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Physics of self-propelled objects at the nanoscale is a rapidly developing research field where
recent experiments focused on motion of individual catalytic enzymes. Contrary to the experimental
advancements, theoretical understanding of possible self-propulsion mechanisms at these scales is
limited. A particularly puzzling question concerns origins of reportedly high diffusivities of the
individual enzymes. Here we start with the fundamental principle of microscopic reversibility (MR)
of chemical reactions powering the self-propulsion and demonstrate that MR can lead to increase
of the particle mobility and of short- and long-time diffusion coefficients as compared to dynamics
where MR is neglected. Furthermore, the derived diffusion coefficients are enhanced due to the action
of an external force. These results can shed new light on interpretations of the measured diffusivities
and help to test the relevance of MR for the active motion of individual nanoswimmers.

I. INTRODUCTION

Active particles convert free energy of the host medium
directly into mechanical energy of translation and rota-
tion [1], which provides an opportunity to use them as
microrobots [2] in advanced applications such as transport
of microcargoes in lab-on-chip devices [3], drug delivery
[4, 5], biosensing [6], environmental remediation [7, 8],
or assembly of microstructures [9]. From a basic science
perspective, the active self-propelled motion leads to novel
types of emergent collective behavior not accessible in
passive systems. This includes so called living crystals
[10] and motility-induced phase separation of particles
with repulsive interactions only [11–13]. With all the fas-
cinating properties, active matter has become an exciting
research subject for non-equilibrium statistical physics.

Basic mechanisms underlying self-propulsion at length
scales of several micrometers and above are understood
rather well. At these scales, the active motion is typi-
cally powered by self-phoresis [14–19], i.e., by means of
tangential surface flows due to self-induced gradients of
the product and/or reactant molecules [16, 20, 21] or the
electric potential [22–26]. Their theoretical description
can be carried out at the hydrodynamic level [27–30] disre-
garding fluctuations in the number of chemical reactions,
rendering thus a non-stochastic self-propulsion velocity.

Contrary, the fluctuations are inherently present at
nanometer scales where recent experimental studies ad-
vocated that enzymes can exhibit self-propulsion when
catalyzing their respective reactions [31–37]. The idea
of self-propulsion was invoked to explain reportedly high
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diffusion coefficients of a wide range of enzymes. However,
models used to interpret measured data either neglect
fluctuations of the active velocity or do not consider the
effect of microscopic reversibility of chemical reactions
and underestimate the reported values [38–40]. Despite
growing number of experimental and theoretical studies,
the physical origins behind experimental observations on
active enzymes [41–43] and their possible self-propulsion
mechanism [39, 40] are still under active debates.

In this article, assuming that such a mechanism does
exist, we focus on the fundamental principle of microscopic
reversibility (MR) [44, 45] applied to chemical reactions
powering the self-propulsion. We show that MR has a
pronounced impact on dynamics of the nanoswimmer
and leads to enhancements of its mobility and diffusivity
compared to a passive particle and to models where MR
is neglected. Moreover, both quantities become sensitive
to the externally applied forces. We explain microscopic
origins of these effects on a minimal thermodynamically
consistent Markovian model of self-propulsion velocity.
Our main findings are formulated as specific proposals
for experimental tests aimed to verify the effects of MR.
At the same time, they suggest a way for controlling
particle mobility and diffusivity and provide insights into
further possible reasons for occurrence of the enhanced
diffusivities at the nanoscale.

II. MICROSCOPICALLY REVERSIBLE ACTIVE
PROPULSION

Consider a nanoswimmer whose active propulsion is
based on a chemical reaction that dissipates the free en-
ergy ∆Gr. Each such reaction causes a displacement δr
along the particle orientation n from the initial parti-
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cle position r to r + nδr. If the particle moves in an
external potential V (r) (e.g., in a potential in optical
tweezers, the one of gravitational, or electrostatic forces;
figure 1 schematically shows such an active particle in
an external electric field), in each such displacement the
work δW = V (r + nδr) − V (r) is done against the ex-
ternal force F = −∇V . Microscopic reversibility of the
chemical reaction [44] guarantees that to each forward
reaction leading to the displacement +δr, there exists a
reversed one associated with −δr, see schematics in Fig. 1.
Moreover, rates of the forward (k+) and reversed (k−)
reactions obey the local detailed balance condition

k+

k−
= e(∆Gr−δW )/kBT , (1)

where kB is the Boltzmann constant and T is the temper-
ature of ambient environment.

