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Abstract: This paper proposes the fusion of Unobtrusive Sensing Solutions (USSs) for human Ac- 14 

tivity Recognition and Classification (ARC) in home environments. It also considers the use of data 15 

mining models and methods for cluster-based analysis of datasets obtained from the USSs. The abil- 16 

ity to recognise and classify activities performed in home environments can help monitor health 17 

parameters in vulnerable individuals. This study addresses five principal concerns in ARC: (i) users’ 18 

privacy, (ii) wearability, (iii) data acquisition in a home environment, (iv) actual recognition of ac- 19 

tivities, and (v) classification of activities from single to multiple users. Timestamps information 20 

from contact sensors mounted at strategic locations in a kitchen environment helped obtain the time, 21 

location and activity of 10 participants during the experiments. 11,980 thermal blobs gleaned from 22 

privacy-friendly USSs such as ceiling and lateral thermal sensors were fused using data mining 23 

models and methods. Experimental results demonstrated cluster-based activity recognition, classi- 24 

fication and fusion of the datasets with an average regression coefficient of 0.95 for tested features 25 

and clusters. In addition, a pooled Mean accuracy of 96.5% was obtained using classification-by- 26 

clustering and statistical methods for models such as Neural Network, Support Vector Machine, K- 27 

Nearest Neighbour and Stochastic Gradient Descent on Evaluation Test. 28 

Keywords: K-Means Analysis; Home Environment; Sensor Fusion; Activity Recognition; Unobtru- 29 
sive Sensing; Data Mining; Principal Component Analysis; Infrared Thermopile Array. 30 

 31 

1. Introduction 32 

Recognising individual activities of people susceptible to hazardous behaviours 33 

such as falls, wandering, and agitation has been an active research topic, which has 34 

witnessed the use of pervasive and non-pervasive Sensing Solutions (SSs) [1]. This paper 35 

is an extended version of the paper “Data Mining and Fusion of Unobtrusive Sensing 36 

Solutions for Indoor Activity Recognition”, published in 2020 42nd Annual International 37 

Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) [2]. 38 

Interestingly, many cases of hazardous behaviours in ageing adults can be prevented [3] 39 

[4]. While there are several SSs that can detect these behaviours when they occur, it would 40 

be of great benefit if they can be predicted prior to their occurrence. This may be achieved 41 
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by using Data Mining (DM) and Machine Learning (ML) models, which can help discover 42 

patterns and potential deviations from established patterns in the data gleaned from a 43 

sensorised environment. 44 

Pattern Deviation Assessment (PDA) in activity recognition is a vital tool in detecting 45 

abnormal activities [5]. Its outcome helps to determine if an ageing individual can be 46 

considered to be independent or not whilst performing certain activities [5]. This is an 47 

important part of the home-based assessment process to gauge if a person can remain 48 

living in their own home. PDA can also help determine the extent of recovery from injury, 49 

potential hazardous behaviour and an individual’s effectiveness. Pattern deviation can 50 

take forms such as detecting incomplete activities and sudden changes in activity, 51 

disposition and posture. PDA outcomes are often positioned in clusters to help access a 52 

set of activities or patterns on demand. The present work benefits from cluster-based 53 

analysis of patterns discovered from features extracted from thermal images using DM 54 

models and methods. 55 

Research in ARC has often considered the use of wearables such as accelerometers 56 

and video-based solutions such as Kinect [6]–[12]. Whilst accelerometers can provide 57 

information on orientation and angular acceleration of the worn part, wearability and data 58 

disruptions are some of the disadvantages. Likewise, Kinect has problems ranging from 59 

interference with external infrared sources to privacy and reflections in home 60 

environments [13]–[16]. This work tackles these problems through the usage of Unobtru- 61 

sive Sensing Solutions (USSs) such as Infrared Thermopile Array (ITA) thermal SSs, which 62 

are non-wearable and not prone to reflections in home environments.  63 

The novel contributions of this work are four-fold. First, it presents an unobtrusive 64 

data collection through the use of non-wearable (i.e., privacy-friendly) USSs. Secondly, it 65 

presents a comprehensive analysis of the data gleaned from two ITA sensors through the 66 

use of DM models and methods. Thirdly, it proposes the fusion of data from the ceiling 67 

and lateral thermal sensors to address instances of occlusion. Fourthly, it compares the 68 

averages of models from the lateral, ceiling and fused datasets using statistical methods 69 

such as T-Test and ANOVA. 70 

The remainder of this paper is organised as follows: Section 2 discusses related work; 71 

