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The recovery of European freshwater 
biodiversity has come to a halt

Owing to a long history of anthropogenic pressures, freshwater ecosystems are 
among the most vulnerable to biodiversity loss1. Mitigation measures, including 
wastewater treatment and hydromorphological restoration, have aimed to improve 
environmental quality and foster the recovery of freshwater biodiversity2. Here, using 
1,816 time series of freshwater invertebrate communities collected across 22 
European countries between 1968 and 2020, we quantified temporal trends in 
taxonomic and functional diversity and their responses to environmental pressures 
and gradients. We observed overall increases in taxon richness (0.73% per year), 
functional richness (2.4% per year) and abundance (1.17% per year). However, these 
increases primarily occurred before the 2010s, and have since plateaued. Freshwater 
communities downstream of dams, urban areas and cropland were less likely to 
experience recovery. Communities at sites with faster rates of warming had fewer 
gains in taxon richness, functional richness and abundance. Although biodiversity 
gains in the 1990s and 2000s probably reflect the effectiveness of water-quality 
improvements and restoration projects, the decelerating trajectory in the 2010s 
suggests that the current measures offer diminishing returns. Given new and 
persistent pressures on freshwater ecosystems, including emerging pollutants, 
climate change and the spread of invasive species, we call for additional mitigation to 
revive the recovery of freshwater biodiversity.

Freshwater ecosystems are biodiversity hotspots and provide vital 
ecosystem services, including drinking water, food, energy and rec-
reation. However, humans have degraded freshwaters for centuries, 
with impacts sharply increasing after World War II during the great 
acceleration3. Freshwaters are exposed to anthropogenic pressures 
from agricultural and urban land uses over whole catchments, accu-
mulating pollutants, including phosphorus, organic-rich effluents, fine 
sediments, pesticides and emergent pollutants (such as nanoplastics 
and pharmaceuticals)4,5. Furthermore, freshwaters have been degraded 
by hydromorphological alterations, water extraction, invasive spe-
cies and climate change6,7. In response to legislation such as the US 
Clean Water Act (1972) and the EU Water Framework Directive (2000), 
key countermeasures designed to improve water quality and restore 
freshwater habitats were implemented, including better wastewater 
treatment and controls on the emission of airborne pollutants. These 
actions resulted in considerable declines in organic pollution and 
acidification beginning around 19808. Over the past 50 years, such 
mitigation measures have resulted in quantifiable improvements in 
freshwater biodiversity in some locations9, yet the number and impacts 
of stressors threatening freshwater ecosystems continues to increase 
worldwide and the biological quality of rivers remains poor globally10,11.

Freshwater invertebrates are a phylogenetically and ecologically 
diverse group that contribute to critical ecosystem processes, includ-
ing decomposing organic matter, filtering water, providing energy to 
higher trophic levels, and transporting nutrients and energy between 
aquatic and terrestrial ecosystems12,13. Moreover, freshwater inverte-
brates have long been a cornerstone of water-quality monitoring. The 
biological traits of freshwater invertebrates are well characterized, 

enabling the assessment of functional diversity—the range of functional 
traits of the organisms in a given ecosystem14—an important facet of 
biodiversity that can be used as a proxy for ecosystem functioning15,16. 
However, trajectories of taxonomic and functional diversity have rarely 
been investigated simultaneously at larger spatial and temporal scales. 
Determining the trajectories of taxonomic and functional change could 
inform the development of evidence-based management strategies 
that address stressors through mitigation, restoration and conserva-
tion. Furthermore, how temporal changes in biodiversity manifest 
across large spatial scales and vary among taxonomic groups remains 
equivocal17–19. Examining whole ecological groups representative of 
a particular ecosystem (for example, freshwater invertebrate com-
munities in river ecosystems) may help to clarify discrepancies across 
studies and identify key drivers of temporal change.

Here we analysed pan-European patterns and drivers of multidecadal 
trends in abundance and taxonomic and functional diversity of inverte-
brate communities using a comprehensive dataset of 1,816 time series 
collected in riverine systems in 22 European countries between 1968 
and 2020 (Fig. 1). The dataset comprises 714,698 observations of 2,648 
taxa in 26,668 samples. The time series span a mean of 19.2 years with an 
average of 14.9 sampling years (minimum 8 years, maximum 32 years). 
We address two research questions: (1) how abundance, taxonomic 
diversity and functional diversity of freshwater invertebrate communi-
ties have changed over the past five decades in European streams and 
rivers; and (2) what environmental factors have driven these changes. 
Given that Europe-wide management has resulted in improvements in 
water quality2,20, we hypothesize that abundance, taxonomic diversity 
and functional diversity have increased, consistent with a recovery.  
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We further hypothesize that freshwater invertebrate community recov-
ery was strongest around the end of the previous century after the 
onset of concerted efforts to mitigate stressor impacts and restore 
ecosystems, but has slowed in recent years owing to diminishing returns 
on these actions in addition to remaining and new pressures including 
climate change, land-use intensification and emerging pollutants. We 
assessed evidence for negative impacts of multiple human pressures, 
including dams, urban areas and cropland, and increasing tempera-
tures, while accounting for subcatchment characteristics (such as 
elevation and stream size). We used hierarchical Bayesian models to 
estimate trends and identify drivers of change in abundance and taxo-
nomic and functional diversity of Europe’s freshwater invertebrate 
communities, while accounting for temporal autocorrelation, sampling 
date and sampling variation across studies and countries.

Recovery of Europe’s freshwater invertebrate 
communities
Across all time series, taxon richness increased by 0.73% per year, 
whereas abundance increased by 1.17% per year between 1968 and 
2020 (Fig. 2a,b), substantiating previous documentation of a recov-
ery process18,21,22. The probabilities of trends derived from posterior 
distributions (that is, the probability of the mean trend being above or 
below zero) revealed 0.99 and 0.91 probabilities of a mean increase in 
taxon richness and abundance, respectively. Despite these net-positive 
trends, taxon richness declined at 30% of sites and abundance declined 
at 39% of sites. Abundance trends for EPT taxa (mayflies, stoneflies and 
caddisflies—an indicator group of water quality23) and insects increased 
(EPT, +2.38% per year, 0.97 probability; insects, +1.53% per year, 0.95 
probability) at higher net rates than the overall trends. EPT richness 
(+0.45% per year, 0.82 probability) and insect richness (+0.71% per 
year, 0.99 probability) trends increased, but at net rates lower than 
the overall trends (Extended Data Fig. 1).

