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Abstract

IMPORTANCE Early recognition of metabolic bone disease (MBD) in infants is necessary but
difficult; an appropriate tool to screen infants at risk of developing MBD is needed.

OBJECTIVES To develop a predictive model for neonates at risk for MBD in the prenatal and
postnatal periods and detect the pivotal exposed factors in each period.

DESIGN, SETTING, AND PARTICIPANTS A diagnostic study was conducted from January 1, 2012, to
December 31, 2021, in Shanghai, China. A total of 10 801 pregnant women (singleton pregnancy,
followed up until 1 month after parturition) and their infants (n = 10 801) were included. An artificial
neural network (ANN) framework was used to build 5 predictive models with different exposures
from prenatal to postnatal periods. The receiver operating characteristic curve was used to evaluate
the model performance. The importance of each feature was examined and ranked.

RESULTS Of the 10 801 Chinese women who participated in the study (mean [SD] age, 29.7 [3.9]
years), 7104 (65.8%) were local residents, 1001 (9.3%) had uterine scarring, and 138 (1.3%) gave
birth to an infant with MBD. Among the 5 ANN models, model 1 (significant prenatal and postnatal
factors) showed the highest AUC of 0.981 (95% CI, 0.970-0.992), followed by model 5 (postnatal
factors; AUC, 0.977; 95% CI, 0.966-0.988), model 4 (all prenatal factors; AUC, 0.850; 95% CI,
0.785-0.915), model 3 (gestational complications or comorbidities and medication use; AUC, 0.808;
95% CI, 0.726-0.891), and model 2 (maternal nutritional conditions; AUC, 0.647; 95% CI,
0.571-0.723). Birth weight, maternal age at pregnancy, and neonatal disorders (anemia, respiratory
distress syndrome, and septicemia) were the most important model 1 characteristics for predicting
infants at risk of MBD; among these characteristics, extremely low birth weight (importance, 50.5%)
was the most powerful factor. The use of magnesium sulfate during pregnancy (model 4: importance,
21.2%) was the most significant predictor of MBD risk in the prenatal period.

CONCLUSIONS AND RELEVANCE In this diagnostic study, ANN appeared to be a simple and
efficient tool for identifying neonates at risk for MBD. Combining prenatal and postnatal factors or
using postnatal exposures alone provided the most precise prediction. Extremely low birth weight
was the most significant predictive factor, whereas magnesium sulfate use during pregnancy could
be an important bellwether for MBD before delivery.
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Key Points
Question Can the artificial neural

network (ANN) predict risk for neonatal
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models with different exposures, the

models including significant prenatal

and postnatal factors and postnatal

factors alone had the best ability to

predict infants at risk for MBD.

Meaning These findings suggest that

the ANN, using prenatal and postnatal

factors, could be an efficient tool for

identifying neonates at risk for BMD.
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Introduction

Metabolic bone disease (MBD), a bone health disorder characterized by hypophosphatemia,
hyperphosphatemia, and skeletal demineralization, is commonly observed in preterm infants who
are deprived of fetal mineral accumulation.1-3 The incidence of MBD is related to birth weight and
ranges from 16% to 40% in very low-birth-weight (VLBW, <1500 g) and extremely low-birth-weight
(ELBW, <1000 g) infants.1

Metabolic bone disease may be due to both prenatal and postnatal factors that cause
disturbances in calcium and phosphorus metabolism, such as maternal nutrient availability, placental
insufficiency, drugs that induce bone resorption, parenteral nutrition, and neonatal disorders.2-4

Skeletal manifestations of MBD include osteopenia, osteoporosis, rickets, and pathologic fractures in
severe cases. In addition to a subsequent increase in bone fragility, MBD can also impair both long-
and short-term longitudinal growth of long bones.5,6 The negative effect on bone mineralization may
delay somatic development and increase susceptibility to other chronic diseases in adulthood.7

Screening of infants at risk of developing MBD is necessary, although diagnostic methods vary
widely in different countries and institutions.8,9 In addition, the late onset of clinical symptoms and
signs combined with the lack of specific biochemical markers make early recognition of MBD
challenging.3,10 Although numerous epidemiologic studies7,11-13 have identified several risk factors for
MBD during the neonatal period, little work has evaluated the prediction of their development. In
addition, traditional risk prediction models are limited in forecasting the probability of an outcome,14

especially a multifactorial disease with a context of large, high-dimensional, and imbalanced data
set.15 However, they cannot quantify the importance of each feature on predicting the outcomes.16