Section 3 presents the materials and methods; Section 4 presents the experimental results; 72 

Section 5 presents discussions around the study findings and conclusions. 73 

2. Related Work 74 

Many SSs have been deployed over the years for the purposes of activity recognition 75 

[17]–[19]. These have included the use of wearable or non-wearable solutions or the fusion 76 

of both. Whilst they help data acquisition in the environment where they are deployed, 77 

their use in home settings can be negatively influenced by signals from other legacy 78 

systems and obstructive materials. Work in [20] proposed the use of a Hidden Markov 79 

Model to recognise human activities based on data gleaned from a waist-worn 80 

accelerometer. The model also classified collected signals according to a corresponding 81 

class. In the study, continuous monitoring was performed by a Gaussian Mixture Model. 82 
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A further study by Ni et al. [21] used a Multivariate Online Change Detection algorithm 83 

for activity recognition. 84 

Accelerometers for activity recognition have been featured in many studies [20], [22]. 85 

In [23], the use of tri-axial accelerometers was proposed for monitoring rest, movement, 86 

transition and emergency states in ageing adults. Although the successful detections of 87 

the activities were noted in the study, the ability to distinguish between activities and 88 

classify them accordingly was considered for further improvements. In [24], a tri-axial 89 

accelerometer was used to monitor daily physical activity. In addition to the challenges of 90 

the approach presented in [23], wearability was an issue reported in the latter study. 91 

Another multi-wearable sensor study was carried out by Gao et al. [22]. Whilst a garment- 92 

based accelerometer might exhibit improved performance in a laboratory environment as 93 

illustrated by [22], real-life usage may suffer the risks of explosion or damage to the 94 

sensors during washing activity. Also, long term usage can cause a feeling of discomfort 95 

for the user. 96 

Activity Recognition and Classification (ARC) through the use of mobile devices has 97 

also been researched [2]. Work by Figo et al. [8] explored the use of a smartphone’s 98 

accelerometer to recognise and classify activities such as running and walking during a 99 

certain period of the day. The study obtained information from the GPS sensor to suggest 100 

to the user routines similar to those performed in previous days. The work presented by 101 

[25] suggested that mobile devices should be optimised to enhance the continuous 102 

monitoring and processing of data acquired from their sensors. Whilst these suggestions 103 

seem innovative and worthy of exploration, battery life and the users’ ability to remember 104 

to carry mobile devices around are major setbacks. Furthermore, in Konios et al. [26], a 105 

probabilistic examination of temporal and sequential aspects of activities using an 106 

approach based on the Cumulative Distribution Function is employed to determine 107 

abnormalities in activities. This approach involved deriving probabilities of normal 108 

behaviours with respect to the duration and the stages of an activity. Whilst this study 109 

introduced an effective way to detect (ab)normal activities, a profile analysis of users 110 

aimed at ensuring more precision in detecting the presence of health-related abnormalities 111 

is still being researched. 112 

Data fusion from homogeneous and heterogenous sensors has also been deployed in 113 

ARC. Garcia-Constantino et al. [18] investigated the fusion of data from wearable 114 

(accelerometer) and ambient (thermal) sensors by extracting relevant features from both. 115 

Initial results from this approach indicated an improvement in abnormal behaviour 116 

detection. 117 

DM and ML models have positively influenced human activity recognition, 118 

clustering and classification in home settings. Whilst many activity monitoring models 119 

can exhibit excellent performance in a controlled environment such as laboratories [21], 120 

others can only be moderated by trained personnel [27]. This often results in successful 121 

laboratory work which cannot be deployed in a real-life setting.  122 
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Presently, ARC in a home environment has featured sophisticated SSs. These solu- 123 

tions are often used to acquire data in different areas, including the prediction of preva- 124 

lence and management of individuals with diseases such as dementia, osteoporosis, and 125 

increased fragility [28], [29]. They also help to detect hazardous incidents [19]. Neverthe- 126 

less, data acquisition in a home setting can be negatively influenced by gadgets that can 127 

interfere with signal propagation from different SSs. Whilst the many advantages of using 128 

a video camera for home monitoring solutions cannot be understated, lack of privacy pro- 129 

tection and changes in lighting conditions are the main concerns for its use. This study 130 

was performed to address five principal concerns in ARC: (i) users’ privacy, (ii) wearabil- 131 

ity, (iii) data acquisition in a home environment, (iv) actual recognition of activities, and 132 

