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A B S T R A C T

Purpose: Visual perception enables robots to perceive the environment. Visual data is processed using
computer vision algorithms that are usually time-expensive and require powerful devices to process the visual
data in real-time, which is unfeasible for open-field robots with limited energy. This work benchmarks the
performance of different heterogeneous platforms for object detection in real-time. This research benchmarks
three architectures: embedded GPU—Graphical Processing Units (such as NVIDIA Jetson Nano 2GB and 4GB,
and NVIDIA Jetson TX2), TPU—Tensor Processing Unit (such as Coral Dev Board TPU), and DPU—Deep
Learning Processor Unit (such as in AMD-Xilinx ZCU104 Development Board, and AMD-Xilinx Kria KV260
Starter Kit).
Methods: The authors used the RetinaNet ResNet-50 fine-tuned using the natural VineSet dataset. After the
trained model was converted and compiled for target-specific hardware formats to improve the execution
efficiency.
Conclusions and Results: The platforms were assessed in terms of performance of the evaluation metrics and
efficiency (time of inference). Graphical Processing Units (GPUs) were the slowest devices, running at 3 FPS to
5 FPS, and Field Programmable Gate Arrays (FPGAs) were the fastest devices, running at 14 FPS to 25 FPS. The
efficiency of the Tensor Processing Unit (TPU) is irrelevant and similar to NVIDIA Jetson TX2. TPU and GPU
are the most power-efficient, consuming about 5W. The performance differences, in the evaluation metrics,
across devices are irrelevant and have an F1 of about 70% and mean Average Precision (mAP) of about 60%.
1. Introduction

Computer vision classifiers are largely explored in multiple robotics
systems, such as agricultural ones. These systems allow robots to per-
form visual localisation by visually detecting natural landmarks like
tree trunks (Mendes et al., 2016) or to detect objects for other purposes
such as grasping or harvesting (Magalhães et al., 2021; Moreira et al.,
2022).

The rise of Artificial Intelligence (AI) and the continuous generation
of big data is creating computational challenges. Central Processing
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Units (CPUs) are not enough to efficiently run state-of-the-art AI al-
gorithms or process all the data generated by a wide range of sen-
sors. World-leading processing technology companies (such as NVIDIA,
AMD, Intel and ARM) have been looking closely into the new require-
ments. They have been pushing the boundaries of technology to deliver
efficient and flexible processing solutions.

Heterogeneous computing refers to the use of different types of
processor systems in a given scientific computing challenge.

Heterogeneous platforms are composed of different types of com-
putational units and technologies. Such media can be composed of
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multi-core CPUs, GPUs and FPGAs acting as computational units and
offering the flexibility and adaptability demanded by a wide range of
application domains (de Andrade, 2018). These computational units
can significantly increase the overall system efficiency and reduce
power consumption by parallelising concurrent operations that require
substantial CPU resources over long periods.

Accelerators like GPUs and FPGAs are massive parallel processing
systems that enable accelerating portions of code that are parallelisable.
Combining CPUs with GPUs and FPGAs help improve the efficiency
(speed of executing algorithms) by assigning different computational
tasks to specialised processing systems. GPUs are optimised to per-
form matrix multiplications in parallel, which is the major bottleneck
in video processing and computer graphics. Nevertheless, GPUs also
introduce hardware and environmental limitations (e.g. high-power
consumption and architectural limitations) (Intel, 2020). Convolutional
Neural Networks (CNNs) are massively parallel in their nature and
not suitable for matrix representation because each neuron can be
considered a node containing several sequential mathematics opera-
tions. Despite of very optimised to execute parallel operations, GPUs
architecture is inspired by CPU. Application-Specific Integrated Circuits
(ASICs) are synthesised FPGAs’ designs that aim to optimise and specify
the operations executions. ASICs are more compact and, if designed for
processing CNN algorithms, so fast as FPGAs. ASICs can be designed to
work as single devices or connected to external systems.

In Deep Learning (DL) applied to visual problems, CNNs are the
most common Artificial Neural Networks (ANNs). These networks’ ar-
chitecture is mainly composed of sequential convolution layers that are
trained to extract relevant features from images. CNNs are frequently
applied to classification, object detection and segmentation problems.
In the scope of object detection, the most used CNNs architectures
are Single-Shot Multibox Detector (SSD) (Liu et al., 2016), faster
R-CNN (Wang and Peng, 2019), and You Only Look Once (YOLO) (Red-
mon et al., 2016; Redmon and Farhadi, 2018). Faster R-CNN is the
most precise model to detect objects but processes the image in two
stages, making inference slower. SSD and YOLO are both single-shot
architectures, i.e., they only process the image once using feature maps,
repositioning the object bounding boxes, and making their classifica-
tion. Some authors have been exploring single-shot architectures to
detect fruits and other objects in open-field environments (Magalhães
et al., 2021; Sozzi et al., 2022; Zhao et al., 2022; Olenskyj et al.,
2022; Terra et al., 2021; Magalhães et al., 2022). Inside this group
of architectures, YOLO models are undoubtedly the most common
deep neural network (Magalhães et al., 2021; Sozzi et al., 2022; Zhao
et al., 2022; Olenskyj et al., 2022). Because, They are fast and can
achieve near real-time speed easily under regular computing hard-
ware (Zhao et al., 2022), without big degradation of the metric when
compared with other equivalent ANNs (Magalhães et al., 2021). How-
ever, they may have difficulty detecting some objects, which can be
resolved by bigger and more capable CNN architecture. Transformers
are also an upcoming DL architecture for object detection with success-
ful results (Olenskyj et al., 2022). Despite this analysis, most authors
benchmark their works against powerful and high-consuming hardware
not suitable for embedded or robotics applications (Magalhães et al.,
2021; Sozzi et al., 2022).

For overcoming the restrictions of real-time classification and power
consumption, many researchers have studying small-size and effective
DL architectures, like Tiny-YOLO (Redmon et al., 2016; Redmon and
Farhadi, 2018), YOLACT (Bolya et al., 2019), and many other archi-
tectures (Howard et al., 2017; Sandler et al., 2018; Liu et al., 2016),
that can be implemented in more cost-effective GPUs or even in CPUs.
Alternatively, other researchers are studying low-power and efficient
devices that may run parallelisable deep neural networks (Puchtler and
Peinl, 2020). These devices are generically characterised as embedded
devices and are from many types and architectures: GPUs, FPGAs, and
ASICs, more commonly, Coral TPUs and Intel Neural Compute Sticks
(NCSs) (see more details at Section 2.1). Another common technique
4

used by some researchers is quantisation (Yang et al., 2019). By default,
Artificial Neural Networks (ANNs) are trained in FP32, but the opti-
misation algorithms are iterative and often converge to high-resolution
precise values that are time-consuming to compute and meaningless for
the classification process. The quantisation technique allows reducing
the ANN resolution to INT8 by rescaling the FP32 weights, improving
the time of inference and, sometimes, the accuracy. The merge of
different strategies to optimise the execution of ANNs can create highly
efficient DL models that can process images at thousands of frames per
second (FPS).