Furthermore, contemporary research often investigates preterm infants, using relatively small
sample sizes,17 with few having studied MBD among infants in general.18,19

Because clinical data acquired during the time frame covered by a research period may not
include all relevant risk factors, a set of accurate predictive tools for MBD applicable to different
scenarios is needed. In recent years, the artificial neural network (ANN) technique, a highly flexible
and accurate machine learning algorithm, has been widely used for diagnostic and prognostic
prediction of various diseases.20,21 An ANN simulates the behavior of biological neurons to learn and
model the nonlinear relationships between variables and allow computers to predict new data using
the learned potential patterns.22 The output value is compared with that expected output. Learning
proceeds by modifying the weight of the connections between neurons until a minimum error of the
network is reached. After training, the ANN can generate outputs (prediction) on a new data set
based on the accumulated knowledge. In some cases, ANN might provide a more accurate estimation
than conventional approaches.23

We aimed to develop serial ANN models for the risk of MBD based on the hypothesis that
exposures spanning the antenatal to postpartum periods that influence fetal bone formation might
indicate infants at higher risk for MBD. The primary objective was to identify the optimal model for
prediction; the secondary objective was to detect the pivotal exposed factors in each period by
examining the impacts of each model’s features.

Methods

Study Design and Participants
After securing institutional review board approval from the Shanghai First Maternity and Infant
Hospital and the Tongji University School of Medicine, a diagnostic study was conducted in a cohort
of pregnant Chinese women from January 1, 2012, to December 31, 2021. All participants gave written
informed consent before enrollment and the data collected from them were deidentified.
Participants were recruited early in pregnancy and followed up until 1 month after parturition with
clinical data recorded at each visit. This study followed the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) reporting guideline.24
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Inclusion criteria were as follows: (1) singleton pregnancy; (2) complete clinical data during the
antenatal, delivery, and postpartum periods; and (3) surviving infants with detailed values of alkaline
phosphatase. Metabolic bone disease was diagnosed as a peak serum alkaline phosphatase level
greater than 500 U/L (to convert to microkatals per liter, multiply by 0.0167)18 72 hours after birth
measured by the 2-amino-2-methyl-1-propanol method. Women who gave birth to an infant with
MBD were selected as the case group.

Detailed calculation of the required sample size for this study is described in the eMethods in
Supplement 1. We excluded 2559 participants with twin or triplet pregnancy and 3158 with missing
data from any variables of interest. A total of 10 801 women and their infants were finally included in
the analyses (eFigure 1 in Supplement 1).

Data Collection and Handling
We collected maternal and neonatal characteristics data from electronic health records for analysis
(eTable 1 in Supplement 1). Characteristics included the following: (1) demographic data and previous
pregnancy history: age at pregnancy, occupation, ethnicity (on resident’s identification card), region,
prepregnancy body mass index (BMI), parity, and uterine scarring; (2) nutritional conditions during
pregnancy: anemia, deficiencies of folic acid, ferritin, and vitamin D, and supplementation of
corresponding nutrients (folic acid, iron, calcium, and vitamin D); (3) complications and
comorbidities: placenta previa, placental abruption, gestational diabetes, gestational hypertension,
kidney disease, and fever; (4) medication use during pregnancy: dexamethasone, magnesium
sulfate, antibiotics, and furosemide; (5) birth outcomes: prematurity, sex, Apgar scores (range, 0-10),
birth weight, and small for gestational age (birth weight <10th percentile at the same gestational
age); and (6) neonatal disorders: respiratory failure, anemia, septicemia, hypoglycemia or
hyperglycemia, respiratory distress syndrome (RDS), pneumonia, and hyperbilirubinemia.
Continuous independent variables, including age at pregnancy, prepregnancy BMI, Apgar score, and
neonatal birth weight, were converted into categorical variables to decrease the effect of
extreme values.