(v) classification of activities from single to multiple users. Hence, this study presents the 133 

fusion of data from unobtrusive (i.e., privacy-friendly) SSs for home-based ARC using 134 

DM models and methods. 135 

3. Materials and Methods 136 

Research in human activity recognition is an important monitoring process in smart 137 

homes [27] that has witnessed the use of wearable and non-wearable SSs. In this study, 138 

attention was given to privacy-friendly USSs. Also, the study was carried out in a smart 139 

laboratory kitchen that mimics a typical home kitchen [30]. More than 11,000 thermal blobs 140 

were recorded from 10 participants with two Infrared Thermopile Array (ITA) sensors. 141 

Participants were asked to prepare either a cup of tea or coffee. 142 

The present work uses two ITA-32 sensors to monitor and recognise activities in a 143 

laboratory kitchen, which is similar to a home kitchen. The two thermal sensors are used 144 

simultaneously to address instances of missing thermal blobs due to occlusion. Automated 145 

processing techniques are used to synchronise and extract features and to fuse data from 146 

both sensors. Contact sensors are used as the baseline to compare their timestamps with 147 

those of thermal sensors. The study was carried out in a laboratory kitchen (Figure 1), 148 

which measures 3.9m by 3.4m. Ten healthy participants took part in the study, and each 149 

of them participated in a total of seven experiments. To have a more realistic scenario, 150 

participants were allowed to take as long as they wished to complete the activities in each 151 

experiment. There were no time constraints or control on the duration of the activities 152 

undertaken. 153 

     154 
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Figure 1. Pictorial View of the smart laboratory kitchen used for the study. A detailed description of 155 
the kitchen layout is presented in Figure 2. 156 

The laboratory kitchen is comprised of cupboards (labelled 1– 4 in Figure 2) where 157 

tea, coffee, cups and sugar were stored. Underneath the cupboards is a worktop with a 158 

microwave, a kettle and a sink, thus mimicking a real-life kitchen. A refrigerator is located 159 

on the floor beneath the worktop, as indicated in Figure 2. The main kitchen area is where 160 

participants walked around to prepare a hot beverage (either tea or coffee) which was then 161 

taken to the table area for consumption. 162 

163 
Figure 2. Laboratory Kitchen Layout. The areas marked in red indicate the location of the contact sensors. 164 
Thermal sensors are indicated by the navy-blue oval shape as T1 and T2 for lateral and ceiling thermal sensors, 165 
respectively. The coverage of T1 is indicated by the triangular area while that of T2 is indicated by the oval 166 
area. 167 

In Figure 2, the lateral and the ceiling SSs are represented as T1 and T2, respectively. Whilst 168 

T1’s indicative coverage included a half of the kitchen area as represented by the 169 

triangular shades in Figure 2, T2’s coverage included a larger portion of the kitchen area 170 

as indicated by the oval shades. During data acquisition, each participant (at a time) walked in 171 

through door D1 to the main kitchen area where the cups were located. While some participants 172 

preferred to boil water in the kettle before going for the cups, others did the opposite. Data acqui- 173 

sition began a few seconds prior to opening door D1, notwithstanding the activity preferences of 174 

the participants. 175 

Data from T1 and T2 were stored in a bespoke time-series database referred to as SensorCen- 176 

tral [31], [32]. A total of 11,980 frame data (1,198 from each participant) were collected from the 177 

seven experiments. The contact sensors, which were also associated with the database, were able 178 

to record the times when each activity began and ended. Moreover, contact sensors were used as 179 

the baseline to compare the timestamps of both types of sensors. They also help to indicate 180 

which of the participants had tea or coffee. DM tools and algorithms were used to extract 181 
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features and to fuse data from both sensors. The DM algorithms used included the Hierarchical 182 

Clustering Algorithm (HCA) and the K-Means Algorithm (KMA). Metrics such as Classification 183 