As a result of this active process and the passive dif-
fusion, the particle’s center of mass position r evolves in
time according to the Langevin equation

dr

dt
= ua(t)n(t) + µF (r) +

√
2D ξ(t), (2)

where the magnitude of active velocity, ua(t), is a (time
derivative of) Markov jump process with detailed bal-
anced rates k±. It describes active jumps by ±δr along
the particle orientation n(t), which changes over time due
to a rotational diffusion with the diffusion coefficient Dr.
For the sake of simplicity we consider two-dimensional dy-
namics and a spherically symmetric particle. Then n(t) =
(cosφ(t), sinφ(t)), and increments of the angle φ(t) arise
from integration of the delta-correlated zero-mean Gaus-

sian white noise ξr(t): φ(t) = φ(0) +
√

2Dr

∫ t
0
dt′ξr(t

′).

The last two terms on the right-hand side of (2) describe
the overdamped passive Brownian motion in the force field
F (r) with the translational diffusion coefficient D and
mobility µ satisfy related by the fluctuation-dissipation
theorem D = µkBT . Thermal noise components, ξ(t) =
(ξx(t), ξy(t)), are zero-mean delta-correlated Gaussian
processes: 〈ξi(t)〉 = 0, 〈ξi(t1)ξj(t2)〉 = δijδ(t1 − t2),
i, j = x, y.

Notice that models of active particles with the ther-
modynamically consistent propulsion, i.e., obeying the
detailed balance condition (1), have appeared only re-
cently [46, 47]. They were invoked in the discussion of
the entropy production [46], establishing a stochastic-
thermodynamic description of the active motion [47],
derivation of the phoretic velocity [48], discussion of
motility-induced phase separations [49], and of active heat
engines [50]. Further thermodynamically consistent mod-
els, where chemical kinetics is also modeled explicitly, were
discussed in the linear-response regime (∆Gr/kBT � 1)
[51–53].

FIG. 1. Schematic illustration of a catalytic nanoswimmer.
The catalytic region of the swimmer, depicted in blue, pro-
motes the forward reaction step of the decomposition of a
substrate molecule (small blue circle) into a product (small
red circle) molecule. The rate of the forward steps is k+ and
each step causes particle displacement by δr > 0 along the par-
ticle orientation n. The reversed reaction steps with the rate
k− transform the product molecules back into the substrate
driving particle translation by δr in the opposite −n direction.
As an example, it is illustrated here that the nanoswimmer is
electrically charged. The source of an external constant force is
schematically represented by an electric field generator. Then
applying an external electric field will result in an increase
of the diffusion coefficient of the nanoswimmer as compared
to the case of zero field. The enhancement of the diffusion
coefficient ∝ F 2 at leading order in F , where F is a magnitude
of the force exerted upon the nanoswimmer. This result holds
in general, not only for electric forces.

III. ENHANCED MOBILITY AND
FORCE-DEPENDENT DIFFUSIVITY

Even for a constant force F (r) = (F, 0) acting upon
the particle center of mass, the work δW in the detailed
balance condition (1) depends on time, δW = δW (t),

δW (t) = −Fn(t)δr = −Fδr cosφ(t), (3)

where Fn(t) = n(t) · F denotes the force component par-
allel with the particle orientation. Hence in the constant
force field, the both rates k± in (1) can be time-dependent,
k± = k±(t) as a consequence of MR.

To identify measurable effects that MR has on the par-
ticle dynamics, let us focus on the first and the second
moments of the particle position r(t) = (x(t), y(t)). We
derive them after solving a master equation corresponding
to (2). Details of the derivation are presented in the Elec-
tronic Supplementary Information (ESI). As a first and
general result, we obtain 〈r(t)〉 and 〈r2(t)〉 for arbitrary
time-dependent rates k±(t).