Researchers have essentially focused on embedded GPUs from the
NVIDIA Jetson family, using NVIDIA Jetson Nano, NVIDIA Jetson TX2
and NVIDIA Jetson AGX Xavier. Zhao et al. (2019) benchmarks two DL
models, Tiny-YOLO and DNET, under NVIDIA Jetson TX2 and NVIDIA
GTX Titan X. The authors could have a low accuracy drop (about 1%)
in the quantisation process for the NVIDIA Jetson TX2. The inference
speed was about ten times slower in the NVIDIA Jetson TX2 (running
at 18 FPS), as expected, but consumed 20 times less power, consuming
only about 8W. Suzen et al. (2020), Chiu et al. (2020), Rahmaniar and
Hernawan (2021) and Martinez et al. (2021) also benchmark DL models
efficiency between NVIDIA Jetson embedded boards. The NVIDIA Jet-
son AGX Xavier was the fastest board in the family but also the most
power-expensive. On the other side, the NVIDIA Jetson Nano is less
power-consuming but slower. The most benchmarked DL models are
SSD MobileNet networks family and YOLO family. Both are small-size
networks that have fewer convolution layers and retain fewer images’
features. Martinez et al. (2021) run a YOLACT at 66 FPS in an NVIDIA
Jetson AGX Xavier and at 16 FPS in an NVIDIA Jetson TX2, revealing
the substantial hardware improvement of the most recent NVIDIA
Jetson board. Chiu et al. (2020), Rahmaniar and Hernawan (2021)
benchmark SSD MobileNet v2 in the three boards and NVIDIA Jetson
TX2 was the fastest with 26 FPS. Suzen et al. (2020) also benchmarked
the Raspberry Pi4, but it was slow and inefficient.

Despite the reasonable power-consumption improvement, Jetson
GPUs have a similar architecture to traditional NVIDIA GPUs, shar-
ing some of their limitations. So, some researchers started exploring
the highly efficient FPGAs. The most commonly explored FPGAs in
the literature now belongs to AMD-Xilinx, particularly to the AMD-
Xilinx Zynq family. Venieris and Bouganis (2017), Chen et al. (2019)
compared a Zynq FPGA against a GPU. Venieris and Bouganis (2017)
benchmark multiple CNNs between Xilinx Zynq-7045 and a NVIDIA
Tegra X1. In all the cases, the FPGA was at least twice faster. Chen
et al. (2019) benchmarked a Xilinx ZedBoard against a NVIDIA GTX
1080Ti in the ImageNet dataset (Russakovsky et al., 2015), using a
ResNet-18 classifier. During the quantisation process, Chen et al. (2019)
could improve the network’s accuracy and efficiency, running it at
20 FPS and saving 100 times less power (consumes about 2.58W). Lin
et al. (2021) compared a quantised INT8 MobileNet classifier running
at the FPGA’s DPU (the FPGA main core for processing DL models,
Section 2.1) against multiple Xilinx FPGAs in the literature. Their
main study focused on the AMD-Xilinx ZCU104, which executed the
algorithm at 376 FPS while consuming only 5W. Zhao et al. (2021)
benchmarked an AMD-Xilinx ZCU104 against an Amazon Cloud FPGA
EC2, using an YOLO INT8. Both devices reached similar results, with
up to 13 FPS in the Penn Treebank dataset. Also Jain et al. (2021)
benchmarked multiple FPGAs using a Tiny-YOLO INT8 and reached an
inference speed between 12 FPS to 23 FPS at the AMD-Xilinx XC7Z035.

Researchers are also looking for some ASICs to execute the neural
networks because they can become cheaper, smaller, and easier to
integrate with other systems. The most common ASICs are Google Coral
TPUs and Intel NCSs. Puchtler and Peinl (2020) benchmarked Coral
Edge TPU USB Accelerator and Intel NCS 2 using a SSD MobileNet
v2 INT8 against an NVIDIA Jetson Nano and Raspberry Pi 4 with a
SSD MobileNet v2 with weights in FP16. The ASICs were the fastest
devices, reaching inference framerates of 55 FPS in the Coral Edge
TPU USB Accelerator and 23 FPS at the Intel NCS 2. Raspberry Pi
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4 was the slowest device, inferring at 4 FPS, and the Jetson Nano
nferred at 15.90 FPS. The authors did not do any power consumption
nalysis. Also Aguiar et al. (2021), Kovács et al. (2021) evaluated the
erformance and efficiency of Coral Edge TPU USB Accelerator.

As illustrated in the revised literature, researchers are constantly
ooking to improve the DL models’ speed and accuracy to meet real-
ime constraints, but most of the work focuses essentially on improving
he models’ architecture and not their intrinsic properties such as their
igh parallelisation ratio (Redmon et al., 2016; Redmon and Farhadi,
018; Bolya et al., 2019; Howard et al., 2017; Sandler et al., 2018;
iu et al., 2016). Moreover, many works essay their algorithms in
igh-performance devices never used in robotics and mobile applica-
ions (Magalhães et al., 2021; Moreira et al., 2022). Some authors argue
hat some models in embedded devices (Martinez et al., 2021; Chiu
t al., 2020; Rahmaniar and Hernawan, 2021; Venieris and Bouganis,
017; Lin et al., 2021; Zhao et al., 2021), but it is not clear which
ind of device is more suitable for the target application. Therefore,
ur work aims to perform a wide benchmark between heterogeneous
latforms for evaluating the performance in the evaluation metrics and
ime and power efficiency of these edge computing devices in robotics
pplications for running DL models, giving continuity to Aguiar et al.
2021)’s work. The authors will focus only on using the RetinaNet
esNet-50 (Lin et al., 2020; Humbarwadi, 2020) fine-tuned in the
ineSet dataset (Aguiar et al., 2021; Aguiar and Magalhães, 2021) and
ompare them using multiple pointwise models (FP32, FP16, INT8)
nd heterogeneous platforms. The used embedded devices were two
PUs with 1000 TFLOPS (NVIDIA Jetson Nano 2GB and 4GB – Jetson
ano), one GPU with 2000 TFLOPS (NVIDIA Jetson TX2 – TX2), one
PU (Coral Dev Board TPU — TPU), and DPUs (AMD-Xilinx ZCU104
evelopment Board – ZCU104 – and AMD-Xilinx Kria KV260 Starter Kit
KV260). To the author’s knowledge, this is the first study involving a
ig object detection model like RetinaNet ResNet-50 and benchmarking
he AMD-Xilinx Kria KV260.