Accuracy (CA), Specificity, weighted average (F1), Recall and Area Under the Curve 184 

(AUC) were used the ascertain the performance of DM models such as K-Near Neighbors 185 

(KNN), Logistic Regression (LR) and Neural Network (NN). Others included Random 186 

Forest (RF), Stochastic Gradient Descent (SGD), and Support Vector Machine (SVM). 187 

4. Results 188 

Experimental results indicated that activities such as using a bottle of milk could be 189 

identified and distinguished from using a kettle of hot water (Figure 3) using thermal 190 

blobs from T1. While a bottle of milk was seen as monochromatic shades of black due to 191 

its low temperature, a kettle of hot water had shades of white representation due to its 192 

high temperature, as presented in Figure 3. Moreover, it is important to note that notwith- 193 

standing the closeness of the participants to the thermal sensor (Figure 3), their identities 194 

were still protected. The RGB equivalents of the activities such as opening the fridge (Fig- 195 

ure 4 (a)), heating a hot kettle (Figure 4(b)) and having a tea or coffee at the kitchen table 196 

(Figure 4(c)) are also presented for comparative purposes. 197 

 198 

 199 
Figure 3. Thermal blobs of a bottle of cold milk (shades of black) distinguishable from a hot kettle 200 
(shades of white). 201 

 202 

 203 
Figure 4. The RGB equivalents of activities: (a) opening the fridge, (b) heating a hot kettle, and (c) 204 
having tea or coffee at the kitchen table. 205 
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After preparing a cup of tea, it was easier to know from the thermal blobs whether 206 

the user successfully reached the table. In addition, it was necessary to know where the 207 

participant placed the hot kettle (after using it), which is a potential hazardous object. As 208 

presented in Figure 5, these activities were clearly viewed on the thermal image. Whilst 209 

the hot kettle was represented as a large blob adjacent to the participant, the tea/coffee 210 

cup was viewed as a small bright spot in what could be viewed as the hand of the user 211 

(Figure 5). 212 

 213 

 214 
Figure 5. Distinguishable thermal blobs. On thermal_190, the blue arrow points to the hot kettle; the 215 
black arrow points to the participant and the red arrow to the tea/coffee cup after the initial act of 216 
tea/coffee making. 217 

In some instances, the heat spot of a cup or kettle may be occluded by a participant 218 

when it is viewed from the lateral thermal sensor (see, Figure 6). When this happens, ab- 219 

normal behaviours or activities may go unnoticed. To address these concerns, the ceiling 220 

sensor (T2) can be used to collect an aerial view as presented in Figure 7. Hence, the es- 221 

sence and usefulness of dual sensing in this study. 222 

 223 
Figure 6. Thermal images from the lateral sensor indicating instances of occluded tea/coffee cups that 224 
are visible on the ceiling sensor. Refer to the thermal blobs with the same name as thermal_345, 225 
thermal_357, thermal_587, and thermal_598 in Figure 7. 226 

  227 

 228 
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Figure 7. Heat Spots from tea/coffee cups occluded from the lateral thermal sensor (T1) but indicated 229 
by the ceiling thermal sensor (T2). The black arrow on thermal_242 points to the location of T1; the 230 
white arrow points to the heat spot and the red arrow points to the hand of the participant (occluding 231 
the heat spot). 232 

4.1. Sensor Data Fusion 233 

Sensor fusion using DM tools helps extract, cluster features and merge data from 234 

both SSs. A block diagram of the sensor data fusion architecture employed in this study 235 

is presented in Figure 8 [33]. 236 

  237 

238 
Figure 8. Modified Distributed Sensor Data Fusion Architecture for lateral (T1) and ceiling (T2) ther- 239 
mal sensors. 240 

In Figure 8, data acquisition and pre-processing are performed by individual thermal 241 

sensors (T1 and T2). Up to 1,000 features are extracted from the thermal (grayscale and 242 

binary) images. Thermal blobs gleaned from the ITA sensors are stored in a predeter- 243 

mined folder with timestamps to enable a time-based fusion of the data. During sensor 244 

fusion, data from T1 and T2 were imported into the data merging system. The system then 245 

created an imaginary table for the two sets of data before carrying out a matching row 246 

appending. Whilst file-import enables the reading of tabular data and their instances from 247 

an Excel spreadsheet or a text document, the image-import toolkit helps upload images 248 

from folders. Information such as image width, size, height, path and name are automat- 249 

ically appended to each image uploaded in a tabular format. 250 

Preliminary feature extraction was programmed to begin automatically. To ensure 251 

that the features are correctly matched, a matching row appending was used. Moreover, 252 

definitive feature extraction takes place at a data embedding capsule where more than 253 