In particular, assuming initially the particle to reside
at the origin [x(0) = 0, y(0) = 0], and its orientation to
be random [φ(0) ∈ [0, 2π)], for its mean coordinates we
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get

〈x(t)〉 = µFt+

∫ t

0

dt′〈va(t′) cosφ(t′)〉, (4)

〈y(t)〉 = 0. (5)

The average under the integral in (4) is taken with respect
to the distribution of process φ(t), with va(t) being the
mean active velocity conditioned on the fixed particle
orientation. It is given by

va(t) = δr[k+(t)− k−(t)]. (6)

After introducing dispersion of the active displacement
for a fixed orientation Da(t),

Da(t) =
(δr)2

2
[k+(t) + k−(t)], (7)

we obtain the variance of the particle position:

〈r2(t)〉 − 〈r(t)〉2 = 4Dt+ 2

∫ t

0

dt′〈Da(t′)〉+

+

∫ t

0

dt1

∫ t

0

dt2

{
〈va(t1)va(t2) cos[φ(t2)− φ(t1)]〉

− 〈va(t2) cosφ(t2)〉2
}
.

(8)

Also in this result, the averages on the right-hand side
are over realizations of the process φ(t).

For a further analysis of general results (4) and (8),
we need to specify dependencies of rates k±(t) on the
work function δW (t) from (3). Usually, finding an exact
form of k±(t) is a model-specific task [54, 55] particularly
challenging when starting from a microscopic dynamics
[56, 57]. Instead of proceeding along this direction and
thus discussing a specific model, let us assume the active
propulsion to be a thermally activated process. In such
a case, detailed balanced activated rates are frequently
chosen in the exponential form

k±(t) = k
(0)
± exp

[
∓δW (t)

2kBT

]
, (9)

where constant rates k
(0)
± , satisfying k

(0)
+ /k

(0)
− =

exp[∆Gr/kBT ], describe the active propulsion in absence
of the external force. The factor 1/2 in the exponent in (9)
assures that these rates are detailed balanced according
to Eq. (1).

For the sake of clarity, we will discuss properties of
Eqs. (4) and (8) in the weak-force limit: Fδr/2kBT < 1,
see formulas (12)-(14), and (16) below. If δr is in nanome-
ters and kBT corresponds to the room temperature, this
inequality is satisfied by F of the order of piconewtons or
weaker. In case of stronger forces, exact formulas valid for
arbitrary F given in Sec. I of ESI should be used. Physical
meanings of the exact formulas and their dependence on
parameters are qualitatively similar to those of approxi-
mate ones provided below. The main difference is that

exact results contain (series of) modified Bessel functions
of the first kind of the argument (Fδr/2kBT ) instead of
linear and quadratic functions displayed in Eqs. (12)-(14),
and in (16).

Notably, a specific form of k
(0)
± is not needed for the

evaluation of averages on the right-hand side of Eqs. (4)
and (8). All results are expressed in terms of the mean

active velocity v
(0)
a and the active diffusivity D

(0)
a of a

force-free dynamics defined as

v(0)
a = δr(k

(0)
+ − k(0)

− ), (10)

D(0)
a =

(δr)2

2
(k

(0)
+ + k

(0)
− ), (11)

respectively.
If MR is neglected, (4) gives us response of 〈x(t)〉 to

the applied force identical to that of a passive Brownian
particle: 〈x(t)〉 = µFt. Indeed, neglecting MR means dis-
regarding the mechanochemical coupling required by MR
in (1). In such case, the rates k±(t) do not depend on the

mechanical work δW (t), k±(t) = k
(0)
± , hence va(t′) = v

(0)
a

is constant and the correlation function 〈va(t′) cosφ(t′)〉
in (4) vanishes because 〈cosφ(t′)〉 = 0.