The authors aim to assess the RetinaNet using ResNet-50 to near-
eal-time applications. Although the proposed method is suitable for
arming application, this might not be the case for other use-cases. Be-
ause farming robots typically run at speeds of 0.5m s−1 when operating
n vineyards. Using a camera vision sensor with a field of view of 45°
hat operates at 0.5m from the grapevine, this sensor can see 0.5m of
he grapevine. Thus, if the ANN could infer the images at 5 FPS, then the
rocessed images will have an overlap between frames of about 0.4m
i.e. 80%), which should be sufficient for object detection and tracking.

Therefore, the current work aims to innovate in the following
spects:

• in the authors’ knowledge, this is the first research to apply and
study a big and complex object detection model like RetinaNet
ResNet-50 in heterogeneous platforms;

• a larger benchmark towards object detection using many differ-
ent heterogeneous platforms, when compared with the reviewed
literature, containing embedded GPUs, ASICs (i.e. TPU) and em-
bedded FPGAs (including the new AMD-Xilinx KV260, designed
for robotics applications).

The next sections of this manuscript are structured as follows. In
ection 2, the author will explore the different used heterogeneous
latforms, stating their features and limitations, as well as the required
oftware to deploy the ANNs for the different devices. In the same sec-
ion, the authors also state the assumptions made and the methodology.
n Section 3, the time and power efficiency and performance results in
he evaluation metrics are presented. These results are deeply discussed
n Section 4, comparing between them and with the revised litera-
ure. Section 5 summarises the experiences and the main conclusions,
raming them with future required work.

. Materials and methods

The current section details the methodology and the required mate-
ial to reproduce this experience. Once this is a DL study, it requires
 k

5

dataset and a DL model. The deep DL was built and trained in
ensorFlow 2.8 Keras.1 Because the authors used heterogeneous plat-
orms, additional libraries were required to optimise the models for the
pecific platforms architectures: Vitis-AI 1.4, Edge TPU Compiler, and
F-TRT.2

.1. Heterogeneous platforms

The current research topic aimed to benchmark heterogeneous plat-
orms, looking for faster inference devices, minimising the accuracy
rop. The authors compared three embedded GPUs with 1000 TFLOPS
nd 2000 TFLOPS (Jetson Nano 2GB, Jetson Nano 4GB, and TX2),
PUs, recurring to FPGAs (ZCU104, KV260), and TPU (Coral Dev Board
PU). For optimisation purposes, each platform required its compiler to

mprove operations performance in the hardware and thus the inference
peed. Additionally, the RTX3090 was used to train the DL model and
aseline the benchmark with a powerful and efficient GPU.

Besides the dedicated hardware, all the used boards also have a
rocessing System (PS) to coordinate the desired tasks and manage the
perating system. The PS can have multiple architectures, but AMD64
nd ARM64 are the most common in the current state-of-the-art.

.1.1. NVIDIA GPUs and TF-TRT
Four NVIDIA GPUs were used for the current benchmark. NVIDIA

TX30903 is a powerful GPU designed with Ampere Architecture and
B24 of Video Random Access Memory (VRAM). Its powerful features
llow the GPU to train deep neural networks quickly and with big
raining batches. Because the NVIDIA RTX3090 is very powerful and ef-
icient, any straight benchmark of speed inference cannot be made, but
t could work as a reference GPU for the evaluation. Besides, it is unsuit-
ble for embedded applications because of its high power-consumption
atios, until 350W.

The NVIDIA Jetson GPUs were designed as embedded devices to
ssemble in low-power systems like robots. The two Jetson Nano4 have
imilar architecture but differ in the amount of available RAM (GB2 and
GB). TX25 is the second generation of Jetson Nano with a TX2 GPU
gainst TX1 GPU. In all of these boards, the available RAM is shared
etween the GPU and CPU.

Although all the GPUs are compatible with TensorFlow 2 Keras
odels, they only reach their maximum performance and efficiency
hen the DL models are optimised for their architecture and spe-

ialised CUDA and Tensor cores. NVIDIA deployed CUDA cores and
ensor cores that aim to optimise parallel and matrices operations for
aximum performance with CNNs. TF-TRT is an NVIDIA library that

perates with TensorFlow and TensorRT (TRT) and is responsible for
nalysing the ANN graph and inferring the best transformations for

1 See TensorFlow, 2022, TensorFlow, URL: https://www.tensorflow.org/.
ast accessed on 05/08/2022 and Keras, 2022, Keras, URL: https://keras.io/.
ast accessed on 05/08/2022.

2 See AMD-Xilinx, 2022, Vitis-AI, URL: https://www.xilinx.com/products/
esign-tools/vitis/vitis-ai.html. Last accessed on 05/08/2022; Coral, 2022,
dge TPU Compiler, URL: https://coral.ai/docs/edgetpu/compiler/. Last ac-
essed on 05/08/2022; and NVIDIA, 2022, Deep Learning Frameworks
ocumentation, URL: https://docs.nvidia.com/deeplearning/frameworks/tf-

rt-user-guide/index.html. Last accessed on 05/08/2022, respectively.
3 See NVIDIA, 2022, GeForce RTX3090 Family, URL: https://www.nvidia.

om/en-eu/geforce/graphics-cards/30-series/rtx-3090-3090ti/. Last accessed
n 05/08/2022.

4 See NVIDIA, 2022, Jetson Nano 2 GB Developer Kit, URL: https://
eveloper.nvidia.com/embedded/jetson-nano-2gb-developer-kit. Last accessed
n 05/08/2022; and NVIDIA, 2022, Jetson Nano Developer Kit, URL: https://
eveloper.nvidia.com/embedded/jetson-nano-developer-kit. Last accessed on
5/08/2022.

