in 

five volumes, within which 860 sub-communities are delineated. The difficulty in manually 

delineating NVC communities led to the development of MAVIS (Modular Analysis of 

Vegetation Information System; Smart et al, 2016) which automatically assigns samples 

to the nearest NVC community. Nevertheless, field samples frequently have poor affinities 

to any of the 860 described sub-communities, in part because of the tendency of individual 

species to occur in more than one community. As an example, Calluna vulgaris is present 

in more than 200 sub-communities of the NVC. The community is built of individual 

species, whose identification is unequivocal with competent surveyors. The species is 

considered the only unit of vegetation that removes subjectivity from mapping. That is not 

to say that NVC-type communities could not in theory be built up by convolving species 

data. 

Remote sensing typologies. Owing to the large 20-80 m ground spatial resolutions (or 

pixel size) available from early EO sensors, remote sensing techniques also developed 

using broad generic classes that are apparent at such scales e.g.: tundra, grasslands, 
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woodlands, littoral, urban. Land cover or vegetation types of finer typological or taxonomic 

resolutions were simply unresolvable and hence had to be aggregated or subsumed into 

spectral classes that were separable at scales larger than the individual pixels. This 

approach was imposed on researchers by the pixel size of the data. 

An additional related factor that needs consideration when determining the potential of 

mapping plant communities or habitats is that as ground resolution increases so does the 

spectral heterogeneity visible within any defined class or community. Instead of an 

average class signature for a community type obtained when using pixels of a few metres 

in area or more, the use of pixels of a few centimetres provides many hundreds of spectral 

signatures from individual and mixed species. As there are very few species that, in 

isolation, determine a community type, many of these signatures will be occurring 

elsewhere in the image but within different community types (however defined). It is 

therefore impossible, from first principles, to map communities directly from small pixels 

i.e. train a classifier to identify higher groupings as the component pixel level spectral data 

is not exclusive to any particular one (within the constraints of the process.)  

It is conceivable some of these issues could potentially be overcome by ‘blending’ or 

‘blurring’ XHR images to lower resolutions, perhaps to the 1-10m scale, by resampling. 

However, this would, at a minimum, be less capable of detecting the small-scale changes 

in species abundances and distribution of the types expected over short time periods. 

More importantly it would not be compatible with MFFP’s objectives to map Sphagnum 

planting. 

For completeness it would be worth discussing object or vector classifiers in the context 

of vegetation mapping as these, in principle, could be seen as allowing information from 

adjacent pixels to be integrated into a classification process that incorporated 

communities. This two-stage process examines similarity in spectral data from adjacent 

pixels, groups these and creates a bounding vector object. This latter stage is undertaken 

according to user-selectable ‘shape’ parameters. These function well to identify actual 

objects such buildings or roads. In vegetation mapping this might, in principle, assist in 

differentiation of actual objects like trees, watercourses, or ponds. However, communities 

are not physical objects, they are conceptualised groupings and, even if they are discrete 

at all, have no defined shape parameters associated with them. This violates the 

fundamental principle behind object classifiers therefore these approaches were not 

explored in this project.  

Protocol selected. With regard to addressing the above considerations, it was decided 

with MFFP to explore using a simple field and remote sensing typology based on plant 
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species. Firstly, unlike the process of trying to identify community types and extent, plant 

species are an unambiguous metric, and all competent surveyors will produce the same 

data. Secondly, the use of XHR imagery, with 10 cm resolution in Phase 1 and 5 cm in 

Phases 2, 3 and 4, means a large proportion of pixels will be imaging single 

species/specimens. Thirdly, it represents the ‘best’ solution in that if all species are 

mappable, it becomes possible to assess the finest possible responses to conservation 

interventions. Lastly, gathering field data in this form provides opportunity to develop other 

species grouping typologies by aggregation should this be desired or required, something 

that cannot be undertaken in reverse. 
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Section 3: Phase 1 – UAV Image Capture 

 

Originally reporting in Summary report 2018 
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Summary introduction to Phase 1 activities. 

Phase 1 was planned as an all-up deployment of MFFP’s proposals to obtain UAV 

imagery and field data across the study areas and to produce classified products based 

on identification of separate species. It therefore represented the first opportunity to test 

these protocols, and to provide evidence to develop them for future rounds as necessary. 

This is an ambitious project and, perhaps not unexpectedly, some operational teething 

difficulties were experienced in this first year. 

It had originally been projected that MFFP would undertake all data capture for the study 

sites, with NTU/CS undertaking subsequent analyses. However, early difficulties with the 

original UAV/sensor combination caused delays to the data collection, both field and 

imagery. As a result, MFFP decided to contract out the image capture activities for this 

year, and the area was flown by the NTU/CS team. This, however, necessitated a change 

from the planned sensor/platform to a different system, which had some consequential 

impact on project timing and ultimately the amount of field data acquired. 

Despite these late changes, Phase 1 delivered much invaluable information and results. 

This was the first attempt to image large areas using UAVs and produce fully error-

assessed classified imagery from those data. Analysis of these results ultimately revealed 

a severe limitation to the capture methodology used that, to the authors’ knowledge, has 

not been previously noted. These results therefore not only guided a change in approach 

during the subsequent years of this project but should hopefully inform other projects 

anticipating their utilisation in the future.  
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3.1 Methods 

3.1.1 Image data 

Capture. The original project image capture specification was predicated upon the 

deployment of SONY A6000 and MicaSense RedEdge multispectral cameras mounted 

on a Quest Q-200 fixed wing UAV platform. In a single flight at around 120 m above the 

ground this combination would have provided RGB and 5-band (B, G, R, RE, NIR) 

imagery with ground resolutions of approximately 0.024 m and 0.08 m respectively. The 

A6000 would provide ultra-high resolution imagery for digital surface model (DSM) 

creation and visual assessment in a GIS, and the spatial and spectral resolution of the 

MicaSense imagery were deemed an optimal option to compare the outcomes of image 

classification approaches. However, due to issues with this platform, an alternate solution 

using sensors mounted on a senseFly eBee platform was subsequently adopted. The 

eBee can be flown independently with either a S.O.D.A. (Sensor Optimised for Drone 

Applications) or ‘Parrot Sequoia’ to collect RGB and 4-band (G, R, RE, NIR) imagery 

respectively. This approach requires two flights rather than one to capture both sets of 

imagery and must be flown lower (at approximately 60-70 m above the ground) to achieve 

comparable spatial resolution. This in turn increases the number of flight lines required to 

capture the area and therefore increases image capture time. 

Pre-processing. Images from each individual flight were processed separately using 

Pix4Dmapper v4.0.25. Coordinates for ground control points (GCPs), distributed on a 100 

m triangular grid within the area immediately surrounding the field laboratories and on a 

150 m triangular grid for the remaining area of each survey site, were obtained using a 

Trimble Geo7x DGNSS. Positional data were post-corrected in Trimble Pathfinder Office 

using RINEX data from the OS Net base station nearest to each survey site. Accuracy of 

post-processed coordinates ranged from 0.021 m - 0.031 m in xy and from 0.033 – 0.050 

m in z. GCP coordinates were loaded into Pix4D and all GCPs were marked first as control 

points in the RGB imagery and in each independent multispectral band for the Sequoia 

imagery to derive a model root mean squared error (RMSE). Subsequently five randomly 

selected GCPs were set to check points to report a true model RMSE, and all GCPs were 

returned to control points prior to running the model to create a DSM and orthomosaic. 

The 0.02 m RGB orthomosaic derived from the S.O.D.A. imagery was resampled to the 

resolution of the respective multispectral data and combined with the multispectral 

mosaics to form a 7-band (B, G, R, G, R, RE, NIR) image stack using ERDAS Imagine. 

Owing to the presence of visible ‘striping’ in the orthomosaics (section 4.3) that is 

inconsistent between RGB and multispectral data, and the potential for misalignment of 
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pixels between the RGB and multispectral data, 4-band image stacks derived solely from 

the multispectral sensor (G, R, RE, NIR) were used for classification. 

For all study sites, the area of the orthomosaic produced outside of the location of GCPs 

will contain unquantified (and likely higher) error due to the lack of ground control 

information for the model. The outermost 50 m of all images were therefore clipped out 

and are excluded from analysis here. 

3.1.2 Field data 

Field observations were supplied by MFFP as separate files for each taxonomic group for 

each image capture area in ESRI shapefile format. Prior to exploration and classification, 

several preliminary operations were executed. These are summarised in Table 3:1 below. 

Table 3:1. Preliminary data operations 

 

i. New shapefile: separate taxon point files for each site merged to single shapefile for each sample 

area; 

ii. New shapefile: resultant data from above merged to create single vector file of ‘all vegetation- all 

sites’ 

iii. New shapefile: ‘imagery extent’ polygons created identifying the spatial limits of image capture 

each sample area field, sample area field added and populated; 

iv. New Shapefile: resultant ‘image extent’ intersected with ‘all vegetation’ shapefile to provide locale 

name to each record; 

v. Add field: for veg - populate as concatenation of all veg fields, LTrim remove extraneous 

preceding spaces;  

vi. Add field; ‘all Sphag’ merge to genus and populate; 

vii. New Shapefile: buffer each point to 10cm; 

viii. New Shapefile: convert circular buffer to square aligned with pixels;  

ix. Delete all extraneous fields; 

x. Add field: create unique ID field populated as concatenation of image extent and species; 

xi. Add field: create ‘use’ field: randomly select 50% within each image-extent populate 'use' field; 

xii. New Shapefile: dissolve on site, fields ‘veg_all’, ‘veg_spmg’ and ‘use’; 

xiii. New Shapefiles (7): select by image name export for each image area; 

xiv. New Shapefiles (7x2): select by field ‘use’ to export training and error subsets. 

 

Subsequent to the decision to utilise all data for training purposes, step xiv was not applied 

and outputs from step xiii were utilised. Following these operations, the data were 

imported into ERDAS Imagine ‘signature editor’ and spectral signatures were collected. 
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3.1.3 Supervised Classification 

Stacked image mosaics covering seven test areas: Bleaklow Penguins; Derwent Howden 

heather sites; Birchinlee (1&2); Rowlee; and Kinder Scout (Firmin & Olaf Nogson) were 

classified using the maximum likelihood algorithms within ERDAS Imagine. Training data 

comprised field data supplied by MFFP. No a priori probabilities were applied given the 

non-random nature of sampling. For Phase 1 all field data were used for training the 

classifier algorithm for the delivered products. 

3.1.4 Spectral separability analyses 

Supervised image classification, such as that used here and presented in section 4.3, is 

a two-stage process. Firstly, clusters within multispectral space, for each of the surveyed 

classes, are defined using ‘training’ data comprising the spectral characteristics of image 

pixels corresponding to each field sample point. Secondly, the ‘unknown’ pixels 

comprising the rest of the image are then assigned a membership to one of the surveyed 

classes according to their spectral similarity or ‘closeness’ to these clusters, using a range 

of rules or algorithms. Testing the results of such a classification is undertaken by 

comparing a random subset of classified pixels to another set of field survey ‘ground-truth’ 

data.  

This accuracy testing is a post hoc process, i.e. occurs after the actual classification 

process. However, the results can be used to refine rules used in assigning membership 

to the ‘training clusters’, or any class deletions or amalgamations that can be usefully 

made, before additional rounds of classification are undertaken to attempt to produce a 

more accurate final product. Only in this way is it possible to differentiate effects caused 

by poor image data from the use of inappropriate methodological approaches.  

Such an ‘iterative’ approach to working was planned in this phase of the project to assess 

the suitability of low-cost UAV/sensors to MFFP needs, and to design optimal survey and 

classification processes to be used in the future. This was not possible due to the limited 

number of samples available, and therefore an alternative approach has been adopted to 

help answer this aspect of the project.  

Separability analyses are a series of preliminary procedures that can guide the 

classification process to be applied by testing the spectral signatures of the field classes 

collected to assess the probability of them being identified correctly during a supervised 

classification. Separability statistics were obtained using the following method. For each 

survey site the 4-band image stack was loaded into Imagine. The dissolved shapefiles of 

single-species samples were loaded into the signature editor. Each field sample collects 

4-9 pixels from the raster. For example, the 308 field samples from Firmin picked up 1406 
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pixels from the image. The separability tool of the signature editor was used to calculate 

two measures of spectral separability, transformed divergence and Jeffries-Matusita 

distance (Hexagon Geospatial, undated), for every class. It was not possible to calculate 

separability for classes with only one sample. Thus, for the example of Firmin, of 22 

collected signatures, it was possible to calculate separability statistics for 21. The 22nd 

signature only contained one sample and was excluded. In this case the excluded class 

was Sphagnum spp. The other sample sites had 1-2 classes removed from the spectral 

separability analysis for this reason. 

According to Hexagon Geospatial (undated), 

 “Both transformed divergence and Jeffries-Matusita distance have upper and lower 

bounds. If the calculated divergence is equal to the appropriate upper bound, then the 

signatures can be said to be totally separable in the bands being studied. A calculated 

divergence of zero means that the signatures are inseparable.” 

The upper bound for transformed divergence is 2.000 and that for Jeffries-Matusita is 

1.414 (√2). For transformed divergence, separability values of above 1.900 indicate good 

separability, and values below 1.700 show poor separability (Jensen, 1996). 

3.1.5 Accuracy assessment 

Owing to the overall low number of samples recorded, there were in general too few data 

available to enable reserving 50% for accuracy assessments. However, at Firmin, the 

number of samples for many species present approached the minimum needed and it 

was decided to undertake an exploratory error check. 

At this site there were initially 308 samples available across 22 classes. Once classes 

with fewer than ten samples were removed, there were a total of 16 classes and 290 

samples. These 290 samples were divided between training and test data on a random 

basis, resulting in 151 training samples and 139 test samples. 

The training data shapefile was used together with the relevant 4-band image stack for 

supervised classification in Imagine with default settings (maximum likelihood). Point data 

at the positions of the 139 test samples were then intersected with the classified map. 

The predicted class at each location was then compared with the known class as identified 

during field data collection using a confusion matrix; overall accuracy and kappa were 

calculated from the confusion matrix. 
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3.2 Results 

3.2.1 Geometric accuracy of DSMs and orthomosaics 

Appropriate target design, highly accurate GCP coordinates obtained using the Trimble 

Geo7x DGNSS and well-distributed GCPs on each site enabled Pix4D to process the 

imagery and report consistently low mean error.  

For RGB data from the S.O.D.A. camera the mean overall RMSE (in x, y and z) was 

consistently comparable to and often lower than the pixel size (Table 3:2). The error in 

the height (z) was frequently lower than the horizontal error (x and y). The resultant RGB 

orthomosaics (Figures 1-7) and DSMs therefore provide ultra-high resolution data 

covering the experimental plots and surrounding areas that can be used for visual 

assessment, hydrological modelling and potentially for identifying future morphological 

change (e.g. erosion). 

Table 3:2. Geometric accuracy of RGB imagery 

Survey site Images Resolution (m) Control RMSE (m) Check RMSE (m) 
   (x, y) (x, y, z)  (x, y) (x, y, z) 

       
Derwent/Howden 803 0.022 0.033 0.025 0.024 0.026 
Penguins 690 0.021 0.031 0.024 0.048 0.042 
Birchinlee 1 851 0.021 0.019 0.018 0.020 0.035 
Birchinlee 2 1040 0.019 0.017 0.016 0.023 0.024 
Rowlee 750 0.022 0.031 0.025 0.029 0.037 
Firmin 1179 0.020 0.016 0.018 0.022 0.032 
Olaf Nogson 821 0.021 0.019 0.018 0.026 0.030 
       

 

For the multispectral data from the Sequoia camera, the mean overall RMSE was less 

than half the pixel size (Table 3:3). It is however worth considering the way in which low-

cost multispectral cameras developed for UAVs, including the RedEdge and Sequoia, 

capture images. These types of cameras have independent sensors for each spectral 

band. Manufacturing tolerances mean that each sensor will be oriented to some extent at 

different angles to each other giving slightly different fields of view (FOV). This approach 

means that GCPs have to be marked in imagery for each band so that the resultant 

orthomosaic is aligned with each other. Although the mean RMSE achieved for the 

multispectral data was consistently lower than the pixel size, Pix4D support have advised 

that the RMSE reported is the average for all bands (it is not possible to assess the error 

of each band individually). There will, therefore, be an inevitable slight displacement in 

the alignment of pixels between all bands. Although this is reported as less than half the 

width of a pixel, it is not clear at this point to what degree this impacts on the success of 

image classification. 
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Table 3:3. Geometric accuracy of RGB imagery 

Survey site Images Resolution (m) Control RMSE (m) Check RMSE (m) 
   (x, y) (x, y, z)  (x, y) (x, y, z) 

       
Derwent/Howden 1158 0.096 0.063 0.058 0.024 0.031 
Penguins 999 0.093 0.033 0.028 0.047 0.048 
Birchinlee 1 1207 0.090 0.013 0.020 0.013 0.035 
Birchinlee 2 1170 0.089 0.023 0.026 0.023 0.028 
Rowlee 993 0.093 0.043 0.037 - - 
Firmin 1203 0.087 0.024 0.021 0.034 0.031 
Olaf Nogson 1193 0.089 0.019 0.024 0.024 0.042 
       

 

3.2.2 Field data 

The initial field data target was for 20 field samples to be collected for each species 

present at each site. This would have allowed 10 samples to be used for image 

classification while withholding 10 further samples for error assessment. This target could 

not be achieved for most species at most of the seven field sites, so there were insufficient 

data for traditional classification/error assessment procedures. 

3.2.3 Image quality and supervised classification delivery 

Without formal error assessment it is difficult to assess the classification accuracies 

achieved by the supervised classification. However, for some sites such as Derwent 

Howden (Figure 3:1) and Firmin (Figure 3:6), the identified distributions of outlier classes 

like bare peat and rock seem to match visual interpretation of RGB imagery. A limited 

exploration of classification accuracy for Firmin (the site with the most available field data) 

is provided in section 4.5. 

There is little evidence for the accuracy of other classes. A number of artefacts are visible 

in the multispectral image stacks that undoubtedly affect classification accuracy. As the 

multispectral data for each site were collected over a period of 1-2 hours, sun-angle and 

illumination changed during this time creating visible striping in the data. These stripes 

have been identified as single taxa in the classified product (e.g. Vaccinium myrtillus in 

Penguins and Birchinlee 1; Figures 2-3). In addition, the proportion of the same taxa 

identified in the classified data for adjacent survey areas appears unrealistic. For 

example, at Birchinlee 2 around 20% of the area was classified as Feather Moss (Figure 

3:4), while in the overlapping Birchinlee 1, the cover of Feather Moss was <3% (Figure 

3:3). 

The resultant thematic maps are considered the delivered products for Phase 1 and are 

supplied separately as reported in Table 3:4. 
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Table 3:4. Phase 1 delivered products  

Site name Classified output 

  

Derwent Howden dw_hw_20180718_classified.img 

Penguins penguins_20180718_classified.img 

Birchinlee 1 brch_site_1_20180723_classified.img 

Birchinlee 2 brch_site_2_20180719_classified.img 

Rowlee rowlee_20180802_classified.img 

Firmin firmin_20180830_classified.img 

Olaf Nogson olaf_nogson_20180831_classified.img 

  

 

3.2.4 Class Separability 

In the absence of data on class accuracies it is possible to explore class separability and 

the reported cover of certain classes in the output data. Unsurprisingly the two measures 

of separability are highly correlated (see Tables 3:6-3:12). However, transformed 

divergence appears to asymptote to its maximum value earlier than Jeffries-Matusita, 

making the latter measure more useful for discriminating relative differences at higher 

separabilities. 

In general, there are two obvious patterns in the separability statistics. The first is that 

certain classes are more separable than others across survey sites. Thus, where bare 

peat, rock, or Pteridium aquilinum occur, these classes are highly separable from other 

classes. Conversely some classes tend to have low separability, principally the grass or 

grass-like classes: Deschampsia flexuosa, Eriophorum spp. and Juncus spp. as 

examples. Some classes (e.g. Calluna) have variable average separability between sites, 

from 1.956 (TD) at Derwent Howden to only 1.547 (TD) at Firmin. 

The second pattern is that small classes are more separable according to the statistics 

than are large classes. This does not appear to be due to the formulae for calculating the 

separability. Rather, it seems to be because small classes have correspondingly few 

pixels and by chance these often have low variability between samples. This is then an 

artefact and does not represent the “true” separability of these classes, which would be 

more accurately known with more available data. 

As an example of these patterns, the average separability statistics for classes collected 

at Firmin are shown in Table 3:5. 
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Table 3:5. Average separability statistics by class at Firmin. 

Classes ranked from most to least separable. 

Class Sample  Pixel  Average separability 
 count count Transformed divergence Jeffries-Matusita 

     
Betula spp 2 10 2.00 1.38 
Water  2 8 2.00 1.41 
Rock  10 42 2.00 1.40 
Bare peat 27 127 1.96 1.34 
Holcus mollis 5 24 1.92 1.32 
Feather moss 4 18 1.89 1.30 
Abies spp 4 16 1.89 1.32 
Nardus stricta 11 50 1.80 1.27 
Cushion moss 21 90 1.79 1.27 
Vaccinium myrtillus 22 111 1.74 1.25 
Empetrum nigrum 17 76 1.74 1.24 
Eriophorum angustifolium 21 94 1.74 1.23 
Salix  13 56 1.72 1.25 
Juncus squarrosus 21 101 1.70 1.23 
Polytrichum spp 13 61 1.69 1.22 
Agrostis spp 13 58 1.66 1.22 
Eriophorum vaginatum 20 92 1.64 1.21 
Chamaenerion angustifolium 17 86 1.64 1.16 
Juncus effusus 21 90 1.62 1.17 
Calluna vulgaris 21 96 1.55 1.17 
Deschampsia flexuosa 22 100 1.52 1.12 
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Figure 3:1. Processed RGB and multispectral (MS: NIR, G, R) imagery and classified output for Derwent Howden study area 
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Table 3:6. Spectral separability analysis: Derwent Howden. 

Above: Transformed Divergence. Values nearer to 2.0 mean an increasing probability of good separation. Breakpoints taken as <1.0 poor separability; 1.0 – 1.9 moderate separation (Jenson 1996). 