For the microscopically reversible active propulsion, (4)
gives us

〈x(t)〉 =

(
µ+

1

2

D
(0)
a

kBT

)
Ft, (12)

where we can identify D
(0)
a /kBT as the active mobility

µ
(0)
a = D

(0)
a /kBT in accordance with the fluctuation-

dissipation theorem. This extra term stems from de-
pendence of va(t) on the particle orientation through
δW (t). The velocity va(t) as well as cosφ(t) are largest
when the particle is oriented in parallel with F , i.e., when
cosφ(t) = 1. Contrary, there is no effect of F on va(t) for
the perpendicular orientation [cosφ(t) = 0]. Averaging
over all orientations leads to the factor 1/2 in (12).

Let us now describe fluctuations of r(t) around its
mean value. They arise from three qualitatively different
sources as quantified by the three terms in (8). The
first term, 4Dt, corresponds to the passive Brownian

motion. The second, 2
∫ t

0
dt′〈Da(t′)〉, originates from

fluctuations in number of chemical reactions powering the
active propulsion. In fact, 〈Da(t)〉 does not depend on
time and we have∫ t

0

dt′〈Da(t′)〉 = D(0)
a

[
1 +

(
Fδr

4kBT

)2
]
t. (13)

The third term on the right-hand side of (8) accounts for
the amount of noise added to statistics of r(t) due to the
rotational diffusion of particle’s active velocity.

In experiments, the fluctuations of r(t) are most widely
discussed within the short-time and the long-time limits
[34–36]. In both regimes, the variance 〈r2(t)〉 − 〈r(t)〉2
grows linearly with t. Diffusivities, giving slopes of the
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linear t-dependencies within these regimes, differ by the
third, “rotational-diffusion”, term in (8).

In the short-time limit, the result (8) yields

〈r2(t)〉 − 〈r(t)〉2 ≈ 4

{
D +

D
(0)
a

2

[
1 +

(
Fδr

4kBT

)2
]}

t,

(14)
where we have neglected higher-order powers of t, which
are all in the form (Drt)

m, m = 2, 3, . . ., and correspond
to power series expansion of the third term in (8). Such
limit means t � D−1

r , i.e., the rotational diffusion is
negligible in this regime. Therefore, the enhancement of
short-time diffusivity in (14) (as compared to the passive
Brownian motion) is entirely due to (13).

For long observation times (t� D−1
r ), (8) predicts the

effective diffusion coefficient of the particle,

D = lim
t→∞

〈r2(t)〉 − 〈r(t)〉2

4t
, (15)

to be given by

D = D +
D

(0)
a

2

[
1 +

(
Fδr

4kBT

)2
]

(16)

+
(v

(0)
a )2

2Dr

[
1 +

1

8

(
Fδr

kBT

)2
]

+
1

32Dr

(
D

(0)
a F

kBT

)2

.

Here, the first line is equal to the short-time diffusivity,
cf. (14). The Dr-dependent terms on the second line
originate from the third term on the right-hand side of (8).

Remarkably, in the both regimes (14) and (16), the par-
ticle diffusion constant increases with the amplitude of the
external force F . The force-dependent terms responsible
for the enhancement would be absent in a phenomenolog-
ical model neglecting MR and assuming δW -independent

rates k±(t) = k
(0)
± for the active propulsion.

IV. ACTIVE PROPULSION IN THE
MACROSCOPIC LIMIT

In the Langevin equation (2), ua(t) is a random shot
noise-like process reflecting the time-discrete nature of
chemical reactions. If the active motion is observed on
macroscopic time and length scales, ua(t) becomes

ua(t) ≈ u+ µcFn(t) +
√

2Dc ξn(t), (17)

which depends on the constant mean active velocity u,
given as the free energy of reaction per elementary dis-
placement (u/µc)δr = ∆Gr, on the associated mobility
µc on the external force projected onto particle’s orien-
tation, Fn(t), introduced in (3), and on the zero-mean
Gaussian white noise ξn(t) with the intensity controlled
by Dc = µckBT . The white noise describes fluctuations
in the number of chemical reactions as observed at the
macroscale. Notably, if F = 0 (Fn = 0), the Langevin

equation (2) with the coarsegrained active velocity (17)
can be formally mapped onto that of an asymmetric active
Brownian particle [58].