Freshwater ecosystems are frequently invaded by non-native spe-
cies7. We therefore examined whether changes in abundance and 
richness were driven by these taxa. Non-native species comprised an 
average of 4.9% of the species and 8.9% of the individuals at the 1,299 
sites for which the taxonomic resolution allowed detection. Thus, native 
species dominated most communities (with 99.9% of sites comprising 
>50% native species). When considering only native taxa, trends in rich-
ness (+0.64% per year, 0.98 probability) and abundance (+0.26% per 
year, 0.61 probability) remained positive, but less so than overall net 
trends (Fig. 2 and Extended Data Fig. 1). For sites at which non-native 
species were detected (898 out of 1,299 sites), non-native species rich-
ness (+3.97% per year, 0.99 probability) and abundance (+3.9% per year, 
0.95 probability) increased sharply (Extended Data Fig. 1).

Functional diversity, which describes the value and range of functional 
traits of the organisms in a given ecosystem14 (Supplementary Table 4), 
also increased over the 53-year study period. Functional richness, which 
quantifies the functional space filled by a community, increased on aver-
age by 2.4% per year (0.99 probability of increase; Fig. 2e). Functional 
redundancy—a measure of overlap in functional trait space—had no 
strong trend (+0.03% per year, 0.64 probability of increase; Fig. 2f). By 
contrast, functional evenness declined (−0.22% per year, 0.96 probability 
of decrease; Fig. 2g), as did taxonomic evenness (−0.54% per year, 0.99 
probability; Fig. 2c). Similarly, functional temporal turnover (−0.32% per 
year, 0.97 probability; Fig. 2h) and taxonomic temporal turnover declined 
(−0.2% per year, 0.87 probability; Fig. 2d). Together, these results suggest 
that functional diversity trends largely paralleled those of taxonomic 
diversity. Model estimates and raw distributions of trends for additional 
taxonomic and functional metrics are shown in Extended Data Fig. 2.

Gains in species richness have come to a halt
While overall net trends provide an overview across the entire study 
period and enable comparison with other long-term biodiversity 
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Fig. 1 | Timeline and data distribution. a, A timeline of major stressors (above 
the line) and environmental legislation (below the line) affecting Europe’s 
freshwater ecosystems (citations are provided in Supplementary Table 1).  
UN/ECE LTRAP,  United Nations Economic Commission for Europe Long-Range 
Transboundary Air Pollution. b, The sampling sites (points) and the rate of 

temporal change in taxon richness of freshwater invertebrate communities 
(colour of points) across 22 European countries (black). c, The distribution of 
sampling sites over time and countries. ‘Other’ includes countries with fewer 
than 50 sampling sites.
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studies17,19,24, they may mask important shorter-term temporal fluc-
tuations in trends. Thus, to provide more nuanced, complementary 
trend information, we used a ten-year moving-window approach to 
examine the trajectories of freshwater invertebrate community change 
over time. Nonlinear trajectories were expected due to temporal varia-
tion in pressures and the implementation of mitigation measures25. To 
improve spatial representativity and comparability across years, only 
years with at least 250 sites from at least 8 countries were included, 
corresponding to the period of 1990 to 2020.

Although trends in taxon richness were generally positive, indicat-
ing increases in local richness through time, this effect became weaker 
over the decades (mean change in trends = −8.8% per year, 95% credible 
interval (CI) range: −13.6% to −3.8% per year). Trends in taxon richness 
started declining around 2010 and then levelled off, reaching an aver-
age of net zero around 2013 (Fig. 3a), indicating an end to the preced-
ing recovery period. When considering only the dominant pattern 
as measured by the proportion of positive trends, the proportion of 
sites with increasing taxon richness declined after windows centred on 
the early 2000s (Fig. 3e). Functional richness trends were more vari-
able, with the highest trends evident for windows centred on 2000 and 
2010, and near net zero trends after 2010 (Fig. 3c). Functional richness 
trends had an overall tendency to decline (mean change in trends of 
functional richness = −5.9% per year, 95% CI range: −12% to +0.1% per 
year). Temporal changes in the proportion of sites with positive func-
tional richness trends were similar to those reported for taxon richness 
(Fig. 3e,g). Trends in abundance (Fig. 3b,f) and functional redundancy 
(Fig. 3d,h) changed little over time (that is, CIs overlapped with zero 
in an analysis of the change in trend estimates over time), although 
abundance trends tended to decline from windows centred on 2010 
until the end of the study period.

Although similar trends in taxonomic and functional metrics were 
expected due to functional variation being constrained by taxon rich-
ness, functional diversity can be more responsive to environmental 
gradients26. However, changes in functional diversity have rarely 
been quantified in large-scale investigations of temporal change in 
biodiversity27,28. A switch from primarily positive trends in functional 
richness in the late 1990s and early 2000s to near-zero trends start-
ing around 2012 (Fig. 3c) may suggest no further improvements in 

ecosystem functioning. The concurrent limited change in functional 
redundancy (Fig. 3d) indicates that the increase in functional richness 
provided new traits to these communities rather than adding traits 
that were already present. Both taxonomic and functional trends in 
evenness and turnover remained near zero or slightly negative over 
time (Extended Data Fig. 3).

Environmental drivers of biodiversity change
Identifying the natural and anthropogenic drivers of biotic change is 
critical to inform effective management strategies. Here we show that 
climate, dam impacts, and the percentage of upstream urban areas and 
cropland (both sources of pollution and causes of habitat degrada-
tion) can all be linked to trends in taxonomic and functional metrics 
representing Europe’s freshwater invertebrate communities (Fig. 4 
and Extended Data Figs. 4 and 5).

Climate strongly influenced freshwater invertebrate communities 
(Fig. 4). Overall, sites experienced a net increase in air temperature of 
+0.037 °C per year ± 0.0007 s.e.m. (with 94% of sites warming) and a 
slight net increase in precipitation of +0.49 mm per year ± 0.12 s.e.m. 
(with 57% of sites getting wetter) over the studied intervals. Sites in 
areas with higher mean air temperatures were more likely to gain taxa 
(Fig. 4) compared with those in cooler areas. This may indicate that 
climate warming has not yet reached critical values for many European 
freshwater invertebrates, consistent with previous predictions for 
ectotherms in temperate regions29,30. Alternatively, lower recovery 
rates for biotic communities in cooler areas could reflect the less severe 
degradation of northern sites before recovery started. By contrast, 
more warming over time had negative biodiversity outcomes, with 
negative effects on long-term trends of taxon richness, abundance and 
functional richness (Fig. 4). Mean precipitation had a positive effect 
on long-term trends of functional richness but a negative effect on 
long-term trends of abundance and functional redundancy, indicating 
the addition of functionally unique taxa at wet sites. However, greater 
increases in precipitation over time had a negative effect on long-term 
trends of both taxonomic and functional richness (Fig. 4). Precipitation 
can influence invertebrate communities and their functioning by alter-
ing flow regimes (and therefore water quality and temperature through 
changes in runoff, discharge and dilution) and food availability6.