Below: Jeffries-Matusita Distance. Values nearer to 1.414 mean an increasing probability of good separation. 
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Bare peat 0.000 2.000 2.000 2.000 1.987 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000  

Calluna vulgaris  0.000 2.000 2.000 1.936 2.000 1.999 1.992 2.000 2.000 1.729 2.000 2.000 2.000 1.733  

Cushion moss   0.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000  

Empetrum nigrum    0.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000  

E. angustifolium     0.000 1.979 1.957 1.620 1.993 1.970 1.839 2.000 2.000 1.962 2.000  

E. vaginatum      0.000 2.000 1.798 1.618 0.889 1.811 2.000 2.000 1.769 1.985  

Feather moss       0.000 1.997 2.000 2.000 2.000 2.000 2.000 2.000 2.000  

Juncus effusus        0.000 1.833 1.745 1.822 2.000 2.000 1.831 1.999  

Juncus squarrosus         0.000 1.689 1.956 2.000 2.000 1.980 1.968  

Nardus stricta          0.000 1.967 2.000 2.000 1.439 2.000  

Polytrichum spp            0.000 2.000 2.000 1.990 1.921  

Pteridium aquilinum            0.000 2.000 2.000 1.759  

Rock              0.000 2.000 2.000  

Sphagnum spp              0.000 2.000  

Vaccinium myrtillus               0.000  

                 

Bare peat 0.000 1.337 1.398 1.414 1.313 1.414 1.407 1.414 1.414 1.414 1.402 1.414 1.414 1.406 1.411  

Calluna vulgaris  0.000 1.395 1.336 1.292 1.413 1.320 1.390 1.414 1.414 1.154 1.406 1.414 1.375 1.178  

Cushion moss   0.000 1.402 1.354 1.414 1.406 1.414 1.414 1.414 1.412 1.414 1.414 1.402 1.412  

Empetrum nigrum    0.000 1.409 1.414 1.393 1.414 1.414 1.414 1.390 1.414 1.414 1.402 1.398  

E. angustifolium     0.000 1.399 1.294 1.211 1.407 1.395 1.272 1.414 1.414 1.340 1.410  

E. vaginatum      0.000 1.403 1.282 1.234 0.862 1.257 1.362 1.414 1.197 1.372  

Feather moss       0.000 1.368 1.414 1.385 1.396 1.414 1.410 1.282 1.404  

Juncus effusus        0.000 1.317 1.244 1.210 1.388 1.414 1.221 1.357  

Juncus squarrosus         0.000 1.274 1.321 1.393 1.414 1.348 1.389  

Nardus stricta          0.000 1.369 1.394 1.414 1.092 1.406  

Polytrichum spp           0.000 1.285 1.414 1.304 1.110  

Pteridium aquilinum            0.000 1.414 1.391 1.260  

Rock              0.000 1.406 1.414  

Sphagnum spp              0.000 1.340  

Vaccinium myrtillus               0.000  

 
n.b. Owing to small sample sizes these figures should be treated with caution. 
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Figure 3:2. Processed RGB and multispectral (MS: NIR, G, R) imagery and classified output for Penguins study area 
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Table 3:7. Spectral separability analysis: Penguins. 
Above: Transformed Divergence. Values nearer to 2.0 mean an increasing probability of good separation. Breakpoints taken as <1.0 poor separability; 1.0 – 1.9 moderate separation (Jenson 
1996). 
Below: Jeffries-Matusita Distance. Values nearer to 1.414 mean an increasing probability of good separation. 
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Abies spp 0.000 2.000 2.000 2.000 1.915 1.958 1.999 1.998 1.509 1.996 1.841 1.974 1.907 1.996 2.000 2.000 1.997 1.994  

Aggregate   0.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000  

Bare peat   0.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000  

Calluna vulgaris    0.000 1.930 1.910 1.745 1.793 1.915 1.873 1.811 1.998 1.999 1.967 2.000 2.000 1.889 1.406  

Cirsium spp     0.000 1.937 1.981 1.992 1.598 1.990 1.557 2.000 1.996 1.999 2.000 2.000 1.955 1.741  

Deschampsia flexuosa      0.000 1.917 0.925 1.233 1.190 1.236 1.999 1.414 1.290 1.990 1.401 1.990 1.455  

Empetrum nigrum       0.000 1.579 1.930 1.922 1.725 1.998 2.000 1.486 2.000 2.000 1.996 1.186  

E. angustifolium        0.000 1.569 0.765 1.151 1.997 1.699 1.138 1.999 1.818 1.981 1.570  

E. vaginatum         0.000 1.783 0.716 1.458 1.656 1.842 2.000 1.936 1.880 1.552  

Juncus effusus          0.000 1.261 2.000 1.610 1.787 2.000 1.860 1.970 1.822  

Juncus squarrosus           0.000 1.896 1.736 1.637 2.000 1.974 1.759 1.429  

Molinia caerulea            0.000 2.000 1.995 2.000 2.000 1.984 1.945  

Nardus stricta             0.000 1.987 2.000 1.402 2.000 1.991  

Polytrichum spp              0.000 2.000 1.970 2.000 1.444  

Rock                0.000 1.926 2.000 2.000  

Sphagnum spp                0.000 2.000 1.998  

Unidentified grasses                 0.000 1.929  

Vaccinium myrtillus                  0.000  

                    

Abies spp 0.000 1.414 1.414 1.414 1.210 1.250 1.412 1.402 1.108 1.396 1.304 1.365 1.268 1.407 1.408 1.347 1.404 1.323  

Aggregate   0.000 1.414 1.414 1.414 1.414 1.414 1.414 1.414 1.414 1.414 1.414 1.414 1.414 1.389 1.414 1.414 1.414  

Bare peat   0.000 1.328 1.414 1.397 1.411 1.394 1.411 1.414 1.414 1.414 1.412 1.413 1.344 1.405 1.414 1.414  

Calluna vulgaris    0.000 1.352 1.195 1.298 1.185 1.354 1.262 1.331 1.394 1.387 1.288 1.371 1.290 1.319 1.085  

Cirsium spp     0.000 1.281 1.362 1.374 1.063 1.379 1.167 1.316 1.344 1.368 1.414 1.362 1.347 1.157  

Deschampsia flexuosa      0.000 1.196 0.864 0.958 0.956 1.014 1.358 1.040 1.035 1.384 0.983 1.342 1.112  

Empetrum nigrum       0.000 1.130 1.315 1.334 1.281 1.362 1.401 0.987 1.398 1.328 1.400 0.952  

E. angustifolium        0.000 1.219 0.805 1.051 1.369 1.241 1.010 1.362 1.073 1.330 1.155  

E. vaginatum         0.000 1.222 0.789 1.090 1.115 1.298 1.385 1.243 1.288 1.200  

Juncus effusus          0.000 1.051 1.389 1.149 1.259 1.390 1.103 1.284 1.254  

Juncus squarrosus           0.000 1.245 1.243 1.226 1.408 1.245 1.247 1.132  

Molinia caerulea            0.000 1.397 1.368 1.414 1.399 1.374 1.339  

Nardus stricta             0.000 1.396 1.375 0.983 1.399 1.368  

Polytrichum spp               0.000 1.405 1.206 1.380 1.088  

Rock                0.000 1.363 1.413 1.405  

Sphagnum spp                0.000 1.373 1.292  

Unidentified grasses                 0.000 1.270  

Vaccinium myrtillus                  0.000  
 
n.b. Owing to small sample sizes these figures should be treated with caution. 
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Figure 3:3. Processed RGB and multispectral (MS: NIR, G, R) imagery and classified output for Birchinlee 1 study area. 
n.b. the very clear ‘striping’ apparent in the MS image and its effects in the classified output. The causes of this are discussed in text.  
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Table 3:8. Spectral separability analysis: Birchinlee 1. 
Above: Transformed Divergence. Values nearer to 2.0 equals an increasing probability of good separation. Breakpoints taken as <1.0 poor separability; 1.0 – 1.9 moderate separation (Jenson 
1996). 

Below: Jeffries-Matusita Distance. Values nearer to 1.414 equals an increasing probability of good separation. 
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Bare peat 0.000 1.589 2.000 1.849 2.000 1.759 1.837 1.949 2.000 1.822 1.986 2.000 1.978 1.951 2.000 1.812 2.000 1.930  

Calluna vulgaris  0.000 1.935 1.981 1.978 1.388 1.845 1.988 2.000 1.947 1.997 2.000 1.998 1.997 2.000 1.757 2.000 1.797  

Cushion moss   0.000 2.000 2.000 1.950 1.981 2.000 1.997 1.993 2.000 2.000 2.000 2.000 2.000 1.999 2.000 2.000  

Deschampsia flexuosa    0.000 2.000 1.632 1.229 0.478 2.000 1.599 1.993 2.000 0.648 1.672 1.498 1.501 2.000 1.414  

Empetrum nigrum     0.000 1.936 1.999 2.000 2.000 1.999 2.000 2.000 2.000 1.989 2.000 1.999 2.000 1.889  

Erica tetralix      0.000 1.302 1.758 2.000 1.392 1.991 2.000 1.865 1.941 1.999 1.289 2.000 1.568  

E. angustifolium       0.000 1.789 2.000 1.727 2.000 2.000 1.556 1.771 1.720 1.934 2.000 1.653  

E. vaginatum        0.000 2.000 1.782 1.943 2.000 1.251 1.853 1.985 1.287 2.000 1.475  

Feather moss         0.000 2.000 2.000 2.000 2.000 2.000 1.998 2.000 2.000 2.000  

Juncus effusus          0.000 1.974 2.000 1.490 1.870 1.878 1.422 2.000 1.536  

Juncus squarrosus           0.000 2.000 2.000 2.000 2.000 1.417 2.000 1.790  

Mineral             0.000 2.000 2.000 2.000 2.000 2.000 2.000  

Nardus stricta             0.000 1.919 1.570 1.861 2.000 1.888  

Polytrichum spp              0.000 1.997 1.956 2.000 1.267  

Sphagnum spp               0.000 2.000 2.000 1.996  

T. cespitosum                0.000 2.000 1.267  

Unidentified grasses                 0.000 2.000  

Vaccinium myrtillus                  0.000  

                    

Bare peat 0.000 1.119 1.332 1.289 1.413 1.263 1.282 1.364 1.372 1.260 1.380 1.414 1.366 1.366 1.338 1.257 1.412 1.365  

Calluna vulgaris  0.000 1.302 1.295 1.399 1.097 1.154 1.379 1.363 1.292 1.390 1.414 1.409 1.329 1.358 1.269 1.414 1.217  

Cushion moss   0.000 1.301 1.405 1.294 1.205 1.376 1.298 1.262 1.414 1.414 1.367 1.361 1.344 1.386 1.414 1.375  

Deschampsia flexuosa    0.000 1.384 1.125 1.018 0.634 1.341 1.051 1.235 1.408 0.756 1.160 1.075 1.053 1.411 1.118  

Empetrum nigrum     0.000 1.333 1.326 1.407 1.408 1.409 1.413 1.414 1.413 1.320 1.393 1.409 1.414 1.244  

Erica tetralix      0.000 0.945 1.255 1.400 1.071 1.381 1.414 1.348 1.155 1.279 1.095 1.414 1.086  

E. angustifolium       0.000 1.236 1.253 1.124 1.372 1.402 1.213 1.067 1.151 1.231 1.414 1.212  

E. vaginatum        0.000 1.405 1.236 1.201 1.414 1.041 1.253 1.273 1.060 1.412 1.166  

Feather moss         0.000 1.348 1.414 1.414 1.339 1.372 1.241 1.409 1.414 1.403  

Juncus effusus          0.000 1.255 1.409 1.131 1.209 1.132 1.068 1.414 1.175  

Juncus squarrosus           0.000 1.414 1.348 1.248 1.364 1.055 1.414 1.155  

Mineral             0.000 1.408 1.411 1.383 1.414 1.414 1.414  

Nardus stricta             0.000 1.334 0.984 1.256 1.409 1.345  

Polytrichum spp               0.000 1.288 1.258 1.414 1.010  

Sphagnum spp               0.000 1.283 1.410 1.318  

T. cespitosum                0.000 1.409 1.082  

Unidentified grasses                 0.000 1.413  

Vaccinium myrtillus                  0.000  
 
n.b. Owing to small sample sizes these figures should be treated with caution. 
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Figure 3:4. Processed RGB and multispectral (MS: NIR, G, R) imagery and classified output for Birchinlee 2 study area. 
n.b. the very clear ‘striping’ apparent in the MS image and its effects in the classified output. The causes of this are discussed in text. 



 CS CONSERVATION SURVEY   

Technical Report: 31/12/2021. MFFP UAV vegetation mapping Final report: 37   

Table 3:9. Spectral separability analysis: Birchinlee 2 Note: Owing to small sample sizes these figures should be treated with caution. 
Above: Transformed Divergence. Values nearer to 2.0 mean an increasing probability of good separation. Breakpoints taken as <1.0 poor separability; 1.0 – 1.9 moderate separation (Jenson 
1996). 

Below: Jeffries-Matusita Distance. Values nearer to 1.414 mean an increasing probability of good separation. 
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Bare peat 0.000 2.000 1.910 2.000 2.000 2.000 1.999 2.000 1.999 2.000 2.000 2.000 2.000 2.000 2.000 2.000    

Calluna vulgaris  0.000 1.888 1.958 1.110 1.307 1.617 1.992 1.855 1.778 1.998 1.999 1.717 2.000 1.693 1.562    

Cushion moss   0.000 1.921 1.913 1.438 1.289 1.992 1.603 1.887 2.000 1.955 1.999 1.992 1.978 2.000    

Deschampsia flexuosa    0.000 1.475 1.627 1.702 0.467 1.252 1.327 1.996 0.690 1.432 1.174 1.745 1.983    

Empetrum nigrum     0.000 0.964 1.545 1.691 1.611 1.856 1.998 1.900 1.576 1.946 1.579 1.418    

Erica tetralix      0.000 1.466 1.779 1.602 1.525 1.983 1.829 1.942 1.989 1.446 1.819    

E. angustifolium       0.000 1.906 1.248 1.755 2.000 1.957 1.943 1.973 1.893 1.997    

E. vaginatum        0.000 1.591 1.449 1.992 0.705 1.520 1.251 1.819 1.990    

Feather moss         0.000 1.826 2.000 1.431 1.969 1.724 1.955 1.999    

Juncus effusus          0.000 1.696 1.568 1.717 1.488 1.242 1.829    

Juncus squarrosus           0.000 1.997 1.998 2.000 1.473 1.804    

Nardus stricta            0.000 1.900 1.252 1.942 1.999    

Polytrichum spp             0.000 1.793 1.487 1.791    

Sphagnum spp              0.000 1.999 2.000    

T. cespitosum               0.000 1.083    

Vaccinium myrtillus                0.000    

                    

Bare peat 0.000 1.322 1.302 1.363 1.385 1.395 1.379 1.412 1.307 1.396 1.414 1.407 1.389 1.382 1.409 1.396    

Calluna vulgaris  0.000 1.114 1.263 0.888 1.044 1.068 1.360 1.241 1.270 1.406 1.393 1.157 1.273 1.213 1.067    

Cushion moss   0.000 1.222 1.255 1.122 1.006 1.386 1.108 1.281 1.413 1.363 1.298 1.272 1.328 1.352    

Deschampsia flexuosa    0.000 1.119 1.127 1.149 0.628 0.953 1.043 1.297 0.786 1.130 0.922 1.164 1.288    

Empetrum nigrum     0.000 0.899 1.091 1.220 1.149 1.303 1.384 1.303 1.099 1.284 1.075 1.045    

Erica tetralix      0.000 1.107 1.250 1.181 1.114 1.376 1.277 1.231 1.255 1.025 1.193    

E. angustifolium       0.000 1.331 1.026 1.284 1.413 1.363 1.064 1.188 1.289 1.349    

E. vaginatum        0.000 1.166 1.178 1.286 0.813 1.187 1.033 1.159 1.289    

Feather moss         0.000 1.189 1.406 1.103 1.242 1.167 1.345 1.379    

Juncus effusus          0.000 1.208 1.174 1.164 1.024 1.021 1.257    

Juncus squarrosus           0.000 1.354 1.277 1.322 1.073 1.231    

Nardus stricta            0.000 1.338 0.930 1.331 1.378    

Polytrichum spp             0.000 1.148 1.052 1.097    

Sphagnum spp              0.000 1.231 1.324    

T. cespitosum               0.000 0.968    

Vaccinium myrtillus                0.000    
 
n.b. Owing to small sample sizes these figures should be treated with caution. 
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Figure 3:5. Processed RGB and multispectral (MS: NIR, G, R) imagery and classified output for Rowlee study area 
n.b. the very clear ‘striping’ apparent in the MS image and its effects in the classified output. The causes of this are discussed in text.  
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Table 3:10. Spectral separability analysis: Rowlee. 
Above: Transformed Divergence. Values nearer to 2.0 mean an increasing probability of good separation. Breakpoints taken as <1.0 poor separability; 1.0 – 1.9 moderate separation (Jenson 
1996). 

Below: Jeffries-Matusita Distance. Values nearer to 1.414 mean an increasing probability of good separation. 
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Bare peat 0.000 2.000 1.982 1.999 1.991 2.000 2.000 1.998 1.999 2.000 1.998 1.994 2.000 1.999 1.999 2.000         

Calluna vulgaris  0.000 1.998 1.098 1.503 1.905 2.000 1.873 1.268 1.406 1.918 1.898 2.000 2.000 1.955 1.620         

Deschampsia flexuosa   0.000 1.996 1.877 1.965 2.000 1.908 1.999 2.000 1.948 1.985 2.000 2.000 1.996 2.000         

Empetrum nigrum    0.000 0.717 1.852 1.998 1.738 1.420 1.583 1.747 1.632 2.000 2.000 1.923 1.806         

Eriophorum angustifolium     0.000 1.358 1.899 1.528 1.293 1.308 1.548 1.492 2.000 1.988 1.435 1.954         

Eriophorum vaginatum      0.000 1.889 1.930 1.901 0.758 1.760 1.928 2.000 1.935 1.176 1.951         

Feather moss       0.000 1.797 1.963 1.969 1.686 1.872 2.000 1.767 1.910 2.000         

Juncus effusus        0.000 0.852 1.658 1.355 1.140 2.000 1.943 1.659 1.981         

Juncus squarrosus         0.000 1.163 1.587 1.544 2.000 1.992 1.731 1.798         

Molinia caerulea          0.000 1.511 1.875 1.999 1.973 1.035 1.378         

Nardus stricta           0.000 1.848 2.000 1.918 1.017 1.971         

Polytrichum spp            0.000 2.000 1.784 1.880 1.971         

Pteridium aquilinum             0.000 2.000 2.000 1.998         

Sphagnum spp              0.000 1.980 2.000         

T. cespitosum               0.000 1.956         

Vaccinium myrtillus                0.000         

                         

Bare peat 0.000 1.413 1.312 1.400 1.390 1.414 1.414 1.412 1.411 1.411 1.411 1.399 1.414 1.378 1.409 1.412         

Calluna vulgaris  0.000 1.390 0.982 1.125 1.201 1.411 1.234 0.950 1.040 1.327 1.282 1.414 1.362 1.206 1.166         

Deschampsia flexuosa   0.000 1.278 1.184 1.276 1.349 1.179 1.313 1.305 1.216 1.282 1.414 1.304 1.280 1.412         

Empetrum nigrum    0.000 0.774 1.188 1.399 1.166 1.073 1.112 1.229 1.122 1.414 1.320 1.214 1.297         

Eriophorum angustifolium     0.000 1.039 1.346 1.025 0.970 1.016 1.132 1.110 1.414 1.263 1.066 1.332         

Eriophorum vaginatum      0.000 1.318 1.258 1.243 0.825 1.110 1.361 1.413 1.330 0.939 1.269         

Feather moss       0.000 1.314 1.398 1.359 1.264 1.313 1.414 1.117 1.343 1.414         

Juncus effusus        0.000 0.884 1.181 1.063 1.047 1.414 1.299 1.134 1.351         

Juncus squarrosus         0.000 0.984 1.230 1.180 1.414 1.353 1.037 1.208         

Molinia caerulea          0.000 1.114 1.316 1.402 1.349 0.923 1.030         

Nardus stricta           0.000 1.315 1.414 1.274 0.926 1.367         

Polytrichum spp.             0.000 1.414 1.255 1.281 1.356         

Pteridium aquilinum             0.000 1.414 1.408 1.406         

Sphagnum spp              0.000 1.350 1.405         

T. cespitosum               0.000 1.313         

Vaccinium myrtillus                0.000         

 
n.b. Owing to small sample sizes these figures should be treated with caution. 
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Figure 3:6. Processed RGB and multispectral (MS: NIR, G, R) imagery and classified output for Firmin study area 
n.b. the very clear ‘striping’ apparent in both RGB and MS images and their effects in the classified output. The causes of this are discussed in text.  
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Table 3:11. Spectral separability analysis: Firmin. 
Above: Transformed Divergence. Values nearer to 2.0 mean an increasing probability of good separation. Breakpoints taken as <1.0 poor separability; 1.0 – 1.9 moderate separation (Jenson 1996). 

Below: Jeffries-Matusita Distance. Values nearer to 1.414 mean an increasing probability of good separation. 
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Abies spp 0.000 2.000 2.000 2.000 1.871 1.465 1.999 1.990 1.582 2.000 1.887 2.000 2.000 2.000 1.999 2.000 1.953 2.000 1.413 1.551 2.000   

Agrostis spp  0.000 1.874 2.000 1.717 1.756 1.710 0.775 1.966 1.554 1.747 1.226 1.722 0.763 1.712 1.042 1.838 1.994 1.876 1.997 2.000   

Bare peat   0.000 2.000 1.990 2.000 1.849 1.917 2.000 1.835 1.999 2.000 1.998 1.874 1.995 1.997 1.982 1.972 2.000 2.000 2.000   

Betula spp    0.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000   

Calluna vulgaris     0.000 1.306 1.679 0.977 1.585 1.284 1.267 1.938 1.994 1.314 0.947 1.793 0.671 2.000 1.456 1.153 2.000   

C. angustifolium      0.000 1.966 1.465 0.814 1.921 0.888 1.997 2.000 1.917 1.863 1.857 1.700 2.000 0.726 1.173 2.000   

Cushion moss       0.000 1.302 1.995 1.622 1.704 1.993 1.382 1.439 1.801 1.984 1.434 2.000 1.971 1.973 2.000   

Deschampsia flexuosa        0.000 1.772 1.296 1.242 1.734 1.742 0.803 1.190 1.312 1.338 2.000 1.629 1.888 2.000   

Empetrum nigrum         0.000 1.988 1.329 2.000 2.000 1.978 1.957 1.978 1.879 2.000 1.301 0.641 2.000   

Eriophorum angustifolium          0.000 1.845 1.964 1.994 1.155 1.360 1.796 1.134 2.000 1.967 1.990 2.000   

Eriophorum vaginatum           0.000 1.922 1.990 1.753 1.426 1.527 1.590 2.000 1.269 1.470 2.000   

Feather moss            0.000 1.951 1.573 1.918 1.598 1.988 1.999 1.990 2.000 2.000   

Holcus mollis             0.000 1.716 1.991 1.983 1.970 2.000 2.000 2.000 2.000   

Juncus effusus              0.000 1.147 1.455 1.547 1.992 1.929 1.990 2.000   

Juncus squarrosus               0.000 1.754 1.263 2.000 1.856 1.897 2.000   

Nardus stricta                0.000 1.979 1.948 1.910 1.998 2.000   

Polytrichum spp                 0.000 2.000 1.809 1.796 2.000   

Rock                   0.000 2.000 2.000 2.000   

Salix                    0.000 1.291 2.000   

Vaccinium myrtillus                    0.000 2.000   

Water                      0.000   

                        

Abies spp 0.000 1.401 1.411 1.353 1.300 1.065 1.396 1.355 1.123 1.400 1.342 1.401 1.409 1.396 1.400 1.397 1.346 1.414 1.066 1.101 1.413   

Agrostis spp  0.000 1.232 1.405 1.278 1.236 1.286 0.816 1.363 1.137 1.233 0.969 1.136 0.801 1.264 0.973 1.315 1.396 1.334 1.394 1.414   

Bare peat   0.000 1.414 1.373 1.368 1.143 1.237 1.399 1.277 1.378 1.335 1.263 1.266 1.404 1.323 1.330 1.338 1.413 1.412 1.407   

Betula (not specified)     0.000 1.311 1.345 1.396 1.363 1.364 1.402 1.384 1.393 1.411 1.384 1.397 1.407 1.339 1.414 1.329 1.324 1.414   

Calluna vulgaris     0.000 0.985 1.223 0.933 1.149 1.082 1.095 1.333 1.356 1.066 0.893 1.288 0.772 1.414 1.183 1.016 1.414   

C. angustifolium      0.000 1.284 1.044 0.812 1.230 0.868 1.328 1.370 1.193 1.130 1.259 1.124 1.414 0.751 0.967 1.414   

Cushion moss       0.000 1.069 1.356 1.100 1.264 1.368 1.055 1.075 1.286 1.381 1.112 1.414 1.396 1.383 1.401   

Deschampsia flexuosa        0.000 1.235 1.008 1.031 1.155 1.104 0.796 0.987 1.028 1.061 1.403 1.215 1.238 1.414   

Empetrum nigrum         0.000 1.360 1.027 1.376 1.402 1.329 1.289 1.333 1.304 1.414 0.940 0.719 1.414   

Eriophorum angustifolium          0.000 1.265 1.324 1.237 0.946 1.045 1.267 0.979 1.410 1.392 1.369 1.413   

Eriophorum vaginatum           0.000 1.274 1.369 1.157 1.079 1.146 1.223 1.414 1.105 1.132 1.414   

Feather moss            0.000 1.335 1.093 1.344 0.971 1.370 1.394 1.361 1.391 1.414   

Holcus mollis             0.000 1.181 1.396 1.378 1.340 1.407 1.411 1.409 1.414   

Juncus effusus              0.000 0.982 1.153 1.081 1.397 1.362 1.351 1.414   

Juncus squarrosus               0.000 1.242 1.010 1.414 1.341 1.301 1.414   

Nardus stricta                0.000 1.353 1.364 1.321 1.356 1.414   

Polytrichum spp                 0.000 1.414 1.321 1.271 1.413   

Rock                   0.000 1.414 1.414 1.414   

Salix                    0.000 1.016 1.414   

Vaccinium myrtillus                    0.000 1.414   

Water                      0.000   
 
 
n.b. Owing to small sample sizes these figures should be treated with caution. 
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Figure 3:7. Processed RGB and multispectral (MS: NIR, G, R) imagery and classified output for Olaf Nogson study area 
n.b. the very clear ‘striping’ apparent in both RGB and MS images and their effects in the classified output. The causes of this are discussed in text.  

 



 CS CONSERVATION SURVEY   

Technical Report: 31/12/2021. MFFP UAV vegetation mapping Final report: 43   

Table 3:12. Spectral separability analysis: Olaf Nogson.  
Above: Transformed Divergence. Values nearer to 2.0 mean an increasing probability of good separation. Breakpoints taken as <1.0 poor separability; 1.0 – 1.9 moderate separation (Jenson 1996). 