5 See NVIDIA, 2022, Harness AI at the Edge with the Jetson TX2 Devel-
per Kit, URL: https://developer.nvidia.com/embedded/jetson-tx2-developer-
it. Last accessed on 05/08/2022.
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Fig. 1. Sample of images in the dataset (Aguiar and Magalhães, 2021) with the respective ground truth bounding boxes in blue squares. (a) Thermal image of vines’ trunks; (b)
image of vines’ trunks without infra-red filter; (c) image of bunches of medium-size grapes; (d) image of bunches of corn-size grapes; (e) image of vines’ trunks.
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speed efficiency using the dedicated cores. Besides these operations,
TF-TRT also allows to change the network’s graph resolution between
FP32, FP16, and INT8 (the last one through quantisation). The advan-
tage of TF-TRT against TRT is that the first one is compatible with
TensorFlow and allows to have a hybrid solution when some operations
cannot be converted to a TRT graph. Therefore, the main graph can
have some operations executed in TensorFlow, and others executed
inTRT.

2.1.2. AMD-Xilinx FPGAs and Vitis-AI
Field Programmable Gate Arrays (FPGAs) are integrated circuits

that can be reconfigured to meet the designer’s needs. Due to its
high-reconfiguration capability, FPGAs can be useful for executing
parallelizable algorithms while keeping the power consumption low.
These boards always have two main components Processing System
(PS) and Programmable Logic (PL). The PS is responsible for manag-
ing the operations and memory in the FPGA, while PL concerns to
the reconfigurable integrated circuits. AMD-Xilinx deployed the DPU
cores (AMD-Xilinx, 2022), a proprietary programable engine dedicated
for CNN. This unit has a register configure module, a data controller
module, and a convolution computing module. The DPU Intellectual
Property (IP) can be integrated as a block in the PL with direct access
to PS.

For the current benchmark, the authors chose two FPGAs, ZCU104
and KV260. Both boards have similar architecture and compatibility,
but KV260 is newer, more compact and designed thinking in robotics
applications. ZCU104 has two DPU cores, while KV260 has only one.
These two DPUs allow the ZCU104 to simultaneously process two
neural network graphs.

For executing the models in the DPU, the graph should be quantised
in INT8 weights and converted to a readable DPU format. Vitis-AI
is a fully integrated system in a Docker6 environment created by
AMD-Xilinx to manage this process. Vitis-AI is characterised as a com-
prehensive AI inference development platform for AMD-Xilinx devices.
Among other features, Vitis-AI processes TensorFlow, Pytorch, and
Caffe models using specific quantisers for the FPGA’s design. Vitis-AI
compiles and optimises the quantised models for the DPU architecture.
This environment also has additional tools to optimise and debug the
compiled neural network, such as pruning and profiling tools.

2.1.3. Coral TPU and Edge TPU compiler
TPU is an AI accelerator ASIC designed by Google to optimise the

execution of ANN. This ASIC was made compatible with TensorFlow
and accepts DL models build with the lite version of TensorFlow
(TFLite). Similarly to FPGA, the ANNs running in edge computing TPUs
should be quantised to make the models fully compatible with the ASIC
architecture.

6 See Docker, 2022, Docker, URL: https://www.docker.com/. Last accessed
n 05/08/2022.
 g
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The whole design and management of the model are made with
TensorFlow and TFLite. The compatible model to the TPU is got in
TFLite by the Edge TPU Compiler.

The authors used the Coral Dev Board TPU which is an embedded
board with a PS and a TPU system on-module (SoM) attached.

2.2. Dataset

The different classification models were benchmarked using the
VineSet (Aguiar and Magalhães, 2021) dataset composed of 428 498
mages of 300 × 300 px, manually labelled and gathered from multiple
ources (stereo cameras, high-quality cameras, and thermal cameras).
urthermore, the VineSet is composed of natural vineyards images split
nto the following three classes: vines’ trunks, bunches of berry-corn
ize grapes, and bunches of berry-closed grapes. Fig. 1 illustrates some
mages inside the dataset.

The dataset was split into three batches: train set (411 360 images),
alidation set (8569 images), and test set (8569 images). For consistency
n the results with real-world data, the augmentation images in the test
et were removed, resuming in 1125 images.

.3. RetinaNet

RetinaNet (Lin et al., 2020; Humbarwadi, 2020) is a state-of-the-
rt DL model for object detection in the class of one-stage detectors.
his DL model is very similar to an SSD ANN (Liu et al., 2016). After
he input layer, a backbone will process the different feature maps and
xtract the image’s features. The backbone is some CNN but ResNet-
0 is the implemented backbone in the presentation article (Lin et al.,
020). Following the backbone, a FPN (Lin et al., 2017) is used. These
ayers follow a top-down architecture (Fig. 2) and recover the informa-
ion processed by the CNN, aiming to improve the box classification
nd regression performance (Lin et al., 2017). The main improvement
f RetinaNet against SSD DL models is the implementation of a new
ustom loss function, focal loss (Lin et al., 2020), that aims to prioritise
he correct detection and classification of the objects, True Positive
TP), against the correct not detection of objects, True Negatives (TN).

Given the improvements in the state-of-the-art provided by Reti-
aNet ResNet-50 against SSD networks, and because these ANNs usu-
lly provide better results than YOLO (Magalhães et al., 2021; Tan
t al., 2021; Morera et al., 2020), the authors of this benchmark chose
o use RetinaNet ResNet-50 as initially stated by Lin et al. (2020). The
uthors used a previous model already implemented in TensorFlow 2
eras by Humbarwadi (2020), making the necessary changes to the
rchitecture to make it compatible with all the heterogeneous plat-
orms. The model had to be implemented using a functional strategy,7
ut pre-processing and post-processing layers were kept in the sub-
odelling format because they were not converted or recompiled for

7 See Tensorflow, 2022, The Functional API, https://www.tensorflow.org/
uide/keras/functional. Last accessed on 05/08/2022.

https://www.docker.com/
https://www.tensorflow.org/guide/keras/functional
https://www.tensorflow.org/guide/keras/functional
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Fig. 2. Overview of a simplified diagram of the RetinaNet ResNet-50. Conv𝑖 are convolutional layers; M𝑖 are intermediate layers composed by upsampling, additions and convolutions
to generate FPN output layers P𝑖; P𝑖 are convolution layers for the output of FPN.
s
t

ny heterogeneous platform. Instead, these layers were reimplemented.
he ResNet-50 (He et al., 2016) was configured with the same pre-
rained weights used by the ImageNet dataset (Russakovsky et al.,
015) to ensure consistency and avoid deterioration of processing
peed.