Predictor Selection
To enhance the computational efficiency of the ANN model, logistic regression analysis was first
performed to select important factors. We subsequently incorporated the putative predictive
factors, those with P < .10, into a multivariable model using the forced entry method. The association
of each factor with the risk of MBD was estimated with odds ratios (ORs) and 95% CIs. Variables with
statistical significance (P < .05) were reserved to build the ANN model.

Statistical Analysis
Dealing With Missing Data
Categorical values were presented as numbers (percentages) and were used to compare MBD and
control groups using the χ2 test or Fisher exact test. To investigate the potential attrition bias from
the missing data, we repeated this testing for all factors in the full singleton cohort with imputed data
before proceeding with the main analyses. The missing data were estimated by multiple imputation
by chained equations.

ANN Model Construction
A feed-forward ANN framework was applied to construct predictive models. The model structure
comprised 3 layers. The input layer had the factors we chose for model construction as neurons, and
the output layer had 2 neurons (ie, MBD and non-MBD events). The hidden layer comprises weighted
inputs as neurons and produces a classification of the predicted event in the output layer. The total
sample was randomized into a training set (70%) for model development and a test set (30%) for
validation. The number of hidden layer neurons was determined by 100 iterations, and the BFGS
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(Broyden, Fletcher, Goldfarb and Shanno) method was applied to determine optimal model
parameters.

Predictive Model Evaluation
Under the ANN framework, model 1 was first built with significant factors selected from logistic
regression models (significant prenatal and postnatal factors). We also constructed a set of ANN
models with demographic characteristics and significant variables from different periods: (1)
maternal nutritional conditions in model 2, (2) gestational complications and comorbidities and
medication use in model 3; (3) all prenatal factors (in items 1 and 2) in model 4; and (4) postnatal
factors (birth outcomes and neonatal disorders) in model 5 (eTables 2 and 3 in Supplement 1).

Model performance was reported by approaches of discrimination, calibration, and
reclassification. The area under the receiver operating characteristic curve (AUC), accuracy,
sensitivity, specificity, positive predictive value, and negative predictive value were calculated. The
optimal threshold value for the AUC to distinguish a predictive event was determined by the
maximum Youden Index. The model with the highest AUC was considered to have the best
discriminative ability. Net reclassification improvement (>0) was used to quantify the risk
classification of 2 models with similar AUCs. Calibration plots were constructed to display the
calibration performance of each model. We ranked the predictors included by feature importance
based on the Gevrey method.

All analyses were performed using R software, version 4.2.2 (R Foundation for Statistical
Computing). A 2-sided P < .05 was considered statistically significant in the analyses.

Results

Participant Characteristics
Of the 10 801 Chinese women who participated in this study (mean [SD] age, 29.7 [3.9] years), 7104
(65.8%) were local residents, 10 600 (98.1%) were of Han ethnicity, and 1001 (9.3%) had uterine
scarring (Table 1). A total of 5950 infants were male (55.1%) and 4851 (44.9%) were female. There
were 138 neonates (1.3%) with MBD; among them, only 6 (4.3%) were term infants, whereas 8094
control neonates (75.9%) were term infants. Other factors during antenatal and postpartum periods
are outlined in eTable 4 in Supplement 1. Distribution patterns of factors in the full singleton cohort
with imputed data remained essentially unchanged (eTable 5 in Supplement 1).

Putative Predictive Factors
After maternal demographic characteristics were adjusted for, the risk of having MBD offspring was
2.31 (95% CI, 1.19-4.48; P = .01) times higher in women who had inadequate folic acid during
pregnancy, 3.260 (95% CI, 1.80-5.92; P < .001) times higher in those with calcium supplementation,
and 0.38 (95% CI, 0.22-0.64; P < .001) times lower if taking iron supplements. Magnesium sulfate
use in pregnancy (OR, 1.80; 95% CI, 1.05-3.06; P = .03) and infants with low birth weight (OR, 5.49;
95% CI, 1.64-18.40; P = .006), anemia (OR, 3.04; 95% CI, 1.86-5.14; P < .001), septicemia (OR, 3.00;
95% CI, 1.51-5.96; P = .002), or RDS (OR, 6.06; 95% CI, 3.17-11.59; P < .001) were risk factors for
developing MBD (Table 2).