Below: Jeffries-Matusita Distance. Values nearer to 1.414 mean an increasing probability of good separation. 
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Abies spp 0.000 2.000 2.000 1.995 2.000 2.000 2.000 1.233 2.000 1.946 2.000 2.000 2.000 2.000 2.000 1.996 2.000 1.575 2.000     

Bare peat  0.000 2.000 2.000 2.000 1.986 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 1.999     

Betula spp   0.000 2.000 2.000 2.000 2.000 2.000 2.000 1.989 2.000 2.000 2.000 2.000 2.000 2.000 2.000 1.999 2.000     

Calluna vulgaris    0.000 1.999 1.857 1.477 1.830 1.194 1.606 1.882 1.996 0.990 1.124 1.978 0.854 2.000 1.427 2.000     

C. angustifolium     0.000 2.000 2.000 1.998 1.999 1.996 2.000 2.000 2.000 1.999 2.000 2.000 2.000 1.999 2.000     

Cushion moss      0.000 1.995 2.000 1.924 2.000 1.997 1.988 1.841 1.924 2.000 1.737 2.000 2.000 1.983     

Deschampsia flexuosa       0.000 1.994 1.754 1.074 1.994 1.670 0.985 1.654 1.852 1.690 1.983 1.588 2.000     

Empetrum nigrum        0.000 1.959 1.763 2.000 2.000 1.986 1.960 2.000 1.884 2.000 1.270 2.000     

Eriophorum angustifolium         0.000 1.497 1.999 1.999 1.220 0.585 2.000 0.931 2.000 1.626 2.000     

Eriophorum vaginatum          0.000 1.969 1.974 1.560 1.443 1.989 1.721 2.000 0.908 2.000     

Feather moss           0.000 2.000 1.990 1.992 2.000 1.994 2.000 1.999 1.991     

Holcus mollis            0.000 1.756 1.987 1.985 1.998 2.000 2.000 2.000     

Juncus effusus             0.000 0.931 1.898 1.354 1.988 1.773 1.993     

Juncus squarrosus              0.000 1.998 1.137 1.999 1.689 2.000     

Nardus stricta               0.000 2.000 2.000 2.000 2.000     

Polytrichum spp                0.000 2.000 1.528 2.000     

Rock                  0.000 2.000 2.000     

Vaccinium myrtillus                  0.000 2.000     

Water                    0.000     

                        

Abies spp 0.000 1.414 1.405 1.378 1.402 1.413 1.307 1.035 1.381 1.260 1.414 1.398 1.398 1.385 1.406 1.359 1.414 1.079 1.414     

Bare peat  0.000 1.414 1.408 1.414 1.393 1.387 1.414 1.367 1.412 1.414 1.414 1.412 1.406 1.414 1.297 1.406 1.403 1.322     

Betula spp   0.000 1.411 1.305 1.414 1.377 1.412 1.391 1.295 1.414 1.414 1.413 1.404 1.414 1.409 1.414 1.361 1.414     

Calluna vulgaris    0.000 1.406 1.267 1.103 1.303 1.063 1.187 1.307 1.401 0.955 1.002 1.348 0.810 1.409 1.042 1.341     

C. angustifolium     0.000 1.414 1.355 1.372 1.398 1.223 1.413 1.414 1.408 1.384 1.414 1.401 1.414 1.301 1.414     

Cushion moss      0.000 1.250 1.414 1.240 1.391 1.373 1.328 1.273 1.250 1.414 1.116 1.366 1.360 1.196     

Deschampsia flexuosa       0.000 1.258 1.276 0.963 1.229 1.145 0.918 1.185 1.142 1.163 1.345 1.106 1.259     

Empetrum nigrum        0.000 1.319 1.113 1.412 1.392 1.353 1.301 1.387 1.301 1.414 0.962 1.414     

Eriophorum angustifolium         0.000 1.172 1.390 1.395 1.022 0.713 1.405 0.915 1.403 1.173 1.345     

Eriophorum vaginatum          0.000 1.359 1.317 1.155 1.126 1.300 1.250 1.412 0.881 1.386     

Feather moss           0.000 1.379 1.300 1.343 1.381 1.332 1.387 1.352 1.294     

Holcus mollis            0.000 1.167 1.326 1.300 1.406 1.367 1.392 1.377     

Juncus effusus             0.000 0.870 1.245 1.093 1.389 1.225 1.252     

Juncus squarrosus              0.000 1.372 0.991 1.396 1.187 1.303     

Nardus stricta               0.000 1.389 1.404 1.365 1.382     

Polytrichum spp                0.000 1.405 1.132 1.295     

Rock                  0.000 1.410 1.405     

Vaccinium myrtillus                  0.000 1.368     

Water                    0.000     
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3.2.5 Accuracy assessment 

An accuracy assessment was only undertaken for one site, Firmin, which although lacking 

adequate data for an optimal error assessment, nevertheless was the site with the most 

species with greater than 20 field samples. The overall classification accuracy at Firmin 

was measured at 43%, with kappa 39%. The accuracies for different classes vary from 

very good for a few classes to very poor for others. Unambiguously “good” classes were 

bare peat and rock, which is unsurprising given their clear NIR responses. “Poor” classes 

included species like Juncus effusus (10% user accuracy), Empetrum nigrum and 

Chamaenerion angustifolium (13%). Juncus effusus was confused by the classifier with 

Agrostis, cushion moss, Deschampsia flexuosa, Eriophorum angustifolium and 

Polytrichum spp. 

The estimates of spectral separability are largely reflected in the user accuracy of the 

classified map at Firmin, although the three classes with the lowest user accuracies were 

not those with the lowest separabilities (Figure 3:8). Thus spectral separability seems to 

be a generally useful guide for eventual classified accuracies, accepting the caveats 

above regarding low sample sizes (Table 3:13). 

 

Figure 3:8. The relationship between average spectral separability and user accuracy at 
Firmin. 
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Table 3:13. Confusion matrix for image classification at Firmin. 
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3.3 Summary of Phase 1 

Two main lessons were learned from Phase 1: problems of flying large areas using UAVs, 

and difficulties in capturing sufficient ground truth data for classifier training and error 

assessment. As these both adversely effected the ability of the project to meet MFFPs 

needs, two parallel approaches were proposed for Phase 2: 

i. Use of ‘traditional’ airborne digital image capture via a contractor such as Bluesky*, 

Cyient (Blom aerofilm), GetMapping, or similar. These can be obtained at close 

to, and often better than, the resolution originally anticipated for the UAV 

multispectral data capture so will be essentially comparable from that aspect. 

(*eventually used for this project after closed-tender bids). 

Moreover, airborne photography covers large areas quickly and the images 

required to cover each MFFP field laboratory, and surrounding area, will be 

captured essentially instantaneously in comparison to using a UAV. This 

overcomes many of the potential concerns associated with the slow process 

required to ‘build’ coverage of large areas with UAVs, e.g. transitions in light 

intensity, changes in light angle, potential for image blur in strong wind, incomplete 

capture in a single flight due to change in weather or equipment failure. 

Airborne photography also removes risks to image capture associated with site 

access restrictions. This increases the likelihood of finding ‘windows’ of good 

weather for flying. Site visits to collect field data can be undertaken at other times 

as access regimes allow and are at low risk of failure as they are weather 

independent. 

Equally importantly, use of airborne photography reduces surveyor time 

commitments enabling them to conduct higher quality research and field work.  

ii. The success of the first round of image classification was regrettably limited by 

small sample numbers, as well as incomplete spatial coverage across the imaged 

areas. Alongside that issue it also became apparent during processing that target 

sample numbers for each species needed increasing beyond the original 

estimations. 

Field data collection therefore needs a significant expansion during future rounds 

of monitoring. Given the image resolutions a target of 100 ‘pure’ samples per 

species is recommended. There is high intrageneric spectral variation in some 

taxa like Sphagnum spp. and Polytrichum spp. Survey timing will have a large role 

in determining whether Sphagnum spp. can be differentiated spectrally. There 
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may also be difficulty in obtaining enough samples of some taxa, and this may 

become a particular issue where these are those of most interest, e.g. Sphagnum 

spp. 
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Section 4: Phase 2 – MAV Image Capture I 

 

Originally reporting in Summary report 2020 
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Summary introduction to Phase 2 activities. 

Following the lessons of Phase 1, the objectives of MFF 50 2016-17 were expanded to 

examine the application of alternate image data sources to address MFFP monitoring 

needs. Therefore, in lieu of performing repeat mapping using UAV-derived imagery, 

Phase 2 assessed the use of ‘conventional’ commercial MAV 4-band digital imagery 

capture.  

In principle, conventionally flown airborne data provides several potential benefits over 

UAV capture for MFFP: 

i. Staff-time commitments to UAV flying and establishing ground control targets are 

removed.  

ii. Image processing-time overheads are minimised, expediting mapping 

components of the project.  

iii. Photogrammetric cameras used on recent commercial MAV platforms easily 

match the GSD achieved by UAVs flown at 100-120 m (above ground level) while 

capturing a significantly larger swath. 

iv. Image capture is effectively instantaneous over each site, and all are covered 

within a period of minutes; hence sun-angle and illumination are essentially the 

same across each study area. Additionally, this means that phenological 

differences between each site are minimised to those naturally present within 

populations at the time of capture, rather than potentially arising as a product of 

differing dates of survey. Both factors allow images from all sites to share field 

observations for training and error assessment. Execution of image classification 

and associated accuracy determinations can be executed in one go. 

However, this project has been predicated on mapping individual species using 

extremely-high-resolution imagery to identify changes in abundances of Sphagnum spp. 

and cover of bare peat at a fine scale, and this remains a prime objective. Accommodating 

a shift to alternate high-resolution imagery in this case brings potential challenges. The 

most significant of these is that airborne data are generally orthorectified using sensor 

and aircraft orientation parameters with few or even no ground control data localised to 

the study sites. While this process can be expected to still yield a high degree of accuracy, 

the co-registration between image and ground data will not be as ‘tight’ as that originally 

expected, or achieved, using UAV capture. In this case, the airborne data had a reported 

orthocorrection accuracy (RMSE) of 12 cm and 16 cm in x and y respectively 

(representing a potential horizontal image shift of 1-2 pixels) compared to <1 pixel 

achieved by the UAV in Phase 1. This project is heavily dependent on obtaining spectral 

data from individual pixels matched to field data recorded by DGNSS with a location 
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typically accurate to 2-3 cm. Any relaxation of spatial co-registration between image and 

field data increases the probability of spectral information being assigned to the wrong 

species and degrading classification accuracy. This can be partially mitigated in 

classification by using field (training) samples of a minimum size (here 50 cm in x and y 

dimensions). 

Objectives of Phase 2 

Despite the change of imagery utilised, the overall objectives of Phase 2 are essentially 

the same as Phase 1: to assess the application of remotely sensed data to MFFP needs, 

i.e. to monitor changes in the cover of Sphagnum species, other vegetation types, and 

bare peat.  

To help define a suite of species that can be reliably mapped from 4-band digital imagery 

three main approaches were adopted during Phase 2: 

1. Spectral separability analyses 

2. Multivariate spectral clustering analysis via canonical correlation analysis  

3. Supervised image classification and error-assessment 

Each of these analyses were iterated to examine:  

i. How rare species influence individual and overall accuracy by progressive 

removal. 

ii. Possible negative consequences arising from utilising a different image type and 

registration accuracy. 

To allow, as far as possible, comparison with results in Phase 1, the classification 

protocols adopted here are essentially the same, i.e. supervised pixel classification. As 

an extensive campaign of field survey was undertaken in 2019 in support of Phase 2 

image capture, full formal error assessments of all classified products are reported.  
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4.1. Data sources and associated pre-processing 

4.1.1 Image data  

The five study sites, containing eleven experimental catchments (Table 4:1), were flown 

on 02/10/2019 by Bluesky International. Imagery was captured using an Ultracam Eagle 

100 with a 100.5mm lens at an altitude of 2400 m to yield an ultimate ground resolution 

of 10cm in both axes. RGB and NIR bands were supplied fully orthorectified as 1 km2 tiles 

(aligned with the Ordnance Survey National Grid) in TIFF format. The only additional 

processing applied to the supplied imagery was the creation of mosaics in .img format. 

Table 4:1. Image coverage supplied by study site 

Survey site Image area (km2) Experimental catchments 

 
Birchinlee 

 
2 

 
Eriophorum (Con); Eriophorum (Spha) 

Derwent Howden 1 Calluna (Con); Calluna (Spha); Calluna (Spha GB) 
Penguins 2 P (Ref) 
Moss Moor 2 Molinia (Con); Molinia (Spha) 
Kinder 3 F (Con); N (Veg Spha GB); O (Veg) 
   

Intervention: Con = control; GB = gully blocking; Ref = intact reference; Spha = Sphagnum; Veg = revegetation. 

 

Problems with data supply. Owing to problems with gaining permission to fly in the 

airspace required (as reported by Bluesky) the date of image capture was finally very late 

in the year and well outside the period specified. This had adverse consequences for both 

the phenological state of many species at time of imaging as well as low sun angles, the 

latter resulting in the presence of considerable amounts of shadow in the imagery. Both 

factors that could be expected to reduce classification accuracies below what might be 

anticipated. However, given the option of not progressing at all in 2019, and considering 

both: the extensive field data collection already completed and; that much of MFF 50 2016-

17 is developmental in nature and hence considerable information could still be gained, it 

was decided to continue with image classification.  

Inclusion of imagery with large amounts of shadow has necessitated some changes from 

what might be considered ‘standard’ remote sensing practices. Where this has occurred, 

and the consequences they might cause, a note has been made in the text.  

4.1.2 Field data 

During 2019 a comprehensive field survey effort was undertaken by MFFP. To ensure 

good spatial coverage of the area of interest within each image a virtual grid comprising 

100 points was created within a GIS and transferred to the field data-logging equipment. 

Field surveyors searched within an approximate 30 m radius centred on these 

predetermined sample locations to identify single species stands with a minimum extent 

of 0.5 m x 0.5 m. The species present and the location of the ‘patch’ was recorded using 
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post-processed differential GNSS. A ‘running tally’ of each species was kept and 

additional samples recorded if species with a low number of records were observed in 

transit to each sample location. The overall aim of the sampling effort was to attempt to 

identify 100 examples of all species present at each study site. At the cessation of field 

survey the target of 100 samples at each site was only achieved for some species, either 

as a result of absolute scarcity or the lack of single stands of adequate size.  

The field data comprised 7104 field samples providing a total of 55 vegetation classes. 

Samples of Calluna vulgaris and Empetrum nigrum recorded as being dead in field notes 

were assigned as new sub-classes (Calluna dead and Empetrum dead). The remaining 

Calluna samples were split into four further classes for classification: Calluna without 

flowers, Calluna in flower, Calluna cut and Calluna burnt.  

At the time of image capture phenological variation across the study sites was particularly 

noticeable in Pteridium aquilinum due to the stage of senescence. As senescence has 

marked impact on reflectance in the NIR part of the spectrum, all Pteridium samples were 

visually assessed and split into Pteridium aquilinum (green) and Pteridium aquilinum 

senescent. These were mapped separately. The addition of these sub-classes increased 

the total class number for analysis to 61. 

4.2 Analytical protocols 

4.2.1 Special consideration: Shadow 

Background. As outlined in 4.1.1 the imagery supplied was significantly affected by low 

sun-angle and associated shadow. As it is temporally-variable, and no matching field data 

will be available, dealing with shadow during classification of remotely sensed imagery is 

highly problematical, i.e. there are no real solutions, except to ensure it doesn’t occur. 

The issues it causes will also propagate though subsequent monitoring rounds. 

Interestingly the impact of shadow in manual image interpretation is not the same, indeed 

it can be useful. The reason is simply that an observer knows what a shadow is and can 

understand what it covers. Classification algorithms cannot conceptualise, they 

essentially just compare digital numbers with other digital numbers.  

Shadow reduces the absolute reflectance values returned to the sensor. However, the 

colour temperature of the reflected or scattered light illuminating the shadows also ‘colour 

shifts’ reflected values (usually predominantly blue owing to atmospheric Rayleigh 

scattering). The outcome of this is that cover classes in shadow have their spectral 

response shifted to impinge on the colour space of actual low-reflectance classes, e.g. 

bare peat and water. Ironically these are classes that are usually mapped at high accuracy 

owing to their distinct spectral reflectance.  
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Solutions. One approach that might be considered is the removal areas of deep shadow 

from the imagery. However, amongst other issues, having ‘holes’ in the classified output 

will remove those areas from subsequent monitoring rounds. More importantly, while this 

may appear effective at the large-scale for topographically-induced shadow, it does not 

deal satisfactorily with small, or even single-pixel, shadows caused by vegetation. An 

additional issue with this approach is the need to identify the shadow using a prior round 

of classification, although this can be added into a single model if required. However, the 

issue here is again that of confusion with other low reflectance classes. Misclassification 

will simply reduce the actual accuracy whichever approach is adopted.  

An alternate approach is to treat the shadow as an independent class, training it by using 

manual aerial photographic interpretation (API) of the image, either by altering field 

observations that can be seen to lie in shadow and/or by the creation of additional training 

pixels. A major conceptual issue with this approach is related to error determination, i.e. 

shadow is not a land cover class so the accuracy of this class should not be counted in 

the overall accuracy of classification. Yet, leaving the shadow class out of an error matrix 

excludes all classes that are ‘confused’ with it and again misrepresents true accuracy 

estimates.  

Balancing these objections the latter approach was adopted here for the simple reason 

that a considerable fraction of the image was effected by shadow and this approach also 

delivers information about confusion with other classes. It does however mean that a 

caveat is applied to the classified outputs. All field samples were visually assessed in the 

imagery and those in shadow (433) were used to provide the spectral ‘signature’ of 

shadow in the classification. 

4.2.2 Analytical approach  

As summarised above the project aims to develop opportunities for monitoring change 

related to MFFP restoration activities. During Phase 2 the image data utilised was sourced 

from ‘conventional’ commercial airborne digital sensors. As with Phase 1 a full appraisal 

of the suitability of these data to this purpose several approaches have been adopted. 

Spectral separability. Separability analyses can guide the classification approaches to 

be adopted in remote sensing projects by testing spectral signatures of field classes to 

assess the probability of them being identified correctly during a supervised classification. 

However, in this case they have been undertaken primarily to determine how these 

separations translate through to final classification accuracies and to guide the choices 

described in ‘systematic approach’ below. Separability analyses were conducted in 
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ERDAS Imagine with both transformed divergence and Jeffries-Matusita distances being 

extracted. 

Canonical Correspondence Analysis (CCA). Multivariate analyses identify associations, 

or relationships, within large datasets comprising many samples and variables. This is 

achieved, very simplistically, by considering the sample data as occupying 

multidimensional space defined by axes of the frequencies of each class and/or quantities 

in environmental variables. This is then reduced to 4 dimensions, or axes, while retaining 

the spatial associations in the data. Generally, the first two of these axes (the most 

‘important’) are used to visualise these associations in the form of an x, y plot. In such 

graphs the proximity of plotted variables is a measure of the distribution of their co-

occurrences within the data.  

As this process has numerous analogies to the way class data is projected in multispectral 

space, we explored its use here to examine the effectiveness of visual interpretation of 

separability of classes compared to conventional statistics.  

Classification – choice of algorithm. MFFP’s objectives are to assess restoration 

success by the application of remote sensing techniques and defined this as best 

achieved by producing entire or complete vegetation maps of sample areas at each 

monitoring round. This has influenced the choice of preferred classification protocol to be 

applied. 

Classification options fall into two major categories, non-parametric and parametric. The 

former has some advantages, such as computational speed, and also make no 

assumptions about statistical normality of the data forming the class signatures. However, 

this is offset by the fact that these rules alone will invariably produce ‘unclassified’ pixels. 

All else being equal, depending on method, this can increase apparent class and overall 

accuracies, by effectively ‘throwing away’ pixels that do not fit within rigidly fixed spectral 

class boundaries, and thus not classifying all of the image. Such unclassified pixels/gaps 

in the mapped outputs cannot contribute to monitoring, or change assessment, either this 

round or the next. ERDAS Imagine software, selected for this project owing to its wide-

distribution and common availability within the NGO sector, does allow a decision tree 

approach to addressing unclassified pixels, however this does mean that class 

composition results consist of pixels derived from a mix of rules. To avoid the problem of 

unclassified pixels while retaining a one-step classification approach we have adopted 

parametric classification algorithms, despite some expected concomitant reductions in 

individual and overall classification.  
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Within supervised parametric algorithms numerous options exist for the way unknown 

pixels are allocated to defined (trained) spectral classes. A full discussion of these is felt 

to be unnecessary here, although further details can be provided if desired. In this 

instance the team opted to utilise a maximum likelihood or Bayesian classifier. These do 

assume that the data are parametric (i.e. that the distribution of classes is normally 

distributed in each spectral band) and tend to overclassify signatures with wide dispersion 

in the training data. They are also complex, creating the greatest computational demands. 

However, they are also likely to produce the most accurate results. During classification, 

comparison was also made with the Mahalanobis distance classifier (an additional 

parametric algorithm that allocates classes based on Euclidean distance). 

4.2.3 Systematic approach 

Given the objectives of Phase 2, i.e. assess the mapping success achievable using an 

alternative data source, both spectral analyses and classifications were undertaken using 

sequentially reducing subsets of the field data. These were extracted to address two 

primary questions: i: what consequences/difficulties might arise from using image data 

with lower geolocation accuracies than expected and achieved for UAV capture; ii: which 

species can be reliably mapped, especially with regard to rarer taxa. These groups were 

as follows (see Annex A for a full lists of exclusions): 

Strim A: 

The initial reason for sample exclusions leading to Strim A were those judged unsuitable 

on the following grounds: i: samples comprising very low areal extent (<20 cm); ii: those 

marked as obscured (i.e. over-showed) mixed or mislabelled; iii: samples with a very low 

residual frequency after i: and ii: were applied (here <5 samples, with the exception of 

those deemed worth still examination e.g. heather brash, which could potentially confuse 

with bare peat and information on this would be useful). 

Sample size: 6889 (70:30; 4825 training, 2064 validation); Class number: 51. Note only 

48 of these are included in separability analyses as values for n were below the minimum 

to create the invertible matrices required.  

Strim B: 

Subset of strim A. 

All samples with areal extents of <40cm were excluded. Residuals with very low frequency 

after criteria applied also deleted.  

Sample size: 6350 (70:30; 4447 training, 1903 validation); Number of classes: 45. 

Strim C: 

Subset of strim B. 
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Trees species including Rhododendron deleted because of low sample size (note Salix 

retained). Also deleted: S. cuspidatum (16), denticulatum (5), papillosum (10), 

squarrosum (2), subnitens (15) Erica cinerea (10) and heather brash (4).  

Sample size: 6110 (70:30; 4283 training, 1827 validation); Number of classes: 34. 

Strim D: 

Subset of strim C.  

Only samples with >70 records. The exclusion criteria for Strim D were chosen as this 

essentially fits with the guidance for sample sizes to be used suggested by Congalton & 

Green (2019). 

Sample size: 5712 (50:50; 2855 training, 2857 validation); Number of classes: 23. 

It was considered that geolocation accuracies could interact not only with the areal extent 

of field samples considered above but also the area used for extracting spectral 

information during class signature determination. To investigate this a series of replicated 

analyses of Strims A-C were also executed using circular training samples of 20 cm, 10 

cm and 5 cm diameter. 
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4.3 Results 

4.3.1 Spectral separability analyses (class separability) 

Separability between all combinations of the 48 classes in the near complete dataset 

(strim A) are shown in Tables 4:2&4:3 and between all combinations of the 34 classes in 

the subset (strim C) in Tables 4:4 & 4:5. The latter show the limited improvement in class 

separation resulting from the removal of smaller and less frequently recorded field 

samples to be explored. This exercise was not undertaken on samples between Strim A 

and B as the small difference in sample and class number were considered unlikely to 

change spectral signatures to any degree. Separability was not examined for samples in 

Strim D as the minimum sample number of 70 excluded some classes, e.g. Calluna cut 

and Calluna burn that only occurred in single sites. The values for both analyses are 

colour coded using the breakpoints described below to show separability as green 

(separable), orange (fairly good separability) and red (poor probability of separability). 

The upper bound for transformed divergence is 2.000 and that for Jeffries-Matusita is 

1.414 (√2). For transformed divergence, separability values of above 1.900 indicate that 

classes can be separated, values between 1.7 and 1.9 indicate the separation is fairly 

good, and values below 1.700 show poor class separability (Jensen, 1996). These 

separability values have been used to scale comparable breakpoints for Jeffries-Matusita 

(1.3 and 1.2). 

There are too many classes in both datasets to provide iterative reporting of separability 

for each class. However, some key observations for all 48 classes are: 

i. Transformed divergence indicates that heather brash, Calluna cut, Calluna burnt 

and flagstone are separable classes, and Jeffries-Matusita indicates that the same 

four classes plus rock and mineral soil are also separable; 

ii. Water, bare peat and shadow exhibit poor class separability from each other; 

iii. All species of Sphagnum show poor class separability from each other; however, 

CCA identified clusters of Sphagnum species in ordination space (see section 

4.3.4). 