Vitis-AI has some operations constraints for compiling the DL model
o the FPGAs. These constraints were found at Rectified Linear Unit
ReLU) operations that should be immediately preceded by another
peration, like a convolution or a mathematical operation. This com-
romises the compilation of the network, mainly between P6 and P7 of
he FPN (Fig. 2), because an output for the regression and classification
ayers are required at the convolution 2D P6 and the convolution 2D
7. Therefore, an additional convolutional 2D layer was added at P6,
loning the initial P6 convolution 2D layer (Fig. 3). In this way, the
itis-AI compiler can further compile all layers of the model’s core at

he DPU; otherwise, a split of the architecture could happen, and some
perations could be executed at the CPU.

The changed version of RetinaNet ResNet-50 (Fig. 3) was trained
y fine-tuning until the convergence of the train loss function. The
raining algorithm used the focal loss function and the Stochastic
radient Descendent (SGD) optimiser. For better adjustment of the

earning rate and momentum values, the authors used the Keras Tuner
ibrary (O’Malley et al., 2019) with the Hyperband algorithm (Li et al.,
018) to search for the best values that optimise the validation loss.
uring this stage, only two batches of the dataset are used, the train

et for training the model and the validation set for evaluating the
odel performance in the evaluation metrics and tracking the model’s

verfitting. The model was trained in the GPU RTX3090.

.4. Deploying RetinaNet ResNet-50 for heterogeneous platforms

The main aim of this study is to assess the performance reliability
n the evaluation metrics of DL models in heterogeneous platforms and

ssess their effectiveness for real-time object detection.

7

Deploying the RetinaNet for each heterogeneous platform is very
imilar but requires the use of proprietary libraries. Therefore, the steps
o deploy a model for each device are:

1. RetinaNet ResNet-50 fine-tuning in the VineSet train set;
2. Quantise the model to INT8 (optional, depends on the platform);
3. Deploy the model to a platform’s compatible format

The first step implies the train of the ANN, which is the same for all
platforms and happens in TensorFlow 2 in the RTX3090, as stated in
Section 2.2. Because pre-processing and post-processing layers cannot
be compiled in some devices, only the core of the ANN is used in the
following steps. Whenever required, these layers are implemented.

After training, the model is manipulated using the proprietary spe-
cific libraries. TPU and FPGAs require the use of quantisation. The
quantisation can be aware of training of be agnostic to it, happening
when the model has already converged. For compatibility issues, only
post-training quantisation is compatible with all devices. Therefore, a
dataset calibration was derived from the train set to quantise the ANN
weights and calibrate them to the input calibration data. Because any
train is being performed, the calibration set did not require the ground
truth labels. However, compatible with quantised networks, RTX3090
and Jetson GPUs did not require them. Besides, as we could conclude
in Section 3 Jetson devices could not generate quantised models of
RetinaNet ResNet-50.

The last step is to optimise the ANN nodes to the hardware where
they run. That is made with proprietary compilers, namely TF-TRT
for GPUs, Edge TPU Compiler for TPU, and Vitis-AI for FPGAs. A
full comprehensive tutorial for deploying the RetinaNet ResNet-50 at
AMD-Xilinx FPGAs is published in Magalhães et al. (2022).

The deploying of ANNs is heterogeneous devices also require the
implementation of pre-processing and post-processing layers whenever
required. Because these layers were removed after training, these layers

were reimplemented for each device in Python using OpenCV library.
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Fig. 3. Overview of a simplified diagram of a changed version of RetinaNet ResNet-50 for FPGA compatibility. Conv𝑖 are convolutional layers; M𝑖 are intermediate layers composed
by upsampling, additions and convolutions to generate FPN output layers P𝑖; P𝑖 are convolution layers for the output of FPN.
/

It is important to realise that this work only focuses on the core of
he DL model. Pre-processing and post-processing tasks are not being
ptimised and are being executed in the devices CPUs because of some
imitations of some operations with the compilers.

.5. Evaluation

The network’s performance and efficiency in the different devices
ere evaluated at two levels: results in accuracy and inference speed.

The authors only considered the model’s core to assess the inference.
ecause the pre-processing and post-processing layers are running at
he devices’ CPU, the authors could had made some unfair comparisons
f these layers were used. Besides, in some platforms, these layers could
e optimised to increase the level of parallelism, using GPU or PL.

The platforms’ speed of inference was only assessed in the perma-
ent stage of the platforms. For reaching the permanent stage, the
latforms were required to infer 50 random images. During this stabil-
sation stage, the hardware prepares for inference, and the inference
imes may oscillate. The inference time is counted as the average
nference value (𝑡𝑎𝑣𝑔) between all the images (𝑁 images) in the dataset

(Eq. (1)).

𝑡𝑎𝑣𝑔 =
∑𝑁

𝑖 𝑡𝑖
𝑁

(1)

Additionally, the model is also assessed in terms of results accu-
racy. Because the authors used post-training quantisation and different
quantisation approaches, it was expected differences between results
and some degradation relative to the FP32 model. For assessing this
performance, the authors used the Precision (Eq. (2)), Recall (Eq. (3)),
F1 (Eq. (4)), and mAP. The mAP is computed through the Precision ×
Recall curves and corresponds to the area under the curve.

Precision = TP
TP + FP (2)

Recall = TP (3)
TP + FN 1

8

F1 = 2 ⋅ Precision ⋅ Recall
Precision + Recall (4)

Because we are considering an object detection problem, the match-
ing between the detection and the ground-truth is made using the
Intersection over Union (IoU) ratio. In the current work, if the IoU
between two labels is higher than 50%, than the detection is a True
Positive (TP), otherwise is a False Positive (FP). The ground truths that
do not have any matching detection are reported as False Negatives
(FNs).

Despite the inference efficiency and framerate, in heterogeneous
systems is also relevant to assess the devices’ power consumption
on standby and while inferring. Heterogeneous platforms are usually
applied to mobile systems powered by batteries and should perform for
long periods. Therefore, the good selection of a power-effective device
may be critical. The devices’ power consumption was measured at the
power input of the board using a Fluke 175 True RMS multimeter.8
Because this multimeter cannot compute the power directly, that was
made in two steps mathematically. A devices power consumption is
given P = V ⋅ I (W), where V is the powering voltage in Volt and I is the
consumed current in Ampere. In the first stage, the authors measured
the powering voltage, in parallel, during standby and while inferring.
After, they measured the current, assembling the multimeter in series
and under the same conditions.