ANN Predictive Models
A total of 9 significant variables were included in model 1 (significant prenatal and postnatal factors).
Model 1 exhibited the highest AUC of 0.981 (95% CI, 0.970-0.992), followed by model 5 (postnatal
factors; AUC, 0.977; 95% CI, 0.966-0.988), model 4 (all prenatal factors; AUC, 0.850; 95% CI,
0.785-0.915), model 3 (gestational complications and comorbidities and medication use; AUC,
0.808; 95% CI, 0.726-0.891), and model 2 (maternal nutritional conditions; AUC, 0.647; 95% CI,
0.571-0.723) (Table 3 and Figure 1). The net reclassification improvement was 0.205 (95% CI, 0.067-
0.335) when comparing model 1 with model 5, illustrating a better discriminative ability of model 1.
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Model 1 had a comparable sensitivity to model 5 (both 0.951; 95% CI, 0.885-1.000) but a higher PPV
(0.260; 95% CI, 0.190-0.330) than model 5 (0.140; 95% CI, 0.100-0.182), supporting that it could
precisely identify neonates at higher risk for MBD with less misclassification of low-risk individuals.
Compared with model 3, model 4 included more prenatal factors and had higher sensitivity (model 4:
0.829; 95% CI, 0.714-0.994 vs model 3: 0.683; 95% CI, 0.540-0.825), indicating a possibly stronger
ability to recognize infants at risk for MBD before delivery. In addition, model 1 and model 5 were
well calibrated according to the calibration plots (eFigures 2-6 in Supplement 1).

A list of factors included in each model and their importance is presented in eTable 6 in
Supplement 1. The variable importance plot of model 1 (Figure 2) suggested that birth weight,
maternal age at pregnancy, and neonatal disorders are the most important characteristics for
predicting an infant at risk for MBD; among these factors, ELBW (importance, 50.5%) followed by
VLBW (importance, 7.6%) were the most powerful predictive characteristics. The factors that ranked
first were ELBW (importance, 15.1%) in model 1 and use of magnesium sulfate (importance, 21.2%)
in model 4 (eTable 6 and eFigures 7-10 in Supplement 1).

Discussion

In this diagnostic study, 5 ANN models were proposed using different exposed factors obtained from
prenatal and/or postnatal periods to make early predictions regarding neonates at risk for MBD.
Model 1 (significant prenatal and postnatal factors) and model 5 (postnatal factors) showed the best
performance. If prenatal factors are unavailable, we recommend that model 1 and model 5 be used
in clinical practice (postdelivery prediction) and model 4 (all prenatal factors) be used before delivery
in the study population.

The 3 suggested predictive models had an excellent discriminative ability, with a superior AUC
of 0.981 in model 1 and 0.977 in model 5. Currently, to our knowledge, no research has focused on
making predictions for neonates at risk for MBD using machine learning techniques; therefore, we

Table 1. Demographic Characteristics of the MBD and Control Groups

Characteristic

No. (%) of participants

P valueaMBD group (n = 138) Control group (n = 10 663)
Age at pregnancy, y

≤20 2 (1.5) 48 (0.5)

.03
21-30 76 (55.0) 6814 (63.9)

31-40 58 (42.0) 3722 (34.9)

>40 2 (1.5) 79 (0.7)

Prepregnancy BMI

<18.5 10 (7.2) 1358 (12.7)

.001
18.5-23.9 88 (63.8) 7364 (69.1)

24-27.9 25 (18.1) 1419 (13.3)

≥28 15 (10.9) 522 (4.9)

Ethnicity

Han 136 (98.6) 10 464 (98.1)
.97

Ethnic minority groupb 2 (1.4) 199 (1.9)

Occupation

Employed 108 (78.3) 9255 (86.8)
.003

Unemployed 30 (21.7) 1408 (13.2)

Region

Local residents 96 (69.6) 7008 (65.7)
.35

Others 42 (30.4) 3655 (34.3)

Parity

Primipara 101 (73.2) 8709 (81.7)
.01

Multipara 37 (26.8) 1954 (18.3)

Abbreviations: BMI, body mass index (calculated as
weight in kilograms divided by height in meters
squared); MBD, metabolic bone disease.
a The difference in distribution of each variable

between the MBD and control groups was tested
with the χ2 test or Fisher exact test.