Biodiversity trends were generally lower at sites downstream of dams 
and in catchments with a high percentage of urban areas or cropland. 
High dam impacts (that is, those in systems connected to more dams 
and/or closer to dams) had negative effects on long-term trends in 
taxon richness, abundance, functional richness and functional redun-
dancy (Fig. 4). Dams increase sediment loads, reduce longitudinal 
connectivity, and change river flow and temperature regimes31–33.  
By contrast, high dam impacts had a positive effect on long-term trends 
of both taxonomic and functional evenness, suggesting that domi-
nant species declined in abundance in communities downstream of 
dams, whereas richness losses were more pronounced for rare spe-
cies. Furthermore, increases in functional evenness, accompanied 
by decreases in functional richness and redundancy, could reflect 
selection for a subset of traits that confer tolerance of the conditions 
downstream of dams, including altered resource availability and hydro-
morphological homogenization. A greater percentage of upstream 
cropland had a negative effect on long-term trends in taxonomic and 
functional richness and abundance. Cropland frequently contributes 
to nutrient-enriched runoff, leaving primarily tolerant taxa34. A greater 
percentage of upstream urban areas had negative effects on taxon 
richness long-term trends (Fig. 4), but positive effects on non-native 
richness long-term trends (Extended Data Fig. 5a), suggesting losses of 
rare and sensitive native species. Biodiversity trends varied little with 
stream characteristics, although sites at higher elevations had lower 
gains in functional richness, potentially due to rising temperatures (as 
evidenced by a weak positive correlation between temperature trends 
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and elevation; r = 0.15)35. Larger rivers became relatively more prone to 
invasion by non-native species36 (Extended Data Figs. 6–8).

Reviving the recovery
Using a comprehensive Europe-wide dataset, we document the recov-
ery of freshwater invertebrate communities over the past 53 years. The 
taxon richness gains observed across 70% (1,269 out of 1,816) of time 
series are concurrent with widespread implementation of mitigation 
measures8, particularly improvements in wastewater treatment moti-
vated by the EU Urban Waste Water Directive from 1991. However, gains 
in taxon richness started to decelerate around 2010, which may indicate 
that progress towards recovery has come to a halt at many sites, while 
remaining sites may reflect either predominant recovery or ongoing 
degradation towards the end of the study period. Most of our sites are 
monitored under the EU Water Framework Directive (WFD) and 60% of 
WFD-monitored rivers still do not reach ‘good ecological status’37. Even 
at ‘good’ sites, considerable recovery could be needed to reach ‘high 
ecological status’, suggesting that improvements documented here 
represent only a partial recovery of European freshwater ecosystems.

Regardless of the reason for the deceleration, the impacts to Europe’s 
rivers caused by ongoing pressures remain extensive and severe37,38. 
Although our observational data prevent confirmation of the underly-
ing causal processes, our interpretation of the overall recovery being 
a response to improving water quality aligns with the conclusions of 

other studies of European freshwater invertebrate time series9,39. Nega-
tive effects of poor water quality on biodiversity are supported by our 
findings that freshwater invertebrate communities downstream of 
dams, urban areas and cropland were less likely to experience biodi-
versity recovery. Urban areas produce the majority of micropollutants, 
are hubs of non-native species invasions (Extended Data Fig. 5a) and 
generate high-nutrient inputs, whereas croplands are sources of fine 
sediment40, pesticides and nutrient-laden runoff41, and greatly con-
tribute to river salinization42. Most European rivers bear a substantial 
legacy of human impacts on their hydromorphology8,38, with urban 
areas being the most affected, despite considerable river restoration 
in recent decades43. The positive effects of higher mean temperatures 
on long-term trends in invertebrate richness probably reflect the 
lower initial degradation in northern European countries. This may 
also reflect the relatively cool temperatures in European countries, 
whereas decreases in invertebrate richness are currently expected 
in freshwaters of warmer bioregions, such as tropical regions, which 
are not represented in our study44. However, the negative effects on 
long-term trends of taxon richness, abundance and functional richness 
in communities experiencing greater rates of warming are worrying. 
These effects are likely to worsen as temperatures continue to rise 
and as climatic extremes including summer droughts and heatwaves 
become more common45.

Considering that environmental legislation and policy have insuffi-
ciently addressed ongoing and emerging stressors8, the stalled recovery 
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grey polygons indicate 80%, 90% and 95% CIs.
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is unsurprising. Further management actions to revive the recovery 
should target sites at greater risk of biodiversity decline, such as those 
downstream of urban areas, cropland and dams, while maintaining and 
strengthening protection of the least impacted systems that are refuges 
of biodiversity. Specifically, substantial, catchment-scale changes in 
land management must go beyond current legislative requirements 
and achieve greater reductions in water extraction and inputs of pol-
lutants including fine sediments, pesticides and fertilizers. Substantial 
investment is needed to upgrade sewage networks and improve waste-
water treatment plants to better manage stormwater overflow and 
more effectively remove micropollutants, nutrients, salts and other 
contaminants46. Adopting a catchment-scale approach that consid-
ers barriers to dispersal47 can further enhance the effectiveness of 
management, conservation and restoration practices32,48. Additional 
hydromorphological restoration efforts are required to reconnect 
rivers and floodplains to improve ecosystem functioning, prevent 
destructive floods, and adapt riverine systems to future climatic and 
hydrological regimes. Finally, standardized, large-scale and long-term 
biodiversity monitoring, paired with parallel environmental data col-
lection49,50, should be prioritized to effectively characterize temporal 
changes in biodiversity and environmental drivers and identify sites 
at high risk51.

Current large-scale measures to address biodiversity loss remain rare, 
especially for invertebrates. This in part reflects our understanding of 
biodiversity change, which is limited by unknown historical baseline 
conditions and complex variation in interacting anthropogenic stress-
ors. Insufficient baseline data present challenges both for characteriza-
tion of biodiversity trends and ecological status of communities, and 
evaluation of tolerable levels and effects of stressors52. Data on the state 

of freshwater communities both before and during the great accelera-
tion are largely lacking, making it unclear when freshwater degradation 
peaked. Long-term data from the UK suggest freshwater invertebrate 
biodiversity was lowest at the start of the 1990s53, but our pre-1990s 
data are insufficient to determine whether this pattern is Europe-wide 
(Fig. 1c). Moreover, comparison with unimpacted ‘reference’ communi-
ties, a standard practice in freshwater ecology, is becoming increasingly 
challenging due to the emergence of new communities54 resulting 
from climate change, non-native species invasions and other pres-
sures55. Progress towards biodiversity goals needs to recognize these 
changing pressures through flexible strategies to protect and foster 
Earth’s remaining biodiversity. We call for adaptive environmental 
management that recognizes conservation and restoration objectives 
as shifting targets that can be modified to adapt to global change and 
maximize the protection of biodiversity.
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Methods

Time series
We assembled a database of time series of riverine invertebrate com-
munities following a data call targeting European ecologists and envi-
ronmental managers. We included only time series that (1) included 
abundance estimates; (2) documented whole freshwater invertebrate 
communities (including all sampled macroinvertebrates, for example, 
Coleoptera, Crustacea, Diptera, Ephemeroptera, Hirudinea, Mollusca, 
Odonata, Oligochaeta, Plecoptera, Trichoptera, Tricladida); (3) identi-
fied most taxa to family, genus or species; (4) had ≥8 sampling years 
(not necessarily consecutive); (5) used the same sampling method 
and taxonomic resolution throughout the sampling period; and  
(6) had consistent sampling effort per site (for example, the number 
of samples or area sampled) in all years.