A derivation of the macroscopic approximation (17)
starting from the microscopic dynamics is presented in
ESI. It is formally performed by taking the δr → 0 limit

while both v
(0)
a and D

(0)
a , given in Eqs. (10) and (11),

remain finite and nonzero. This is achieved by impos-
ing the usual diffusive coupling of microscopic time and
length scales, i.e., “(position)2 ∼ time” or k± ∼ (1/δr)2.
The macroscopic quantity Dc is then obtained from the

microscopic model as the δr → 0 limit of D
(0)
a .

In practice, if rate constants describing the active
propulsion are not known, the diffusion coefficient Dc

(or µc = Dc/kBT ) should be treated as a phenomenologi-
cal macroscopic parameter. Its value can be determined
experimentally assuming the value of passive mobility µ
of the particle is known. To this end, one can measure
the mean position along the force direction and infer µc

from the result (18). Or/and one can determine the short-
and long-time diffusivities and compare their values with
Eqs. (20) and (21), respectively.

Macroscopic expressions for the moments of r(t) can
be derived by solving the Langevin equation (2) with the
macroscopic active velocity (17); mathematical details are
included in ESI. As a result, the macroscopic behavior of
〈x(t)〉 is similar to its microscopic counterpart (12),

〈x(t)〉 =
(
µ+

µc

2

)
Ft, (18)

〈y(t)〉 = 0. (19)

The particle mobility parallel to the force is thus enhanced
as compared to the passive mobility µ.

For the short-time fluctuations of r(t), we get

〈r2(t)〉 − 〈r(t)〉2 ≈ 4

(
D +

Dc

2

)
t, Drt� 1, (20)

and for the long-time diffusion constant (15), which we
denote as Dm in the macroscopic limit, we obtain

Dm = D +
Dc

2
+

u2

2Dr
+

(µcF )
2

32Dr
. (21)

Contrary to the exact short-time diffusivity (14), the
macroscopic result (20) does not depend on the external
force. Yet, it is still larger than that of a passive particle
(D) by the term Dc/2. This term also appears in the
macroscopic long-time diffusion coefficient Dm, Eq. (21).
Furthermore, Dm depends on the constant part of the
macroscopic active velocity u and on the external force
amplitude F .

Finally, we discuss an important special case of our
macroscopic results, which is formally obtained by setting
µc = 0 in (17). This is equivalent to neglecting both
the MR and the fluctuations of the macroscopic active
velocity (17), which then becomes constant, ua(t) = u.
Langevin equations (2) with ua(t) = u describe dynamics
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TABLE I. Mobility and short- and long-time diffusivities of the passive Brownian particle (BP, 2nd column), standard active
Brownian particle (ABP, 3rd column), and of the current microscopically reversible active Brownian particle (MRABP) model.
The 4th column displays corresponding quantities for MRABP in the macroscopic limit (17), 5th column shows results of
microscopic calculations for MRABP.

Passive BP Standard ABP Macroscopic MRABP Microscopic MRABP

Mobility µ µ µ+
µc

2
µ+

1

2

D
(0)
a

kBT

Short-time

diffusion coefficient
D D D +

Dc

2
D +

D
(0)
a

2

[
1 +

(
Fδr

4kBT

)2
]

Long-time

diffusion coefficient
D D +

u2

2Dr

D +
Dc

2
+

+
u2

2Dr
+

(µcF )2

32Dr

D +
D

(0)
a

2

[
1 +

(
Fδr

4kBT

)2
]

+

+
(v

(0)
a )2

2Dr

[
1 +

1

8

(
Fδr

kBT

)2
]

+
1

32Dr

(
D

(0)
a F

kBT

)2

of the standard active Brownian particle (ABP) model [59–
61]. In ABP, the mean particle displacement parallel to
the force equals to that of a passive particle: 〈x(t)〉 = µFt.
Also the short-time diffusivity for ABP is given by that of
a passive particle since Dc = 0 in (20). For the long-time
diffusion coefficient, the ABP yields DABP = D+u2/2Dr,
where both Dc/2 and (µcF )2/32Dr terms are missing as
compared to the thermodynamically consistent macro-
scopic result (21). Consequently, if applied to a particle
driven by a microscopically reversible active process, the
ABP yields smaller mobility and both diffusivities as com-
pared to the corresponding thermodynamically consistent
model. Table I summarizes our predictions for the parti-
cle mobility and the diffusivity enhancement (relative to
the case of a passive particle) and compares those to the