b Ethnic minority group refers to 55 other ethnic
groups in China except for the Han ethnicity.
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could not compare model performance. However, many researchers focused their attention on
developing practical screening tools for bone diseases in adults, such as osteoporosis, using ANN
methods and acknowledged its predictive power, especially in mass screening application.25,26

Another study27 found that ANN outperformed linear regression models in prediction of bone
density among postmenopausal women when more variables were imported. However, it is
challenging for ANN to scale up to recordings of thousands of neurons and to provide medical
explanations pertaining to each independent variable as linear or logistic models do.28,29 In addition,

Table 2. Putative Predictive Factors for Metabolic Bone Disease Risk From Antenatal to Postpartum Periods

Characteristic No. (%)

Crude analysisa Adjusted analysisb

P value OR (95% CI) P value OR (95% CI)
Demographic characteristics

Age at pregnancy, yc

21-30 6890 (63.8) .07 0.27 (0.06-1.12) .004 0.08 (0.01-0.43)

31-40 3780 (35.0) .18 0.37 (0.09-1.58) <.001 0.04 (0.01-0.21)

>40 81 (7.5) .62 0.61 (0.08-4.46) .04 0.08 (0.01-0.84)

Prepregnancy BMId

18.5-23.9 7452 (69.0) .15 1.62 (0.84-3.13) .17 1.18 (0.79-3.96)

24-27.9 1444 (13.4) .02 2.39 (1.15-5.00) .22 1.78 (0.71-4.47)

≥28 537 (5.0) .001 3.90 (1.74-8.74) .46 1.47 (0.53-4.06)

Unemployede 1438 (13.3) .004 1.83 (1.21-2.75) .39 1.27 (0.74-2.17)

Multipara >1 1991 (18.4) .01 1.63 (1.12-2.39) .09 1.56 (0.94-2.60)

Maternal nutritional conditions

Deficiency of folic acid 765 (7.1) <.001 2.53 (1.60-4.02) .01 2.31 (1.19-4.48)

Deficiency of vitamin D 2575 (23.8) .03 1.50 (1.05-2.16) .21 1.36 (0.84-2.19)

Supplementation of iron 3949 (36.6) .001 0.50 (0.33-0.75) <.001 0.38 (0.22-0.64)

Supplementation of calcium 1013 (9.4) .004 1.95 (1.24-3.07) <.001 3.26 (1.80-5.92)

Gestational complications and comorbidities

Placenta previa 249 (2.3) .008 2.66 (1.29-5.50) .25 1.67 (0.70-3.95)

Placental abruption 165 (1.5) .001 3.55 (1.63-7.72) .22 0.51 (0.18-1.48)

Gestational hypertension 999 (9.2) <.001 2.43 (1.58-3.71) .40 1.28 (0.72-2.26)

Fever 1577 (14.6) .03 0.50 (0.27-0.93) .98 0.99 (0.45-2.18)

Gestational medication use

Use of dexamethasone 1159 (10.7) <.001 6.90 (4.90-9.71) .55 0.86 (0.53-1.41)

Use of magnesium sulfate 1374 (12.7) <.001 18.02 (12.42-26.16) .03 1.795 (1.054-3.057)

Use of furosemide 357 (3.3) <.001 3.40 (1.94-5.97) .58 0.81 (0.38-1.73)

Birth outcomes

Prematurity 2701 (25.0) <.001 69.31 (30.55-157.27) .21 2.46 (0.60-10.07)

Neonatal Apgar scores ≥7 10 433 (96.6) <.001 0.24 (0.14-0.41) .35 0.70 (0.33-1.47)

Neonatal birth weightf <.001 <.001

Low (1500-2500 g) 1480 (13.7) <.001 30.90 (15.05-63.42) .006 5.49 (1.64-18.40)

Very low (1000-1500 g) 208 (1.9) <.001 545.25 (267.27-1112.33) <.001 26.33 (7.50-92.42)

Extremely low (<1000 g) 29 (0.3) <.001 711.77 (265.38-1908.99) <.001 35.95 (7.78-166.15)

Neonatal disorders

Neonatal anemia 321 (3.0) <.001 47.17 (33.00-67.41) <.001 3.09 (1.86-5.14)

Neonatal septicemia 123 (1.1) <.001 28.32 (17.85-44.92) .002 3.00 (1.51-5.96)