1,000 features, represented as vectors (n0 to n999), are extracted from each ITA image. The 254 

extraction was performed by using the SqueezeNet architecture, a deep neural network 255 

model for image recognition [33]. Unlike many sensor fusion or classification architectures 256 

that manually allocate clusters to images, the Louvain clustering algorithm [33] was used 257 

alongside distance metrics to automatically detect clusters. One of the advantages of using 258 

Louvain clustering is that of determining the number of clusters detected. The Louvain 259 

clustering algorithm further detect and integrate communities into the module. It also 260 
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converts grouped features into a KNN graph and optimises their structures to obtain 261 

nodes that are interconnected. 262 

Distance metrics, such as the cosine rule, was utilised in the Distances Application 263 

(DA). Also, feature normalisation, which performed column-wise normalisation for both 264 

categorical and numerical data, was applied [33]. The output of DA was connected to the 265 

hierarchical clustering module for the classification of the distanced features. Moreover, a 266 

dendrogram corresponding to a cluster of similar features from the DA was computed 267 

using the HCA. The clusters were primarily affected by resolution and Principal Compo- 268 

nent Analysis (PCA) parameters. In essence, increasing any of these parameters resulted 269 

in a corresponding decrease in the number of clusters that the algorithm detected. Data 270 

fusion outputs were viewed using a scatterplot, a data table and a data viewer widget. 271 

One of the advantages of the sensor data fusion architecture proposed in this study 272 

includes viewing clusters comprising of all similar activities as presented in Figure 9, even 273 

if the activity was performed at different times by different participants. In Figure 9, for 274 

example, it could be easily deduced that a participant code-named C_ID was at the kitchen 275 

table with a hot cup of tea/coffee on the 8th of May 2019 at a different date and time as 276 

another participant code-named C_OR. With this information, activities can be easily 277 

monitored in clusters, notwithstanding the times and dates they were performed. 278 

         279 

 280 
Figure 9. A cluster of data fusion output showing thermal blobs from two participants in a cluster 281 
with timestamps. The black arrow on ‘C_ID_080519_11.58\thermal_212.png’ points to the location 282 
of the lateral sensor; the red arrow points to the participant and the white arrow points to the heat 283 
spot from tea/coffee cup. 284 

It is important to note that up to 1,000 features (labelled n0 to n999) were extracted from 285 

each thermal image during the feature extraction process. Using these features, a PCA and 286 

scoring of the clusters performed between features n525 and n830 at 99% variance cover- 287 

age indicated a regression coefficient (r) of 0.98 and 1.00 for clusters 2 and 12, respectively 288 

as presented in Figure 10. 289 

 290 
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291 
Figure 10. Features-based Principal Component Analysis and Scoring of Clusters. Features n525 and 292 
n830 are indicated on the X and Y axes, respectively. The clusters are color-coded, and the color of 293 
each regression line on the graph matches the color on the cluster legend on the right. 294 

Similarly, a PCA and scoring analysis performed between features n246 and n170 for 295 

clusters 1, 6 and 9 yielded (r) of 0.83, 0.99 and 1.00, respectively, as presented in Figure 11. 296 

These resulted in an average (r) of 0.95 for all the tested features and clusters which were 297 

randomly selected from the HCA interface. 298 

 299 

        300 
Figure 11. Features-based Principal Component Analysis and Scoring of Clusters. Features n170 and 301 
n246 are indicated on the X and Y axes, respectively. Also, the clusters are colour-coded, and the 302 
colour of each regression line on the graph matches the colour on the cluster legend on the right. 303 

To further ascertain the certainty of the predicted clusters, an Evaluation Test was 304 

performed on all the clusters in the HCA using the KNN, LR, NN and RF models. While 305 

KNN yielded the lowest CA of 85.0%, LR and NN gave CAs of 96.1% and 100.0%, respec- 306 

tively, as presented in Table 1. In addition, the proportion of true positives of the posi- 307 

tively classified instances (Precision) followed a similar trend as the CA. Furthermore, the 308 