Only one sampling event per year was included for each time series, 
where a sampling event was defined as the sample or samples collected 
within a single day. For time series with multiple sampling seasons 
within or among years, we included only one sampling season (defined 
as three consecutive months), preferentially using the season with 
the longest time series. No time series had multiple sampling events 
per season. Sensitivity analyses indicated limited effects of season 
on trend estimates (Extended Data Fig. 10). We removed taxa that are 
not freshwater invertebrates, including terrestrial and semi-aquatic 
taxa, and vertebrates, in addition to freshwater invertebrates that were 
recorded inconsistently owing to their small size (such as mites, cope-
pods and cladocerans).

Between 13 and 516 taxa were sampled per site across all sampling 
years. Communities from 42% of sites were identified to species, 30% 
were identified to mixed (species-to-family) taxonomic levels and 28% 
were identified primarily to family. In total, 2,648 taxa from 959 genera, 
212 families and 47 groups (primarily orders) were recorded. We list 
time-series locations, durations and characteristics in Supplementary 
Table 2 and list the number of sites sampled per year and country in 
Supplementary Table 3.

Our compiled time series represent different stream types and stream 
orders from a large geographical area of Europe. Data were collected 
for purposes including research projects and regulatory biomonitor-
ing, although detailed information on the purpose is unavailable for 
some time series. These data were not selected randomly but were 
collected from available studies that met our six criteria. As these data 
were collected from sites exposed to varying and unquantified levels of 
anthropogenic impacts, we cannot rule out biases arising from unequal 
representation of sites exposed to different impact levels from severely 
impacted to least impacted.

Community metrics
We calculated taxonomic and functional diversity metrics representing 
freshwater invertebrate communities across sites and over time. We 
also examined different community subsets: native and non-native 
species, and insects and EPT taxa (Ephemeroptera, Plecoptera, Trichop-
tera, that is, mayflies, stoneflies, caddisflies, grouped as an indicator 
of water quality56).

Taxonomic diversity. We calculated total abundance, taxon richness, 
Shannon’s diversity, Shannon’s evenness, rarefied richness (calculated 
on the basis of standardized numbers of individuals) and temporal 
turnover for each site and year. As sampling effort was standardized 
within time series before metric calculation, individual-based rarefied 
richness was used to estimate the number of taxa per given number of 
individuals, based on the lowest number of individuals per sampling 
year in each time series17. We calculated temporal turnover as the ratio 
of taxa gained or lost to the total number of taxa present between two 
timepoints using the R package codyn57. All other taxonomic metrics 
were calculated using the R package vegan58.

Functional diversity. Traits were extracted from the European data-
bases freshwaterecology.info (v.7.0)59 and DISPERSE60. First, we down-
loaded trait data for all taxa. We considered biological traits that influ-
ence both a taxon’s response to and its effects on its environment61,62.  
Specifically, we compiled data on 10 biological traits (with 53 trait mo-
dalities): respiration type, resistance form, dispersal type, aquatic 
stage, life cycle duration, reproduction type, maximum potential body 
size, wing form, propensity to drift and feeding type60,63. For taxa with 
multiple aquatic life stages (primarily beetles), whenever available 
from the trait databases, functional roles were assigned for each life 
stage, otherwise adult traits were used. We included only traits for 
which information was available for >85% of all taxa. All traits were 
fuzzy coded across multiple modalities depending on the informa-
tion available; for example, the trait ‘maximum potential body size’ 
contains seven modalities ranging from ≤0.25 cm to >8 cm. Within each 
trait, we scaled affinities to different component modalities between 
0 and 1 (summing to 1 across modalities for each taxon), so that each 
taxon was assigned an affinity score for each modality64, to recognize 
potential trait plasticity.

We took the following steps to fill in gaps due to missing trait data. 
First, when trait data were not available at the original identification 
level (15.9% trait coverage across taxa), we used genus-level trait data, 
resulting in 48.2% coverage. Genus-level trait data are generally suf-
ficient to represent most interspecific variation among freshwater 
invertebrates and thus taxon responses to environmental variability61. 
Next, when genus-level trait data were not available for taxa identified to 
genus, we replaced missing values in trait modalities with the median of 
trait profiles of all species within a genus from the full taxon list, result-
ing in 61.3% coverage. For taxa identified to family level with no available 
data for a given trait, we replaced missing values in trait modalities with 
the median value of trait profiles of all genera within a family, result-
ing in 90.5% coverage across all taxa. The lack of accurate phylogenies 
for many invertebrate taxa, low trait coverage at the species level and 
mixed taxonomic resolution across sampling sites prevented the use 
of other gap-filling approaches, but taxonomic aggregation generally 
aligns well with expert trait assignments65.

We analysed functional diversity separately for each site by calculat-
ing six distance-based metrics chosen to describe multiple facets of 
community niche space and to align with taxonomic diversity met-
rics: functional richness, functional redundancy, functional even-
ness, functional turnover, functional divergence and Rao’s quadratic 
entropy (definitions and citations are provided in Supplementary 
Table 4). All functional metrics except for functional redundancy 
and turnover were calculated using the dbFD function in the R pack-
age FD66. In calculations of functional richness and divergence, we 
used six principal coordinate analysis axes (the dbFD ‘m’ argument), 
according to current recommendations67. To enable calculation of 
functional turnover, we calculated community-weighted means of 
each functional trait category weighted by taxa abundance, then 
calculated turnover of the community-weighted means using the R 
package codyn, as for taxonomic temporal turnover57,68. We calculated 
abundance-weighted functional redundancy using the uniqueness 
function in the R package adiv69. We calculated redundancy accord-
ing to a previous report70: community uniqueness (U) was calculated 
as quadratic diversity divided by Simpson diversity and functional 
redundancy was calculated as 1 − U. The trait input matrix was based 
on Euclidean distances bound between 0 and 1 and the tolerance 
threshold was 10−8.