FIG. 2. An order of magnitude estimation of the increase
∆D = D − D, with D given in Eq. (16), of the diffusion
coefficient of a micro-reversible nanoswimmer as the function
of the external force amplitude F ; magenta curve. Black line
shows the increase predicted by the standard active Brownian
particle model. In this estimations, we used δr = 5 nm,
k+ = 105 s−1, and Dr = 105 s−1.

corresponding results of the standard active Brownian
particle model. Notice that the standard ABP model has
recently been used in analysis of enzyme diffusivities [38],
where MR and fluctuations of the active velocity can be
relevant.

Figure 2 shows an order of magnitude estimate of the
predicted diffusion enhancement ∆D = Dm−D (magenta
curve), calculated according to Eq. (21) as a function of
the magnitude F of an external force; black line corre-
sponds to the case of the standard active Brownian model
with µc = 0. We use δr = 5 nm, k+ = 105 s−1, and
Dr = 105 s−1, which is of the same order as the values
reported in experimental studies [34–36] for catalytically
active urease.

V. SUMMARY AND IMPLICATIONS FOR
EXPERIMENTS

We have identified several unique features resulting
from the microscopic reversibility in the generic model
of stochastic nanoswimmer with the microscopically re-
versible active propulsion. These include enhancements
of the mobility and the short- and long-time diffusion
constants as compared to the passive dynamics and to
the active dynamics not obeying MR. Furthermore, the
diffusion constants are force-dependent, which makes our
predictions particularly relevant for experiments with
nanoswimmers acted upon by external forces.

In such experiments, measurements of the mean particle

position (12) shall give us the active diffusivity D
(0)
a pro-

vided the passive mobility µ is known.[62] Alternatively,

D
(0)
a can be obtained from the short-time diffusivity (14)

at zero external force. The value of D
(0)
a is crucial for

understanding the enhancements of the particle diffusion
constants in (14) and (16). It is present also in the macro-
scopic approximation, where the discrete nature of active
propulsion can be disregarded. At this coarse grained
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level of description, Dc (the macroscopic counterpart of

D
(0)
a ) contributes to the enhancement of the overall mo-

bility and to the both diffusivities [Eqs. (20) and (21)]. If

in addition to D
(0)
a the reaction rates k

(0)
± for the active

propulsion are known, we can estimate the elementary

active displacement δr based on the definition of D
(0)
a in

(11). This estimate can give us the mean active velocity

v
(0)
a (10), which also contributes to the enhancement of

the long-time diffusion constant (16).

VI. CONCLUSIONS

From a general perspective, the demonstrated sensitiv-
ity of diffusion coefficients and the mobility to the coupling
between chemical and mechanical degrees of freedom can
contribute to the basic understanding of diffusivity en-
hancement of individual active molecules. Indeed, those
operate on time scales where fluctuations in chemical re-
actions and their statistical properties can be relevant,
therefore correctly including the microscopic reversibility
can be crucial in this case, in contrast to micron-sized
colloids powered by tenths of thousands of reaction steps
per an elementary displacement.

The force-dependence of diffusivities indicates a way
to experimentally verify the role of MR by varying the
amplitude of the externally applied force. Moreover, ac-
cording to these results, the diffusion constants can be
sensitive also to local forces. For example, in experiments
where nanoswimmers move near surfaces, electrostatic
or van der Waals interactions with the surface can have
non-negligible effects on the measured diffusion constants.
Performing such experiments in a controlled manner can
yield a definite answer regarding relevance of MR for the
active propulsion at the nanoscale, which in turn can
contribute to better understanding of further physical
mechanisms determining the value of particle’s diffusivity.
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Structure formation by active Brownian particles, Phys.
Lett. A 207, 140 (1995).