Hypoglycemia or hyperglycemia 459 (4.2) .003 2.38 (1.34-4.25) .47 0.75 (0.35-1.63)

Neonatal RDS 728 (6.7) <.001 91.66 (57.19-146.89) <.001 6.06 (3.17-11.59)

Neonatal hyperbilirubinemia 5634 (52.2) <.001 0.44 (0.31-0.63) .20 1.36 (0.85-2.17)

Abbreviations: BMI, body mass index (calculated as weight in kilograms divided by
height in meters squared; OR, odds ratio; RDS, respiratory distress syndrome.
a Performed with a univariable logistic regression model.
b Performed with a multivariable logistic regression model.
c Reference to age of 20 years or younger.

d Reference to BMI less than 18.5.
e Reference to employed individuals.
f Reference to non–low birth weight (�2500 g).
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Table 3. Comparison of the Performance of 5 Artificial Neural Network Models

Model AUC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)
Model 1a 0.981 (0.970-0.992) 0.965 (0.965-0.965) 0.951 (0.885-1.000) 0.965 (0.959-0.972) 0.260 (0.190-0.330) 0.999 (0.998-1.000)

Model 2b 0.647 (0.571-0.723) 0.571 (0.571-0.571) 0.707 (0.568-0.847) 0.569 (0.552-0.586) 0.021 (0.013-0.028) 0.993 (0.990-0.997)

Model 3c 0.808 (0.726-0.891) 0.888 (0.888-0.888) 0.683 (0.540-0.825) 0.891 (0.880-0.901) 0.074 (0.048-0.100) 0.995 (0.993-0.998)

Model 4d 0.850 (0.785-0.915) 0.753 (0.753-0.754) 0.829 (0.714-0.944) 0.752 (0.738-0.767) 0.041 (0.028-0.055) 0.997 (0.995-0.999)

Model 5e 0.977 (0.966-0.988) 0.926 (0.926-0.926) 0.951 (0.885-1.000) 0.926 (0.917-0.935) 0.141 (0.100-0.182) 0.999 (0.998-1.000)

Abbreviations: AUC, area under the curve; NPV, negative predictive value; PPV, positive
predictive value.
a Model 1 included significant prenatal and postnatal factors (ie, age at pregnancy,

deficiency of folic acid, supplementation of iron, supplementation of calcium, use of
magnesium sulfate, neonatal birth weight, neonatal anemia, neonatal septicemia, and
neonatal respiratory distress syndrome).

b Model 2 included maternal nutritional condition factors (ie, age at pregnancy,
prepregnancy body mass index, occupation, parity, deficiency of folic acid, deficiency
of vitamin D, supplementation of iron, and supplementation of calcium).

c Model 3 included gestational complications and comorbidities and medication use
factors (ie, age at pregnancy, prepregnancy body mass index, occupation, parity,
gestational hypertension, use of dexamethasone, and use of magnesium sulfate).

d Model 4 included all prenatal factors (ie, age of pregnancy, prepregnancy body mass
index, occupation, parity, deficiency of folic acid, supplementation of iron,
supplementation of calcium, gestational hypertension, use of dexamethasone, and use
of magnesium sulfate).

e Model 5 included postnatal factors (ie, age at pregnancy, prepregnancy body mass
index, occupation, parity, neonatal birth weight, neonatal anemia, neonatal septicemia,
and neonatal respiratory distress syndrome).

Figure 1. The Receiver Operating Characteristic Curves of 5 Artificial Neural Network Models
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Figure 2. Variable Importance for Model 1 for Predicting the Risk of Metabolic Bone Disease in Neonates
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ANN needs a long processing time for large neural networks. This study considered many factors
(neurons), and the sample size had rigorous requirements when putting all these factors into ANN
models. Therefore, only the variables selected by logistic regression analysis were used as input
variables.

Our findings revealed that ELBW and VLBW had a significant influence on the risk of MBD
during infancy. Previous studies7,19,30,31 identified birth weight along with gestational age as the
strongest risk factors for MBD in preterm infants and recommended that infants with birth weights
less than 1500 g be screened for MBD.32 Approximately 80% of fetal bone mineral accretion occurs
during the last 3 months of pregnancy, and preterm neonates will miss, partially or fully, this critical
period of bone growth.33 Prematurity, however, was not identified as a significant predictor in this
study. We observed that 95.7% of neonates with MBD were preterm; therefore, birth weight might
be more sensible than prematurity for prediction. Although the gestational age was not included in
the analysis, its role might have been implied by prematurity combined with birth weight. We also
found no association of uterine scarring, a potential risk factor for preterm delivery,34 with the risk
of MBD.