NN yielded a value of 100.0% for the AUC, F1, CA, Precision, Recall and Specificity fol- 309 

lowed by RF with an average of 99.7%, as presented in Table 1. 310 

 311 
Table 1. Evaluation results from data mining models for parameters such as AUC, CA, FI, Precision, 312 
Recall, LogLoss and Specificity. 313 

Models AUC 

(%) 

CA (%) F1 (%) Precision 

(%) 

Recall (%) LogLoss 

(%) 

Specificity 

(%) 

KNN 99.1 85.0 85.0 85.4 85.0 0.3 98.3 

LR 99.9 96.1 96.1 96.1 96.1 0.2 99.6 

NN 100.0 100.0 100.0 100.0 100.0 0.0 100.0 
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RF 100.0 98.9 98.9 98.9 98.9 0.3 99.9 

Average 99.7 95.0 95.0 95.1 95.0 0.2 99.4 

Legend KNN = K-Nearest Neighbours, LR = Logistic Regression, NN = Neural Network, RF 

= Random Forest, CA = Classification Accuracy, and AUC = Area Under the Curve. 

 314 

LogLoss, also referred to as cross-entropy loss, accounts for the performance of the 315 

classification model with respect to its variation from the actual label and was relatively 316 

low (less than 0.4%) for all the models (Table 1). NN had the most negligible value of 317 

0.001%. While an average regression coefficient of 0.95 was obtained in the PCA and scor- 318 

ing test, an average accuracy of 96.5% was obtained for all the metrics (in Table 1) in the 319 

Evaluation Test. 320 

Another demonstration of the accuracy of the architecture was in the analysis of the 321 

ceiling and lateral thermal sensors data using K-Means Clustering Method (KMCM). The 322 

KMCM is rated as a useful tool capable of providing quantitative and qualitative insight 323 

in multivariate analysis [34]. The data fusion and evaluation architecture based on the 324 

KMCM [35], is presented in Figure 12. 325 

 326 
      Figure 12. Simplified data fusion architecture based on K-Means Clustering Method (KMCM). 327 

 328 

The KMCM-based architecture (Figure 12) fused thermal blobs data from thermal 329 

sensors T1 and T2. The fusion toolkit was linked directly to the image embedder. At the 330 

embedder, Inception V3, Google’s ImageNet trained model [36] was used to embed the 331 

thermal blobs. KMA performed a maximum of 300 iterations of the data after columns 332 

normalisation in the K-Means toolkit. The output from the K-Means toolkit was used to 333 

train DM models such as KNN, NN, SGD, and SVM based on 66% training-set size. The 334 

evaluation result from the analysis based on a 10-fold cross-validation is presented in Ta- 335 

ble 2. 336 

 337 
Table 2. K-Means evaluation results for fused datasets (F1) using data mining models such as KNN, 338 
SGD, NN and SVM. 339 

Models AUC 

(%) 

CA 

(%) 
F1 (%) 

Precision 

(%) 

Recall 

(%) 

LogLoss 

(%) 

Specific-

ity (%) 

KNN 98.8 91.8 91.9 92.0 91.8 0.1 99.6 

SGD 97.6 95.5 95.5 95.5 95.5 0.0 99.8 

NN 99.9 96.7 96.7 96.7 96.7 1.5 99.8 

SVM 99.9 96.0 96.0 96.0 96.0 0.1 99.8 

Average 99.1 95.0 95.0 95.1 95.0 0.4 99.8 

Legend KNN = K-Nearest Neighbours, NN = Neural Network, SGD = Stochastic Gradient 

Descent, SVM = Support Vector Machine, CA = Classification Accuracy, and AUC 

= Area Under the Curve. 
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      340 

In Table 2, an average accuracy of more than 95% was obtained in all the parameters 341 

evaluated. The parameters included AUC, CA, F1, Specificity, Precision and Recall. Speci- 342 

ficity has the highest average accuracy of 99.8% followed by AUC with of 99.1%. CA and 343 

F1 had the least accuracy (in Table 2) as 95.0%. A closer look at each model indicated that 344 