The same observations hold for the 34 classes compared in the refined strim C dataset, 

although heather brash was excluded and only three species of Sphagnum were 

assessed (fallax, fimbriatum and palustre). 

4.3.2 Canonical Correspondence Analysis 

The location of the classes plotted in ordination space presents a number of interesting 

observations (Figure 4:1). Flagstone, Rock and Mineral soil are located discretely from 
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other classes and were indicated to be separable by the Jeffries-Matusita distance. 

However, other classes noted to be separable, namely heather brash, Calluna cut and 

Calluna burnt, are not located as discretely. The Calluna cut and burn classes are located 

in the same region as bare peat, shadow and water, which all exhibit very low NIR 

reflectance. 

Other classes that are located discretely in ordination space including Empetrum dead, 

Eriophorum angustifolium, Calluna, Pteridium aquilinum and Polytrichum spp. were all 

identified as showing fairly good separation by both transformed divergence and Jeffries-

Matusita distances. Classes that plotted discretely in ordination space generally showed 

higher classification accuracies (section 4.3.4). 

Sphagnum squarrosum plotted discretely from all other species of Sphagnum examined, 

but the remaining species appear to plot in three clusters: 

1. magellanicum, capillifolium, denticulatum, cuspidatum, subnitens and tenellum; 

2. papillosum and palustre; 

3. fimbriatum and fallax. 

4.3.3 Classification accuracy 

The systematic progression of classifications undertaken and the effect on classification 

accuracy are presented in error matrices (Annex A; Tables A:2-A:15). Classification 

accuracies achieved using the most refined sample set are presented below in Tables 

4:6-4:7. For each step in classification all classes are reported first and then subsequently 

with sub-classes of Calluna and Pteridium aquilinum classes merged (i.e. Calluna + 

Calluna dead + Calluna flower; Pteridium aquilinum + Pteridium aquilinum senesced). 

The size of the training sample used (20 cm, 10 cm and 5 cm) appeared to have minimal 

effect on the classification accuracy. The most noticeable change in accuracy related to 

the progressive reduction in class number. Reported for classifications using a 10 cm 

training sample area, the overall accuracy ranged from 35% with strim A (51 classes), 

through 38% (strim B; 45 classes), 42% (strim C; 34 classes) to 46% (strim D; 23 classes). 

Merging Calluna and Pteridium aquilinum classes produced a 2% improvement for each 

step (e.g. from 46% to 48%). 

The use of the Mahalanobis classification algorithm (Annex A; Tables A;16-A:17) 

produced an overall accuracy 2% lower than that produced using the maximum likelihood 

algorithm. 

Classified outputs for all sites are shown in Figures 4:2-4:11. 
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Table 4:2. Strim A: Separability analysis - Transformed divergence 
Red to green graphically illustrate increasing probability of good classification accuracy. n.b. three species from Strim A not included here, see text.  

Values shown are multiplied by 1000 for consistency of decimal place.  
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Table 4:3. Strim A: Separability analysis - Jefferies-Matusita. 
Red to green graphically illustrate increasing probability of good classification accuracy. n.b. three species from Strim A not included here, see text.  

Values shown are multiplied by 1000 for consistency of decimal place.  
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Table 4:4. Strim C: Separability analysis - Transformed divergence  
Red to green graphically illustrate increasing probability of good classification accuracy 

Values shown are multiplied by 1000 for consistency of decimal place.  
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Table 4:5. Strim C: Separability analysis - Jefferies-Matusita. 
Red to green graphically illustrate increasing probability of good classification accuracy 

Values shown are multiplied by 1000 for consistency of decimal place.  
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Figure 4:1. Strim A. CCA ordination of spectral data with R, G, B and NIR vectors highlighted. Axis 1 and 2 Eigenvalues shown. 
Class names coloured to highlight live vegetation (green), dead or senescent vegetation and non-vegetation (brown), and Sphagnum spp. (blue). 
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Table 4:6. Strim D: Sample numbers >70 Error matrix. Maximum likelihood classification. 20cm search area. All classes. 
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Table 4:7. Strim D: Sample numbers >70 Error matrix. Maximum likelihood classification. 20cm search area. Calluna (includes Calluna, Calluna flower and Calluna dead); Pteridium (includes Pteridium and Pteridium sen) folded. 
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Figure 4:2. Classified output for Birchinlee (SK1392) using strim D. 20cm training area. Calluna and Pteridium aquilinum sub-classes merged. 
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Figure 4:3. Classified output for Birchinlee (SK1393) using strim D. 20cm training area. Calluna and Pteridium aquilinum sub-classes merged. 
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Figure 4:4. Classified output for Derwent Howden (SK1398) using strim D. 20cm training area. Calluna and Pteridium aquilinum sub-classes merged. 
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Figure 4:5. Classified output for Kinder (SK0789) using strim D. 20cm training area. Calluna and Pteridium aquilinum sub-classes merged. 
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Figure 4:6. Classified output for Kinder (SK0889) using strim D. 20cm training area. Calluna and Pteridium aquilinum sub-classes merged. 
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Figure 4:7. Classified output for Kinder (SK0989) using strim D. 20cm training area. Calluna and Pteridium aquilinum sub-classes merged. 
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Figure 4:8. Classified output for Molinia (SD9913) using strim D. 20cm training area. Calluna and Pteridium aquilinum sub-classes merged. 
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Figure 4:9. Classified output for Molinia (SD9914) using strim D. 20cm training area. Calluna and Pteridium aquilinum sub-classes merged. 
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Figure 4:10. Classified output for Penguins (SK0893) using strim D. 20cm training area. Calluna and Pteridium aquilinum sub-classes merged. 
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Figure 4:11. Classified output for Penguins (SK0993) using strim D. 20cm training area. Calluna and Pteridium aquilinum sub-classes merged. 
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4.3.4 Class separability and accuracy 

Ranked values of spectral separability determined by transformed divergence and 

Jeffries-Matusita distance indicate very similar potential for class separation (and 

therefore accuracy) in classification (Table 4:24). There is a clear correlation between the 

separability values and class accuracy (producer accuracy), but it is worth noting that 

some classes that obtained relatively high classification accuracies, particularly Pteridium 

aquilinum (86%) and Eriophorum angustifolium (74%) were only identified as having fairly 

good or even poor separability. It is interesting that these two classes plotted in discrete 

locations in ordination space (Figure 4:1) and indicates that CCA of class signatures 

provides additional insight to conventional spectral separability statistics. 
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Table 4:24. Ranked class separability (transformed divergence and Jeffries-Matusita 
distances) and class accuracy 

 

Class Mean 

transformed 

divergence 

Producer 

accuracy 

Class Mean Jeffries- 

Matusita 

Producer 

accuracy 

Heather Brash                      2.000 0.50 Heather Brash                      1.408 0.50 

Calluna cut                       1.989 0.50 Calluna burnt                      1.386 0.40 

Calluna burnt                      1.981 0.40 Calluna cut                       1.382 0.50 

Flagstone                         1.920 0.75 Flagstone                         1.369 0.75 

Mineral soil                       1.867 0.55 Rock                           1.315 0.57 

Rock                           1.835 0.57 Mineral soil                       1.313 0.55 

Shadow                          1.800 0.61 Pteridium aquilinum                    1.272 0.86 

Erica cinerea                      1.773 0.33 Cladonia spp                       1.265 0.44 

Pteridium aquilinum                    1.759 0.86 Shadow                          1.262 0.61 

Empetrum dead                      1.745 0.00 Empetrum dead                      1.259 0.00 

Holcus mollis                      1.737 0.00 Bare peat                        1.253 0.67 

Cladonia spp                       1.737 0.44 Eriophorum angustifolium                   1.235 0.74 

Bare peat                        1.718 0.67 Erica cinerea                      1.235 0.33 

Eriophorum angustifolium                   1.670 0.74 Water             1.228 0.53 

Water             1.665 0.53 Holcus mollis                      1.222 0.00 

Calluna                         1.628 0.59 Calluna                         1.205 0.59 

Polytrichum spp                       1.609 0.54 Polytrichum spp                       1.203 0.54 

Calluna flower                      1.562 0.40 Calluna flower                      1.182 0.40 

Calluna dead                       1.531 0.35 Nardus stricta                      1.170 0.35 

Nardus stricta                      1.527 0.35 Calluna dead                       1.150 0.35 

Abies spp                        1.467 0.00 Abies spp                        1.106 0.00 

fallax                          1.395 0.12 Pteridium aquilinum senesced                 1.095 0.33 

Deschampsia flexuosa                    1.384 0.16 Deschampsia flexuosa                    1.093 0.16 

Pteridium aquilinum senesced                 1.354 0.33 Salix spp                        1.061 0.11 

Salix spp                        1.322 0.11 Chamaenerion angustifolium                     1.050 0.50 

Erica tetralix                      1.309 0.25 Pinus spp                        1.049 0.24 

Pinus spp                        1.293 0.24 Erica tetralix                      1.047 0.25 

Chamaenerion angustifolium                     1.273 0.50 Trichophorum cespitosum                     1.039 0.26 

Trichophorum cespitosum                     1.271 0.26 fallax                          1.027 0.12 

fimbriatum                         1.269 0.10 Vaccinium myrtillus                    1.021 0.29 

Feather moss                       1.262 0.11 Feather moss                       1.016 0.11 

magellanicum                         1.254 0.25 magellanicum                         1.013 0.25 

palustre                         1.228 0.00 Empetrum nigrum                     1.008 0.11 

Empetrum nigrum                     1.214 0.11 Eriophorum vaginatum                    0.999 0.05 

Vaccinium myrtillus                    1.208 0.29 fimbriatum                         0.989 0.10 

Rhododendron spp                       1.206 0.00 palustre                         0.988 0.00 

Eriophorum vaginatum                    1.187 0.05 Rhododendron spp                       0.985 0.00 

Juncus squarrosus                     1.165 0.18 Juncus squarrosus                     0.982 0.18 

papillosum                         1.153 0.06 Betula spp                        0.980 0.00 

tenellum                         1.144 0.08 capillifolium                         0.972 0.00 

Betula spp                        1.139 0.00 Cushion moss                       0.969 0.07 

Molinia caerulea                     1.138 0.06 papillosum                         0.967 0.06 

capillifolium                         1.131 0.00 Molinia caerulea                     0.961 0.06 

Cushion moss                       1.131 0.07 tenellum                         0.960 0.08 

Juncus effusus                      1.072 0.02 Juncus effusus                      0.934 0.02 

denticulatum                         1.065 0.00 denticulatum                         0.928 0.00 

cuspidatum                         1.043 0.00 cuspidatum                         0.919 0.00 

subnitens                         1.019 0.06 subnitens                         0.911 0.06 
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4.4 Summary of Phase 2 

In the second project year (summer 2019) commercial airborne 4-band digital imagery 

were assessed. The approach of using airborne imagery demonstrated a number of 

advantages: 

i. No MFFP staff-time requirement for flying sites or post-flight processing of 

imagery; 

ii. Spatial resolution of the delivered 4-band imagery is comparable to that of multi-

spectral data collected by the UAV in 2018; 

iii. All sites were collected in a short space of time minimising potential for any change 

in light angle 

The use of MAV imagery to address data acquisition requirements for mapping vegetation 

in the project appears to provide a satisfactory alternative to that from UAVs. However, 

this has to be tempered with at least one caveat, a loss of physical control over which the 

dates on which imagery is captured.  

It was nevertheless decided that MAV acquired data would form the primary image data 

collection during summer 2020. To help address the issues experienced with time of 

capture, several suggestions were made to the commercial supplier: all sites should be 

captured with 4-band airborne imagery on a day as close to 01 July 2020 as possible, 

and within a maximum window of 4 weeks either side of this date. In addition, a slight 

variation in the contractually specified GSD would be acceptable. This would allow 

alternate altitudes to be requested to air traffic control (ATC) thereby improving chances 

of acquisition within the desired timeframe.  
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Section 5: Phase 3 – MAV Image Capture II 

 

Originally reporting in Summary report 2021 

 

This phase of the project also experienced issues with MAV data supply. Although, in this 

case, the capture dates were appropriate, and the imagery supplied by Bluesky 

International appeared on visual examination to be of good quality, it exhibited variation 

in spectral balancing between each site, especially in the NIR band.  

As this issue initially went unseen, the interim 2021 annual report contains potentially 

misleading results and statements. That report should therefore be considered withdrawn, 

and under no circumstances should it be quoted or cited. 

The major analyses contained within that report have been re-executed here and the new 

results should be considered a fairer test of the use of such imagery. 
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Summary introduction to Phase 3 activities 

Objectives of Phase 3 

As part of the overall project aim of defining techniques for, and determining the 

successes of, the use of remote sensing for monitoring MFFP’s conservation efforts, 

several objectives were defined for Phase 3: 

i. Test the approaches adopted in Phase 2 but using imagery with much higher 

spatial resolution (5 cm vs ≅10 cm in Phases 1 and 2). 

This potentially provides improvement in the ability to differentiate between 

Sphagnum spp. compared to Phase 1 and 2 by allowing the utilisation of many 

dimensionally smaller planted ‘plug’ samples previously excluded. However, for 

this benefit to accrue, greater accuracy in the co-registration of imagery and field 

samples than used previously is required. These are explored in section 5.1. 

ii. Determine the actual impact of low sun-angle induced shadow experienced with 

Phase 2 imagery on classification accuracies by repeating the classification using 

the same field data. 

As the majority of mapped species are both essentially slow-growing and 

perennial it was considered that the utilisation of field data from the previous year 

would not be overly problematic. During Phase 2 these data provided in total 61 

vegetation classes for image classification and were examined through a 

systematic series of classifications, using progressive exclusions of some samples 

and species. This was undertaken to remove both samples smaller than the target 

area of 0.25 m2 and to exclude those with a low number of occurrences. In the 

fourth iteration, the effects of combining some taxa with high levels of spectral 

confusion was also tried. Even using this final set of samples overall accuracy was 

still relatively low (46%). To avoid unnecessary repetition of this process for 

Phase 3, and allow resource for exploration of Sphagnum mapping, it was agreed 

with MFFP that initial classification of 2020 imagery should commence with this 

final vegetation dataset of 23 classes (Strim D). Only if the accuracy of this 

classification was markedly higher than in Phase 2 then the progressive inclusion 

of further classes would be examined. In effect Phase 3 would work ‘in reverse’ of 

Phase 2 to seek an optimal trade-off of taxonomic resolution against accuracy for 

the new image data. 
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5.1 Image data 

The five study sites, containing 11 experimental catchments (Table 5:1), were flown on 

02/06/2020 by Bluesky International Ltd. Imagery was captured using an Ultracam Eagle, 

with a 79.8 mm focal length lens, and flown at an altitude of 1500 m to yield an ultimate 

ground resolution of 5 cm. RGB and NIR bands were supplied fully orthorectified as 1 km2 

tiles (aligned with the Ordnance Survey National Grid) in TIFF format. An individual 

mosaic for each site was created in .img format.  

Table 5:1. Image coverage supplied by study site 

Survey site Image area (km2) Experimental catchments 

 
Birchinlee 

 
2 

 
Eriophorum (Con); Eriophorum (Spha) 

Derwent Howden 1 Calluna (Con); Calluna (Spha); Calluna (Spha GB) 
Penguins 2 P (Ref) 
Moss Moor 2 Molinia (Con); Molinia (Spha) 
Kinder 3 F (Con); N (Veg Spha GB); O (Veg) 
   

Intervention: Con = control; GB = gully blocking; Ref = intact reference; Spha = Sphagnum; Veg = revegetation. 

 

5.1.1 Orthorectification accuracy 

Metadata supplied by Bluesky International reported a RMSE of 0.091m (1.8 pixels) and 

0.066m (1.3 pixels) in x and y dimensions respectively for these data. As a result of both 

increased image resolution and Sphagnum ‘plug’ growth since Phase 2, individual 

Sphagnum plugs that were not obscured by either vegetation or water were visible as 

discrete bright features within the imagery (see Figure 5:1). These provided good visual 

references with which to assess image registration with field sample loci determined using 

DGNSS (RMSE in x and y 0.024 m). In some places Sphagnum plugs were mis-registered 

by 4-5 pixels in the imagery (see Figure 5:1). While this is not unexpected as RMSE is an 

average error, and orthorectification cannot account for local topographical variation, it 

clearly shows the potential issues in achieving fine-scale co-registration of image and field 

data, something not commonly discussed. It is for this reason the field survey protocols 

for this project were defined to only utilise patches of vegetation with areas exceeding 

0.25 m2. 

To improve the accuracy of orthorectification, and thereby allow for classification of the 

smaller areas of Sphagnum spp., 28 field samples collected in 2019 evenly distributed 

across all images (including Sphagnum plugs, small rocks, small discrete Calluna shrubs 

and tussocks of Eriophorum vaginatum) were identified and their locations supplied to 

Bluesky International. Orthorectification was then repeated by the supplier using these 

ground control data and the imagery resupplied to MFFP. Although the reported mean 

RMSE in x (0.059 m; 1.2 pixels) and y (0.066 m; 1.3 pixels) dimensions only appeared to 
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improve in x, visual assessment showed an acceptable improvement in alignment 

between the reprocessed imagery and Sphagnum plugs (Figure 5:1). 

 

Figure 5:1. Alignment between imagery and example Sphagnum plug samples  

left: original right: reprocessed imagery  

red shows GNSS field samples as 10 cm radius spectral sampling loci 

5.1.2 Potential impact of image processing procedures on image classification 

Initial image classifications (originally contained in the Phase 3 preliminary report) shown 

here in Table 5:10, shows only marginally increased overall classification accuracies of 

47% compared to those reported for Phase 2 at 46%. This improvement, considering the 

substantive reduction in shadow and some phenotypic variability, was considerably lower 

than might be reasonably anticipated. As the entire study area had been imaged over a 

short period (<1 hr.) it is not considered probable that this arose from the issues of 

changing sun angle/irradiance experienced in Phase 1. Therefore, another potential 

cause was sought.  

As described earlier the 11 km2 of this study are not a continuous area, rather it comprises 

5 disjunct sites of varying size: Moss Moor, Penguins, Kinder, Birchinlee and Derwent, 

spread over an area of approximately 400 km2. Each of these sites was imaged 

separately. Upon receipt of the data visual examination of these blocks showed that the 

images appeared to be of good quality and much better than those from 2019 given the 

absence of excessive shadow and higher spatial resolution. However, following the first 

unsatisfactory attempts to classify these as a single block (i.e. using training data 

gathered across all images to create a single spectral signature file), the imagery was 

examined more closely. This revealed substantive differences in ‘balancing’ between, but 
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not within, each of the 5 discrete blocks of imagery. This affected all spectral bands to 

some extent but was most marked in the NIR.  

Hence, pixel sampling during classifier training would collect examples of 5 different 

spectral distributions for each species, generating wider class boundaries for each than 

would be the case if this image artefact did not exist. The potential magnitude of this effect 

was considered sufficient to have had impact on classification, possibly leading to the 

underwhelming improvements noted over 2019. This concern was communicated to 

Bluesky International and further image data were supplied using revised processing 

procedures. However, none of these were able to improve the NIR imbalance to any 

notable degree.  

As a result of this the procedures adopted for Phase 3 were changed from those originally 

planned for this project and a complete re-analysis undertaken. As such there is a 

mismatch in reporting between the Phase 3 interim annual report and that presented here. 

The early report should be discarded.  

To mitigate, as far as possible, the potential impact of the differences between image 

groups on accuracy, image classification was undertaken independently for each of the 5 

image/site groups, instead of as a ‘whole’. It should be noted that the original project 

protocols, including field sampling and determining minimum sample numbers gathered, 

were based on treating the field areas and imagery as a single unit. Hence dividing 

training and verification data into separate groups is not without introducing potential 

problems of its own, e.g. small numbers of samples for certain species at some site-

groups (see Table 5:3). Although it might be expected to affect classification outcomes to 

some extent, it still represented the best option for assessing this round of image capture.  
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5.2 Methods 

5.2.1 Spectral separability of Sphagnum 

One of the overall aims of the project is to provide information on the ability of a remote 

sensing solution to identify individual Sphagnum species. In addition to quantifying 

taxonomic separability, the project seeks to differentiate peat-forming from non-peat 

forming species. The enhanced visibility of the Sphagnum plugs in the 2020 imagery 

provided the opportunity to extract the spectral response of individual Sphagnum sp. with 

greater confidence than in previous phases. Spectral separability analyses were 

undertaken to explore the potential to differentiate between species and groups of 

species. 

Sphagnum sample selection. All Sphagnum plugs were surveyed in July/August 2020 by 

MFFP staff. Although these observations are not contemporaneous with image capture, 

the field notes provided were used to review samples for analysis. Potential issues 

identified from field records included examples of plugs of mixed species (37), those 

obscured by other vegetation (58), sparse (11) or submerged (4). These were excluded 

from analysis leaving 507 of the 617 plugs with potential for collection of ‘pure’ spectral 

signatures (i.e. single species). All were examined in the reprocessed imagery to assess 

visibility and image alignment identifying 412 where a high degree of confidence could be 

placed on the species (Table 5:2). 

Table 5:2. Sphagnum plugs identifiable in 2020 imagery 

 
Species Birchinlee Derwent Kinder Moss Penguins Total 

       
capillifolium 9 8 10 1 5 33 
cuspidatum 10 10 10 0 4 34 
denticulatum 12 16 13 0 4 45 
fallax 11 11 13 1 3 39 
fimbriatum 12 11 8 2 3 36 
magellanicum 11 16 8 0 3 38 
palustre 11 14 11 5 5 46 
papillosum 12 13 14 0 4 43 
squarrosum 10 2 6 0 0 18 
subnitens 11 13 10 0 4 38 
tenellum 11 16 10 0 5 42 
       

Total 120 130 113 9 40 412 

 

Separability analyses. Owing to the low number of Sphagnum ‘plugs’ visible at Moss 

Moor and Penguins (i.e. those not ‘masked or over-topped’ by other vegetation), samples 

at these two sites were excluded leaving in total 363 samples (Birchinlee, Derwent and 

Kinder) for testing. The spectral signature of each plug was extracted using a 20 cm 

circular pixel averaging area. Separability analyses were undertaken using the algorithms 

in ERDAS Imagine and transformed divergence values were extracted. This was firstly 
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undertaken to compare the separability of all species within each individual site and 

subsequently to compare the separability of same species between sites to ascertain 

consequences resulting from any phenological variability between them. 

5.2.2 Image classification: All species 

Field data. The final field data used in Phase 2 (strim D) comprised 5712 samples, and 

these were chosen as the basis for re-examination using 2020 imagery. However, a large 

number of samples had been excluded in 2019 owing to extensive areas of shadow 

caused by the low sun angle at time of capture. The higher sun angle during 2020 capture 

(32° - 39°) meant far fewer patches of shadow were present, except for a few areas of 

large changes in topography (e.g., on Kinder). As this potentially meant that additional 

samples could be added to the analysis, all those previously excluded owing to presence 

of shadow (427) were examined using 2020 imagery. All but 13 of these were noted as 

shadow-free and were added to the data for analysis (see Annex B).  

Phenological variation in Calluna vulgaris (i.e. presence or absence of flowers) and in 

Pteridium aquilinum (i.e. chlorophyllous or senesced) at the time of image capture in 2019 

meant that each of these species had been separated into two classes prior to 

classification during Phase 2. No such variation was evident in 2020 and these species 

were kept as single classes for analysis in Phase 3. Samples of ‘dead’ Calluna were, 

however, retained as a discrete class. 

Very little, if any, standing water was present on the sampled areas at the time of image 

capture in 2020, so field samples identified as such were excluded. Sphagnum plugs of 

both fallax and fimbriatum originally in strim D (n=4), were removed to leave only naturally 

occurring Sphagnum samples for classification. This provided 5377 samples of 19 classes 

for classification in total (Table 5:8), and these were randomly separated 50:50 into 

training (2690) and validation (2687) samples. 