3. Results

As stated before, the authors are using the RTX3090 as the ref-
erence platform to benchmark the RetinaNet ResNet-50 model with
the other heterogeneous platforms. The RTX3090 is a high-performing
and power-consuming device, therefore, the presented values are only
reference values, and no straight comparison should be made, mainly in

8 See Fluke, 2022, Fluke 175 True-RMS Digital Multimeter, URL: https:
/www.fluke.com/en-gb/product/electrical-testing/digital-multimeters/fluke-
75. Last accessed on 05/08/2022.

https://www.fluke.com/en-gb/product/electrical-testing/digital-multimeters/fluke-175
https://www.fluke.com/en-gb/product/electrical-testing/digital-multimeters/fluke-175
https://www.fluke.com/en-gb/product/electrical-testing/digital-multimeters/fluke-175
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Fig. 4. Inference performance in the evaluation metrics in the reference GPU consid-
ering RAW TensorFlow 2 and the optimised models for NVIDIA Tensor cores. INT8
report to the model’s weights quantised into 8-bit integers, FP16 to weights into 16-bit
floating-point, and FP32 to weights into 32-bit floating-point.

Fig. 5. Processing frame rate in the reference GPU NVIDIA RTX3090 considering RAW
TensorFlow 2 and the optimised models for NVIDIA Tensor cores. INT8 report to the
model’s weights quantised into 8-bit integers, FP16 to weights into 16-bit floating-point,
and FP32 to weights into 32-bit floating-point.

terms and speed of inference. Fig. 4 illustrates the model’s accuracy in
the test set. The model was compiled to optimise the hardware usage,
mainly using Tensor cores. The RetinaNet got similar results in all its
compiled versions but slightly better results in the default TensorFlow
2 model’s version. This fact can be due to some detection’s confidence
drop after compilation (some detections were removed due to being
inferior to the confidence threshold).

In Fig. 5 is clear the advantage of compiling the DL models for
NVIDIA specifics hardware. Without modelling the weights’ variables
type, i.e., keeping the weights in FP32, TF-TRT could increase the
inferences speed 10 times to TensorFlow 2. Reducing the weights
resolution from FP32 to FP16, the models got 2.2 times faster than TF-
TRT FP32 and 26 times faster than TensorFlow 2. Because RTX3090
is not optimised to operate with integers, the conversion to INT8 is
meaningless.

Despite similarities, the performance in the evaluation metrics be-
tween the embedded platforms is different (Fig. 6). The model could not
be assessed in any Jetson Nano due to memory and devices’ limitations.
The best performing device in the evaluation metrics was the TX2. This
device could only compile FP32 and FP16 models because the device
9

Fig. 6. Inference performance in the evaluation metrics in the edge computing devices.
INT8 report to the model’s weights quantised into 8-bit integers, FP16 to weights into
16-bit floating-point, and FP32 to weights into 32-bit floating-point.

Fig. 7. Processing frame rate in the edge computing devices. INT8 report to the model’s
weights quantised into 8-bit integers, FP16 to weights into 16-bit floating-point, and
FP32 to weights into 32-bit floating-point. FPGAs can have multiple DPU cores: 1DPU
remains to the use of a single DPU and 2DPU is the simultaneous use of 2 DPU cores.

did not get enough memory to convert and quantise the model to INT8.
TX2 got a good balance between precision and recall, which allowed for
keeping F1. Conversely, the TPU was the worst performing device in the
stated evaluation metrics. The quantisation process caused significant
changes in the model’s weights and loss of resolution, which reduced
both precision and recall and, consequentially, F1. In the mid-term,
the FPGAs compensates for the metrics’ performance because when
they reduce the recall, they increase the precision; or otherwise. The
phenomena aid in keeping F1 stable between each other. The mAP
follows the analysis made until now.

Fig. 7 illustrates the inference speed of the different devices in the
study. The GPU was the slowest device between the heterogeneous
platforms. The improvement of using FP32 against FP16 is in 1.6 times.
The model could not be compiled and quantised to INT8. Conversely,
FPGAs prove to be the fastest devices. While using one DPU these
devices are 5.6 times faster than TX2 FP32 and 3.4 times faster than
TX2 FP16 and TPU. Using the two DPUs from ZCU104, the inference
reaches 25 FPS.

For better understanding of the effects of quantisation or type of
variable changing, Figs. 8–10 illustrates the networks’ performance in
the evaluation metrics for each class. Bunch of berry-closed grapes
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Fig. 8. Inference performance for the evaluation metrics in the different heterogeneous
evices for the class of bunches of berry-corn size grapes. INT8 report to the model’s
eights quantised into 8-bit integers, FP16 to weights into 16-bit floating-point, and
P32 to weights into 32-bit floating-point. FPGAs can have multiple DPU cores: 1DPU
emains to the use of a single DPU and 2DPU is the simultaneous use of 2 DPU cores.

Fig. 9) is the most stable and predictable class. Changes in the net-
ork’s weights do not make big changes in evaluation metrics’ perfor-
ance detection. Bunches of berry-corn size grapes and trunks have
ore difficult features (Fig. 11 and Appendix). Bunches of berry-corn

ize grapes are very small (these bunches appear just after inflorescence
nd are very similar) and have a colour similar to the background.
runks are highly-variable in shape and size. The images also have
any sources. Besides, the network confuses many masts in the vine-

ards as vines’ trunks. The quantisation process in limited resources of
PU reduces the number of detections (Figs. 8 and 10), which reduces
he TPU’s recall (Eq. (3)). The reduction of the number of detections
lso reduces the number of FP and, consequently, the TPU’s precision
Eq. (2)). ZCU104 also reveals the marginal case where quantisation
educes the network’s noise and improves the detection performance
f the evaluation metrics (Gong et al., 2014).

Using heterogeneous platforms in mobile systems, mainly powered
y batteries, requires careful power consumption control. In the lit-
rature, these are the most common devices for mobile applications.
herefore, Fig. 12 provides power consumption for all devices. Only
or inferring, all the devices consume a similar amount of energy, but
hey vary extremely for their operating system (standby) operations.

. Discussion

Comparing all the benchmarked devices, it is still clear that when
aximum performance in the evaluation metrics and time efficiency

re required, using high-performance GPUs is the best option. However,
t is important to mind that the current study does not benchmark other
igh-performing devices, like server-side FPGAs (like AMD-Xilinx Alveo
amily), but low-power heterogeneous devices that can be assembled
o mobile systems like robots. The compilation of the network to the
ifferent devices did not severely change the model’s performance in
he evaluation metrics, despite some resolution reduction.

Inside edge computing devices, despite GPUs having the best per-

orming results in the evaluation metrics, FPGAs were much faster.