KNN has the least accuracies in CA, F1, Precision and Recall. Although the pooled average 345 

in KMCM was the same as PCA’s, they cannot be directly compared because different 346 

models were used in their analysis. KMCM, however, presented a very useful and explan- 347 

atory analysis of the datasets compared with HCA. 348 

Another KMCM-based analysis was performed to evaluate the models and parame- 349 

ters for T1, T2 and fused (F1) datasets. Data from T1 and T2 were analysed separately for 350 

the four models: KNN, SGD, NN and SVM. The evaluation results are presented in Tables 351 

3 and 4 for T1 and T2, respectively. 352 

 353 

Table 3. Evaluation results for Lateral Sensor (T1) data using K-Means Clustering Method (KMCM). 354 

Models AUC 

(%) 

CA 

(%) 

F1 (%) Preci-

sion (%) 

Recall 

(%) 

LogLoss 

(%) 

Specificity 

(%) 

KNN 99.5 95.4 95.4 95.5 95.4 0.4 99.5 

SVM 100.0 97.7 97.7 97.8 97.7 0.1 99.7 

SGD 98.7 97.6 97.6 97.6 97.6 0.8 99.7 

Neural 

Network 

100.0 98.1 98.1 98.1 98.1 0.1 99.8 

Average 99.6 97.2 97.2 97.2 97.2 0.4 99.7 

Legend KNN = K-Nearest Neighbors, NN = Neural Network, SGD – Stochastic Gradient 

Descent, SVM – Support Vector Machine, CA = Classification Accuracy, and AUC 

= Area Under the Curve. 

 355 

Table 4. Evaluation results for Ceiling Sensor (T2) data using K-Means Clustering Method (KMCM). 356 

Models AUC 

(%) 

CA (%) F1 (%) Preci-

sion (%) 

Recall 

(%) 

LogLoss 

(%) 

Specificity 

(%) 

KNN 97.8 88.3 88.3 88.5 88.3 1.3 98.7 

SVM 99.8 94.3 94.4 94.4 94.3 0.2 99.4 

SGD 96.9 94.4 94.4 94.4 94.4 2.0 99.4 

Neural 

Network 

98.5 95.2 95.2 95.2 95.2 0.2 99.5 

Average 98.3 93.1 93.1 93.1 93.1 0.9 99.3 

Legend KNN = K-Nearest Neighbors, NN = Neural Network, SGD – Stochastic Gradient 

Descent, SVM – Support Vector Machine, CA = Classification Accuracy, and AUC 

= Area Under the Curve. 

 357 

In Table 3, AUC and Specificity’s average accuracy are obtained as 99.6% and 99.7%, 358 

respectively. Comparing these values to those in Table 4 (98.3% and 99.3%), AUC and 359 

Specificity had their highest accuracies in Table 3. Also, the metrics (in Table 3), namely, 360 

CA, F1, Precision and Recall obtained accuracies that were 4.1% higher than those in Table 361 
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4. A combination of the averages of all the metrics (excluding LogLoss) in Tables 2, 3, and 362 

4 is presented in Table 5. 363 

 364 

Table 5. Evaluation results for Lateral (T1), Ceiling (T2) and fused (F1) datasets using K-Means Clus- 365 

tering Method (KMCM). 366 

Models Lateral % Ceiling % Fusion % 

KNN 96.8 91.7 94.3 

SVM 98.4 96.1 96.6 

SGD 98.1 95.7 97.8 

Neural Network 98.7 96.5 97.3 

Mean Accuracy 98.0 95.0 96.5 

Legend KNN = K-Nearest Neighbors, NN = Neural Network, SGD = Stochastic Gra-

dient Descent, SVM = Support Vector Machine, CA = Classification Accu-

racy, and AUC = Area Under the Curve. 