Training data for image classification were determined using 20 cm circular pixel 

averaging areas. Supervised maximum likelihood classification was then performed using 

imagery for each image block. 
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Table 5:3. Classes and sample sizes used in supervised classification 

Class Birchinlee Derwent Kinder Moss Penguins Total 

       
Bare peat 93 105 80 62 109 449 
Calluna vulgaris 173 125 125 150 118 691 
Calluna dead 45 61 54 7 67 234 
Deschampsia flexuosa 8 5 58 8 30 109 
Empetrum nigrum 7 9 96 48 44 204 
Eriophorum angustifolium 109 100 104 110 129 552 
Eriophorum vaginatum 111 116 105 136 131 599 
fallax 33 28 28 2 44 135 
fimbriatum 12 40 10 4 28 94 
Juncus effusus 59 52 104 108 103 426 
Juncus squarrosus 23 16 36 12 24 111 
Mineral soil 21 38 24 18 74 175 
Molinia caerulea 3   111 5 119 
Nardus stricta 49 23 47 100 40 259 
Polytrichum spp 23 35 99 133 59 349 
Pteridium aquilinum 125 60  5  190 
Rock 1 54 86 31 6 178 
Trichophorum cespitosum 90 16  1 6 113 
Vaccinium myrtillus 113 48 68 75 86 390 
       

Total 1098 931 1124 1121 1103 5377 
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5.3 Results 

5.3.1 Sphagnum spectral separability 

The upper bound for transformed divergence is 2.000 and separability values of above 

1.900 indicate that classes should separate well, those between 1.7 and 1.9 indicate the 

probability should be fairly good, with values of <1.700 suggesting poor class separability 

is likely (Jensen, 1996).  

The results of this analysis, for all combinations of Sphagnum species within each site 

are shown in Tables 5:4-5:6. The values of transformed divergence have been colour 

coded using the breakpoints described above to show separability as green (separable), 

orange (fairly good separability) and red (poor separability). Transformed divergence 

values for all species of Sphagnum at Birchinlee and Derwent, and all species except 

cuspidatum at Kinder, showed poor class separability (values typically below 1.0). At 

Kinder, transformed divergence values indicated that cuspidatum is separable from 

magellanicum, squarrosum and tenellum, and shows fairly good separation from 

capillifolium, fallax, fimbriatum, palustre and subnitens. 

These observations indicate that Sphagnum sp. differentiation, or grouping of species, is 

unlikely to be successful using classification of 4-band aerial imagery. It is possible that 

environmental conditions at the time of image capture presented a confounding factor as 

the Sphagnum was bleached and this may be a reason why the plugs were highly visible 

in the imagery. However, it must be noted that this is a common occurrence for this taxon. 

  



CS CONSERVATION SURVEY 

 Technical Report: 31/12/2021. MFFP UAV vegetation mapping Final report: 88 

Table 5:4. Birchinlee Sphagnum plugs: Separability analysis - Transformed divergence  
Red to green graphically illustrate increasing probability of good classification accuracy. 

 

 

n.b. Values shown are *103 for consistency of decimal place. 

 
Table 5:5. Derwent Sphagnum plugs: Separability analysis - Transformed divergence 

Red to green graphically illustrate increasing probability of good classification accuracy. 

 

 

n.b. Values shown are *103 for consistency of decimal place. 
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Table 5:6. Kinder Sphagnum plugs: Separability analysis - Transformed divergence  
Red to green graphically illustrate increasing probability of good classification accuracy. 

 

 

n.b. Values shown are *103 for consistency of decimal place. 

 

Potential impact of phenological variability. Comparing the separability of Sphagnum 

species between sites indicates that all species at Birchinlee exhibit poor class 

separability from the same species at Derwent (Table 5:7). Interestingly, except for 

denticulatum and tenellum, all other Sphagnum species at Birchinlee and Derwent exhibit 

fairly good separation, or are separable from the same species at Kinder (Table 5:7). 

The reason for the projected separability between the majority of Sphagnum sp. examined 

on Kinder and the same species on the other two sites is not clear. It is possible that some 

plugs on Kinder were more exposed and hence subject to increased bleaching, but no 

field evidence is available to support this conjecture. 
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Table 5:7. Sphagnum plugs: Separability analysis between sites - Transformed 
divergence  

Red to green graphically illustrate increasing probability of good classification accuracy. 

 

 

n.b. Values shown are *103 for consistency of decimal place. 
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5.3.2 Image classification: All species 

Overall, the accuracies achieved when treating each site individually, despite the potential 

issues of reduced sample numbers, were markedly higher than either those in Phase 2, 

or the preliminary results in Phase 3 when the complete study area had been classified 

as single unit. The latter can readily be seen in comparing Table 5:10 (all sites classified 

as a whole) with 5:11 (combined error matrices for sites classified separately).  

Bare peat and rock achieved high accuracies >90% (92% and 91% respectively). The 

former is of key importance to MFFP’s objectives and, as such, this result is satisfying. 

Earlier phases, affected by below par imagery, did not demonstrate this potential well 

despite the fact these should be differentiated readily. Other classes achieving relatively 

high producer accuracies were Calluna vulgaris (79%), Calluna dead (77%), mineral soil 

(76%) and Vaccinium myrtillus (67%). Worthy of note is the mapping of surfaces within 

moorland burn ‘scars’ which is commonly mapped as mineral soil. In actuality such scars 

contain a mix of burned ‘stick’, bare peat, and sparse regrowth of several species. This 

undoubtedly erroneous identification as mineral soil possibly arises from an absence of 

training data from within these areas. Regrettably, no actual data on the ground cover 

present in regenerating burns were collected during the field survey so no definitive 

statement on this phenomenon can be made. The occurrence of burn management is 

almost ubiquitous in upland Calluna moorland (Yallop et al., 2006) so the inability to 

provide further detail on the ability to map species regeneration in these scars represent 

something of a lacuna in this study. The automated mapping of burn ‘scars’ as objects is 

readily achieved (Yallop et al., 2008) but this does not directly provide detail on any 

regenerating vegetation present. Further exploration of this topic could therefore be 

usefully included in further research.  

Examination of the classification results (Tables 5:12-5:16) highlights considerable 

variation in both overall and individual classification accuracies across sites for a number 

of classes. For example:  

i. A 10% difference in overall accuracy from 51% to 61% at Penguins compared to 

Kinder;  

ii. Calluna vulgaris, where present as large continuous areas, exhibits producer 

accuracy of >90% at Birchinlee and Derwent, but at the other three sites this is 

markedly lower at 63%-77%.  

iii. Producer accuracy for mineral soil at Birchinlee, Kinder and Penguins range from 

73%-89% whereas at Derwent and Moss, this is notably lower at 56%-60%  
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While it would be incorrect to propose any definitive cause for these phenomena without 

further investigation, it is not unreasonable to assume it arises, at least in part, as a 

consequence of the wide disparity in both numbers of species and samples between sites. 

This arises as a consequence of the need to classify each image separately as a result 

of the spectral issues within the image data. The field survey campaign was planned and 

executed to provide data for training and error assessment for the study area as a whole. 

The necessary division of these data into 5 sub-groups created imbalances in n for many 

site/species combinations.  

Classified outputs from Phase 3 classifications are shown in Figures 5:2-5:11. 
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Table 5:10. Error matrix from training and classifying all 2020 images as one group. Maximum likelihood classification. 20cm search area. 
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Table 5:11. Merged error matrix classifying images by sites independently. Maximum likelihood classification. 20cm search area. 
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Table 5:12. Error matrix for Birchinlee. Maximum likelihood classification. 20cm search area. 
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Table 5:13. Error matrix for Derwent. Maximum likelihood classification. 20cm search area. 
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Table 5:14. Error matrix for Kinder. Maximum likelihood classification. 20cm search area. 
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Table 5:15. Error matrix for Moss. Maximum likelihood classification. 20cm search area. 
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Table 5:16. Error matrix for Penguins. Maximum likelihood classification. 20cm search area. 
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Figure 5:2. Classified output for Birchinlee (SK1392). 
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Figure 5:3. Classified output for Birchinlee (SK1393). 
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Figure 5:4. Classified output for Derwent Howden (SK1398). 
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Figure 5:5. Classified output for Kinder (SK0789). 
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Figure 5:6. Classified output for Kinder (SK0889). 
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Figure 5:7. Classified output for Kinder (SK0989). 
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Figure 5:8. Classified output for Molinia (SD9913). 
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Figure 5:9. Classified output for Molinia (SD9914). 
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Figure 5:10. Classified output for Penguins (SK0893). 
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Figure 5:11. Classified output for Penguins (SK0993). 
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5.4 Summary of Phase 3 

Once an approach to, as far as possible, mitigate the issues with the supplied imagery 

had been undertaken, Phase 3 can be considered as utilising the best ‘standard’ or ‘off 

the shelf’ imagery available from commercial sources. It therefore represents a definitive 

test of the original project objectives to map to species. The results achieved using this 

typology approaches the accuracy that might be expected when using far broader (and 

probably less repeatable) habitat or community approaches.  

As such, providing limitations of the outputs are understood, a typology based on species 

would provide an initial product suitable for landscape scale assessment and planning. 

The results are as good as other approaches, and it removes the issues with field survey 

ambiguities that inevitably reduce the value of all alternate habitat or community 

descriptor approaches. In addition, many classes e.g. bare peat and Calluna, can be 

classified to the level that they both provide reliable assessment of peatland condition. 

However, the overall accuracies achieved would be unsuitable, on their own, for 

undertaking a monitoring programmes for all species as the multiplicative nature of 

accuracy determination for change between two or more images would be too low. Such 

a process would require higher overall accuracies.  

Many of the reductions in overall accuracy arise as a consequence of ‘confusion’ between 

many species of little conservation management importance and each other. It is possible 

that combining these into aggregate classes would therefore both increase overall 

accuracies to the level temporal change monitoring is possible, while still meeting MFFP’s 

needs. 

Phase 4 therefore was tasked with trying this approach. 
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Section 6: Phase 4 – Classification of Species Groupings 
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Summary introduction to Phase 4 activities 

Phase 4 is the final part of the original MFF 50 2016-17 specification dealing with the 

potential application of remote sensing to monitor upland vegetation change using XHR 

imagery. Following the experience and results gained during earlier phases it was decided 

to broaden the project to consider the application of differing classification protocols. 

Objectives of Phase 4 

1. Investigate the possibility of using species aggregations to improve overall 

classification accuracies. These aggregate classes were to be defined by two 

processes: 

i. A pair of species groups were to be defined by MFFP based solely on their 

relevance to monitoring requirements; 

ii. The NTU/CS team were to explore what groups could be derived using 

species spectral characteristics. 

Owing to the spectral balancing issues with the 2020 imagery described in 

Phase 3 these approaches were to be developed and tested using Kinder 

imagery and field data. The ‘best’ performing of the two approaches would 

then be deployed across the remaining 4 sites. In addition, the groups 

would form the basis of an extension to the original project viz. a direct 

comparison of classification using imagery from satellite EO, UAV and 

airborne sources. Methods and results of the latter are presented in section 

7. 

2. Examine the potential of alternate classification algorithms, in this case machine 

learning techniques, to improve classification accuracies. This project has 

intentionally restricted itself to software and techniques most likely to be 

accessible to conservation NGOs and agencies. However, it was considered 

important to test recent advances in classification procedures to ensure continuing 

relevance of the conclusions drawn in this report. 

Approaches for identifying species clusters 

Two contrasting methods for ‘grouping’ or ‘merging’ species to determine their potential 

for improving classification accuracies were adopted during Phase 4. The first utilised 

simple taxonomic groups determined by MFFP to be of direct relevance to conservation 

monitoring. As this approach makes no regard to the spectral characteristics of each 

species it was not expected to produce substantial increases in classification accuracies 

over species mapping. However, given the direct relevance of the data produced to 

monitoring this method might still provide worthwhile products, if the gain in accuracy was 

significant. 
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The second method sought to identify similarities in spectral reflectance of each species 

to create ‘natural’ combinations that would minimise spectral overlap. This approach 

might be anticipated to exhibit higher classification accuracies but identify less 

immediately interpretable species groups of unpredictable applicability for conservation 

monitoring. The method might nevertheless prove to be of merit if it produced significantly 

higher accuracy than the species or other grouping approaches. 

Clarification with regard to meaning of ‘species grouping.’ To avoid potential confusion, 

it should be noted that the grouping of species in 1: above, i.e. by association of spectral 

or taxonomic relationships is not analogous to deriving groups of species according to 

ecological field survey ‘community’ or ‘habitat’ concepts. The processes used here do not 

assume, or utilise, any spatial relationships in the groups of species identified. It cannot 

imply any ‘community’ types that might be recognisable by field survey as the latter are 

based solely on spatial associations. 

The proposed processes in Phase 4 therefore do not run counter to the direct objections 

raised in Section 2.2 with regard to the use of community descriptors for any form of 

mapping or monitoring. Field survey data used here consists solely of species data, free 

of any a priori assumptions of associations. Any groupings therefore arise from either 

intrinsic spectral characteristics, or perceived monitoring role alone, and are determined 

post hoc of field data collection. This means that species groups defined here, and in 

Section 7, do not identify any associations ‘on the ground’, they are merely co-mapped 

species sharing a common typology and accuracy metrics. 
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6.1 Exploratory analyses: Kinder 

6.1.1 Methods 

Image specification. The experimental development of species groupings was 

undertaken using 4-band aerial imagery (RGB NIR) with a GSD of 5 cm captured on 

02/06/2020 by Bluesky International Ltd. Owing to the observed impact of NIR imbalance 

across the image groups on classification accuracy (section 5.1), development and testing 

of groupings was undertaken at Kinder (the largest area) before the best approach was 

deployed across the remaining sites. 

Field data. The final field data used in Phase 3 comprised a subset of all field data that 

excluded classes with low sample numbers (5377 samples, 19 classes: Strim D). The 

approach of a priori grouping means that those species with low sample numbers could 

now be added to the analysis. The original field data (7104 samples) were therefore re-

examined and a larger subset comprising 6519 samples of 59 classes were extracted for 

development of species grouping methods (Table 6:1). A subset of these data was used 

for MFFP-defined groups, i.e. species that were not part of these were removed prior to 

that part of the analysis, resulting in 5919 samples of 39 species/classes entering the 

analysis. 

Species aggregations using MFFP-defined classes. Two groups of 7 and 12 classes 

were defined and provided by MFFP (Table 6:1). Samples of each class were randomly 

separated 50:50 into training and validation samples. Training data for image 

classification were extracted for each site using 20 cm circular pixel averaging. 

Supervised maximum likelihood classification was then performed. 

Table 6:1 Classes and sample size used for MFFP groups at Kinder 

Group 1 n Group 2 n 

    
Bare peat 80 Bare peat 80 
Bryophytes 306 Bilberry 68 
Dwarf shrubs 309 Cotton grasses 209 
Ferns 0 Ferns 0 
Grass, sedge & rush 463 Heather 125 
Mineral soil 24 Mineral soil 24 
Rock * 86 Other bryophytes 141 
  Other dwarf shrubs 116 
  Other grass, sedge & rush 254 
  Purple moor grass 0 
  Rock * 86 
  Sphagnum 165 
    

Totals 1268  1268 

 

Species aggregations using spectral similarity. The methods used here for assigning 

species to groups were all based on measures of the spectral distance between them. 
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Three exploratory approaches for identifying these distances were tested: transformed 

divergence, Euclidean distance in spectral space and unsupervised classification 

(ISODATA) (Table 6:2). It should be noted that the process of identifying species groups 

by these methods was complex, with many intermediary stages. For clarity only the 

summary outcomes are presented in this section. A fuller presentation of the results is 

shown in Annex C. 

Table 6:2 Classes and sample size used for spectral clustering groups at Kinder 
Note: for consistency with other methods all species are shown, only those with a value for 
n were actually present at Kinder. 

 

Species/class n Species/class n 

    
Abies spp. 6 Juncus squarrosus 38 
Agrostis spp. 1 Molinia caerulea  
Bare peat 80 Nardus stricta 47 
Betula spp. 21 Phragmites spp. 2 
Calluna burnt  Pinus spp. 68 
Calluna cut  Leucanthemum vulgare 1 
Calluna dead 54 Mineral soil 24 
Calluna vulgaris 125 Polytrichum spp. 99 
Chamaenerion angustifolium 23 Pteridium aquilinum  
Cladonia spp. 4 Rhododendron groenlandicum  
Cushion moss 24 Rhododendron spp. 1 
Deschampsia cespitosa  Rock 86 
Deschampsia flexuosa 58 Salix spp. 12 
Empetrum dead 5 Sorbus aucuparia  
Empetrum nigrum 98 Sphagnum capillifolium 10 
Epilobium spp.  Sphagnum cuspidatum 11 
Erica cinerea  Sphagnum denticulatum 13 
Erica tetralix 18 Sphagnum fallax 41 
Eriophorum angustifolium 104 Sphagnum fimbriatum 19 
Eriophorum vaginatum 105 Sphagnum flexuosum 2 
Feather moss 18 Sphagnum magellanicum 8 
Fern  Sphagnum palustre 18 
Flagstone  Sphagnum papillosum 16 
Ulex spp 1 Sphagnum squarrosum 6 
Heather Brash  Sphagnum subnitens 11 
Holcus lanatus  Sphagnum tenellum 10 
Holcus mollis 6 Trichophorum cespitosum  
Juncus bulbosus  Vaccinium myrtillus 68 
Juncus effusus 104 Vaccinium vitis-idaea  
    

  Total 1466 

 

Transformed divergence. The transformed divergence measure is frequently used to test 

class separability, and in this instance it was implemented in the ‘Erdas Imagine’ software 

suite. It produces a maximum value of 2000 and gives an exponentially decreasing weight 

to increasing distances between the classes (Jensen, 1996). The higher the value of 

transformed divergence between two classes, the more likely they are to classify 

separately. Good separation is described as being reached at values of 1900 or above. 

In reality, most plant class pairs are likely to have lower divergences, showing less than 

perfect separation. The method of clustering by transformed divergence used here uses 

the dissimilarity matrix to manually group species with high similarity. 
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First, species with fewer than 10 samples were removed, leaving 30 species (including 

non-biological classes: bare peat, mineral soil, rock) to enter the first stage. Species pairs 

with transformed divergence values of below 500 were grouped at the first stage. At the 

second stage, species pairs with transformed divergence values of below 750 were 

grouped. The third and final stage was of species pairs with transformed divergence 

values of below 1400. The class sets produced by the latter two stages were tested for 

classification accuracy, which is presented in the results. 

Spectral space. The centroid of a species’ spectral position is simply its average value in 

n-dimensional space where n represents the number of image bands available. The 

Euclidean distance between two species can be calculated by Pythagoras. It is also 

possible to utilise the variability around each species’ mean position to calculate the 

distance between them in terms of standard deviations. Conceptually the overlap between 

two species in spectral space can be seen as a function of how far apart their average 

position is and how variable they are around that average position. 

In a standard normal distribution, 95% of a species’ distribution would be expected to be 

within 2 standard deviations of the mean. Thus, species or classes that were 2 standard 

deviations apart in spectral space would be very well separated. 50% of a species’ 

distribution would be expected to be within 0.67 standard deviations of its mean. Species’ 

spectral responses tend to be quite similar, so that large separation of plant species within 

communities is the exception rather than the rule. 

As for the other methods, species with fewer than 10 samples were removed, leaving 30 

species (including non-biological classes: bare peat, mineral soil, rock) to enter the first 

stage. The first stage of species groups compiled here joined species that were within 0.1 

standard deviations of one another in spectral space. Subsequent iterations grouped 

species that were 0.2 standard deviations and 0.4 standard deviations apart. All three 

stages were tested for classification accuracy and the results are reported below. 

Iterative Self Organizing Data Analysis Technique (ISODATA). ISODATA is a form of 

unsupervised classification that divides the spectral space of an image into classes 

without reference to any other data. Such derived classes may therefore represent only 

part of, or more than, one actual species. 

The method employed here for identifying natural species spectral groupings used the 

ISODATA algorithm in ‘Erdas Imagine’ to extract 20 classes. As before species with fewer 

than 10 samples were removed. The remaining species (n=30) were tested to see 

whether they were significantly associated with 1 or more of the unsupervised classes 

using a binomial function. At stage 1, species were merged if they only occurred in the 
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same unsupervised class(es) as other species. For example, if species A and species B 

only occurred in unsupervised class 1, they were merged into a single group. This process 

was then expanded from single unsupervised classes to multiple, for example if species 

A and species B both only occurred in unsupervised class 1 and unsupervised class 2, 

they were merged into a single class. 

Testing classification accuracy. Individual samples were labelled with their derived class 

and were divided into a training and testing set using alternate samples (50:50 train: test). 

Spectral signatures for training classes were extracted using a 20 cm circular sampling 

area and these were used to classify the image (maximum likelihood). Test samples were 

intersected with the classified image, and the actual and predicted classes were 

compared using error matrices. 

6.1.2 Results  

MFFP-defined groups. The smaller of the two groups of species defined by MFFP (Group 

1) produced an overall classification accuracy of 0.75, reducing to 0.64 for the second, 

larger group (Table 6:3); c.f. the average accuracy of 0.61 for classification to species at 

Kinder (Table 5:14). 
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Table 6:3. Classification accuracies for MFFP classes at Kinder  
Top: Group 1. Bottom: Group 2 
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Kinder Spectral groupings 

Transformed divergence. Few species fell within 500 units of one another on the 

transformed divergence scale. At the first stage, two groups each of two species were 

derived. At the second (transformed divergence within 750 units), three additional groups 

were derived, and one existing class expanded. At the third (transformed divergence 

within 1400 units), most species were members of groups, and earlier groups had been 

merged (Table 6:4). 

Ungrouped species/classes at this stage were: Bare peat, Chamaenerion angustifolium, 

Feather moss, Juncus squarrosus, Polytrichum spp., Rock, Salix spp., Sphagnum 

capillifolium and S. tenellum. Further grouping beyond this stage was not productive 

because some species’ range of similarity spanned almost the entire range of plants. For 

example, Eriophorum angustifolium was found to be within 1800 TD units of 16 other 

species. 

Table 6:4 Groups derived from each stage of Transformed Divergence clustering 

Group Species 

  
Stage 1  
  
1 Eriophorum angustifolium, Juncus effusus 
2 Sphagnum fimbriatum, S. papillosum 
  
  
Stage 2  
  
1 Betula spp., Deschampsia flexuosa 
2 Calluna vulgaris, Erica tetralix 
3 Eriophorum angustifolium, Juncus effusus 
4 Eriophorum vaginatum, Nardus stricta 
5 Sphagnum fallax, S. fimbriatum, S. palustre, S. papillosum 
  
  
Stage 3  
  
1 Betula spp., D. flexuosa, E. angustifolium, E. vaginatum, Juncus effusus, Nardus stricta 
2 Calluna dead, Cushion moss 
3 Calluna vulgaris, Empetrum nigrum, Erica tetralix 
4 Mineral soil, Sphagnum denticulatum 
5 Pinus spp., Vaccinium myrtillus 
6 Sphagnum cuspidatum, S. fallax, S. fimbriatum, S. palustre, S. papillosum,  

S. subnitens 
  
Note: species not listed for each stage did not group and remained discrete 
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Spectral space. At the first stage, four groups were identified by merging species within 

0.1 standard deviation. A visual representation of the distribution of species in two of the 

four dimensions of spectral space available is shown in Figure 6:1. 

 

 
Figure 6:1. Example of species/classes in distribution in spectral space at Kinder. 

Eleven key species are highlighted. Ellipses represent a radius of one standard deviation 
around the 2-d centroid in NIR/blue bands. 
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At the second stage, initial Sphagnum groups were merged, and further groups added. 

Considering species pairs where separation was below 0.4 standard deviations, almost 

all species were included in groups. At this stage only Bare peat and Vaccinium myrtillus 

remained as single species classes (Table 6:6; c.f. Figure 6:1). 

Table 6:6 Groups derived from each stage of Spectral Space clustering 

Group Species 

  
Stage 1  
  
1 Betula spp., Deschampsia flexuosa 
2 Eriophorum angustifolium, Feather moss, Nardus stricta 
3 Sphagnum capillifolium, S. fallax, S. fimbriatum, S. subnitens 
4 Sphagnum palustre, S. papillosum, S. tenellum 
  
Stage 2  
  
1 Betula spp., Chamaenerion angustifolium, Deschampsia flexuosa 
2 Calluna dead, Cushion moss 
3 Calluna vulgaris, Polytrichum spp. 
4 Empetrum nigrum, Erica tetralix 
5 Eriophorum angustifolium, E. vaginatum, Feather moss, Nardus stricta 
6 Mineral soil, Rock 
7 S. capillifolium, S. fallax, S. fimbriatum, S. palustre, S. papillosum, S. subnitens,  

S. tenellum 
8 Sphagnum cuspidatum, S. denticulatum 
  
Stage 3  
  
1 Betula spp., Calluna dead, Chamaenerion angustifolium, Cushion moss,  

D. flexuosa, Juncus effusus, Juncus squarrosus, Pinus spp., Salix spp. 
2 Calluna vulgaris, Polytrichum spp. 
3 Empetrum nigrum, Erica tetralix 
4 Eriophorum angustifolium, E. vaginatum, Feather moss, Nardus stricta 
5 Mineral soil, Rock, Sphagnum capillifolium, S. cuspidatum, S. denticulatum,  

S. fallax, S. fimbriatum, S. palustre, S. papillosum, S. subnitens, S. tenellum 
  
Note: species not listed for each stage did not group and remained discrete 

  

 

ISODATA. The association of species with ISODATA classes (n=20) generally shows little 

grouping, with a large proportion of species being represented across more than half of 

the classes. Only a limited number of species/classes represent distinct ISODATA 

classes, the most notable of these being bare peat and many of the Sphagnum present 

(Table 6:7). 
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Table 6:7 Proportional species make up of artificial classes derived from Unsupervised Classification clustering  

ISO class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  

Species                      
                      
Bare peat 0.59 0.05 0.26 

                 
 

Betula spp. 
    