10
Fig. 9. Inference performance for the evaluation metrics in the different heterogeneous
devices for the class bunches of berry-closed grapes class. INT8 report to the model’s
weights quantised into 8-bit integers, FP16 to weights into 16-bit floating-point, and
FP32 to weights into 32-bit floating-point. FPGAs can have multiple DPU cores: 1DPU
remains to the use of a single DPU and 2 DPU is the simultaneous use of 2 DPU cores.

Fig. 10. Inference performance for the evaluation metrics in the different heteroge-
neous devices for the class of trunks. INT8 report to the model’s weights quantised
into 8-bit integers, FP16 to weights into 16-bit floating-point, and FP32 to weights
into 32-bit floating-point. FPGAs can have multiple DPU cores: 1DPU remains to the
use of a single DPU and 2DPU is the simultaneous use of 2 DPU cores.

Realise that during this study, only the model’s core is being bench-
marked, i.e., the authors are excluding pre-processing and post-
processing layers. Therefore, due to its features, FPGAs could be more
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Fig. 11. Some sample images with the inference results. Details of this figure were added to Appendix in Figs. A.13 to A.22. Blue – ground-truth; light green – NVIDIA RTX3080
TF2; orange – NVIDIA RTX3090 TF-TRT FP32; brown – NVIDIA RTX3090 TF-TRT FP16; dark yellow – NVIDIA RTX3090 TF-TRT INT8; red – AMD-Xilinx Kria KV260; dark green
– AMD-Xilinx ZCU104; pink – Coral Dev Board TPU.
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Fig. 12. Power consumption.

capable of parallelising these layers. Besides DPU, they also have the
PL and an on-board GPU that can be used to optimise both blocks of
layers.

The authors also tried to benchmark NVIDIA Jetson Nano 2GB and
GB, but their limited features impeded converting and compiling the
odel into TF-TRT. Because of that, these boards had to be excluded

rom this research analysis.
Fig. 11 illustrates some images of the test set with the respective

etections registered for each device and ground truth. Details and
xtended versions of these images can be found in Appendix in
igs. A.13 to A.22. Generically, all the devices could perform well
n detecting the target objects (most of the detections are clearly
verlapped in the different samples). Fig. 11(e) shows one of the grapes
eing detected twice, which was a consequence of its size and because
f being overlapped by a leaf. From the images 11(b) and 11(c) is
ossible to verify that berry-corn size grapes are the hardest object to
etect. The reported issue is evident in Fig. 8, where the F1 score is
enerally lower than 60%. However, this could not be an impact issue
n practical applications once other landmarks can be used for robot
ocalisation, for instance. Nevertheless, trunks’ and berry-closed size
11
grapes’ detection is more important. The trunks’ class is very important
for obstacles and the robot’s localisation, while the berry-closed size
grapes are usually targeted for performing tasks like monitoring or
harvesting. These two classes have detection ratios between 70% to
80% (Figs. 9 and 10), which are feasible for practical applications.
Therefore, the low mAP of about 60% illustrated in Figs. 4 and 6
an be induced by the low detection ratio of berry-corn size grapes.
igs. 11(f) to 11(j) depict some detection errors introduced by the
ifferent model’s versions. The current detection ratios of the different
NNs’ versions should conduct further improvements at two levels:
ptimise the neural network’s structure and parameters and deeply
eview the dataset. Hyper-parameters such as the confidence threshold
an be optimised (Magalhães et al., 2021). The metric results also
eveal a possible misannotation of some objects that are being correctly
dentified, i.e., some objects like trunks could be successfully detected
y the model, but they were not labelled in the ground truth.

In the revised literature, no publication researched the applica-
ion of RetinaNet ResNet-50 or SSD ResNet-50 FPN in heterogeneous
evices. So, it is not possible directly compare our results with state-
f-the-art results. Although the results show that our experience was
lightly slower than state-of-the-art results, RetinaNet ResNet-50 is
ore complex than YOLO and SSD MobileNet. Given the fast inference

imes with high-performing rates, which sometimes are similar to YOLO
esults from the revised literature, the authors can conclude that the
esearch from this work is suitable for near real-time applications.

Aguiar et al. (2021) also essayed the VineSet dataset using an
SD object detection model with two backbone feature extractors,
obileNet v1 and Inception v2, in a USB Coral Accelerator TPU. They

eached a mAP of 66.96% and 55.78%, respectively, without the trunk’s
class. Given the conditions of not using the trunks’ class, we can assume
that these are similar results to ours, and the inclusion of trunks in the
dataset may lead to the metrics’ degradation. Therefore, we can induce
that we are working near the limits of the dataset, requiring a deeper
labelling review to identify possible misannotations. Besides, Aguiar
et al. (2021) performed an inference threshold analysis to identify the
best confidence score that optimises the metrics, while we are using a
standard confidence score of 30%.

As expected, MobileNet networks aim to be faster and designed for
mobile applications. Similarly, Inception networks are also less complex
than ResNet networks and, because of that, faster. Inside a TPU, the
networks reached 158.98 FPS and 38.36 FPS, respectively. Undoubtedly,
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Fig. A.13. Detailed sample image 11(a) from Fig. 11 from Blue – ground-truth; light green – NVIDIA RTX3080 TF2; orange – NVIDIA RTX3090 TF-TRT FP32; brown – NVIDIA
RTX3090 TF-TRT FP16; dark yellow – NVIDIA RTX3090 TF-TRT INT8; red – AMD-Xilinx Kria KV260; dark green – AMD-Xilinx ZCU104; pink – Coral Dev Board TPU.
Fig. A.14. Detailed sample image 11(b) from Fig. 11 from Blue – ground-truth; light green – NVIDIA RTX3080 TF2; orange – NVIDIA RTX3090 TF-TRT FP32; brown – NVIDIA
RTX3090 TF-TRT FP16; dark yellow – NVIDIA RTX3090 TF-TRT INT8; red – AMD-Xilinx Kria KV260; dark green – AMD-Xilinx ZCU104; pink – Coral Dev Board TPU.
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this previous work reached faster performances than ours with similar
performances. However, it is unclear if there is any difference in the
networks’ performance between a USB Accelerator Edge TPU and the
Dev Board TPU. The authors did not make a formal power consumption
analysis but could infer an average power consumption of 2.5W for
he USB stick, ignoring all the power consumption for the computer
aintenance and processing.