Intrauterine mineral deficit can worsen in the postnatal period due to neonatal disorders
responsible for associated bone loss.2,35 Consistent with previous results,36 we found that neonatal
RDS, anemia, and septicemia were associated with increased risk of MBD, which could be a result of
restriction in bone growth due to disease relevant therapies and induced stress responses.37,38

Among antenatal risk factors, the use of magnesium sulfate was the most significant factor
associated with the risk of MBD in infants (model 4), highlighting its detrimental influence on
neonatal bone health.39,40 Maternal magnesium can influence fetal parathyroid hormone balance
and compete with calcium metabolism via crossing the placenta to fetus, consequently causing bone
atrophy in neonates.40 The deficiency of folic acid may influence normal bone formation and
growth,41 and maternal iron and calcium supplementation could help rule out or identify MBD
development in neonates. Of note, we detected a calcium-associated risk for MBD through
multivariable analysis. This risk may indicate largely inadequate calcium storage during gestation.

Strengths and Limitations
Our study had several strengths. To our knowledge, this was the first study to use artificial
intelligence models for MBD risk prediction in very early life. Given the data availability in clinical
settings, we developed a set of predictive tools tailored to different scenarios from antenatal to
postnatal periods and selected the optimal ones for application. When available, more than 95% of
MBD could be accurately predicted using fewer than 10 variables. The predictive model we
developed is a rapid and effective tool that could be applied to daily clinical practice, such as by
developing a computerized system for risk screening purposes. Another advantage was that we used
data from a long-established cohort of pregnant women (2012-2021) with a large sample size
(n = 10 801). The prospective design ensured the reliability of exposed factors obtained and their
associations with MBD risk. On the basis of our results, we were able to identify some clinically
relevant predictive factors, such as birth weight and maternal use of magnesium sulfate.
Identification of these factors could allow for special monitoring of those with high-risk factors of
MBD, such as infants with low birth weight and pregnant women who are at risk of delivering preterm
or growth-restricted infants. Furthermore, MBD is not a condition limited to the preterm infant.
Unlike most MBD reports, which focus on premature births,5,17,18 our results could be generalized to
both term and preterm infants.

Some limitations should also be noted. First, because of the absence of a bone imaging method,
the diagnosis of MBD was made by biochemical criteria based on serum alkaline phosphatase levels.
However, radiographs only reveal bone mineralization when its reduction is up to 20% to 40%42 and
are of limited use to in the early diagnosis of MBD. Second, postnatal mineral supply,30 type of
feeding,43 parenteral nutrition,12 and some important nutrient intake during pregnancy (eg,
phosphorus, magnesium, zinc, potassium, and protein) may also be involved in bone metabolism.
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These indicators require further research and generative evidence before claims are made. Given the
study purpose and strong performance of our predictive models, we suggest that current data are
sufficient to meet the goal. Third, this study included only women with singleton pregnancy in
consideration of the complicated mechanism of multiple-birth pregnancy that may introduce
unknown confounders and lead to unexplained results. Specialized, well-designed observational
studies are needed to investigate the association of multiple births with the risk of MBD. Fourth,
higher risk of mortality in preterm (compared with term) infants might bias the results. However,
because of a high level of medical care, such survivorship bias might not exist in this study because
the survival rate of neonates approaches 100% within 72 hours after birth at our institute, at which
time infants are screened for MBD. Of note, these factors are applicable to the population of study
but need to be tested in other populations and countries.

Conclusions

In this diagnostic study of 10 801 participants, ANN appeared to be a simple and efficient tool to
identify neonates at risk of MBD and could therefore effectively help with preventive efforts.
Combining prenatal and postnatal factors or using postnatal exposures alone provided the most
precise prediction. The most important predictor was ELBW. The use of magnesium sulfate during
pregnancy was a significant predictor for the risk of MBD when postnatal factors were unavailable.
However, further investigations are warranted to validate these findings in other populations.
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