0.03 0.06 
  

0.07 
   

0.10 
 

0.07 
     

 
Calluna dead 

 
0.03 0.21 

  
0.04 0.19 0.12 

  
0.28 

         
 

Calluna vulgaris 0.20 0.37 0.09 0.09 0.10 0.06 0.06 
      

0.08 
      

 
Chamaenerion angustifolium 

   
0.06 

    
0.17 0.14 

  
0.14 

    
0.03 

  
 

Cushion moss 
  

0.06 
   

0.11 0.06 
  

0.10 
         

 
Deschampsia flexuosa 

 
0.03 

 
0.09 0.08 0.04 

   
0.14 

 
0.05 0.10 

 
0.21 0.10 0.08 0.04 0.03 0.01  

Empetrum nigrum 0.03 0.12 0.15 0.10 0.19 0.24 0.17 0.08 0.07 
  

0.09 
        

 
Erica tetralix 

 
0.03 

  
0.07 0.08 

              
 

Eriophorum angustifolium 
  

0.02 
    

0.25 
  

0.21 0.07 
 

0.28 
 

0.38 0.14 0.28 0.13 0.01  
Eriophorum vaginatum 

      
0.04 

  
0.14 0.05 0.18 0.07 

 
0.10 0.20 0.21 0.26 0.23 0.06  

Feather moss 
  

0.02 
        

0.07 
    

0.05 0.03 0.02 0.01  
Juncus effusus 

 
0.04 0.07 

 
0.06 0.14 0.26 0.22 

 
0.07 0.15 0.23 

  
0.10 0.08 0.06 0.08 0.09 0.03  

Juncus squarrosus 
 

0.02 0.02 0.03 0.05 0.08 0.07 0.12 
 

0.07 
 

0.09 
        

 
Mineral soil 

                  
0.03 0.09  

Nardus stricta 
  

0.02 
 

0.02 0.06 
   

0.07 
 

0.07 
 

0.12 0.10 0.04 0.08 0.05 0.09 0.03  
Pinus spp. 0.04 0.04 0.02 0.09 0.02 0.08 0.04 

 
0.17 0.14 

  
0.38 

 
0.10 0.04 0.17 0.04 

  
 

Polytrichum spp. 0.11 0.25 0.02 0.11 0.25 0.06 
              

 
Rock 

             
0.28 

   
0.05 0.14 0.29  

Salix spp. 
         

0.07 
 

0.05 
  

0.10 0.06 
    

 
Sphagnum capillifolium 

                   
0.03  

Sphagnum cuspidatum 
                   

0.05  
Sphagnum denticulatum 

                   
0.06  

Sphagnum fallax 
            

0.10 
    

0.03 0.13 0.09  
Sphagnum fimbriatum 

                
0.08 

 
0.02 0.05  

Sphagnum palustre 
                

0.03 0.04 0.02 0.05  
Sphagnum papillosum 

                
0.03 0.03 

 
0.05  

Sphagnum subnitens 
                  

0.03 0.02  
Sphagnum tenellum 

                   
0.04  

Vaccinium myrtillus 
 

0.03 
 

0.41 0.08 
   

0.50 
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Given the generally wide distribution of most species to ISODATA classes it is perhaps 

unsurprising that only three groups could be derived using this approach (Table 6:8) and 

that these are comprised of those few that cluster to a restricted numbers of classes. 

Table 6:8 Groups derived from unsupervised classification clustering 

Group Species 

  
1 Bare peat, Calluna dead 
2 Calluna vulgaris, Empetrum nigrum, Erica tetralix 
3 Sphagnum capillifolium, S. cuspidatum, S. denticulatum, S. fimbriatum,  

S. palustre, S. papillosum, S. subnitens, S. tenellum 
 
Note: species not listed did not group and remained discrete 

  

 

The Sphagnum group included all Sphagnum spp. present except S. fallax. 

Comparative classification accuracy. Despite an intuitive expectation that taxonomic 

aggregation would perform less well than those based on spectral characteristics, the 

MFFP-defined groups produced the best results of the approaches tested. Note though 

that spectral clustering algorithms incorporated additional species not represented in the 

MFFP-defined groups (like Pinus sp.). That is because the only criterion for inclusion in 

the algorithms was that the number of samples available was at least 10. Such species 

are silently misclassified in the MFFP groupings, so the comparison is not strictly direct 

(c.f. Section 1.3). Spectral grouping stage 3 was the most successful of the ‘natural’ 

grouping methods, in fact producing a marginally higher average accuracy than MFFP 

Group 2, albeit with only 7 classes compared to 10. A summary of the classification 

accuracies achieved for each method are shown below (Table 6:9). Individual error 

matrices for all development stages are shown in Annex C. 

Table 6:9 Accuracy of different clustering methods: Kinder 

Grouping method Class n Accuracy 

   
None (species) 30 0.46 
   
MFFP group class 1 6 0.75 
MFFP group class 2 10 0.64 

 
Transformed divergence stage 2 23 0.51 
Transformed divergence stage 3 15 0.54 
   
ISODATA groups + ungrouped species 18 0.58 
   
Spectral position stage 1 22 0.50 
Spectral position stage 2 13 0.56 
Spectral position stage 3 7 0.65 
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6.2 Species grouping classification across all sites 

6.2.1 Method 

Given the results arising in 6.1, together with the direct utility of MFFP’s groups making 

them the ‘preferred option’, it was decided to progress by using these across all the study 

sites. For easy reference and comparison the results from Kinder are repeated here. 

Species aggregations using MFFP-defined classes. Sample sizes for each group/site 

combination are shown in Table 6:10. These were randomly assigned into training and 

validation groups in a 50:50 ratio. Molinia caerulea (purple moor grass) was excluded 

from Birchinlee and Penguins in the second MFFP class grouping as the number of 

samples was <10 (3 and 6 respectively). 

Training data for image classification were extracted for each site using 20 cm circular 

pixel sampling. Supervised maximum likelihood classification was then performed using 

imagery covering each site independently. 

Table 6:10 Classes and sample size used for MFFP groups 

 Birchinlee Derwent Kinder Moss Penguins 

      
Group 1      
Bare peat 93 105 80 62 109 
Bryophytes 197 287 306 175 199 
Dwarf shrubs 360 194 309 279 261 
Ferns 126 61    
Grass, sedge & rush 453 337 463 587 475 
Mineral soil 21 38 24 18 74 
Rock *  54 86 31 55 
      

Total 1250 1076 1268 1152 1173 

      
Group 2      
Bare peat 93 105 80 62 109 
Bilberry 113 48 68 77 89 
Cotton grasses 221 219 209 246 261 
Ferns 126 61    
Heather 173 125 125 150 118 
Mineral soil 21 38 24 18 74 
Other bryophytes 27 66 141 151 75 
Other dwarf shrubs 74 21 116 52 54 
Other grass, sedge & rush 229 118 254 230 208 
Purple moor grass    31  
Rock *  54 86 111 55 
Sphagnum 170 221 165 24 124 
      

Total 1247 1076 1268 1152 1167 

 
* Samples of flagstone at Penguins are labelled as rock. 
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6.2.2 Results 

MFFP Group 1. Group 1, the smaller of two MFFP groups, defines just 7 classes and 

classification using this typology across all sites produced consistently higher overall 

accuracies than Phase 3 using species. Error matrices for site each are shown in Figures 

6:11a to f. with mapped outputs for each site (as 1 km2 tiles) in Figures 6:13a to j. 

Table 6:11a. Error matrices for MFFP class group 1 
Birchinlee 
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Table 6:11b. Error matrices for MFFP class group 1 
Derwent 

 

 

Table 6:11c. Error matrices for MFFP class group 1 
Kinder 
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Table 6:11d. Error matrices for MFFP class group 1 
Moss 

 

 

Table 6:11e. Error matrices for MFFP class group 1 
Penguins 
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Table 6:11f. Error matrices for MFFP class group 1 
Merged: all sites 

 

MFFP Group 2. Group 2 defines 12 classes and these produce lower overall accuracies than 

Group 1 across all sites, although generally still higher than Phase 3 using species. Error 

matrices for each site, are shown in Figure 6:12a to f. 

Table 6:12a. Error matrices for MFFP class group 2 
Birchinlee 
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Table 6:12b. Error matrices for MFFP class group 2 
Derwent 

 

Table 6:12c. Error matrices for MFFP class group 2 
Kinder 
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Table 6:12d. Error matrices for MFFP class group 2 

Moss 

 

Table 6:12e. Error matrices for MFFP class group 2 
Penguins 
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Table 6:12f. Error matrices for MFFP class group 2 
Merged: all sites 
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Figure 6:13a. Classified output for Birchinlee (SK1392) – MFFP class group 1. 
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Figure 6:13b. Classified output for Birchinlee (SK1393) – MFFP class group 1. 
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Figure 6:13c Classified output for Derwent (SK1398) – MFFP class group 1. 
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Figure 6:13d. Classified output for Kinder (SK0789) – MFFP class group 1. 
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Figure 6:13e. Classified output for Kinder (SK0889) – MFFP class group 1. 
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Figure 6:13f. Classified output for Kinder (SK0989) – MFFP class group 1. 
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Figure 6:13g. Classified output for Moss (SD9913) – MFFP class group 1. 
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Figure 6:13h. Classified output for Moss (SD9914) – MFFP class group 1. 
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Figure 6:13i. Classified output for Penguins (SK0893) – MFFP class group 1. 
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Figure 6:13j. Classified output for Penguins (SK0993) – MFFP class group 1. 
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6.3 Machine learning– random forest classification 

Image classification algorithms such as maximum likelihood combine information from all 

training samples to produce a single n-dimensional spectral signature for each class. 

Untrained pixels are subsequently assigned to the class that their spectral signature best 

fits. Random Forest (RF) classification comprises an ensemble of decision trees, where 

each ‘tree’ uses a different selection of the training samples to create class signatures. 

This results in each tree possessing a different set of spectral signatures for all classes. 

Each tree in the forest assigns a pixel to a class (votes) and untrained pixels are assigned 

to the class that has the most votes. By using a different selection of training samples in 

each tree this classification approach might remove the influence of outliers or erroneous 

training data (such as incorrectly labelled field samples). 

The method was developed by Ho (1995) for character recognition and expanded into a 

range of different applications by Breiman (2001). The technique was soon in use for 

remote sensing (e.g. Pal, 2005) and has seen some application for mapping peatland 

vegetation communities (e.g. Beyer et al., 2019). Given that these approaches are 

sometimes seen to be ‘modern’ compared to more traditional methods used in this project 

it was decided to briefly assess the results they can achieve.  

6.3.1 Method 

RF classification was tested on the best performing set of class groups for Kinder as this 

site has the highest number of field samples. Classification was undertaken using the 

Spatial Model Editor in ERDAS Imagine with the number of decision trees being 

unconstrained. 

6.3.2 Results 

The overall accuracy of 73% (Table 6:14) was marginally lower than results using the 

supervised classification approached adopted in 6.2 (at 75%) and elsewhere in this 

project.  
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Table 6:14. Error matrix for Kinder – RF classification. MFFP class group 1 

 

 

6.4 Discussion 

The two MFFP grouping approaches showed the best results here, with both producing 

higher overall accuracies compared to classification of single species. Group 1 performed 

significantly better giving on average around a 25% improvement for all sites combined. 

The higher number of classes in group 2 however only provided for an improvement of 

around 5% (Table 6:15). It is worth noting that Sphagnum spp. were treated as a separate 

class in these groupings, and at three sites (Birchinlee, Kinder and Penguins) Sphagnum 

achieved producer accuracies (67-75%) at least 10% higher than that achieved for 

classification of individual species in Phase 3 (13-57%). For Derwent and Moss the 

producer accuracy of Sphagnum ranged from 49-58%. 

Table 6:15. Summary classification accuracies of species and MFFP groups by site 

 Species  MFFP Group 1 MFFP Group 2 
 n accuracy n accuracy n accuracy 

       
Birchinlee 17 0.59 6 0.77 10 0.65 
Derwent 17 0.56 7 0.63 11 0.60 
Kinder 16 0.61 6 0.75 10 0.64 
Moss 15 0.56 6 0.80 11 0.55 
Penguins 15 0.51 6 0.70 10 0.56 
       
Combined 19 0.57 7 0.73 12 0.60 
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6.4.1 MFFP-defined groups 

The two groupings of species and classes provided by MFFP were based solely on their 

monitoring requirements. Given that no spectral information was used to guide definitions 

it is interesting to note that group 1 performed better than any tested spectral aggregation. 

In part this highlights the influence of the number of classes, as the iterative reduction of 

class number in spectral aggregation resulted in higher classification accuracy. However, 

because no a priori conditions were placed on the species entering the spectral clustering 

algorithm, a larger pool of species was used than for the MFFP-defined groups. The two 

methods are therefore not directly comparable. 

The success or applicability of remote sensing outputs are typically judged by their 

accuracy. This approach has been adopted in this project to fully test and develop 

classification performance. However, as noted in Phase 3, some classes of interest map 

with high accuracy. It may therefore be more useful to estimate the proportional cover of 

the classes mapped, and classes with high mapping accuracy may provide an indicator 

of site condition. 

Adopting this approach using MFFP group 1 (Table 6:16) indicates that Birchinlee, Kinder, 

Moss and Penguins are grass, sedge & rush dominated sites (46-67%) and that Derwent 

is dwarf shrub dominated (51%). These observations do not appear at odds with visual 

assessment of the aerial photography. Further breakdown using MFFP group 2 might 

indicate that for Birchinlee and Penguins a large proportion of grass/sedge is cotton grass. 

For Kinder grass/sedge is divided approximately 50:50 between cotton grass and ‘other’ 

grass/sedge, while for Moss it is divided approximately 50:50 between cotton grass and 

Molinia caerulea, and for Derwent a large proportion of dwarf shrub is heather (Table 

6:17). 

Table 6:16. Proportional vegetation cover for MFFP class group 1 

Group Birchinlee Derwent Kinder Moss Penguins 
      

      
Bare peat 0.02 0.07 0.04 0.03 0.03 
Bryophytes 0.11 0.17 0.10 0.15 0.14 
Dwarf shrubs 0.29 0.51 0.34 0.12 0.24 
Ferns 0.10 0.05    
Grass, sedge & rush 0.46 0.12 0.49 0.67 0.59 
Mineral soil 0.02 0.06 0.01 0.01 0.00 
Rock  0.01 0.02 0.02 0.00 
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Table 6:17. Proportional vegetation cover for MFFP class group 2 

Group Birchinlee Derwent Kinder Moss Penguins 
      

      
Bare peat 0.02 0.06 0.03 0.03 0.02 
Bilberry 0.15 0.06 0.13 0.02 0.15 
Cotton grasses 0.32 0.07 0.28 0.26 0.41 
Ferns 0.08 0.02    
Heather 0.08 0.32 0.07 0.05 0.03 
Mineral soil 0.01 0.06 0.01 0.00 0.00 
Other bryophytes 0.06 0.05 0.06 0.07 0.03 
Other dwarf shrubs 0.08 0.21 0.10 0.08 0.13 
Other grass, edge & rush 0.11 0.03 0.22 0.12 0.10 
Purple moor grass    0.23  
Rock  0.01 0.02 0.02 0.00 
Sphagnum 0.08 0.11 0.08 0.12 0.14 
      

 

6.4.2 Mapping bare peat 

Because bare peat is a key component of condition monitoring and restoration efforts, it 

is important that mapping bare peat is possible at high accuracy. Bare peat is never 

grouped by any of the automatic grouping algorithms, and is clearly separate from all 

other classes spectrally (c.f. Figure 6:1). It is always among the most accurate classes in 

all the image classifications done in this work. Examples for combined sites are shown in 

Table 6:18. 

Table 6:18. Accuracy of bare peat in a range of classifications 

Classification                     Accuracy Principal confusion classes 
 Producer User    

      
Strim D, all species 0.92 0.93 Dead Calluna, mineral soil 
MFFP Groups 1 0.94 0.86 Mineral soil 
MFFP Groups 2 0.94 0.89 Mineral soil 
Spectral Space 0.94 0.84 Mineral soil, dead Calluna 
    

 

The slight variation in accuracy is due to the different suite of species/classes in each 

classification, but it is uniformly high. Other confusion classes of minor importance include 

cushion moss and dead Empetrum (spectral space), bryophytes (MFFP Groups 1 and 2) 

and very occasionally cotton grasses including Eriophorum angustifolium. 

Maps of bare peat are likely to be very accurate and therefore highly useful for informing 

conservation objectives. 
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Section 7: Comparison of UAV/MAV/EO data 
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Introduction 

MFF 50 2016-17 was originally planned on the utilisation of UAV imagery. Owing to a 

paucity of field data available during Phase 1 this was never fully explored, and in later 

phases emphasis shifted to the application of only one source of imagery, that from MAVs. 

As such this project can provide little evidence on the suitability of alternate data sources 

potentially available for conservation monitoring. MFFP therefore, under an extension to 

the original project specification, requested a direct comparison of the capabilities of three 

main image sources suitable to their needs, Satellite Earth Observation (EO), UAV and 

MAV. 

Objectives of extension to Phase 4 

1: Employ the best performing aggregated classes developed in Phase 4 to classify 

imagery from satellite, UAV and airborne sources to provide a direct comparison of 

results. 
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7.1 Method 

7.1.1 Image data 

UAV. UAV imagery covering the Kinder experimental sites Firmin and Olaf Nogson were 

captured on consecutive days in August 2018. Both flights with the multispectral sensor 

were undertaken around solar noon (Firmin: 11:49-13:00 GMT; Olaf Nogson: 11:18-12:32 

GMT) and the extent of ground captured in the surveys overlaps by approximately 5 ha. 

All MS images were therefore re-processed as one capture using Pix4Dmapper v4.7.5. 

All ground control points (GCPs; n=52) were marked as control points in each 

independent multispectral band to derive a model root mean squared error (RMSE) of 

orthorectification. 

The orthomosaics derived for each band were stacked to create a 4-band image (G, R, 

RE, NIR) covering an area of 153 ha. The image stack was clipped to the extent of the 

aerial imagery from Phase 3 (captured in 2020) producing a UAV-derived MS image 

covering an area of 129 ha (Figure 7:1 A). The larger image footprint from the combined 

flight data enabled a greater number of ground truth observations to be used in 

classification. 

Aerial imagery (MAV). The 4-band aerial imagery from 2020 covering Kinder were clipped 

to the min/max extent of the UAV imagery (Figure 7:1 B). 

Satellite. A WorldView-2 (WV-2) satellite scene captured on 23 July 2019 was obtained 

from Airbus Defence and Space Intelligence. The footprint of the imagery covers four of 

the MFFP sites (Birchinlee, Derwent, Kinder and Penguins). The data were provided as 

a 1.55 m resolution 8-band multispectral stack (coastal, B, G, Y, R, RE, NIR1, NIR2) and 

a 0.38 m resolution panchromatic band. All data were provided in Ortho Ready Standard 

format (i.e. no prior image processing had been undertaken). 

The WV-2 panchromatic band collects information from the electromagnetic spectrum 

across wavelengths 450-800 nm (DigitalGlobe, 2009). As this overlaps the bandwidth of 

six of the multispectral bands (G to NIR1: 450-895 nm), it was decided to pansharpen all 

eight MS bands to the spatial resolution of the panchromatic band. The modified IHS 

(intensity, hue, saturation) resolution merge function (Siddiqui, 2003) was undertaken 

using ERDAS Imagine. The 0.38 m resolution 8-band pansharpened data were then 

stacked with the native 1.55 m resolution 8-band MS data. 

Phase 3 aerial imagery from 2020 and Ordnance Survey Terrain 5 data (5 m resolution 

digital terrain model (DTM)) were used to identify 15 GCPs across the four MFFP sites. 

The 16-band image stack was orthorectified in ERDAS Imagine using all GCPs to derive 
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a model RMSE. The orthorectified pansharpened data were extracted to an 8-band stack 

at 0.38 m resolution, and the orthorectified MS data were extracted to an 8-band stack 

resampled to the native 1.55 m. All image resampling was undertaken using the nearest 

neighbour algorithm. 

The orthorectified pansharpened and MS data were then clipped to the min/max extent 

of the UAV imagery (Figure 7:1 C-D). 

7.1.2 Field data  

The footprint of the UAV imagery, comprising the smallest area of the data available, was 

used to select a subset of the field data for Kinder used in Phase 4. As the Sphagnum 

plugs were not present in 2018, these were excluded leaving 827 samples for 

classification (Table 7:1). 

 

 

7.1.3 Image classification  

As species classification was not fully tested on UAV imagery in Phase 1, a species level 

classification was performed for all image types for comparison. For species and each set 

of groups, samples were randomly separated 50:50 into training and validation samples. 

Table 7:1. Classes and sample sizes for classification 

    

    
Species 
 

n Group 1 n 

Agrostis spp. 1 Bare peat 53 
Bare peat 53 Bryophytes 146 
Calluna vulgaris 84 Dwarf shrubs 226 
Cushion moss 20 Grass, sedge & rush 333 
Deschampsia flexuosa 39 Mineral soil 13 
Empetrum nigrum 79 Rock 56 
Erica tetralix 17   
Eriophorum angustifolium 78   
Eriophorum vaginatum 78 Group 2  
Feather moss 13   
Holcus mollis 6 Bare peat 53 
Juncus effusus 78 Bilberry 46 
Juncus squarrosus 30 Cotton grasses 156 
Mineral soil 13 Heather 84 
Nardus stricta 23 Mineral soil 13 
Polytrichum spp. 78 Other bryophytes 111 
Rock 56 Other dwarf shrubs 96 
Sphagnum cuspidatum 1 Other grasses, sedge & rush 177 
Sphagnum fallax 25 Rock 56 
Sphagnum fimbriatum 3 Sphagnum 35 
Sphagnum flexuosum 2   
Sphagnum palustre 3   
Sphagnum subnitens 1   
Vaccinium myrtillus 46   
    

Total 827   
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Training data for image classification were extracted for each image type using 20 cm 

circular pixel averaging areas. Supervised maximum likelihood classification was then 

performed on each image type. Note that for species classification, classes with only one 

sample (Agrostis spp., Sphagnum cuspidatum and S. subnitens) were excluded. 

7.2 Results 

7.2.1 Image orthorectification accuracy  

The reported RMSE of orthorectification for the UAV MS data was around one quarter of 

the pixel size in both x and y (Table 7:2). For both MAV and satellite imagery the reported 

RMSE was typically equal to or slightly larger than the pixel size. This difference likely 

arises because a greater number and density of GCPs were used to orthorectify the UAV 

imagery. Assessment of the MAV imagery in Phase 3 demonstrated that the co-

registration between ground sample loci and image pixels was of sufficient precision for 

reliable image classification (section 5.3.2). Owing to the larger pixel size (0.38 m) it was 

not possible to undertake a similar assessment of co-registration for the WV-2 imagery. 

Table 7:2. Image resolution and orthorectification accuracy 

Image source Ground resolution (m) Control point RMSE (m) 
  x y 

    
UAV 0.088 0.023 0.020 
MAV 0.05 0.059 0.066 
Satellite 1.55 (MS); 0.38 (pan) 0.29 0.43 
    

 

7.2.2 Image classification 

The overall accuracy of species and group classifications achieved for MAV data here are 

highly comparable to the accuracies achieved with the larger field dataset used in Phases 

3 and 4 (Table 7:3). This highlights that the field sample protocol and classification 

approach is appropriate and provides confidence in the comparative performance of 

classification presented for each image type. 

Classified outputs for all image types tested are shown in Figure 7:2 for MFFP Group 1. 

All error matrices are presented in Tables 7:4-7:11. 
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Table 7:3. Classification accuracy of image types 

Image source          Classification accuracy 
 Species MFFP Group 1 MFFP Group 2 

    
MAV – Phase 3 & 4 0.61 0.75 0.64 
    
This phase    

    
MAV 0.57 0.80 0.65 
UAV 0.40 0.63 0.54 
Satellite - MS 0.23 0.38 0.25 
Satellite - pansharpened 0.24 0.44 0.29 

    

 

Satellite. From all image types tested, the native resolution MS and pansharpened 

satellite imagery provided the least accurate classifications. At species level, overall 

accuracies achieved were <25% (Table 7:3). Bare peat and Calluna vulgaris, classes that 

achieved high accuracies in previous rounds, mapped with between 24-31% accuracy in 

native resolution MS data and 38-42% accuracy in the pansharpened data (Tables 7:10-

7:11). Even when species were grouped, the highest overall accuracy achieved with 

satellite data was still lower than the overall accuracy of species classification for MAV 

data in Phase 3 (Table 7:3). 