Considering our results, the TPU is the best solution when reducing
he power is a demand, despite the small variations in the networks’
 o

12
erformance in the evaluation metrics and the reduced inference speed.
owever, when applications are looking for a balance between power
onsumption and inference speed, KV260 has high potential. In all
he cases, keep in mind that ZCU104 and KV260 have installed a
tandard PetaLinux9 image provided by AMD-Xilinx. These images have

9 See AMD-Xilinx, 2022, PetaLinux Tools, URL: https://www.xilinx.com/
roducts/design-tools/embedded-software/petalinux-sdk.html, Last accessed
n 05/08/2022.

https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
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Fig. A.15. Detailed sample image 11(c) from Fig. 11 from Blue – ground-truth; light green – NVIDIA RTX3080 TF2; orange – NVIDIA RTX3090 TF-TRT FP32; brown – NVIDIA
RTX3090 TF-TRT FP16; dark yellow – NVIDIA RTX3090 TF-TRT INT8; red – AMD-Xilinx Kria KV260; dark green – AMD-Xilinx ZCU104; pink – Coral Dev Board TPU.
Fig. A.16. Detailed sample image 11(d) from Fig. 11 from Blue – ground-truth; light green – NVIDIA RTX3080 TF2; orange – NVIDIA RTX3090 TF-TRT FP32; brown – NVIDIA
RTX3090 TF-TRT FP16; dark yellow – NVIDIA RTX3090 TF-TRT INT8; red – AMD-Xilinx Kria KV260; dark green – AMD-Xilinx ZCU104; pink – Coral Dev Board TPU.
all the FPGAs’ resources active. Most of the resources are not necessary.
Therefore, a deeper analysis with a better configured PetaLinux image
can better assess the power consumption of FPGAs.

5. Conclusions

In this work, multiple heterogeneous platforms (i.e., GPU, TPU,
and FPGA) were benchmarked using RetinaNet ResNet-50. The code
13
used in this work is publicly available at GitLab INESC TEC, URL:
https://gitlab.inesctec.pt/agrob/xilinx-acc2021. AMD-Xilinx ZCU104
performed better than the other benchmarked platforms because of its
fast inference speed. Besides, ZCU104 also has the possibility to execute
two models simultaneously. Furthermore, FPGAs offer more flexibility
to implement and parallelise algorithms because of their onboard CPU,
GPU and PL. TPU are better optimised and specified for running ANN
(but more task restrictive), offering a lower power consumption. These

https://gitlab.inesctec.pt/agrob/xilinx-acc2021
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Fig. A.17. Detailed sample image 11(e) from Fig. 11 from Blue – ground-truth; light green – NVIDIA RTX3080 TF2; orange – NVIDIA RTX3090 TF-TRT FP32; brown – NVIDIA

TX3090 TF-TRT FP16; dark yellow – NVIDIA RTX3090 TF-TRT INT8; red – AMD-Xilinx Kria KV260; dark green – AMD-Xilinx ZCU104; pink – Coral Dev Board TPU.
Fig. A.18. Detailed sample image 11(f) from Fig. 11 from Blue – ground-truth; light green – NVIDIA RTX3080 TF2; orange – NVIDIA RTX3090 TF-TRT FP32; brown – NVIDIA
RTX3090 TF-TRT FP16; dark yellow – NVIDIA RTX3090 TF-TRT INT8; red – AMD-Xilinx Kria KV260; dark green – AMD-Xilinx ZCU104; pink – Coral Dev Board TPU.
devices may be the recommended option when saving power is crucial
and the application is not time-restrictive.

Concerning the frameworks for ANNs’ deploying, all of them have
similar steps. Vitis-AI is the most complete but complex framework,
becoming the hardest to use. Conversely, Edge TPU Compiler and
TF-TRT are similar and easier to use, but they depend strongly on
TensorFlow. Edge TPU Compiler is the easiest framework because it has
cross-compiling capabilities, allowing to use of more powerful devices
14
to deploy the model for the TPU. TF-TRT requires the model to be
compiled on-device, highlighting the devices’ limitations.

Future work intends to optimise the researched DL model by ap-
plying some optimisation strategies like pruning and exploring the use
of binary neural networks. Besides, GPUs, TPUs and FPGAs have com-
putational resources that could be considered to redesign and optimise
RetinaNet ResNet-50 nodes to reach lower inference times. The authors
will also evaluate other pre-processing and post-processing techniques
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Fig. A.19. Detailed sample image 11(g) from Fig. 11 from Blue – ground-truth; light green – NVIDIA RTX3080 TF2; orange – NVIDIA RTX3090 TF-TRT FP32; brown – NVIDIA
RTX3090 TF-TRT FP16; dark yellow – NVIDIA RTX3090 TF-TRT INT8; red – AMD-Xilinx Kria KV260; dark green – AMD-Xilinx ZCU104; pink – Coral Dev Board TPU.
Fig. A.20. Detailed sample image 11(h) from Fig. 11 from Blue – ground-truth; light green – NVIDIA RTX3080 TF2; orange – NVIDIA RTX3090 TF-TRT FP32; brown – NVIDIA
RTX3090 TF-TRT FP16; dark yellow – NVIDIA RTX3090 TF-TRT INT8; red – AMD-Xilinx Kria KV260; dark green – AMD-Xilinx ZCU104; pink – Coral Dev Board TPU.
for reducing the inference time. Besides, the current work allows the
authors to identify possible issues in the dataset labelling, therefore, a
deep review of the dataset labels must be an important future step.
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Fig. A.21. Detailed sample image 11(i) from Fig. 11 from Blue – ground-truth; light green – NVIDIA RTX3080 TF2; orange – NVIDIA RTX3090 TF-TRT FP32; brown – NVIDIA
RTX3090 TF-TRT FP16; dark yellow – NVIDIA RTX3090 TF-TRT INT8; red – AMD-Xilinx Kria KV260; dark green – AMD-Xilinx ZCU104; pink – Coral Dev Board TPU.
Fig. A.22. Detailed sample image 11(j) from Fig. 11 from Blue – ground-truth; light green – NVIDIA RTX3080 TF2; orange – NVIDIA RTX3090 TF-TRT FP32; brown – NVIDIA
RTX3090 TF-TRT FP16; dark yellow – NVIDIA RTX3090 TF-TRT INT8; red – AMD-Xilinx Kria KV260; dark green – AMD-Xilinx ZCU104; pink – Coral Dev Board TPU.
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Appendix. Sample images of the dataset

For better readability of Fig. 11, this appendix supplements the same
figure with one annotation kind per images in the Figs. A.13 to A.22
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