[60] B. ten Hagen, S. van Teeffelen, and H. Löwen, Brownian
motion of a self-propelled particle, J. Phys.: Condens.
Matt. 23, 194119 (2011).

[61] P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, and
L. Schimansky-Geier, Active Brownian particles, Eur.
Phys. J. Spec. Top. 202, 1 (2012).

[62] The passive mobility can be calculated based on the
Stokes relation: 1/µ = 6πηR, where η is the dynamic
viscosity and R denotes the hydrodynamic radius of the
nanoswimmer.

https://doi.org/10.1017/jfm.2011.132
https://doi.org/10.1017/jfm.2011.132
https://doi.org/10.1209/0295-5075/106/58003
https://doi.org/10.1039/C4SM00340C
https://doi.org/10.1039/c6sm01867j
https://doi.org/10.1039/c6sm01867j
https://doi.org/10.1146/annurev-fluid-122414-034456
https://doi.org/10.1017/jfm.2017.502
https://doi.org/10.1017/jfm.2017.502
https://doi.org/10.1039/C7CS00087A
https://doi.org/10.1007/978-3-319-67798-9_8
https://doi.org/10.1007/978-3-319-67798-9_8
https://doi.org/10.1063/1.5065656
https://doi.org/10.1063/1.5065656
https://doi.org/10.1021/ja908773a
https://doi.org/10.1021/ja3091615
https://doi.org/10.1021/nn405963x
https://doi.org/10.1073/pnas.1717844115
https://doi.org/10.1073/pnas.1717844115
https://doi.org/10.1073/pnas.1814180115
https://doi.org/10.1073/pnas.1814180115
https://doi.org/10.1073/pnas.2019810117
https://doi.org/10.1073/pnas.2019810117
https://doi.org/https://doi.org/10.1016/j.bioactmat.2020.11.022
https://doi.org/https://doi.org/10.1016/j.bpj.2019.04.005
https://doi.org/10.1021/acscentsci.9b00228
https://doi.org/10.1146/annurev-biophys-121219-081535
https://doi.org/10.1126/science.aba8425
https://doi.org/10.1126/science.abe8322
https://doi.org/10.1126/science.abe8678
https://doi.org/10.1126/science.abe8678
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/https://doi.org/10.1016/j.bpj.2014.11.3459
https://doi.org/https://doi.org/10.1016/j.bpj.2014.11.3459
https://doi.org/10.1088/1751-8121/aa91b9
https://doi.org/10.1088/1751-8121/aa91b9
https://doi.org/10.1209/0295-5075/123/20007
https://doi.org/10.1103/PhysRevE.99.060602
https://doi.org/10.1103/PhysRevE.99.060602
https://doi.org/10.1063/1.5081115
https://doi.org/10.1103/PhysRevX.9.041032
https://doi.org/10.1103/PhysRevX.9.041032
https://doi.org/10.1063/1.5008562
https://doi.org/10.1063/1.5008562
https://doi.org/10.1063/1.5020442
https://doi.org/10.1063/1.5029344
https://doi.org/10.1016/0079-6107(74)90020-0
https://doi.org/10.1016/0079-6107(74)90020-0
https://doi.org/10.1039/C6FD00140H
https://doi.org/10.1088/1742-5468/ab252f
https://doi.org/10.1088/1742-5468/ab252f
https://doi.org/10.1038/srep36702
https://doi.org/https://doi.org/10.1016/0375-9601(95)00700-D
https://doi.org/https://doi.org/10.1016/0375-9601(95)00700-D
https://doi.org/10.1088/0953-8984/23/19/194119
https://doi.org/10.1088/0953-8984/23/19/194119
https://doi.org/10.1140/epjst/e2012-01529-y
https://doi.org/10.1140/epjst/e2012-01529-y

	Enhanced diffusivity in microscopically reversible active matter
	Abstract
	I Introduction
	II Microscopically reversible active propulsion
	III Enhanced mobility and force-dependent diffusivity
	IV Active propulsion in the macroscopic limit
	V Summary and implications for experiments
	VI Conclusions
	 Acknowledgements
	 References