UAV. Despite the increased number of field samples used, the species level classification 

accuracy achieved for UAV derived MS data here (40%) was slightly lower than that 

reported in Phase 1 (43%; Table 3:13). Bare peat was the only class that achieved a high 

producer accuracy (89%; Table 7:8). Grouping species resulted in a clear improvement 

in overall accuracy, and it is worth noting that bare peat, heather and Sphagnum classes 

all achieved relatively high accuracies (85%, 76% and 71% respectively; Table 7:8). 

MAV. Direct comparison of the image types assessed clearly demonstrates that MAV 

derived MS data provide the best classification performance at all levels examined. 

Species and group classification performance have already been examined in detail in 

Phases 3 and 4. However, the results here provide additional valuable insight. The overall 

classification accuracy of MFFP group 1 classes is 5% higher than that reported in Phase 

4 (80% vs 75%). One clear difference in the training and validation data used here is that 

Sphagnum plugs were excluded. The producer accuracy of Sphagnum achieved here is 

11% higher than in Phase 4 (88% vs 67%; Table 7:9). As this represents the accuracy 

with which naturally occurring Sphagnum can be mapped this is extremely encouraging. 
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Table 7:4. Error matrix for Kinder. UAV derived MS data - species. 
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Table 7:5. Error matrix for Kinder. MAV derived MS data - species. 
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Table 7:6. Error matrix for Kinder. Satellite derived MS data - species. 
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Table 7:7. Error matrix for Kinder. Satellite derived pansharpened MS data - species. 
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Table 7:8. Error matrices for Kinder. UAV derived MS data 

MFFP Group 1 

 

MFFP Group 2 
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Table 7:9. Error matrices for Kinder. MAV derived MS data 

MFFP Group 1 

 

MFFP Group 2 
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Table 7:10. Error matrices for Kinder. Satellite derived MS data 

MFFP Group 1 

 

MFFP Group 2 
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Table 7:11. Error matrices for Kinder. Satellite derived pansharpened MS data 

MFFP Group 1 

 

MFFP Group 2 
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Figure 7:1. Image extents used for classification (NIR G R band composite shown). A: UAV footprint; B: MAV footprint; C: Native resolution MS WV-2 data footprint; D: Pansharpened WV-2 data footprint. 
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Figure 7:2. Classified outputs for each image type (MFFP Group 1). A: UAV; B: MAV; C: Native resolution MS WV-2 data; D: Pansharpened WV-2 data. 
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Section 8: WP 5 – Monitoring changes in surface wetness 
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Introduction 

Work Package 5 

Work package 5 is an experimental component of the project exploring the potential for 

thermal imagery captured using a UAV to monitor peat surface wetness. Patterns in 

thermal infrared imagery collected from MAV and UAV platforms have identified the 

location of drainage features (Luscombe et al., 2015) and near-surface flow routes (Ikkala 

et al., 2021). However, no direct translations of thermal measurements into an index of 

surface wetness have been reported. 

This component aims to assess any potential relationships between near surface soil 

moisture and temperature (thermal emissivity) of bare peat surfaces. 

Objectives of WP5 

1. Collect thermal imagery at two times of day over one of the MFFP experimental 

catchments. This approach will enable any potential variation in thermal emission 

resulting from changes in sun incidence angle to be explored; 

2. Collect contemporaneous samples of surface peat from locations on a 

hydrological gradient within the area of thermal image capture; 

3. Assess any potential relationship between soil moisture and temperature 

recorded. 

8.1 Method 

8.1.1 Thermal image data  

Capture. An area covering the Sphagnum experimental field catchment located at 

Birchinlee (Birchinlee 1) was flown on 08 September 2021 using a fixed-wing UAV 

(senseFly eBee as employed in Phase 1). The eBee was equipped with a senseFly 

thermoMAP which comprises a FLIR TAU 2 sensor (0.3 MP) recording longwave infra-

red (LWIR) wavelengths from 7500 – 13,500 nm (FLIR, 2014). The sensor has a 

resolution of 0.1°C and calibrates automatically during the flight. Operated in timelapse 

mode, the thermoMAP sensor records a continual series of images at a rate of 7.5 images 

per second (senseFly, 2017). As this results in significant forward overlap in imagery, 

every nth image is typically selected for processing. 

Flight parameters were programmed to capture a target area of interest (AOI) covering 

approximately 7 ha (Figure 8:1) and the eBee was flown at a height of approximately 75-

80 m above the ground. Flights were undertaken at 11:30 and 14:45 GMT during which 

time wind speed ranged between 6-9 ms-1 (Table 8:1). The first flight took 17 minutes, but 
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the second flight took 12 minutes owing to lower wind speed. At the time the flights were 

undertaken air temperature was between 22-23 °C. 

Pre-processing. Around 2000 images were captured in each flight and every fifth image 

was selected for processing (Table 8:1). Images from each individual flight were 

processed separately using Pix4Dmapper v4.7.5. Coordinates for ground control points 

(GCPs), distributed on a 100 m triangular grid within the AOI (Figure 8:1), were obtained 

using a Trimble Geo7x DGNSS. Positional data were post-corrected in Trimble Pathfinder 

Office using RINEX data from the nearest OS Net base station. The mean accuracy of 

post-processed coordinates was reported to be 0.033 m in xy and 0.040 m in z. GCP 

coordinates were loaded into Pix4D and all GCPs were marked as control points to derive 

a model RMSE for image orthorectification. 

8.1.2 Surface peat samples 

Sample collection. Permission for MFFP to collect 40 peat samples from the site was 

granted by Natural England. Samples were collected between 13:30-14:00 GMT in four 

locations on a hydrological gradient following an erosion gully downslope (Figure 8:1). At 

each location areas of bare peat measuring >50 cm in the smallest dimension were 

identified and a sample of the top 10 cm of the peat was collected using a 2 cm diameter 

soil corer. All samples were wrapped in aluminium foil and sealed in a plastic bag for 

storage prior to analysis. The location of each sample was recorded using a Trimble 

Geo7x DGNSS and post-processed positional data achieved the accuracy reported 

above. 

Water content. The dimensions of the peat samples were recorded and the wet peat 

mass measured using a Sartorius CP124S balance to a precision of 1 x 10-4 g. Samples 

were dried in an oven at 70°C for 48 hours and the mass of peat re-weighed. The drying 

and weighing process was repeated until the mean sample mass between measurements 

varied by <0.08%. The water content of each sample was then calculated using the final 

measured mass of dry peat. 

Statistical analysis. Peat sample location data were intersected with both sets of thermal 

imagery using ArcGIS to assign the temperature value to each sample location. Surface 

temperature and soil moisture were entered into linear regression for both thermal 

datasets using SPSS v28. 
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8.2 Results 

8.2.1 Thermal image data 

Owing to the flight characteristics of fixed-wing UAVs and the field of view (FOV) of the 

thermal sensor the actual area of ground covered was approximately 20 ha (see Figure 

8:2). The orthorectified thermal images for both flights have a comparable ground (pixel) 

resolution of 0.166-0.168 m (Table 8:1). The orthorectification process reported an RMSE 

approximately half the pixel size for both datasets indicating strong spatial alignment 

between sample location and the imagery. 

Table 8:1. Flight details, image resolution and accuracy of orthorectification 

Flight 
start 
(GMT) 

Duration 
(minutes) 

Wind speed 
(ms-1) 

No. of images 
processed 

Ground 
resolution (m) 

Control point 
RMSE (m) 

   (x) (y) 

11:30 
 

17 
 

8.0 - 8.6 
 

338 0.166 0.072 0.089 

14:45 12 6.5 - 7.5 349 0.168 0.057 0.059 

       

 

The thermal orthomosaics were clipped to the same extent to allow direct comparison of 

temperature between flights. The minimum temperature recorded between flights varied 

by 0.4°C, but maximum temperature increased by almost 3°C over the three-hour period 

(Figure 8:2). It is notable that in the first flight (11:30 GMT) east-facing slopes are showing 

higher temperatures across the scene, but in the later flight (14:45 GMT) west-facing 

slopes, particularly gully sides, show higher temperatures. The gully floors in both flights 

appear relatively cool indicating that they were at least in partial shade during the survey. 

8.2.2 Peat samples 

Mean (±SD) peat core length collected was 8.6 ± 1.1 cm (Table 8:2) indicating slight 

compression of some cores during extraction. Soil moisture content typically ranged from 

67.6% - 89.6%, although was notably lower in sample 12 (25%). This sample was 

collected from the top of a gully and was noted in the field as being loose and dry peat. 
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Table 8:2. Moisture content of peat samples 

Sample Core length 
(cm) 

Mass of wet 
peat (g) 

Mass of dry 
peat (g) 

Mass of water 
(g) 

Moisture content 
(%) 

      
1 10.0 9.7291 2.1578 7.5713 77.8 
2 9.0 9.8013 2.1823 7.6190 77.7 
3 9.4 8.6790 1.7583 6.9207 79.7 
4 6.8 9.9725 2.1429 7.8296 78.5 
5 10.5 8.0653 2.0945 5.9708 74.0 
6 9.2 9.4972 2.2375 7.2597 76.4 
7 7.2 9.6733 1.8982 7.7751 80.4 
8 8.5 11.7030 2.3271 9.3759 80.1 
9 6.4 5.7340 1.2886 4.4454 77.5 
10 6.0 7.8938 1.6397 6.2541 79.2 
11 8.6 11.5422 2.4098 9.1324 79.1 
12 10.5 5.2165 3.8834 1.3331 25.6 
13 7.4 15.0388 2.6273 12.4115 82.5 
14 9.3 9.4441 1.6469 7.7972 82.6 
15 7.5 9.9947 2.1013 7.8934 79.0 
16 7.7 9.4187 1.9659 7.4528 79.1 
17 9.3 12.3057 3.1196 9.1861 74.6 
18 7.1 5.9584 1.5054 4.4530 74.7 
19 8.3 10.7396 2.3252 8.4144 78.3 
20 6.7 7.2875 1.6792 5.6083 77.0 
21 10.9 11.4292 2.0385 9.3907 82.2 
22 9.7 10.7941 2.0260 8.7681 81.2 
23 8.4 12.2772 1.7559 10.5213 85.7 
24 8.5 8.6470 2.0239 6.6231 76.6 
25 9.4 12.4318 1.7152 10.7166 86.2 
26 9.6 9.5781 1.6767 7.9014 82.5 
27 9.1 11.3140 1.4791 9.8349 86.9 
28 8.5 11.9668 1.3692 10.5976 88.6 
29 8.9 13.9108 2.1144 11.7964 84.8 
30 9.2 12.5641 1.9180 10.6461 84.7 
31 9.7 7.9390 1.4835 6.4555 81.3 
32 8.9 11.9915 2.4233 9.5682 79.8 
33 8.8 10.7729 2.1514 8.6215 80.0 
34 9.2 14.0265 1.4571 12.5694 89.6 
35 9.2 8.1164 1.3695 6.7469 83.1 
36 8.5 10.0640 1.5981 8.4659 84.1 
37 8.7 11.5051 1.5494 9.9557 86.5 
38 9.3 12.0515 1.6212 10.4303 86.5 
39 7.9 8.0220 1.4904 6.5316 81.4 
40 7.6 5.3812 1.7438 3.6374 67.6 
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Figure 8:1. AOI of thermal capture at Birchinlee and location of peat samples. 
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Figure 8:2. Orthorectified thermal imagery. 
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8.2.3 Relationship between soil moisture and temperature 

Interestingly a highly significant inverse relationship between bare peat surface 

temperature and soil moisture was identified for both thermal image captures (p<0.001 

and p=0.009; Table 8:3; Figures 8:3-8:4). The slopes of the regression models were not 

identified to be significantly different, but it should be noted that the goodness of fit is very 

low (r2 = 0.26 and 0.17). 

When 10 peat samples that were collected within gullies were excluded from analysis, the 

relationship between surface temperature and soil moisture using the thermal data 

collected at 11:30 was stronger (r2 = 0.41) and still very highly significant (p<0.001). In 

contrast, using the thermal data collected later in the day (14:45) the relationship was 

weaker (r2 = 0.13) and only just significant (p=0.047). Again the slopes of the regression 

models were not identified to be significantly different. 

Table 8:3. Linear regressions of surface temperature against soil moisture 

Flight and samples used n slope r2 p 

     
11:30 flight – all samples 40 -2.228 0.26 <0.001 
14:45 flight – all samples 40 -1.403 0.17 0.009 
11:30 flight – excluding samples in gullies 30 -2.112 0.41 <0.001 
14:45 flight – excluding samples in gullies 30 -1.238 0.13 0.047 
     

 

 

Figure 8:3. Peat surface temperature at 11:30 against peat moisture for all samples. 
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Figure 8:4. Peat surface temperature at 14:45 against peat moisture for all samples. 

 

 

Figure 8:5. Peat surface temperature at 11:30 against peat moisture excluding samples in 
gullies (grey circles). 
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Figure 8:6. Peat surface temperature at 14:45 against peat moisture excluding samples in 
gullies (grey circles). 
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Section 9: WP 6 – Monitoring changes in erosion and accumulation 
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Introduction 

Work Package 6 

The survey approach in Phase 1 was developed to facilitate capture of UAV imagery over 

landscape scale areas. GCP target number and distribution was designed to produce a 

very high level of accuracy of orthorectification for image classification. In addition to 

image orthomosaics, the photogrammetric workflow creates products containing 

information on elevation (including 3D point cloud and DSM). These data may provide the 

potential to monitor localised changes in elevation over time to determine peat erosion or 

accumulation. 

Objectives of WP6 

1. Compare UAV-derived elevation data from two independent surveys to determine 

the viability of this data type to quantify peat erosion and accumulation. 
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9.1 Method 

9.1.1 RGB imagery and elevation data 

2018 data. RGB imagery captured for Birchinlee 1 in July 2018 were re-processed using 

Pix4Dmapper v4.7.5 to remove any potential differences arising from updates to software 

processing algorithms. 

2021 capture and processing. Repeat capture of the thermal target AOI (Section 8) was 

undertaken with the RGB sensor on 08 September 2021 at a height of approximately 65-

70 m above the ground. Images were processed using Pix4Dmapper v4.7.5 and all GCPs 

were marked as control points to derive a model RMSE for image orthorectification. The 

orthomosaic and DSM were output at the same resolution as the DSM derived in 2018 

(0.021 m). 

Change analysis. Elevation data in the DSM for both years were first assessed to 

determine compatibility of data. Both DSM datasets were clipped to the same extent for 

direct comparison. The elevation values determined in 2018 were then subtracted from 

the value determined in 2021. This process revealed that direct comparison of the DSM 

data is not possible (see results). 

9.2 Results 

The orthorectification process reported an RMSE equivalent to, or less than, the pixel size 

in all dimensions for both datasets (Table 9:1). The minimum and maximum elevation 

values recorded for both years varied by a very small amount (between 0.09 m and 0.16 

m respectively; Figure 9:1). As such, the data appear comparable. However, the 

difference in elevation values determined between the two datasets show non-systematic 

variation (Figure 9:2). The northern and southern sections of the area assessed show a 

general trend of lower elevation in 2021. In contrast, the central section of the area 

(running approximately NW-SE) show a general trend of higher elevation in 2021. It is not 

clear what has caused this phenomenon. The pattern of variation does not align with 

changes in topography (Figure 9:2) and the area of difference is oriented perpendicular 

to the direction of flight lines in 2021. As the variation across the output is non-systematic 

it was not possible to apply a correction factor. 
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Table 9:1. Image resolution and accuracy of orthorectification 

Capture Ground resolution (m)                     Control point RMSE (m) 

 x y z 

     

2018 0.021 0.017 0.022 0.015 

2021 0.021 0.014 0.015 0.013 
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Figure 9:1. UAV-derived DSM data for 2018 and 2021. 
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Figure 9:2. Left: UAV-derived DSM for 2018 showing topographic changes; Right: Difference in elevation between 2018 and 2021 showing non-systematic variation across the area assessed. 
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Section 10: Discussion, Concluding remarks and Overall Recommendations 
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10.1 Summary conclusions from each phase 

The overall aim of ‘MFF 50 2016-17 MoorLIFE 2020’ has been to explore the potential 

role of remotely sensed data in monitoring the effectiveness of blanket bog conservation 

actions undertaken by MFFP. 

The project comprised four annual phases of work devoted to developing techniques for 

mapping moorland vegetation to species level using extremely high resolution aerial 

imagery captured by UAV and MAV and testing these against the following objectives: to 

monitor land-cover change (including Sphagnum spp., cotton grass, purple moor grass, 

heather, and bare peat). The general conclusions and discussion for this work are 

summarised in 10.1.1 to 10.1.4 below. 

Several ancillary pieces of work were undertaken in Year 4: 

i. A direct comparison of results achieved using UAV, MAV, and orbital EO imagery 

data for vegetation mapping; 

ii. An assessment of the potential for determining surface/sub-surface moisture 

levels using a UAV-borne thermal sensor and;  

iii. An experiment to determine the potential for measuring topological change using 

DSMs extracted from UAV imagery capture. 

The overall conclusion and recommendations from these pieces of work are covered in 

10.1.5 and 10.1.6. 
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10.1.1 Phase 1 – UAV Image Capture 

Phase 1 represented the first opportunity for a ‘full-up’ test of the proposed flight and field 

data collection protocols for baseline and monitoring data. It inevitably also provided a 

wealth of operational, logistical, and technical information to guide project development 

over the following years. This identified a number of shortcomings and vulnerabilities 

within the initial project assumptions and proposals. While this led to some curtailment of 

opportunities to fully explore the capabilities of UAV image capture during Phase 1, the 

lessons learned informed a considerable re-alignment of project objectives and placed it 

on a more solid trajectory for future years. 

Operational experiences. Numerous unexpected operational and reliability issues were 

experienced with the planned UAV/sensor combination during work-up trials and training 

prior to the formal commencement of Phase 1. The most significant of these were: (i) the 

UAV sourced for the project experienced mechanical problems that necessitated frequent 

return to manufacturer, leading to loss of availability; (ii) the anticipated staff resource to 

‘pilot’ the UAV anticipated during planning was not available as a result of training issues. 

Alongside clearly identifying the need for building in contingencies to account for such 

issues, these demonstrated how vulnerable planned image capture schedules can be, 

especially where timeframes are restricted by either intrinsic need (e.g. capturing a 

particular phenological stage) or extrinsic factors (e.g. access restrictions or weather). 

They also highlighted how easy it is during planning to both overlook potential difficulties 

and make over-optimistic assumptions with regard to outcomes until considerable 

experience and working knowledge has been gained. These points are included here to 

serve as useful guidance to those that follow (Crouch & Chandler 2021). To paraphrase 

Helmuth von Moltke the Elder ‘no plan survives first contact’. Contingency, and ‘plan B’, 

should be planned for. 

In this case the issues above necessitated the use of a substitute UAV/sensor at short 

notice to meet the summer mapping requirements. This available replacement regretfully 

did not match the original project specifications in terms of spectral combinations, or 

spatial resolution, necessitating 2-3 flights per site to obtain the required coverage. 

Despite this late alteration, Phase 1 flight activities were completed and provided sufficient 

image data to enable appraisal as to their suitability for image processing techniques. 

A second, and less resolvable, issue also occurred in the first year: unforeseen difficulties 

in the extensive field data collection required. Execution of this task took far longer than 

anticipated and ultimately the number of field samples collected fell well below the 

optimum. This had the effect of curtailing anticipated image-classification development 
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work and no complete rigorous testing of the application of UAV imagery for this sort of 

monitoring was ultimately possible during Phase 1. 

The lessons learned from Phase 1 were particularly important in providing good insights 

into how the programme could be executed in future to facilitate development of image 

classification for monitoring.  

Summary of image analysis. Although a full error-assessed classification for each site, 

together with an exploratory iterative ‘try, test, change’ approach as planned, was not 

possible during Phase 1, the examination of the image data actually produced several 

clear lessons. 

Many UAVs, at the altitudes to which they are restricted in the UK, can produce high 

spatial resolutions, but of an extremely limited ‘footprint’. Combine this with a legal 

obligation not to fly beyond 500 m of the operator means it becomes necessary to fly 

numerous flight-lines to cover a significant area. 

As a consequence, the time required to cover even modest areas can be considerable. 

Over this period, light levels, colour balance and sun angle will be changing continuously. 

During 2018, these issues were compounded by the need to fly each area twice using 

different sensors to provide the required B, G, R, RE, NIR imagery. The visible ‘striping’ 

and colour shift within the final mosaics used shows the impact this can have. Quantifying 

the negative effect this had on the accuracies of automated image-classification in Phase 

1 was not possible as insufficient field data were available for error assessment. 

10.1.2 Phase 2 – MAV Image Capture II 

While image capture from UAV platforms undoubtedly remains the most responsive 

approach to monitor small areas (e.g. the MFFP field laboratory areas), following the 

lessons learned from Phase 1 it was decided to assess alternate sources of imagery 

during Phase 2. As a result, BlueSky International were contracted to undertake a 

bespoke flight of the study areas to capture 4-band digital imagery using a Vexcel 1 UCE 

on a Cessna 404. The severe limitations of undertaking UAV capture over large areas 

means this alternate approach is in any event probably better aligned with the broader 

aspirations of the project i.e. the desire to monitor at landscape scale. 

Image acquisition. Airborne imagery covering all sites was captured over a period of a 

few minutes. From the perspective of reducing potential adverse effects from sun-angle 

and atmospheric effects on colour balance this is greatly superior to the days required to 

image the same extents when using a UAV. The spatial resolution (IFOV) of the delivered 

4-band imagery was also comparable to that of multi-spectral data collected by the UAV 
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in 2018. From this perspective commercially contracted MAV airborne imagery seems to 

address the major data acquisition requirements for mapping vegetation projects such as 

these and appears to be an effective alternative. In addition, this approach required no 

MFFP staff-time commitments for flying the sites or for undertaking post-flight processing 

of imagery, allowing for extensive field survey tasking to be undertaken. 

However, it has to be accepted that in lieu of the freedom to essentially capture ‘on 

demand’ enabled by UAV operations, contracting out means relying on a commercial 

operator with other commitments, scheduling plans and associated difficulties with 

weather etc. The potential impact of this was fully illustrated during Phase 2. Difficulties 

in obtaining clearance from ATC to fly within controlled zones for Manchester airport led 

to considerable delays and imagery was not captured until 02 October 2019. This was 

well outside of the range of dates requested and clearly highlights that the inability to 

control image acquisition date is a risk when using commercial airborne capture services. 

This was an exceptionally long delay in our experience, but the issue is generally of 

potential seriousness and should be discussed with an external contractor both during 

project planning and as soon as any issues arise. A further consideration is that slight 

modifications to flight parameters might facilitate more rapid acquisition (especially if ATC 

is an issue). Despite imagery being captured late, a full appraisal of the ability to map to 

species was tested during Phase 2. 

Classification accuracies. The overall classification accuracies achieved during Phase 2 

for all 61 species/classes recorded during the field survey were low (35%). This is below 

that reasonably required, making it unsuitable for even broad scale mapping let alone 

monitoring which requires comparison of classified map outputs. However, the full field 

species list included many occurring with very limited records. The original planned 

minimum target sample numbers for each class was around 100 (50 for training and 50 

for error assessment) and this classification result is therefore not fully unexpected. 

Restricting the number of classes mapped to those with >70 records produced 23 

species/classes for testing. This resulted in a modest increase in the overall accuracy to 

46%. Although an improvement, this is still well below levels suitable for monitoring. A 

number of factors could possibly have driven this poor species/class separability. 

Process. The techniques adopted here, individual species mapping, requires very close 

co-registration between field data and image pixels and if this is inadequate it could 

degrade classification accuracy. The choice of ‘search area’ used during signature 

collection will be one controllable influence on this effect, hence its role was examined. 

Selection of the number of adjacent pixels to be used during training is something of a 

trade-off. The smaller the area used the fewer pixels are ‘collected’, potentially restricting 
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the variability in spectral characteristics assigned to each class during training. However, 

it has the effect of increasing the probability of the training pixels being within the field 

sample collection area (in this case > 0.5m x 0.5m). If a larger ‘search area’ is used, then 

collection of a more complete range of spectral characteristics may occur, but the 

probability of some pixels of other classes being included increases. It is for this reason 

that during Phase 2 a series of training/classification/error-assessment cycles using 

varying training areas were performed. This process identified minimal differences in the 

obtained accuracy which may suggest that the orthocorrection accuracy of the imagery, 

in this case, was less important than other factors. However, this does need to be 

interpreted in the context of the minimum ‘pure stand’ size adopted during field survey, as 

this protocol was specifically designed to address potential minor imagery/field data 

misregistration issues. 