Non-native species. Non-native species were defined as introduced 
species (that is, those present due to human activities, not natural range 
expansion) at the country level (for example, a species native to Bulgaria 
could be non-native in the UK). To identify non-native species, we used 
two databases: DAISIE71 and the Global Alien First Record Database 



(GAFRD) (v.2)72,73. DAISIE contains non-native species in addition to 
native species defined as invasive because they cause economic loss 
(that is, pest species). GAFRD includes only non-native species but 
is limited to species and countries for which the approximate year 
of introduction is known. From each database, we first extracted all 
species listed for each European country in our dataset. We deter-
mined each species’ country of origin using the Global Biodiversity 
Information Facility74 or peer-reviewed publications, both to eliminate 
native species listed in DAISIE and to check whether species listed as 
non-native in one European country were also non-native elsewhere 
(for example, a North American species marked as non-native in  
Germany in GAFRD would be non-native in all European countries in which  
it occurred).

In total, we identified 61 non-native species. The initial analysis 
of native and non-native species was restricted to the 1,299 sites at 
which taxa were identified to species or a mixed taxonomic resolu-
tion; we excluded the remaining 517 sites due to the coarse (pri-
marily family level) taxonomic resolution, which does not allow for 
reliable identification of non-native species. Estimates of trends in 
non-native species richness and abundance were restricted to the 
898 (of 1,299) sites at which non-native species were recorded. The 
two most abundant non-native species were the New Zealand mud 
snail, Potamopyrgus antipodarum (≥1 individual present in ≥1 year 
at 81% of sites) and the North American bladder snail, Physella acuta  
(34% of sites).

Stream characteristics and environmental predictors
Stream network. We used the MERIT Hydro75 digital elevation model 
(DEM) to delineate the high-resolution Hydrography90m stream net-
work76. To achieve a high spatial accuracy, we used an upstream con-
tributing area of 0.05 km2 as the stream channel initialization threshold 
using the r.watershed and r.stream.extract modules in GRASS GIS77. 
We next calculated the subcatchments for each segment of the stream 
network, that is, the area contributing laterally to a given stream reach 
between two nodes, using the r.basins module. Coordinates indicating 
a site’s location did not always occur in the delineated stream network 
due to spatial inaccuracy of either the DEM or the coordinates. To en-
sure that point occurrences matched the DEM-derived stream network 
and therefore the network topology, we first identified the subcatch-
ment in which each point occurrence was located, then moved all points 
to the corresponding stream segments using the v.net module within 
the given subcatchment. From each point, we calculated the network 
(as the fish swims) distance (km) using the v.net.distance module, and 
the Euclidean (as the crow flies) distance to all other point occurrences 
using the v.distance module. The distance was set to NA when sites 
were located in different drainage basins, and therefore not connected 
through the network.

Environmental predictors. We calculated stream topographical and 
topological predictors using the MERIT Hydro DEM76. Using the r.univar 
module in GRASS GIS, we computed the average elevation (m), elevation 
difference between the site and the upstream subcatchment (m), slope 
and the upstream contributing area (or flow accumulation, km2) for 
each subcatchment. To create a proxy for dam impacts, we calculated 
the network distance between each site and each upstream dam using 
the Global Reservoir and Dam Database (v.1.3)78. For dam impact score 
calculations, see Supplementary equation (1).

We extracted monthly climatic predictors from the TerraClimate 
dataset79 for 1967–2020, which covered all sites and years. For each site, 
we identified the sampling month and computed the mean monthly 
climatic value for the corresponding subcatchment. We calculated 
climatic predictors of cumulative annual precipitation (mm) and 
maximum monthly temperature (°C) for each 12 month period pre-
ceding the mean sampling month at each site. Trend values in pre-
cipitation and maximum temperature over the period covered by each 

time series were calculated using Bayesian models fitted using the R 
package brms80. These models were similar to those used to calculate 
site-level biodiversity metric trends, in which a trend was estimated as 
the coefficient of a continuous year effect. The TerraClimate dataset 
is associated with uncertainties in areas of complex terrain, but our 
large number of sampling sites, relatively good station coverage and 
the low physiographical complexity of most site locations should have 
minimized error in our analyses.

We calculated the proportion of land cover categories in each sub-
catchment using the ESA CCI Land Cover time series81 for each year from 
1992 to 2018. Land cover data were available for 92% of analysed site 
and year combinations and for 99% of sites. We computed the entire 
upstream catchment for each point occurrence using the r.water.out-
let module and calculated the percentage cover of each land cover 
category within this area. The areas of cropland and urban land were 
calculated as the percentage of the upstream area averaged across the 
sampled years at each site.

A list of the stream characteristics and environmental drivers, their 
units and sources is provided in Supplementary Table 5.

Statistical analysis
Trend analysis. Temporal trends in each taxonomic (abundance, 
richness, Shannon’s diversity, Shannon’s evenness, individual-based 
rarefied richness and temporal turnover), functional (redundancy, rich-
ness, evenness, turnover, divergence and Rao’s quadratic entropy) and 
community subset (taxon richness and abundance of native species, 
non-native species, EPT taxa and insects only) metric were assessed us-
ing a two-step approach. First, we calculated site-level trends for each 
metric using Bayesian linear models fitted using the R package brms80. 
In these models, a biodiversity metric was the response variable and 
year was the continuous predictor variable of which the coefficient 
represented the temporal trend estimate.

The form of the model was: bf(BiodiversityMetric ~ cYear + ar(time 
= iYear, p = 1, cov = TRUE)).

Fixed-year variables were centred to improve model convergence 
(cYear) and year in the temporal autocorrelation term was included as 
a count with the first year of sampling considered year 1 (iYear). The 
models accounted for any residual temporal autocorrelation using an 
ar(1) term82 and included day of year as an additional predictor when 
variation in sampling dates at a site was >30 days.

The form of the model was: bf(BiodiversityMetric ~ cday_of_
year + cYear + ar(time = iYear, p = 1, cov = TRUE)).

The models assumed normally distributed errors, which were 
checked visually using histograms. Taxonomic evenness, functional 
richness, total abundance and subset abundance (non-native, native, 
EPT and insect abundance) were log10-transformed, and functional 
divergence was squared to meet the normality assumption.

We ran linear mixed-effects models (LMM) in the brms package to 
synthesize site-level data and estimate overall mean trends. The LMM 
included site-level trend estimates as the response, and an overall inter-
cept and two random effects (country and study identity) as predictors. 
These random effects accounted for data heterogeneity due to unequal 
numbers of sites among studies and countries. Site-level trends were 
normally distributed; we therefore assumed normal errors. Site-level 
trends were combined in a meta-analysis model to estimate the mean 
trend across studies, including the uncertainty (represented by the 
s.d.) of the trend estimates, using brms80.

The form of the model was: brm(estimate|se(sd_trend_esti-
mate) ~ 1 + (1|study_id) + (1|country), data = response_stan, iter = 5000, 
inits = 0, chains = 4, prior = c(set_prior(“normal(0,3)”, class = “Inter-
cept”)), control = list(adapt_delta = 0.90, max_treedepth = 12)).

