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Drug delivery systems are advanced methods that aim to deliver a targeted drug to a specific location or
release it at a controlled rate. Many methods have been proposed for drug delivery systems, among which
microfluidic systems present unique advantages. In contrast to bulk methods, in this work, by consider-
ing the unique capacity of microfluidic-based drug delivery systems, including controllability of fabri-
cated chip geometry and flow rate of multiphase fluid, highly stable particles with higher
encapsulation efficiency can be generated. Employing additive manufacturing in biomedical applications
has enabled researchers to propose novel and accurate microfluidic systems. In this paper, by employing
stereolithography (SLA) and fused deposition modeling (FDM) 3D printing, a microfluidic-based drug
delivery system for generating polycaprolactone (PCL) droplets loaded with dexamethasone drug is fab-
ricated. Scanning electron microscope (SEM) images and microscopic images show the effectiveness of
this method in generating such droplets.
� 2022 Elsevier Ltd. All rights reserved.
Selection and peer-review under responsibility of the scientific committee of The International Confer-
ence on Additive Manufacturing for a Better World. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Drug delivery systems include a broad range of technologies
and methods with the involvement of engineering and medical
science to facilitate and increase the speed of pharmaceutical com-
pounds, achieve efficient treatment, and reduce the period of phar-
maceutical prescribing [1–3]. Over the past decades, the
advantages and applications of drug delivery devices on the micro
and nanoscale in the medical and pharmaceutical industries have
been identified and increased at a noticeable speed [1,4].

Some of the emerging applications of drug delivery devices
include disease diagnosis, disease therapy facilitation, high control
in pharmaceutical components or gene analyses, efficient treat-
ment, and reduced therapy time for various diseases [5,6].
Recently, modern drug delivery systems can control the processes
of injection, absorption, distribution, and elimination of drugs or
genes. In this regard, researchers are always trying to propose
new approaches and devices to control the pharmaceutical process
[7,8]. Microfluidic devices are one of the most attractive technolo-
gies for scientists in all research fields [9]. In recent years, scientists
introduced many microfluidic devices into drug delivery systems
[10]. Also, microfluidic devices have various applications in
biomedical fields, for instance: cancer diagnosis, cell separation,
organ on a chip, food industry, tissue engineering, biochemistry
[4,11].

Various methods can be employed for the fabrication of
microfluidic devices. The most typical methods are soft lithography
and additive manufacturing (AM), in which choosing between the
fabrication methods depends on the size, accuracy, and applica-
tion. Additive Manufacturing, also known as three-dimensional
(3D) printing, has been considered a new approach that has great
potential in biomedical applications [12]. A 3D object, even on a
micro scale, can be fabricated with AM by a layer-by-layer method
[13–17]. Furthermore, it has the potential to greatly simplify fabri-
cation steps with fine features at a much lower cost and time [18–
20]. 3D-printed microfluidic devices can be specially designed for
y appli-
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applications such as: controlling the release of pharmaceutical
components, dosing to specify target and less side effect [21,22].

In this article, stereolithography (SLA) and fused deposition
modeling (FDM) 3D printing techniques were used to generate
polycaprolactone (PCL) droplets loaded with the drug. In this
regard, the microfluidic mold was printed with the SLA method,
and the support was printed with the FDM method for further
microfluidic preparation stages. Since dexamethasone has many
biomedical applications, it was chosen as the purpose drug in this
paper. Also, a flow focusing microfluidic droplet generation system
was used to provide PCL-dexamethasone spheres.
2. Materials and methods

2.1. Materials

PCL and chloroform were purchased from Merck, and poly-
dimethylsiloxane (PDMS) was obtained from Sylgard 184, Dow
Corning. The resin was purchased from JamgHe. PLA filament
was purchased from YOUSU. Isopropanol and ethanol were pur-
chased from Sigma/Merck. Polyvinyl alcohol (PVA) 96 % powder
is purchased from Sigma Aldrich.

2.2. Mold fabrication

Different 3D printing techniques can be implemented to fabri-
cate 3D features. One of the most common methods used is SLA.
Fig. 1. A schematic of (A) 3D-printed mold, (B) embedded mo
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The SLA printing is desirable and affordable, which was assisted
with computer design software (SolidWorks Inc. - Dassault team).
In this regard, an SLA printer with a resolution of 50 lm in the ver-
tical and horizontal directions was used. Fig. 1.A illustrates the
printed microfluidic mold.

2.3. PDMS casting

To prevent overflowing PDMS during casting, support was
designed with the FDM printing method. Fig. 1.B illustrates printed
support for casting PDMS. Next, PDMS and a curing agent were
combined at a ratio of 10:1. The PDMS mixture was poured into
a mold embedded with support to cover the entire mold. Then
the support was placed in a vacuum chamber for about 1 h to
remove bubbles inside the PDMS. Following that, all the structures
were placed on a hot plate at 70 ◦C for 4 h. Then the prepared
PDMS chip was peeled off from the mold and punched to have
inlets and outlets (Fig. 1.C). The punched PDMS channel bonded
to the glass with oxygen plasma (Fig. 1.D).

2.4. Generation of droplets

This chip consists of a 5 % PVA solution as the first phase and a
homogenous mixture of PCL, chloroform, and dexamethasone as
the second phase. A combination of the PCL and the chloroform,
1:5 wt ratio (10gr chloroform and 2gr PCL), was mixed for about
1 h [23]. Next, the dexamethasone was added to a homogenous
ld to 3D-printed support, (C) casted PDMS, (D) final chip.



Fig. 2. Experimental setup for testing droplet generation chip.
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fluid and mixed for about 30 min. Briefly, the PVA solution and the
chloroform solution were injected using two syringe pumps (Sama
Company) with 500 lL/min and 200 lL/min flow rates, respec-
tively. A Xiema microscope video camera is used to record the
videos. Fig. 2 presents the setup scheme of this system.
3. Results and discussions

As mentioned before, droplets are made of chloroform, PCL, and
dexamethasone, and the continuous phase is a 5 % PVA solution.
Fig. 3.A illustrates the droplet generation in the aforementioned
condition, and as can be seen, droplets are monodispersed. Fig. 3.
B shows the collecting chamber at the end of the channel, which
was provided for better analysis. Fig. 3.C shows the droplets at
the reservoir before evaporation, and high monodispersity can be
seen. After chloroform evaporation, FESEM is used to analyze PCL
solid spheres. Fig. 3.D and 3.E are SEM images of the PCL-drug
spheres with 100-lm and 1-millimeter scale bars, respectively.
Image processing from the SEM images shows that the average
3

diameter of the spheres is 150 lm. Results show that this assisted
3D-printed chip can generate PCL-droplets loaded with dexam-
ethasone, which can be used in drug delivery applications. Also,
changing microfluidic geometries can generate various ranges of
droplet sizes that have different drug-releasing rates and can be
used for different target drugs.
4. Conclusion

The microfluidic system was successfully fabricated by employ-
ing additive manufacturing technology, particularly use of the FDM
and SLA methods. The obtained results from SEM and microscopic
images show the succession of fabricated chips in generating PCL
droplets loaded with the dexamethasone drug.
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Fig. 3. Images of generated droplets in (A) microchannel, (B) collecting chamber, (C) reservoir, and SEM images of the drug-loaded droplet with (D) 100-lm scale bar, (E) 1-
millimeter scale bar.
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