Phenology. The role of phenology, especially the variations in plant stage of individual 

species (or even within individual plants) in a single image is clearly important. It will serve 

to broaden the spectral characteristics of that species, as senesced leaves, flowers or 

bare stems are different colours than an ‘average’ leaf. Encompassing this breadth within 

a single class during classification training will lead to wide amorphous classes with 

considerable overlap, and hence little chance of good differentiation. 

Prior to classification, classes such as Pteridium aquilinum that exhibited a range of 

phenological stages were visually grouped into ‘green’ and senesced samples. The 

accuracy of chlorophyllous Pteridium (86%) was significantly higher than that of the 

senesced Pteridium (33%). Phenological stage therefore has a clear impact on the 

accuracy of classification in some species. Conversely, classes such as Eriophorum 

angustifolium also produced high classification accuracy (74%) although, at the time of 

image capture, this species was almost completely senesced. 

Shadow. The confusion observed in Phase 2 between water and other classes, especially 

bare peat and shadow, had a significant impact on the overall reported classification 

accuracies. These are classes that should be expected to achieve high classification 

accuracy owing to their distinct spectral signatures, particularly in the NIR. The low 

accuracy for water here at c.40% is unprecedented in our experience, and most probably 

arises entirely due to the time difference between field survey and image capture. Unless 

image capture dates are tied very closely to field surveys, remote sensing of transient 

surface phenomena is clearly always problematic and it is probable that much of the 

standing water identified during field survey were pools that subsequently dried before 

image capture. Most of these would presumably be lying over bare peat which would 

account for the very high level of confusion observed between these two classes. 
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Transiently flooded vegetated pools would also be expected to affect moorland and this 

probably explains the widespread confusion with nearly all species in the data. Of course, 

this would also apply vice versa, with some pools being present during image capture that 

were absent during field collection. It is also clear that the large areas of topographical 

shadow, and scattered vegetation shadow, occupy spectral space in which water and 

bare peat are found. The impact on the classification of these usually accurately mapped 

classes is clear in the error matrices. It is harder to determine the impact of shadow on 

the accuracy of mapped vegetation. To optimise the mapping of vegetation and bare peat, 

image shadow must be avoided by selecting times as close to solar noon and mid-

summer as possible. In this case shadow was included in the error matrix reporting to 

assess classes that are spectrally confused with it but primarily to show how widespread 

it was. In reality, shadow is not a ground cover class and it cannot be assessed as ‘right’ 

or ‘wrong’. The error statistics are therefore not entirely representative of actual 

classification accuracies and are included purely for illustration. 

10.1.3 Phase 3 – MAV Image Capture II 

Both earlier phases of this project demonstrated overall classification accuracies below 

the levels that would be useful for monitoring, and with poor differentiation of many target 

classes. However, both phases experienced considerable operational difficulties with 

image acquisition leading to lower than desired image quality. As this factor could readily 

lead to the poor results achieved, Phase 3 was tasked with determining what results were 

possible using commercial XHR MAV imagery free of such issues. This seemed a 

necessary prerequisite before definitive statements on the suitability of such imagery was 

made or other causes for sub-optimal accuracies being achieved could be hypothesised 

or tested. 

Phase 3 demonstrated yet another issue with image quality (uneven spectral balancing 

between images for each area). This should not be seen as criticism of the quality of 

routine ‘standard’ commercially provided image data, as they are generally fit for the 

purposes of the vast majority of users, i.e. visual interpretation within a GIS environment. 

However, for the type of application desired here (automated image classification) such 

variation does highlight that suppliers have not always considered the more advanced 

uses to which their data might be put. Standards and tolerances should be negotiated 

and defined, so expectations and capability are better matched, something considered 

especially important in defining contractual obligations. 

However, once a change in protocols from those planned (i.e. classifying each area 

separately rather than as a ‘whole’) was undertaken it can be considered Phase 3 did 

ultimately provide a realistic test of commercially sourced 5 cm resolution 4-band imagery 
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to meet MFFP’s requirements. The results achieved were the most encouraging so far. 

Modest species mapping accuracies of between 20% and 55% were found for many 

classes with low sample numbers (e.g. Deschampsia flexuosa, Juncus spp., Pteridium 

aquilinum and Trichophorum cespitosum). However, many more common classes 

including bare peat, Calluna vulgaris, mineral soil, rock and Vaccinium myrtillus mapped 

with between 67% and 92% accuracy. This shows that the techniques adopted here could 

be utilised for landscape mapping for commonly occurring species in the upland 

landscape. The ability to map rare species is not testable here as their occurrence is too 

infrequent to provide sufficient records for training. This is not an artefact of the protocols 

used, rather it is part of a long understood and accepted issue with all field survey. 

Within the caveats above, Phase 3 clearly demonstrates that vegetation mapping to 

species can achieve similar accuracies to those reported for many remote-sensing 

projects when using more generalised classes. This would make it suitable for landscape-

scale mapping, and for baselining, with perhaps one change assessment at the end of a 

project being applicable. 

The ability to map Sphagnum was a key MFFP requirement, though no ability to 

differentiate to species was possible here. This possibly arises from the limited number 

of samples of many species recorded in fieldwork or from the similarity in spectral 

characteristics relative to the temporal variably in each species. However, the accuracies 

obtained do indicate that the imagery and processes employed could be used for wide-

area assay of Sphagnum as a group, providing a good indication of overall bog ‘health’ 

or conservation status. As with the comment above for commonly occurring species, 

repeated assay with these techniques for determining change, say annually, would be 

unsuitable as a sole monitoring method. However, if used infrequently, with comparisons 

perhaps every 5 years, or as part of a hybrid random field survey approach it would 

provide a useful tool. In the case of Sphagnum, such a period would be rational in any 

event given the likely relatively slow spread of this genus. 

10.1.4 Phase 4 – Classification of Species Groupings 

Species aggregations. The generally modest overall accuracies obtained during Phase 

3 arise though an inability to segregate or differentiate the typology adopted within 

spectral space using the imagery and techniques employed. However, as the error 

matrices illustrate, many of the errors of omission and commission contributing to the 

reported overall accuracies arise from confusion between scarcer and/or less important 

species (from a conservation monitoring perspective). Grouping of some species might 

therefore be expected to result in higher overall accuracies while still retaining monitoring 

relevance. 
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Phase 4 was tasked to work in a different way to earlier phases and examined the value 

of such approaches by iteratively determining what classes can be mapped to higher 

accuracies and judging them against monitoring value. Two approaches were adopted:  

i. The first was based on two ‘artificially’ defined groups based solely on their 

conservation monitoring value to MFFP irrespective of any spectral similarities. 

This was anticipated to deliver lower accuracies of the two approaches but retain 

value through direct relevance to MFFP’s monitoring needs. 

ii. The second was based on spectral commonalities i.e. grouping species that 

differentiated least well from each other irrespective of any taxonomic 

relationships. 

This was considered to have the greater potential to deliver higher classification 

accuracies, albeit by defining species groupings of unpredictable monitoring 

value. 

To reiterate here neither of these approaches should be confused in any way with 

mapping of ‘vegetation community’ or ‘habitat’ types as conventionally understood as no 

regard is taken to the spatial proximity of pixels so grouped. Thus, unlike all other 

vegetation descriptors it retains all the merits of accuracy in field survey by using an 

unambiguous input typology i.e. plant species, but uses a simplified output typology to 

reduce inter-species spectral confusion during classification. 

That the MFFP-defined groups improved overall classification accuracy to a higher 

degree than the ‘natural’ species clustering approaches tried is gratifying given they are 

considered to be of direct application to monitoring requirements (note though that the 

comparison is not direct, since additional species were included in the natural clusters). 

The increase in accuracy for the smaller Group 1 is marked and means that remote 

sensing of a rigorously defined and directly relevant typology, based on unambiguous 

field data and fully error checked is possible. 

An additional result here is that bare peat is always very well separated from other 

species/classes meaning that, while it is often difficult to resolve individual plant species, 

bare peat is always distinct and easily mappable at high accuracy. 

States of blanket bog. This work has mostly focussed on single species owing to the 

difficulty in determining communities. The groups of species used in this section do not 

represent classical phytosociological communities. Rather, they either form elements 

from within one or more community (as, for example Sphagnum spp within mire 

communities) or cross-cut several communities (dwarf shrubs, as components of both 

mire and heathland community types). MFFP’s States of Blanket Bog (Table 10.1) partly 
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overlap with the MFFP-defined groups used here. However, they also include 

communities that draw from several of the MFFP-defined classes (e.g. State 5). One 

possible way of reconciling the two taxonomies might be to “assemble” communities from 

the building blocks of an underlying classification via a roving window. For example, a 

window including Sphagnum, Calluna and Eriophorum spp. would potentially map onto 

State 5. A key difficulty to consider is the classification accuracy of the building blocks of 

such communities. 

Because bare peat is mappable with high accuracy, successful restoration would be to 

some extent measurable without further work, i.e. as a transition from bare peat to a 

vegetated surface. 

Table 10.1. States of blanket bog (Moors for the Future Partnership, 2018) 

State Definition 
  

State 2 Bare peat 
State 2a Revegetated bare peat 
State 3 Dwarf shrub dominated blanket bog 
State 4 Grass and/or sedge dominated blanket bog 
State 5 Modified blanket bog with high dwarf shrub cover but with sphagnum and other mire species 
State 6 Active hummock/hollow/ridge blanket bog 

  

 

Alternative classification algorithm. A final approach included in Phase 4 was simply to 

determine whether the original tests and presumptions (not reported here) underpinning 

the choice of the appropriate classification algorithms to be adopted were still relevant at 

the end of a four year project and were optimising mapping accuracies. It was hoped this 

would also serve to ensure the current and on-going relevance of this study as newer 

techniques might deliver substantive improvements (e.g. Beyer et al., 2019). In this case 

machine-learning Random Forest classification was explored as an alternative to 

Maximum Likelihood. 

The overall accuracy from this algorithm was no better than the techniques used for 

vegetation classification throughout this project, so the original choices made were 

considered valid. 

10.1.5 Phase 5 – Comparison of UAV/MAV/EO Data 

This element of the project provides a comparative test of example data from the three 

image sources available for conservation mapping and monitoring applications. Testing 

these on identical areas and extracting the same complex typologies provides a definitive 

assessment of the best options for a particular task. 
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The relatively weak performance of satellite EO imagery observed here might be 

considered surprising, particularly given the more expansive ‘spectral space’ available for 

classification created by its 8 bands. No issues with image quality or accuracy of 

orthorectification were noted, and the imagery was contemporaneous with the field 

sample data (2019). 

However, it should be made clear the project typology and associated field survey 

protocols were not designed for, and are not ideally suited to, sensors providing the GSD 

of WV-2 as these were predicated on the application of XHR centimetre-resolution 

imagery and mapping to individual species. Few species in the upland moorland 

environment can be expected to exist in pure stands of the extent needed to be 

‘recognised’ within the classification algorithm when using such imagery. That spatial 

resolution underlies the low classification accuracies achieved is supported by the 

improvements in classification accuracy, albeit slight, seen when using the pansharpened 

data. That said, it must be noted that the use of pansharpened data is not to be 

recommended for classification, it was used here experimentally. Resolution merge 

algorithms are known to preserve spatial information but distort spectral information (Oh 

et al., 2012).  

These results should not be taken as implying that EO data can have no application for 

mapping peatland vegetation, rather that alternative typologies and field sample protocols 

beyond those used here would need adopting and testing. Field sampling areas would 

need to be several times the GSD (1.5-2 m), which returns to the problems of repeatability 

of field surveyor recording when using habitat or ‘community’-based typologies discussed 

in section 2.2. 

UAV-derived MS data show clear potential for mapping both species and aggregated 

classes with moderate to good accuracies, although lower than those achieved using 

MAV data. While it is possible that such differences relate to sensor specifications, UAV 

technology has advanced significantly. Early UAV cameras used modified filters to collect 

NIR data and the wavelengths of bands overlapped. In contrast, the MicaSense Sequoia 

has a separate sensor for each band and the bandwidth of each is discrete (Parrot, 2017). 

The fidelity of spectral information captured by recent UAV multispectral sensors is 

therefore high. 

However, artefacts of striping are evident in both the output image mosaic (Figure 7:1 A) 

and the classified product (Figure 7:2 A). This phenomenon has been attributed to 

changes in illumination and sun-angle during the flights (section 3.2.3). The Sequoia 

sensor was flown with a sun irradiance sensor and corrections of illumination were applied 
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during orthorectification. Unfortunately, it is clear that the technology is not flawless. It is 

possible that the orientation of the irradiance sensor as fixed-wing platforms counter 

higher wind speeds affects the measurements recorded. 

It is clear that the time required to capture large areas with a UAV results in image 

degradation that impacts on classification performance. Irradiance sensor function may 

improve in the future, but currently the use of UAVs to collect imagery for classification 

can only be recommended for areas coverable by single flights. 

In contrast, the area of Kinder examined in this section was captured in 2-3 flight lines by 

MAV. This likely took around 5-10 minutes. The reliability of several key groups including 

bare peat, dwarf shrubs and grass, sedge & rush may allow snapshot determination of 

site condition. Although the establishment of Sphagnum plugs can be visually determined 

in the imagery (Figure 5:1), in previous phases they did not map reliably in classification. 

However, this assessment demonstrates that naturally occurring Sphagnum can be 

mapped reliably. It appears therefore that Sphagnum plugs will need to have established 

for several years before automated detection can be applied. 

This project indicates that MAV derived MS data are currently the best image type for 

mapping vegetation at landscape scale using the typologies tested. 

10.1.6 Work Package 5 – Monitoring changes in surface wetness 

The identification of a significant inverse relationship between surface temperature and 

soil moisture suggests that variation of water content in a bare peat surface is detectable 

in thermal imagery. However, while this may appear promising for the development of an 

approach to monitor soil moisture there are several confounding issues. 

The thermal data assessed here were captured at two times of day just 3 hours apart. 

Over this short period of time the change in sun incidence angle influenced a 3°C increase 

in maximum temperature recorded across the AOI. As a result, the slope of the 

relationship between peat surface temperature and soil moisture changed. At 11:30 GMT, 

a 2.2°C change in surface temperature relates to a 1% change in soil moisture. Yet at 

14:45 GMT, a 1.4°C change in surface temperature relates to a 1% change in soil 

moisture. It is therefore evident that a single direct translation of temperature into an index 

of soil moisture is not possible; temperature will change with time of capture and also with 

time of year. This issue is compounded by the fact that the increasing temperature 

resulting from insolation will not be homogenous across any area. Fine-scale variation in 

topology and slope means some areas will receive longer exposure to insolation than 

others and hence will have warmed more, not necessarily as a consequence of thermal 

capacity. A protocol for mapping soil moisture content using thermal imagery would 
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therefore always not only require contemporaneous soil moisture measurements but 

sensibly also fixed thermocouples to access continuous temperature changes. To date 

soil moisture probes to determine the former have not been shown to reliably measure 

water content in peat soils (Richard Lindsay, pers. comm.). The only viable approach 

would be to collect multiple peat samples for laboratory analysis of water content during 

each survey. This has associated time and logistical costs. 

The stronger relationship between peat surface temperature and soil moisture identified 

in the earlier flight data (11:30 GMT) when areas within gullies were excluded indicates 

that shading resulting from topography (i.e. gully floors and walls) introduces 

unpredictable temperature variations. Assessment of soil moisture by this method would 

need to be restricted to areas of bare peat within the main peat body. 

This highlights the major constraint to the use of these data, irrespective of any other 

issues: it can only ever deliver information about soil surface moisture in areas of bare 

peat, hopefully a small component of any bog/peatland system. As an airborne sensor 

cannot ‘see’ the ground under any canopy of vegetation it is inherently incapable of 

providing any soil thermal data in vegetated areas, by far the major component of the 

landscape. 

10.1.7 Work Package 6 – Monitoring changes in peat erosion and accumulation 

Non-systematic variation in elevation identified between the two surveys precluded the 

opportunity to extract any meaningful statistics of change. A systematic shift in elevation 

recorded might be expected as a result of the accuracy of the coordinates for the GCPs 

(±0.04 m in z). This phenomenon was not highlighted by Glendell et al. (2017) who 

reported that UAV derived data can detect change within ±0.03 m. The approach adopted 

by Glendell et al (2017) used RTK GPS correction achieving a reported 3D accuracy of 

0.02 m. The type of UAV platform was also different (a quadcopter with gimbal) and the 

resolution of the imagery was at least twice as high (0.005 - 0.01 m). 

Given the issues experienced here, should this technique be considered for application it 

needs considerable further development and, in particular, survey design and equipment 

need further research and development. 

10.2  Concluding discussion and summary recommendations 

Remote sensing is often seen by those unfamiliar with it as a kind of ‘magic bullet’, 

something able to deliver a monitoring programme cheaply without much effort. It has 

never been this. In the conservation sector, it is frequently executed using inappropriate 

or incomplete protocols with little field data support. Critically, results are usually provided 
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without any form of accuracy assessment so their value is impossible to gauge. The old 

axiom is still relevant: 

‘Without accuracy assessment, remote sensing is just a pretty picture.’ 

There is potential that the availability of cheap, easy to use UAVs will result in an 

increased production of maps and data outputs of poor quality. 

MFF 50 2016-17 addresses this problem directly. It set a challenging objective: to 

demonstrate techniques to obtain validated quantitative data, at centimetre resolution, of 

the distributions of vegetation cover, channel erosion and surface moisture using remotely 

sensed imagery and automated classification systems. These requirements are very 

different from simple manual visual interpretation, the predominant use to which such 

imagery is put in the conservation sector. 

To examine this topic in breadth the project has utilised a range of image data, from orbital 

to UAV, and a variety of classification approaches. During its four year execution MFF 50 

2016-17 experienced a considerable number of practical difficulties with acquisition of 

data suitable for monitoring purposes. We believe the lessons learned from these should 

be considered key findings of this report. 
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Section 12: Annexes  
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Annex A: 

Developmental groupings and species list used during Phase 2 

Strim A: Exclusions  

Aim to create a dataset where most samples are included except for species with very 

small sample numbers and unusable samples. 

1: All <20cm samples deleted 
2: Agrostis (7) deleted 
3: Epilobium (2) deleted 
4: Fern (2) deleted 
5: Polytrichum (1) deleted 
6: flexuosum (3) deleted 
7: Ulex (1) deleted 
8: Juncus bulbosus (5) deleted 
9: Leucanthemum (1) deleted  
10: Not (sic) Pteridium (1) deleted 
11: Phragmites (2) deleted 
12: Rhododendron groenlandicum (1) deleted 
13: Sorbus aucuparia (3) deleted  
14: Vaccinium vitis-idaea (3)  
15: obscured selection (23) deleted 
19: mixed species selection (53) deleted 
 
Final size = 6889 

 

Strim B: Exclusions  

Primarily to investigate role of sample areal extent. These are in addition to those in Strim 

A. 

1: <40 cm samples (518) deleted 
2: capillifolium (5) deleted 
3: Deschampsia cespitosa (1) deleted 
4: Holcus lanatus (1) deleted 
5: Holcus mollis (7) deleted 
6: magellanicum (3) deleted 
7: tenellum (4) deleted 
 
Final size = 6350 
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Strim C: Exclusions  

Primarily to investigate role of small samples. These are in addition to those in Strim A & 

B. 

1: Abies deleted 
2: Betula deleted 
3: Pinus deleted 
4: Rhododendron ponticum deleted  
5: cuspidatum (16) deleted  
6: denticulatum – (5) deleted 
7: Erica cinerea (10) deleted 
8: Heath brash (4) deleted 
9: papillosum (10) deleted 
10: squarrosus (2) deleted 
11: subnitens (15) deleted 
 
Final size = 6110 

 
Table A:1. Strim D as used in 2019: 23 classes with sample record number >70  

Sample Count 

  
Bare peat 341 
Calluna 467 
Calluna dead 234 
Calluna flower 216 
Deschampsia flexuosa 102 
Empetrum nigrum 198 
Eriophorum angustifolium 526 
Eriophorum vaginatum 577 
fallax 124 
fimbriatum 85 
Juncus effusus 412 
Juncus squarrosus 106 
Mineral soil 134 
Molinia caerulea 119 
Nardus stricta 245 
Polytrichum spp 325 
Pteridium aquilinum 73 
Pteridium aquilinum senesced 111 
Rock 162 
Shadow 427 
Trichophorum cespitosum 112 
Vaccinium myrtillus 375 
Water 241 
  

Total 5712 
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Error matrices created during development in Phase 2 

 

Table A:2. Strim A Error matrix. Nearest Neighbour classification. 20cm search area. All classes. 
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Table A:3. Strim A Error matrix. Nearest Neighbour classification. 20cm search area. Calluna (includes Calluna, Calluna flower and Calluna dead); Pteridium (includes Pteridium and Pteridium sen) folded. 
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Table A:4. Strim A Error matrix. Nearest Neighbour classification. 10cm search area. All classes. 
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Table A:5. Strim A Error matrix. Nearest Neighbour classification. 10cm search area. Calluna (includes Calluna, Calluna flower and Calluna dead); Pteridium (includes Pteridium and Pteridium sen) folded. 
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Table A:6. Strim B Error matrix. Nearest Neighbour classification. 20cm search area. All classes. 
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Table A:7. Strim B Error matrix. Nearest Neighbour classification. 20cm search area. Calluna (includes Calluna, Calluna flower and Calluna dead); Pteridium (includes Pteridium and Pteridium sen) folded. 
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Table A:8. Strim B Error matrix. Nearest Neighbour classification. 10cm search area. All classes. 
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Table A:9. Strim B Error matrix. Nearest Neighbour classification. 10cm search area. Calluna (includes Calluna, Calluna flower and Calluna dead); Pteridium (includes Pteridium and Pteridium sen) folded. 
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Table A:10. Strim C Error matrix. Nearest Neighbour classification. 20cm search area. All classes. 
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Table A:11. Strim C Error matrix. Nearest Neighbour classification. 20cm search area. Calluna (includes Calluna, Calluna flower and Calluna dead); Pteridium (includes Pteridium and Pteridium sen) folded. 
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Table A:12. Strim C Error matrix. Nearest Neighbour classification. 10cm search area. All classes. 
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Table A:13. Strim C Error matrix. Nearest Neighbour classification. 10cm search area. Calluna (includes Calluna, Calluna flower and Calluna dead); Pteridium (includes Pteridium and Pteridium sen) folded. 
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Table A:14. Strim C Error matrix. Nearest Neighbour classification. 5cm search area. All classes. 
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Table A:15. Strim C Error matrix. Nearest Neighbour classification. 5cm search area. Calluna (includes Calluna, Calluna flower and Calluna dead); Pteridium (includes Pteridium and Pteridium sen) folded. 
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Table A:16. Strim C Error matrix. Mahalanobis classification. 10cm search area. All classes. 
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Table A:17. Strim C Error matrix. Mahalanobis classification. 10cm search area. Calluna (includes Calluna, Calluna flower and Calluna dead); Pteridium (includes Pteridium and Pteridium sen) folded. 
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Annex B: 

Re-examination of field data for 2020 classification 

 

Table B:1. Samples in shadow in 2019 moved to classification in 2020 during Phase 3 

Class Shadow 2019 
Shadow 2020 Added to 

classification 
Incorrect 

class 

     
Agrostis spp. 1    
Bare peat 118 10 108  
Calluna in flower 1  1  
Calluna no flower 7  7  
Cushion moss 2    
Deschampsia flexuosa 7  7  
Empetrum dead 2    
Empetrum nigrum 6  6  
Eriophorum angustifolium 26  26  
Eriophorum vaginatum 22  22  
fallax 15  15  
Feather moss 1    
fimbriatum 13  13  
Flagstone 19   1 
Heather Brash 2    
Holcus mollis 2    
Juncus bulbosus 2    
Juncus effusus 15 1 14  
Juncus squarrosus 5  5  
Mineral soil 41  39 2 
Nardus stricta 14  14  
Polytrichum spp. 25 1 24  
Pteridium aquilinum 5  5  
Pteridium aquilinum senesced 1  1  
Rock 16  16  
Sorbus aucuparia 1    
Trichophorum cespitosum 1  1  
Vaccinium myrtillus 15  15  
Water 42 1   
     

Total 427  339  
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Annex C: 

Error matrices created during spectral clustering 
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Table C:1. Error matrix for Kinder. Species. 
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Table C:2. Error matrix for Kinder. Transformed divergence stage 2. 
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Table C:3. Error matrix for Kinder. Transformed divergence stage 3. 
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Table C:4. Error matrix for Kinder. ISODATA species. 
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Table C:5. Error matrix for Kinder. Spectral position stage 1. 
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Table C:6. Error matrix for Kinder. Spectral position stage 2. 
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Table C:7. Error matrix for Kinder. Spectral position stage 3. 
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