For each response metric, we calculated the proportion of the pos-
terior distribution of the mean trend estimate (that is, the overall LMM 
intercept) above or below zero, that is, the probability of an increasing 
or decreasing mean trend.
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In Bayesian models, we mostly used default brms settings, includ-

ing four chains, which were run for 5,000 iterations (50% burn-in). We 
used default priors except for trend estimates, for which we selected 
a narrower prior to diminish the influence of biologically unrealistic 
trend estimates. Specifically, we used normally distributed priors with 
a mean of zero and an s.d. of 10 (for site-level trends) or 3 (for mean 
site-level trends). We compared our meta-analysis model of trends with 
and without including the uncertainty of site-level trend estimates. 
To optimize model fit, unweighted models were used for non-native 
and EPT abundance, and for EPT taxon richness. Functional turnover 
was fitted using beta models as values were bound between 0 and 1. 
The percentage change per year was calculated by back-transforming 
model estimates. Back-transformation calculations varied according to 
the originally modelled transformations of response variables (see the 
‘equationsToPercChangePerYr.xlsx’ file in the ‘plots/Fig2_DensityPlots’ 
folder at https://github.com/Ewelti/EuroAquaticMacroInverts). We 
further tested a one-stage synthesis approach in which mean trends 
were estimated in one large mixed-effect model of the observed data, 
including random intercepts and slopes. Overall, these models pro-
duced similar trend results (see figure 16 in the ‘Online Figures.docx’ 
file in the ‘plots’ folder at https://github.com/Ewelti/EuroAquatic-
MacroInverts).

Moving-window analysis. To assess how estimates of trends in abun-
dance and taxonomic and functional diversity changed over time, we 
used a moving-window approach. We used a similar two-stage process 
as described above. For each year of the analysis, we calculated trends 
within a ten-year window in which all time series with ≥6 sampling 
years and from ≥8 countries were included. A ten-year window was 
chosen according to current recommendations regarding times-series 
length83,84 and six was chosen as the number of sampling years cover-
ing >50% of each ten-year period. This analysis was restricted to the 
period between a first moving window from 1990 to 1999, in which 
any time series with ≥6 sampling years was included, to a final window 
from 2011 to 2020. After estimating site-level trends centred on each 
year of the moving window, we ran a Bayesian LMM for each year to 
estimate the overall mean trends across sites in that time period. These 
models followed the same form as used to calculate trend estimates, 
containing the predictor variables of trends including an error term to 
account for uncertainty, an overall intercept, and study identity and 
country as random effects (see the equation in the ‘Trend analysis’ 
section).

To test for an overall linear change in the trajectory of moving-window 
trends, we modelled the effect of year on moving-window trend esti-
mates using brms80.

The form of the model was: brm(MovingWindowTrend|se(sd_trend_
estimate) ~ year, data = moving_window_trends, iter = 5000, inits = 0, 
chains = 4, prior = c(set_prior(“normal(0,3)”, class = “Intercept”)), con-
trol = list(adapt_delta = 0.90, max_treedepth = 12)).

These models identified a linear decline in trends in taxon richness 
and a tendency for decline in functional richness trends over time (see 
figure 21 in the ‘Online Figures.docx’ file in the ‘plots’ folder at https://
github.com/Ewelti/EuroAquaticMacroInverts).

We examined the proportion of sites with positive trends and how 
this proportion changed through time for our key biodiversity met-
rics of taxon richness, abundance, functional richness and functional 
redundancy. To do this, we used site-level moving-window trends and 
estimated the proportion of sites with positive trends in each year. 
We repeated this calculation for each posterior draw to propagate 
through site-level uncertainty to the overall mean proportion and 
estimated 80%, 90% and 95% CIs. To ensure this proportion was not 
driven by studies with especially large numbers of sampling sites, we 
weighted each site by the inverse of the number of sites in each study. 
This complements the moving-window analysis by examining whether 
the emerging mean trends are typical of site-level patterns. This analysis 

was based only on trend direction and not trend magnitude and was 
therefore less affected by any noise contributed by studies with trends 
at the extremes.

An important caveat of the moving-window analysis is that differ-
ent sites are included in different moving windows. Supplementary 
Table 6 lists the number of sites per window in each country. Although 
we accounted for the heterogeneity of site distribution across studies 
and countries within years, models cannot correct for the changing 
number of sampled sites across years. We cannot fully discount the 
possibility that biases in the characteristics of sites sampled across 
time affected trajectory results. We therefore conducted two additional 
moving-window analyses to investigate this, the first limited to sites 
with long-term data and the second limited to sites with species-level 
taxonomic resolution. The first additional analysis initially included 
only sites with ≥20 sampling years between 1990–2020, although 
moving windows with start years of 1990 and 1991 were excluded as 
they included <200 sites. This analysis included 308 sites from 8 coun-
tries. The second analysis included sites with species-level taxonomic 
data and windows covering 1990–2020 with >200 sites, resulting in win-
dows from 1994–2003 to 2011–2020. The species-level moving-window 
analysis included 717 sites from 14 countries. Apart from the sites 
included, models were identical to our original moving-window analy-
ses described above. These alternative moving-window analyses found 
similar declines in the trend of taxon richness over time (see figures 
22–25 in the ‘Online Figures.docx’ file in the ‘plots’ folder at https://
github.com/Ewelti/EuroAquaticMacroInverts).

Analysis of environmental predictors. We assessed responses of 
biodiversity metrics to climate (both the mean and the trend over 
the time series’ durations) and upstream land cover (as the annual 
mean cover value during the sampling period), dam impact score and 
subcatchment characteristics (Supplementary Table 5). We did not 
include upstream land-use trends as most sites exhibited low variation: 
cropland cover changed by a mean of −0.002% per year ± 0.11 s.e.m., 
with no change detected at 634 sites; urban cover changed by 2.48% 
per year ± 0.14 s.e.m., but with no change detected at 803 sites. To ex-
amine relationships between environmental drivers and biodiversity 
trends, we modelled trend estimates using an LMM, incorporating 
trend errors as for the calculation of the overall trend, including all 
predictor variables as fixed effects, and study identity and country 
as random effects.

The form of the model was: brm(estimate|se(sd) ~ Precip-
Trend + TempTrend + PrecipMean + TempMean + StreamOrder + Accu-
mulation + Elevation + Slope + Urban + Crop + DamScore + (1|study_
id) + (1|country), = response_stan, iter = 5000, chains = 4, prior = prior1, 
control = list(adapt_delta = 0.90, max_treedepth = 12)).