 367 

In Table 5, a combination of the parameters, AUC, CA, Precision, F1, Recall and Spec- 368 

ificity, indicated that T1 has the highest accuracy in all the models compared with those 369 

from T2 and F1 datasets. In addition, the Mean accuracy for all the models indicated 98.0%, 370 

95.0% and 96.5% for T1, T2 and F1 datasets, respectively. This implied that T1 obtained the 371 

highest Mean accuracy, followed by F1 and then T2. An interval plot can further illustrate 372 

the Mean accuracy of T1, T2 and F1 datasets as presented in Figure 13. It should be noted 373 

that the intervals were calculated using the pooled Standard Deviation (SD). 374 

 375 

 376 
Figure 13. Interval plot of Lateral, Ceiling and Fused datasets computed from their pooled standard 377 

deviation. 378 

Nevertheless, although previous analysis indicated a higher Mean average in favour 379 

of T1, one way ANOVA of the models in T1, T2, and F1 datasets using Welch’s Test at 95% 380 

Confidence Interval indicated that there was no significant difference (p = 0.105) between 381 

the average values of the parameters. In addition, a 2-sample T-Test between T1 and F1, 382 

T2 and F1 indicated no significant difference between the fused data and those from indi- 383 

vidual SSs, p = 0.08 and 0.156, respectively. Further analysis with Grubbs’ Test on T1, T2, 384 
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and F1 datasets at a 5% significant level indicated no outlier in the Mean values of the 385 

datasets. 386 

The pooled SD indicating the weighted average of the SDs for the three groups 387 

yielded a lower value of 1.5. In addition, the pooled Mean accuracy of all the models and 388 

parameters was obtained as 96.5%. Detailed analyses of the Mean values are presented in 389 

Table 6. 390 

Table 6. Detailed analyses of Mean values from Lateral, Ceiling and Fused datasets using one way 391 
ANOVA. 392 

Data Sources Data points (N) Mean Accuracy % StDev 95% CI 

Lateral 4 98.0 0.8 (96.1, 99.8) 

Ceiling 4 95.0 2.2 (93.2, 96.9) 

Fusion 4 96.5 1.5 (94.6, 98.4) 

Averages  4 96.5 1.5 (94.6, 98.4) 

 393 

5. Discussion and Conclusions  394 

This study presented the fusion of data gleaned from USSs for the purposes of rec- 395 

ognising and classifying indoor activities in home environments. It considered the use of 396 

DM models and methods for the cluster-based analysis of data obtained from the USSs. 397 

Results from data analysis demonstrated a pooled Mean accuracy of 96.5% for all the mod- 398 

els and metrics considered in the study. Although the Mean accuracy in F1 data was 399 

slightly lower than in T1, a one-way ANOVA of the samples, T1, T2 and the F1 datasets 400 

indicated no significant difference between their Mean values. In addition, data fusion 401 

provided more information on instances of occlusion, which can make an incident go un- 402 

noticed. 403 

The advantage of the proposed method in this work over other indoor activity recog- 404 

nition research [29], [37] include privacy-friendly postures and better accuracy. The accu- 405 

racies obtained in this work can be compared with those obtained in [38], which used 406 

channel state information of a WiFi system to recognise activities such as lying down, 407 

standing, and walking. While the WiFi-based system has no information on the postural 408 

orientation of participants or the presence of hazardous objects, our model included pri- 409 

vacy-friendly postures. Knowledge of the pose of room occupants and the surrounding 410 

objects can give further details, such as hot liquid spills, which can be hazardous to vul- 411 

nerable individuals. The application of this study to smart homes and healthcare facilities 412 

can help encourage independent living [39]–[41]. 413 

One of the limitations of this study is the use of the contact sensors to determine if an 414 

occupant drank tea or coffee during the experiments since both (tea and coffee) were 415 

placed in the same cupboard. This implies that depending on the data from the thermal 416 

sensors alone, it would be difficult to determine if an occupant had tea or coffee. In a real- 417 

life setting, however, this confusion could be resolved if tea and coffee are placed on sep- 418 

arate cupboards that are more than 1m apart. Another challenge with using the thermal 419 

sensors only without the contact sensors is on determining if the occupant used milk or 420 

cold water if both are placed in a similar container. To address this limitation in a real-life 421 

application, milk and cold water should be placed in containers of different sizes so that 422 

their blobs could be easily differentiated. 423 
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In conclusion, this study presented the use of low-cost unobtrusive (privacy-friendly) 424 

SSs for indoor ARC in a laboratory kitchen environment similar to a home environment. 425 

Experimental results indicated instances of activity recognition during activities such as 426 

making a cup of tea/coffee and classification of the same actions using DM models and 427 

methods with a pooled Mean predictive accuracy of 96.5%. Future study will calculate the 428 

speed and range of these activities, including the use of DM tools to score and evaluate 429 

their performance.  430 
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