We ran models using the R package brms80. We standardized pre-
dictor variables to unit s.d. to facilitate comparison of their relative 
importance. We used regularizing horseshoe priors on environmental 
covariates that pull unimportant covariate effects towards zero to 
avoid overfitting. Our analysis of drivers focused on site-level variation 
in long-term trends, and not temporal variation in short-term trends 
examined in the moving-window analysis. Thus, our driver analysis 
cannot be used to understand recent changes in trends. To further 
examine whether biodiversity trends were positive or negative across 
the range of driver values, we used R package marginaleffects85 to visual-
ize responses to drivers while holding other driver covariates at their 
median. Predicted trends complement the effects on trends shown in 
Fig. 4 (see figures 28–34 in the ‘Online Figures.docx’ file in the ‘plots’ 
folder at https://github.com/Ewelti/EuroAquaticMacroInverts).

Model checking. All models run to quantify biodiversity trends and 
responses to drivers were evaluated by plotting the posterior samples 
to confirm chain convergence, examining R-hat values (<1.1)86 and es-
timating Pareto shape parameters using the argument pareto_k_table 
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in the R package loo87. For trend models and across the 20 examined 
biodiversity metrics, an average of 99.5% of the 1,816 sites had shape 
parameter estimates of k < 0.7 (a threshold for good model perfor-
mance). For environmental driver models, an average of 99% of the 
1,816 sites had shape parameter estimates of k < 0.7.

Sensitivity analysis. To check the robustness of our results to analyti-
cal decisions, we ran multiple sensitivity analyses for all biodiversity 
metrics. We tested the effects on trend estimates of (1) taxonomic reso-
lution, by rerunning meta-analysis models with resolution (family, 
mixed, and species) as an additional fixed factor; (2) sampling season, 
by rerunning meta-analysis models (described in the ‘Trend analysis’ 
section) with season (winter, spring, summer and fall) as an additional 
fixed factor; and (3) country, using a jackknife resampling analysis in 
which the meta-analysis was rerun after sequentially removing coun-
tries. Models were otherwise similar to those presented above. Scripts 
for sensitivity analyses are available at GitHub (https://github.com/
Ewelti/EuroAquaticMacroInverts (HPC_Sensitivity_analysis.R and 
HPC_Meta_analysis_country_jackknife).

Some caution is advised when inferring conclusions from a dataset 
including different levels of taxonomic resolution or different seasons. 
However, intra-site sampling was consistently within one season or 
taxonomic resolution, so intra-site trends were not affected by these 
differences. Neither taxonomic resolution nor season had strong direc-
tional effects on trend estimates, with error bars generally overlapping. 
Patterns across taxonomic resolutions and sampling seasons were gen-
erally similar to those presented in Fig. 2 (Extended Data Figs. 9 and 10). 
Trends of taxonomic richness were robust to one-country removal but 
abundance trends became more strongly positive on removal of data 
from some countries, suggesting geographical variability in abundance 
trends (see figure 17 in the ‘Online Figures.docx’ file in the ‘plots’ folder 
at https://github.com/Ewelti/EuroAquaticMacroInverts).

We analysed the effect of the number of sampling years in a time 
series on observed trends using simple linear regression. The num-
ber of sampling years did not affect trend estimates of taxon richness 
(R2 < 0.001), abundance (R2 < 0.001), functional richness (R2 = 0.004) or 
functional redundancy (R2 < 0.001) (see figure 14 in the ‘Online Figures.
docx’ file in the ‘plots’ folder at https://github.com/Ewelti/EuroAquat-
icMacroInverts).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data needed to reproduce analyses including metadata, site char-
acteristics and values of each metric (for example, species richness, 
functional richness) for each site and year are available at Figshare 
(https://doi.org/10.6084/m9.figshare.22227841). Biodiversity compo-
sition data are available at GitHub (https://github.com/Ewelti/EuroA-
quaticMacroInverts/raw-data).

Code availability
Annotated R code is available at GitHub (https://github.com/Ewelti/
EuroAquaticMacroInverts).
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Extended Data Fig. 1 | Trend estimates for community subsets. Overall 
estimates and distributions of trends in a, non-native species richness,  
b, non-native abundance, c, native taxon richness, d, native abundance,  
e, Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxon richness, f, EPT 
abundance, g, insect taxon richness, and h, insect abundance. Bars around 
estimates indicate 80%, 90%, and 95% credible intervals. Trend estimates for 
native taxa (c, d) are restricted to the 1,299 sites at which taxa were identified to 

species or a mixed taxonomic resolution. Trend estimates for non-native 
species (a, b) are restricted to the 898 (of 1,299) sites at which non-native 
species were detected. Incorporating the remaining 394 (30.1%) of the 1,299 
sites (i.e. those with no detected non-native species) as having trends = 0 
resulted in an average increase of 2.75% y−1 in richness and 2.79% y−1 in 
abundance.
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Extended Data Fig. 2 | Trend estimates for additional biodiversity metrics. 
Overall estimates and distributions of trends in a, Shannon’s diversity,  
b, rarefied taxon richness, c, functional divergence, and d, Rao’s quadratic 

entropy (n = 1,816 biologically independent sites for all metrics). Bars around 
estimates indicate 80%, 90%, and 95% credible intervals.



Extended Data Fig. 3 | Moving window trends for additional biodiversity 
metrics. Estimated trends in a, Shannon’s evenness, b, taxonomic turnover,  
c, functional evenness, and d, functional temporal turnover. Estimates were 

calculated from Bayesian mixed-effects models of trends from ≥250 time 
series with ≥6 years of data from ≥8 countries within 10-year moving windows. 
Grey polygons indicate 80, 90, and 95% credible intervals.
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Extended Data Fig. 4 | Estimated effects of environmental drivers on 
temporal trends in additional biodiversity metrics. Estimated effects of the 
mean (tmax mean) and trend (tmax sl. [slope]) of annual maximum temperature, 
mean (ppt mean) and trend (ppt sl.) of annual precipitation, dam impacts 
(dam), and the percentage of the upstream catchment covered by urban areas 

and cropland on temporal trends in a, Shannon’s diversity, b, rarefied taxon 
richness, c, functional (func.) divergence, and d, Rao’s quadratic entropy (Q) 
(n = 1,816 biologically independent sites for all metrics). Bars around estimates 
indicate 80%, 90%, and 95% credible intervals. Grey, horizontal lines separate 
the three environmental driver groups: climate, dams, and land use.



Extended Data Fig. 5 | Estimated effects of environmental drivers on 
biodiversity metrics representing community subsets. Estimated effects  
of the mean (tmax mean) and trend (tmax sl. [slope]) of annual maximum 
temperature, mean (ppt mean) and trend (ppt sl. [slope]) of annual precipitation, 
dam impacts (dam), and the percentage of the upstream catchment covered by 
urban areas and cropland on temporal trends in a, non-native species richness, 
b, native taxon richness, c, EPT richness, d, insect richness, e, non-native 
abundance, f, native abundance, g, EPT abundance, and h, insect abundance. 

Trend estimates for native taxa (b, f) are restricted to 1,299 sites at which taxa 
were identified to species or a mixed taxonomic resolution. Trend estimates  
for non-native species (a, e) are restricted to the 898 (of 1,299) sites at which 
non-native species were detected. Bars around estimates indicate 80%, 90%,  
and 95% credible intervals. Bars around estimates indicate 80%, 90%, and 95% 
credible intervals. Grey, horizontal lines separate the three environmental driver 
groups: climate, hydrology, and land use.
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Extended Data Fig. 6 | Estimated effects of stream characteristics on 
biodiversity metrics. Estimated effects of slope, elevation, flow accumulation 
(accum.) and Strahler stream order (str. order) on temporal trends in a, taxon 
richness, b, abundance, c, evenness, d, turnover, and functional (func.)  

e, richness, f, redundancy, g, evenness, and h, turnover (n = 1,816 biologically 
independent sites for all metrics). Bars around estimates indicate 80%, 90%, 
and 95% credible intervals.



Extended Data Fig. 7 | Estimated effects of stream characteristics on 
additional biodiversity metrics. Estimated effects of stream characteristics 
of slope, elevation, flow accumulation (accum.) and Strahler stream order (str. 
order) on temporal trends in a, Shannon’s diversity, b, rarefied taxon richness, 

c, functional (func.) divergence, and d, Rao’s quadratic entropy (n = 1,816 
biologically independent sites for all metrics). Bars around estimates indicate 
80%, 90%, and 95% credible intervals.



Article

Extended Data Fig. 8 | Estimated effects of stream characteristics on 
taxon richness and abundance of taxa subsets. Estimated effects of slope, 
elevation, flow accumulation (accum.) and Strahler stream order (str. order) on 
temporal trends in a, non-native species richness, b, native taxon richness,  
c, EPT richness, d, insect richness, e, non-native abundance, f, native abundance, 

g, EPT abundance, and h, insect abundance. Trend estimates for native taxa (b, f) 
are restricted to 1,299 sites at which taxa were identified to species or a mixed 
taxonomic resolution. Trend estimates for non-native species (a, e) are 
restricted to the 898 (of 1,299) sites at which non-native species were detected. 
Bars around estimates indicate 80%, 90%, and 95% credible intervals.



Extended Data Fig. 9 | Sensitivity of biodiversity metric responses to 
taxonomic identification level. Error bars represent 95% credible intervals. 
Overlapping error bars indicate comparable trend estimates for analyses at 

species (n = 762), genus/mixed (n = 537) and family (n = 517) taxonomic levels; 
Func., functional; Est., estimated trend.
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Extended Data Fig. 10 | Sensitivity of biodiversity metric responses to 
sampling season. Error bars represent 95% credible intervals. The largest 
differences between seasons were found for winter, which likely reflects the 

low number of sites sampled in this season (winter n = 5, spring n = 623, summer 
n = 473, fall n = 715). Func. refers to functional; Est. refers to trend estimates.
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The study is a meta-analysis of 1,816 time series of freshwater macroinvertebrate communities to examine biodiversity trends over 
time and across Europe. Overall estimates of slopes of biodiversity metrics were calculated using a Bayesian hierarchical model (2-
step model). Step 1 involved calculating individual slopes for each time series. Step 2 involved an calculating overall estimate and an 
overall intercept and two random effects (country and study identity) as predictors.

Research sample Data were collected from previous studies and assembled from a data call.

Sampling strategy No sample-size calculation was preformed. Time series were included in analyses when they met selection criteria, resulting in a 
collection of 1,816 time series.

Data collection Data were assembled from a data call to European ecologists and environmental managers. Peter Haase put out the data call and 
Ellen Welti assembled data from data providers.

Timing and spatial scale All of the 1,816 time series contain annual sampling of a minimum of 8 years of data. All time series combined span the period of 
1968-2020.

Data exclusions All time series obtained in the data call were included if they met the pre-selected criteria of: 1) inclusion of abundance estimates, 2) 
surveyed whole freshwater invertebrate communities (not restricted to certain taxonomic groups, such as insects), 3) identified most 
major taxa to family, genus or species, 4) had a minimum of eight sampling years (not necessarily consecutive), 5) had no changes in 
sampling method or taxonomic resolution during the sampling period, and 6) had consistent sampling effort per site (e.g. number of 
samples or area of river sampled) across years. 

Reproducibility No new experiments were performed in this meta-analysis. All code, meta-data, and slope estimates are provided on Github: https://
github.com/Ewelti/EuroAquaticMacroInverts

Randomization The study is a meta-analysis of pre-collected time series data, and does not including new experimental designs requiring 
randomization. When testing for overall estimates of change in biodiversity metrics over time, study and country were included in 
models as random effects.

Blinding Blinding was not relevant to this study.

Did the study involve field work? Yes No
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Dual use research of concern
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n/a Involved in the study

ChIP-seq
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Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals The study did not involve laboratory organisms.

Wild animals Data include time series from previous studies of field collections of freshwater macroinvertebrates. Macroinvertebrates were killed 
to identify specimens in these studies. Details are provided in the Methods and Supplemental Tables.

Reporting on sex Does not apply to our study.

Field-collected samples Data include time series from previous studies of field collections of freshwater macroinvertebrates. Macroinvertebrates were killed 
to identify specimens in these studies. Details are provided in the Methods and Supplemental Tables.

Ethics oversight No ethical approval or guidance was required as data were collected only from previous studies.

Note that full information on the approval of the study protocol must also be provided in the manuscript.


	The recovery of European freshwater biodiversity has come to a halt

	Recovery of Europe’s freshwater invertebrate communities

	Gains in species richness have come to a halt

	Environmental drivers of biodiversity change

	Reviving the recovery

	Online content

	Fig. 1 Timeline and data distribution.
	Fig. 2 Averages and distributions of trends in taxonomic and functional diversity metrics.
	Fig. 3 Temporal fluctuations in trend estimates using a moving window.
	Fig. 4 Estimated effects of environmental drivers on biodiversity trends.
	Extended Data Fig. 1 Trend estimates for community subsets.
	Extended Data Fig. 2 Trend estimates for additional biodiversity metrics.
	Extended Data Fig. 3 Moving window trends for additional biodiversity metrics.
	Extended Data Fig. 4 Estimated effects of environmental drivers on temporal trends in additional biodiversity metrics.
	Extended Data Fig. 5 Estimated effects of environmental drivers on biodiversity metrics representing community subsets.
	Extended Data Fig. 6 Estimated effects of stream characteristics on biodiversity metrics.
	Extended Data Fig. 7 Estimated effects of stream characteristics on additional biodiversity metrics.
	Extended Data Fig. 8 Estimated effects of stream characteristics on taxon richness and abundance of taxa subsets.
	Extended Data Fig. 9 Sensitivity of biodiversity metric responses to taxonomic identification level.
	Extended Data Fig. 10 Sensitivity of biodiversity metric responses to sampling season.




